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ABSTRACT

We test whether long-term exposure to air pollution degrades human capital by causing dementia.
We link fifteen years of Medicare records for 6.9 million adults age 65 and older to the EPA’s air quality
monitoring network and track the evolution of individuals’ health, onset of dementia, financial decisions,
and cumulative residential exposure to fine-particulate air pollution (PM2.5). Our instrumental variables
framework capitalizes on quasi-random variation in pollution exposure due to the EPA’s 2005 designation
of nonattainment counties for PM2.5. We find that a 1 microgram-per-cubic-meter increase in average
decadal exposure (9.1% of the mean) increases the probability of receiving a dementia diagnosis by
1.3 percentage points (6.7% of the mean). This finding is consistent with hypotheses from the medical
literature. We conclude that regulation of air pollution has greater benefits than previously known,
in part because dementia impairs financial decision making. We estimate that the dementia-related
benefits of the EPA’s county nonattainment designations exceeded $150 billion. We also find that
the effect of PM2.5 on dementia persists below current regulatory thresholds.
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Air pollution is known to impair human capital from the beginning through the middle of the 

life cycle. Among school age children, daily pollution spikes increase school absences and reduce 

scores on high stakes exams (Currie et al. 2009, Ebenstein, Lavy and Roth 2016). Among adult 

workers, daily pollution spikes reduce labor productivity in both manual and cognitive tasks 

(Graff-Zivin and Neidell 2012; Chang et al. 2016a,b, Archsmith, Heyes, and Saberian 2017). Pro-

longed exposures to elevated concentrations can have lasting consequences. For instance, Isen, 

Rossin-Slater, and Walker (2017) find that exposure to higher levels of air pollution during the 

first year of life causes people to have lower wages and lower labor-force participation during 

early adulthood. By contrast, little is known about the effects of long-term exposure during adult-

hood on human capital later in life. Burgeoning medical literature provides reason to suspect that 

long-term exposure to elevated pollution levels may permanently impair older adults’ cognition, 

especially in the case of particulates smaller than 2.5 microns in diameter, commonly known as 

“fine particulate matter” or “PM2.5”. The small size of PM2.5 allows it to remain airborne for long 

periods, to penetrate buildings, to be inhaled easily, and to reach and accumulate within brain 

tissue. The accumulation of particulates in the brain can cause neuroinflammation, which is asso-

ciated with symptoms of dementia. While suggestive, the medical evidence implicating air pollu-

tion as a cause of dementia is based only on animal studies and small specialized human cohorts 

(Underwood 2017).  

This article represents the first large scale national study of how long-term exposure to air 

pollution affects dementia. We assemble fifteen years of Medicare records on 6.9 million United 

States residents over age 65 to track their dementia diagnoses, other illnesses, demographics, res-

idential exposure to air pollution, and financial decisions. These data are well-suited to studying 

how long-term pollution exposure affects cognitive impairment. Dementia is a syndrome of brain 

disease that is diagnosed when patients demonstrate multiple symptoms of cognitive impairment. 

Dementia is prevalent among those age 65 and above, impairing their “memory, thinking, orien-

tation, comprehension, calculation, learning capacity, language and judgment”, thereby disrupting 

their social relationships and limiting their abilities to perform basic activities of daily living such 

as managing their finances.1 The most common form of dementia is Alzheimer’s disease. About 

                                                 
1 The World Health Organization’s 10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10) 

defines dementia (codes F00-F03) as “a syndrome due to disease of the brain, usually of a chronic or progressive nature, in which there is disturbance 

of multiple higher cortical functions, including memory, thinking, orientation, comprehension, calculation, learning capacity, language and judge-
ment. Consciousness is not clouded. The impairments of cognitive function are commonly accompanied, and occasionally preceded, by deteriora-

tion in emotional control, social behavior, or motivation. This syndrome occurs in Alzheimer disease, in cerebrovascular disease, and in other 
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one percent of Americans are diagnosed with Alzheimer’s disease and related dementia by age 65, 

and this share roughly doubles with each additional five years of age with about one third of all 

Americans over age 85 being afflicted (Querfurth and LaFerla 2010). The Alzheimer’s Association 

(2018) reports that more than 5 million Americans are currently living with the disease.  

Dementia’s social costs are high and growing. In 2016, it was the fifth leading cause of death 

worldwide and the sixth leading cause of death in the United States. In addition to causing mortal-

ity, dementia lowers people’s quality of life and increases medical spending. For instance, the 

Alzheimer’s Association (2018) estimates that US patients will spend $277 billion on health care 

services in 2018, most of which will be paid by taxpayers through Medicare, and these expendi-

tures exclude the cost of an estimated 18 billion labor hours supplied by unpaid caregivers, typi-

cally family and friends of the afflicted individuals. Furthermore, dementia erodes the cognitive 

skills that people use to make a host of complex and important financial decisions, such as retire-

ment planning and health insurance choices (Lusardi and Mitchell 2014). Agarwal et al. (2009) 

hypothesized that dementia is a likely source of the observed decline in the quality of financial 

decisions as people age, but prior research has not tested this directly.  

In this study we use Medicare records to determine if and when beneficiaries were first diag-

nosed with dementia. The data allow us to track each person’s precise residential location from 

1999 through 2013, including moves. We merge individual migration histories with the US Envi-

ronmental Protection Agency’s (EPA’s) national network of air quality monitors to construct per-

son-specific measures of long-term cumulative exposures to PM2.5 and five other federally regu-

lated air pollutants (particulate matter smaller than 10 microns (PM10), ozone, carbon monoxide, 

nitrogen dioxide, and sulfur dioxide). PM2.5 and dementia are strongly correlated across geo-

graphic areas. Figure I illustrates this correlation by plotting state-level dementia rates among 85-

year-old Medicare beneficiaries in 2013 against their average residential exposure to PM2.5 from 

2004 through 2013. The diagnosis rate varies substantially across states and is strongly positively 

correlated with PM2.5. The trend line indicates that a 1 microgram per cubic meter (μg/m3) increase 

in average exposure between the ages of 76 and 85 is associated with a 1.06 percentage point 

increase in the dementia rate at age 85. We observe similar positive correlations between PM2.5 

and dementia at every age in our data (Appendix Figure A1 provides additional examples).  

                                                 
conditions primarily or secondarily affecting the brain.” 
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FIGURE I: SPATIAL CORRELATION BETWEEN PM2.5 AND DEMENTIA AT AGE 85 IN 2013 

 
Note: Each data point represents the fraction of 85-year old individuals living in a particular state who had been diagnosed with dementia before 

the end of 2013, as measured on the vertical axis. The horizontal axis reports their average residential exposure to concentrations of air pollution 

particulates smaller than 2.5 microns from the beginning of 2004 through the end of 2013. Exposure is measured by spatial interpolation from air 

quality monitors to residential locations, incorporating any changes due to migration. The median state has 1,080 85-year olds. 

We leverage the Medicare data to investigate whether the relationship in Figure I is causal or 

due to residential sorting, spatial variation in access to health care, anticipatory behavior, errors in 

measuring pollution exposure, or other potential confounders. First, we develop a nationwide, in-

dividual-level model that tracks the onset of dementia over a decade among those who did not 

have dementia at the start of the decade. Second, we control for a rich set of individual character-

istics associated with dementia risk. These include flexible and comprehensive measures of age, 

race, gender, and pre-existing medical conditions that are associated with increased dementia risk. 

Third, we address the potential correlation between air pollution and aspects of health and human 

capital by controlling for individuals’ medical expenditures at the start of the decade, the socioec-

onomic composition of people living in their neighborhoods (defined as Census block groups) and 

baseline pollution levels in those neighborhoods, while simultaneously employing high-resolution 

geographic fixed effects for Census core-based statistical areas. Finally, we instrument for decadal 
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pollution exposure by adapting the instrumental variables design employed in Chay and Green-

stone’s (2005) county-level analysis to our individual-level model.  

In 1997 the EPA strengthened the Clean Air Act regulations to establish a federal standard on 

maximum-allowable PM2.5 concentrations. In 2005, the EPA designated counties as violating this 

new standard, generating quasi-experimental variation in future pollution levels. These counties 

contained more than one quarter of all Americans over age 65. We find that people who lived in 

these “nonattainment” counties at the time they were targeted for enhanced regulation experienced 

a 1.24 μg/m3 larger reduction in average PM2.5 exposure over the following decade compared with 

people who lived in counties that did not violate the EPA standard. While prior studies have used 

the EPA’s county nonattainment designations for particulate matter and ozone to identify effects 

of air pollution on a variety of health, housing and labor market outcomes (e.g., Chay and Green-

stone 2005, Walker 2013, Bento, Freedman, and Lang 2015, Isen, Rossin-Slater, and Walker 2017) 

our study is the first to do so for the 2005 PM2.5 standard, the first to measure long-term (i.e., 

decadal) air pollution exposure at the individual level, and the first to focus on dementia.  

As with studies of air pollution’s short-term effects on health (e.g., Schlenker and Walker 2016, 

Deryugina et al. 2016) we find that instrumenting for exposure increases the point estimates. We 

find that a 1 μg/m3 increase in average PM2.5 exposure over a decade (9.1% of the mean) increases 

the probability of being diagnosed with dementia by 1.3 percentage points (pp) (6.7% of the mean), 

while the comparable OLS specification yields an estimate of 0.2 pp (1% of the mean). To put our 

instrumental variables estimate in context, the elevated risk of dementia due to a 1 μg/m3 increase 

in average decadal exposure is equivalent to the elevated risk associated with a female aging from 

74 to 77, around two-thirds of the elevated risk associated with having hypertension, around one-

third of the elevated risk associated with having diabetes, or one-quarter of the elevated risk asso-

ciated with having congestive heart failure.  

The magnitude of our main instrumental variables estimate persists across a wide variety of 

alternative specifications. These include employing different methods for calculating pollution ex-

posure, utilizing different sources of variation in pollution exposure, excluding people who move 

after receiving a dementia diagnosis, and repeating the estimation after aggregating Medicare rec-

ords to the county level. To test for biases due to residential sorting on unobserved health and other 

threats to identification, we estimate the same instrumental variables model for other chronic ill-
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nesses that share similarities with dementia but are not a priori suspected to be caused by air pol-

lution. These placebo tests yield point estimates that are mostly small and statistically indistin-

guishable from zero, supporting our research design. 

Additional results indicate that our findings reflect the degree to which long-term exposure to 

fine particulate matter increases the risk of Alzheimer’s disease. First, we demonstrate that our 

findings are not explained by other federally regulated air pollutants that are correlated with PM2.5. 

Second, we demonstrate that our findings are not driven by vascular dementia that may arise due 

to short-term pollution spikes leading to strokes. Finally, we show that about 90% of the effects of 

PM2.5 on all types of dementia are explained by Alzheimer’s disease specifically.  

Our results have several implications for policy. We estimate that enforcement of the EPA’s 

1997 standard on maximum allowable PM2.5 concentrations led to air quality improvements in 

newly regulated counties that averted approximately 140,000 people living with dementia in 2013, 

yielding $163 billion in benefits under moderate assumptions about the value of the quantity and 

quality of life. Furthermore, by reducing dementia rates the EPA regulations improved Medicare 

beneficiaries’ financial decisions, as we illustrate in the context of prescription-drug insurance 

markets. Finally, we find that the effects of PM2.5 on dementia persist at levels below the EPA’s 

current regulatory threshold, suggesting that further regulation would yield additional benefits. 

Overall, our findings indicate that the social costs of air pollution and the benefits of regulation on 

human cognition are substantially larger than previously known.  

I. Background on Known Links between Air Pollution, Human Capital, and Dementia  

In addition to constraining the production of human capital among children and young adults, 

air pollution degrades the stock of human capital by increasing morbidity and mortality (Chay and 

Greenstone 2003, Currie and Neidell 2005, Schlenker and Walker 2016, Deschenes, Greenstone 

and Shapiro 2017, and others reviewed in Graff-Zivin and Neidell 2013). Older adults are also 

vulnerable. For example, Deryungina et al. (2016) used an instrumental variables regression to 

conclude that a 1 μg/m3 increase in PM2.5 over a three-day period caused 2.7 life years to be lost 

per million Medicare beneficiaries.2 Di et al. (2017) used a Cox proportional hazards model to 

conclude that a 1 μg/m3 increase in annual average PM2.5 increased the mortality rate by 0.7% 

                                                 
2 They also find that this same short-term increase caused 2.3 additional emergency room visits and $15,000 in additional medical expenditures per 

million beneficiaries. 
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among Medicare beneficiaries. 

Conditional on the stock of human capital, hourly and daily spikes in pollution levels have 

been found to reduce adults’ performances in laboratory tests of cognition as well as their job 

productivity (Graff-Zivin and Neidell 2013, Chen et al. 2017b). Research has implicated several 

pollutants, with an emphasis on PM2.5 because its small size allows it to penetrate buildings and 

pollute indoor air (Graff-Zivin and Neidell 2013).  

Recent medical studies have proposed multiple pathways by which air pollution, and PM2.5 

specifically, may cause dementia. First, pollution exposure is linked to increased risk for strokes 

and subsequent vascular dementia among older adults (Wellenius et al. 2012). Second, postmortem 

analysis has detected that PM2.5 had accumulated in human brains (Maher et al. 2016). People 

living in more polluted areas, such as near roadways, for long periods tend to have elevated con-

centrations of PM2.5 in their brains, smaller brain volume, and higher rates of brain infarcts or areas 

of necrosis (Wilker et al. 2015). Third, controlled exposure of mice to air pollution in laboratory 

experiments results in neuroinflammation and patterns of brain cell damage similar to postmortem 

analysis of Alzheimer’s patients (Block et al. 2012). Finally, PM2.5 has been found to increase 

mortality from cardiovascular conditions (Pope et al. 2002, Landen et al. 2006) that are associated 

with a higher risk of dementia (Alzheimer’s Association 2018). While suggestive, the existing 

evidence on pathways linking air pollution to dementia is based on non-human mammal studies 

and specialized human cohorts, such as people who chose to live near major roadways.3 

II. Data 

We use data on Medicare beneficiaries to identify the effects of PM2.5 on dementia and of 

dementia on decision making. All US citizens age 65 and above are eligible for Medicare benefits. 

The US Centers for Medicare and Medicaid Services (CMS) maintains a national database of ben-

eficiaries’ administrative records, including information on their residential address histories, med-

ical claims, demographics, and enrollment decisions for prescription drug insurance plans. We use 

these records to develop a novel longitudinal database on long-term exposure to air pollution, 

health outcomes, healthcare utilization, and insurance-plan enrollment.  

We start with a random 10% sample from the universe of Medicare beneficiaries who were at 

                                                 
3

 One larger scale study, by Chen et al. (2017a), found that living near major roadways is associated with substantial increases in the incidences of 
dementia and cognitive impairment. Their study leveraged administrative data to define a population-representative cohort for Ontario, Canada. 

However, they did not observe individuals’ exposures to individual pollutants, baseline health and migration patterns.  
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least 65 years old in 1999. We then add random 10% samples of all new 65-year-old Medicare 

beneficiaries each year from 2000 to 2013. Finally, we obtain an independent, random 20% sample 

from the universe of age 65 and over beneficiaries who purchased standalone prescription drug 

insurance plans through Medicare Part D at any point between 2006 and 2010 without the aid of 

low-income subsidies.4  

After compiling the union of these samples, we perform sample cuts that drop just under half 

of all individuals. First, we drop people who ever enrolled in Medicare Advantage plans, which 

replace traditional Medicare with a managed care plan. CMS lacks data on these individuals’ de-

mentia diagnoses. Second, we drop people who cannot be matched to a precise residential location 

at any point during the period 1999 to 2013. This includes addresses that are post-office boxes or 

incomplete address records. Our sample cuts are unlikely to compromise external validity. Appen-

dix Tables A1 reports summary statistics for our estimation sample and the excluded subsets. The 

excluded individuals are similar to those in our estimation sample in terms of their average de-

mographics, longevity and, when observable, medical conditions, health expenditures, pollution 

exposure, and Census block-group demographics.  

Our sample consists of 6.9 million individuals whom we observe for 55.4 million person-years. 

Approximately 44% of these individuals are male and 83% are white. The mean age upon entering 

our sample is 71. This reflects an average taken over the random sample of Medicare beneficiaries 

in the first year of our data (1999) and the beneficiaries who enter our panel in subsequent years 

when they turn 65 and become eligible for Medicare benefits. Once an individual enters our sam-

ple, we follow them through the end of 2013 or until they die. Approximately 60% of individuals 

survive through the end of 2013. For those who die, the mean age at death is 83.  

We observe where each person lives each year since entering our sample, their annual medical 

expenditures, and if and when they are diagnosed with dementia and other chronic illnesses. For 

the subset who choose to enroll in prescription-drug insurance plans (PDP) through the Medicare 

Part D markets (1.1 million people), we also observe their annual PDP choice sets, enrollment 

decisions, prescription drug claims and expenditures on plan premiums, and out-of-pocket costs 

over the first five years the markets existed (2006-2010). We use this information to construct a 

series of metrics that have been used in prior literature to assess the quality of financial decisions. 

                                                 
4 We exclude those receiving low-income subsidies because they are auto-enrolled into plans. This contrasts with individuals in the subsidy ineli-
gible population who must actively select a plan to become insured. For this reason, prior studies of decision making in the Medicare Part D PDP 

markets have excluded those receiving low-income subsidies.  
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These metrics are described in Section VI.B.  

Finally, we use these data to define sub-samples comprised entirely of individuals for whom 

we can match decadal pollution exposure to new dementia diagnoses. Specifically, our micro-level 

analysis focuses on a cohort of approximately 1.8 million individuals who were at least 65 years 

old in 2004, had not received a dementia diagnosis by the end of 2004, and were still alive in 

2013.5 Nineteen percent of this cohort had been diagnosed with dementia by the end of 2013. 

Following this cohort allows us to investigate how variation in decadal pollution exposure arising 

from new environmental regulations affected the probability of a dementia diagnosis conditional 

on survival.   

A. Clinical Measures of Dementia and Known Risk Factors 

For each person who receives a dementia diagnosis, we observe the initial diagnosis date in 

CMS’s Chronic Conditions Data Warehouse file. This file tracks if and when each individual is 

diagnosed with a specific chronic medical condition using insurance claim codes. A diagnosis of 

dementia (as officially defined in footnote 1) is based on the presence of multiple symptoms of 

cognitive impairment that significantly impact daily functioning. Examples include memory loss, 

impaired judgement, loss of spatial awareness, depression, and behavioral changes.  

Twenty-three percent of people in our sample receive a dementia diagnosis during our study 

period. Figure II shows how the fraction of people living with a diagnosis varies with age and 

gender in 2013. Approximately 1% of our sample receives a diagnosis before the age of 66. Diag-

nosis rates increase gradually with age through the mid seventies, before accelerating in the late 

seventies and beyond. More than one-third of those living to age 90 receive a dementia diagnosis 

by that point. The diagnosis rate is higher for women and this gender gap widens with age. 

According to the Alzheimer’s Association (2018), physical risk factors for dementia include 

chronic medical conditions that reduce the flow of blood and oxygen to the brain. Appendix Table 

A1 shows that most individuals in our data are diagnosed with at least one of these risk factors 

during our study period: stroke (19%), diabetes (32%), congestive heart failure (36%), ischemic 

heart disease (48%) and hypertension (71%). Additional behavioral factors believed to reduce the 

risk of dementia include higher educational attainment, better nutrition and overall physical health, 

                                                 
5 Table A1 summarizes their individual demographic characteristics, medical diagnoses, Census block group demographics and exposure to air 

pollutants in 2013.   
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and a higher degree of social and cognitive engagement. Because we are unable to observe these 

behaviors at the individual level, we proxy for them using the average characteristics of people 

living in each individual’s Census block group. From the US Census Summary files, we use block-

group averages of household income, per capita income, housing value, gross rent, housing stock 

age, percent of the housing stock that is owner occupied, share of residents over 65, share of resi-

dents by race, and share of residents by educational attainment.  

FIGURE II: DEMENTIA BY AGE AND GENDER IN 2013 

 

B. Using Residential Address Histories to Measure Long-Term Pollution Exposure 

CMS uses information from the US Social Security Administration to track Medicare benefi-

ciaries’ residential addresses. We obtain ZIP+4 Codes (also referred to as nine-digit ZIP Codes) 

for each individual’s sequence of home addresses from 1999 to 2013. ZIP+4 Codes are close to 

street addresses in terms of spatial precision: each code corresponds to a single mail delivery seg-

ment such as one floor of an apartment building or one side of a street on a city block. The US 

includes more than 34 million ZIP+4 Codes, equating to about one for every four households.  

Migration patterns of the individuals in our sample are similar to those reported by the Census 
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Bureau for individuals aged 65 and above. More than 80% of individuals live in the same ZIP+4  

throughout our study period. Of the 18% of people who move between ZIP+4 Codes at least once, 

10% move between counties and 5% move between states.6 We use this information to measure 

each individual’s long-term exposure to air pollution, accounting for migration.7  

Individuals in our sample live in 9.8 million distinct ZIP+4 Codes between 1999 and 2013. We 

measure annual air pollution at the centroids of each of these areas, focusing on six criteria pollu-

tants regulated by the Environmental Protection Agency (EPA). In addition to PM2.5, these include 

PM10, ozone, carbon monoxide, nitrogen dioxide and sulfur dioxide. Annual data on ambient pol-

lutant concentrations are drawn from the EPA’s air quality system, consisting of an unbalanced 

panel of 6,679 monitors in operation between 1999 and 2013.8 To approximate annual average 

concentrations in each ZIP+4 Code, we use the latitudinal and longitudinal coordinates of each 

monitor along with the coordinates of each ZIP+4.9 Specifically, we use the Great Circle algorithm 

to calculate the surface distance from each ZIP+4 centroid to each monitor.10 Then, for each cen-

troid-pollutant-year combination, we calculate a weighted average of ambient concentrations rec-

orded at all operating monitors with the weights given by the square of the inverse distance.11 

Thus, as the distance from a ZIP+4 centroid to a monitor increases, the weight assigned to that 

monitor decreases. Finally, we combine the resulting set of 882 million local pollution readings 

(9.8 million centroids by 6 pollutants by 15 years) with individuals’ residential ZIP+4 histories to 

construct individual-specific exposure histories. 

These exposure histories are the most comprehensive data ever developed to study how air 

pollution affects cognition. Nevertheless, like all methods for estimating pollution exposure, the 

constructed histories may embed measurement error because of our inability to fully observe and 

control for factors such as avoidance behavior, the location and duration of activities taking place 

                                                 
6 Among those who ever move between ZIP+4 Codes 73% move once during our study period, 19% move twice, 5% move three times and 2% 
move four or more times. 
7 We are unable to observe seasonal migration by people with more than one residence (e.g., snowbirds) because we only observe the residential 

address on record with the Social Security Administration and CMS for administrative purposes. Fortunately, the scope for measurement error is 
small. Jeffery (2015) estimates that seasonal migrators only account for 2% to 4.1% of the Medicare population based on addresses on Medicare 

claims for individuals’ primary care and emergency room visits.  
8 Appendix Figure A2 maps the locations of monitoring stations for each pollutant. The six criteria pollutants that we study are tracked at between 
794 and 2,010 monitoring stations from 1999 to 2013. For example, there were 1,797 monitoring stations for PM2.5. The EPA also regulates lead 

as a criteria air pollutant but had far fewer monitors (477) during our study period and less nationally representative coverage.  
9 Geographic coordinates of ZIP+4 centroids were purchased from GeoLytics, which created them from the Census Bureau’s TIGER/line Shapefiles 
and US Postal Service records. 
10 In other words, we use the geographic coordinates of both the ZIP+4 Codes and the monitors to calculate the shortest distance between each pair 

on the surface of the spherical Earth. 
11 This method of interpolation, with weights given by the distance raised to a negative exponent, is the predominant method in the literature going 

back to Shepherd (1968). Related examples include Currie and Neidell (2005) and Bishop and Timmins (2018). 



10 

 

outside of the home, variation in indoor air penetration rates due to heterogeneity in home sealing, 

and variation in respiration due to health and physical activity. Like prior studies, we develop 

instrumental variables to address potential attenuation bias (Chay and Greenstone 2003, Schlenker 

and Walker 2016).  

FIGURE III: AVERAGE RESIDENTIAL CONCENTRATION OF PM2.5 BY YEAR  

 
Note: The figures report annual average concentrations of fine particulate matter based on place of residence for our sample of Medicare benefi-

ciaries. 

Exposure to air pollution among the US Medicare population declined substantially during the 

2000s. Figure III shows that annual average residential exposure to PM2.5 declined from about 14 

μg/m3 in 1999 to about 9 μg/m3 in 2013. This is true regardless of whether we measure exposure 

using the unbalanced panel of all monitors in operation each year (solid line) or a balanced panel 

of monitors that operated continuously from 2001 through 2013 (dashed line). We use this bal-

anced panel in our main econometric analysis to avoid measurement error that could be introduced 

if state and county officials responded to increased federal regulation of PM2.5 during the mid-

2000s by strategically locating new monitors in cleaner areas (Muller and Rudd 2017, Grainger, 

Schreiber and Chang 2018).12 

                                                 
12 Our results are robust to this modeling decision, as shown in Section IV.B. 

6

8

10

12

14

16

1999 2001 2003 2005 2007 2009 2011 2013

A
ve

ra
ge

 R
es

id
en

ti
al

 C
o

n
ce

n
tr

at
io

n 
(μ

g
/m

3 )

all monitors

balanced monitor panel



11 

 

III.  Research Design 

Our research design combines the quasi-experimental approach to identification from eco-

nomic studies of air pollution (e.g., Chay and Greenstone 2005, Walker 2013, Bento, Freedman, 

and Lang 2015, Isen, Rossin-Slater, and Walker 2017) with the logic of a cohort design similar 

to those used in medical and epidemiological studies (e.g., Pope et al. 2002, Landen et al. 2006, 

Di et al. 2017). In particular, we analyze how decadal exposure to air pollution affects the proba-

bility of new dementia diagnoses using quasi-random variation in pollution exposure resulting 

from Clean Air Act regulations.  

A. Clean Air Act Regulations as a Quasi-Random Source of Variation in PM2.5 Exposure  

A signature feature of the Clean Air Act is the establishment of national standards for maxi-

mum-allowable, county-level concentrations of particulate matter, ozone, carbon monoxide, sulfur 

dioxide, nitrogen dioxide and lead. Counties that violate these standards are designated as being 

in “nonattainment” by the EPA. States are then responsible for developing implementation plans 

to ensure that nonattainment counties reduce concentrations enough to meet the national standards. 

States that fail to bring their counties into attainment risk losing their federal highway funds and 

may face additional federal penalties, thereby spurring local regulation. 

Among the regulated pollutants, particulate matter is believed to have the most pernicious ef-

fects on human health at commonly observed concentrations (US EPA 2011). Beginning in 1971, 

the EPA regulated total suspended particulates (TSP). In light of evidence that health effects were 

being driven by the smallest particulates, the EPA replaced the TSP standard with a standard on 

PM10 in 1987 and a standard on PM2.5 in 1997. Enactment of each new standard was followed with 

new nonattainment designations at the county level. These nonattainment designations caused the 

regulated counties to have relatively large reductions in particulate matter. Importantly, house-

holds, workers, and firms would have been unlikely to have anticipated these reductions when 

making prior location decisions. Following this logic, Chay and Greenstone (2005) and Isen, Ros-

sin-Slater, and Walker (2017) use county attainment status for TSP as an instrument for changes 

in TSP concentrations, while Walker (2013) and Bento, Freedman, and Lang (2015) develop in-

struments based on attainment status for PM10. In this paper, we exploit the most recent target of 
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the EPA’s county attainment designations: the 1997 PM2.5 standard.13 

FIGURE IV: 2005 COUNTY ATTAINMENT DESIGNATIONS FOR PM2.5 

 

Note: The map shows attainment status in 2005 for US counties that had air quality monitors in place throughout the 2001-2003 evaluation period. 

There were 132 nonattainment counties located in 21 states and 528 attainment counties in 50 states. Almost all of the unmonitored counties were 

defined by the EPA as “unclassifiable” because they lacked the air quality monitor data needed to determine attainment status.     

In 1997, the EPA established initial monitoring protocols for PM2.5 and set the maximum-al-

lowable annual average concentration at 15.05 μg/m3. By 1999, a national network of more than 

900 air quality monitors was put into place. After several years of litigation failed to overturn this 

new standard, the EPA made initial county nonattainment designations in 2005 based on monitor 

readings from 2001 to 2003.14 At that time, 132 of the monitored counties containing approxi-

mately 27% of the US population were classified as nonattainment. Another 528 counties contain-

ing 43% of the US population were classified as attainment. Remaining counties that lacked the 

monitoring data needed to make a clear designation were generally defined as “unclassifiable” and 

not subjected to additional regulation (US EPA 2005).15 The map in Figure IV shows the locations 

                                                 
13 We have kept our review of the institutional details brief because the rationale for using county nonattainment status as an instrument for changes 

in air pollution because it has been thoroughly explained by prior studies. Readers seeking additional background on federal regulation of air 
pollutants should see the discussions in Kahn (1997), Chay and Greenstone (2005), Walker (2013) and US EPA (2005). 
14 Nonattainment designations at each monitor were based on an average from 2001-2003 of annual averages over quarterly averages over daily 

averages over hourly average monitor readings. For counties with multiple monitors, nonattainment designations were based on the monitor with 
the highest concentration. Details are provided in US EPA (2005). 
15 Exceptions to this rule occurred for unmonitored counties that were believed to contribute to violations in nearby monitored counties. In such 
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of attainment and nonattainment counties with air quality monitors. States were directed to ensure 

that nonattainment counties met the 15.05 μg/m3 standard by 2010.16  

FIGURE V: PM2.5 CONCENTRATIONS BY COUNTY ATTAINMENT STATUS IN 2005 

 
Note: The figure reports annual average concentrations of particulates smaller than 2.5 microns (PM2.5). Measurements are taken from air quality 

monitors in counties designated in 2005 as attainment or nonattainment with the federal standard. Each data point in the nonattainment line is a 
simple average over monitors in nonattainment counties that were in continuous operation from 2001-2013. The attainment county line is defined 

similarly. The bottom line shows the difference between the nonattainment and attainment lines. In 2010 the Census Bureau recorded 41% of the 

US population age 65 and over living in attainment counties and 27% living in nonattainment counties. Corresponding general population shares 

were 43% (attainment) and 28% (nonattainment).  

Figure V provides initial evidence that nonattainment designations caused the newly regulated 

counties to improve air quality. The solid and dashed lines show the trends in annual average PM2.5 

readings for nonattainment and attainment counties.17 Prior to 2005, PM2.5 concentrations were 

trending downward similarly in both attainment and nonattainment counties. The dotted line shows 

                                                 
cases, the unmonitored counties were classified as nonattainment (US EPA 2005). 76 counties in our data fit this description. 
16 The regulation allowed for potential extensions of up to 5 years at the discretion of the EPA administrator. Guidelines for state implementation 

plans were released in 2007 and new source review standards were released in 2008. The EPA also indirectly regulated particulate matter through 

the Clean Air Interstate Rule, enacted in March 2005 to mitigate interstate transport of PM2.5 precursors, and through new regulations on emissions 
from mobile sources.  
17 The figure is based on a balanced panel of 488 monitors in operation continuously from 2001-2013. Appendix Figure A3 shows that the figure 

looks virtually identical if we reconstruct it from an unbalanced panel of all operating monitors that satisfied EPA’s monitoring standards for 
regulatory decisions, had at least 10 readings per year, and did not exclude events such as forest fires (between 787 and 1,106 per year). It also 

looks virtually identical if we reconstruct it from the balanced panel of 393 monitors that were in continuous operation from 1999 through 2013. 
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that the difference between the two trend lines was fairly stable from 1999 to 2005.18 After the 

nonattainment designations were made, PM2.5 concentrations declined at a noticeably faster rate 

in nonattainment counties. The difference between the average monitor readings in nonattainment 

and attainment counties dropped by more than half between 2005 and 2013. Figure V mirrors the 

analysis in Chay and Greenstone (2005) of the 1975 attainment designations for TSP (see Figure 

2 in that paper), suggesting that little has changed in the way that local regulators respond to federal 

incentives for reducing air pollution. Similar to that study, we use county attainment status as an 

instrumental variable for changes in particular matter concentrations over the subsequent decade.19  

B. Main Econometric Model 

Let 𝐷𝑖,𝑡 be an indicator for whether person i is diagnosed with dementia before the end of year 

t. We restrict our Medicare sample to the cohort who were at least 65 years old in 2004, who had 

not received a dementia diagnosis at that point, 𝐷𝑖,2004 = 0 ∀ 𝑖, and who were still alive in 2013. 

We define an indicator, 𝑦𝑖 = 𝐷𝑖,2013 − 𝐷𝑖,2004, describing whether person i receives a dementia 

diagnosis by the end of 2013. This 𝑦𝑖 indicator is the dependent variable in our linear probability 

model, 

(1)   𝑦𝑖 = α ∑
𝑃𝑀2.5𝑖,𝑠

10

2013

𝑠=2004

+ 𝜂𝑖,2013 + 𝛽𝑋𝑖,2013 + 𝛾𝐻𝑖,2004 + 𝜃𝑊𝑖,2004 + 𝑓 ( ∑
𝑃𝑀2.5𝑖,𝑠

3

2003

𝑠=2001

) + 𝜖𝑖. 

The coefficient of interest in Equation (1), α, measures the effect of 10-year average residential 

exposure to PM2.5. This cumulative exposure measure is derived from each person’s residential 

location history so it incorporates changes in pollution experienced as a result of moving. 

We draw on administrative Medicare records to control for individual and neighborhood char-

acteristics that may be correlated with both dementia and PM2.5. First, we add dummy variables, 

𝜂𝑖,2013, for the approximately one thousand Core Business Statistical Areas (CBSAs) in which 

people live in 2013 to absorb the effects of environmental factors that could be spatially correlated 

with both pollution and dementia.20 Examples include extreme temperatures, the presence of lead 

                                                 
18 The slight drop in 2004 could reflect spatiotemporal variation in weather and economic activity or a preemptive response to anticipated future 

regulation. In any case, our econometric models of decadal exposure define 2004 as the first year of the exposure decade, while controlling for 
observable pre-decadal exposure. 
19 Chay and Greenstone’s preferred version of this instrument was an indicator for mid-decade attainment status. They preferred this partly because 

using mid-decade attainment status limited the scope for unobserved spatial sorting by households. By contrast, we observe migration at the indi-
vidual level. 
20 We create a state-specific dummy variable for people living in rural areas outside CBSAs. 



15 

 

pipes, and chemical exposures via hazardous waste sites. In particular, extreme temperatures are 

known to cause morbidities that serve as risk factors for dementia (Deschenes 2014). Equally im-

portant, these dummies will absorb variation across CBSAs in access to medical care and doctors’ 

diagnostic procedures that could lead to spatial variation in dementia diagnosis rates.21  

To control for heterogeneity in dementia risk among individuals living in each CBSA we uti-

lize all of their demographic information in Medicare records along with relevant information 

about their health at the start of the decade. The 𝑋𝑖,2013 vector includes indicators for race and 

gender-specific indicators for integer age at the end of 2013 (from 74 through 99).22 These flexible 

age-by-gender controls absorb the nonlinear trends in dementia rates shown in Figure II.  

The 𝐻𝑖,2004 vector characterizes baseline health in 2004. We employ a full-factorial design to 

control for pre-existing medical conditions known to elevate the risk of dementia, adding dummy 

variables for each of 32 possible combinations of hypertension, diabetes, congestive heart failure, 

ischemic heart disease and stroke.23 We further control for unobserved heterogeneity in baseline 

health by adding a fourth-order polynomial function of gross expenditures on all health care ser-

vices covered by Medicare parts A and B in 2004.24  

To proxy for socioeconomic characteristics that we do not observe for individuals, such as 

wealth, education and degree of social engagement, we add a series of covariates, 𝑊𝑖,2004, describ-

ing the residents of person i’s 2004 Census block group. Specifically, we include median house-

hold income, income per capita, mean and median house value, median rent, median house age, 

fractions of the housing stock that are owner occupied, renter occupied and vacant, fraction of the 

residents over age 65, fractions of residents who report being white, black and Hispanic, and the 

fractions of residents in each of seven educational-attainment bins. These neighborhood-level 

measures also serve to control for within-CBSA heterogeneity in other neighborhood amenities 

known to attract wealthier households with higher education (Kuminoff, Smith and Timmins 

2013). 

                                                 
21 Additionally, for the majority of people who never move during our study period, the CBSA dummies will control for any pre-period sorting 
across CBSAs on the basis of latent characteristics that may serve as risk factors for dementia (Finkelstein, Gentzkow and Williams 2016). 
22 74 is the minimum age in 2013 because 65 is the minimum age at the start of the decade. Centenarians are grouped into two gender-specific bins 

because their relatively small numbers prevent us from precisely estimating age-specific coefficients. Our findings on air pollution are unaffected 
by adding age-specific bins beyond age 100. 
23 Because air pollution is a risk factor for these morbidities, controlling for them will also help to absorb the manifested effects of individual 

differences in pollution exposure prior to our study period. 
24 Medicare Parts A and B cover virtually all medical services aside from prescription drugs. This includes doctors’ services, preventive care, 

durable medical equipment, hospital out-patient services, laboratory tests, x-rays, hospital in-patient services, nursing facilities, and hospice care. 
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Finally, we add a fourth-order polynomial function, 𝑓(∙), in baseline PM2.5 exposure. We cal-

culate this baseline exposure using annual averages over the EPA’s monitoring window from 2001 

through 2003 at person i’s residential location in 2004. This controls for any residual effects of 

pre-sorting into more polluted neighborhoods by people who are more likely to receive a future 

dementia diagnosis. Controlling for baseline exposure also modifies the interpretation of α in equa-

tion (1) to be similar to a first-differenced model. That is, α measures how the change in cumulative 

PM2.5 exposure from 2004 to 2013 affects the probability of being newly diagnosed with dementia. 

Measuring the dependent variable as a diagnosed change in cognition also purges an individual 

fixed effect from the econometric model. 

Despite the rich set of controls in Equation (1), two threats to identification remain. Measure-

ment error in pollution exposure is our primary concern. A secondary concern is omitted variable 

bias, though our controls are chosen to substantially mitigate this concern. We address both of 

these issues by instrumenting for decadal pollution exposure with an indicator for county attain-

ment status, as shown in Equation (2). 

(2)   ∑
𝑃𝑀2.5𝑖,𝑠

10

2013

𝑠=2004

= 𝜋𝑍𝑖 + 𝜂𝑖,2013 + 𝜎𝑋𝑖,2013 + 𝜏𝐻𝑖,2004 + 𝜔𝑊𝑖,2004 + 𝑓 ( ∑
𝑃𝑀2.5𝑖,𝑠

3

2003

𝑠=2001

) + 𝜀𝑖. 

The instrument takes a value of one for individuals who resided in counties that were designated 

as nonattainment in 2005. The 𝑍𝑖 vector interacts this instrument with the polynomial function of 

baseline pollution exposure that enters the second stage model to allow regulatory responses to 

vary with distance from the attainment threshold. 

Thus, α is identified by variation in decadal exposure to PM2.5 experienced by people of the 

same age, race, and gender who, at the start of the decade, had received the same medical diagnoses 

for dementia risk factors, had the same amount of gross annual medical expenditures, and had 

sorted themselves into neighborhoods with the same baseline levels of PM2.5 and with similar dis-

tributions of race, income, educational attainment, and property values. Holding all of these factors 

fixed, some people lived in counties that were newly regulated as a result of the EPA’s PM2.5 

standard while others did not; those living in newly regulated counties were exposed to less PM2.5 

on average over the next 10 years (shown in Section IV.A). This identification framework provides 

a micro-level research design similar to the aggregate, county-level research design developed in 

Chay and Greenstone (2005). 
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C. Econometric Model with Aggregated Data 

As a robustness check on our micro-level specification and a methodological comparison to 

prior literature, we aggregate Medicare administrative records to the county level and model 

changes in county-level dementia rates. Similar to Chay and Greenstone (2005), we estimate a 

first-differenced model using 2SLS with an indicator for county-level nonattainment status as the 

instrument. Our second-stage model regresses county-level changes in dementia rates on changes 

in their residents’ cumulative exposure to PM2.5.  

(3)   Δ𝑦𝑗 = αΔPM2.5𝑗 + 𝛿𝑗 + 𝛽Δ𝑋𝑗 + 𝛾1𝐻𝑗,2004 + 𝛾2Δ𝐻𝑗 + 𝜃Δ𝑊𝑗 + 𝜑Δ𝐶𝑗 + Δ𝜖𝑗. 

The outcome in (3) is the change between 2004 and 2013 in the fraction of people living with a 

dementia diagnosis in county j and the focal variable, ∆𝑃𝑀2.5𝑗, denotes the decadal change in the 

average county resident’s cumulative exposure to PM2.5 relative to the baseline period (2001-

2003).25 

(4)   ΔPM2.5𝑗 = ∑
𝑃𝑀2.5𝑗,𝑡

10

2013

𝑡=2004

− ∑
𝑃𝑀2.5𝑗,𝑠

3

2003

𝑠=2001

. 

Formulating the model in changes purges time-invariant latent characteristics of counties that may 

lead to persistently higher dementia rates such as pre-period pollution levels, climate, and supply 

of retirement communities or long-term care facilities that may attract migrants who are at higher 

risk of dementia.  

The remaining covariates parallel our micro-level specification in that they control for time-

varying features of counties that may be correlated with changes in pollution and dementia. They 

include dummy variables for the nine Census divisions (𝛿𝑗) to absorb regional trends in diagnosis 

rates, changes in the distribution of people living in county j in terms of integer age, gender, and 

race (Δ𝑋𝑗), the fraction of people diagnosed with each morbidity risk for dementia at the beginning 

of the decade (hypertension, diabetes, congestive heart failure, ischemic heart disease and stroke), 

the average resident’s 2004 medical expenditures (𝐻𝑗,2004) along with changes in each of those 

                                                 
25 The 2001-2003 monitoring period is a natural choice for measuring baseline exposure because, as we explain above, it was used to determine a 
county’s attainment status. Our model controls for cumulative lifetime pollution exposure prior to 2001 experienced by the average resident of each 

county via the county fixed effects purged by measuring the dependent variable in differences.. 
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variables due to turnover in county j’s population (Δ𝐻𝑗), and changes in the demographic compo-

sition of people living in the average resident’s Census block group (Δ𝑊𝑗). Finally, we proxy for 

changes in access to medical care (Δ𝐶𝑗) using changes in hospital beds per capita, changes in med-

ical doctors per capita, changes in the fraction of residents enrolled in Medicare Advantage (e.g., 

to account for the possibility that those at lower risk of dementia are more likely to select out of 

our sample and into Medicare Advantage), and changes in what Medicare pays physicians as cap-

tured by the Geographic Practice Cost Indices (GPCIs).26  

IV. Results 

A. Results from the Main Econometric Model 

i. Second Stage Results 

Table I summarizes our main results. The dementia indicator is multiplied by 100 so that the 

linear probability model coefficients on PM2.5 may be interpreted as percentage point (pp) changes 

in the probability of receiving a dementia diagnosis. Standard errors are robust to heteroscedastic-

ity and clustered at the Census block group level to allow for spatial correlation in diagnoses. 

Column (1) shows the result from a univariate OLS regression. A 1 g/m3 increase in average 

PM2.5 exposure from 2004 through 2013 is associated with a 0.46 pp increase in the probability of 

receiving a dementia diagnosis by the end of 2013. About 80% of this association persists in col-

umn (2) after we add a flexible function of baseline neighborhood PM2.5 concentrations from 2001-

2003. The PM2.5 coefficient declines slightly further to 0.33 pp in column (3) when we add all of 

the observed measures of baseline health, demographics and socioeconomic status. Narrowing our 

focus to variation in exposure among people who lived in the same Core Business Statistical Area 

in 2013 further reduces the coefficient to 0.26 pp in column (4). These 982 CBSA dummy variables 

alone absorb 83.5% of the variation in individuals’ decadal PM2.5 exposures. 

The national sample used to estimate the models in columns (1)-(4) includes people who lived 

in counties that lacked air pollution monitors at the time nonattainment designations were made. 

Spatially interpolating their pollution exposures relies exclusively on information from other coun-

                                                 
26 Medicare’s three GPCIs track spatiotemporal variation in the wages of professional workers, malpractice insurance costs, and practice cost and 
expense and CMS uses this information to adjust levels at which Medicare reimburses doctors for specific procedures which, in turn, could affect 

the rates at which local doctors treat Medicare patients. 
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ties, which may increase measurement error due to the greater distance between people’s resi-

dences and the monitors. This could pose a threat to 2SLS estimation if the measurement error 

tends to be greater in the unmonitored/unclassifiable counties because they were treated the same 

as attainment counties for regulatory purposes. We avoid this threat to identification by dropping 

people who lived in unmonitored/unclassifiable counties at the time nonattainment designations 

were made. Repeating estimation of the model in column (4) using the smaller sample of 1.2 mil-

lion people reduces our OLS estimate for the PM2.5 coefficient in column (5) to 0.21 pp. To assess 

the sensitivity of these results to our functional form assumptions, we estimate the probit analogue 

to the model in column (5). The average marginal effect from the probit model is virtually identical 

to that from the linear probability model (0.21 pp, p=0.043).  

TABLE I—DECADAL EXPOSURE TO PM2.5 AND DEMENTIA IN 2013 

 
Note: The dependent variable equals 100 if an individual was diagnosed with dementia prior to the end of 2013 and 0 otherwise. Pollution exposures 

are based on 10-year averages corresponding to the individual’s residential address history. The estimation sample is limited to individuals alive in 
2013 for whom we continuously observe pollution exposure at their home address between 2001 and 2013. Col (1) is a univariate OLS regression. 

Col (2) adds a 4th order polynomial function of baseline residential exposure from 2001-2003. Col (3) adds covariates for baseline health in 2004, 

individual demographics and mean demographics for the person’s 2004 Census block group. Col (4) adds dummies for the 982 Core Business 
Statistical Areas where people lived in 2013. Col (5) limits the sample to people who were living in counties with air pollution monitors that were 

designated as “attainment” or “nonattainment” by the EPA in 2005. Col (6) reports results from 2SLS estimation of the model in Col (5), instru-

menting for decadal PM2.5 exposure using an indicator for county non-attainment status interacted with the 4th order polynomial function of baseline 
exposure. Coefficients on all other covariates in the first and second stage models are reported in Appendix Table A2. Asterisks indicate statistical 

significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered by initial Census block group.   

 

Column (6) reports our main 2SLS result. It modifies the OLS specification from column (5) 

by using county nonattainment to instrument for decadal exposure. The second-stage coefficient 

on PM2.5 is about six times larger than the corresponding OLS estimate. It implies that a 1 g/m3 

increase in average PM2.5 exposure from 2004 through 2013 increased the probability of receiving 

a dementia diagnosis by the end of 2013 by 1.29 pp, a 6.7% increase relative to the dementia rate 

 (1) (2) (3) (4) (5) (6)

0.459*** 0.372*** 0.333*** 0.255*** 0.210** 1.288***

(0.02) (0.05) (0.05) (0.09) (0.11) (0.46)

4th order polynomial in 2001-2003 exposure  x x x x x

individual & neighborhood covariates   x x x x

CBSA dummies    x x x

monitored county sample x x

2SLS: county attainment status IV x

Kleibergen-Paap rk Wald F-statistic 658

Number of individuals 1,851,175 1,851,175 1,851,175 1,851,175 1,256,440 1,256,440

Share with dementia in 2013 18.9 18.9 18.9 18.9 19.2 19.2

Decadal PM2.5 (1 μg/m3)
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in our sample.27 Coefficients on the remaining covariates are reported in Appendix Table A2.28  

ii. First Stage Results 

Our 2SLS estimate is identified by the conditional variation in individuals’ decadal PM2.5 ex-

posures that arises from county nonattainment designations. Figure VI illustrates this variation 

graphically. The solid line is constructed by using our first-stage coefficients on the excluded in-

struments to predict how county nonattainment designations affected decadal exposure conditional 

on pre-decadal exposure, CBSA dummies, and the other covariates.29 The dotted lines denote 95% 

confidence bands on our predictions. For instance, consider people who sorted themselves into 

ZIP+4 locations that had average PM2.5 concentrations of 13 g/m3 from 2001 to 2003. Within this 

group, average exposure from 2004 to 2013 is predicted to be approximately 0.3 g/m3 lower for 

the subset living in counties that received nonattainment designations. This is close to our estimate 

for the median partial effect among all people living in nonattainment counties (-0.27 g/m3).  

The partial effect function for PM2.5 is negative below the attainment threshold, as expected. 

Its monotonic shape indicates that local regulatory actions led to relatively larger PM2.5 reductions 

in nonattainment county neighborhoods with lower baseline concentrations. This makes sense: as 

local concentrations rise within an attainment county so does the likelihood of future regulation. 

The prospect of future regulation provides an incentive for local regulators to take preemptive 

actions, reducing the magnitude of differences in future PM2.5 reductions between attainment and 

nonattainment counties. Relatively polluted neighborhoods within attainment counties may also 

be more likely to benefit from spillover effects of regulation in nearby nonattainment counties. 

The residual variation in PM2.5 shown in Figure VI arises from two mechanisms. First, some 

CBSAs include attainment and nonattainment counties with overlapping distributions of baseline 

                                                 
27 The p-value on Hansen’s J-statistic is 0.454, so we fail to reject the hypothesis that our instruments are valid and the model is correctly specified. 

Fitted probabilities of receiving a dementia diagnosis from the IV model lie between zero and one for 95.25% of individuals. They are less than 
zero for 4.74% of individuals and greater than one for 3 individuals. In comparison, fitted probabilities for the OLS model in column 5 are less than 

zero for 4.56% of individuals and greater than one for 3 individuals.  
28 For example, Table A2 shows that after we condition on the age and gender effects already seen in Figure II, as well as on the other controls and 
the baseline and instrumented PM2.5 measures, diagnosis rates tend to be higher for African-Americans (+3.4%) and Hispanics (+3.1%) relative to 

Asians (+1.9%) and Whites (+1.7%), with “other race” as the omitted category. Diagnosis rates also decline by about 1.3% for every $100,000 of 

additional neighborhood income per capita and tend to be lower in neighborhoods with higher educational attainment. For example, a 10% increase 
in the fraction of block group residents with graduate degrees (relative to less than 8th grade education) is associated with a 0.4% reduction in the 

dementia diagnosis probability. Section V provides a more detailed comparison between the estimated effect of PM2.5 and estimated effects of age 

and pre-existing medical conditions. 
29 The Kleibergen-Paap rk Wald F statistic is 657.6, allowing us to strongly reject the hypothesis that our instruments are weak. In comparison, the 

critical value for the Stock-Yogo test of 5% maximal IV bias is 18.37. 
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PM2.5 concentrations.30 Nonattainment designations within these CBSAs create variation in deca-

dal PM2.5 exposures among the subset who had the same residential ZIP+4 codes from 2004 

through 2013 and had pre-sorted themselves into neighborhoods that had the same baseline PM2.5 

concentrations. Intuitively, we can compare people in relatively clean areas of nonattainment coun-

ties with those in relatively dirty areas of attainment counties in the same CBSA. Second, the 

subset who changed their residential ZIP+4 codes at some point from 2004 to 2013 experienced 

variation in exposure from their migration paths. 

FIGURE VI: PARTIAL EFFECT OF COUNTY NONATTAINMENT DESIGNATION ON PM2.5 EXPOSURE 

 

Note: The figure shows the average effect of the 2005 nonattainment designation on the average conditional change in decadal PM2.5 concentration 

levels. These estimates are derived from the first stage of the 2SLS model as shown in Appendix Table A2.  

 

 

                                                 
30 Appendix Figure A4 illustrates the within-CBSA variation in county nonattainment status conditional on baseline PM2.5 concentrations, using 

New York and Chicago as examples.  
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We interpret the partial effect function in Figure VI as a lower bound on the impact of the 

EPA’s regulation on people who started the decade in nonattainment counties. Because the func-

tion conditions on baseline PM2.5 concentrations, CBSA dummies, and other covariates, the partial 

effects exclude any reductions in exposure that can be explained by a linear function of those 

conditioning variables. This is important because the regulation was designed to lead local air 

quality managers to reduce pollution more in more polluted areas. We can approximate the regu-

lation’s full effect by a differences-in-differences regression of the change in average PM2.5 expo-

sure on county attainment status. We find that average PM2.5 exposure declined by 1.24 g/m3 

more for people in nonattainment counties, above and beyond a reduction of 1.80 g/m3 shared 

between attainment and nonattainment counties.  

B.  Robustness 

Table II summarizes results from alternative 2SLS specifications. Column (1) repeats our main 

result from Table I for comparison, columns (2)-(5) summarize sensitivity to changing features of 

the research design, and columns (6)-(9) test hypotheses about the mechanisms underlying our 

findings. In column (2) we extend the nonattainment instrument to utilize within-county variation 

in monitor readings, similar to Bento, Freedman and Lang (2015). Specifically, we stratify the 

county nonattainment indicator according to whether the air quality monitor closest to a person’s 

residence violated the federal regulatory standard. This generates three indicators: (i) nonattain-

ment county with nearest monitor exceeding the threshold, (ii) nonattainment county without near-

est monitor exceeding the threshold, and (iii) attainment county with nearest monitor exceeding 

the threshold. As in our main specification, each indicator is interacted with the polynomial func-

tion of baseline exposure. This strategy is based on Auffhammer, Bento and Lowe (2009) who 

found that county regulators responded to nonattainment designations for PM10 by strategically 

targeting areas close to nonattainment monitors for more aggressive action, yielding larger reduc-

tions in particulates near nonattainment monitors relative to attainment areas in the same counties. 

An advantage of extending the set of instruments to include information on monitor attainment is 

that it allows us to utilize identifying variation in PM2.5 exposure that comes from within-county 

conditional variation in long-term exposure among those who never moved. Column (2) shows 

that doing so yields a 1.03 pp (5.4% of the mean) estimate for the effect of a 1 g/m3 increase in 
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PM2.5 on the probability of a dementia diagnosis by the end of the decade.31 

TABLE II—ROBUSTNESS CHECKS ON THE EFFECT OF PM2.5 ON DEMENTIA 

 
Note: For reference, Col (1) repeats the results from our main specification (Table 1, Col 6) that is modified for each remaining column. Col (2) 

stratifies the nonattainment county instrument according to whether the monitor closest to a person’s residence was in attainment. Col (3) uses the 

same instruments as Col (2) but replaces the CBSA dummies with dummy variables for counties. Col (4) replaces our preferred measure of decadal 
pollution exposure (based on a balanced panel of continuously operating monitors) with data from an unbalanced panel of all monitors in operation 

each year. Col (5) replaces the 4th order polynomial function of baseline pollution exposure with a “spline” function based on dummies for 72 

baseline exposure bins, each of which has a width of 0.33 micrograms per cubic meter. Col (6) tests for reverse causality by excluding everyone 
who moved after receiving a dementia diagnosis. Col (7) adds other criteria pollutants: PM10, ozone, carbon monoxide, nitrogen dioxide, and sulfur 

dioxide. They are all treated as endogenous. Their coefficients are reported in Appendix Table A3.  Col (8) defines the dependent variable as 

dementia cases without Alzheimer’s disease while Col (9) defines it as Alzheimer’s disease specifically. Asterisks indicate statistical significance 
at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered by initial Census block group.  

Another advantage of the county-by-monitor instruments is that they allow us to tighten our 

spatial controls for omitted variables. We can replace the CBSA dummies with dummy variables 

for counties while retaining variation in long-term exposure among those who never moved. Col-

umn (3) shows that adding county dummies produces an estimate that is virtually identical to col-

umn (1).  

Column (4) replaces our “balanced monitor panel” measure of PM2.5 exposure with a measure 

constructed from an unbalanced panel of all monitors in operation each year (between 787 and 

                                                 
31 Appendix Figure A5 shows that after we condition on baseline exposure, CBSA dummies, health and demographics we find some exposure 
patterns consistent with strategic regulatory targeting for PM2.5. Our first-stage estimates suggest that county nonattainment designations led to 

slightly larger reductions in long-term exposures for people living closest to nonattainment monitors at baseline exposure levels below 11.7 g/m3. 

Moreover, we find that nonattainment designations produced the smallest declines in PM2.5 for people in attainment counties living near nonattain-
ment monitors. This pattern could result from strategic regulatory actions diverting pollution from areas near nonattainment monitors to areas in 

adjacent attainment counties.  

 (1) (2) (3) (4) (5) (6) (7) (8) (9)

1.288*** 1.027** 1.290*** 1.016** 1.362*** 1.901*** 1.357** 0.14 1.148***

(0.46) (0.41) (0.41) (0.43) (0.46) (0.39) (0.62) (0.36) (0.34)

unbalanced monitor panel x     

spline function of baseline PM2.5 x    

other pollutants included    x   

Dementia with Alzheimer's diagnosis   x

Dementia without Alzheimer's diagnosis  x  

exclude post-dementia movers x

CBSA dummies x x x x x x x

county dummies x x

2005 attainment instruments

county x x x x  x x

county x monitor  x x   x   

Kleibergen-Paap rk Wald F-statistic 658 455 511 367 142 653 74 658 658

Number of individuals 1,256,440 1,256,440 1,256,440 1,256,440 1,256,440 1,195,022 1,256,440 1,256,440 1,256,440

Share with dementia in 2013 19.2 19.2 19.2 19.2 19.2 15.0 19.2 19.2 19.2

Decadal PM2.5 (1 μg/m3)
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1,106 monitors per year). Using the unbalanced panel may improve efficiency by using all avail-

able ground-level information on pollutant concentrations, but it also has potential to introduce 

measurement error (Muller and Rudd 2017, Grainger, Schreiber and Chang 2018). Consistent with 

measurement error, we find that using the unbalanced panel reduces the instrument’s power to 

explain decadal PM2.5 exposures and yields a smaller second-stage estimate. These reductions are 

small, however, revealing that our conclusions are not driven by which monitors are used to meas-

ure pollution exposure. 

Column (5) replaces the fourth order polynomial function of baseline (2001-2003) residential 

PM2.5 concentrations with a more flexible “spline” function. We first partition neighborhoods into 

72 bins by baseline concentrations, using a bin width of 0.33 g/m3, and then we add an indicator 

variable for each bin. This produces a slightly larger PM2.5 coefficient (1.36 pp) with virtually no 

change in statistical precision.  

Our findings in columns (1)-(5) could be confounded by reverse causality if a dementia diag-

nosis causes patients to move to more polluted areas (e.g., if assisted living facilities tend to be 

located in more polluted urban areas). We test this hypothesis by repeating estimation of the model 

in (1) after dropping everyone who moved after being diagnosed with dementia. Column (6) shows 

that dropping movers with dementia increases our estimate to 1.90 pp. This result reflects the fact 

that movers with dementia tend to move to cleaner areas (shown in Appendix Figure A6) and 

provides evidence against reverse causality due to residential sorting on health.  

Our PM2.5 coefficients could capture partial effects of other federally regulated air pollutants 

that are co-generated as a byproduct of power generation, transportation and manufacturing activ-

ities that are constrained by EPA regulation. To test this hypothesis, we extend the model in (1) to 

include measures of decadal exposure to PM10, ozone, sulfur dioxide, nitrogen dioxide, and carbon 

monoxide. We treat all of these air pollutants as endogenous, using the instruments from column 

(2). The resulting PM2.5 coefficient in column (7) is slightly larger than column (1) whereas the 

other pollutants’ coefficients vary in sign and are all statistically indistinguishable from zero at the 

10% level (Appendix Table A3). Hence, we cannot reject the hypothesis that dementia rates are 

unaffected by elevated long-term exposures to particulates larger than 2.5 microns that are cap-

tured by measures of PM10, ozone, sulfur dioxide, nitrogen dioxide, and carbon monoxide.  

Finally, we repeat estimation of the model in (1) after stratifying the dependent variable to 
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measure dementia cases with and without an associated diagnosis of Alzheimer’s disease specifi-

cally.32 Our point estimates in columns (8) and (9) suggest that Alzheimer’s disease accounts for 

about 90% of the all-cause dementia cases that our model attributes to long-term PM2.5 exposure. 

A caveat to this interpretation is that it is difficult for doctors to distinguish between Alzheimer’s 

disease and other forms of dementia without an autopsy or extensive brain imaging. Therefore, as 

a further test of which types of dementia drive our results, we repeat estimation of the model in (1) 

after adding a dummy for whether the individual had a stroke by the end of 2013. Strokes cause 

vascular dementia, the second most common form of dementia behind Alzheimer’s disease, and 

may be caused by short-term spikes in air pollution. Hence, the stroke variable absorbs any effects 

of PM2.5 on dementia that occur due to stroke. Our results suggest that the probability of being 

diagnosed with dementia is 18.74 pp higher for those who had a stroke (95% CI = [18.50, 18.97]). 

However, controlling for this has virtually no effect on the PM2.5 coefficient, 1.299 (p<0.01). This 

reinforces the conclusion that long-term exposure to PM2.5 increases the risk of Alzheimer’s dis-

ease.  

C. Results from the Model with Aggregated Data 

Table III summarizes the results from a second set of robustness checks in which we aggregate 

Medicare records to the county level, using a county nonattainment indicator as the instrument for 

the decadal change in PM2.5 exposure in the spirit of Chay and Greenstone (2005). The covariates 

parallel our micro-data specification. They include dummy variables for Census divisions, changes 

in county Medicare populations in terms of the integer age distribution, gender, race and health, 

changes in access to medical care including Medicare payment levels, changes in the demographic 

composition of the average Medicare beneficiary’s Census block group, beginning-of-decade med-

ical expenditures, and beginning-of-decade fractions of people diagnosed with each morbidity risk 

for dementia. We calculate means for these variables in 2004 and 2013 along with annual average 

PM2.5 exposures using all of the individuals we observe living in each county in each year. This is 

an unbalanced panel of 6.9 million people, with 3.6 to 4.3 million people per year. All specifica-

tions use robust standard errors. 

                                                 
32 The ICD-10 defines Alzheimer’s disease (G30) as “A degenerative disease of the brain characterized by the insidious onset of dementia. Impair-

ment of memory, judgment, attention span, and problem solving skills are followed by severe apraxias and a global loss of cognitive abilities. The 
condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of senile plaques; neurofibrillary 

tangles; and neuropil threads”. 
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TABLE III—FIRST DIFFERENCE ESTIMATES OF THE EFFECT OF PM2.5 ON DEMENTIA 

 
Note: The dependent variable is the change from 2004 to 2013 in the share of living people in a county diagnosed with dementia. This difference 

is regressed on ΔPM2.5, defined by the difference between average exposure from 2004 to 2013 and average exposure from 2001 to 2003 calculated 

for all the people observed living in each county in each year. The instrument for ΔPM2.5 is an indicator for nonattainment designation in 2005. All 

specifications include dummy variables for Census divisions and covariates describing changes in county Medicare populations in terms of the 
integer age distribution, gender, race and health, changes in access to medical care, changes in the demographic composition of the average Medi-

care beneficiary’s Census block group, beginning-of-decade medical expenditures, and beginning-of-decade fractions of people diagnosed with 

each morbidity risk for dementia. Col (1) estimates the model by weighted least squares for the 646 “attainment” and “nonattainment” counties 
with air quality monitors, using county populations as weights. Col (2) estimates the model by OLS for the subset of counties for which we observe 

at least 500 people each year. Col (3) repeats WLS estimation for 378 counties that had annual average PM2.5 concentrations between 12 and 16 

g/m3 during the baseline period from 2001-2003. Col (4) repeats WLS estimation for a sample of attainment counties in a window below the 

regulatory threshold (11.05 to 15.05 g/m3) and nonattainment counties in a window above the threshold (15.05 to 19.05 g/m3). Col (5) repeats 

WLS estimation using data for all counties, including those without air pollution monitors. Asterisks indicate statistical significance at the 10% (*), 

5% (**), and 1% (***) levels based on robust standard errors.  

Column (1) reports results for 646 counties that had air quality monitors in place throughout 

the 2001-2003 period EPA used as the basis for making nonattainment designations.33 These coun-

ties tend to be larger as the EPA tends to place monitors in more populous places. In 2013, they 

contained 69% of the 4.3 million people in our data. We estimate the model by weighted least 

squares (WLS), weighting each county by the number of people in the sample to make the coeffi-

cients nationally representative.34 The 2SLS estimate suggests that a 1 μg/m3 decrease in average 

exposure to PM2.5 between 2004 and 2013 caused county-level dementia rates to decrease by about 

0.42 pp, a 3.7% decrease relative to the population-weighted county dementia rate in 2013. Note 

that these statistics are smaller than the corresponding figures from our individual-level model 

using microdata (1.3 pp or 6.7% decrease relative to the mean). This occurs because aggregating 

to the county level weakens the relationship between the cognitive health of a county’s current 

                                                 
33 The micro data models in columns 5 and 6 of Table 1 and throughout Table II are estimated using the individuals who lived in these 646 counties 

at the time nonattainment designations were made. 
34 We weight by the minimum of the county sample sizes in 2004 and 2013. Weighting by the county sample size also improves statistical precision 

by reducing the weight placed on small, rural counties for which changes in dementia rates are less precisely estimated. 

 

(1) (2) (3) (4) (5)

0.417*** 0.558** 1.099* 1.017* 0.351**

(0.142) (0.265) (0.626) (0.545) (0.152)

F statistic on attainment IV 43 34 11 16 36

large county sample x

matching sample x

threshold sample x

full sample (including "unclassifiable" counties) x

mean dementia rate (2013) 11.3 11.3 11.5 11.2 11.2

number of individuals (2013) 2,978,573 2,950,862 2,229,286 1,486,396 4,303,352

number of counties 646 553 378 343 3,061

ΔPM2.5 (1 ug/m3)
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population and past changes in its average resident’s PM2.5 exposure due to population turnover 

from migration, death, and aging into Medicare. While this aggregation bias does not change our 

qualitative conclusions, avoiding it by using micro data increases our point estimates substantially. 

Column (2) repeats the estimation using an unweighted regression that ignores differences in 

county populations. As an alternative to weighting by population, we address measurement error 

in dementia rates in small counties by limiting the sample to the 553 monitored counties that had 

at least 500 people in 2013. This increases the point estimate to 0.56 pp.  

FIGURE VII: 2005 COUNTY ATTAINMENT STATUS BY BASELINE PM2.5 EXPOSURE 

 
Note: The figure displays the fraction of the 646 counties with air quality monitors that EPA designated as nonattainment in 2005 within 0.333 

microgram per cubic meter bins for a county’s baseline exposure. Baseline county exposures are calculated using our inverse distance-squared 
measure for the people we observe living in each county between 2001 and 2003. EPA used this 3-year interval to define the 2005 nonattainment 

status. The points denote bin midpoints.  

Next, we re-estimate the WLS model for 378 counties that had average exposures between 12 

and 16 μg/m3 during 2001-2003. Figure VII shows that there is variation in county attainment 

status conditional on baseline exposure throughout this range. To construct the figure, we group 

the 646 counties from column (1) into 0.33 μg/m3 bins based on average exposure in 2001-2003. 

The vertical axis shows the fraction of counties in each bin that the EPA designated as nonattain-

ment. Only one county with concentrations below 12 μg/m3 was designated as nonattainment; 
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every county with concentrations above 16 μg/m3 was designated as nonattainment; and as a 

county’s average concentrations increased from 12 to 16 μg/m3, so too did its probability of re-

ceiving a nonattainment designation. Most of the nonattainment counties with baseline concentra-

tions between 12 and 16 μg/m3 had average exposures below the regulatory threshold but were 

classified as nonattainment because (i) they contained “hot spots” that violated the standard or (ii) 

they were believed by EPA to contribute to violations in neighboring counties. Focusing on this 

subset allows us to relax the exogeneity assumption on the nonattainment indicator outside of a 

narrow range of baseline exposure. Column (3) shows that this increases our point estimate to just 

over 1 pp.  

Column (4) shows that we obtain a similar estimate when we implement a version of the model 

in column (1) in which we limit the sample to attainment counties in a narrow window below the 

regulatory threshold (11.05 to 15.05 μg/m3) and nonattainment counties in a narrow window above 

the threshold (15.05 to 19.05 μg/m3). The coefficients in columns (3) and (4) remain statistically 

different from zero at the 10% level despite the small sample sizes and extensive covariates. 

Finally, column (5) shows that our main result from column (1) is also robust to adding data 

describing all remaining counties, including those defined by the EPA to be unclassifiable.35 In 

summary, as we compare column (1) to columns (2)-(5), reducing the sample size and changing 

the sample geography causes the point estimates to fluctuate amid wider confidence intervals. Yet 

the coefficients are uniformly consistent with our micro-data models in that they all indicate that 

higher exposures to PM2.5 from 2004 to 2013 caused higher dementia rates.  

D. Placebo Tests 

Our research design mitigates potential biases from residential sorting, spatial heterogeneity in 

health care, omitted variables, and measurement error in pollution exposure. Anticipatory behavior 

poses another potential threat to identification. For instance, if people at a lower risk of receiving 

a future dementia diagnosis due to latent factors (e.g., genetics, childhood pollution exposure) not 

fully controlled by our measures of baseline health moved to neighborhoods prior to our study 

period that they correctly anticipated would experience relatively large future improvements in 

amenities due to EPA regulation then our IV estimates could be biased upward. If this mechanism 

                                                 
35 There are 3,142 counties and county equivalents in the United States. The 81 that are excluded are among the least populous rural counties. They 
are missing because Census block group variables or Medicare Advantage enrollment information are suppressed to avoid identifying individuals 

or because our sample does not include multiple people living in the county every year.  
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were confounding our results, however, then we would expect to see relatively large effects for 

pollutants that are readily observable to people because they are relatively large in size (PM10), 

they contribute to urban smog (ozone), and they are generated by point sources such as freeways 

(carbon monoxide) and factories and coal-fired power plants (nitrogen dioxide, sulfur dioxide) that 

may be viewed as negative amenities. The fact that we do not find such effects in Appendix Table 

A3 provides evidence against confounding. 

As an additional test of anticipatory behavior and other unspecified threats to identification, 

we re-estimate the micro-level and county-level 2SLS models shown in the first columns of Tables 

I and II for six chronic medical conditions that are not known to be caused by air pollution, to the 

best of our knowledge.36 These include glaucoma, fibromyalgia, breast cancer, prostate cancer, 

viral hepatitis, and peripheral vascular disease. We selected these placebo conditions because they 

share similarities with dementia. Glaucoma is a progressive disorder with nerve degeneration that 

is strongly associated with age; fibromyalgia affects mood and behavior and can be difficult to 

diagnose; breast cancer and prostate cancer can be slow to progress and have gender-specific di-

agnosis rates; viral hepatitis is correlated with measures of socioeconomic status; and peripheral 

vascular disease is associated with reduced blood circulation. 

TABLE IV: EFFECTS OF PM2.5 ON PLACEBO MEASURES OF MORBIDITY 

 
Note: The first four rows report point estimates and standard errors from repeating our main micro-level and county-level specifications (shown in 

the first column of tables II and III) except the outcome is one of six placebo morbidities. The last two rows report the fraction of people in our data 
who were diagnosed with each morbidity by 2004 and 2013. The first column repeats our findings for dementia for convenience. Asterisks indicate 

statistical significance at the 10%, 5%, and 1% levels based on robust standard errors clustered at the Census block group level. The text and 

footnotes to Tables II and III provide additional details about model specification. 

                                                 
36 This criterion rules out cardiopulmonary conditions along with many other common medical conditions that one might not intuitively associate 

with air pollution. For example, the medical literature has linked osteoporosis to air pollution via cadmium contained in PM2.5.  

Dementia Glaucoma
Fibro-

myalgia

Breast 

Cancer

Prostate 

Cancer

Viral 

Hepatitis

Peripheral 

Vascular 

Disease

1.288*** -0.851* -0.676 0.047 -0.367 0.115 0.52

(0.46) (0.47) (0.50) (0.23) (0.24) (0.08) (0.53)

0.417*** -0.18 0.243 -0.046 -0.028 -0.003 0.188

(0.142) (0.15) (0.19) (0.04) (0.05) (0.03) (0.20)

Prevalence among 75-year olds

2004 7.9 14.0 8.5 3.8 4.7 0.7 12.4

2013 9.1 17.1 15.2 4.4 5.1 1.2 16.7

PM2.5 (1 μg/m3)   [micro data]

ΔPM2.5 (1 ug/m3)   [county data]
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Finding large, positive, and statistically significant effects of PM2.5 on these placebo morbidi-

ties would signal that our research design may be compromised. Table IV shows that this is not 

the case. We fail to reject the null hypothesis of no effect at the 10% level in 2SLS specifications 

for all but one of the twelve placebo models. This rejection rate is roughly consistent with a true 

zero effect, and the one statistically significant result (for glaucoma in the micro-level model) has 

the “wrong” sign. Most of the point estimates are small relative to our findings for dementia. Thus, 

these placebo tests provide support for our research design. 

V. Interpretation 

Our main point estimate (Table II, column (1)) suggests that a 1 μg/m3 increase in 10-year 

average PM2.5 exposure from 2004 to 2013 increased the probability of receiving a dementia diag-

nosis by 1.3 pp. This is equivalent to a 6.7% increase relative to the dementia diagnosis rate among 

our sample. To provide context for these results, a 1 μg/m3 change is equivalent to 9.1% of the 

average person’s exposure during our study period and 59% of a standard deviation. Thus, a 1 

μg/m3 increase may be viewed as a moderate change in exposure, albeit a change smaller than the 

1.24 μg/m3 average reduction due to a county being designated as nonattainment in 2005.  

Table V compares our main PM2.5 result to other risk factors for dementia in terms of percent-

age-point changes in the probability of receiving a diagnosis by the end of the decade. For instance, 

our 1.3 pp estimate for the effect of a 1 μg/m3 increase in decadal PM2.5 is equivalent to the increase 

in risk associated with a female aging from 74 to 77 and about one quarter of the increase in risk 

associated with a female aging from 74 to 80 (5.7 pp). Likewise, our PM2.5 estimate is somewhat 

smaller than the increase in risk associated with having been diagnosed with hypertension at the 

beginning of the decade and not diagnosed with any of the other health risk factors (1.8 pp). We 

estimate much larger increases in risk associated with pre-existing diagnoses of ischemic heart 

disease only (3.0 pp), diabetes only (4.2 pp), congestive heart failure only (5.1 pp), and a stroke 

only (8.8 pp). Someone diagnosed with all five conditions by 2004 had a 21.8 pp higher probability 

of being diagnosed with dementia by the end of 2013.  
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TABLE V. RISK OF DEMENTIA FROM PM2.5 RELATIVE TO RISKS ASSOCIATED                            

WITH PRE-EXISTING CHRONIC ILLNESSES 

 

Note: The table reports point estimates and 95% confidence intervals for dementia risk factors based on our main micro-level specification from 

the last column of Table I. Appendix Table A2 reports the full set of results. 

VI. Policy Implications 

A. Dementia Cases Avoided from the EPA’s 1997 PM2.5 Regulation 

The EPA’s benefit-cost analysis of the Clean Air Act excludes the benefits of dementia cases 

avoided (US EPA 2011). Dementia is not counted among the set of morbidities attributed to air 

pollution, nor is it included among the channels through which air pollution is assumed to increase 

mortality.37 We take a first step toward filling this knowledge gap by using our estimates to ap-

proximate the value of dementia cases avoided due to the 1997 PM2.5 regulation.  

We estimate the regulation’s effect on annual average PM2.5 exposure from 2004 to 2013 for 

people age 75 and above in nonattainment counties using our difference-in-difference estimate of 

-1.24 g/m3 from Section IV.A.ii.38 Multiplying this reduction by our main estimate for the effect 

of a 1 g/m3 increase in decadal exposure on the probability of a dementia diagnosis (1.29 pp) 

                                                 
37 The EPA’s mortality estimates are calibrated to the results of cohort studies by Pope et al. (2002) and Landen et al (2006), both of which found 

that PM2.5 increased all-cause mortality via cardiovascular and lung cancer deaths but not deaths due to other causes such as dementia. In their Table 

3, Landen et al. report a hazard mortality rate ratio of 1.16 for all-cause mortality from a 10 μg/m3 increase in PM2.5 over their entire follow-up 
period, compared to 1.28 for cardiovascular deaths, 1.08 for respiratory deaths, 1.27 for lung cancer deaths, and 1.02 for all other causes, from 

which they conclude that “There was no association (p=0.71) with other causes of death”. Similarly, Pope et al. report a mortality risk ratio of 1.01 

(CI = 0.95, 1.06) for deaths from causes other than cardiopulmonary and lung cancer in their Table 2, compared to 1.06 (1.02, 1.11) for all-cause 
mortality, 1.09 (1.03, 1.16) for cardiopulmonary, and 1.14 (1.04, 1.23) for lung cancer. 
38 We obtain a similar estimate of -1.05 g/m3 from the first-stage of the county level model in Table III, column (1).. 

Risk Factor

Percentage point 

increase in dementia 

diagnosis probability

decadal PM2.5 (1 μg/m3) 1.3 0.4 2.2

Aging from 74 to 77 (women) 1.3 1.0 1.6

hypertension 1.8 1.6 2.0

ischemic heart disease 3.0 2.7 3.4

diabetes 4.2 3.7 4.7

congestive heart failure 5.1 3.9 6.3

aging from 74 to 80 (women) 5.7 5.2 6.1

stroke 8.8 7.6 9.9

All five chronic conditions 21.8 20.7 23.0

95% 

confidence 

interval
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implies that the regulation reduced the dementia rate by 1.6 pp. Multiplying this by the Census 

Bureau’s estimate for the size of the 75-and-over population in nonattainment counties in 2013 

(8.7 million) implies that the PM2.5 regulation reduced the number of dementia cases by approxi-

mately 140,000, with a range from 42,000 to 235,000 cases based on our 95% confidence interval 

for the PM2.5 coefficient.  

Because we are unaware of any revealed preference estimate of the value of reducing dementia 

risk, we approximate the benefit of cases avoided by using prior estimates for the value of a qual-

ity-adjusted life year (QALY), together with the Medicare data for estimates of dementia’s effects 

on life expectancy and prior estimates for dementia’s impacts on quality of life. Appendix B de-

scribes our calculations in detail. We first use our data to calculate two key statistics: the average 

effect of a dementia diagnosis on life expectancy (-6.1 years) and the average post-diagnosis sur-

vival period (2.7 years). Then we use age- and morbidity-specific QALY weights from a review 

of the health economics literature to translate dementia’s effects on morbidity and mortality into a 

measure of lost QALYs. This results in a central estimate of 5.9 life years lost per dementia case, 

with a range from 5.5 to 6.4 years reflecting Kasai and Meguro’s (2013) adjustments for upper and 

lower bounds on the severity of symptoms during the survival period. Finally, we assign a value 

per QALY. A conventional but arbitrary value is $100,000. Empirical studies typically report 

much higher values. For example, Aldy and Viscusi (2007) estimated a value of $300,000 for those 

age 65 and above in 2007, equating to $365,000 in 2018 dollars. Previously, Hirth et al. (2000) 

found a wide range of estimates, with the central estimates between $114,000 and $196,000 in 

2018 dollars. We consider a range of values with $200,000 as the midpoint, a lower bound of 

$100,000 and an upper bound of $300,000. The midpoint implies a value per statistical case of 

dementia avoided of approximately $1.2 million, whereas the lower bound implies a value close 

to $0.6 million.  

Multiplying our central estimates for the value of a life year, quality adjusted life years lost per 

case, and the number of cases avoided implies that the PM2.5 regulation yielded benefits of $163 

billion for the cohort of people age 75 and above in nonattainment counties. Figure VIII illustrates 

how this estimate changes if we instead use the endpoints of our ranges for each statistic. Under 

every scenario the benefits exceed $48 billion. As a further sensitivity check, we repeat our calcu-

lations at range midpoints after replacing our difference-in-difference estimate for the full effect 

of nonattainment designations on PM2.5 exposure (-1.24 g/m3) with a lower bound based on our 
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central estimate for the partial effect of nonattainment designations from Figure VI (-0.27 

g/m3).39 This yields a benefit estimate of $36 billion.  

FIGURE VIII: ESTIMATED BENEFITS OF THE 1997 PM2.5 STANDARD DUE TO REDUCED DEMENTIA  

 

Note: The sensitivity analysis varies a single variable across the denoted range while holding the other two constant at their midpoints.  

We interpret these estimates as likely lower bounds on the benefits of the EPA’s 1997 PM2.5 

standard because we exclude several other types of benefits. We exclude any benefits that accrued 

to people who started the decade in attainment counties, for example due to spatial spillover of 

PM2.5 reductions or anticipatory responses by regulators. We also exclude any benefits for people 

who were under age 65 at the start of the decade, benefits that accrued to people who died during 

the decade, and any health benefits, such as lower mortality from cardiovascular disease and lung 

cancer, other than reduced dementia rates for people who were over 65 and survived to the end of 

the decade. We also exclude the taxpayer savings from lower Medicare expenditures on dementia 

and the value of time for unpaid caregivers of dementia patients. Last, we exclude the benefits of 

maintaining the cognitive skills that older adults need to successfully engage with markets. While 

we leave a full accounting of these benefits to future research, we leverage Medicare administrative 

records to provide the first evidence on how dementia affects an important financial decision: 

choice of a prescription drug insurance plan (PDP) through the markets created under Medicare 

Part D.  

                                                 
39In principle, our difference-in-difference estimate for the full effect of nonattainment designations on pollution levels could be understated or 
overstated. The latter could occur if the great recession or other macroeconomic forces were correlated with county nonattainment designations and 

pollution levels. Such effects are likely to be purged from our partial effect estimate by the CBSA dummies. They could be understated if nonat-

tainment designations led to indirect air quality improvements in attainment counties , compressing the difference in pollution changes between 
attainment and nonattainment counties. For instance, nonattainment designations could have reduced emission spillover from nonattainment coun-

ties to attainment counties. 
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B. Dementia’s Effects on Financial Decision Making 

The Medicare PDP markets provide an ideal setting to assess the extent to which dementia may 

affect individuals’ financial decisions. In 2006, Medicare established regional markets in which 

participants may choose from competing private insurers selling federally subsidized plans that 

differ in cost, quality and risk protection. The default for new Medicare beneficiaries is to be un-

insured, but from 2006 to 2010 between 64% and 72% of individuals choose to enroll in a PDP.40 

After an individual chooses a plan, they are automatically re-enrolled in the same plan for each 

subsequent year unless they switch plans during the annual open enrollment period. On average, 

each individual chooses from approximately 50 different plans and spends approximately 6% of 

their annual household income on premiums and out-of-pocket drug costs. Importantly, the cost 

of these drugs varies by over $1,000 on average across each individual’s available plans.41 Hence, 

PDP enrollees make a financially important decision under uncertainty in the presence of a default 

assignment rule. This makes PDP enrollment similar to other complex financial decisions made 

by older adults, such as management of retirement savings, enrollment in a general health insur-

ance plan, and estate planning. 

A large empirical literature has used the Medicare PDP markets to judge older adults’ abilities 

to make complex financial decisions (Keane and Thorp 2016 provide a review). The literature 

starts from the observation that enrollees can reduce their expenditures on prescribed drugs by 

comparing plan formularies and switching plans when their expected drug needs change.42 With 

this in mind, the literature has used three types of metrics to assess decision making outcomes:  

1. Potential savings, defined as the amount of money an individual spent on drugs in their chosen 

plan minus the cost of those same drugs under the cheapest plan available (e.g., Heiss, McFad-

den and Winter 2010, Ketcham et al. 2012).43  

                                                 
40 Some of those who chose not enroll in a PDP obtained prescription drug coverage from a Medicare Advantage managed health care plan and the 

rest obtained insurance from an employer or other sources or chose to forego insurance for prescription drugs. 
41 Among the participants in these markets not receiving low-income subsidies, surveys indicate that 27% receive help making their enrollment 

decisions (most commonly spouses and daughters), and another 11% rely on someone else altogether (Ketcham, Kuminoff and Powers 2016). As 

in previous evaluations of consumer decision making in Part D, we exclude people who receive low income subsidies because they are auto-enrolled 
into low cost plans and because their cost sharing structure mitigates many of the differences across plans’ financial characteristics.  
42 There are several plan finder websites that enrollees can use to compare plans based on the cost of purchasing a particular bundle of drugs, as 

well as a 1-800 number that enrollees can call in order to have Medicare operators help them compare available plans. These plan finder tools are 
described in detail in Kling et al. (2012) and Ketcham, Kuminoff and Powers (2016). 
43 We follow prior studies in assuming that consumers have unbiased expectations of their drug needs for the upcoming year at the time they make 

enrollment decisions. As a robustness check, we also follow prior studies and repeat the estimation under the assumption that consumers are myopic 
in the sense that they expect their drug use in year t to be identical to their drug use in year t-1. Appendix Table A4 shows that this has little impact 

on our results. 
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2. Inertia, defined as whether an individual was passively reenrolled in their default plan because 

they did not actively switch to a different one during the annual open enrollment period (e.g., 

Kling et al. 2012, Ho, Hogan and Scott Morton 2015, Ketcham, Lucarelli and Powers 2015).  

3. Dominated choices, meaning the individual’s chosen plan was off the efficient frontier in at-

tribute space when PDPs are characterized by some combination of quality characteristics and 

moments of an individual’s distribution of potential expenditures (e.g., Ketcham, Kuminoff 

and Powers 2016 and Keane et al. 2018).44  

We analyze how dementia affects these three outcomes, using data and variable definitions 

that are consistent with prior studies in the Medicare Part D literature.45 Specifically, we estimate  

(5)   𝑞𝑖𝑡 = α𝑦𝑖𝑡 + 𝛽𝑋𝑖𝑡 + 𝜃𝑊𝑖𝑡 + 𝛾𝐻𝑖𝑡 + 𝜂𝑖 + 𝜏𝑖𝑡 + 𝜖𝑖𝑡, 

where 𝑞𝑖𝑡 is a decision making outcome for person i in year t. The covariates parallel those in our 

model of individual dementia diagnoses in equation (1), with three differences. First, 𝑦𝑖𝑡 includes 

two variables of interest, an indicator for whether person i received a dementia diagnosis by year 

t and an indicator for whether a diagnosis was received by the end of 2013 but not by t. The second 

term allows us to assess the role of subclinical cognitive decline. Second, we control for diagnoses 

of dementia risk factors (hypertension, diabetes, congestive heart failure, ischemic heart disease, 

stroke) by the year that decisions are made because these diagnoses may affect expected drug 

needs. Finally, we add state-by-year dummies (𝜏𝑖𝑡) to absorb all of the spatial and temporal heter-

ogeneity in the structure of PDP choice sets (e.g., variation in the number of plans, the number of 

brands, and plan characteristics—all of which are fixed within a state and year). These dummies 

force the identification to come from variation in how different individuals choose among the same 

PDP options. Our data span the first five years the markets operated: 2006-2010. 

                                                 
44 For example, let 𝑐𝑖𝑗𝑡 represent consumer i’s total expenditures under plan j in year t. It equals the premium for that plan plus the total out of 

pocket cost of drugs used by the consumer. If utility depends on plan quality, 𝑞𝑗𝑡, and the first two moments of the distribution of potential expend-

itures, then a weakly risk averse and fully informed consumer whose preference ordering is complete, transitive and monotonic will not choose a 

plan j during year t if that plan is dominated by another plan, k, in the sense that 𝐸(𝑐𝑖𝑘𝑡) < 𝐸(𝑐𝑖𝑗𝑡), 𝑣𝑎𝑟(𝑐𝑖𝑘𝑡) < 𝑣𝑎𝑟(𝑐𝑖𝑗𝑡), and 𝑞𝑗𝑡 < 𝑞𝑘𝑡. 
45 We define potential savings using the cost calculator developed by Ketcham, Lucarelli, and Powers (2015). The calculator uses data on the 
universe of prescriptions filled for each person in each year. It holds those prescriptions fixed across all plans available to the person, using plan 

formularies and cost structures from CMS to calculate the counterfactual cost of the person’s chosen bundle of drugs under every alternative plan 

in the person’s choice set. We also use the calculator to implement a standard cohort-based approach to defining the variance of each person’s 
potential expenditures for each plan in each year. To define the person-plan-year specific variance, we use our full sample and assign each individual 

to 1 of 1000 cells defined by the deciles to which she belonged in the national distributions of the prior year’s total drug spending, days’ supply of 

branded drugs, and days’ supply of generic drugs. Then we calculate each plan’s variance from the distribution of costs from the cost calculator 
that arises from the distribution of drugs used by everyone in consumer i’s cell and region. If we lack a person’s prior year’s prescriptions (e.g., the 

year they first enter the market) we predict them based on health and individual-specific future prescriptions. 
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Table VI shows that dementia has large negative effects on all of the financial outcomes. All 

else constant, having dementia increases annual potential saving by $37 (11% of the sample mean) 

relative to those who were not diagnosed with dementia by the end of 2013. Dementia also reduces 

the probability of switching plans by 0.4 pp (4% of the sample mean), and increases the probability 

of choosing dominated plans by 3 to 5 pp (4-12%). The middle column shows that dementia pa-

tients are 3 pp more likely to choose a plan that had weakly higher costs and less risk protection 

(based on the variance of expenditures under a distribution of possible health states). The last two 

columns show that dementia’s negative effect persists when we also condition on measures of plan 

quality (star ratings, insurance company dummies) that could proxy for better customer service 

and lower transaction costs of obtaining drugs.  

TABLE VI: EFFECTS OF DEMENTIA ON PRESCRIPTION DRUG PLAN CHOICES  

 
Note: Each column reports coefficients estimates from models regressing decision making outcomes on indicators for whether the beneficiary is 
diagnosed with Alzheimer’s disease and related dementias at the time of their enrollment decision (dementia) or after their enrollment decision but 

before the end of 2013 (future dementia) in comparison to beneficiaries not diagnosed with dementia by the end of the 2013. All models pool data 

from 2006 to 2010 and include residential CBSA dummies, state-by- year dummies, integer age-by-gender dummies, covariates describing indi-
vidual health and Medicare expenditures prior to entering Medicare Part D, and covariates describing individual and neighborhood demographics. 

Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels based on robust standard errors clustered at the Census block 

group level.  

Our results also provide the first market-based evidence that subclinical impairments influence 

financial outcomes, as hypothesized by Agarwal et al. (2009). Relative to those who were not 

diagnosed with dementia by the end of 2013, financial outcomes are worse among those who be-

came diagnosed with dementia by the end of our study period but were not currently diagnosed at 

the time of their Part D plan choices.  

Despite widespread concern about older adults’ financial literacy (Lusardi and Mitchell 2014), 

this is the first evidence that dementia patients have systematically worse outcomes from actual 

cost,                      

variance

cost,                          

variance,                         

star rating

cost,                     

variance,                  

insurer

36.66*** -0.37*** 3.10*** 4.91*** 2.92***

(1.00) (0.07) (0.08) (0.10) (0.12)

10.01*** -0.59*** 1.04*** 1.42*** 0.80***

(1.20) (0.07) (0.08) (0.09) (0.11)

mean of dependent variable 346 10 72 52 25

sample size 3,445,118 2,575,534 3,445,118 3,445,118 2,218,189

Probability chosen plan is dominated in:Probability of 

actively 

switching out 

of default plan

Potential                         

savings ($)

dementia

future dementia
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financial decisions.46 Dementia may impair these decisions by eroding patients’ cognitive skills 

and complicating intrahousehold bargaining.47 If our findings for Medicare Part D are representa-

tive of older adults’ decision making more broadly, then reducing the prevalence of dementia by 

regulating PM2.5 may lead to substantial gains to consumer surplus through better financial deci-

sions.  

C. Dementia Risk and the EPA’s Regulatory Threshold  

We conclude our policy analysis by considering the EPA’s 2012 lowering of the federal cap 

on maximum allowable annual average PM2.5 concentrations from 15 μg/m3 to 12 μg/m3. While 

not enough time has passed to assess how lowering the cap affected dementia rates via lower ex-

posure over the subsequent decade, we can investigate whether PM2.5’s effects on dementia would 

diminish at lower levels of exposure. We do so by repeating estimation of 2SLS models after 

interacting our measure of annual average decadal exposure with dummies for whether exposures 

exceeded the 1997 threshold (above 15 μg/m3), fell between the 1997 and 2012 thresholds (12 to 

15 μg/m3), or fell below the 2012 threshold (12 μg/m3).  

The first column of Table VII corresponds to our main 2SLS specification (Table I, column 

(6)). The next three columns repeat estimation after replacing the CBSA dummies with county 

dummies and/or replacing the 4th order polynomial function of baseline exposure with dummies 

for 72 baseline exposure bins. Regardless of econometric specification, the point estimates indicate 

that the marginal effects are weakly decreasing in PM2.5 concentrations. This is consistent with 

prior evidence that PM2.5 has larger marginal effects on mortality at lower concentrations in gen-

eral (Pope et al. 2015) and at concentrations below 12 μg/m3 specifically (Di et al. 2017). While 

confidence intervals on the point estimates are too wide to conclusively determine that marginal 

effects are larger at lower exposure levels, we can rule out that the effects diminish below 12 μg/m3 

with a high degree of confidence. These findings indicate that the 2012 policy change is likely to 

                                                 
46 Prior studies have relied exclusively on small-scale interview-based measures of financial literacy and found that dementia impairs “financial 
capacity” in such contexts. For example, Ketcham, Kuminoff, and Powers (2016) find that Medicare beneficiaries diagnosed with dementia are less 

likely to provide the correct answer to a survey question about a key institutional feature of prescription drug insurance markets that they are 

participating in. Agarwal et al. (2009) is the closest precedent, finding that suboptimal credit card decisions become more prevalent with age and 
surmising that dementia may play a role. 
47 Dementia may negatively affect financial decision making through several pathways. First, dementia may increase the cost of cognitive processing 

required to make decisions, or even render them impossible without assistance from others, which may introduce agency problems. Second, the 
marginal utility of consumption may be health-state dependent and declining in chronic conditions such as dementia (Finkelstein, Luttmer and 

Notowidigdo 2013). Third, prior research has identified discount rates as a key source of heterogeneity in financial decision making and chronic 

condition diagnoses increase discount rates (Huffman, Maurer, and Mitchell 2016, Oster, Shoulson, and Dorsey 2013). Fourth, because dementia 
reduces life expectancy, it may reduce investments in financial skills (Lusardi and Mitchell 2014) or in health capital, leading to additional chronic 

conditions that increase the complexity of decisions about health insurance (Fang et al. 2007). 
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continue to improve health by reducing dementia, as would further reductions of the threshold.  

TABLE VII: EFFECTS OF PM2.5 RELATIVE TO REGULATORY THRESHOLDS 

 

Note: Each column represents results from a micro model identical to one in Tables I and II except that the models here allow the marginal ef-

fects of decadal exposure to differ across PM2.5 levels. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels 

based on robust standard errors clustered at the Census block group level. 

 

VII. Discussion and Conclusions 

Our findings provide the first large scale evidence to support the hypothesis from medical re-

search that long-term exposure to air pollution causes dementia among older adults, reducing the 

quantity and quality of their lives and impairing their financial decisions. We find that air pollu-

tion’s effect on dementia is driven by fine particulate matter, not by other federally regulated air 

pollutants, and the effects are driven by Alzheimer’s disease rather than vascular dementia result-

ing from strokes. These results build on prior knowledge that short-term and annualized measures 

of PM2.5 exposure cause mortality (Deryugina et al. 2016, Di et al. 2017) by adding the insight that 

long-term exposures to PM2.5 also reduces people’s quantity and quality of life due to dementia 

specifically. 

Dementia’s global social costs continue to grow as populations in many counties age, causing 

the World Health Organization to label it a “public health priority” and the US Centers for Disease 

Annual average (1) (2) (3) (4)

1.845** 1.575*** 2.144*** 1.257***

(0.78) (0.49) (0.62) (0.46)

1.761** 1.591*** 1.971*** 1.208***

(0.77) (0.49) (0.61) (0.45)

1.350*** 1.303*** 1.548*** 0.835** 

(0.46) (0.40) (0.47) (0.40)

control for baseline exposure

4th order polynomial x x   

spline: 0.33 μg bin dummies   x x

2005 attainment instruments

county x  x  

county x monitor  x  x

Number of individuals 1,256,440 1,256,440 1,256,440 1,256,440

Share with dementia in 2013 19.2 19.2 19.2 19.2

Annual average PM2.5 exposure < 12 μg/m3

12 μg/m3 ≤ annual average PM2.5 exposure ≥ 15 μg/m3

Annual average PM2.5 exposure > 15 μg/m3
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Control to describe it as a “public health crisis”. Because no medical preventions or cures exist, 

policy discussions have focused on investment in research and health infrastructure, and modifying 

behaviors related to smoking, diet and exercise (World Health Organization 2012, US Centers for 

Disease Control and Prevention 2018). Our findings reveal another lever available to policy mak-

ers: regulating air pollution. We show that EPA regulation of PM2.5 during the 2000s lowered 

dementia rates in the United States and that further regulation would be likely to yield additional 

health benefits. Our estimates for the monetary benefits of dementia cases avoided ($163 billion) 

are sufficiently large to suggest that dementia-related benefits may matter for future benefit-cost 

analyses of federal air quality regulations.  

There are several potential directions for future research. First, evaluations of policies targeting 

dementia could be improved by developing direct estimates for household-level willingness to pay 

to reduce the statistical risk of dementia. Second, while prescription drug insurance markets are 

often used to evaluate older adults’ abilities to make complex financial decisions, it would be in-

formative to test the generalizability of behavior in these markets by matching dementia diagnoses 

to other high-stakes financial choices such as investment of retirement savings, use of credit, hous-

ing transactions, and estate planning. Third, our findings raise several questions about potential 

heterogeneity in PM2.5’s effects on dementia. For instance, as compositional data on air pollution 

improve it may be possible to determine whether the effects of PM2.5 are driven by particulates 

from certain production processes such as automobiles, power plants, or industrial manufacturing. 

Research should also consider whether cognitive decline from long-term exposure can be reversed 

by moving to cleaner areas or mitigated by investing in human capital earlier in life such as through 

schooling. Policies targeting air pollution may also have implications for equity. Our data show 

that African-American and Hispanic individuals are about twice as likely to acquire dementia, as 

are people who live in areas with lower income and less education. Our results suggest that differ-

ences in neighborhood air quality may contribute to these socioeconomic disparities in disease 

burden. Finally, researchers could develop a life cycle model that integrates the evidence on the 

effects of particulate matter on human capital during the early, middle, and now late stages of life 

to gain insights about the dynamics of pollution, migration, health and human capital production. 
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SUPPLEMENTAL APPENDIX A:  FOR ONLINE PUBLICATION 

 

 

FIGURE A1: SPATIAL CORRELATION BETWEEN PM2.5 AND DEMENTIA IN 2013 BY AGE 

 
Note: Each data point represents the fraction of individuals living in a state who had been diagnosed with dementia prior to the end of 2013 plot-
ted against their average decadal exposure to PM2.5 based on place of residence. The figures are conditional on integer age: 75 (upper left), 80 

(upper right), 85 (lower left) and 90 (lower right). 
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TABLE A1—SUMMARY STATISTICS FOR MEDICARE BENEFICIARY SAMPLES  

 

Note: Column (1) describes the individuals used in county level models. They comprise an unbalanced panel from 2004 to 2013. Column (2) 
describes the individuals used in micro level models. They comprise a balanced panel from 2001 to 2013. Column (3) describes the individuals 

used in models of Medicare Part D outcomes. They comprise an unbalanced panel from 2006 to 2010. Column (4) adds to column (1) the subset of 

people we exclude because they enrolled in Medicare Advantage plans at some point during our study period, preventing us from directly observing 
if and when they were first diagnosed with dementia. Column (5) adds to column (1) the subset of people we exclude because they had mail 

delivered to a post office box at some point during our study period, preventing us from observing their residential location.  

(1) (2) (3) (4) (5)

Traditional 

Medicare 

and Part D

Traditional 

Medicare 

and Part D

Part D

Traditional 

Medicare, 

Medicare 

Advantage, 

and Part D

Traditional 

Medicare, 

Medicare 

Advantage, 

and Part D

# people in sample 6,901,476 1,851,175 1,136,336 10,319,644 13,603,253

mean # years per person 8 14 12 9 8

always observe ZIP+4 yes yes yes yes no

Individual demographics

mean age at sample entry 70.7 69.1 69.4 70.3 70.7

mean age in 2013 80.5 82.0 80.7 80.3 80.8

male (%) 44 40 37 43 44

white (%) 83 87 93 81 81

black (%) 8 6 3 8 8

asian (%) 3 2 1 3 3

hispanic (%) 5 4 2 6 7

alive at beginning of 2013 (%) 63 100 77 66 64

mean age at death 83 86 85 83 83

ever moved (%) 19 28 25 21 24

ever moved county (%) 9 14 13 10 9

ever moved state (%) 5 8 7 5 5

2013 gross Medicare expenditures ($) 9,076 12,680 11,808   

Ever diagnosed with

dementia (%) 23 19 23   

stroke (%) 19 20 21   

diabetes (%) 32 38 37   

congestive heart failure (%) 36 34 37   

ischemic heart disease (%) 48 58 58   

hypertension (%) 72 86 87   

glaucoma (%) 19 29 27   

breast cancer (%) 5 7 8   

prostate cancer (%) 6 8 7   

fibromyalgia (%) 15 24 23   

viral hepatitis (%) 1 1 1   

periphreal vascular disease (%) 24 28 28   
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TABLE A1 CONTINUED—SUMMARY STATISTICS FOR MEDICARE BENEFICIARY SAMPLE  

 

 

  

 

(1) (2) (3) (4) (5)

Traditional 

Medicare 

and Part D

Traditional 

Medicare 

and Part D

Part D

Traditional 

Medicare, 

Medicare 

Advantage, 

and Part D

Traditional 

Medicare, 

Medicare 

Advantage, 

and Part D

# people in sample 6,901,476 1,851,175 1,136,336 10,319,644 13,603,253

mean # years per person 8 14 12 9 8

always observe ZIP+4 yes yes yes yes no

Annual average pollution (2013)

PM2.5 (hourly μg/m3) 9.03 9.00 9.01 9.05  

PM10 (hourly μg/m3) 18.45 18.26 18.32 18.72  

ozone (daily max of 8-hr mean ppm) 0.04 0.04 0.04 0.04  

carbon monoxide (8-hr mean ppm) 0.30 0.30 0.29 0.30  

sulfur dioxide (daily mean ppb) 10.53 10.39 10.13 10.66  

nitrogen dioxide (daily mean ppb) 1.13 1.15 1.15 1.14  
 

Census block group data (2012)

household income (median) 61,939 63,119 64,696 61,079  

income per capita 31,285 32,267 33,644 30,615  

year built (median) 1971 1971 1971 1971  

house value (median) 238,779 244,732 245,055 238,711  

house value (average) 120,682 126,751 132,769 118,856  

gross rent (median) 2,440 2,587 2,695 2,363  

population over 65 (%) 18 18 19 17  

population white not hispanic (%) 71 73 78 69  

population black (%) 11 10 8 11  

population hispanic (%) 11 10 9 13  

education: 8th or less (%) 5 5 4 5  

education: 9th to 12th (%) 8 7 7 8  

education: high school grad (%) 28 28 28 29  

education: some college (%) 21 21 21 21  

education: associate degree (%) 8 8 8 8  

education: bachelor's degree (%) 18 19 19 18  

education: graduate degree (%) 12 12 13 11  

owner occupied (%) 63 64 66 62  

renter occupied (%) 27 25 23 27  

vacant (%) 11 11 11 10  
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FIGURE A2: LOCATIONS OF EPA MONITORING STATIONS FOR CRITERIA AIR POLLUTANTS 

 

Each map shows the locations of air quality monitors for a particular air pollutant: particulate 

matter smaller than 2.5 microns in diameter (PM2.5), particulate matter smaller than 10 microns 

(PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2). The 

maps were generated using the Environmental Protection Agency’s AirData Air Quality Monitor 

app: https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors  

 

 

 

 

  

https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
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FIGURE A3: AIR POLLUTION TRENDS: UNBALANCED AND BALANCED MONITOR PANELS 

 

The middle figure is identical to Figure V. It displays air pollution trends based on a balanced 

panel of 488 monitors in operation continuously from 2001-2013. For comparison, the top figure 

is based on averages taken each year over an unbalanced panel of all operating monitors (between 

787 and 1,106 monitors per year). The bottom figure is based on a balanced panel of 393 monitors 

in operation continuously from 1999 through 2013.   
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Table A2 reports coefficients, robust standard errors clustered by Census block group, and 95% 

confidence intervals for the specification from Table I, column (6). For brevity we do not report 

dummy variable coefficients for approximately one thousand Core Business Statistical Areas. Ta-

ble A2.A reports second-stage results and Table A2.B reports first-stage results. 

TABLE A2.A—SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The chronic conditions in 2004 are hypertension (H), stroke (S), diabetes (D), ischemic heart disease (I), and congestive heart failure (C). 

coefficient

Robust 

standard 

error

PM2.5 (1 μg/m3) (Decadal, 2004-2013) 1.2880 0.4590 0.3883 2.1877

Chronic conditions in 2004     

H 1.8210 0.0899 1.6448 1.9972

S 8.7642 0.5983 7.5916 9.9368

S, H 10.2099 0.3660 9.4926 10.9272

D 4.2402 0.2584 3.7337 4.7466

D, H 4.6247 0.1518 4.3271 4.9224

D, S 15.3799 1.9692 11.5202 19.2395

D, S, H 13.9235 0.6562 12.6374 15.2097

I 3.0074 0.1784 2.6577 3.3571

I, H 3.6437 0.1253 3.3982 3.8892

I, S 10.7376 0.8798 9.0131 12.4621

I, S, H 12.0605 0.3593 11.3562 12.7648

I, D 5.2295 0.4674 4.3135 6.1455

I, D, H 6.5407 0.1837 6.1807 6.9007

I, D, S 10.4270 2.1400 6.2326 14.6214

I, D, S, H 15.3417 0.5227 14.3173 16.3661

C 5.0845 0.6057 3.8973 6.2716

C, H 5.3820 0.3329 4.7295 6.0346

C, S 8.8339 2.8206 3.3055 14.3622

C, S, H 12.6208 1.1028 10.4593 14.7822

C, D 8.6904 1.6104 5.5340 11.8467

C, D, H 9.1610 0.4977 8.1855 10.1365

C, D, S 21.8199 6.4948 9.0902 34.5496

C, D, S, H 19.2555 1.5805 16.1577 22.3533

C, I 4.7408 0.5345 3.6931 5.7885

C, I, H 6.6400 0.2178 6.2132 7.0669

C, I, S 10.3657 1.9153 6.6118 14.1196

C, I, S, H 14.8014 0.5195 13.7832 15.8196

C, I, D 7.9863 1.1358 5.7602 10.2125

C, I, D, H 10.4413 0.2623 9.9271 10.9555

C, I, D, S 21.3867 4.5025 12.5619 30.2115

C, I, D, S, H 21.8414 0.5792 20.7061 22.9766

95% Confidence Interval
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TABLE A2.A CONTINUED— SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

 

 

 

 

coefficient

Robust 

standard 

error

2004 Gross Medicare Expenditures ($10,000)

expenditures 4.0505 0.1326 3.7906 4.3104

expenditures2 -0.5336 0.0380 -0.6080 -0.4592

expenditures3 0.0213 0.0025 0.0164 0.0262

expenditures4 -0.0002 0.0000 -0.0003 -0.0002

Age (females)

75 -0.2761 0.1575 -0.5848 0.0326

76 0.2240 0.1652 -0.0999 0.5479

77 1.3026 0.1767 0.9563 1.6489

78 2.2219 0.1865 1.8563 2.5876

79 4.0613 0.1994 3.6705 4.4521

80 5.6679 0.2139 5.2486 6.0872

81 6.6002 0.2185 6.1720 7.0284

82 8.3129 0.2295 7.8631 8.7627

83 10.6962 0.2361 10.2335 11.1589

84 12.2144 0.2474 11.7295 12.6992

85 14.6477 0.2592 14.1396 15.1557

86 16.8637 0.2708 16.3329 17.3945

87 19.0497 0.2874 18.4864 19.6130

88 21.6289 0.3022 21.0367 22.2211

89 24.2650 0.3176 23.6424 24.8875

90 26.1576 0.3419 25.4875 26.8278

91 28.8127 0.3726 28.0823 29.5430

92 30.1713 0.3945 29.3980 30.9446

93 32.2683 0.4382 31.4094 33.1271

94 35.4521 0.5104 34.4518 36.4525

95 37.0542 0.5600 35.9566 38.1517

96 39.1820 0.6432 37.9213 40.4427

97 40.9426 0.7502 39.4723 42.4129

98 42.3773 0.8749 40.6626 44.0920

99 45.8055 0.9676 43.9090 47.7021

100 and over 18.7867 0.4718 17.8620 19.7114

95% Confidence Interval
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TABLE A2.A CONTINUED— SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

  

coefficient

Robust 

standard 

error

male -0.6739 0.1594 -0.9863 -0.3615

Age (males)

75 -0.0810 0.2281 -0.5282 0.3661

76 0.0804 0.2406 -0.3912 0.5519

77 -0.2161 0.2561 -0.7181 0.2859

78 -0.6464 0.2714 -1.1783 -0.1145

79 -1.0907 0.2891 -1.6574 -0.5240

80 -1.2386 0.3131 -1.8523 -0.6249

81 -1.3260 0.3221 -1.9574 -0.6946

82 -1.4963 0.3403 -2.1633 -0.8294

83 -2.4149 0.3513 -3.1034 -1.7263

84 -2.3897 0.3744 -3.1234 -1.6559

85 -2.6583 0.3978 -3.4380 -1.8786

86 -2.8728 0.4199 -3.6957 -2.0498

87 -3.9090 0.4490 -4.7890 -3.0289

88 -4.0464 0.4815 -4.9900 -3.1028

89 -4.5280 0.5150 -5.5373 -3.5186

90 -5.0953 0.5630 -6.1987 -3.9919

91 -6.3202 0.6154 -7.5264 -5.1140

92 -4.7300 0.6773 -6.0575 -3.4024

93 -4.8036 0.7682 -6.3093 -3.2979

94 -7.0531 0.9083 -8.8332 -5.2729

95 -7.0787 1.0512 -9.1391 -5.0184

96 -8.2181 1.2269 -10.6228 -5.8134

97 -7.4071 1.4974 -10.3419 -4.4723

98 -9.8520 1.7825 -13.3457 -6.3583

99 -13.7820 2.1583 -18.0122 -9.5519

100 and over -12.9798 0.7490 -14.4478 -11.5118

95% Confidence Interval
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TABLE A2.A CONTINUED— SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION 

 

coefficient

Robust 

standard 

error

White 1.6698 0.2972 1.0874 2.2522

Black 3.4040 0.3353 2.7468 4.0613

Asian 1.8820 0.3541 1.1880 2.5761

Hispanic 3.1176 0.3387 2.4539 3.7813

2004 Census Block Group Demographics

median household income / 1000 -0.0001 0.0024 -0.0047 0.0045

per capita income / 1000 -0.0132 0.0037 -0.0205 -0.0060

median year built 0.0006 0.0025 -0.0043 0.0055

median house value / 1000 -0.0014 0.0004 -0.0022 -0.0007

average house value / 1000 0.0000 0.0001 -0.0002 0.0003

median gross income / 1000 0.0106 0.0060 -0.0011 0.0224

% over 65 1.3938 0.3754 0.6580 2.1296

% white 0.5297 0.4110 -0.2758 1.3352

% black 0.9974 0.4528 0.1099 1.8849

% hispanic 0.2138 0.4743 -0.7158 1.1434

% 9th through 12th -0.1943 1.1348 -2.4184 2.0298

% high school graduate -2.0321 0.8658 -3.7291 -0.3352

% some college -4.1794 0.8634 -5.8716 -2.4873

% associate degree -4.2027 1.0842 -6.3277 -2.0778

% bachelor's degree -3.3805 0.8607 -5.0675 -1.6936

% graduate degree -4.0097 0.9067 -5.7869 -2.2325

% owner occupied -1.6389 0.3902 -2.4038 -0.8741

% renter occupied 2.1927 0.4402 1.3299 3.0555

PM2.5 (1 μg/m3) (Baseline, 2001-2003)     

exposure -1.9583 1.6131 -5.1199 1.2033

exposure2 0.1601 0.1766 -0.1860 0.5062

exposure3 -0.0086 0.0082 -0.0246 0.0074

exposure4 0.0002 0.0001 -0.0001 0.0004

95% Confidence Interval
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TABLE A2.B—FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The chronic conditions in 2004 are hypertension (H), stroke (S), diabetes (D), ischemic heart disease (I), and congestive heart failure (C). 

coefficient

Robust 

standard 

error

Chronic conditions in 2004     

H -0.0012 0.0008 -0.0029 0.0004

S 0.0003 0.0050 -0.0096 0.0102

S, H -0.0002 0.0026 -0.0053 0.0049

D -0.0031 0.0025 -0.0079 0.0017

D, H -0.0034 0.0012 -0.0058 -0.0010

D, S -0.0032 0.0141 -0.0309 0.0244

D, S, H -0.0005 0.0046 -0.0096 0.0086

I -0.0017 0.0017 -0.0050 0.0015

I, H -0.0021 0.0011 -0.0042 0.0000

I, S -0.0028 0.0070 -0.0164 0.0109

I, S, H 0.0007 0.0026 -0.0045 0.0058

I, D -0.0019 0.0038 -0.0094 0.0056

I, D, H -0.0052 0.0015 -0.0081 -0.0022

I, D, S -0.0238 0.0164 -0.0559 0.0082

I, D, S, H -0.0016 0.0037 -0.0089 0.0057

C -0.0051 0.0047 -0.0144 0.0041

C, H -0.0027 0.0026 -0.0079 0.0025

C, S -0.0368 0.0254 -0.0866 0.0129

C, S, H -0.0027 0.0080 -0.0183 0.0130

C, D 0.0027 0.0141 -0.0250 0.0304

C, D, H -0.0024 0.0039 -0.0101 0.0054

C, D, S -0.0153 0.0327 -0.0794 0.0489

C, D, S, H -0.0145 0.0110 -0.0361 0.0070

C, I 0.0026 0.0043 -0.0057 0.0110

C, I, H 0.0022 0.0017 -0.0012 0.0056

C, I, S -0.0042 0.0138 -0.0313 0.0229

C, I, S, H -0.0060 0.0039 -0.0137 0.0017

C, I, D -0.0046 0.0093 -0.0229 0.0137

C, I, D, H 0.0028 0.0021 -0.0013 0.0069

C, I, D, S 0.0141 0.0373 -0.0590 0.0871

C, I, D, S, H 0.0005 0.0044 -0.0081 0.0091

95% Confidence Interval
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TABLE A2.B CONTINUED— FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

 

 

 

 

coefficient

Robust 

standard 

error

2004 Gross Medicare Expenditures ($10,000)

expenditures 5.3730 9.9780 -14.1830 24.9290

expenditures2 -1.4370 2.6470 -6.6250 3.7510

expenditures3 0.1050 0.1500 -0.1900 0.4000

expenditures4 -0.0015 0.0018 -0.0050 0.0020

Age (females)

75 0.0000 0.0021 -0.0040 0.0041

76 0.0020 0.0021 -0.0021 0.0062

77 -0.0003 0.0021 -0.0044 0.0038

78 0.0012 0.0021 -0.0029 0.0054

79 -0.0005 0.0022 -0.0048 0.0037

80 0.0027 0.0022 -0.0016 0.0070

81 0.0027 0.0022 -0.0016 0.0069

82 0.0029 0.0022 -0.0015 0.0072

83 0.0036 0.0022 -0.0008 0.0079

84 0.0014 0.0023 -0.0030 0.0058

85 0.0046 0.0023 0.0002 0.0091

86 0.0055 0.0024 0.0009 0.0101

87 0.0030 0.0024 -0.0018 0.0078

88 0.0053 0.0025 0.0004 0.0101

89 0.0058 0.0026 0.0007 0.0110

90 0.0038 0.0027 -0.0015 0.0091

91 0.0022 0.0029 -0.0034 0.0078

92 0.0078 0.0031 0.0018 0.0138

93 0.0029 0.0034 -0.0038 0.0096

94 0.0024 0.0038 -0.0050 0.0098

95 0.0049 0.0042 -0.0034 0.0131

96 0.0032 0.0046 -0.0059 0.0123

97 0.0033 0.0055 -0.0075 0.0140

98 0.0113 0.0060 -0.0005 0.0231

99 0.0038 0.0072 -0.0103 0.0178

100 and over 0.0173 0.0038 0.0099 0.0246

95% Confidence Interval
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TABLE A2.B CONTINUED— FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

  

coefficient

Robust 

standard 

error

male -0.0051 0.0023 -0.0097 -0.0006

Age (males)

75 0.0079 0.0032 0.0017 0.0141

76 0.0050 0.0032 -0.0012 0.0113

77 0.0068 0.0032 0.0005 0.0131

78 0.0067 0.0033 0.0002 0.0131

79 0.0039 0.0033 -0.0027 0.0104

80 0.0057 0.0034 -0.0010 0.0123

81 0.0054 0.0034 -0.0012 0.0120

82 0.0052 0.0034 -0.0015 0.0119

83 0.0047 0.0034 -0.0020 0.0115

84 0.0044 0.0035 -0.0024 0.0113

85 0.0054 0.0035 -0.0015 0.0122

86 0.0042 0.0036 -0.0028 0.0113

87 0.0041 0.0038 -0.0033 0.0115

88 0.0059 0.0039 -0.0018 0.0136

89 0.0050 0.0041 -0.0031 0.0131

90 0.0082 0.0043 -0.0003 0.0167

91 0.0043 0.0047 -0.0049 0.0135

92 0.0005 0.0049 -0.0091 0.0102

93 0.0104 0.0055 -0.0004 0.0213

94 0.0192 0.0068 0.0057 0.0326

95 0.0112 0.0075 -0.0036 0.0260

96 0.0166 0.0087 -0.0004 0.0336

97 0.0150 0.0106 -0.0057 0.0357

98 0.0020 0.0136 -0.0247 0.0286

99 -0.0068 0.0150 -0.0361 0.0225

100 and over 0.0660 0.0095 0.0473 0.0847

95% Confidence Interval
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TABLE A2.B CONTINUED— FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION 

 

coefficient

Robust 

standard 

error

White -0.0112 0.0033 -0.0178 -0.0046

Black -0.0060 0.0037 -0.0133 0.0014

Asian 0.0044 0.0045 -0.0045 0.0133

Hispanic 0.0106 0.0040 0.0028 0.0185

2004 Census Block Group Demographics

median household income / 1000 -0.0005 0.0001 -0.0006 -0.0004

per capita income / 1000 0.0017 0.0001 0.0015 0.0019

median year built -0.0003 0.0001 -0.3977 -0.1736

median house value / 1000 -0.0001 0.0000 -0.0001 -0.0001

average house value / 1000 0.0000 0.0000 0.0000 0.0000

median gross income / 1000 -0.0001 0.0002 -0.0004 0.0002

% over 65 -0.0895 0.0120 -0.1130 -0.0661

% white 0.0890 0.0113 0.0668 0.1111

% black 0.0574 0.0116 0.0346 0.0802

% hispanic 0.0846 0.0130 0.0591 0.1101

% 9th through 12th -0.1291 0.0252 -0.1785 -0.0798

% high school graduate -0.1102 0.0209 -0.1512 -0.0692

% some college -0.1615 0.0210 -0.2027 -0.1203

% associate degree -0.2372 0.0254 -0.2870 -0.1873

% bachelor's degree -0.0802 0.0209 -0.1212 -0.0393

% graduate degree -0.0733 0.0227 -0.1178 -0.0289

% owner occupied -0.0377 0.0091 -0.0555 -0.0199

% renter occupied 0.0231 0.0103 0.0029 0.0432

PM2.5 (1 μg/m3) (Baseline, 2001-2003)     

exposure 0.6445 0.1536 0.3436 0.9455

exposure2 -0.0452 0.0205 -0.0854 -0.0051

exposure3 0.0045 0.0012 0.0022 0.0068

exposure4 -0.0001 0.0000 -0.0002 -0.0001

Nonattainment * PM2.5 (1 μg/m3) (2001-2003)     

Nonattainment -24.8634 1.4321 -27.6702 -22.0566

Nonattainment * exposure 5.9907 0.3246 5.3545 6.6270

Nonattainment * exposure2 -0.4037 0.0352 -0.4728 -0.3347

Nonattainment * exposure3 0.0162 0.0011 0.0140 0.0183

Nonattainment * exposure4 -0.0001 0.0000 -0.0001 0.0000

95% Confidence Interval
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FIGURE A4—WITHIN-CBSA VARIATION IN NONATTAINMENT STATUS BY BASELINE PM2.5 LEVELS 

 

 

The figures illustrate the variation in county nonattainment status conditional on baseline residen-

tial PM2.5 concentrations from 2001-2003 within two of the largest Core Business Statistical Areas 

that jointly account for about 16% of the people in our sample. The vertical axes report the frac-

tions of people in 0.33 microgram per cubic meter bins describing baseline PM2.5 concentrations 
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for residential areas in nonattainment and attainment counties at the time nonattainment designa-

tions were made. For example, about 5% of people living in nonattainment counties within the 

New York - New Jersey - Long Island CBSA in 2005 were living in neighborhoods that had base-

line concentrations of 12.3 micrograms per cubic meter. The corresponding fraction is about 12.5% 

for those living in attainment counties. This is one source of conditional variation that underlies 

the identification of the effects of PM2.5 in our 2SLS models.  
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FIGURE A5— PARTIAL EFFECT OF COUNTY-BY-MONITOR NONATTAINMENT ON PM2.5 EXPOSURE 

 

The figure reports conditional variation in decadal PM2.5 exposures that arises from nonattainment 

status of the air quality monitor closest to the individual’s residence, conditional on county nonat-

tainment designation. Each solid line is constructed by using our first-stage coefficients on the 

excluded instruments to predict how nonattainment designations affected average decadal expo-

sure conditional on baseline exposure. The excluded instruments consist of a 4th order polynomial 

function of baseline exposure interacted with nonattainment indicators for the county and nearest 

monitor, which may or may not be in the same county. In the legend, “A” and “NA” denote attain-

ment and nonattainment. 
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TABLE A3—MODEL COEFFICIENTS FOR CRITERIA AIR POLLUTANTS  

 

The first row report coefficients for each of the federally regulated air pollutants included in the 

model summarized in Table II, column (7).  Standard errors are shown below in the second row. 

The last two rows report the sample means and standard deviations in the distribution of decadal 

exposure among the estimation sample. 

 

 

  

PM2.5                                            

(1 μg/m3)

PM10                                               

(1 μg/m3)

Ozone                                  

(parts per 

million)

Nitrogen 

Dioxide           

(parts per 

billion)

Sulfur 

Dioxide               

(parts per 

billion)

Carbon 

Monoxide                             

(parts per 

million)

1.357*** -0.13 -74.80 0.13 0.44 22.21

(0.62) (0.26) (194.53) (0.26) (0.96) (13.89)

sample mean 10.947 21.300 0.043 0.383 13.301 2.522

sample standard deviation 1.701 4.199 0.004 0.070 4.097 1.062

Estimated effect on dementia 

diagnosis probability
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FIGURE A7: ANNUAL AVERAGE CHANGES IN PM2.5 BY AGE, MIGRATORY STATUS, AND DEMENTIA 

 

The figure shows the average year-to-year reduction in PM2.5 experienced by movers with demen-

tia (solid line) and non-movers (dashed line) in our sample, conditional on each year of life from 

age 66 to age 96. These reductions are calculated by subtracting pollution exposure in year t+1 

from pollution exposure in year t for each individual in each year and then averaging across all 

years in our sample for movers and non-movers at each age. Notice that the dashed line has a slope 

close to zero, implying that the reduction in air pollution exposure among non-movers is approxi-

mately uncorrelated with age. The average non-mover experienced an average year-to-year reduc-

tion in PM2.5 concentrations of about 0.375 μg/m3 at all ages. By contrast, the average 66 year-old 

mover with dementia experienced a reduction of about 0.5 μg/m3. The difference between non-

movers and movers with dementia persists with age.  
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TABLE A4—EFFECTS OF DEMENTIA ON PRESCRIPTION DRUG PLAN CHOICES  

 
Note: Each column reports coefficients estimates from models regressing decision making outcomes on indicators for whether the beneficiary is 

diagnosed with Alzheimer’s disease and related dementias at the time of their enrollment decision (dementia) or after their enrollment decision but 
before the end of 2013 (future dementia) in comparison to beneficiaries not diagnosed with dementia by the end of the 2013. All models pool data 

from 2006 to 2010 and include residential CBSA dummies, state x year dummies, integer age x gender dummies, covariates describing individual 

health and Medicare expenditures prior to entering Medicare Part D, and covariates describing individual and neighborhood demographics. Robust 

standard errors are clustered by Census block group.  

The table reports results from repeating estimation of the model in equation (5) after re-defining 

expected drug use in year t to be identical to actual drug use in year t-1. This reduces the sample 

sizes because we do not observe drug use prior to 2006.  

 

  

cost,                      

variance

cost,                          

variance,                         

star rating

cost,                     

variance,                  

insurer

19.42*** -0.36*** 2.38*** 3.70*** 2.74***

(1.99) (0.07) (0.09) (0.11) (0.13)

6.97*** -0.58*** 1.06*** 1.37*** 0.74***

(1.93) (0.07) (0.09) (0.10) (0.12)

mean of dependent variable 346 10 72 52 25

sample size 2,755,892 2,575,534 2,755,892 2,755,892 1,742,957

Potential                         

savings ($)

Probability of 

actively 

switching out 

of default plan

Probability chosen plan is dominated in:

dementia

future dementia
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SUPPLEMENTAL APPENDIX B: FOR ONLINE PUBLICATION  

 

 

This appendix provides additional details regarding our estimate of the effect of dementia on 

people’s quality-adjusted life years (QALYs). Alzheimer’s disease and related dementias reduce 

QALYs through mortality and morbidity. We are unaware of any published estimates of the ef-

fects of dementia on life expectancy. To approximate this, we use the Medicare data to compare 

the average age at death of those who died with dementia against the average age at death of 

those who died without dementia. This yields a difference of 6.1 years (80.2 versus 86.3). Due to 

the health of the Medicare population even apart from dementia, each year of life lost does not 

represent a full QALY. Using estimates from Ara and Brazier (2011), we estimate that the aver-

age health state utility value (or “QALY weight”) among this population is 0.8. Together, these 

values imply that a dementia diagnosis on average leads to 4.88 QALYs lost due to mortality.  

To estimate the lost QALYs due to lower quality of life while living with dementia, we com-

bine the median QALY weights for mild, moderate and severe ADRD from Kasai and Maguro 

(2013) with the transition rates between severity levels from Spackman et al. (2012). We rely on 

these prior estimates because we cannot directly observe dementia severity with the Medicare 

data. We combine them with estimates from the Medicare data for the probability of survival to 

the end of each year following a dementia diagnosis. These estimates are provided in the table 

below.  

From Spackman et al. (2012), among those who remain living with dementia, an estimated 

77% of mild cases transition each year to moderate, and 50% of moderate transition to severe. 

Kasai and Maguro (2013) estimated the health state utility value for each level to range from 

0.52–0.73 in mild cases, 0.30–0.53 in moderate cases, and 0.12–0.49 in severe cases. Combining 

the midpoints of these ranges with the transition rates and survival rates and again assuming a 

utility value of 0.8 apart from dementia yields an estimated loss of 1.0 QALY per dementia rate 

due to morbidity. This ranges from 0.6 QALYs using the high end of the health state utility value 

range to 1.5 using the low end. Combining this with the loss from mortality results in a central 

estimate of 5.9 QALYs lost per dementia case, with a range from 5.5 to 6.4 QALYs. 
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TABLE B1—MORTALITY RATES BY YEARS SINCE DEMENTIA DIAGNOSIS 
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Years since Dementia 

Diagnosis

Percent 

Dying

Cumulative 

Percent Dead

0 23.38 23.38

1 19.89 43.28

2 14.17 57.45

3 11.32 68.76

4 8.82 77.58

5 6.72 84.3

6 5.02 89.32

7 3.58 92.9

8 2.57 95.46

9 1.77 97.24

10 1.17 98.4

11 0.76 99.17

12 0.46 99.63

13 0.25 99.89

14 0.11 100




