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Research shows that airborne particulate matter increases mortality. This effect 

persists around the world and over time, from the historically high exposures in 

London in the 1960s (McMillan and Murphy 2017) and China in the 2000s (Li et 

al. 2019) to the historically low exposures in the US in the 2000s (Deryugina et al. 

2019). Research also shows that air pollution constrains the production and the 

productivity of human capital (Graff-Zivin and Neidell 2013). For instance, daily 

pollution spikes have been found to reduce students’ scores on high-stakes exams 

(Ebenstein, Lavy, and Roth 2016). Among working-age adults, daily pollution 

spikes have been found to reduce performance of both manual and cognitive tasks 

(Chang et al. 2016, Archsmith, Heyes, and Saberian 2017). However, prior research 

has not applied causal methods to evaluate whether airborne particulate matter de-

grades human capital later in life apart from mortality. 

Our study is the first to use a causal research design to evaluate whether long-

term, later-in-life exposure to airborne small particulates (i.e., PM2.5, particulates 

smaller than 2.5 microns in diameter) plays a role in causing dementia. Medical 

research has documented associations between long-term, later-in-life exposure to 

PM2.5 specifically and the probability of individuals receiving a new dementia di-

agnosis, although as with other suspected causes of dementia, the precise mecha-

nisms remain unknown (Peters et al. 2019, Underwood 2017, Block et al. 2012). 

Further, these associations may not be causal due to omitted variables, errors in 

measuring individuals’ pollution exposures, or selection bias.  

We develop a research design to account for potential biases due to prior resi-

dential sorting (driven by pollution, health, and/or preferences), measurement error 

in pollution, and selection on survival. Specifically, we estimate the effects of indi-

viduals’ later-in-life exposure to PM2.5 for up to a decade, the longest duration of 

quasi-random variation available to us. This conditionally exogenous variation re-

sulted from the Environmental Protection Agency’s (EPA) expansion of the Clean 

Air Act (CAA). Based on air quality monitor readings from 2001-2003, the EPA 
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began to enforce a maximum threshold on PM2.5, prompting local regulators to 

clean up polluted areas beginning in 2004. The regulatory incentives for cleanup 

were larger in nonattainment counties that exceeded the maximum threshold on 

PM2.5. The incentives caused differences within counties as well. As a result, indi-

viduals with the same PM2.5 exposures from 2001-2003 experienced different PM2.5 

exposures over the next decade.  

We use this individual-level variation from the EPA’s nonattainment designa-

tions as instruments to identify how cumulative PM2.5 exposure from 2004-2013 

affected the probability of receiving a new diagnosis of dementia during this period 

among Medicare beneficiaries age 65 and above who did not have dementia in 

2004. Specifically, we use county nonattainment status flexibly interacted with in-

dividual-level PM2.5 from 2001-2003 as instruments for the individual’s cumulative 

PM2.5 exposure from 2004-2013. In addition to addressing bias from omitted vari-

ables, including genetics, earlier-in-life exposure, and other latent risk factors for 

dementia, our estimators also address the inevitable error in measuring an individ-

ual’s pollution exposure. 

We apply this design to thirteen years of individual-level data on a random sam-

ple of millions of Americans age 65 and above. These data track their diagnosis 

dates for many illnesses including Alzheimer’s disease and related dementias, their 

demographics, and their sequence of residential addresses from 2001 through 2013. 

We use these residential addresses to link to measures of individual-level PM2.5 

exposure using data from EPA air quality monitors. 

We estimate year-specific probit models that allow for heterogeneity in the ef-

fects of PM2.5 across individuals and across exposure duration while flexibly con-

trolling for individual characteristics associated with dementia risk, including race, 

gender-by-integer-age interactions, baseline medical expenditures, baseline expo-

sure to PM2.5, fully interacted sets of baseline medical conditions, and the socioec-
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onomic composition of individuals’ baseline neighborhoods (defined as a US Cen-

sus block group). Further, we include Core-Based Statistical Area fixed effects to 

absorb spatial variation in diagnostic standards, health care quality and access, and 

latent environmental quality. Finally, we account for the fact that our main estima-

tion sample is limited to individuals who survived through the model year following 

Heckman (1979). Specifically, we estimate the probability of survival in a separate 

first stage, using additional instruments constructed from data on individuals’ diag-

noses of cancers that, based on medical literature, are unrelated to dementia.  

We find that a 1 μg/m3 increase in average PM2.5 concentrations increases the 

probability of receiving a new dementia diagnosis by the end of the decade by an 

average of 2.15 percentage points (pp). For reference, a 1 μg/m3 increase in average 

PM2.5 was 9.1% of the decadal mean and 59% of the decadal standard deviation 

during the period 2004-2013. The estimated marginal effects are larger at lower 

levels of PM2.5. We also find that the estimated marginal effects of PM2.5 increase 

with age, illness and duration of exposure, and that they are larger for women rela-

tive to men and larger for Black or African-American individuals relative to non-

Hispanic White individuals.  

We conduct additional analyses to explore the possibility that nonattainment 

designations are conditionally associated with unobserved earlier-in-life factors 

that cause dementia, which would violate the exclusion restriction assumption of 

our instrumental variables. First, we estimate a model with dementia in 2004 as the 

outcome. The point estimate is negative, small in absolute value, and statistically 

indistinguishable from zero. This suggests that our model is unlikely to be con-

founded by unobserved differences in earlier-in-life or other factors that contribute 

to differences in dementia diagnoses and are conditionally associated with our in-

struments. Second, we evaluate other placebo health outcomes that may be linked 

to earlier-in-life factors but have no known link to PM2.5. We do not find a relation-
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ship between these placebo outcomes and individuals’ cumulative PM2.5 expo-

sures.1 Third, our results persist across a wide range of alternative modeling deci-

sions including controlling for ancillary measures of air pollution exposure.  

These findings indicate that air pollution’s effects on dementia make its detri-

ments to health and human capital substantially larger than previously realized. In-

corporating these effects will be important for comprehensively evaluating the on-

going efforts to improve air quality worldwide.  

I. Later-in-Life PM2.5 Exposure and New Dementia Diagnoses 

A. Existing Knowledge from the Medical Literature 

Recent research has documented a positive association between long-term cu-

mulative exposure to fine-particulate air pollution later in life and dementia (Peters 

et al. 2019, Underwood 2017, Block et al. 2012). In addition, the literature has 

identified a number of potential pathways to explain this association, even if the 

details of the accumulation process remain yet unknown. Two physiological hall-

marks of Alzheimer’s disease specifically are the accumulation of tau protein and 

amyloid beta (Iaccarino et al. 2021), and recent research has established a link be-

tween this accumulation and PM2.5 exposure (Park et al. 2021). Research has also 

found relationships consistent with other potential neurological mechanisms under-

lying the link between PM2.5 and dementia and/or Alzheimer’s disease (Alemany 

et al. 2021), including neuroinflammation caused by accumulation of PM2.5 in brain 

tissue (Kang et al. 2021, Maher et al. 2016), and associations between long-term, 

later-in-life exposure to PM2.5 and accumulated PM2.5 in the brain, smaller brain 

volume, and higher rates of brain infarcts or areas of necrosis and accelerated rates 

of brain atrophy, which is predictive of Alzheimer’s disease (Younan et al. 2020, 

Wilker et al. 2015).  

 
1In contrast, we find statistically significant positive effects for two outcomes with known links to PM2.5 (chronic obstructive 
pulmonary disease and chronic kidney disorder).   
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Each of these potential pathways between cumulative PM2.5 exposure and a di-

agnosis of dementia are potentially moderated by a number of factors. These factors 

may include differences in PM2.5 chemical composition (Li et al. 2021), earlier-in-

life exposure, cardiovascular risk (Grande et al. 2020), and genetics. While less 

than half of the genetic factors that contribute to late-onset dementia have been 

identified (Ridge et al. 2016), recent research has found that genes play a role in 

moderating environmental factors’ relationship to cognitive decline and dementia, 

including moderating the relationship between PM2.5 and dementia, specifically 

(Alemany et al. 2021, Kulick et al. 2020, Cacciottolo et al. 2017).2  

B. An Overview of our Research Design 

The medical literature described above, along with our data and policy setting, 

described in Sections II and III, respectively, inform several aspects of our research 

design. We preview this research design here.   

We follow prior medical studies and assess the role of later-in-life, long-term 

exposure to PM2.5 as measured by single- or multiple-year annual average ambient 

concentrations in explaining new diagnoses of dementia (Wang et al. 2022, Li et 

al. 2022, Mortimais et al. 2021, Ran et al. 2021, Shi et al. 2021, Shi et al. 2020, 

Grande 2020, Cacciottolo et al. 2017).3 Specifically, we observe the timing of in-

dividuals’ initial diagnosis (or lack thereof) and how it relates to thirteen years 

(2001-2013) of annual average exposure to PM2.5 for them individually based on 

their precise residential locations each year, allowing us to measure individual-spe-

cific exposure histories.4  

 
2 These issues make it difficult to allocate the shares of dementia cases due to genetic risk factors for dementia itself and due 
to environmental factors directly. Earlier research (e.g., Gatz et al. 1997) provided such shares under the strong assumption 
of additive separability between environmental factors and genetics.  
3 Like nearly all of the large-scale studies using secondary data, we cannot observe progression or severity of dementia over 
time. Clinical research commonly refers to this as “incident dementia” or “incidence of dementia”. Peters et al. (2019) pro-
vides a review.  
4 Dementia is an absorbing state. Therefore, we model the occurrence of the initial diagnosis and exclude from our sample 
those who had been diagnosed previously. 
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We depart from the prior medical literature by employing a causal research de-

sign to account for potential sources of confounding. Specifically, we observe 

quasi-random variation in individuals’ PM2.5 exposures beginning in 2004. As a 

result, we are able to model the effects of PM2.5 exposure across a full decade (2004-

2013), conditional on baseline levels of PM2.5 (2001-2003).  

In Section IV, we present a flexible probit model of how cumulative exposure 

to PM2.5 affects the probability of an individual receiving a new dementia diagnosis. 

We allow for heterogeneity by letting this effect vary flexibly with the level of cu-

mulative PM2.5 exposure over the sample and with the levels of the other controls. 

We feature models using increasing durations of PM2.5 exposure. Finally, we in-

clude an extensive set of individual and neighborhood characteristics that may be 

correlated with new dementia diagnoses. These controls are described in detail in 

Section II.  

Even with this extensive set of controls, identifying the effect of cumulative 

PM2.5 exposure on a new diagnosis of dementia presents several challenges. These 

include scope for measurement error in PM2.5 exposure, the potential for sorting on 

latent health, genetics, and earlier-in-life pollution exposures, and selection on sur-

vival. Our econometric approach, described in Section IV, is designed to account 

for each of these challenges. 

First, to address measurement error in PM2.5 exposure and any geographic dif-

ferentials in unobserved factors, we follow prior work (Chay and Greenstone 2005, 

Auffhammer, Bento, and Lowe 2009) and develop instrumental variables from the 

quasi-random variation in PM2.5 exposures (conditional on baseline) that was in-

duced by the CAA regulations. Our control-function approach (Rivers and Vuong 

1988) relies on the familiar assumptions of relevance and exogeneity for two-stage 

least squares. The policy environment and the variation-inducing CAA regulations 

are described in detail in Section III.  
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Second, to address selection based on survival, we employ a selection-correc-

tion approach (Heckman 1979, Heckman and Robb 1986). To implement this ap-

proach, we use a set of additional instruments from the medical literature that are 

correlated with survival, but independent of the unobserved determinants of demen-

tia. We also present a Lee (2009)-style bounds approach in Appendix H that does 

not rely on this additional set of instruments.  

In addition, we consider the potential for sorting on genetics and omitted ear-

lier-in-life factors. Prior research found that individuals’ residential exposures to 

PM2.5 do not differ by APOE genotypes (Cacciotolo et al. 2017). In addition, Shin, 

Lillard, and Bhattacharya (2019) find “no correlation between Alzheimer’s Disease 

polygenic risk score and net worth, housing assets and nonfinancial assets.” This 

indicates that dementia-related genetics are not associated with sorting into neigh-

borhoods based on economic status. These studies provide evidence that genetic 

factors are unlikely to be correlated with our instrument. To test this directly, we 

examine the estimates of instrumented PM2.5 exposure on the presence of a demen-

tia diagnosis by 2004. In addition to genetics, this assesses whether our results are 

likely to be explained by association between our instruments and any omitted ear-

lier-in-life factors including other clinical risk factors, prior exposure to PM2.5, or 

different chemical compositions of PM2.5.  

II. Data and Measures 

A. Medicare Data and Sample 

The US Medicare program provides universal health insurance for citizens over 

age 65.5 The US Centers for Medicare and Medicaid Services (CMS) maintains a 

comprehensive national database on beneficiaries, including their addresses at each 

 
5 We analyze “traditional” Medicare (TM) administrative records from CMS. CMS manages and pays claims for services 
provided to TM enrollees. Beneficiaries can opt out of TM and enroll in a private Medicare Advantage (MA) managed care 
plan. MA enrollees are left out of most studies of Medicare because MA plans historically did not report claims to CMS. We 
are able to overcome these limitations and include MA enrollees in some specifications described in Appendix J2. 
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point in time, medical claims and diagnoses, and demographics. We track individ-

uals from as early as 1999 through the end of 2013.6 Our featured estimation sample 

starts with a random 20% sample of all traditional Medicare beneficiaries who were 

65 and older on January 1, 2004. We then limit our sample to those who lived in 

counties with PM2.5 monitors, and for whom we can observe their health and resi-

dential locations.7  

B. Measuring dementia and its risk factors 

CMS’s Chronic Conditions Data Warehouse (CCW) files use codes on Medi-

care insurance claims to track if and when each individual is diagnosed with spe-

cific chronic medical conditions. A dementia diagnosis is based on the presence of 

multiple symptoms of cognitive impairment that significantly impact daily func-

tioning.8 Examples include memory loss, impaired judgement, loss of spatial 

awareness, depression, and behavioral changes. Alzheimer’s Disease is the primary 

type of dementia, accounting for 60% to 80% of all cases. Our claims-based ap-

proach to identifying dementia diagnoses is well validated (Lee et al. 2019). 

Figure I shows how the fraction of individuals diagnosed with dementia in Med-

icare data varies with age and gender in 2013. Diagnosis rates increase gradually 

with age through the mid-seventies before accelerating in the late seventies and 

beyond. The diagnosis rate is higher for women, and this gender gap widens with 

age. Conditional on age, diagnosis rates also differ by race. Diagnosis rates are 

generally higher for people denoted by CMS as “Black or African-American” and 

lower for “Asian/Pacific Islander” relative to “Hispanic” or “non-Hispanic White”. 

We account for this heterogeneity by creating a vector of demographics, denoted 

 
6 Due to the provenance of our data, we complement the random 20% sample with an independent, random 20% sample of 
those also age 65 by January 1, 2004 who purchased standalone prescription drug insurance plans through Medicare Part D 
at any point between 2006 and 2010 without the aid of low-income subsidies.  
7 We provide additional details about sample cuts and data definitions in Appendix A.  
8 The ICD-10 defines Alzheimer’s disease (G30) as “A degenerative disease of the brain characterized by the insidious onset 
of dementia. Impairment of memory, judgment, attention span, and problem solving skills are followed by severe apraxias 
and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe 
cortical atrophy and the triad of senile plaques; neurofibrillary tangles; and neuropil threads.” 
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𝑋𝑋𝑖𝑖. This vector includes race code indicators and indicators for each of the 52 pos-

sible sex-by-integer-age combinations from age 75 through 100 in 2013.9  

FIGURE I: DEMENTIA DIAGNOSIS BY AGE AND GENDER IN 2013 

 
We further utilize the administrative CCW files to measure clinical risk factors. 

Specifically, we create a vector of health characteristics, denoted 𝐻𝐻𝑖𝑖. This includes 

indicators for whether the individual in 2004 had each one of the 32 possible com-

binations of hypertension, diabetes, congestive heart failure, ischemic heart disease, 

and stroke. These are the known diagnostic risks for dementia (Alzheimer’s Asso-

ciation 2019). We further measure baseline health by including in 𝐻𝐻𝑖𝑖 a fourth-order 

polynomial function of total expenditures on all services covered by Medicare Parts 

A and B in 2004.10  

US Census data provide socioeconomic characteristics of the Census block 

group where the individual lived in 2004 according to CMS records.11 We define 

 
9 75 is the minimum age in 2013 within our estimation sample because that sample is limited to people who were 65 or older 
on January 1, 2004. Centenarians are grouped into two gender-specific bins because their small numbers prevent us from 
precisely estimating age-specific coefficients. Our results are unaffected by adding age-specific bins beyond age 100. 
10 Medicare Parts A and B cover virtually all medical services aside from prescription drugs and long-term care. This includes 
doctors’ services, preventive care, durable medical equipment, hospital outpatient services, laboratory tests, imaging, hospital 
inpatient services, nursing facilities, and hospice care. 
11 A block group contains 600 to 3,000 residents on average (US Census). 
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neighborhood as the individual’s Census block group and create a vector of neigh-

borhood characteristics, denoted 𝑊𝑊𝑖𝑖. This vector includes median household in-

come, per-capita income, mean and median house value, median rent, median house 

age, fractions of the housing stock that are owner occupied, renter occupied, and 

vacant, fraction of residents over age 65, fractions of residents who report being 

white, black, and Hispanic, and the fractions of residents in each of seven educa-

tional-attainment bins. These variables account for non-clinical factors associated 

with different risks of dementia. Appendix Table A1 provides summary statistics 

for each of the variables represented in 𝑋𝑋𝑖𝑖, 𝐻𝐻𝑖𝑖 and 𝑊𝑊𝑖𝑖. 

Finally, we create indicators (denoted 𝐶𝐶𝑖𝑖,𝑡𝑡) for the geographic regions where 

individuals lived in each year of our model. Specifically, we include 977 indicators 

for the US Census Bureau’s Core-Based Statistical Areas (CBSAs) and the non-

CBSA rural areas of each state.12 In our model, these indicators will absorb the 

effects of otherwise unobserved factors. First, they help to absorb any effects of 

residential sorting across CBSAs on the basis of latent risk factors for dementia. 

Second, they help to absorb the effects of environmental factors that could be spa-

tially correlated with both PM2.5 and dementia, e.g., the presence of lead pipes or 

extreme temperatures which may cause morbidities that are risk factors for demen-

tia. Third, they absorb all differences between geographic areas in health care de-

livery that might contribute to differences in diagnostic decisions, including pa-

tients’ access to medical care and physicians’ treatment styles. 

C. Measuring PM2.5 Exposure 

In 1997, the EPA established monitoring protocols for PM2.5, and by 1999, an 

initial national network of regulatory-grade PM2.5 monitors was put into place. We 

use annual average PM2.5 concentrations recorded at each of these monitors from 

 
12 There are 927 CBSAs in the US, which are defined by the Office of Management and Budget as of one or more counties 
anchored by an urban center of at least 10,000 people plus adjacent counties that are socioeconomically tied to the urban 
center by commuting. For people living outside of CBSAs, we create an additional 50 state-specific, rural dummy variables. 
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2001 through 2013. We use data from a balanced panel of 485 monitors that oper-

ated continuously through our study period to avoid measurement error that could 

be introduced if new monitors tend to be located in more or less polluted areas 

(Grainger and Schreiber, 2019).13 In a sensitivity check, we instead use data from 

all 1,722 monitors. 

We measure an individual’s exposure to PM2.5 in year t, 𝑃𝑃𝑃𝑃2.5𝑖𝑖,𝑡𝑡, based on 

concentrations at their residential address in that year. The CMS data include ZIP+4 

Codes for each individual’s sequence of addresses from 2004 to 2013.14 We use 

this information to measure the individual’s cumulative exposure to PM2.5 incorpo-

rating changes in PM2.5 experienced as a result of moving.15 Individuals in our data 

live in 2.7 million distinct ZIP+4 Codes during 2004-2013. We use the latitude and 

longitude coordinates of each monitor and each ZIP+4 to assign the annual average 

concentration at each residence.16 Specifically, we calculate the geographical dis-

tance between each ZIP+4 centroid and each monitor. Then, for each centroid-year 

combination, we calculate a weighted average of concentrations recorded at all 

monitors with the weights given by the square of the inverse distance.17 Thus, as 

the distance from a ZIP+4 centroid to a monitor increases, the weight assigned to 

that monitor decreases.  

 
13 Following the literature, we drop individuals living in unmonitored counties.  See Appendix A for details. 
14 ZIP+4 Codes are close to street addresses in terms of spatial precision: each code corresponds to a single mail delivery 
point such as a house, one floor of an apartment building, or one side of a street on a city block. 
15 31% of individuals in our data move at least once, 17% move between counties and 10% move between states. These rates 
are similar to those reported by the Census Bureau for individuals aged 65 and above. We are unable to observe seasonal 
migration by people with more than one residence because we only observe the residential address on record with CMS. 
Fortunately, the scope for measurement error is small. Jeffery (2015) estimates that seasonal migrators only account for 2% 
to 4.1% of the Medicare population based on addresses on Medicare claims for primary care and emergency room visits.  
16 Geographic coordinates of ZIP+4 centroids were purchased from GeoLytics, which created them from the Census Bureau’s 
TIGER/line Shapefiles and US Postal Service records. 
17 This method of interpolation, with weights given by the distance raised to a negative exponent, is a predominant method 
in the environmental economics literature.  
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FIGURE II: AVERAGE RESIDENTIAL CONCENTRATION OF PM2.5 BY YEAR 

 
Note: The figure reports the annual average concentrations of fine particulate matter based on place of residence for people 
age 65 and above on Medicare.  

Figure II shows that annual average concentrations of PM2.5 at the residences 

of the US Medicare population declined substantially during the 2000s, from over 

13 μg/m3 (micrograms per cubic meter of air) in 2001 to about 9 μg/m3 in 2013. 

This is true regardless of whether we measure exposure using the balanced panel 

of monitors (the dashed line) or the full set of monitors (solid line). 

We denote our measure of interest, the individual’s average cumulative expo-

sure to PM2.5 from 2004 to year t, as 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡. We construct it by combining the 

described ZIP+4-specific annual PM2.5 concentrations with individuals’ residential 

ZIP+4 histories from 2004 to t according to: 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 =  ∑ 𝑃𝑃𝑃𝑃2.5𝑖𝑖,𝑠𝑠
𝑡𝑡−2004

𝑡𝑡
𝑠𝑠=2004 . Finally, 

we create a measure of the baseline PM2.5 concentrations at the locations where 

individuals lived in 2004. We denote this measure as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖 and construct it as 

the average concentration over the three years 2001 to 2003. These three years are 

the years that the EPA based its nonattainment designations on, as discussed in the 

next section. 
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III. Clean Air Act Regulation of PM2.5 

The Clean Air Act (CAA) of 1970 established national standards for concentra-

tions of regulated air pollutants. The EPA designated counties containing monitors 

that exceeded these standards as nonattainment. States with nonattainment counties 

were required to coordinate with local regulators to bring those counties into com-

pliance with the standards. States that failed to bring their counties into attainment 

faced penalties including loss of federal highway funds. 

Due to its pernicious effects on human health, particulate matter has been sub-

ject to sustained and evolving federal regulation (US EPA 2005). Beginning in 

1971, the EPA regulated total suspended particulates (TSP). In light of evidence 

that health effects were driven by the smallest particulates, the EPA replaced the 

TSP standard with a standard on PM10 (particulates smaller than 10 microns in di-

ameter) in 1987 and a standard on PM2.5 in 1997. Each new standard was followed 

by new nonattainment designations. These designations have the ability to affect 

pollution in both nonattainment and attainment counties because pollution travels 

across county boundaries. However, the designations for particulate matter have 

induced relatively larger pollution reductions in nonattainment counties. Prior re-

search used the TSP standard (Chay and Greenstone 2005, Isen, Rossin-Slater, and 

Walker 2017) and the PM10 standard (Bento, Friedman, and Lang 2015) to create 

instruments for TSP and PM10 exposures, respectively. In this paper, we use the 

PM2.5 standard to develop instruments for PM2.5 exposures. 

In 1997, the EPA set the regulatory standard for average annual PM2.5 concen-

trations at 15.05 μg/m3. In April 2003, state and local regulators were given a Feb-

ruary 2004 deadline to provide PM2.5 monitor data from the years 2001-2003, and 

to self-report any nonattainment monitors to the EPA, where nonattainment was 

defined by the monitor’s three-year average PM2.5 concentrations from 2001-2003. 

Based on these reports, the EPA formally defined each monitored county to be in 
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attainment or nonattainment in January 2005.18 For counties with multiple moni-

tors, the designations were based on the monitor with the highest three-year average 

from 2001-2003.  

We define 2004 as the start of the regulatory period because local regulators 

learned which counties would be nonattainment between April 2003, when they 

received the EPA’s request for data, and February 2004, when they were required 

to submit their status. EPA monitor data show PM2.5 concentrations declining at a 

similar rate in both attainment and nonattainment counties prior to 2004, and then 

declining at a faster rate in nonattainment counties after 2004. These trends, shown 

in Appendix Figure C1, are analogous to the evidence that Chay and Greenstone 

(2005) first presented on the validity of using CAA regulation of PM as a quasi-

experiment.  

Figure III provides the intuition for how we use county nonattainment designa-

tions to isolate quasi-random variation in individuals’ average PM2.5 exposures 

from 2004-2013, conditional on baseline concentrations from 2001-2003.19 The 

nonattainment and attainment lines plot the coefficients obtained by regressing the 

individual-level measure of decadal PM2.5 exposure, 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013, on indicators for 

0.1 µg/m3 bins of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖 interacted with county attainment status, after absorb-

ing CBSA dummies. Comparing the nonattainment and attainment lines with the 

45-degree line shows that post-regulatory reductions in PM2.5 were larger, on aver-

age, for individuals with larger baseline concentrations. This pattern is consistent 

with prior studies that used CAA regulatory standards to develop instruments for 

particulate matter exposures.   

 
18 Appendix Figure B1 shows the locations of attainment and nonattainment counties with air quality monitors. In 2005, 132 
of the monitored counties containing approximately 27% of the US population were classified as nonattainment. Another 
528 counties containing 43% of the US population were classified as attainment. The remaining counties lacked monitoring 
data and were designated “unclassifiable” and not subjected to additional regulation. Appendix Figure B2 shows the location 
of the monitors. 
19 As noted in Chay and Greenstone (2005), attainment status doesn’t induce quasi-random variation in pollution levels, but 
rather quasi-random variation in changes in pollution. Equivalently, in our case, attainment status induces quasi-random 
variation in decadal pollution exposure, conditional on pre-regulatory baseline pollution. 
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FIGURE III: POST-REGULATORY PM2.5 EXPOSURE 2004-2013, BY COUNTY ATTAIN-
MENT STATUS AND PRE-REGULATORY EXPOSURE 2001-2003 

  
Note: The nonattainment and attainment lines represent estimates from regressing individual exposure from 2004-2013 on 
indicators for 0.10 µg/m3 bins of baseline exposure from 2001-2003 interacted with county attainment status. Additional 
covariates include CBSA dummies.  

The key insight from Figure III is that the nonattainment line lies below the 

attainment line for all levels of average PM2.5 from 2001-2003. This difference is 

statistically significant at the 1% level. This shows that when we compare individ-

uals in the same CBSA who were in the same residential PM2.5 bin for pre-regula-

tory exposure (2001-2003), those who lived in nonattainment counties were subse-

quently exposed to lower PM2.5 during 2004-2013 than those in attainment coun-

ties. This follows from the incentives that regulators faced to target their mitigation 

efforts at nonattainment counties (Chay and Greenstone’s 2005, Isen, Rossin-

Slater, and Walker 2017). In addition, the vertical distance between the nonattain-

ment and attainment lines decreases with baseline PM2.5 concentrations from 2001-

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

Av
er

ag
e 

PM
2.

5
fr

om
 2

00
4-

20
13

 (μ
g/

m
3 )

Average PM2.5 from 2001-2003 (μg/m3)

45-degree line
attainment
nonattainment



16 
 

2003.20 This follows from the EPA policy in which a county’s attainment status is 

linked to its dirtiest monitor, thus incentivizing local regulators to target pollution 

“hot spots” (Auffhammer, Bento, and Lowe 2009, Bento, Freedman, and Lang 

2015).  

IV. Estimating the Causal Impact of Decadal PM2.5 on Dementia 

We model how cumulative exposure to PM2.5 over the decade from 2004 to 

2013 affects the probability of an individual receiving a new dementia diagnosis. 

First, we consider a contemporaneous, decadal model where the decade is treated 

as a single time period. Second, we extend this framework to instead aggregate 

cumulative, year-specific impacts over the decade. 

A. A Decadal Model of New Dementia Diagnoses 

Let 𝑦𝑦𝑖𝑖,𝑡𝑡 indicate whether individual i has received a dementia diagnosis by the 

end of year t and let ∆𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖,2013 − 𝑦𝑦𝑖𝑖,2004 denote the change in dementia status 

between 2004 and 2013. Because dementia has no cure, it is an absorbing state and, 

by definition, ∆𝑦𝑦𝑖𝑖 is equal to zero for anyone with dementia in 2004. Therefore, we 

model whether individual i is newly diagnosed with dementia by the end of 2013, 

conditional on having not received a dementia diagnosis before the end of 2004.21  

We model a new dementia diagnosis using a probit model where Δ𝑦𝑦𝑖𝑖∗ denotes 

the latent propensity to become newly diagnosed with dementia,  

 ∆𝑦𝑦𝑖𝑖∗ = ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013;𝛼𝛼𝑖𝑖� + 𝜂𝜂𝑖𝑖 , 

and where an individual is diagnosed with dementia if their latent propensity is 

positive, i.e., Δ𝑦𝑦𝑖𝑖 = 1[Δ𝑦𝑦𝑖𝑖∗ > 0].   

 
20 The scaling of the vertical axis in Figure III makes this trend hard to discern. It is easier to discern in Figure IV.  Fitting a 
linear trend to the vertical distance between the nonattainment and attainment lines in Figure III reveals that a 1 μg/m3 
increase in baseline exposure is associated with a 0.02 μg/m3 reduction in the vertical distance between the lines. 
21 We begin with a model of new diagnosis of dementia, which is standard in clinical research on dementia. In principle, we 
could instead begin with a model describing an individual’s dementia status in both 2004 and 2013 to derive Equation (1) 
below. Such a model is shown in Appendix G. Our discussion of identification below explicitly accounts for the fact that the 
error in Equation (1) captures changes in unobserved dementia determinants, conditional on not having dementia in 2004. 
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The parameter of interest, α𝑖𝑖, represents the causal effect of decadal exposure 

to PM2.5 on ∆𝑦𝑦𝑖𝑖∗, holding all other factors constant.22 All other factors that deter-

mine  ∆𝑦𝑦𝑖𝑖∗ are denoted by the error 𝜂𝜂𝑖𝑖. Following Angrist and Pischke (2009), we 

decompose 𝜂𝜂𝑖𝑖 into a linear function of observable controls, 𝑋𝑋𝑖𝑖,𝐻𝐻𝑖𝑖,𝑊𝑊𝑖𝑖,𝐶𝐶𝑖𝑖,  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖, 

and an error, 𝑏𝑏𝑖𝑖: 

𝜂𝜂𝑖𝑖 =  𝛽𝛽𝑥𝑥𝑋𝑋𝑖𝑖 + 𝛽𝛽𝐻𝐻𝐻𝐻𝑖𝑖 + 𝛽𝛽𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛽𝛽𝐶𝐶𝐶𝐶𝑖𝑖,2013 + 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖;𝛽𝛽𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃) + 𝑏𝑏𝑖𝑖. 

Combining the two previous equations yields our equation of interest: 

(1)  ∆𝑦𝑦𝑖𝑖∗ = ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013;𝛼𝛼𝑖𝑖� + 𝛽𝛽𝑥𝑥𝑋𝑋𝑖𝑖 + 𝛽𝛽𝐻𝐻𝐻𝐻𝑖𝑖 + 𝛽𝛽𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛽𝛽𝐶𝐶𝐶𝐶𝑖𝑖,2013 +

                                                                                𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖;𝛽𝛽𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃) + 𝑏𝑏𝑖𝑖  

In the simplest specification of this model, we specify ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013;𝛼𝛼𝑖𝑖� =

𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013. In a more flexible specification of the decadal model, discussed in 

Section IV.B, we allow for non-linearities and heterogeneity along observable di-

mensions in the impact of 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 on the probability of a new diagnosis of 

dementia. In Section IV.C, we present a model that allows for additional non-line-

arity and heterogeneity with respect to the duration of exposure to PM2.5. 

We use 𝛼𝛼 together with the other model parameters to recover the average mar-

ginal effect (AME) of changes in 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 on the probability of a new diagno-

sis, 𝑃𝑃𝑑𝑑𝑃𝑃𝑏𝑏(Δ𝑦𝑦𝑖𝑖 = 1). We discuss the controls, 𝑋𝑋,𝐻𝐻,𝑊𝑊,𝐶𝐶, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃, and the error, e, 

in the following paragraphs. 

In Section II, we defined the vectors of controls 𝑋𝑋,𝐻𝐻, 𝑊𝑊, and 𝐶𝐶. The vector 𝑋𝑋𝑖𝑖 

includes indicators for race and gender specific indicators for each integer age. 𝐻𝐻𝑖𝑖 

includes indicators for each unique combination of pre-existing clinical risk-factors 

for dementia (hypertension, diabetes, congestive heart failure, ischemic heart dis-

ease, and stroke) and a fourth-order polynomial function of individual medical 

 
22 Epidemiological “stress” models that consider life histories are discussed in Deaton and Paxson (1998). 
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spending in 2004. 𝑊𝑊𝑖𝑖 includes Census block group variables describing the socio-

economic characteristics of individuals living in individual i’s neighborhood in 

2004. Finally, 𝐶𝐶𝑖𝑖,2013 is a vector of indicators for each individual’s 2013 CBSA. 

The final control is a fourth-order polynomial function, 𝑓𝑓(∙), of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖. This 

controls for any residual effects of pre-regulatory sorting into more polluted neigh-

borhoods by individuals who are more likely to receive a future dementia diagnosis. 

In addition, the inclusion of 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖) means that α specifically measures how 

cumulative PM2.5 exposure from 2004 to 2013 affects the probability of a new de-

mentia diagnosis, conditional on pre-regulatory, baseline concentrations. 

Finally, 𝑏𝑏𝑖𝑖, is an error term that represents any other determinants of a new de-

mentia diagnosis that are not controlled for by a linear function of 𝑋𝑋𝑖𝑖,𝐻𝐻𝑖𝑖,𝑊𝑊𝑖𝑖,𝐶𝐶𝑖𝑖,2013, 

and 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖). The model imposes no assumption about the relationship be-

tween our variable of interest, 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013, and 𝑏𝑏𝑖𝑖.23 In fact, 𝑏𝑏𝑖𝑖 most likely contains 

factors that would lead it to be correlated with 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013, coming from (i) omit-

ted variables, (ii) measurement error, and (iii) factors related to selection.  

One example of an omitted variable in 𝑏𝑏𝑖𝑖 that may be correlated with 

𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 is earlier-in-life exposure. While we don’t specify the direct impact 

of earlier-in-life PM2.5 exposure, we allow for earlier-in-life exposure to affect new 

dementia diagnoses and to be correlated with 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013.24 Another example is 

latent health. If individuals had sorted on unobserved health factors, including ge-

netics, the error term and 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 may be correlated. Like earlier-in-life expo-

sure, we will not specify the direct impacts of these latent health measures, but we 

do not rule out their presence in 𝑏𝑏𝑖𝑖.  

Measurement error in 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 could also be present in 𝑏𝑏𝑖𝑖. All large-scale 

 
23 We make an assumption in Section IV.B regarding the independence of 𝑏𝑏𝑖𝑖 and the vector of controls and instruments. 
24 Because we allow prior exposure to be an element of the error term, rather than explicitly model its impact, we cannot 
answer questions directly related to lifetime exposure. In our model, 𝛼𝛼 captures the causal effect of later-in-life decadal 
pollution on the probability of a new dementia diagnosis, holding all else constant, including earlier-in-life exposure. 
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data on air pollution are based on ambient measures, such as satellite imaging or 

government monitors. While the regulatory-grade monitors that we use are well-

validated, each one only measures pollution at a single place.25 As a result, all avail-

able measures of pollution likely differ from what individuals actually breathe. This 

can arise from individual differences in indoor air, daily mobility, and activities, or 

from the interpolation between geography-based measures required to develop in-

dividual-level measures.  

Finally, new dementia diagnoses are only measured for those individuals who 

survive until the end of the model’s time period. This could induce a correlation 

between 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 and 𝑏𝑏𝑖𝑖 among survivors if latent health that determines sur-

vival is (conditionally) correlated with latent health that affects the probability of a 

new dementia diagnosis.  

B. Identification and Estimation 

Relevant omitted variables, measurement error, and sample selection mean that 

estimating Equation (1) under the assumption that 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 and 𝑏𝑏𝑖𝑖 are inde-

pendent is unlikely to yield a consistent estimate of 𝛼𝛼. We use a two-pronged ap-

proach to overcome these challenges. First, to address omitted variables and meas-

urement error in 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013, we leverage the conditional variation in 

𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 across individuals that was induced by Clean Air Act regulations as 

described above. Second, to address selection based on survival, we employ a se-

lection-correction approach. 

 

i. Instrumenting for Pollution  

As discussed in Section III, PM2.5 regulations led to lower levels of PM2.5 over 

 
25 The federal regulatory-grade monitors that we use for our analysis represent the best available information on ambient 
PM2.5 in the US. Appendix B provides further information on EPA’s approach to validating PM2.5 measurements.  
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2004-2013 for people living in nonattainment counties relative to people in attain-

ment counties in the same CBSA and the same levels of PM2.5 over 2001-2003. The 

EPA solely relied on 2001-2003 to make its nonattainment designations. This is the 

essence of the quasi-experiment that we rely on to isolate conditionally exogenous 

variation in 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013. More formally, we isolate this variation using a control-

function approach with a vector of instruments, 𝑍𝑍𝑖𝑖. The five elements of 𝑍𝑍𝑖𝑖 include 

an indicator for residing in a nonattainment county in 2004 and interactions be-

tween this indicator and 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖). This set of instruments is designed to capture 

the between- and the within-county variation in decadal PM2.5 induced by the CAA, 

as discussed in Section III. Our “first-stage equation” is given by: 

(2) 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013

= 𝛿𝛿𝑍𝑍𝑍𝑍𝑖𝑖 + 𝛿𝛿𝑋𝑋𝑋𝑋𝑖𝑖 + 𝛿𝛿𝐻𝐻𝐻𝐻𝑖𝑖 + 𝛿𝛿𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛿𝛿𝐶𝐶𝐶𝐶𝑖𝑖,2013 + 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖;  𝛿𝛿𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃) + 𝜀𝜀𝑖𝑖, 

where the covariates other than 𝑍𝑍𝑖𝑖 are the same as in Equation (1). 

We assume that (𝑏𝑏𝑖𝑖, 𝜀𝜀𝑖𝑖) is distributed jointly normal with mean zero and var(𝑏𝑏𝑖𝑖) 

normalized to one, and is independent of the instruments, 𝑍𝑍𝑖𝑖 , and controls, 

𝑋𝑋𝑖𝑖,𝐻𝐻𝑖𝑖,𝑊𝑊𝑖𝑖,𝐶𝐶𝑖𝑖,2013, and 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖).26 Under this assumption, the order condition 

is satisfied, as the controls are exogenous and can serve as instruments for them-

selves, while the scalar 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 is treated as endogenous and is instrumented 

with 𝑍𝑍𝑖𝑖.  

We denote the residuals from an estimation of Equation (2) via OLS as 𝜀𝜀�̂�𝑖. Fol-

lowing Rivers and Vuong (1988), these residuals are then added as an additional 

control to Equation (1), which is then treated as a standard probit model and esti-

mated using Maximum Likelihood.27  

 
26 While assuming joint normality is standard in this class of models, Rivers and Vuong (1988) note that it is actually stronger 
than the sufficient condition that 𝑏𝑏𝑖𝑖 is normal and homoscedastic given 𝜀𝜀𝑖𝑖, the instruments, 𝑍𝑍𝑖𝑖, and controls, 
𝑋𝑋𝑖𝑖 ,𝐻𝐻𝑖𝑖 ,𝑊𝑊𝑖𝑖 ,𝐶𝐶𝑖𝑖,2013,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖. We also assume that the technical assumptions of Rivers and Vuong hold, namely that the data 
are i.i.d. and the parameter vector lies in the interior of a compact, convex subset of Euclidean space. 
27 The Rivers and Vuong (1988) approach estimates a scaled version of the parameters in Equation (1) where the scaling 
 



21 
 

The equivalence of control-function estimation in linear models and two-stage 

least squares (2SLS) is well established (e.g., Hausman 1978). In non-linear models 

like ours, the estimators are not equivalent, but the intuition of 2SLS remains ap-

plicable. This gives rise to the term Two-Stage Conditional Maximum Likelihood 

(2SCML) that Rivers and Vuong (1988) use to describe the approach that we rely 

on. Our 2SCML approach requires the standard conditions for consistency of the 

2SLS estimator, i.e., that the controls are exogenous, that the instruments, 𝑍𝑍𝑖𝑖 , are 

partially correlated with 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013, and that the instruments, 𝑍𝑍𝑖𝑖 , are exoge-

nous.28  

The mean-independence assumption that guarantees exogeneity of the controls, 

i.e., 𝐸𝐸�𝑏𝑏𝑖𝑖|𝑋𝑋𝑖𝑖,𝐻𝐻𝑖𝑖,𝑊𝑊𝑖𝑖 ,𝐶𝐶𝑖𝑖,2013,𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖)� = 𝐸𝐸�𝜀𝜀𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝐻𝐻𝑖𝑖,𝑊𝑊𝑖𝑖,𝐶𝐶𝑖𝑖,2013,𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖)� = 0, 

is equivalent to the assumption that the functional forms specified in the decompo-

sition of 𝜂𝜂 and in Equation (2) are sufficiently flexible to capture the relationships 

between the controls and 𝜂𝜂𝑖𝑖 and the controls and 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013.29 Three features of 

our research design support the credibility of this functional-form assumption. First, 

as discussed in Section II, our controls are extensive. Second, our model is saturated 

within some control vectors (e.g., integer-age-by-gender dummies and the full-fac-

torial of baseline health conditions) and flexible in other control vectors (e.g., fourth 

order polynomial functions of medical spending and baseline pollution). Third, the 

estimated AMEs are relatively insensitive to adding additional interactions and ad-

ditional flexibility in unsaturated control vectors.30  

The first condition on the instruments, 𝑍𝑍𝑖𝑖 , (relevance) can be directly validated 

 
factor depends on the variance of 𝜀𝜀𝑖𝑖 and the covariance between 𝜀𝜀𝑖𝑖 and 𝑏𝑏𝑖𝑖. While the unscaled coefficients can be recovered, 
this isn’t necessary. As discussed in Wooldridge (2015), the scaled coefficients are sufficient for estimating the average 
structural function (Blundell and Powell 2013) and the AME of 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 on Prob(∆𝑦𝑦𝑖𝑖 = 1). 
28 In a linear model, consistency requires that the controls and instruments are uncorrelated with the error. We are estimating 
a Probit model which requires the stronger assumptions of independence and normality. 
29 A necessary condition for 𝑍𝑍𝑖𝑖 to be a valid instrument for 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 is conditional independence, i.e., that 𝑍𝑍𝑖𝑖 , is inde-
pendent of 𝜂𝜂𝑖𝑖 , conditional on the controls. Combining this conditional independence assumption with the additional assump-
tion that (𝑏𝑏𝑖𝑖 , 𝜀𝜀𝑖𝑖) is mean independent of the controls is then sufficient for (𝑏𝑏𝑖𝑖 , 𝜀𝜀𝑖𝑖) to be mean independent of both 𝑍𝑍𝑖𝑖 and the 
controls.  
30 See, for example, the discussions in Sections IV.C, IV.D, VI.B, and Appendix J. 
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with empirical testing, while the second condition (exogeneity) cannot be. A viola-

tion of the key identifying assumption of exogeneity would mean that some unob-

served factor remaining in 𝑏𝑏𝑖𝑖 causes individuals of the same age, race, sex, and 

baseline health who experienced the same residential PM2.5 concentrations across 

2001-2003 and lived in neighborhoods with the same socioeconomic conditions, 

nevertheless sorted into attainment versus nonattainment counties within the same 

CBSA on the basis of factors associated with different probabilities of receiving a 

new dementia diagnosis from 2005-2013 and yet did not have dementia prior to 

2005. We follow prior studies and assume that nonattainment status is independent 

of measurement error in PM2.5 exposure in counties that contain air pollution mon-

itors (Chay and Greenstone 2005, Isen et al. 2017).  

We consider the earlier-in-life exposure that, as previously discussed, is an el-

ement of 𝑏𝑏𝑖𝑖. The EPA nonattainment designations relied only on 2001-2003 con-

centrations and we include a flexible (fourth-order polynomial) function of 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖  (created using data from 2001-2003) in our empirical models. Thus, ear-

lier-in-life exposure would bias our estimate of 𝛼𝛼 only in the unlikely event that 

earlier-in-life exposure is not independent of nonattainment status conditional on 

baseline pollution and other controls. We provide support for the exclusion re-

striction assumption in Section VI by estimating a model that includes a measure 

of earlier-in-life exposure. While the coefficient on earlier-in-life exposure itself is 

uninformative for evaluating the 2SCML assumptions, the fact that the estimates of 

the AMEs are invariant to its inclusion suggests that the omission of earlier expo-

sure is not biasing our estimated effect of interest.  

To conclude, like 2SLS estimators, our key identifying assumption is that the 

error in Equation (1) is independent of our instrument,𝑍𝑍𝑖𝑖. This is likely to hold 

given our extensive set of controls and the sharply defined timeframe used by the 

EPA to make regulatory designations. We provide support for this assumption in 

Section VI. 
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ii. Addressing Selection on Mortality 

Prior work has found that PM2.5 causes mortality among seniors in the US (Di 

et al. 2017, Deryugina et al. 2019). For example, Deryugina et al. uses an instru-

mental-variables estimator to conclude that a one-day 1 μg/m3 increase in PM2.5 

causes a 0.18% increase in mortality over three days. When we estimate the speci-

fication shown in Equations (1)-(2) but with decadal mortality as the dependent 

variable, we find that a 1 µg/m3 increase in average PM2.5 from 2004 through 2013 

increases mortality by 2.47 pp, equivalent to 6% of the decadal mortality rate.31  

These results, combined with the concern that unobserved aspects of health that 

determine survival may be correlated with unobserved aspects of health that deter-

mine dementia, suggest that sample selection may bias the estimates of Equations 

(1) and (2) when not accounting for selection on mortality. For example, suppose 

that unobserved aspects of health that determine survival are negatively correlated 

with unobserved aspects of health that determine dementia, i.e., sicker people who 

are more likely to die are also more likely to be diagnosed with dementia if they 

live. In this case, selection would bias downward the estimate of PM2.5’s direct 

effect on dementia in the selected sample.32 This would mean that our estimate of 

𝛼𝛼 when ignoring selection would capture both the causal effect of PM2.5 on demen-

tia (our object of interest) plus a compositional effect based on the set of survivors 

at the end of the decade.33 

To address this selection issue, we obtain a selection-corrected estimate using 

a control-function approach (Heckman 1979, Heckman and Robb 1986). To imple-

ment this approach, we require an additional set of instruments.34 In particular, the 

 
31 Appendix Table I1 provides the estimated effects of decadal PM2.5 on mortality, i.e., an estimation of Equations (1) and 
(2) with mortality as the outcome in Equation (1). 
32 A less intuitive, but nonetheless possible, concern would be that the unobserved health determining survival was positively 
correlated with the unobserved health determining dementia, causing an upward bias in our estimate. 
33 Lee (2009) discusses this concept in detail in the context of a randomly assigned job-training program that affects whether 
individuals work and the level of their subsequent wages. 
34 In Appendix H, we show a Lee (2009) bounds approach that does not require these additional instruments, 𝑃𝑃𝑖𝑖, but does 
employ the CAA ones, 𝑍𝑍𝑖𝑖, as described above. 
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relevance and validity conditions require that the additional instruments are corre-

lated with decadal survival but are independent of the unobserved determinants of 

dementia. The medical literature provides such a set of diagnoses that affect sur-

vival but do not affect dementia: prior diagnoses of a subset of non-smoking related 

cancers, which are found to be unrelated to dementia outcomes (Driver et al. 2012, 

Ganguli 2015). To form the selection-correcting control function, we begin by es-

timating via Maximum Likelihood a probit model of decadal survival, Si, with the 

same covariates as Equation (2) plus the vector of additional instruments, 𝑃𝑃𝑖𝑖. We 

do this by specifying a latent survival propensity 

(3) 𝑆𝑆𝑖𝑖∗=𝛾𝛾𝑍𝑍𝑍𝑍𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑋𝑋𝑖𝑖 + 𝛾𝛾𝐻𝐻𝐻𝐻𝑖𝑖 + 𝛾𝛾𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛾𝛾𝐶𝐶𝐶𝐶𝑖𝑖,2013 + 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖; 𝛾𝛾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃)

+ 𝛾𝛾𝑃𝑃𝑃𝑃𝑖𝑖 + 𝑑𝑑𝑖𝑖 

such that 𝑆𝑆𝑖𝑖 = 1[𝑆𝑆𝑖𝑖∗ > 0].  

In addition to the functional-form assumptions in Equation (3), we now assume 

that (𝑏𝑏𝑖𝑖, 𝜀𝜀𝑖𝑖,𝑑𝑑𝑖𝑖) is distributed jointly normal and is independent of the instruments, 

𝑍𝑍𝑖𝑖 , the instruments, 𝑃𝑃𝑖𝑖, and controls, 𝑋𝑋𝑖𝑖,𝐻𝐻𝑖𝑖,𝑊𝑊𝑖𝑖 ,𝐶𝐶𝑖𝑖,2013, and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖 . We define 

𝑃𝑃𝑖𝑖 to include indicators for baseline diagnoses of non-smoking-related cancers 

(leukemia, lymphoma, and cancers of the breast, prostrate, colon, rectum, and en-

dometrium) from the CMS’s Chronic Conditions Data Warehouse file. These seven 

cancers, which affect decadal survival, are assumed to be independent of latent fea-

tures of health that affect the probability of a dementia diagnosis.35 We then use the 

generalized residuals of Equation (3), denoted 𝜐𝜐�𝑖𝑖, to define an additional control 

 
35 A potential concern is that non-smoking related cancers, while not causing dementia, could be correlated with dementia 
through other omitted factors. For example, a competing-risks framework could lead to a negative correlation between non-
smoking related cancers and latent health affecting dementia and lead to an upward-biased estimate of α in our selection-
correction model. Such a framework would likewise suggest that estimating Equation (1) adding only the CAA-based control 
function would provide a downward-biased estimate. On this basis, one could interpret non-smoking related cancers as “im-
perfect instruments,” as defined by Nevo and Rosen (2012), and use them to partially identify α. The estimated identification 
region would then simply be the interval between the two estimates. 
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that we include in Equations (1) and (2).36  

To summarize, our estimation proceeds in three steps. The first step is to esti-

mate Equation (3) via Maximum Likelihood and create the generalized residuals, 

𝜐𝜐�𝑖𝑖 . The second step is to include 𝜐𝜐�𝑖𝑖 as an additional control in Equation (2), estimate 

Equation (2) via OLS, and recover the residuals, 𝜀𝜀�̂�𝑖. The final step is to include 

functions of 𝜀𝜀�̂�𝑖 and 𝜐𝜐�𝑖𝑖  as additional controls in Equation (1). We show this version 

of Equation (1) that includes the additional controls in Equation (4), which we es-

timate via Maximum Likelihood:  

(4)   ∆𝑦𝑦𝑖𝑖∗ = ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013;𝛼𝛼𝑖𝑖� + 𝛽𝛽𝑋𝑋𝑋𝑋𝑖𝑖 + 𝛽𝛽𝐻𝐻𝐻𝐻𝑖𝑖 + 𝛽𝛽𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛽𝛽𝐶𝐶𝐶𝐶𝑖𝑖,2013
+ 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖;𝛽𝛽𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃) + 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑖𝑖 + �̃�𝑏𝑖𝑖 

where �̃�𝑏𝑖𝑖 = 𝑏𝑏𝑖𝑖 − 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑖𝑖 .   𝐶𝐶𝐹𝐹𝑖𝑖 denotes the control-function vector created with the 

generalized residuals from the estimation of Equation (3) and the residuals from the 

estimation of Equation (2). We set  𝐶𝐶𝐹𝐹𝑖𝑖 =  [𝜀𝜀�̂�𝑖 𝜀𝜀�̂�𝑖2 𝜐𝜐�𝑖𝑖 𝜐𝜐�𝑖𝑖2].37 Because we estimate 𝜀𝜀�̂�𝑖 

and 𝜐𝜐�𝑖𝑖 in prior stages, we bootstrap standard errors over all three regressions, clus-

tering at the Census block-group level to allow for spatial correlation in diagno-

ses.38 

C. Allowing for Heterogeneity in Covariates 

In the simplest specification of the decadal model, we specify 

ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013;𝛼𝛼𝑖𝑖� = 𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013. However, we also estimate specifications 

that allow 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 to enter flexibly as a fourth-order polynomial and that allow 

 
36 Generalized residuals are defined as 𝜐𝜐�𝑖𝑖 = 𝑆𝑆𝑖𝑖𝜆𝜆� 𝑆𝑆∗�� − (1 − 𝑆𝑆𝑖𝑖)𝜆𝜆�− 𝑆𝑆∗��, where 𝜆𝜆(⋅) =  𝜙𝜙(⋅)/Φ(⋅), 𝜙𝜙 and Φ are the standard 
normal density and CDF, respectively, and 𝑆𝑆∗� = 𝛾𝛾�𝑍𝑍𝑍𝑍𝑖𝑖 + 𝛾𝛾�𝑋𝑋𝑋𝑋𝑖𝑖 + 𝛾𝛾�𝐻𝐻𝐻𝐻𝑖𝑖 + 𝛾𝛾�𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛾𝛾�𝐶𝐶𝐶𝐶𝑖𝑖,2013 + 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖;𝛾𝛾�𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃) + 𝛾𝛾�𝑃𝑃𝑃𝑃𝑖𝑖. 
By construction, 𝑆𝑆𝑖𝑖  = 1 for all observations used in the estimation of Equations (1) and (2), therefore, for these observations, 
𝜐𝜐�𝑖𝑖 = 𝜆𝜆� 𝑆𝑆∗��, simplifying to the familiar inverse Mills ratio used in Heckman (1979). 
37 In alternative specifications, e.g., Columns (3) and (2) of Table I, we consider a less flexible control function that only 
includes 𝜀𝜀�̂�𝑖 and 𝜐𝜐�𝑖𝑖, without their squares, as well as a version with only 𝜀𝜀�̂�𝑖, which controls for the type of endogeneity de-
scribed in Section IV.B.i, but not selection on mortality. 
38 Our instruments vary within Census blocks across ZIP+4 codes. We alternatively cluster at the courser county level and 
find almost no impact on our results. 
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for interactions between 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 and the vectors Xi, Hi, Wi, and 𝐶𝐶𝐹𝐹𝑖𝑖 by speci-

fying:39  

(5) ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013;𝛼𝛼𝑖𝑖� = α1 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 + α2𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013
2 + α3 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013

3  

                +α4 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013
4 + α𝑋𝑋 𝑋𝑋𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013  + α𝐻𝐻  𝐻𝐻𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 

                                                              +α𝑊𝑊 𝑊𝑊𝑖𝑖  𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 + αCF 𝐶𝐶𝐹𝐹𝑖𝑖  𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 .  

 

In this approach, the effect of 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 on the latent propensity to be newly 

diagnosed with dementia is allowed to vary flexibly with both the level of 

𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013, and the levels of individual characteristics, neighborhood character-

istics, and control function variables.40,41 

D. Allowing PM2.5’s Effect to Vary with Exposure Duration 

The contemporaneous model described in Section IV.A and IV.B is both parsi-

monious and comparable to the existing literature on the impacts of pollution ex-

posure on health outcomes. However, as the treatment is measured as the average 

PM2.5 exposure from 2004-2013, and a dementia diagnosis can happen at any point 

between 2005 and 2013, there could be an aggregation bias if the data were sys-

tematically misaligned; for example, if the AME were driven by spatial correlation 

between dementia diagnoses in 2010 and pollution levels in 2013. The potential for 

misalignment due to temporal aggregation is a universal feature of research on pol-

 
39 See Blundell and Powell (2003, 2004) for a discussion of estimating non-parametric, binary-response models with endog-
enous regressors. 
40 The fact that the effect of 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 on new dementia diagnosis is allowed to vary with 𝐶𝐶𝐹𝐹𝑖𝑖 =  [𝜀𝜀�̂�𝑖  𝜀𝜀�̂�𝑖2 𝜐𝜐�𝑖𝑖 𝜐𝜐�𝑖𝑖2]  means that 
this approach nests the correlated random-coefficients model of Garen (1984) with additional assumptions. Specifically, if 
there exist random coefficients that satisfy the linear conditional expectation assumption of Garen (1984), they will be ac-
counted for in our analysis. Under these assumptions, we do not find evidence of bias coming from correlated random coef-
ficients in one’s sensitivity to pollution exposure.  
41 Following Rivers and Vuong (1988) and Wooldridge (2015), once the control function, 𝐶𝐶𝐹𝐹𝑖𝑖, is included in Equation (4),  
𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 is independent of �̃�𝑏𝑖𝑖 and, therefore, the non-linear functions of 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 in Equation (5) are also independent 
of �̃�𝑏𝑖𝑖. And, as we had assumed that the controls are independent of �̃�𝑏𝑖𝑖, the interaction terms in (5) are also independent of �̃�𝑏𝑖𝑖. 
Adding the 115 additional functions of the single endogenous economic variable, 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013, has little impact on the results 
as shown in Columns (4) and (5) of Table I. 
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lution and health due to the inability to measure pollution and health instantane-

ously. 

In this section, we extend the analysis in three ways. First, we define the out-

come measure to be a new dementia diagnosis during a single year 𝑡𝑡 =

[2005,2013], thus avoiding the aggregation bias that could be introduced by mis-

alignment of the data at the decadal level. Second, we only condition on surviving 

until the end of year t, thus incorporating the effects of PM2.5 exposure on dementia 

for individuals who die prior to 2013. Finally, by estimating the model separately 

for each year, we allow for year-specific variation in all model coefficients. This 

additional flexibility allows the effect of nonattainment status on PM2.5 exposure to 

evolve during the years after nonattainment designations were made. Moreover, it 

allows the effect of PM2.5 exposure on the probability of a new dementia diagnosis 

to evolve with the duration of exposure. In principle, such differences could arise 

from biological mechanisms linking PM2.5 to dementia, or from changes in the com-

position of people surviving from one year to the next.  

Equations (6) and (7) describe the analogues to Equations (4) and (5), respec-

tively, where Δ𝑦𝑦𝑖𝑖,𝑡𝑡∗  now denotes the latent propensity to become newly diagnosed 

with dementia during year t. We estimate Equation (6) separately for each year 

2005 to 2013 via Maximum Likelihood. 

(6)       ∆𝑦𝑦𝑖𝑖,𝑡𝑡∗  = ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡;𝛼𝛼𝑖𝑖,𝑡𝑡� + 𝛽𝛽𝑋𝑋,𝑡𝑡𝑋𝑋𝑖𝑖 + 𝛽𝛽𝐻𝐻,𝑡𝑡𝐻𝐻𝑖𝑖 + 𝛽𝛽𝑊𝑊,𝑡𝑡𝑊𝑊𝑖𝑖 + 𝛽𝛽𝐶𝐶,𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡

+ 𝑓𝑓�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖;𝛽𝛽𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃,𝑡𝑡� + 𝛽𝛽𝐶𝐶𝐶𝐶,𝑡𝑡𝐶𝐶𝐹𝐹𝑖𝑖,𝑡𝑡 + �̃�𝑏𝑖𝑖,𝑡𝑡 

where    �̃�𝑏𝑖𝑖,𝑡𝑡 = 𝑏𝑏𝑖𝑖,𝑡𝑡 − 𝛽𝛽𝐶𝐶𝐹𝐹,𝑡𝑡𝐶𝐶𝐹𝐹𝑖𝑖,𝑡𝑡, 

(7)  ℎ�𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡;𝛼𝛼𝑖𝑖,𝑡𝑡�=α1,t 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 + α2,𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡
2 +  α3,𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡

3

+ α4,𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡
4 + α𝑋𝑋.𝑡𝑡 𝑋𝑋𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡  + α𝐻𝐻,𝑡𝑡 𝐻𝐻𝑖𝑖  𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 

 +α𝑊𝑊,𝑡𝑡 𝑊𝑊𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 + α𝐶𝐶𝐶𝐶,𝑡𝑡 𝐶𝐶𝐹𝐹𝑖𝑖,𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡, 
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and 𝐶𝐶𝐹𝐹𝑖𝑖,𝑡𝑡 denotes a control-function vector, [𝜀𝜀�̂�𝑖,𝑡𝑡 𝜀𝜀�̂�𝑖,𝑡𝑡2  𝜐𝜐�𝑖𝑖,𝑡𝑡 𝜐𝜐�𝑖𝑖,𝑡𝑡2 ], created with the gen-

eralized residuals from the estimation of Equation (8) (the analogue to Equation 

(3)) and the residuals from the estimation of Equation (9) (the analogue to Equation 

(2)):  

(8)     𝑆𝑆𝑖𝑖,𝑡𝑡=1�𝛾𝛾𝑍𝑍,𝑡𝑡𝑍𝑍𝑖𝑖 + 𝛾𝛾𝑋𝑋,𝑡𝑡𝑋𝑋𝑖𝑖 + 𝛾𝛾𝐻𝐻,𝑡𝑡𝐻𝐻𝑖𝑖 + 𝛾𝛾𝑊𝑊,𝑡𝑡𝑊𝑊𝑖𝑖 + 𝛾𝛾𝐶𝐶,𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡

+ 𝑓𝑓�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖; 𝛾𝛾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃,𝑡𝑡� + 𝛾𝛾𝑃𝑃,𝑡𝑡𝑃𝑃𝑖𝑖 + 𝑑𝑑𝑖𝑖,𝑡𝑡 > 0�, 

(9)     𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡=𝛿𝛿𝑍𝑍,𝑡𝑡𝑍𝑍𝑖𝑖 + 𝛿𝛿𝑋𝑋,𝑡𝑡𝑋𝑋𝑖𝑖 + 𝛿𝛿𝐻𝐻,𝑡𝑡𝐻𝐻𝑖𝑖 + 𝛿𝛿𝑊𝑊,𝑡𝑡𝑊𝑊𝑖𝑖 + 𝛿𝛿𝐶𝐶,𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡

+ 𝑓𝑓�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖; 𝛿𝛿𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑃𝑃𝑃𝑃,𝑡𝑡� + �̂�𝜈𝑡𝑡,𝑖𝑖 + 𝜀𝜀𝑡𝑡,𝑖𝑖. 

We begin by estimating Equation (8) via Maximum Likelihood on the full sam-

ple of individuals. The survival outcome, 𝑆𝑆𝑖𝑖,𝑡𝑡, now indicates whether individual i is 

still alive through the end of year t and has not previously received a dementia 

diagnosis. We then estimate the year-t-specific pollution Equation (9) via OLS. 

This equation includes the generalized residuals from the survival function, �̂�𝜈𝑖𝑖,𝑡𝑡. 

Equations (9) and (6) are estimated using the subset of people who are still alive 

through the end of year t and had not been diagnosed with dementia prior to year t.   

We then use the year-t-specific parameter vector, 𝛼𝛼�𝑡𝑡 , to calculate 𝐴𝐴𝑃𝑃𝐸𝐸𝑡𝑡, the 

average effect of a marginal increase in PM2.5 exposure from 2004 through year t 

on the probability of receiving a new dementia diagnosis during year t. We addi-

tionally calculate the cumulative effect of PM2.5 exposure from 2004 through year 

t on new dementia diagnoses during that period according to,  

(10)     𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑏𝑏𝑡𝑡𝑐𝑐𝑐𝑐𝑏𝑏𝐴𝐴𝑃𝑃𝐸𝐸𝑡𝑡 =  ∑ � 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝2005

� 𝐴𝐴𝑃𝑃𝐸𝐸𝑠𝑠𝑡𝑡
𝑠𝑠=2005 , 

by summing the year-specific average marginal effects, after weighting them by 

their corresponding shares of the original population to account for attrition due to 
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dementia and death.42  Finally, we bootstrap standard errors on 𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑏𝑏𝑡𝑡𝑐𝑐𝑐𝑐𝑏𝑏𝐴𝐴𝑃𝑃𝐸𝐸𝑡𝑡 

by repeating estimation of Equations (6)-(10) after resampling from the original 

population one thousand times with replacement and clustering at the Census block-

group level. 

 

V. Results 

A. PM2.5 Regulations Created Conditional Differences in Subsequent PM2.5  

The identifying variation for our estimator comes from the fact that the EPA’s 

nonattainment designations created quasi-random differences in 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 for 𝑡𝑡 =

[2005,2013], conditional on 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖 and the additional controls in Equations (2) 

and (9). Figure IV shows this identifying variation for the year 2013. Specifically, 

it uses the coefficients on the instruments from the year-2013 version of Equation 

(9) to plot the estimated partial effect of nonattainment on 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,2013 across lev-

els of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖. Similar figures plotting the estimated partial effect for 𝑡𝑡 =

[2005,2012] versions of Equation (9), as well as the decadal version in Equation 

(2), are shown in Appendix I1. Intuitively, the partial effects are negative, showing 

that nonattainment status reduced pollution. In addition, as permitted (but not de-

termined) by our construction of 𝑍𝑍𝑖𝑖, the partial effects vary with baseline PM2.5. 

This yields within-county identifying variation in 𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 in all years.43 The first-

stage partial R2 of the identifying instruments is 0.047 and the F statistic is 489 for 

the regression underlying Figure IV, suggesting that any finite sample bias is neg-

ligible. The size of the F statistic reflects the number of observations (approxi-

mately 1 million) and number of Census block group clusters (approximately 140 

thousand). 

 
42 For example, we multiply the estimated AME in 2009 by 0.65 because 65% of the original year-2005 sample survives to 
the end of 2009. This adjusts for the progressive decline in sample size due to dementia and mortality.  
43 While nonattainment status caused reductions in dur𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 at all levels of base𝑃𝑃𝑃𝑃𝑖𝑖, these reductions are larger at lower 
baseline levels.  
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FIGURE IV: ESTIMATED PARTIAL EFFECT OF NONATTAINMENT ON PM2.5 EXPOSURE 
2004-2013, BY BASELINE CONCENTRATIONS 2001-2003 

 
Note: The figure shows the average effect of the county-level nonattainment designation on the average individual-level 
conditional change in PM2.5 concentrations over the period 2004-2013. The zero line represents individuals living in attain-
ment counties at the same baseline PM2.5 concentration and holding all else in Equation (9) constant. The dotted lines denote 
95% confidence bands constructed from 1,000 bootstrap replications, with clustering at the Census block group. 

B. The Effect of PM2.5 on Dementia 

We find that a 1 μg/m3 increase in average PM2.5 concentrations starting in 2004 

increases the probability of receiving a new dementia diagnosis before the end of 

2013 by an average of 2.15 percentage points (pp). To illustrate the importance of 

various aspects of our identification strategy, we present the AME of cumulative 

PM2.5 exposure over the decade on new dementia diagnoses from six specifications 

described in Section IV.  

The first column of Table I begins with a simple, associative model of decadal 

PM2.5 and dementia diagnosis over the decade. The next four columns retain the 
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contemporaneous, decadal specification and incrementally address potential con-

founders that may underlie this association, as previously discussed. The final col-

umn presents our preferred specification that aggregates year-by-year marginal ef-

fects over the decade while addressing all of the potential confounders described in 

Section IV. In all cases, the AMEs are scaled to represent percentage point (pp) 

changes in the probability of receiving a new dementia diagnosis by the end of 

2013.  

 

TABLE I—AVERAGE MARGINAL EFFECT OF CUMULATIVE PM2.5 ON THE PROBABIL-
ITY OF A NEW DEMENTIA DIAGNOSIS 

 
Note: The outcome is scaled to equal 100 if an individual was diagnosed with dementia and 0 otherwise. By 2013, 20% of 
the individuals in our sample who were alive in that year had been diagnosed with dementia. In Column (1) the covariates 
are PM2.5 and CBSA dummies. Column (2) adds covariates for baseline health in 2004, individual demographics, de-
mographics for the individual’s Census block group, and pre-regulatory (2001-2003) PM2.5 levels at their residence. Column 
(3) adds a control function for PM2.5. Column (4) adds a control function for survival. Column (5) adds additional polynomial 
functions of covariates. Column (6) reports a cumulative decadal AME that aggregates year-specific AMEs, along with 
ranges for the year-specific F-statistics, Chi-square statistics, and sample sizes. Year-specific estimates are reported in Table 
I5. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clus-
tered at the block group. Standard errors in Columns (3) through (6) are bootstrapped using 1,000 repetitions. 

Column (1) in Table I shows the result from a simple associative model of de-

cadal PM2.5 and dementia diagnosis over the decade. The only covariates are CBSA 

 (1) (2) (3) (4) (5) (6)

(1 μg/m3 increase in decadal PM2.5) 0.629*** 0.124 1.545*** 2.283*** 2.384*** 2.151***
(0.058) (0.105) (0.536) (0.565) (0.568) (0.846)

individual & neighborhood covariates  x x x x x
PM2.5 control function x x x x
survival control function    x x x
polynomial functions and interactions x x
heterogeneity by exposure duration  x

F-statistic on PM2.5 instruments   496 498 498 165  to  489

number of individuals:                         
dementia function

1,179,094 1,179,094 1,179,094 1,179,094 1,179,094
989,751  to 
2,293,270

Chi-square statistic on survival 
instruments

3,813 3,813
1,166  to 

2,274

number of individuals:                            
survival function

   2,439,904 2,439,904 2,439,904
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dummies. The result indicates that a 1 µg/m3 increase in average decadal PM2.5 is 

associated with a 0.63 pp higher probability of receiving a dementia diagnosis be-

tween 2005 and 2013.  

Column (2) then additionally includes the observed characteristics represented 

by 𝑋𝑋𝑖𝑖,𝐻𝐻𝑖𝑖,𝑊𝑊𝑖𝑖 and 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖) in Equation (1). Adding these covariates reduces the 

conditional association between measured decadal PM2.5 and dementia over the 

decade to 0.12 pp. Thus, most of the within-CBSA association between measured 

PM2.5 and new dementia diagnoses can be explained by people with observably 

higher baseline risks of dementia living in more polluted neighborhoods. Notably, 

99% of the decline that occurs as we move from Column (1) to Column (2) can be 

explained by the inclusion of 𝑋𝑋𝑖𝑖, 𝐻𝐻𝑖𝑖, and 𝑊𝑊𝑖𝑖. When all of these covariates are in-

cluded, adding 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑃𝑃𝑖𝑖) only reduces the AME for PM2.5 exposure from 2004-

2013 by 1%. This shows that our extensive measures of individual demographics, 

baseline health, and neighborhood characteristics explain almost all of the hetero-

geneity that contributes to any association between neighborhood PM2.5 in 2001-

2003 and new dementia diagnoses. 

Column (3) adds the PM2.5 control function to address measurement error in 

pollution exposure, or any residual differences driven by sorting. The resulting or-

der-of-magnitude increase in the AME relative to Column (2) is unsurprising. First, 

our extensive set of geographic controls could potentially exacerbate the effect of 

any measurement error in pollution. Second, while the bias introduced by measure-

ment error is ambiguous in general, prior studies have consistently found that in-

strumenting for (shorter-term) measures of air pollution exposure results in order-

of-magnitude increases in estimates for its effects on other morbidities and mortal-

ity among older adults (see, for example, Schlenker and Walker 2016, Deschênes, 

Greenstone, and Shapiro 2017, and Deryugina et al. 2019).44  

 
44 These studies find that instrumenting for air pollution increases their estimates for its effects on morbidity and mortality 
by factors ranging from 6 to 20. The twelve-fold increase in our Table I estimates sits near the middle of this range.  
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Column (4) adds the survival control function to address selection on mortal-

ity.45 Controlling for selection on survival increases the AME to 2.28 pp, a 48% 

increase relative to Column (3). This increase is consistent with classic selection 

bias caused by positively correlated latent health: individuals who were more likely 

to die were also more likely to develop dementia.46  

Column (5) shows the AME from our specification shown in Equations (4)-(5) 

that allows for additional parametric flexibility in the covariates.47 This only in-

creases the AME to 2.38 pp, which is about a 4% increase relative to Column (4).48  

The final AME shown in Column (6) shows the cumulative AME at the end of 

the decade as shown in Equations (6) through (10). This model differs from the 

model underlying the AME in Column (5) in three potentially important ways. 

First, it limits aggregation bias that could be introduced by the misalignment of the 

data at the decadal level. Second, it incorporates the effects of PM2.5 exposure on 

dementia for people who die during the decade, almost doubling the number of 

observations used in estimation. Finally, it allows the effect of PM2.5 exposure on 

the probability of a new dementia diagnosis to evolve with the duration of exposure, 

as shown in Equation (6).  

This cumulative AME indicates that a 1 µg/m3 increase in average PM2.5 in-

creases the cumulative probability of a new dementia diagnosis by the end of 2013 

by 2.15 pp. Comparing this cumulative AME against the results from the more par-

simonious model in Column (5) indicates that the three notable differences between 

the two approaches yields only a small difference in the economic magnitude of 

their estimated effects (0.23 pp).  

 
45 The average marginal effects of the survival instruments are reported in Appendix Table I2. 
46 We build on this result and develop a partial-identification approach to exploring the role of selection on survival in 
Appendix H.  
47 Appendix Table I3 reports the full results from this specification. Appendix Table I4 compares the AME for PM2.5 from 
this specification to the AMEs that we estimate for other dementia risk factors that were included as covariates in the model. 
Note that we do not consider the coefficients on risk factors other than decadal PM2.5 to reflect a causal relationship.  
48 When we run this specification using a linear-probability model, we find an AME of 2.16 pp that is statistically significant 
the 1% level. 
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To provide context for the AME of 2.15pp, a 1 μg/m3 change is equivalent to 

9.1% of the average person’s exposure between 2004 and 2013 and 59% of a stand-

ard deviation. A 2.15 pp change in the dementia diagnosis rate is a 11% increase 

relative to the diagnosis rate among people in our sample who survive to the end of 

2013. To provide an age-based comparison to this statistic, the dementia diagnosis 

rate in 2013 was 2.2 pp higher among 80-year-old women compared with 79-year-

old women (Figure I).49  

FIGURE V: ESTIMATED EFFECTS OF PM2.5 ON DEMENTIA BY EXPOSURE DURATION 

 
 

Figure V shows how our estimates of the cumulative AME evolve over time, 

along with 95% bootstrapped confidence intervals. The underlying year-specific 

 
49 To compare these results to earlier medical literature, Gatz et al. (1997) finds that approximately 74% of Alzheimer’s 
disease cases are heritable using twin pairs. We impose the additive separability assumption underlying that statistic and 
perform a back-of-the-envelope calculation to see how much variation in new dementia diagnoses could be explained by 
decadal PM2.5 exposures after age 65 in our sample. Specifically, we use a linearized and additively separable version of our 
decadal model to calculate ((AME2 Var(durPM))/(Var(Δy)) ≈ 1%, where AME=0.0238 (this number is multiplied by 100 
when discussed in the text), Var(durPM)=2.8812, and Var(Δy)=0.1572. We thank an anonymous referee for this suggestion.  
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AMEs are presented in Appendix Table I5. While the year-specific AMEs are im-

precisely estimated, the AME for 2005 is close to zero and, starting in 2008, the 

year-specific AMEs are positive in each year, which is reflected in the increasing 

cumulative AME shown in Figure V. In addition, the year-specific AMEs are gen-

erally increasing in the duration of exposure. When we weight the year-specific 

AMEs by the surviving share of the baseline population to account for attrition, as 

shown in Equation (10), the resulting weighted year-specific AMEs become similar 

in magnitude. This similarity is reflected in the approximately-linear trend in cu-

mulative AME point estimates shown in Figure V, although visual inspection of 

the confidence intervals suggests that we lack the statistical power to rule out a 

nonlinear function. 

C. Heterogeneity in Effects 

The results shown in Column (6) of Table 1 average over considerable hetero-

geneity in the marginal effects of PM2.5 exposure. Interestingly, the cumulative 

AME’s tend to be larger among individuals who experienced lower levels of PM2.5. 

To illustrate this, we divide individuals into terciles by their baseline residential 

exposures during 2001-2003. Individuals in the top tercile of baseline exposure 

(above 14.2 μg/m3) experienced a cumulative AME of 1.91 pp. In comparison, in-

dividuals in the middle tercile (whose baseline exposures were between 12.4 and 

14.2 μg/m3) experienced an AME of 2.10 pp. Individuals with baseline exposures 

below 12.4 μg/m3 experienced an AME of 2.45 pp. For those in the top, middle and 

bottom terciles who survived through 2013, average exposures from 2004-2013 

were 12.46, 11.14 and 9.24 μg/m3, respectively. These results highlight that the 

effects of PM2.5 on dementia persist well below the current US regulatory threshold 

of 12 μg/m3 of annual average concentrations.  

The estimates also show heterogeneity across individual characteristics. For ex-

ample, the cumulative AME is larger for individuals whose exposures we observe 
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at older ages (e.g., 1.13 pp for people born in 1938 for whom we observe quasi-

random variation in exposure from age 66 up to age 75, compared with 2.34 pp for 

people born in 1928 for whom we observe variation in exposure from age 76 up to 

age 85). Conditional on age at exposure, the AME is higher for women compared 

with men (e.g., 2.57 pp for women born in 1928 compared with 2.03 pp for men 

born in 1928). Conditional on age and sex, the AME is higher for individuals with 

more clinical risk factors for dementia at the start of the decade (e.g., 2.24 pp for 

women born in 1928 with no baseline clinical risk factors compared with 2.61 pp 

for women born in 1928 who had been diagnosed with ischemic heart disease and 

hypertension at baseline). Finally, when we condition on PM2.5 exposure, the AME 

is higher among individuals denoted by CMS as “Black or African-American” com-

pared with “non-Hispanic White” (e.g., 0.21 pp higher among women born in 1928 

whose baseline exposure to PM2.5 was within a one-unit window of the sample me-

dian of 13.4 μg/m3).50  

 

VI. Main Validation Tests and Additional Sensitivity Analysis 

A. Main Validation Tests 
Table II presents three validation tests of our estimator. First, we assess the 

assumption that our nonattainment instrument is independent of earlier-in-life 

measures of PM2.5, conditional on baseline PM2.5 exposure and the other covariates. 

Specifically, we examine whether the AME shown in Table I, Column (6) changes 

when we add measures of earlier-in-life exposures, specifically average annual 

PM2.5 in 1999 and 2000.51 These are the first two years that the US EPA had a 

national network of PM2.5 monitors and the first two years that researchers can ob-

tain administrative data describing the Medicare population. Thus, this validation 

 
50 Average decadal PM2.5 exposures in our estimation sample were 6% higher for Black or African-American individuals 
compared with non-Hispanic White individuals who survived through 2013. 
51 In the years of 1999 and 2000, 86% of our balanced panel of monitors were in operation. 
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test exhausts the available data. For the 23% of our sample that were under age 65 

in those years and not yet enrolled in Medicare, we assign 1999 and 2000 PM2.5 

exposures based on the location where we first observe these individuals living 

upon enrolling in Medicare. While this assignment is imperfect, low short-term mi-

gration rates among this age group limit the scope for error. For example, the year 

2000 Census of Population reports that 77% of people aged 65-69 lived in the same 

residence as they did five years ago.  

TABLE II—VALIDATION TESTS  

 
Note: The first column repeats our main result from Table I, Column (6) for comparison. The next three columns report 
results from alternative specifications that are designed to test the identifying assumptions that underlie our main specifica-
tion. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels based on robust standard errors 
clustered at the Census block group. See the note to Table I and main text for further details. 

If the exclusion restrictions on 𝑍𝑍𝑖𝑖 are valid, then adding controls for earlier-in-

life PM2.5 should not change the estimated AME of cumulative exposure over the 

decade. Column (2) shows that this augmented specification yields an AME of 2.25 

pp. This is similar to the AME of 2.15 pp from our main specification (repeated in 

Column (1) for convenience). This similarity reinforces the validity of the instru-

ment and is consistent with the EPA’s nonattainment designation criteria, which 

relied solely on PM2.5 concentrations in 2001-2003. 

The specification in Column (3) tests whether our results are confounded by the 

model’s omission of air pollutants that may be co-generated with PM2.5. Specifi-

 (1) (2) (3) (4)

2.151*** 2.246*** 1.754** -0.167
(0.846) (0.929) (0.704) (0.283)

modification to main specification
control for PM2.5 in 1999 and 2000 x
control for other regulated air pollutants x
placebo outcome = dementia in 2004 x

F-statistic on PM2.5 instruments 165  to  489 147  to  492 146  to  350 620
number of individuals: dementia function 989,751  to 2,293,270 989,751  to 2,293,270 989,751  to 2,293,270 2,734,032
Chi-square statistic on survival instruments 1,166  to 2,274 1,166  to 2,274 1,168  to 2,277
number of individuals: survival function 2,439,904 2,439,904 2,439,904

Probit model average marginal effect                                                           
(1 μg/m3 increase in decadal PM2.5)
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cally, we add measures of exposure to PM10, ozone, nitrogen dioxide, sulfur diox-

ide, and carbon monoxide. Each measure is constructed following the same proce-

dures that we used to construct measures of cumulative PM2.5. When we control for 

these ancillary pollutants, the cumulative AME for PM2.5 remains large and pre-

cisely estimated.  

Additionally, we test for sorting based on unobserved risk factors, such as ge-

netics, that may contribute to dementia and be correlated with PM2.5. In principle, 

sorting on unobserved risk factors could bias the estimator if, prior to our study 

period, people at a lower unobserved risk for dementia sorted themselves into 

neighborhoods that were more or less likely to be designated as nonattainment in 

the future, even conditional on baseline neighborhood PM2.5 and the other controls. 

While we cannot directly test this sorting hypothesis in our main estimation sample, 

we can test it indirectly by extending the sample to include the people who were 

excluded because they were diagnosed with dementia prior to 2005. In other words, 

if individuals sorted themselves into future nonattainment areas based on unob-

served dementia risk then we would expect to see a conditional relationship be-

tween dementia rates in 2004 and PM2.5 exposure over the subsequent decade.52 

We test this hypothesis using a placebo specification that replaces the outcome in 

Equation (4) with an indicator for a dementia diagnosis in 2004. Including everyone 

alive in 2004, with or without dementia, increases our sample size to 2.7 million. 

Column (4) shows that the estimated AME is negative, close to zero, and estimated 

relatively precisely. This provides supporting evidence that the exclusion restriction 

is unlikely to be violated by initial differences in unobserved dementia risk, includ-

ing unobserved genetic factors. 

B. Additional Sensitivity Analysis 

 
52 Intuitively, under the hypothesis that people sorted into future nonattainment areas based on unobserved dementia risk, 
some people would have been diagnosed with dementia prior to 2005 and been dropped from our estimation sample, while 
others would have been diagnosed after 2005 and been included in our estimation sample. 
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The effect of PM2.5 on dementia persists when we use (1) different measures of 

dementia such as the use of prescription drugs for the symptoms of Alzheimer’s 

disease rather than claims-based diagnosis codes; (2) different samples that include 

people who select into managed care plans known as Medicare Advantage; (3) 

monitor-level attainment indicators rather than county-level indicators; (4) different 

approaches to measuring PM2.5 exposure including expanding the set of monitors 

to include those not present for the entire study period, (5) a limited sample of in-

dividuals who live close to a monitor, and (6) controls for baseline pollution expo-

sure that are even more flexible than the fourth-order polynomial function described 

above. We present and discuss these results in Appendix J. 

Finally, we estimate models for placebo health outcomes. We examine five 

chronic conditions that are not known or suspected to be caused by air pollution but 

share similarities with dementia in terms of how they affect the body, how they are 

diagnosed, and how diagnosis rates are correlated with age, race, and gender. These 

are glaucoma, fibromyalgia, breast cancer, prostate cancer, and peripheral vascular 

disease.53 Appendix Table J5 shows that we fail to reject the null hypothesis of zero 

effect at the 10% significance level for each of these placebos. We elaborate on 

these models and results in the appendix. 

Our criteria for selecting placebos excluded illnesses that have previously been 

linked to air pollution. When we instead ignore these criteria and repeat estimation 

for each of the 15 most common chronic conditions among the Medicare population 

including those linked to pollution exposure, we find positive effects of PM2.5 at 

the 5% level for two diseases besides dementia: chronic obstructive pulmonary dis-

ease (COPD) [AME = 1.79, p=0.002] and chronic kidney disease [AME = 1.15, 

 
53 Glaucoma is a progressive disorder with nerve degeneration that is strongly associated with age; fibromyalgia affects mood 
and behavior and can be difficult to diagnose; breast cancer and prostate cancer can be slow to progress and have gender-
specific diagnosis rates; and peripheral vascular disease is associated with reduced blood circulation.  
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p=0.038].54 These results could be interpreted as “reverse placebo tests” in the 

sense that positive findings may be expected based on prior cohort studies that 

found that long-term exposure to PM2.5 is associated with these diseases (e.g., Guo 

et al. 2018). 

 

VII. Conclusion 

Dementia’s global social costs continue to grow with the aging populations of 

many countries, causing the World Health Organization to label it a “public health 

priority” and the US Centers for Disease Control to describe it as a “public health 

crisis.” Because no medical preventions or cures exist, policy discussions have fo-

cused on investment in research and health infrastructure and modifying behaviors 

related to smoking, diet, and exercise. Our findings reveal that air quality regula-

tions provide another lever to policy makers to reduce the prevalence of dementia.  

Beyond these policy implications, our results provide guidance for additional 

research on the causes and consequences of dementia. Our study establishes a 

causal link between long-term, later-in-life exposure to PM2.5 and dementia, yet the 

precise mechanisms and causal pathways remain unknown. Research can investi-

gate how the presence of small particulates in the brain alters cognitive function 

and relates to Alzheimer’s disease specifically, and whether the effects differ across 

chemical composition, genotypes, comorbidities, stages of life, or other factors. 

Likewise our results can help guide efforts to study the broader link between air 

pollution, cognitive decline and financial decision making. Such insights can shed 

light on the economic costs of impaired cognition as well as the value of various 

approaches to mitigate these costs, whether through the provision of long-term care 

 
54 According to the Centers for Medicare and Medicaid Services (2012) the top 15 conditions ranked from most prevalent to 
least prevalent are high blood pressure, high cholesterol, ischemic heart disease, arthritis, diabetes, heart failure, chronic 
kidney disease, depression, COPD, Alzheimer’s disease, atrial fibrillation, cancer, osteoporosis, asthma, and stroke. 
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and long-term care insurance, support for family caregivers, financial decision sup-

port, and medical technologies. 
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