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1 Introduction

Financial intermediaries hold tens of trillions of dollars of securities. How does the
value of these institutions respond to a decline in the prices of these securities? Un-
der Modigliani-Miller, a dollar of assets translates directly into a dollar of firm value.
In theories of financial distress, a decline in prices additionally reduces the financial
health of the institution, yielding a more than one-to-one effect and potentially start-
ing an adverse feedback loop in the financial system. An alternative view, held by
many practitioners, is that certain types of financial institutions, such as banks, life
insurers and pension funds, are long-term investors that can “ride out” fluctuations
in asset prices without seeing their own valuations affected.

In this paper, we expound this second view and propose that some financial in-
termediaries act as asset insulators. We show that such a role emerges naturally
in economies where trading frictions affect asset prices. Similar to arbitrageurs, in-
sulators exploit different valuations of the same asset by different investors. More
distinctively, an asset insulator creates value by buying and holding for the long run
assets otherwise subject to valuation shocks in the open market. This activity re-
sults in the market value of an insulator’s equity differing from the gap between the
market value of its assets and liabilities. Our main empirical contribution is to build
on this insight to present direct evidence of asset insulation in the form of the pass-
through from asset holdings to equity, using a data set of 11.5 million corporate bond
returns merged with security-level data on the asset positions and equity returns of
publicly-traded life insurance companies.

We start our analysis with a model of an asset insulator in order to clarify the con-
ditions under which they can exist and what shapes the evolution of their equity. Our
theory highlights the interaction of two forces. First, the benefit from holding an asset
inside an insulator depends on the size of the wedge between the asset’s market value
and the value to a long-term investor. Second, a financial intermediary may have to
liquidate its holdings on the open market if asset values deteriorate sufficiently. The
risk of forced liquidation counteracts value creation from asset insulation. We derive
an expression for the value of an insulator’s equity and define the franchise value
as the difference between the firm’s equity and the market value of financial assets
minus liabilities. The franchise value fluctuates in response to both changes in the
value of the asset insulation function and the ability of intermediaries to perform it.
The interaction of these forces generates predictions we can take to the data.

We do so in the context of life insurance companies, a sector which holds $4 trillion
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of financial assets. The traditional view of life insurers emphasizes their expertise in
pricing policy liabilities as their main source of value creation (Briys and De Varenne,
1997). Our theory instead emphasizes the asset side of insurers’ balance sheets; liabil-
ities matter insofar as they provide a stable source of funding to back asset insulation
activities.

We use detailed, security-level regulatory data to confirm three main balance sheet
predictions of the theory. First, insurers hold risky, illiquid assets. Their largest port-
folio holdings are in corporate bonds, commercial mortgages, and non-Agency asset-
backed securities; only about 10% of their holdings are in safe and liquid Treasury
or Agency securities. Second, insurers execute trading strategies to target assets
with market value below their long-run value. The typical security remains on an
insurer’s balance sheet for about 8 years, allowing insurers to generate value sim-
ply by purchasing illiquid assets and keeping those assets off of trading markets.
Furthermore, insurers’ secondary market purchases of corporate bonds concentrate
in securities which have recently fallen in value but experience positive abnormal
returns after purchase by an insurer. The positive post-purchase abnormal return
survives controls for purchase date, rating, coupon, and maturity, suggesting that in-
surers actively seek bonds with market value below long-run value. Third, insurers
have stable liabilities to back their asset holdings, primarily long-term life insurance
contracts and annuities.

Our main empirical contribution is to combine the information in the share prices
of publicly-traded insurers with data on their asset positions and market prices of
those assets to compute the pass-through from a dollar of assets to equity. The rela-
tionship between these two market values provides a unique window into how insula-
tion creates value. In normal times, the ability to insulate from transitory fluctuations
in asset prices in the open market yields a pass-through into equity below 1. As the
risk of forced liquidation increases, however, the ability to insulate diminishes and
even transitory fluctuations affect equity. Moreover, each lost dollar of assets pushes
the firm closer to liquidation, reducing the value of insulation on the entire balance
sheet. Thus, the pass-through rises during a crisis. This pattern is unique to the
insulator theory; theories of financial institutions rooted in costs of financial distress
or risk-shifting due to government guarantees do not predict this behavior.

A test of the pass-through must overcome the identification challenge that the ob-
served return on asset holdings may be correlated with the change in value of other
assets, of insurers’ liabilities, and of the value of future business. We design an em-
pirical strategy which exploits large, idiosyncratic movements in bond prices held by
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some insurers and not others. Specifically, we match daily cusip-level holdings of the
assets on each publicly-traded insurer’s balance sheet with the universe of corporate
bond returns on each date. The combination of concentrated portfolio positions, lever-
age, and volatile bond returns generates insurer-level portfolio shocks with a stan-
dard deviation in excess of 25 basis points of market equity, large enough to make
the test powerful. We obtain the pass-through by regressing the equity return on the
portfolio shock in the cross-section of insurers.

Consistent with the predictions of the model, the pass-through differs in and out of
the 2008-2009 financial crisis. Outside of the crisis, a dollar lost on assets creates an
approximately 15 cent loss to equity value, economically and statistically significantly
much less than one. The pass-through rises during the crisis. The data reject equality
of the pass-through in and out of the crisis, but do not reject equality of the crisis pass-
through and 1. We show extensive robustness to the definition of the portfolio shocks,
control variables, and sample restrictions. Moreover, the pass-through rises more
for those insurers most severely impacted by the crisis, providing further evidence of
poor financial health during this period contributing to lower insulation from market
movements.

Our final result demonstrates the importance of the insulator view to understand-
ing the survival of the life insurance sector during the 2008-09 crisis. Specifically,
without the value created by their asset insulation activities, the market equity of life
insurers during the 2008-09 period would have declined by additional tens of billions
of dollars, likely rendering much of the sector insolvent. This calculation involves two
steps. First, the sharp drop in safe interest rates during 2008 increased the value
of publicly-traded insurers’ policy liabilities by an estimated $96 billion. Second, the
market value of the risky assets held by these insurers declined by $30 billion. A con-
stant franchise value would therefore have implied a more than $126 billion loss in
the value of insurers’ equity. Instead, equity dropped by “only” $80 billion. Through
the lens of our theory, the $46 billion increase in franchise value must reflect fire sale
discounts and increases in illiquidity during the crisis which caused market prices
to temporarily decline: insulation helped insurance companies withstand the brunt
of the crisis. Nevertheless, the behavior of the pass-through during this period high-
lights a core tension in the provision of asset insulation, as the crisis coincided with a
deterioration in the financial health of insurers, threatening their ability to insulate
assets from market movements exactly when such insulation is most valuable.

The remainder of the paper proceeds as follows. We next situate our findings in
the existing literature. We formalize the concept of an asset insulator in Section 2
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and derive the predictions for balance sheet behavior and the pass-through. Section
3 provides background on life insurers and describes our data. Section 4 presents ag-
gregate balance sheet evidence for life insurers. Section 5 contains the pass-through
exercise. In Section 6 we measure the change in franchise value during the financial
crisis. Section 7 concludes.

Related literature. Our paper relates to a large body of work on financial institu-
tions in episodes of economic trouble. Going back to Bernanke (1983), a large liter-
ature emphasizes how deteriorating health of financial institutions can amplify ad-
verse conditions. He and Krishnamurthy (2013) and Brunnermeier and Sannikov
(2014) articulate formal theories of this view motivated by the 2008-09 period. We fo-
cus instead on the ability of certain intermediaries to avoid frictions in the market for
securities. In this insulator role, shocks originating on financial markets can actually
be mitigated by the intermediary.

The life insurance industry during the 2008-09 crisis exemplifies both of these
views. Consistent with an amplification role, Ellul, Jotikasthira, and Lundblad (2011)
document that regulatory constraints prompted life insurers to liquidate some bond
positions during this period, pushing the prices of these bonds further down, while
Koijen and Yogo (2015) show how binding regulatory constraints distorted the pricing
of insurance policies. Our work instead highlights how life insurers mitigated the
link from security prices to the market equity of the financial sector. While insurers
certainly suffered during the crisis, their ability to insulate prevented the destruction
of nearly $50 billion of market equity in the financial sector at a crucial moment.

An important ingredient for insulators to create value is the stability of their li-
abilities. Diamond and Dybvig (1983), Gorton and Pennacchi (1990), and Calomiris
and Kahn (1991) discuss how financial institutions can manufacture stable liabilities.
In the case of insurers, the long contractual horizon of policies naturally gives rise to
stable liabilities. Our main focus is how such funding stability facilitates insulation in
securities markets. Two papers related to ours illustrate such a comparative advan-
tage in the context of commercial banks and closed-end funds. In Hanson, Shleifer,
Stein, and Vishny (2015), commercial banks have “sleepy” liabilities because govern-
ment deposit insurance makes depositors insensitive to the value of the bank’s assets,
allowing them to ride out periods of fire sales. In Cherkes, Sagi, and Stanton (2009),
fully equity-financed closed-end funds face no redemption risk. Our framework em-
phasizes that any institution with stable liabilities may adopt the role of an asset
insulator.
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Finally, an insulator is a specific type of arbitrageur. Hence, our work also relates
to the literature on the limits to arbitrage.1 This literature has traditionally focused
on sophisticated institutions created with the explicit goal of making profits by tak-
ing advantage of financial market inefficiencies. We highlight how a broader set of
large financial institutions derive value from differences in valuation and how this
activity shapes the evolution of the market equity of these institutions. Our approach
echoes a literature which tries to resolve the closed-end fund puzzle by valuing the
comparative advantage of the institution (Lee, Shleifer, and Thaler, 1991; Berk and
Stanton, 2007; Cherkes et al., 2009). In addition, our results add to the evidence
of multiple valuations of seemingly the same asset (e.g., Malkiel, 1977; Lamont and
Thaler, 2003), in our case corporate bonds.

2 What is an Asset Insulator?

An insulator is an institution which protects assets from price fluctuations using a
stable balance sheet. In this section, we formalize this definition and contrast it with
three standard theories of financial institutions. We then discuss implications of asset
insulation for balance sheet behavior. Finally, we construct the pass-through test to
distinguish the insulator view from alternative theories.

2.1 Model of Asset Insulator

Our starting point is that two valuations for the same asset can coexist. One valuation
is the price observed on the market where the asset is traded. This price reflects any
transitory conditions in this market. The other valuation is a more stable long-term
value, reflecting the value of the asset to a long-term investor. An asset insulator is
an institution capable of exploiting such a valuation differential.

The existence of a valuation differential requires some limits to arbitrage. Oth-
erwise, insulators would continue to expand their balance sheet until the difference
between the market price and its value to an insulator disappeared.2 In Appendix A
we present an equilibrium model of such a valuation differential and show how limits
to arbitrage allow asset insulators to exist.

The objective of this paper is to study the behavior of insulators and to construct a
test for their presence. The model that follows therefore takes as given the existence

1Shleifer and Vishny (1997) originate the term and provide the first formal model of it. Barberis
and Thaler (2003) and Gromb and Vayanos (2010) provide surveys of the literature.

2We return to the specific nature of this constraint in Section 2.3.
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of a valuation differential and a limit to the size of the insulator. The model highlights
the interaction of two forces. First, the benefit from holding the asset inside the
insulator depends on the size of the wedge between market value and long-term value.
Second, the risk of forced liquidation following poor performance counteracts value
creation from asset insulation. We derive an expression for the value of an insulator’s
equity and use it to make testable predictions for balance sheet behavior. In addition,
if an insulator itself is publicly traded, observing both the market value of its portfolio
holdings and its equity provides a unique opportunity to jointly test for the presence
of distinct valuations and the role of the institution as an insulator. We formalize this
test as the pass-through.

Valuation inside and outside of the insulator. The institution can invest at date
0 in assets indexed by j = 1, . . . , N . The institution chooses a non-negative number
of shares sj to invest in each asset. The assets have a continuous payout rate of c.
The value of asset j if held inside the insulator forever is Ain

j,t. This value follows a
risk-neutral law of motion:

dAin
j,t

Ain
j,t

= (r − c) dt+ σA,agg,jdZ
A
t + σA,idio,jdZ

A
j,t. (1)

Asset value including payouts grows at the risk-free rate r and has volatility exposure
to an aggregate shock σA,agg,i and an asset-specific shock σA,idio,i. The processes {ZA

t }
and {ZA

j,t} are independent standard brownian motions.
The value of the assets when traded on the open market differs from the value

inside the insulator by a factor ωj,t:

Aout
j,t = ωj,tA

in
j,t, (2)

where the wedge ωj,t follows a mean-reverting process:

dωj,t = −κω,j (ωj,t − ω̄j) dt+ σω,agg,j
√
ωj,tdZ

ω
t + σω,idio,j

√
ωj,tdZ

ω
j,t. (3)

The parameters 0 < ω̄j < 1, σω,agg,j, and σω,idio,j control the mean and volatility of ωj,t,
and κω,j is the speed of reversion to the mean.3 For clarity of exposition, we assume
for now that the shocks to the wedge are orthogonal to the shocks to the inside value.

3We assume that 2κωω̄ > (σ2
ω,agg,j + σ2

ω,agg,j) to ensure that ω is always strictly positive.
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We define the outside value of the portfolio as Aout
t =

∑
j sjωj,tA

in
j,t, the inside value as

Ain
t =

∑
j sjA

in
j,t, and the portfolio wedge as ωt = Aout

t /Ain
t .

The processes ωj,t determine the wedges between asset values inside and outside
the firm. Under the asset insulator view, assets typically have more value inside
than outside the firm, ωj,t < 1. A lower value of ωj,t corresponds to a more depressed
market price and therefore a larger gain from holding the asset inside the firm. The
existence of a time-varying wedge ωj,t and the property ω̄j < 1 arise naturally in
general equilibrium models with limits to arbitrage.4

Firm financing structure and liquidation. The assets of the firm finance pay-
ments to three sets of agents: debt holders, asset managers, and shareholders. The
debt takes the form of a perpetual console bond, with payments ` due continuously.
Asset managers receive payments proportional to the amount of assets they manage,
a flow kAin

t each period. These payments have a broader interpretation than the direct
compensation of asset managers and represent any proportional costs linked with the
management of the assets. Shareholders are the residual claimants.

We assume a rigid capital structure to capture the possibility of financial distress
and forced liquidation of the firm’s assets. We model such forced liquidation by a
threshold condition H(Aoutt , Aint ) ≤ 0 at which liquidation occurs, where the function
H is increasing in both arguments and captures the financial health of the firm. For
example if H(Aout, Ain) = Aout − A, liquidation occurs when the market value of the
portfolio reaches a threshold A. Let T denote the liquidation stopping time, i.e., T =

arg mintH(Aoutt , Aint ) = 0. The proceeds AoutT from liquidating the portfolio first pay
debt holders in full, with equity claimants receiving the remaining value.5

While stylized, the single threshold condition captures in a parsimonious way the
increased prospect of liquidation into the open market when an insurer faces financial
distress. In practice, intermediaries face a combination of capital requirements, ac-
counting rules, and direct regulatory pressure which make liquidation of the portfolio

4See Appendix A for one such model featuring limits to arbitrage and noise trader risk. In that
model, noise trader demand causes time variation in ωt. Rational investors then require ω̄ < 1 to com-
pensate for their bearing noise-trader risk. Other motivations include temporary fire sale discounts
(Shleifer and Vishny, 2011), the price impact from large trades, transaction costs that distort prices
(Amihud and Mendelson, 1986; Duffie, Gârleanu, and Pedersen, 2005), or differences in information
(Berk and Stanton, 2007).

5With a threshold based on outside value only, debt holders always get fully repaid as long as
A ≥ `/r. Because ωt is not bounded below, no threshold can ensure full payment to debt holders if the
boundary depends on the inside value of assets. In this case, we assume H(Aoutt , Aint ) is sufficiently
conservative that almost always ωTAinT > `/r and neglect the potential losses for debt holders in our
calculations. In the case of insurers, recovery rates in insolvencies have typically exceeded 75%. We
come back to the possibility of risky debt in our empirical analysis.
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a progressive rather than a discrete event. In the case of insurers, Ellul et al. (2011)
provide evidence of capital-constrained insurers selling downgraded corporate bonds,
Ellul, Jotikasthira, Lundblad, and Wang (2015) show how the interaction of account-
ing rules and asset downgrades led to early selling of assets, and Merrill, Nadauld,
Stulz, and Sherlund (2014) document liquidations of mortgage-backed securities by
capital-constrained insurers in distressed markets.

Equity. The firm chooses portfolio shares {sj} to maximize the value of its equity at
date 0, where the valuation equation for equity is

Et = Et
[∫ T

t

e−r(τ−t)(c− k)Ain
τ dτ + e−r(T−t)ωTA

in
T −

∫ ∞
t

e−r(τ−t)`dτ

]
. (4)

The first integral gives the asset payouts net of management fees before liquidation.
The second term is the liquidation value of the assets. The last term is the cost of
policy liabilities.

To understand the interaction of insulation and financial health, it helps to con-
sider the two polar cases ofH(Ain

t , A
out
t )� 0 (far from liquidation) andH(Ain

t , A
out
t )→ 0

(at liquidation):

Far from liquidation: Et
(
Ain
t , ωt

)
≈ Ain

t

c− k
c
− `

r
, (5)

At liquidation: Et
(
Ain
t , ωt

)
= ωtA

in
t −

`

r
. (6)

The first term of equation (5) is the net-of-management-fees present value of assets
inside the firm without default. The second term subtracts the present value of policy
liabilities. Notably, far from liquidation the value of equity does not depend on the
wedge ωt, as the firm uses its advantage as a long-hold investor to fully insulate
equity holders from market fluctuations in the value of the portfolio which do not
reflect future payouts. Conversely, at the liquidation boundary the value of equity
simply equals the liquidation value of the assets on the open market less the value of
liabilities. The insurer loses its ability to collect the inside value of the assets because
they will go back to the market at liquidation.

In the intermediate region the value of the insurer moves smoothly between these
two extremes. In Appendix B.1 we derive a closed-form expression for the value
of equity as a function of the state variables Ain

t and ωt for the special case of one
risky asset and where the liquidation boundary depends on the inside value only,
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H(Aout, Ain) = Ain − A:

Et = Ain
t

c− k
c
− `

r
+

(
Ain
t

A

)−f(r)

A

(
ω̄ − c− k

c

)
+

(
Ain
t

A

)−f(r+κω)

A (ωt − ω̄) , (7)

with f(α) =
r−c− 1

2
σ2
A+

√
(r−c− 1

2
σ2
A)

2
+2σ2

Aα

σ2
A

. Equation (7) contains two new terms relative
to equation (5). The third term of equation (7) is the average change in value in

liquidation if ωt = ω̄, A
(
ω̄ − c−k

c

)
, discounted by the time to liquidation,

(
Ain

t

A

)−f(r)

=

Et
[
e−r(T−t)

]
. The fourth term adjusts the discounted change in value in liquidation

for transitory deviations in the liquidation value of the assets.

Franchise value. We define the firm’s franchise value as the value of the equity
less the firm value under Modigliani-Miller. The Modigliani-Miller valuation, EMM

t , is
given by the market value of the assets minus that of liabilities:

EMM
t = ωtA

in
t −

`

r
. (8)

The theory incorporates three determinants of franchise value Et − EMM
t . Most im-

portant, when ωt < 1 the value of assets inside the firm exceeds the value outside the
firm, i.e. Ain

t > Aout
t . This ability of the intermediary to protect asset valuation from

the wedge ωt provides the main source of value creation. The other two forces mitigate
this ability to create value. First, in bad states of the world, the firm must liquidate
its assets, collecting only the market value. This effect prevents the structure from
obtaining the full difference (1− ωt)Ain

t . Second, not all the benefits from keeping as-
sets inside the insulator accrue to shareholders. The proportional cost k captures the
value paid to other stakeholders of the firm — asset managers and other employees
— and the proportional operational costs of running the balance sheet. Depending on
whether or not the present value of those costs exceeds the difference between asset
valuations inside and outside the firm, the firm will trade at a premium or discount
relative to net asset value. In the special case of no default, the firm trades at a
premium if and only if ωt < (c− k)/c.

2.2 Other Theories

Our framework nests three other theories of financial institutions which we will con-
trast with the insulator view: irrelevance, costly financial distress, and liability guar-
antees. These theories do not involve different valuations of the asset so we set ωt = 1
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and k = 0.

Irrelevance. The simplest view of financial institutions is that they are irrelevant.
Under the Modigliani-Miller theorem, a financial institution acts as a shell, raising
capital at market prices and buying securities at market prices. The firm itself creates
no value, i.e., franchise value is zero, and portfolio allocation is indeterminate.

Costs of financial distress. A small cost of bankruptcy, or more generally of fi-
nancial distress, breaks this indeterminacy. This cost could involve the inefficient
liquidation of non-financial assets, loss of expertise or market power in pricing life in-
surance policies, or the destruction of reputation capital. We materialize such a cost
by a fixed payment D made at liquidation. The valuation equation becomes:

Et = Et
[∫ T

t

e−r(τ−t)(c− k)Aτdτ + e−r(T−t)(AT −D)−
∫ ∞
t

e−r(τ−t)`dτ

]
. (9)

Liability guarantees. Financial institutions may derive some private value from
government guarantees of their liabilties. These guarantees may include explicit
backing of liabilities, for example deposit insurance in the case of commercial banks
and state guaranty funds in the case of life insurers, as well as an implicit expectation
of bailouts following large shocks. The presence of guarantees allows intermediaries
to extract private value by investing in risky assets. A negative value of the fixed
payment D in equation (9) captures such guarantees or bailouts.6

2.3 Balance Sheet Implications

We now present implications of the theory for the balance sheet behavior of life insur-
ance companies.

Insulators hold risky and illiquid assets. A first question is whether insulators
deliberately invest in risky assets. In the case of irrelevance, the portfolio position
is indeterminate. This is the world of Modigliani-Miller: the firm cannot change
its value through changing positions in publicly traded securities. A small positive
cost of financial distress, D > 0, breaks this indeterminacy. In this case, it is always

6Even if the guarantees accrue to debtholders, their presence will affect the value of equity. For
instance, the insurance company might let liabilities go under water before liquidating to get bailed
out. If a fraction ∆ of liabilities is insured, D = ∆`/r, this would correspond to a liquidation threshold
H(Ain, Aout) = Aout − (1−∆)`/r.
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optimal for the firm to keep enough risk-free assets to never default. For insurers, this
strategy requires holding riskless assets with the same duration as their liabilities, a
strategy known as liability-matching.

However, with a non-zero wedge, the firm can create franchise value by holding
risky illiquid financial assets. In this situation, it is always valuable to expose the
firm to some default risk. Formally, assume the insulator can access two assets, a
risky asset with ω0 = ω̄ < 1 and a risk-free asset with ω̄ = 1 and σω = 0. In this
case, we prove in Appendix C that the optimal portfolio position in the risky asset is
always large enough that the liquidation probability is strictly positive. Intuitively,
the risk of liquidation from investing more in the risky asset has a negligible effect on
the present value of existing insulation profits relative to the first-order gain of new
insulation profits.

The guarantee view, D < 0, also predicts risk-taking by insurance companies be-
cause of risk-shifting incentives. However, the guarantee view does not make predic-
tions about what types of risks insurers will take.

Insulators purchase assets with low ω. Rather obviously, insulators should pur-
chase assets with market prices below their long-run value, ωj,t < 1. Among these,
the optimal portfolio puts more weight on assets trading at deeper discounts. Two
complementary portfolio strategies can achieve this goal, with different information
requirements and different empirical signatures. First, an asset manager can target
specific assets which have temporarily dropped in value, that is ωj,t < ω̄j. Such as-
sets will have experienced poor past performance as ωj,t dropped. Importantly, they
will also exhibit high future returns as ωj,t tends to revert back to its mean. This
excess performance gets capitalized as franchise value from insulation. Pursuing this
strategy requires asset management capable of attributing a low market price to a
temporarily low value of ωj,t rather than a low long-term value Ain

j,t.
Alternatively, the manager might focus on assets with a more permanent notion of

illiquidity: low values of ω̄j. This strategy requires less managerial expertise because
the manager need know only the invariant parameter values for the asset and not
the current realization of ωj,t. More simply, the manager might select asset classes
for which the average ωj,t is low without needing to identify ω̄j for any specific asset.
These assets exhibit high future returns as the liquidity premium gets realized, but
do not necessarily have a past drop in market value.

Going from coarser to more complex information sets entails managerial costs,
which we summarize with the constant k. The actual portfolio strategy followed
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thus trades off the insulation benefits from selecting low ωj,t assets with the costs
of identifying these assets, similar to active mutual funds.7 In addition, different
asset managers might specialize in identifying different types of low ωj,t assets. As
in Van Nieuwerburgh and Veldkamp (2010) and Kacperczyk, Van Nieuwerburgh, and
Veldkamp (2016), it is therefore natural to expect insulators to invest in heterogenous
and possibly undiversified portfolios of assets.

Insulators have stable liabilities. A crucial element behind the value of an in-
sulator is the ability to hold assets for the long-run to capture their inside value.
Institutions engaging in such activities benefit from stable sources of funds. In our
baseline model, debt is a perpetuity so that liquidation only occurs following poor
asset performance. However, we can explore the role of rollover risk by including an-
other, exogenous, source of liquidation, arriving each instant with probability λdt.8

When insulation is valuable, we obtain immediately that the franchise value is de-
creasing in λ; rollover risk reduces insulation (see appendix C for details).

This result points to the frictions in financing markets which limit the capital flow-
ing to insulators. Obtaining long-term financing such as equity and large amounts of
long-term debt can be challenging, in particular for financial institutions. Such fric-
tions can explain the preponderance of open-end contracts for mutual funds or the
frequent use of short-term debt in the shadow banking sector. Meanwhile, insurance
companies naturally have access to a captive source of funding – policy liabilities –
explaining why they can host insulation activities. Even so, the optimal size of insur-
ers should equate the marginal cost of funds to the benefit from providing additional
insulation. If insurers face an upward-sloping cost of stable funding, for example be-
cause of a downward-sloping demand curve for insurance policies, then they naturally
will not grow large enough to compete away all insulation profits.

2.4 The Pass-Through

While it offers a source of value creation distinct from that of alternative theories,
the insulator view is not uniquely characterized by its balance sheet implications. A
unique opportunity to discriminate among these theories arises when the institution

7A key difference to standard open-end funds is that the capital is committed for the long-run rather
than for each period. So while asset managers may capture some of the ex ante surplus to insulation,
variation in these benefits will not be offset by changing management costs. Berk and Stanton (2007)
discuss at length this contrast with the model of Berk and Green (2004).

8For example, one way to capture debt of maturity m with a probability p of not rolling over is by
setting λ = p/m.
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is publicly traded. In this case, both the market value of the assets and the market
value of the institution’s equity may be observable. We now turn to a particular
empirical moment of the data exploiting this feature to test for insulation: the pass-
through from assets to equity.

We formally define the pass-through PT as the change in the value of firm equity
when the value of the asset on the open market changes by $1. This object corresponds
to the coefficient of a regression of changes in firm value on changes in the outside
value of the asset:

PT =
cov

(
dEt, dA

out
t

)
var (dAout

t )
. (10)

Three features of the pass-through make it attractive for distinguishing the insulator
theory. First, it is a measurable relationship between two observable market out-
comes; it does not require the econometrician to separately identify shocks due to ω,
a challenging proposition. Second, the pass-through nonetheless depends on the rela-
tionship between firm value and the wedge ω. Because variation in the outside value
of the assets, dAout

t , comes from changes in the inside value, dAin
t , and changes in

the wedge, dωt, the pass-through aggregates the response to the two types of shocks,
weighted by their variances. Third, changes in the pass-through in a crisis illuminate
how the institution’s financial health affects its ability to insulate.

We next generate predictions for the pass-through for extreme cases of financial
health and show how they distinguish the insulator theory as long as Vω > 0, where
VA and Vω denote the variance weights. To obtain closed form solutions, we simplify to
the case of a single asset and liquidation boundary based on inside value.9 Appendix
B.3 shows using numeric simulations that these predictions are robust to making
the liquidation threshold a function of the outside value and allowing for correlated
shocks to the inside value and to the wedge.

9Using Ito’s lemma on the expression for Et, we derive the pass-through (see Appendix B.2):

PT = VA

[
c−k
c

ωt
− f(r + κω)

ωtAin
t

(
Ain
t

A

)−f(r+κω)

A (ωt − ω̄)− f(r)

ωtAin
t

(
Ain
t

A

)−f(r)
A

(
ω̄ − c− k

c

)]

+ Vω

[(
Ain
t

A

)−f(r+κω)−1]
.
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Far from liquidation. Consider first the case when the firm is in good financial
health, far from liquidation. We have approximately:

PTsafe = PT |H(Ain
t ,A

out
t )�0 ≈ VA

c−k
c

ωt
. (11)

First, when the firm is in good financial health, it can completely fulfill its role of
insulating the assets from the market. Therefore, shocks to the wedge ωt do not
impact firm value at all. This isolation reduces the pass-through. In the limiting
case where dωt shocks account for all variation in market values, the pass-through
converges to 0.

Second, the impact of shocks to inside value dAin
t on the firm relative to the outside

value depends on whether the firm trades at a premium or at a discount, defined by
the term c−k

c
/ωt which multiplies the variance share. Higher values of ωt due to, for

example, more liquid markets, reduce the premium, lowering the impact of valuation
shocks on the firm value relative to market value.

Putting these two forces together, the asset insulator view can rationalize a low
pass-through during episodes when insurers are in good financial health and markets
are liquid.

At liquidation. Consider now the other extreme case when the firm is converging
to liquidation. In that case, we have:

PTliquidation = PT |H(Ain
t ,A

out
t )→0 = PTsafe + Vω + VA

[
f(r + κω)

ωtAin
t

(ω̄ − ωt) +
f(r)

ωtAin
t

(
c− k
c
− ω̄

)]
.

(12)

When the intermediary gets close to liquidation, two main differences arise. First,
notice the term Vω. With liquidation imminent, changes in the market value of the
assets affect the value of the firm directly because they determine how much is col-
lected at liquidation. Hence shocks to the wedge dωt now transmit one-to-one to firm
value.

Second, as the financial health of the firm deteriorates, the value of all assets con-
verge to their outside value. In particular, during episodes of low ωt this force further
decreases firm value; the term in brackets is negative. This is an endogenous cost
of financial distress: poor asset performance, by bringing the firm closer to liquida-
tion, lowers the franchise value from insulation. In illiquid times, the pass-through
is therefore larger.
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In contrast to good conditions, the combination of low financial health and illiquid-
ity pushes the pass-through to higher values, potentially larger than 1. This behavior
illustrates the tension arising in periods of low asset valuation: while franchise value
increases because of a low ωt, the losses due to a potential liquidation also increase,
generating a higher pass-through.

Empirical predictions. Putting these considerations together, we can summarize
predictions for the behavior of the pass-through around the financial crisis of 2008-
2009. To map various periods to the model, we consider insurers to be in good fi-
nancial health (H(Ain

t , A
out
t ) � 0) and assume a small wedge between the inside and

outside value of assets (ωt close to 1) before and after the crisis. In contrast, the crisis
is a period of low financial wealth (H(Ain

t , A
out
t ) → 0) and a larger wedge (low ωt). We

can thus compare the pass-through in and out of the crisis.

Prediction 1. The pass-through out of the crisis is less than 1, reflecting institutions’
ability to insulate assets from the market.

Prediction 2. The pass-through increases during the crisis. The pass-through during
the crisis can be larger than 1, reflecting the deterioration in the ability to insulate
assets from the market.

Figure 1 illustrates these predictions graphically. The figure plots equity valua-
tions as a function of the outside value of the asset Aout. The figure contains three
lines: the Modigliani-Miller benchmark (dashed green line), the equity for a fixed,
high ω (the solid blue line), and the equity for a fixed, low ω (the dotted red line). The
Modigliani-Miller benchmark has a slope of 1. The point N (for normal) corresponds
to out of the crisis, with a high ω and high Ain. The point C (for crisis) corresponds
to insurers during the crisis, with a low ω and low Ain. The slopes of the blue and
red lines give the conditional pass-through with respect to a change in the outside
asset value coming from a change in Ain, while the dashed black lines give the condi-
tional pass-through with respect to a change in the outside asset value coming from
a change in ω at the two points N and C. Both conditional pass-throughs rise at point
C relative to point N, generating a higher unconditional pass-through at point C as
well.

Pass-through to idiosyncratic shocks. Our empirical implementation in sec-
tion 5 measures the pass-through in response to an idiosyncratic shock to the market
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Figure 1: Pass-through in the Asset Insulator Framework
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EMM
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Notes: The figure illustrates the relationship between equity and asset value in the asset insulator
framework. The dashed green line is the Modigliani-Miller benchmark and has a slope of 1. The solid
blue line plots equity as a function of the outside asset value for a fixed value ωhigh, while the dotted
red line plots equity as a function of the outside asset value for a fixed value ωlow. The slopes of the
blue and red lines give the conditional pass-through with respect to a change in the outside asset value
coming from a change in Ain. The slopes of the dashed black lines give the conditional pass-through
with respect to a change in the outside asset value coming from a change in ω at the two points N
(for normal) and C (for crisis). Point J shows the equity value holding Ain fixed at its value at point
N but for ωlow. The distance between the equity value and the Modigliani-Miller benchmark gives the
franchise value (FV) and is shown on the vertical axis for the two points N and C.

price of asset i. To relate this measure to the discussion so far, focus on the risky
terms of the equity evolution to write:

dEt = . . . dt+
∑
j

∂E

∂Aj
dAj,t +

∑
j

∂E

∂ωj
dωj,t.

The overall pass-through is a weighted average of these partial derivatives, where
the weights correspond to the variance contribution of the various shocks to the total
outside asset value. The pass-through to idiosyncratic shocks is a weighted average of
the same partial derivatives, but putting weight only on idiosyncratic shocks to asset
i. In other words, the pass-through to idiosyncratic shocks reflects the same economic
forces as described above and the same predictions in and out of the crisis period hold.
However, the variance shares VA and Vω might differ. The idiosyncratic pass-through
therefore constitutes a valid test of the theory even if the magnitude differs from the
pass-through to aggregate shocks.
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Table 1: Pass-Through Behavior under Alternative Theories

Out of crisis During crisis

Irrelevance 1 =

Insulator < 1 ↑

Costs of Financial Distress > 1 ↑

Guarantees < 1 ↓

Uniqueness of the pass-through predictions. Under the irrelevance view, the
value of the firm is exactly equal to the market value of its asset, and therefore
PTMM = 1 always. Any deviation from 1 in the pass-through must come from changes
in franchise value in response to changes in asset values. Costs of financial distress
can only generate a pass-through above one, as losing a dollar of assets pushes the
insurer closer to default and lowers franchise value. Policy guarantees can generate
a pass-through less than one, since the value of the guarantee rises as the insurer
moves closer to default. However, this effect is stronger in periods of high financial
distress, implying a smaller pass-through during the crisis and for more distressed
insurers. Formally, all these results comes from the cost D, which acts as a short (or
long when D < 0) position in an out-of-the-money put option.10 This position has a
positive Delta which increases as the option gets closer to being at-the-money and
therefore gets added to the baseline pass-through of 1.

Table 1 summarizes these predictions and highlights how measuring the pass-
through in and out of the crisis provides a unique test of the insulator theory against
these alternatives.

3 Background on Life Insurers and Data

In the remainder of the paper we confront the predictions of the insulator theory with
data, using the life insurance sector as our empirical laboratory. This sector is large,
managing assets in excess of 20% of GDP, and we make use of detailed regulatory
data on their asset holdings. We provide here a brief background on the life insurance

10More precisely, this is a digital put option which pays D when hitting the liquidation threshold
from above.
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Table 2: Assets Under Management at Life Insurers

FAUS SNL Traded
(Percent of GDP)

2006 21.2 21.3 5.6
2010 21.9 22.0 5.8
2014 21.6 21.8 5.2
Notes: The table shows total general account assets under management at life insurance companies

as reported in the Financial Accounts of the United States table L.116.g (FAUS), for all life insurance
companies in the SNL database (SNL), and for the 15 life insurers in our publicly-traded sample
(Traded).

sector and our data.
Like all financial institutions, insurers issue liabilities and invest in assets. The

type of liabilities issued, primarily life insurance contracts and annuities, defines
what it means to be a life insurer for regulatory purposes. Insurers segregate their
balance sheets into general account assets which back fixed rate liabilities and death
benefits, and separate account assets linked to variable rate products. As their name
suggests, gains and losses on separate account assets flow directly to the policyholder
and hence do not directly affect the equity in the insurance company. We exclude
separate accounts in all of our analysis hereafter. Insurers issue two broad types
of liabilities against their general account assets: fixed rate (either annuities or life
insurance contracts), and variable rate with minimum income guarantees.11

State guaranty funds protect policyholders against the risk of insurer default up
to a coverage cap. In exchange, insurers are subjected to regulation at the state level.
Since the 1990s, such regulation has taken the form of a risk-based capital regime.

Our data on asset holdings come from mandatory statutory annual filings by in-
surance companies in operation in the United States to the National Association of
Insurance Commissioners (NAIC). We use the version of these data provided by SNL
Financial. Our main sample includes all life insurers in the United States and covers
the period 2004-2014. In sections 5 and 6, we consider a subsample of publicly-traded
U.S. life insurers that are substantively life insurers.12 Table 2 reports the total quan-

11See Paulson, Rosen, McMenamin, and Mohey-Deen (2012) and McMillan (2013) for an overview
of the different products life insurers offer consumers. Koijen, Van Nieuwerburgh, and Yogo (2016)
discuss the demand for the various products. Koijen and Yogo (2016) describe additional complications
relating to how liabilities appear on the balance sheet or are ceded to reinsurance subsidiaries.

12The set of publicly-traded insurers (tickers) in our sample is: Aflac Inc. (AFL), Allstate Corp.
(ALL), American Equity Investment (AEL), American National Insurance (ANAT), Citizens Inc. (CIA),
CNO Financial Group Inc. (CNO), Farm Bureau Financial Services (FFG), Independence Holding
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tity of general account assets under management in the life insurance industry as a
fraction of GDP. The first column uses data from the Financial Accounts of the United
States (FAUS, formerly known as the Flow of Funds). General account assets exceed
20% of GDP. For comparison, in 2014 assets of commercial banks equaled 77% of
GDP, assets of property and casualty insurers 9% of GDP, and assets of closed-end
funds 2% of GDP. The second column reports general account assets for the universe
of insurers in the SNL database. The FAUS and SNL track each other extremely
closely; in fact, SNL provides the source data for the FAUS. The third column reports
assets at the life insurers in our publicly-traded subsample. This subset of insurers
manages roughly one quarter of total insurer assets despite containing only 15 of the
approximately 400 insurance companies in the SNL data.

4 Balance Sheet Evidence

Our model of asset insulators made the following predictions for insurers’ balance
sheets: they should hold risky, illiquid assets; they should target their purchases
toward assets with low ω; and they should have stable liabilities. We now verify these
predictions.

4.1 Insurers Hold Risky and Illiquid Assets

Table 3 summarizes the holdings of life insurance companies. The left panel shows
the portfolio shares of different asset categories. Insurers hold relatively few risk-
less, liquid U.S. Government securities, with Treasuries constituting less than 4% of
insurers’ assets and holdings of Agency bonds and MBS falling from approximately
10% of assets in 2006 to less than 6% in 2014. Instead, bonds of non-financial corpo-
rations constitute the largest single category at roughly 30% of assets. Insurers also
hold commercial mortgages and non-agency structured finance securities in larger

(IHC), Kansas City Life Insurance Co. (KCLI), Lincoln Financial Group (LNC), MetLife Inc. (MET),
Phoenix Companies Inc. (PNX), Prudential Financial Inc. (PRU), Protective Life (PL), and Torchmark
Corp. (TMK). Our publicly-traded sample excludes financial conglomerates or foreign insurers that
have a small fraction of their assets in U.S. life insurance companies, and reinsurers. Many insurance
companies have multiple subsidiaries. To maximize the comprehensiveness of our data, we include
holdings of Property and Causalty (P&C) subsidiaries as well. SNL aggregates the data up to the
parent company level and applies inter-company adjustments to present historical balance sheet data
on an “As-is” data. We convert to an “As-was” basis by subtracting balance sheet holdings for companies
acquired after the filing date. Similarly, for major mergers and acquisitions, we add in holdings of
insurance companies that were divested by the parent company after the reporting date but before
2014.
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Table 3: Life Insurer Asset Allocation

Portfolio share: 2006 category share by rating:

2006 2010 2014 A or
above BBB BB B or

below
Corporate nonfinancial 28.0 31.1 33.0 48.0 42.2 5.1 4.6
Mortgages 10.3 9.4 9.7
Agencies 9.8 8.2 5.8 100.0 0.0 0.0 0.0
Private placement 6.8 7.2 7.3 37.5 50.5 5.9 4.5
Other 6.6 5.3 5.9 50.8 10.7 1.3 1.0
CMBS 6.5 4.8 3.5 90.9 7.7 0.9 0.6
Foreign 6.2 7.3 7.1 54.4 35.0 7.1 2.8
Common stock 4.8 4.2 3.9
PLRMBS 4.6 3.0 2.5 97.7 2.1 0.1 0.1
Corporate financial 3.2 2.2 1.7 95.5 3.0 1.5 0.0
Cash 2.7 2.9 2.6
Other 2.7 3.4 4.2
ABS 2.6 3.1 4.0 77.2 17.7 3.0 2.0
Muni 2.6 3.7 4.6 76.4 20.1 2.4 1.1
Treasuries 2.1 3.5 3.8 100.0 0.0 0.0 0.0
Real estate 0.6 0.6 0.6
Notes: The first three columns report the dollar share of assets in each category in 2006, 2010, and

2014. The next four columns show the within-category value-weighted share of assets in 2006 with
NAIC designation of 1 (AAA/Aaa, AA/Aa, A/a), 2 (BBB/Baa), 3 (BB/Ba), and 4 or below (B/B, CCC/Caa,
in or near default). Agencies refer to Mortgage-Backed Securities and general obligation bonds issued
by the Government-Sponsored Entities (GSEs). CMBS refers to Commercial MBS. Muni refers to U.S.
municipal, U.S. state, and U.S. public utility bonds. PLRMBS refers to private-label residential MBS.
ABS represents Asset-Backed Securities not included in Agency-MBS, PLRMBS, or CMBS. Treasuries
include TIPS and STRIPs.

quantities than their holdings of Treasury and Agency securities. Municipal bonds
constitute about 4% of insurers’ portfolios.

The right panel of table 3 shows the within-category value-weighted share of as-
sets in each NAIC designation as of 2006 for the debt securities reported on Sched-
ule D. The non-governmental securities on insurers’ balance sheets do not appear
Treasury-like in their risk characteristics. A large share of insurers’ holdings are in
securities rated below A. For example, roughly half of insurers’ corporate bond hold-
ings are rated BBB or below. Similarly, even prior to the European sovereign crisis,
insurers’ holdings concentrated in riskier foreign bonds. Thus, risky assets dominate
insurers’ portfolios.13

13The small concentration of insurers’ assets in U.S. Treasuries does not reflect constrained supply.
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Table 3 also demonstrates that insurers target illiquid assets. Corporate bonds,
structured finance securities, and municipal bonds together comprise well over half
of insurers’ balance sheets. A large literature finds these securities trade infre-
quently and are subject to large transactions costs (Harris and Piwowar, 2006; Ed-
wards, Harris, and Piwowar, 2007; Green, Hollifield, and Schürhoff, 2007; Bessem-
binder, Maxwell, and Venkataraman, 2013). There is virtually no secondary mar-
ket for directly held commercial mortgages after origination (An, Deng, and Gabriel,
2011). This analysis echoes the conclusion of Hanson et al. (2015) who assign liquid-
ity weights to different broad asset classes and find that commercial banks and life
insurers have the most illiquid holdings.14 Furthermore, these asset classes feature
predictable asset returns, a necessary condition for fluctations in ω to drive move-
ments in the prices of assets traded in the open market unrelated to changes in their
expected payoffs.15

4.2 Insurers Purchase Assets With Low ω

As described in section 2.3, there are two complementary ways an insurer can try
to target their purchases toward low ω assets. First, the insurer can look for assets
with low ω̄. These assets can exist in equilibrium because the low ω̄ compensates the
holder of the asset for high volatility of ω (De Long, Shleifer, Summers, and Wald-
mann, 1990). Second, the insurer can select assets experiencing temporary price dis-
locations, that is, with ω < ω̄. We find evidence of insurers pursuing both strategies.

Insurers buy and hold low ω̄ assets. An insurer which buys a bundle of assets
with ω̄ < 1 and holds these assets over time will reap the benefit of a portfolio of
assets with low average ω without ever needing to know whether a particular asset
has ω above or below its long run value. Thus, the empirical signature of targeting
low ω̄ assets is long holding periods of illiquid assets. We have already discussed

We show in figure D.1 that the life insurance sector holds less than 2% of all Treasuries outstanding.
The fraction of Treasuries held by insurers increases with maturity, but even at the long end of 20 to
30 years remaining to maturity the share held by insurers is below 14%. This share is less than the
insurance sector’s share of the corporate bond market.

14We extend their methodology in Appendix E using our more granular data on insurer holdings.
15Gilchrist and Zakrajšek (2012) construct a component of aggregate corporate bond prices that does

not predict future defaults. Greenwood and Hanson (2013) show that cyclical declines in issuer quality
predict low investor returns. More broadly, Nozawa (2017) documents important variation in expected
returns in the cross-section and time series of bonds. Breeden (1994), Gabaix, Krishnamurthy, and
Vigneron (2007) and Boyarchenko, Fuster, and Lucca (2015) document a predictive relation between
spreads and returns of MBS. More precisely, they focus on an option-adjusted spread (OAS) which
adjusts for the possibility of prepayment and refinancing when rates drop.
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Table 4: Insurers are Long-hold Investors

Years since purchase

2006 2010 2014
Statistic:
Mean 3.1 4.0 4.5
SD 2.7 3.3 3.7
P(10) 0.5 0.5 0.6
P(50) 2.6 3.3 3.6
P(90) 6.5 8.0 9.8
Observations 368,003 377,720 419,987
Notes: The table reports summary statistics of the years since purchase for securities on insurers’

balance sheets as of 2006, 2010, and 2014. The sample includes Schedule D holdings. Variables
trimmed at 1st and 99th percentiles.

the illiquidity component. Table 4 shows that insurers have long holding periods.
The table reports (value-weighted) summary statistics of the number of years since
purchase for securities held by insurers at the end of 2006, 2010, and 2014. The mean
time since purchase is about four years and the median is about 3 years. Thus, the
typical security remains on an insurer’s balance sheet for more than 6 years. These
long holding periods allow insurers to earn the liquidity premia from buying low ω̄

assets and keeping them on their balance sheets for long periods.

Insurers buy assets experiencing temporary price dislocations. The second
strategy involves identifying and buying assets with a temporarily low price, i.e. ω <
ω̄. To assess whether insurers execute this strategy, we use the FINRA TRACE data
set covering the universe of over-the-counter secondary market trades of corporate
bonds over the period 2004-14 and examine the time path of bond prices around the
date of an insurer purchase.

Table 5 presents evidence that bonds purchased by insurers earn positive abnor-
mal returns over the subsequent 91 days. The table reports regressions of the form:

Pj,t+91

Pj,t
= δ[insbuyj,t] + ΓXj,t + εj,t, (13)

where j indexes a corporate bond, t is a day, insbuyj,t takes a value of 1 if any insurer
bought bond j on date t, Xj,t is a vector of characteristics of bond j on date t, and
Pj,t is the ex-coupon clean price. We weight the regressions by the offering amount
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Table 5: Insurer Secondary Market Purchases

Dependent variable: Pj,t+91

Pj,t
(b.p.)

(1) (2) (3) (4) (5) (6)
Right hand side variables:

Insurer purchase indicator 60.9∗∗ 33.6∗ 19.9∗ 18.5∗ 17.3∗ 18.5∗
(18.2) (13.7) (7.6) (6.9) (7.0) (7.1)

91 day lagged return 0.07+ 0.06+

(0.04) (0.04)
Lagged ret. × Insurer purch. 0.05∗∗

(0.02)
Date FE No Yes Yes Yes Yes Yes
Rating category FE No No Yes Yes Yes Yes
Coupon, Coupon2 No No Yes Yes Yes Yes
Duration-matched Treasury No No Yes Yes Yes Yes
Maturity bin FE No No No Yes Yes Yes
R2 0.00 0.29 0.31 0.31 0.31 0.31

Notes: The table reports coefficients from the regression Pj,t+91

Pj,t
= δinsbuyj,t + ΓXj,t + εj,t. All columns

contain 3,269,835 cusip-date observations from the period 2004-14 and are weighted by the offering
amount of the bond. Standard errors clustered by calendar quarter in parentheses. **,*,+ denotes
statistical significance at the 1%, 5%,and 10% levels.

of the bond and cluster standard errors by calendar quarter to reflect the 91 day
return horizon. Column (1) includes no control variables in Xj,t. The coefficient of
60.9 means that in the 91 days following the purchase date, a bond purchased by an
insurer earns a return 60.9 basis points higher (not annualized) than the typical 91
day bond return in the sample. Column (2) adds date fixed effects. The coefficient falls
to 33.6, indicating that part of the overall return in column (1) comes from insurers
timing their purchases. Nonetheless, more than half of the overall return appears to
come from selecting which bonds to buy rather than when to purchase.

The next two columns show that controlling for observable characteristics of bonds
bought by insurers reduces but does not eliminate the abnormal return result. As
shown in Becker and Ivashina (2015), insurers buy higher coupon securities within a
rating category. Column (3) controls for rating category fixed effects and the coupon
in conjunction with the yield on a duration-matched Treasury at the bond’s issuance.
Controlling for these variables reduces the coefficient on purchase indicator, consis-
tent with the Becker and Ivashina (2015) finding. The still-positive coefficient on in-
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Figure 2: Price Patterns of Insurers’ Secondary Market Corporate Bond Purchases
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Notes: The figures plot the coefficients δh from the regression Pj,t+h

Pj,t
= δhinsbuyj,t + ΓhXj,t + εj,h,t,

where insbuyj,t takes a value of 1 if an insurer bought bond j on date t and Xj,t is a vector of bond char-
acteristics including the coupon, the return on the duration-matched Treasury, categories of remaining
maturity, the rating, and date fixed effects. The dashed lines indicate 90% confidence intervals on the
point estimates for each horizon based on standard errors clustered by calendar quarter.

surer purchase in column (3) of 19.9, however, means that controlling for insurers’ se-
lection of risky, high coupon bonds does not fully explain the abnormal post-purchase
returns. Column (4) further controls for insurers’ choice of long duration securities by
adding indicator bins for remaining maturity. Even with all of these controls, bonds
purchased by insurers earn 18.5 basis point abnormal returns (t-statistic 2.68) over
the subsequent 3 months relative to bonds purchased by other investor types on the
same date.

We next show that some of the abnormal return comes from buying bonds which
have recently dropped in price and experience a subsequent rebound, the empirical
signature of a bond with ωj,t < ω̄j. Figure 2 provides a visual representation of this
result. The figure reports the coefficients and confidence intervals for the purchase
indicator from repeating specification (13), including all of the control variables in
column (4) of table 5, but varying the return horizon. The part of the figure to the
left of 0 shows that bonds purchased by insurers have experienced abnormal price
declines over the previous 3 months. Indeed, insurers appear to purchase bonds ex-
actly at their price trough. The coefficient line for 91 days since purchase matches the
coefficient in column (4). The more distant coefficients show that these bonds appear
to earn positive abnormal returns past the 91 day horizon although we cannot reject
equality of the 91 day and subsequent cumulative excess returns.
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The last two columns of table 5 show the effect of lagged returns more formally.
The positive and marginally significant coefficient on the 91 day lagged return in
column (5) provides evidence of pricing reversal of corporate bonds. In column (6) we
allow the coefficient on the lagged return to vary with whether an insurer purchased
the bond with the result that lagged performance has double the predictive effect for
subsequent returns if the insurer buys the bond. Thus, not only do insurers select
bonds which have recently declined in price, they appear able to discriminate across
such bonds to find those most likely to rebound. Finally, while insurers use lagged
returns to condition their purchases, their ability to select bonds with low ω goes
beyond this criteria as evidenced by the still positive coefficient on insurer purchase
even after controlling for lagged returns.

4.3 Insurers Have Stable Liabilities

Asset insulation requires stable sources of financing as a counterpart to holding as-
sets with volatile ω for the long run. Figure 3 shows the steady rise of insurer lia-
bilities over the period 2002-14, including during the crisis period of 2008-09. This
steadiness reflects the long contractual horizon of life insurance policies and annu-
ities and their ability to diversify mortality risk. While policy holders can request
early termination of some policies in the form of a policy surrender and withdrawal,
such surrenders impose a cost on the policy holder and did not spike during the cri-
sis.16 Such liability stability is unusual in the financial sector; in a comparison of
financial institutions, Hanson et al. (2015) find that life insurers have the longest
contractual maturity and highest liability stickiness. Access to such a stable source
of financing makes life insurers natural asset insulators.

16Surrender claims typically trigger a penalty if exercised in the first few years of a contract which
then decays and may eventually disappear. In addition to surrenders, policies may lapse because of
nonpayment of premiums, providing a windfall to the issuer (Gottlieb and Smetters, 2014). Ho and
Muise (2011) report a small increase in combined lapses and surrenders in the 2007-09 period rela-
tive to previous years, almost entirely driven by lapses on newly issued policies. DeAngelo, DeAngelo,
and Gilson (1994, 1996) discuss the possibility of coordination runs through surrenders. Foley-Fisher,
Narajabad, and Verani (2016) discuss a run in 2007 on a particular type of debt issued by insurers
called extendible funding agreement-backed notes (XFABN). They estimate that 40% of the total with-
drawal of $18 billion was due to a run, a small amount in comparison to insurers’ total liabilities in
2007 and 2008 which exceeded $2.5 trillion.
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Figure 3: General Account Liabilities of Life Insurers
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5 Pass-through

So far we have shown that life insurers manage their balance sheets in a manner
consistent with the asset insulation view. We now exploit two unique features of the
sector – detailed regulatory data and publicly-traded equity – to construct an espe-
cially informative metric to distinguish among alternative theories of intermediation:
the pass-through of a dollar of assets to equity. We estimate a low pass-through out
of the financial crisis, a higher pass-through during the crisis, and higher crisis pass-
through for more distressed insurers. Of the theories we have considered, only the
asset insulator theory can rationalize these moments.

We generalize notation in a straightforward way to accommodate multiple insur-
ers and a more complicated liability structure. Let Ei,t denote the market value of
equity of insurer i at date t, Aout

i,t the open market gross asset value, and Li,t the
present value of liabilities. We write the value of an insurer’s equity as:

Ei,t = Aout
i,t − Li,t + [Franchise value]i,t . (14)

Taking the total derivative of equation (14) and dividing through by lagged market
equity:

RE
i,t = ρAt R

A
i,t − ρLt RL

i,t +ROB
i,t , (15)

where RE
i,t denotes the return on market equity, Rm

i,t the change in value of assets
(m = A, and we drop the out superscript to ease notation) or liabilities (m = L) scaled
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by market equity, ρAt = 1 +
∂[Franchise value]i,t

∂Aout
i,t

the pass-through with respect to assets,

ρLt = 1+
∂[Franchise value]i,t

∂Li,t
the pass-through with respect to liabilities, and ROB

i,t the scaled
return to franchise value with respect to other variables. We seek to consistently es-
timate ρAt . In our main approach we measure the pass-through ρAt of a dollar of assets
using the cross-section of insurer portfolio corporate bond returns and equity returns
on 2,600 trading days before, during, and after the financial crisis. In section 5.4 we
use insurer-reported fair values of assets at the end of each year to confirm the basic
patterns also hold at an annual frequency for a broader part of the balance sheet.

5.1 Empirical Framework

An identification challenge arises because the observed return on corporate bonds
may be correlated with the changes in the value of other assets on insurers’ balance
sheets, of their liabilities, and of future business. For example, a decrease in the
risk free rate would raise the value of both assets and liabilities. Our econometric
procedure addresses this challenge by exploiting corporate bond returns which de-
viate substantially from their benchmark index. Specifically, we first partition RA

i,t,
the levered return on assets, into the part coming from corporate bonds for which we
can construct a return, RA

i,t(T ) (T for “traded”), and the remaining assets for which
we do not know the return, RA

i,t(NT ). Let RA,x
i,t denote the levered excess return over

the bond’s benchmark. We further partition RA,x
i,t (T ) into the part coming from bonds

with large abnormal (unscaled) returnsRA,x
i,t (b), b ⊆ T (b for “big”), and the part coming

from bonds without large abnormal returns RA,x
i,t (bc), bc ⊆ T \ b. Our main specification

takes the form:

RE
i,t = ρAcrisisI{t ⊆ crisis}RA,x

i,t (b) + ρAnoncrisisI{t * crisis}RA,x
i,t (b) + αt + γ′iXt + εi,t, (16)

where crisis denotes the period from January 2008 to December 2009. Specification
(16) estimates the pass-through ρA separately for the crisis and non-crisis periods.

We construct RA,x
i,t (b) as follows. Data on bond prices come from the FINRA TRACE

data set. TRACE reports the date, time, and transaction price of all over-the-counter
trades of corporate bonds in the U.S. We form a daily price series for each bond using
the last trade on each date and match the bonds by CUSIP to insurers’ portfolio hold-
ings. Let Pj,t denote the (open market TRACE) price of bond j, Qi,j,t−1 the quantity
of bond j held by insurer i, and R̃A

j,t =
Pj,t−Pj,t−1

Pj,t−1
the raw unscaled return based on the
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actual TRACE transaction prices.17 We match each bond by CUSIP to the Mergent
database to obtain the current rating of the bond and the NAICS industry code of the
issuer. We obtain the return on the BAML index of the same rating and the return on
the ICE BAML index of the same industry (using a hand-constructed crosswalk) and
compute the abnormal return R̃A,x

j,t as the residual in a pooled regression of the bond
returns R̃A

j,t on the index returns, allowing the loadings to vary by rating-industry
cell. A bond belongs to the large abnormal return set b if R̃A,x

j,t exceeds 6 percentage
points in absolute value. We then aggregate the large abnormal returns for each in-
surer to generate an insurer-level abnormal return on its corporate bond portfolio:
RA,x
i,t (b) =

∑
j∈b si,j,t−1R̃

A,x
j,t , where si,j,t ≡ Pj,tQi,j,t/Ei,t denotes holdings of bond j by

insurer i as a share of insurer i’s market equity.18

We now discuss how equation (16) overcomes the identification challenge. First,
the daily portfolio shock includes only those bond returns which deviate substantially
from the return on bonds of similar industry and rating. If large returns reflect id-
iosyncratic movements in the particular bond rather than systematic characteristics
targeted by the insurer for its portfolio, then they will be uncorrelated with other
parts of the balance sheet or aspects of its business. Second, the shock includes only
the part of the return on these bonds not explained by rating or industry. There-
fore, factors common to all bond returns on a particular date do not affect estimation
of the pass-through. Third, the date fixed effect αt controls non-parametrically for
macroeconomic shocks which affect all insurers equally. In particular, a rise in cross-
asset correlations during the financial crisis cannot explain the finding of a higher
pass-through. Finally, the term γ′iXt allows insurers to load differently on aggregate
factors contained in Xt which might also correlate with their portfolio choices. In our
baseline specification, Xt contains the return on the 10 year Treasury bond and we
allow the insurer-specific loadings to vary by year. This factor absorbs differences in
duration mismatch across insurers which might also correlate with the duration of

17We exclude corrected or canceled trades, trades reported with delay, and trades which include a
dealer commission. In order to have a current market value of each bond position, we require that
the bond transact at least once on a date when an insurer reports the fair value price in a regulatory
filing. Since we rely on actual transaction prices, we observe R̃Aj,t only on dates where the bond has
transacted on consecutive trading days.

18Importantly, market participants could have constructed these portfolio returns in real time. The
NAIC end-of-year filings of security holdings become public about two months after the end of the
calendar year, and quarterly filings of transactions a few months after the end of the quarter. If
insurers engaged in frequent turnover of their portfolios, then equity analysts and traders might not
know which insurers experienced large abnormal portfolio returns on a particular date. However,
in our data, the fraction of large abnormal bond returns occurring in positions which insurers had
established before the previous regulatory filing exceeds 98% both in and out of the crisis.
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their assets.
In summary, cross-sectional differences in portfolio holdings and equity returns

make possible identification of the pass-through. The identifying assumption is that
RA,x
i,t (b) is uncorrelated with the returns on other parts of the insurer’s balance sheet

and with changes in the value of other business not captured by time fixed effects or
the insurer-specific loadings.

5.2 Attributes of Portfolio Shocks

Before presenting our main results, we describe important aspects of the portfolio
shocks which give the pass-through exercise power. First, insurers hold large posi-
tions in corporate bonds with volatile idiosyncratic returns. Therefore, large shocks
to the (outside) value of the portfolio happen with sufficient frequency. Next, the port-
folio shocks appear uncorrelated with other parts of insurers’ balance sheets. Finally,
the bond-level shocks decay substantially over time, implying a low pass-through for
an investor with a long holding horizon.

Panel A of table 6 demonstrates the volatility of bond returns. Our sample contains
more than 11 million observations of a bond held by an insurer for which we can
calculate a daily abnormal return R̃A,x

j,t . The standard deviation of abnormal returns
in the whole sample is 2.6%, with higher volatility during the crisis. Just over 1%
of all bond returns satisfy our criterion for a large abnormal return.19 The rarity
of such large returns gives a priori plausibility to the assumption that they do not
reflect systematic variation in insurers’ holdings. Nonetheless, the large number of
total observations means we have more than 150,000 observations which qualify as
large abnormal returns. The remainder of the table focuses on these observations.

The first three rows of Panel B describe the size of insurers’ positions in these
bonds relative to their market equity, si,j,t−1. The mean position in a bond experienc-
ing a large abnormal return is 0.3% of an insurer’s market equity with a standard
deviation of 1.0%. 5% of these returns occur in bonds where the insurer’s initial po-
sition exceeds 1.4% of equity and the largest percentile of initial positions exceed 4%
of the insurer’s equity. These large positions reflect both concentrated asset portfolios
and high leverage. The decline in insurer equity and concomitant rise in leverage in
2008 and 2009 explains why position sizes rise in the crisis.

The next set of rows report statistics for the total contribution of the bond return
19In fact, we choose the 6 p.p. threshold to ensure a ratio of large abornmal returns to total holdings

of roughly 1%. We have experimented with other thresholds and obtain similar results.
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Table 6: Portfolio Shock Summary Statistics

Abs. value

Variable Symbol Period Mean SD P95 P99 Obs.
Panel A: All returns

Bond abnorm. ret. (%) R̃A,x
j,t All 0.0 2.6 3.3 6.8 11 452 710

Bond abnorm. ret. (%) R̃A,x
j,t Not crisis −0.0 1.7 2.7 4.8 9 373 686

Bond abnorm. ret. (%) R̃A,x
j,t Crisis 0.1 5.1 6.0 12.9 2 079 024

Panel B: |R̃A,x
j,t | > 6

Position size (%) si,j,t−1 All 0.3 1.0 1.4 4.1 150 831
Position size (%) si,j,t−1 Not crisis 0.2 0.5 0.9 2.5 46 410
Position size (%) si,j,t−1 Crisis 0.4 1.2 1.7 4.9 104 421
Contribution (b.p.) si,j,t−1R̃

A,x
j,t All 0.1 11.6 13.8 40.8 150 831

Contribution (b.p.) si,j,t−1R̃
A,x
j,t Not crisis 0.1 4.9 7.8 22.1 46 410

Contribution (b.p.) si,j,t−1R̃
A,x
j,t Crisis 0.1 13.6 16.6 48.9 104 421

Panel C: Insurer-level
Insurer shock (b.p.) RA,x

i,t (b) All 0.5 25.8 21.0 76.9 36 831
Insurer shock (b.p.) RA,x

i,t (b) Not crisis 0.1 6.1 9.5 28.4 29 706
Insurer shock (b.p.) RA,x

i,t (b) Crisis 2.0 57.2 74.3 204.1 7125

to the (open market) value of the portfolio relative to equity, si,j,t−1R̃
A,x
j,t , equal to the

product of the initial position and the abnormal return. While the mean portfolio
impact is small, the standard deviation of the contribution is 11.6 b.p. and the largest
(in absolute value) 1% of contributions exceed 40 b.p. Not surprisingly, more large
contributions occur during the crisis, but many also occur outside the crisis period.

Panel C of table 6 shows that the large impacts of individual bonds aggregate
to large insurer-level shocks. The standard deviation of the insurer portfolio shock
RA,x
i,t (b) =

∑
j∈b si,j,t−1R̃

A,x
j,t exceeds 25 b.p. The relative magnitude of the variances

of the insurer-level shocks and the individual contributions is informative. The pass-
through methodology requires that the portfolio shocks occur independently of shocks
to other parts of the insurer’s balance sheet or other aspects of its business. We use
only the abnormal part of the bond return and focus on the largest abnormal returns
precisely to isolate plausibly independent bond-level shocks. If indeed the bond-level
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Figure 4: Portfolio Shocks by Date

-80

-60

-40

-20

0

20

40

60

80

Po
rtf

ol
io

 s
ho

ck
 d

is
tri

bu
tio

n 
(b

.p
.)

Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14

Each point in the figure shows the portfolio shock for one insurer-date. Shocks larger than 80 basis
points in absolute value are top and bottom-coded for readability.

shocks are independent of each other, then the ratio of variances should equal the
average number of bonds held by an insurer which experience a large abnormal re-
turn, whereas if the bond-level shocks to an insurer were perfectly correlated the
ratio of variances would equal the square of the number of bonds experiencing a large
abnormal return. In the data, the average number of holdings equals 4.1 (150,831
insurer-bond-date observations divided by 36,831 insurer-date observations) and the
ratio of variances equals 4.9, consistent with the independence assumption.

Figure 4 plots the distribution of the insurer-level portfolio shocks over time, with
the gray shaded area demarcating the crisis period 2008-09. The figure shows the
concentration of large shocks during the crisis period but also that large portfolio
shocks occur before and especially after the crisis.

Table 7 provides further support for our identifying assumption that large idiosyn-
cratic bond returns are uncorrelated with the rest of an insurer’s balance sheet by
comparing the large abnormal returns to the rest of the transacted portfolio. Column
1 reports the correlation coefficients of the (demeaned daily) unscaled large returns
R̃A,x
i,t (b) =

∑
j∈b

Pj,t−1Qj,t−1∑
k∈b Pk,t−1Qk,t−1

R̃A,x
j,t and small returns R̃A,x

i,t (bc) =
∑

j /∈b
Pj,t−1Qj,t−1∑

k/∈b Pk,t−1Qk,t−1
R̃A,x
j,t

in and out of the crisis period. These correlations are less than 0.02 in absolute value.
Column 2 compares the total scaled abnormal return RA,x

i,t (T ) to the part coming from
the large abnormal returns RA,x

i,t (b). Here we find coefficients close to albeit slightly
above one, again consistent with idiosyncracy of the large abnormal returns. Fur-
thermore, the similarity of coefficients in and out of the crisis period suggests that
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Table 7: Large Abnormal Returns Versus Other Parts of the Portfolio

Dependent variable:

R̃A,x
i,t (bc) RA,x

i,t (T )

(1) (2)
Right hand side variable:

R̃A,x
i,t (b) × Not crisis 0.0026

(0.0036)
R̃A,x
i,t (b) × Crisis 0.020

(0.024)
RA,x
i,t (b) × Not crisis 1.19∗∗

(0.066)
RA,x
i,t (b) × Crisis 1.11∗∗

(0.12)
Date FE Yes Yes
Treasury factor Yes Yes
R2 0.23 0.67
Observations 36,831 36,831

Notes: In column 1, R̃A,xi,t (bc) is the insurer-level unscaled abnormal return on corporate bonds with
small abnormal returns and R̃A,xi,t (b) is the unscaled abnormal return on corporate bonds with large (6
p.p. or more) abnormal returns. Both variables are demeaned on each date and normalized to have
unit variance in and out of the crisis such that the reported coefficients are correlations. In column 2,
RA,xi,t (T ) is the insurer-level abnormal return on all traded bonds and RA,xi,t (b) is the abnormal return on
bonds with large abnormal returns, with both variables scaled by the ratio of the holdings to market
equity. The crisis is defined as January 2008-December 2009. Standard errors clustered by date in
parentheses. ** denotes statistical significance at the 1% level. The data cover the period 2004 - 2014.

differential correlation of large abnormal returns and the rest of the bond portfolio
cannot explain a higher pass-through in the crisis.

Finally, figure 5 shows that these portfolio shocks substantially mean revert. The
figure plots the coefficients from a regression of the bond-level, subsequent cumula-
tive abnormal return over the horizon shown on the lower axis, R̃A,x

j,t,t+h, on the abnor-
mal return on the bond on date t, R̃A,x

j,t−1,t, for a balanced sample of the large abnormal
returns which contribute to the portfolio shocks. We weight the regressions by port-
folio holdings of each bond. Some of the mean reversion occurs fairly quickly, within
a week of the shock. A substantial part occurs at lower frequency. By the two year
horizon, two-thirds of the typical shock has dissipated. Thus, an investor able to hold
a bond for two years past a large abnormal return can expect two-thirds of that return
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Figure 5: Reversion of Large Abnormal Bond Returns
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Notes: The figures plot the coefficients δh from the regression R̃A,xj,t,t+h = δh,0 + δh × R̃A,xj,t−1,t + εj,t,t+h,
where R̃A,xj,t,t+h denotes the excess return of bond j between dates t and t+ h. The dashed lines indicate
90% confidence intervals on the point estimates for each horizon based on standard errors two-way
clustered by CUSIP and calendar quarter.

to eventually reverse itself.20

5.3 Results

Table 8 presents our main finding. Column 1 reports our baseline specification of the
equity return regressed on the scaled abnormal bond return RA,x

i,t (b), controlling only
for the date fixed effects and the general movement in interest rates by including
in Xt the return on the 10-year Treasury and allowing the coefficient to vary across
insurers and by year. We obtain a pass-through of 0.15 out of the crisis and 1.10
during the crisis. The table reports standard errors clustered by date to allow for
arbitrary correlation across insurers on each date. We can reject equality of the pass-
through coefficients and equality of the pass-through out of the crisis and unity at the
1 percent level. We cannot reject that pass-through during the crisis equals one at
any conventional confidence level. In words, an additional dollar of assets translates
into an additional $0.15 of equity out of the crisis, but slightly more than $1 of equity
during the crisis. Column (2) shows that pass-through into the value of public debt

20The long-run mean reversion is slightly higher for large abnormal returns during the crisis, possi-
bly reflecting a higher share of ω-type fluctuations due to the disruption in markets during that period.
However, even out of the crisis the long-run reversion exceeds one-half. Moreover, a rising share of fluc-
tuations due to ω during the crisis would bias our results away from finding a rising pass-through.
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Table 8: Estimates of Pass-through of Abnormal Bond Returns

Dependent variable:

Equity Debt

(1) (2)
Large excess bond returns interacted with:

Not crisis 0.15 −0.02
(0.21) (0.10)

Crisis 1.10∗∗ 0.33∗
(0.32) (0.17)

Date FE Yes Yes
Dep. var. winsorized Yes Yes
Treasury factor control Yes Yes
R2 0.56 0.59
p(Homog. effect) 0.013 0.069
Observations 36,831 13,149

Notes: The estimating equation is: REi,t = ρAcrisisI{t ⊆ crisis}RA,xi,t (b)+ρAnoncrisisI{t * crisis}RA,xi,t (b)+αt+

γ′iXt + εi,t, where REi,t denotes the equity return and RA,xi,t (b) the market-capitalization scaled return on
the insurer’s holdings of corporate bonds with abnormal returns greater than 6 p.p. Xt includes the
return on the 10 year Treasury bond and we allow γi to vary by calendar year. The dependent variable
is winsorized each month at the median ± 2.5 standard deviations. Standard errors clustered by date
are reported in parentheses. ** and * denote statistical at the 1 and 5% levels. The data cover the
period 2004 - 2014.

exhibits a similar pattern.21

Robustness. Table 9 establishes the robustness of the basic pattern of a low pass-
through out of the crisis and a higher pass-through during the crisis, focusing on the
equity response. The first row repeats our baseline specification. Rows 2-5 show the
basic pattern remains robust to expanding the amount of variation used in the re-
gression. Row 2 removes the Treasury factor control and row 3 additionally removes
the date fixed effects. The regression coefficients change little without the Treasury
factor control and rise slightly without the date fixed effects, indicating that many

21The sample in column 2 is restricted to insurers with liquid CDS on their outstanding public debt
throughout our sample period. The tickers of these insurers are: AFL, ALL, LNC, MET, PRU, TMK.
To compute the return on public debt, we first use Compustat and Mergent FISD to construct the
maturity structure of public debt for each company. We then use the CDS yield curve from Markit to
price the debt using a no-arbitrage condition. The equity pass-through is lower for this subgroup so
that pass-through on the total value of the firm is not higher.

34



macroeconomic confounding factors such as interest rate or overall market changes
are already accounted for in the construction of the abnormal returns. In row 4 we
use the raw rather than the winsorized equity return as the dependent variable, with
the result that the standard errors roughly double. In row 5 we construct the port-
folio shock using all (i.e. not only large) abnormal bond returns. Here the standard
errors shrink substantially while the point estimates do not change much, indicating
that our baseline approach of restricting to only large abnormal bond returns yields
conservative inference. This specification also provides one piece of evidence against
an inattention interpretation of the low pass-through out of the crisis, as including
all abnormal bond returns in the construction of the portfolio shocks yields a shock
standard deviation out of the crisis of 23 basis points.

The next rows more tightly restrict the variation, in row 6 by allowing the load-
ings used to construct abnormal bond returns to vary by year, in row 7 by constructing
bond returns at the issuer (rather than issue) level, and in row 8 by including insurer-
specific loadings on the three Fama-French factors in Xt. Rows 9 and 10 explore sen-
sitivity to the large declines in equity during the crisis for some insurers, in row 9
by including the interaction of the inverse of market capitalization and a date fixed
effect and in row 10 by scaling the changes in equity and bond holdings by the sample
mean of market capitalization for each insurer rather than the t − 1 market capital-
ization. Row 11 defines the crisis period more narrowly as the one year period from
September 2008 to August 2009. We obtain similar results in these specifications to
the baseline.

Rows 12-18 trim the sample along various dimensions. Row 12 restricts the sam-
ple to dates on which at least one insurer experiences a portfolio shock larger than
0.1% of their equity. Restricting the variation to coming from large shocks provides
another way of assessing whether inattention to small shocks drives the low pass-
through coefficients out of the crisis. While the number of observations falls by
roughly half, there is almost no change in the pass-through coefficients. To inter-
pret the stability of coefficients in row 12, it helps to recall the OLS identity that
the coefficient estimated on a full sample is equal to a weighted average of the coef-
ficients estimated on separate sub-samples where the weights are the contributions
from each sample to the total variance of the regressors. Thus, even in the full sam-
ple the pass-through coefficients overwhelmingly reflect the pass-through from large
shocks. Similarly, the row 13 sample only includes dates on which the absolute value
of the return on the aggregate stock market exceeds 1%, as investors might pay par-
ticular attention to portfolio performance on days in which the overall market exhibits
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Table 9: Pass-through Robustness

Specification ρAnoncrisis s.e. ρAcrisis s.e. p(ρAcrisis =
ρAnoncrisis)

Obs.

1. Baseline 0.15 0.21 1.10 0.32 0.013 36,831
2. No Treasury factor control 0.12 0.21 1.03 0.32 0.017 37,394
3. No controls 0.25 0.47 1.67 0.34 0.014 37,395
4. Dep. var. not winsorized 0.11 0.37 1.85 0.72 0.032 36,831
5. All abnormal bond returns 0.04 0.07 0.85 0.21 0.000 36,831
6. Time-varying loadings 0.14 0.21 1.13 0.35 0.015 36,831
7. Issuer return 0.20 0.29 1.04 0.33 0.057 36,831
8. Fama-French factors control 0.11 0.17 0.98 0.34 0.021 36,831
9. Size control −0.02 0.21 1.09 0.37 0.010 36,816
10. Alternative denominator 0.15 0.18 0.89 0.41 0.099 36,816
11. Crisis period 9/1/08-8/31/09 0.23 0.27 1.19 0.34 0.028 36,831
12. Dates with shock > 10 b.p. 0.16 0.22 1.11 0.32 0.015 17,667
13. |Rmkt

t | > 1 p.p. 0.17 0.43 1.16 0.53 0.147 10,170
14. |Rmkt

t | < 1 p.p. 0.17 0.21 1.04 0.31 0.021 26,646
15. Shocks < 80 b.p. 0.05 0.21 1.00 0.44 0.053 36,486
16. Drop crisis timeline dates 0.11 0.21 0.92 0.80 0.332 33,666
17. Drop FOMC dates 0.21 0.21 1.01 0.37 0.059 35,577
18. Drop pre-crisis 0.11 0.22 1.10 0.32 0.010 23,220
19. 3 day return 0.22 0.39 1.19 0.37 0.071 36,787
20. 7 day return 0.38 0.53 1.65 0.82 0.192 36,893

Notes: The estimating equation is: REi,t = ρAcrisisI{t ⊆ crisis}RA,xi,t (b)+ρAnoncrisisI{t * crisis}RA,xi,t (b)+αt+

γ′iXt + εi,t, where REi,t denotes the equity return and RA,xi,t (b) the market-capitalization scaled return
on the insurer’s holdings of corporate bonds. Each row reports the results from a separate regression.
Row 1 reproduces the baseline result. Each subsequent row modifies the baseline. In row 2Xt is empty.
In row 3 Xt is empty and αt is omitted from the regression. In row 4 the dependent variable is not
winsorized. In row 5 the portfolio shock is computed without excluding small abnormal bond returns.
In row 6 the abnormal bond returns are constructed using rating and industry loadings allowed to
vary by year. Row 7 uses bond returns aggregated by issuer. In row 8 Xt additionally includes the
three Fama-French factors. In row 9 Xt includes an interaction of a date fixed effect with the inverse
of insurer market capitalization. In row 10 REi,t and RA,xi,t (b) are rescaled by the ratio of one-day lagged
market capitalization to the insurer’s sample mean market capitalization. Row 11 shrinks the crisis
period. Row 12 only includes dates with a portfolio shock of at least 10 b.p. in absolute value. Row 13
only includes dates where the absolute value of the return on the Russell 3000 exceeds 1 p.p. while
row 14 excludes these dates. Row 15 drops shocks larger than 80 b.p. Row 16 drops any date included
on the St. Louis Fed crisis timeline. Row 17 drops any date which coincides with an FOMC meeting.
Row 18 drops observations before 2008. Rows 19 and 20 report the baseline specification for a 3 and 7
day horizon, with excess return threshold increased to 8 p.p. and 10 p.p., respectively. Standard errors
clustered by date. ** and * denote statistical at the 1 and 5% levels. The data cover the period 2004 -
2014.
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large movements. However, while the standard errors rise in this smaller sample, the
point estimates of pass-through in and out of the crisis remain almost unchanged.

Rows 14 to 16 instead restrict the variation to coming from smaller shocks. In
row 14 we exclude dates on which the overall market moved more than 1%, in row
15 we drop the roughly 350 portfolio shocks larger than 80 b.p., and in row 14 we
drop any date identified on the St. Louis Fed crisis timeline.22 While the standard
error of the crisis pass-through rises in rows 15 and 16, all of the coefficients remain
close to their baseline values. Row 17 removes dates with a Federal Reserve Open
Market Committee meeting or announcement as bond price changes on these data
are especially likely to reflect changes in interest rates. Row 18 drops observations
from before 2008, showing that pass-through falls back to a low level after 2009.

Finally, rows 19 and 20 explore the sensitivity of our results to the window over
which we estimate the pass-through. In row 19 we estimate the pass-through over
a 3-day horizon and in row 20 we estimate the pass-through over a 7-day horizon.
Since the variance of returns may increase with horizon, we raise the threshold for
inclusion in the idiosyncratic component b to 8 p.p. for the 3-day horizon and to 10 p.p.
for the 7-day horizon. The pass-through out of the crisis remains low as the horizon
increases, while the pass-through in the crisis remains above 1.

The evidence of differential pass-through in and out of the crisis also does not
depend on the asset price behavior of only a few insurers. To make this point, we
selectively drop three insurers at a time, or 20% of our sample, and re-estimate the
baseline regression in column 1 of table 8. Figure 6 reports the histogram of coeffi-
cients from these 15!

12!3!
= 455 regressions. Most coefficients cluster around the level

estimated in the baseline specification in the full sample and the two distributions of
coefficients in and out of the crisis do not overlap. The gap between the crisis and out
of crisis coefficients estimated for each sample ranges between 0.5 and 1.4.

Heterogeneity. The asset insulator theory explains the higher pass-through dur-
ing the crisis as reflecting the heightened risk of liquidation. We find additional ev-
idence of this channel by splitting the sample according to the level of financial dis-
tress. Specifically, we form two subgroups of insurers based on each insurer’s stock
return during the period September 12, 2008 to October 10, 2008. This four-week pe-
riod begins with the day of the Lehman bankruptcy and contains the most acute drop
in insurer stock prices in our sample. To avoid a mechanical correlation between stock

22These are available at https://www.stlouisfed.org/financial-crisis/full-timeline.
We thank our discussant Ralph Koijen for suggesting this last sample filter and providing us with a
data set of the timeline dates.
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Figure 6: Pass-through Sample Robustness
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Notes: The figure reports the histogram of coefficients of pass-through in and out of the crisis from
the regression specification in column (1) of table 8 when we exclude three insurers at a time from the
sample. The crisis period is January 2008-December 2009. The data cover the period 2004 - 2014.

price decline and crisis pass-through from sorting based on decline, we then drop this
four-week period from the sample. Table 10 reports the results from estimating equa-
tion (16) separately for each subsample. The pass-through coefficient rises during the
crisis in both groups, consistent with the increase in the comparative advantage of an
asset on the balance sheet playing a role and with a heightened level of distress even
among the healthier insurers. However, the pass-through coefficient for the healthier
subgroup rises by only half as much as for the more distressed subgroup. The limited
sample size generates too little power to formally reject equality of the crisis pass-
through coefficients at conventional levels, but the difference of 0.6 is consistent with
liquidation risk substantially raising the pass-through.

5.4 Annual Pass-through

An exercise based on regulatory data reported at the end of each calendar year com-
plements the previous results. These data have the advantage of much fuller coverage
of assets, but at the cost of limited power as we have one observation per insurer-year.
The annual data do allow us to exploit variation by insurer in broad asset class al-
location as well as within asset class returns. Indeed, as we document in figure E.1,
insurers differ substantially in their broad asset class allocation with some heavily
exposed to ABS and PLRMBS before the crisis and others with virtually no exposure.

We construct annual portfolio returns from the NAIC regulatory data. NAIC
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Table 10: Pass-through by Insurer Distress

Dependent variable: equity return

Sample:

Equity return
09/12/08-

10/10/08 <
Median

Equity return
09/12/08-

10/10/08 >
Median

(1) (2)
Large excess bond returns interacted with:

Not crisis × Large bond returns / market cap 0.32 0.05
(0.31) (0.22)

Crisis × Large bond returns / market cap 1.09∗∗ 0.49
(0.37) (0.41)

Date FE Yes Yes
Drop 09/15/08-10/10/08 Yes Yes
Dep. var. winsorized Yes Yes
Treasury factor Yes Yes
P(Crisis pass-through equal) 0.358 0.358
R2 0.62 0.59
Observations 17,161 19,346

Notes: The table shows the extent to which pass-through differs by how much the insurer’s stock
fell in the period September 12, 2008 - October 10, 2008. The crisis period is January 2008-December
2009. Standard errors clustered by date in parentheses. ** denotes statistical significance at the 1%
level. The data cover the period 2004 - 2014 excluding the period September 12, 2008 - October 10,
2008.

Schedules BA and D require insurers to report a fair value per unit for all securi-
ties held on their balance sheet on December 31st of each year, regardless of whether
valuation of the assets occurs at fair value or historical cost for accounting and regu-
latory purposes. These schedules also list the value of dividends received during the
year, pre-payments, and purchases and sales. We use this information to construct for
each asset a total dollar gain equal to the sum of mark-to-market capital gains and
net dividends. Summing over assets then gives the total dollar value of investment
gains and losses in a year. We obtain information on derivatives holdings from Sched-
ule DB. Like bonds, insurers must include a fair value of each derivative position in
their filing, but depending on the hedging classification may not include unrealized
gains and losses in their accounting totals. We use a string matching algorithm to
match open derivatives positions across consecutive filing years and the fair value re-
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Table 11: Annual Portfolio Return Pass-through

Dependent variable: stock return

Portfolio capital gains measured as:

Excess return w.r.t.:

Actual Asset-class
year mean 1 factor Actual incl.

derivatives

(1) (2) (3) (4)
Right hand side variables: scaled portfolio return in:

Not crisis −0.047 −0.33∗∗ −0.48∗∗ −0.029
(0.036) (0.11) (0.15) (0.042)

2008 0.72∗ 0.77∗ 0.71 0.87+

(0.29) (0.33) (0.50) (0.51)
2009 0.022 0.31 0.86 0.022

(0.052) (0.42) (0.93) (0.050)
Year FE Yes Yes Yes Yes
R2 0.55 0.55 0.56 0.54
Observations 150 150 150 150

Notes: The table presents the coefficients from regressions of the insurance company’s total stock
return on the change in the value of its asset holdings. The right hand side variable is the total return
on the insurer’s asset portfolio. In column (2), we adjust the portfolio capital gains by removing the
asset-class mean in each year before aggregating to the individual insurer level. We provide details
on our asset class definitions in the online appendix. In column (3), we control for differences across
insurers in initial holdings by extracting the first principal component for each asset class before ag-
gregating to the individual insurer level. In column (4), we include derivative positions in addition
to the securities held. Heteroskedasticity-robust standard errors in parentheses. **, *, and + denote
statistically significant at the 1, 5, and 10% levels. The data cover the period 2004 - 2014.

ported in each year to construct mark-to-market gains and losses on the derivatives
portfolio.23 Our measure differs, sometimes substantially, from the investment gains
and losses reported by insurers in their statutory filings because it attributes gains
and losses to the period in which the underlying investments change value rather
than the year in which they are recognized for accounting purposes.

Table 11 reports regressions of the same form as equation (16) but using the NAIC
data at the annual frequency. The specification in column 1 includes no controls other

23The annual filings also contain detailed data on wholly owned mortgages (Schedule B) and directly
held real estate (Schedule A), but value these assets only at historical cost. We exclude these assets in
our calculations.
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than the year fixed effects and reports pass-through with respect to the scaled return
on the portfolio assets. We obtain a coefficient of 0.72 for the year 2008 and of essen-
tially zero for all other years. In columns 2 and 3 we construct abnormal portfolio
returns by first demeaning each asset class return with respect to its yearly mean
across all insurers (column 2) or as the residual after extracting one asset-class spe-
cific factor as chosen by the Bai (2009) interactive effects factor model (column 3). The
2008 pass-through changes little, while the non-crisis pass-through falls to be a bit
negative.24 The 2009 pass-through increases in these specifications. In column 4 we
augment the Schedule D and BA holdings with the mark-to-market capital gain/loss
on each insurer’s derivatives portfolio. The pass-through coefficients change little, in
part because the gains and losses on the non-derivatives holdings dwarf those from
the derivatives portfolio. In sum, while less powerful and well-identified than the
results based on daily returns, annual data confirm the basic result of a low pass-
through out of the crisis and a higher pass-through during the crisis.

5.5 Discussion

The finding of a pass-through coefficient significantly below one out of the crisis poses
a challenge to a Modigliani-Miller theory of the firm and to the other standard the-
ories of financial institutions. The asset insulator view of insurers can explain both
the low pass-through out of the crisis and the increase in pass-through during the
crisis. In normal conditions, as asset prices fluctuate on the market, the value inside
the firm is preserved and the pass-through is low. When the crisis occurs, asset prices
on the market drop. This results in a larger comparative advantage to holding the
assets on the balance sheet, so franchise value increases. However, this effect is mit-
igated by the deterioration in the financial health of insurers, putting them closer to
liquidation. Assets are less likely to be held for a long time, and therefore less well
insulated from market movements, which results in a higher pass-through. Further,
while high, the value creation from the asset insulation activity is precarious. Ad-
verse price changes can precipitate liquidation, further increasing the pass-through.

Still, while the asset insulator theory predicts a pass-through in normal times
below one, point estimates in the range of $0.10 to $0.20 may seem low. We offer
three comments in this regard.

24In interpreting the negative coefficients, recall that while more comprehensive than the set of cor-
porate bonds which transact on consecutive days, the annual filings nonetheless lack mark-to-market
prices of directly held mortgages, real estate, assets held outside the insurance company, and, espe-
cially, liabilities.
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First, the crucial predictions of the insulator theory are that the pass-through in
normal times is below one and that it rises during the crisis. In almost all specifica-
tions, the data reject at conventional confidence levels both equality of the out-of-crisis
pass-through and one and equality of the coefficients in and out of the crisis, confirm-
ing the predictions of the theory. However, the 95% confidence interval in our baseline
specification does not reject a pass-through out of the crisis of as high as $0.56.

Second, valuation conventions of equity analysts of insurance companies comport
with a low pass-through in normal times. According to Nissim (2013), most equity
analysts value insurance companies using a price-book ratio which excludes accumu-
lated other comprehensive income (AOCI) from the book valuation. Our own con-
versations with market participants confirm the popularity of this approach. The
category AOCI includes all of the unrealized gains and losses from the asset portfolio.
Nissim (2013, p. 326) describes the rationale for excluding AOCI as stemming from
a desire to smooth the high volatility of investment gains and losses, consistent with
the asset insulator view. In our language, the industry practice of ignoring AOCI
when doing valuation amounts to a target pass-through of close to zero in normal
conditions.

Third, our theory abstracts from other frictions which might amplify the asset
insulation function in non-crisis periods. Monitoring costs, rational inattention, and
heuristics provide possible candidates. For example, if equity market participants
must pay a cost to monitor developments on insurers’ portfolios, they will do so only if
the mis-valuation from not paying the cost exceeds the cost itself. With a target pass-
through absent information costs already low, the gains from monitoring are small
and participants will not pay the cost, pushing the realized pass-through even lower.
Similarly, with low target pass-through, valuing assets strictly at book value may
be preferred to valuing strictly at market value. On the other hand, the similarity
of pass-through coefficients on volatile and tranquil trading days militates against
putting too much emphasis on amplification channels which rely on inattention.

In sum, the pass-through evidence in and out of the crisis, and the cross-sectional
differences in pass-through during the crisis, accord well with the asset insulator view
of life insurers. In contrast, the financial friction view cannot explain the low pass-
through out of the crisis, while the policy guarantee view counterfactually predicts a
smaller pass-through during the crisis and for more distressed insurers. We conclude
that only the asset insulator view of life insurers can rationalize the empirical pass-
through moments.25

25We have discussed already the inconsistency of the liability matching view with insurers’ portfolio
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Figure 7: Insurer Distress During Crisis
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Notes: The left panel plots the value-weighted total return index for publicly traded insurers, banks,
and the entire CRSP value-weighted index. The right panel plots the equity value-weighted annual
premium to insure $10,000 of debt for a period of 5 years for AFL, ALL, LNC, MET, PRU, and TMK.

6 Macro Implications of Asset Insulator View

In this section we document the macroeconomic importance of the asset insulator
role of life insurers during the 2008-09 crisis. As a starting point, figure 7 illustrates
the financial distress of the life insurance sector during the period. The left panel
shows the stock return index for publicly traded life insurers plotted against commer-
cial banks and the value-weighted CRSP index for comparison. The insurance sector
has the largest peak-to-trough decline of the three sectors. The right panel shows
the equity value-weighted average CDS spread for the six insurers with liquid CDS
throughout the period. From a low of essentially zero before the crisis, the spread
rises beginning in 2008 and peaks above 1200 basis points in March 2009 before de-
clining to a “new normal” range in the latter part of that year. The distress evident in
figure 7 explains why we treated the 2008-09 period as one of heightened liquidation
risk in the previous section.

choices. The pass-through evidence here also helps to reconcile the evidence in Chodorow-Reich (2014)
that life insurers’ stock prices rose sharply during the crisis on dates when the Federal Reserve took
actions to lower interest rates, a result at odds with the duration mismatch of insurers but consistent
with the sharp rise in the value of portfolio holdings passing through into the equity at a high rate.
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Remarkably, franchise value actually increased by tens of billions of dollars dur-
ing the crisis. Figure 8 shows this result by comparing the aggregate dollar change
in insurers’ assets net of liabilities during the crisis to the drop in equity. To con-
struct the figure, we first calculate the capital gain/loss on the market (i.e. outside)
value of publicly-traded insurers’ securities holdings using the fair value reporting
requirements imposed by NAIC and the procedure described in section 5.4 to com-
pute security-level gains and losses. For 2008, the fair market value of securities
declined by $30 billion. Next, using the effective duration of each security together
with the Treasury yield curve we calculate the change in the value of the assets due
to interest rate changes alone by summing over securities the buy-and-hold return for
a Treasury security of the same effective duration.26 For 2008, the decline in interest
rates alone would have raised the market value of insurers’ securities holdings by
$96 billion instead of the $30 billion decline actually observed. Thus, the non-interest
rate component of the market value of the assets declined by $126 billion. If insurers’
liabilities have duration equal to their security holdings (a conservative assumption),
then the net change in the market value of assets less liabilities equals this $126
billion decline, shown in the left blue bar in figure 8.27

In fact, the left red bar shows that insurers’ equity dropped by “only” $80 billion
in 2008: franchise value increased. This result runs counter to Modigliani-Miller and
is even more at odds with the financial distress view that a deteriorating financial
situation destroys firm value. The dynamic reverses in 2009 as the market prices of
assets recover by more than insurer equity.

The insulator theory explains why insurers were partly shielded from the large
fluctuations in market prices of assets during the crisis. Figure 1 illustrate these
dynamics formally. An increase in market illiquidity corresponds to a decline in the

26When the holding changes due to purchases, sales, dividends, or pre-payments, we adjust the
matched Treasury holding accordingly.

27This calculation understates the decline in the market value of assets less liabilities for two rea-
sons. First, we impute the change in liabilities using the duration of assets because we do not have
data on the duration of liabilities directly. However, industry analysts generally agree that insurance
company liabilities are longer duration than their assets, such that our calculation understates the in-
crease in the value of liabilities due to the sharp drop in interest rates in 2008. Second, the calculation
does not include balance sheet losses resulting from guaranteed income annuities, direct holdings of
mortgages or real estate, or assets held outside of the insurance subsidiary. On the other hand, the
figure does not include the changes in the value of public debt since we do not have CDS prices for most
of our sample. However, this omission should not affect the result much. For example, in 2008 total
equity at the 6 insurers for which we do have CDS prices declined by $75 billion. Applying the CDS
curve and Treasury yield curve to the maturity structure of public debt outstanding for these insurers,
we estimate a decline in the value of debt of $2 billion, the result of an increase in value of $6 billion
from the decrease in interest rates and a fall in value of $8 billion from the higher default risk.
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Figure 8: Aggregate Changes in Assets, Liabilities, and Market Equity
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Notes: The blue bars show the fair value capital gain/loss on assets reported in NAIC schedule BA
and D minus the gain/loss on a portfolio of Treasuries constructed by matching each cusip to a U.S.
Treasury of the same duration. The red bars show the total change in market equity.

wedge ω. This change lowers directly the value of the assets in the market and hence
the Modigliani-Miller value of the firm. However, far from default, a change in ω

has a small effect on firm equity. As a result, franchise value rises. In the figure,
the two points N and J derive from the same value of Ain but different values of ω.
The increase in vertical distance from the Modigliani-Miller line when moving from
point N to point J reveals the increase in franchise value. Of course, life insurers also
became financially distressed during the 2008-09 crisis. We represent this distress
as a decline in Ain, or a movement from point J to point C. As they approach default,
insurers lose the ability to insulate assets from the market. Indeed, a large enough
decrease in Ain could reverse the increase in value creation coming from the lower ω;
in the extreme case of Ain → A, value creation from insulation ceases. Which of the
two effects dominate is an empirical question. In the figure, as in the data, the overall
change in franchise value when moving from N to C is positive.

These results highlight a core tension in both the theory and the data. Periods
of financial turmoil and market dislocation represent prime opportunities for asset
insulators. Yet, such periods may also coincide with insulators becoming financially
distressed, jeopardizing their ability to insulate. Thus, asset insulation may be most
fragile exactly when it is most valuable. The combination of high pass-through and
high franchise value during the financial crisis demonstrates this tension for life in-

45



surers.28

7 Conclusion

We have proposed that financial intermediaries can act as asset insulators, institu-
tions which hold assets for the long run to protect valuations from consequences of
exposure to financial markets. The balance sheets of life insurers exemplify an as-
set insulation strategy. Insurers hold illiquid and risky assets for long intervals, in
contrast to the classic duration-matching of liabilities view of their portfolio choice;
they target purchases toward assets below their long-run value; and they have stable
liabilities to back an insulation strategy.

The pass-through of the market value of assets into market equity is a useful met-
ric to discriminate asset insulation from other theories. Using detailed security-level
holdings data matched to the universe of corporate bond trades, we estimate that out-
side of the 2008-09 financial crisis an insurer’s equity decreases by as little as 15 cents
in response to a one dollar drop in the market value of its assets. During the crisis,
the pass-through rises to approximately 1. Our theory interprets the higher pass-
through during the crisis as resulting from the deterioration in the financial health
of insurers, which threatened their ability to act as long-lived investors. This rise in
the pass-through occurred alongside an increase in the overall value of insulation in
the crisis. Therefore, while insurers lost the ability to insulate at the margin, the
insulation across their entire balance sheet prevented the destruction of nearly $50
billion of market equity in the financial sector at a crucial moment.

Our results depict a set of institutions which create private value through their
ability to hold risky, illiquid assets for long intervals. Ascertaining whether these in-
stitutions create social value requires answering additional questions. On the one
hand, the asset insulation view suggests a stabilizing role for these institutions,
rather than the amplifying role sometimes attributed to them. Proposals to tightly
regulate asset holdings might impair this function. On the other, the correlation be-
tween market illiquidity and the health of the financial sector makes the asset insula-
tion function most fragile exactly when it is most valuable. Finally, we do not consider
the social benefits of having a large share of assets trade on financial markets, such

28These results may also bear on issues of systemic risk. Acharya, Philippon, and Richardson (2016)
define a firm’s systemic risk as its contribution to an aggregate capital shortfall in the financial sector.
While the comovement of stock prices in figure 7 indicates a strong correlation of life insurer distress
and the overall market, figure 8 suggests the capital shortfall would be even worse if the assets were
not insulated inside the life insurance sector.
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as price discovery and liquidity. We leave these questions to future work.
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A A Microfoundation for Insulators

We present an equilibrium model which gives rise to three results. First, the limited
ability of long-term investors to expend capital in a particular market gives rise to the
coexistence of two marginal valuations for the asset: the market price and a long-run
value. Second, shocks specific to trading in the asset market — noise trader risk in
this setting — affect the market value of the asset but not its long-run value. Third,
when long-run investors access the asset market through a publicly traded insulator,
the price of the insulator coincides with the long-run value of the asset. To make these
points, we build on De Long et al. (1990), adding long-run investors facing limits to
arbitrage.

Setup. We consider an infinite horizon setting in which time, t = 0, 1, ..., is discrete.
There are two assets: a risk-free and a risky asset. The risk-free asset pays coupon
r each period and can be freely created from or transformed back into a unit of con-
sumption good, so its price is 1 always. The risky asset also pays coupon r each period,
but is in fixed supply S. We denote pt the price of the risky asset at date t.

Three types of agents populate the economy each period: a mass Mn of noise
traders, a mass Msr of sophisticated short-lived investors, and a mass Mlr of long-run
investors. Noise traders and sophisticated short-lived investors live for two periods:
they are born and trade at date t, and consume at date t + 1. Both types of agents
have CARA utility with risk aversion γ. Noise traders misperceive the change in price
between t and t+ 1 by an amount ρt ∼ N (0, σ2

ρ). We assume ρ0 = 0. All other investors
have rational expectations, which we denote by the conditional expectation operator
Et.

Long-run investors are born at date 0 and live forever. They are risk-neutral, and
discount time at rate r. They face two limits to arbitrage. First, only a fraction α ∈
[0, 1] of long-run traders can access the asset market. Second, when they access the
risky asset market, they can only deploy one unit of wealth in it. The first assumption
captures the limited sophistication — both technological and informational — of many
agents in the economy, in particular households, which renders them unable to access
complex asset markets. The second assumption captures the limitation of access to
leverage for many investors. To simplify derivations, we further assume, as is often
the case in practice, that long-run investors are buy-and-hold. They invest at date 0

and hold their positions forever.
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Equilibrium. We conjecture that price changes are normally distributed, with con-
ditional variance denoted by σ2

p,t+1. The demand for the risky asset from short lived
investors then follows the classic CARA formula:

Dsr
t =

r + Et[pt+1]− (1 + r)pt
γσ2

p,t+1

. (A.1)

The demand is the ratio of the expected excess profits from investing in the risky asset
rather than the risk-free asset and the product of risk aversion with the variance
of price change. Demand from noise traders is similar, incorporating their biased
expectations of price changes:

Dn
t =

r + Et[pt+1] + ρt − (1 + r)pt
γσ2

p,t+1

. (A.2)

The portfolio choice problem of long-run traders admits a corner solution: they
invest in the risky asset only if its lifetime returns dominate the risk-free asset. Be-
cause both assets offer the same cash-flows, this happens if and only if the current
price of the risky asset is lower than the price of the riskless asset, pt ≤ 1. Let us
conjecture we are in this case. Then denote S∗ = S − αMlr/p0 the residual quantity of
risky asset available after investment by long-run investors. Market-clearing for the
risky asset corresponds to

S∗ = MnD
n
t +MsrD

sr
t . (A.3)

Plugging in the optimal demand by these two groups of investors, we can rewrite this
condition as:

(1 + r)pt = r + Et[pt+1] +
Mn

Mn +Msr

ρt − γ
S∗

Mn +Msr

σ2
p,t+1. (A.4)

If we additionally guess that the variance term is constant, we can plug in recursively
to obtain:

pt = 1 +
1

1 + r

Mn

Mn +Msr

ρt −
1

r
γ

S∗

Mn +Msr

σ2
p,t+1. (A.5)

We can now go back to our three conjectures. With the formula above, the variance of
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the price is constant, and plugging in gives:

pt = 1 +
1

1 + r

Mn

Mn +Msr

ρt −
1

r(1 + r)2

S∗

Mn +Msr

(
Mn

Mn +Msr

)2

γσ2
ρ. (A.6)

Further, the price is normally distributed and is less than 1 when ρt = 0. All that
remains is to solve for S∗. The residual quantity is the unique solution of:

αMlr

S − S∗
= 1− 1

r(1 + r)2

S∗

Mn +Msr

(
Mn

Mn +Msr

)2

γσ2
ρ. (A.7)

A solution exists as long as αMlr is not too large.29

Comments. Two distinct valuations for the risky asset are prevalent in this econ-
omy. Long-run investors’ marginal willingness to pay for a unit of the risky asset is
1, its long-run value. But the asset trades on a market at a different price, pt, the
marginal willingness to pay of noise traders and short-run investors.

The mismatch between these values comes from shocks affecting the market value
of the asset but not the long-run value: noise trader risk. On average, the price of the
risky asset is less than 1 because short-lived investors require a risk premium to
hold it until next period’s biases are revealed — the counterpart to ω̄ < 1 in our main
setting. And, as noise traders are more or less pessimistic, they push the market price
down more or less strongly, contracting or expanding the wedge. This mean-reverting
force in the difference between the two values echoes the process we assume for ωt in
our main setting. From the expression for the price pt, we can see that many other
forces could lead to fluctuations in the wedge between the two values: changes in the
risk aversion of traders, in the limits to arbitrage, etc.

Finally, we can consider the case of a publicly traded insulator. Consider an in-
finitesimal institution holding one unit of the risky asset forever, and that long-run
investors all have access to trading it. Long-run investors would value it at the long-
run value and absorb its supply.30 The price of the insulator coincides with the long-
run value of the asset.

29When αMlr is large, limits to arbitrage are not binding. Long-run investors absorb all the risky
asset supply, and its equilibrium price is 1.

30Just like the model allows for partial participation in the risky asset by long-term investors, we
could also consider the case of a non-infinitesimal insulator while keeping a non-zero wedge.
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B Solving the Model

B.1 Value of equity

The exogenous laws of motions are

dAin
t

Ain
t

= (r − c)dt+ σAdZ
A
t , (B.1)

dωt = −κω(ωt − ω̄)dt+ σω
√
ωtdZ

ω
t . (B.2)

The liquidation stopping time T is the hitting time of the threshold A0.
The value of the equity is

Et = Et
[∫ T

t

e−r(τ−t)(c− k)Ain
τ dτ + e−r(T−t)ωTA−

∫ ∞
t

e−r(τ−t)`dτ

]
. (B.3)

We drop the “in” superscript for simplicity and reorganize the equation:

Et = Et
[∫ T

t

e−r(τ−t)(c− k)Aτdτ + e−r(T−t)ωTA−
∫ ∞
t

e−r(τ−t)`dτ

]
(B.4)

= Et
[∫ ∞

t

e−r(τ−t)(c− k)Aτdτ

]
︸ ︷︷ ︸

no-liquidation asset value

+Et
[
e−r(T−t)ωTA−

∫ ∞
T

e−r(τ−t) (c− k)Aτdτ

]
︸ ︷︷ ︸

liquidation adjustment

− Et
[∫ ∞

t

e−r(τ−t)`dτ

]
︸ ︷︷ ︸

liabilities

. (B.5)

The present value of liabilities is∫ ∞
t

e−r(τ−t)`dτ =
`

r
. (B.6)

Note that Et [Aτ |At] = At exp (r − c) (τ − t). Therefore,

Et
[∫ ∞

t

e−r(τ−t)(c− k)Aτdτ

]
= At

∫ ∞
t

(c− k) exp (−c (τ − t)) dτ (B.7)

= At
c− k
c

, (B.8)
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and

ET
[∫ ∞

T

e−r(τ−t) (c− k)Aτdτ

]
= ET

[∫ ∞
T

e−r(τ−t) (c− k) e(r−c)(τ−T )ATdτ

]
(B.9)

= e−r(T−t)
c− k
c

AT. (B.10)

We can also compute expectations of ωτ for various values of τ . For this remember
the conditional mean of a CIR process is

Et [ωτ |ωt] = ωte
−κω(τ−t) + ω̄

(
1− e−κω(τ−t)) . (B.11)

Plugging these results in the liquidation adjustment, and using the fact that, by
definition, AT = A0, we have

Et
[
e−r(T−t)ωTA−

∫ ∞
T

e−r(τ−t) (c− k)Aτdτ

]
= AEt

[
e−r(T−t)

[
(ωt − ω̄) e−κω(T−t) + ω̄ − c− k

c

]]
(B.12)

We are left with computing Et
[
e−r(T−t)

]
and Et

[
e−(r+κω)(T−t)]. The following lemma

gives a general expression for this type of expectations.

Lemma 1. For any α ≥ 0 , we have

Et
[
e−α(T−t)] =

(
At
A

)−f(α)

, (B.13)

with

f(α) =
r − c− 1

2
σ2
A +

√(
r − c− 1

2
σ2
A

)2
+ 2σ2

Aα

σ2
A

. (B.14)

The function f is positive and increasing.

Proof. Define Mt = e−αt
[
At

A

]−γ̃1

. Applying Ito’s lemma gives

dMt = Mt

[
−α− γ̃1(r − c) +

1

2
σ2
Aγ̃1 (1 + γ̃1)

]
dt− γ̃1σAMtdZ

A
t . (B.15)
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Hence Mt is a martingale if γ̃1 solves

0 =

[
1

2
σ2
A

]
γ̃2

1 +

[
−(r − c) +

1

2
σ2
A

]
γ̃1 + [−α] (B.16)

γ̃1 =
(r − c)− 1

2
σ2
A ±

√(
(r − c)− 1

2
σ2
A

)2
+ 2σ2

Aα

σ2
A

. (B.17)

Let us consider the positive root, calling it γ1. In this case Mt is uniformly bounded
before the stopping time T . Doob’s optional stopping theorem applies: Mt = Et [MT ].
Hence, substituting the definition of Mt,

e−αt
[
At
A

]−γ1

= Et
[
e−αT

]
, (B.18)

Et
[
e−α(T−t)] =

[
At
A

]−γ1

. (B.19)

This last expression coincides with our lemma. �

Using this lemma, we obtain the value of equity:

Et = At
c− k
c

+ A

(
At
A

)−f(r+κω)

(ωt − ω̄) + A

(
At
A

)−f(r)(
ω̄ − c− k

c

)
− `

r
. (B.20)

B.2 Pass-through

We can compute the laws of motion for Et and Aout
t using Ito’s lemma. We drop the

dt terms as they do not enter the pass-through calculation, and ignore the “in” super-
script. For the equity value, we obtain:

dEt =

(
c− k
c
− f(r + κω)

At

(
At
A

)−f(r+κω)

A (ωt − ω̄)− f(r)

At

(
At
A

)−f(r)

A

(
ω̄ − c− k

c

))
dAt

+ A

(
At
A

)−f(r+κω)

dωt (B.21)

For the outside value of the assets, we obtain:

dAout
t = ωtdAt + Atdωt (B.22)
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We can then compute the pass-through, remembering that cov (dAt, dωt) = 0:

PT =
< dEt, dA

out
t >

(dAout
t )2

(B.23)

=
ω2
t dA

2
t

ω2
t dA

2
t + A2

tdω
2
t

[
c−k
c

ωt
− f(r + κω)

ωtAt

(
At
A

)−f(r+κω)

A (ωt − ω̄)− f(r)

ωtAt

(
At
A

)−f(r)

A

(
ω̄ − c− k

c

)]

+
A2
tdω

2
t

ω2
t dA

2
t + A2

tdω
2
t

[(
At
A

)−f(r+κω)−1
]
. (B.24)

We define the fractions of variance of dAout
t coming from the two shocks

VA =
ω2
t dA

2
t

ω2
t dA

2
t + A2

tdω
2
t

, (B.25)

Vω =
A2
tdω

2
t

ω2
t dA

2
t + A2

tdω
2
t

. (B.26)

B.3 Alternative specifications

We illustrate the robustness of our pass-through predictions by studying franchise
value for alternative specifications of the model. Figure B.1 reports the analogue of
figure 1 for three cases. Panel (a) reproduces the closed form result in the main text
with liquidation boundary based on the inside value of the asset. Panel (b) corre-
sponds to the assumption of a liquidation boundary based on the outside value of the
asset. Panel (c) is the case of a liquidation boundary based on the inside value of the
asset, but with positively correlated shocks to Ain and ω. In these last two cases, the
equity values are computed through Monte-Carlo simulations.

When the insulator is in good financial health and ω is high (point N), the eco-
nomics of the pass-through do not depend on how liquidation occurs or the correla-
tion structure of the shocks. In this situation, the insulator is far from the liquidation
boundary so its specific form and the joint dynamics of shocks do not matter. Rather,
the equity value depends almost entirely on the inside value of the asset because the
asset is very likely to be held for the long-run. A decrease in the inside value of the
asset therefore passes through close to one-to-one to the value of the equity while a
shock to the wedge does not affect the value of the equity.

Close to liquidation, two forces drive the pass-through. First, because the assets
are likely to be liquidated soon, the equity value is more closely tied to the market
value of the assets. This pushes the pass-through to both types of shocks closer to 1.
Second, moving closer to the boundary erodes any insulation value by lowering the
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Figure B.1: Pass-through in the Asset Insulator Framework: Alternative Specifica-
tions

(a) Inside Value Boundary
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(b) Outside Value Boundary
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(c) Correlated Ain and ω
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Notes: The figure illustrates the relationship between equity and asset value in the asset insulator
framework. The dashed green line is the Modigliani-Miller benchmark and has a slope of 1. The solid
blue line plots equity as a function of the outside asset value for a fixed value ωhigh, while the dotted
red line plots equity as a function of the outside asset value for a fixed value ωlow. The slopes of the
blue and red lines give the conditional pass-through with respect to a change in the outside asset value
coming from a change in Ain. The slopes of the dashed black lines give the conditional pass-through
with respect to a change in the outside asset value coming from a change in ω at the two points N (for
normal) and C (for crisis).
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expected holding horizon of the assets. This tends to push the pass-through further
up, above 1. When the liquidation boundary depends of the inside value of the asset,
this second effect is only present for shocks to the inside value. At point C in panel
(a) or (c), the dashed black line has a slope close to 1, whereas the dotted red line
has a slope larger than 1. The only difference between these two cases is that the
value from insulation is lower when the shocks are positively correlated. The lower
value from insulation is because, with correlated shocks, low values of Ain will force
the firm to liquidate exactly when when it is least valuable to do, i.e., when ω is low.
In contrast with these cases, when the liquidation boundary depends of the outside
value of the asset, the second effect is present for both shocks. In panel (b), both the
dashed black line and dotted red line exhibit a slope larger than 1 at point C.

To summarize, in all these cases we obtain our main predictions. The pass-through
should be lower than 1 outside of the crisis. During the crisis, the pass-through should
rise, potentially to values larger than 1.

C Balance Sheet Implications

Insulators hold risky and illiquid assets. We want to show that the optimal
portfolio takes a position in risky assets beyond the largest position at which liqui-
dation occurs with probability 0. Denote the risky asset as j = 1 and the risk-free
asset as j = 2 and assume without loss of generality that Ain

1,0 = Ain
2,0 = 1. Starting

from a portfolio allocation with zero liquidation risk, consider an infinitesimal budget-
neutral shift towards a risky portfolio, consisting of an increase in the risky asset
position of ds1 and a corresponding drop in the safe asset position of ds2 = −ω1,0ds1.

This change has two effects on the value of equity: changing the present value of
payoffs holding the liquidation stopping time constant, and changing the distribution
of the liquidation stopping time. The first effect, because there is initially no liqui-
dation, is proportional to the premium of the long-term value of the risky asset over
its market value net of management costs: ([c − k]/c − ω1,0)ds1. This is a positive
first-order term in ds1.

The second effect is negative: default is more likely. Because of the assumption
that default did not occur at all in the initial portfolio, it can occur at most in the
states when the inside or outside value of the risky asset drops to value between 0

and ω1,0ds1/s1 at some future date τ .
To bound the probability of such a drop occurring, first consider each part of the

valuation separately. For the wedge ω1,t, remember that the Cox-Ingersoll-Ross pro-
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cess, under our parameter assumptions which guarantee ω1,t is always strictly posi-
tive, has conditional distribution which is a non-central Chi-square with degrees of
freedom equal to a value independent of τ and strictly larger than 2, which we note
Θ. Using a Taylor expansion of this distribution around 0, we obtain immediately
that the probability of liquidation is bounded uniformly by a term of order dsΘ/2

1 . Sim-
ilarly, the inside value Ain

1,t follows a geometric brownian motion, its probability of
hitting zero is negligible against any power of ds, so in particular it is bounded by
terms of order dsΘ/2 as well. This immediately gives that the probability of hitting
the inside value is bounded above by a term of this order. The outside value is the
product of the two processes, its probability to fall in an infintesimal interval can be
bounded using the following inequality which holds for any positive integer n:

P(ω1,tA
in
1,t ≤ ds) ≤

n−1∑
k=0

P
(
ω1,t ≤ ds

1
2

(1+ k
n

)
)
P
(
Ain

1,t ≤ ds
1
2

(1− k+1
n

)
)

(C.1)

+
n−1∑
k=0

P
(
ω1,t ≤ ds

1
2

(1− k+1
n

)
)
P
(
Ain

1,t ≤ ds
1
2

(1+ k
n

)
)

(C.2)

≤ 2nKds(1− 1
n

) Θ
2 , (C.3)

where K is the uniform bound on the individual probabilities. Because n can be
chosen freely, this is bounded by a term of order (Θ− ε)/2 for ε arbitrarily small.

The value of insulation gains in these liquidation states is bounded above by the
expected inside value of the asset at date τ ; when discounted at the risk-free rate
and integrated across values of τ these gains are therefore bounded above by 1/c.
Combining with the bound on the probability of liquidation, we find that the second
effect is of order ds(Θ−ε)/2

1 .
The losses due to the prospect of liquidation are therefore negligible relative to the

gains from insulating more assets.

Insulators have stable liabilities. We want to show that increasing the exoge-
nous default intensity λ lowers the equity of the insulator. Denote by T the hitting
time of the liquidation boundary, T ′ the hitting time of a Poisson process with inten-
sity λ, and T∨ = min(T, T ′).
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We can rewrite the value of the equity, where f and F denote the pdf and cdf of T :

Et + `/r = Et

[∫ T∨

t

e−r(τ−t)(c− k)Ain
τ dτ + e−r(T

∨−t)ωT∨A
in
T∨

]
(C.4)

= Et
[∫ ∞

t

e−r(τ−t)(c− k)Ain
τ dτ + e−r(T

∨−t)
{
ωT∨A

in
T∨ −

∫ ∞
T∨

e−r(τ−T
∨)(c− k)Ain

τ dτ

}]
(C.5)

= Et
[∫ ∞

t

e−r(τ−t)(c− k)Ain
τ dτ + e−r(T

∨−t)
{
ωT∨ −

c− k
c

}
AinT∨

]
(C.6)

Increasing λ is adding early termination dates unconditionally to the realization of
price dynamics. This lowers the value of the equity as long as early unconditional
termination is always inefficient at any given date. This condition holds as long as
insulation is valuable at date 0 and when ωt = ω̄, which occurs if ω̄ < (c− k)/c.

D Additional Asset Allocation Details

In this appendix, we provide additional evidence to confirm that insurers actively
choose to hold risky assets rather than must do so to match the duration of their
liabilities.

First, the small concentration of insurers’ assets in U.S. Treasuries does not reflect
constrained supply. To rule out this possibility, we match the insurer-cusip holdings
of all Treasury securities in the SNL data (including of non-publicly traded insurers)
with the total amount outstanding of each cusip reported in the Treasury Monthly
Statement of the Public Debt and the fraction held by the Federal Reserve reported
in the weekly statement of the System Open Market Account Holdings.31 Figure D.1
shows the resulting share of Treasuries outstanding (excluding Federal Reserve hold-
ings) held by life insurers, by maturity and calendar year.

We use the Hanson et al. (2015, Appendix Table AII) liquidity weights summarized
in table D.1 below to assign liquidity weights at the year-insurer-asset class level.32

Table D.2 shows the illiquidity of our insurers by year. Despite our use of much
31The data on total Treasuries outstanding and SOMA holdings come from https://www.

treasurydirect.gov/govt/reports/pd/mspd/mspd.htm and http://nyapps.newyorkfed.
org/markets/soma/sysopen_accholdings.html, respectively.

32Hanson et al. (2015) assign an illiquidity weight of 50% to corporate bonds under the assumption
that the corporate bonds are rated A- or higher. We maintain this weighting scheme despite most
corporate bonds held by insurers having a rating below AA (see Table 3). Because lower rated corporate
bonds are generally less liquid (see, for example, Edwards et al. (2007)), this assumption likely biases
our measure of the illiquidity of insurers’ holdings downwards.
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Figure D.1: Insurers’ Share of U.S. Treasury Securities
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Notes: Each bar shows the percent of outstanding Treasuries with the maturity remaining indicated
held by the life insurance sector. The definition of Treasuries outstanding used here excludes holdings
of the Federal Reserve system.

more disaggregated data than Hanson et al., we obtain a very similar estimate of
the illiquidity of our insurers of 60%. By comparison, Hanson et al. find that banks’
assets have an illiquidity measure of slightly above 60%.
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Table D.1: Illiquidity Weights by Asset Class

Asset Class Illiquidity Weight (%)
ABS 100
Agency-MBS 15
Agency-Bond 15
Cash 0
CMBS 100
Common Stock 50
Corporate-financial 50
Corporate-other 50
Foreign sovereign 50
Foreign-other 50
Mortgages 100
Muni 50
Other 100
PLRMBS 100
Preferred Stock 50
Private Placement 100
Real Estate 100
TIPS 0
Treasuries 0
Treasuries-other 0

Notes: Weights based on Hanson et al. (2015). We assume a weight of 100% for mortgages because the
overwhelming majority of insurers’ mortgages are commercial rather than residential mortgages.

Table D.2: Illiquidity of Insurers’ Total Portfolios by Year

Year Illiquidity Measure
2005 58.3
2006 60.4
2007 61.2
2008 59.2
2009 60.0
2010 60.7
2011 60.5
2012 59.8
2013 60.1
2014 59.3
Average 60.0

Notes: See Table D.1 for weights assigned to individual asset classes. Summary is value-weighted by
individual insurers’ assets. 0=Completely liquid, 100=Completely illiquid.
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E Additional Data Information

We assess the accuracy of insurers’ self-reported valuations of their assets in two
ways. First, we collect prices for as many assets as possible from external sources
such as TRACE, CRSP, and Bloomberg terminals. We are able to obtain external
prices for approximately 38% of insurers’ securities by value in any given year. The
primary difficulty in obtaining external prices is that many of the assets they hold
are highly illiquid.33 Table E.1 summarizes the difference in prices from what the
insurers themselves report and third-party prices. In general, there is very little
variation in asset prices reported in NAICs and external quotes. When we include
outliers, insurers appear to slightly underreport the values of some securities as the
mean raw price difference is -1.2%. However, after excluding outliers, the mean raw
price difference is 0.2%. The absolute price differences with and without outliers are
3.6% and 1.8%. We thus feel confident using that insurers are reporting their asset
values without significant bias to NAICs.

Table E.1: Differences Between Insurer-Reported and Third-Party Log Prices

All Cusips Excluding Outliers
N 328,230 326,684
Mean Absolute 0.036 0.018
Median Absolute 0.006 0.006
Mean Raw -0.012 0.002
Median Raw 0.000 0.000
Mean Squared 0.082 0.002
Standard Deviation 0.286 0.050
P75 Absolute 0.018 0.017
P90 Absolute 0.043 0.042
P95 Absolute 0.073 0.070
P99 Absolute 0.283 0.187
Maximum Absolute 13.816 0.999

Notes: All values as of Q4. Count (N) refers to number of CUSIPS for which external prices are
available. Fair value per unit used for insurer-reported price. Raw difference calculated as log of
insurer-reported less third-party value. Outliers are CUSIPS for which the insurer-reported value
deviates by more than 100% from that reported by third-parties.

The second way we assess the accuracy of insurers’ self-reported valuations is
by comparing the prices reported by multiple insurers in our sample that hold the

33Edwards et al. (2007) report that about half of corporate bonds trade very infrequently. Bessem-
binder et al. (2013) find that only 20% of structured finance securities trade at all in a 20-month period.
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same asset. Approximately 55% of insurers’ securities by value are held in securi-
ties that multiple insurers hold. Table E.2 details the deviations in prices reported
across insurers. The mean and median standard deviations are 4.3% and 0.0%. After
excluding outliers, these statistics fall to just 0.9% and 0.0%.

Table E.2: Cross-Insurer Standard Deviations for Insurer-Reported Log Prices by
CUSIP

All CUSIPS Excluding Outliers
N 287,903 285,774
Mean 0.043 0.009
Median 0.000 0.000
Standard Deviation 0.277 0.036
P75 0.004 0.004
P90 0.017 0.016
P95 0.043 0.035
P99 1.687 0.190
Maximum 11.209 1.354

Notes: Q4 fair values used to calculate standard deviations. Count (N) refers to number of CUSIPS
held by multiple insurers. Outliers are CUSIPS for which the differences in prices across insurers
exceed 100%.

We next provide further detail on holdings by insurer and asset illiquidity. Fig-
ure E.1 reports the asset class allocation for each insurer for the years 2005, 2009,
and 2013.
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Figure E.1: Portfolio Allocation by Insurer

Panel A: 2005
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