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ABSTRACT
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rate, and form a wider and more evenly distributed network. These market expansion effects 
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that platform entry can divert the perceived path to winners-take-all in a market with positive 
network effects, and competition with the outside goods is at least as important as the competition 
between platforms, especially when users multi-home across compatible networks.
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1. Introduction 

Thanks to the ubiquity of digital platforms, platform competition has caught the attention of 

antitrust agencies. Since platforms often enjoy positive network effects, it is of concern that the network 

effects could lead to winner-takes-all, where the incumbent dominates the market and competing 

platforms find it difficult to enter and survive.1 In the meantime, a growing literature points out that 

user multi-homing and platform compatibility play an important role alleviating the anti-competitive 

concerns.2 How do platforms compete when they face positive network effects and multi-homing 

users? To what extent does the entry of a competitor expand or steal the user base of the incumbent 

platform? How do price, sales, and investment of the incumbent change as a result of entry? Are there 

other competitive considerations besides the potential of winner-takes-all? 

We take these questions to the dockless bike-sharing market of China. ofo3, the first bike-sharing 

platform in China, was founded in 2015 by a student of Peking University (PKU) when he was an 

undergraduate there. Due to travel inconvenience on a large college campus, ofo started as a two-sided 

platform that allowed students to share privately owned bikes on campus via an online app. Soon after, 

the online-to-offline (O2O) platform decided to supply the GPS-tracked dockless bikes itself and 

effectively became a one-sided platform.  

As documented by a burgeoning literature4, bike-sharing solves the “last-mile” problem of local 

���������������������������������������� �����������
�� The main concern is that users may be reluctant to switch from the incumbent platform because they all enjoy 
the presence of other users in the same network. In some circumstances, users may coordinate on the wrong 
(inferior) network, the incumbent firm may have incentives to develop a proprietary network to lock in users, 
and the “excess inertia” may result in winner-takes-all. Even if multiple firms can compete to be the “winner” of 
the market, such competition can be inefficient from the social planner’s point of view (see the review of Farrell 
and Klemperer 2007).  
�� On multi-homing, Caillaud and Jullien (2003) show that platform competition is more intense if they cannot 
deter multi-homing. Halaburda and Yehezkel (2013) study platform competition under asymmetric information. 
They find that platform competition may lead to a lower level of trade and lower welfare than a monopoly, if the 
difference in the degree of asymmetric information between the two sides is below a certain threshold. Multi-
homing can solve the market failure resulting from asymmetric information. On compatibility, Katz and Shapiro 
(1985) show that large, reputable firms tend to choose incompatibility while small, weak firms tend to choose 
compatibility. Farrell and Saloner (1986) further show that, if an installed base exists and transition to a new 
standard must be gradual, early adopters bear a disproportionate share of transient incompatibility costs. This 
can cause "excess inertia." However, if the new standard is adopted, positive network effects can cause "excess 
momentum.” �
3 “ofo” is the trademark of the platform, symbolizing a person riding a bicycle. To keep the full meaning of the 
trademark, we do not capitalize the first letter even if a sentence starts with “ofo.”  
4 Kabra et al. (2016), Zheng et al. (2018) and O’Mahony and Shmoys (2015) have studied docked bike-sharing 
platforms in London, New York and Paris. Pan et al. (2018) study the dockless bike-sharing platform of Mobike 
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transportation. There are direct network effects among bike riders because a user who rides a bike from 

point A to point B makes the bike available for the next rider at point B. This feature, referred to as 

“consumption-as-supply,” is particularly attractive in dockless bike-sharing. It no longer requires fixed 

docks at the origin and destination of a trip, which mitigates the potential imbalance of demand and 

supply in different locations at different times.5 When thousands of users ride ofo bikes in a small area, 

the wide availability of ofo bikes persuades more users to adopt the app. In addition, more users on the 

road motivate ofo to put more bikes on the market, which further increases each user’s willingness to 

use ofo.6 Thanks to these positive network effects, ofo grew exponentially from a college campus to 

more than 250 cities in 20 countries by January 2018.7  

ofo’s growth has attracted numerous competitors, of which Mobike is the biggest rival. From the 

outset, ofo and Mobike were estimated to have more than 90% of the bike-sharing market in China8, 

making many cities a de facto monopoly or duopoly depending on when one or both of them entered 

the city. If both entered the city, most consumers multi-home because the two bikes are almost perfect 

substitutes at the same time and location, and consumers can freely choose whichever is available at the 

moment.9  In this sense, the two platforms are compatible and users are free to multi-home. 

By tracking news reports10 and combining them with ofo’s internal data (up to 9/14/2017), we 

identify 59 cities that were first served by ofo and then joined by Mobike. We label them ofo First cities. 

There are another 23 ofo Alone cities and 22 Mobike First cities.11 As a platform, ofo started half a year 

earlier than Mobike, so it is natural to consider ofo as an incumbent and Mobike as an entrant. With this 

sequence in mind, we apply difference-in-differences (DID) to the sample of ofo Alone and ofo First 

���������������������������������������� �����������
in China. All of them focus on the operation of a single bike-sharing network, such as network effects, consumer 
demand for bikes in the existing bike network, the optimal way to locate bike docks, and algorithms that could 
reduce the imbalance between bike demand and bike supply. 
5 Dockless bike-sharing does not completely solve the imbalance problem. See more detailed discussion in 
Section 2. 
6 This is similar to the positive feedback between demand and supply on a two-sided platform, though in our 
case the supply side is integrated with the platform.  
7 See the report from i-yiou at https://www.iyiou.com/p/64688, as of January 17, 2018. 
8 Industry research reports from different sources (such as iResearch, TrustDada and Analysys) cross-validate 
this number and some even claim that this number is estimated to be larger than 95%. 
9 Both apps adopt Wechat Pay and Alipay, the two most widely accepted electronic payment systems in China. 
10 We track news reports since September 7, 2015. 
11 Our sample does not cover all the 200+ cities serviced by ofo, mostly because some cities do not have 
complete city attribute data from the 2016 China City Statistical Yearbook. We will elaborate our sample 
criterion and the definitions of ofo First, ofo Alone and Mobike First cities in Section 2. 
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cities, while taking Mobike’s city-specific entry as the “treatment”12 and using ofo Alone cities as the 

control group.13 Simple regressions suggest that Mobike’s entry has expanded the market for ofo, 

driving up ofo’s trip volume by 40.8% and ofo’s average revenue per trip by 0.041 RMB.  

Could the market expansion be driven by omitted variables or endogenous entry? Arguably, 

Mobike would choose the most profitable cities to enter first and ofo First and ofo Alone cities may be 

incomparable. To address this, we test and confirm that ofo First and ofo Alone cities are comparable 

in pre-treatment trend. We also show that the baseline estimates are robust to heterogeneous time trends, 

placebo test and subsample regressions. To further address potential endogeneity, we predict Mobike’s 

entry date in a city using the timing of Mobike’s venture capital (VC) funding (8 rounds in total) and 

the city’s predetermined attributes such as population, seasonality, and transportation infrastructure. 

Using the predicted entry date as the instrument variable (IV) for the actual entry date, the IV results 

confirm that Mobike’s entry benefits ofo in both trip volume and revenue per trip. 

At the first glance, these findings are against the typical prediction from market competition. If 

two platforms compete fiercely against each other14, the entrant should steal consumers away from the 

incumbent and press the incumbent to lower price, unless the entry has increased the overall market 

demand for both platforms. Even if the overall market expands, there should be significant market 

stealing between Mobike and ofo, as most consumers multi-home and the two bikes are almost identical 

except for color, logo and app access. This prediction is confirmed in our data: when we separate new 

and old users within ofo, we find that Mobike’s entry has indeed reduced the percent of old users that 

remain active on ofo, but this market stealing effect is dominated by the expansion in new users. Another 

way to unpack market stealing and market expanding effects is by time: if we zoom in the days right 

after Mobike’s entry but before ofo made any new bike investment, we find that ofo lost old users and 

did not pick up extra new users in this time window. 

However, how can we explain the overall market expansion for ofo after Mobike has been in the 

���������������������������������������� �����������
12 As detailed in Section 3, our estimation uses a long list of controls including weather conditions, air quality, 
calendar day fixed effects, time since ofo entry and time trends specific to predetermined city attributes. 
13 Since we do not have detailed data from Mobike, it is difficult to examine how ofo entry into Mobike First 
cities affects the market. Later in the paper we will describe how we use ofo data on Mobike First cities for 
robustness check.  
��� Though we do not have detailed data from Mobike, many new reports confirm that both ofo and Mobike grew 
substantially despite their head-to-head competition in many cities.�
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city for a while? A few possibilities come to mind. First, Mobike’s aggressive marketing campaign – 

including advertising and coupon handouts – could have raised consumer awareness over time and 

boosted the overall demand for bike-sharing. It is difficult to test this as we do not have detailed data 

on Mobike’s marketing efforts. Putting that aside, the second possibility is that ofo puts more new bikes 

into the duopoly markets in response to Mobike’s entry. Data provides some support for this argument: 

ofo has indeed put more bikes in the ofo First markets after Mobike’s entry, above and beyond the 

periodical bike investment it made in ofo Alone markets.  

Nevertheless, other evidence suggests that ofo’s bike investment cannot explain all the market 

expansion effect of Mobike’s entry. For example, ofo’s bike utilization rate – measured by the number 

of trips per ofo bike per day – has also increased significantly upon Mobike entry. This suggests that 

Mobike’s entry has generated positive spillovers for every ofo bike, even after we account for ofo’s new 

bike investment. We also find Mobike’s entry allows ofo bikes to reach more grids in the city, if we 

define each grid as a square kilometer. Conditional on the grids that ofo bikes reach in a particular city-

day, we can describe the dispersion of ofo bike usage by a Gini coefficient. This Gini coefficient 

decreases significantly upon Mobike’s entry, suggesting that the entry has made ofo bike trips more 

evenly distributed in the ofo First cites than in the ofo Alone cities. All these results point to a 

competition-reinforced network effect: Mobike’s entry has likely expanded the overall size of the bike-

sharing network, attracted more consumers to join bike-sharing, and helped to expand the ofo network 

in depth, width, flatness and user reach.  

This happens not only because of multi-homing and compatibility, but also because bike-sharing 

features consumption-as-supply. The more Mobike users there are in the market, the more likely that 

some of them will ride a Mobike bike to the neighborhoods dominated by ofo users. This will increase 

the overall bike supply in the neighborhood, encouraging even more residents to adopt ofo, Mobike or 

both. In addition, the more bike users there are in the market, the greater the density and coverage of 

the spatial network (ofo + Mobike). This reduces operation costs of both platforms, as bike consumption 

carries supply to hard-to-find pockets, which reduces the need for platforms to move bikes around to 

meet unbalanced demand. As the economy of scale kicks in, platforms have even more incentives to 

invest in new bikes in order to facilitate the positive feedback between bike supply and user base. 
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Our work is closest to the literature of network markets and digital platforms. By focusing on a 

market with positive network effects, we show that competition could expand the networks to a bigger 

market, even though the competing goods are close substitutes. Moreover, the first entrant in a network 

market does not necessarily exhaust all the positive network effects by itself, especially if late-comers 

could steal a significant part of the market from the incumbent and therefore have incentives to enter 

before the incumbent exhausts the market. This implication departs from the typical concern of winner-

takes-all, but raises a new concern that competing platforms may not fully internalize the positive 

spillover between platforms.  

Our findings are related to platform compatibility. Though the literature has recognized the 

beneficial role of compatibility in network competition, most studies focus on the choice of 

(in)compatibility and assume that the optimal network size is purely driven by exogenous demand 

factors such as consumer value of network size (Katz and Shapiro 1985).15 In our context, bike-sharing 

platforms take compatibility as given but could choose bike investment to encourage user adoption thus 

endogenizing the network size. In particular, because bike investment is costly and the benefits of that 

investment may spillover to competing platform(s), competition could generate an incentive to under-

invest and free-ride.  

Our results also highlight the importance of uncovered market. Restricting platform competition 

to a covered market emphasizes head-to-head competition between platforms (Armstrong 2005), but 

assumes away the competition between platforms and the outside good. We show that competition with 

the outside good could dominate the market stealing effects in the long run, thanks to positive network 

effects. Therefore, a complete picture of competition must include the outside good. 

The rest of the article is organized as follows. Section 2 describes the background. Section 3 

provides a simple, conceptual framework. Section 4 summarizes the data. Section 5 describes our main 

econometric specifications. Section 6 reports the empirical results. Section 7 concludes with policy 

implications and directions for future work. 

���������������������������������������� �����������
15 This is often achieved by assuming consumer willingness to pay for a network good is a specific function of 
the size of the network that is compatible with the good. For example, in a model with two network goods, 
consumer willingness to pay for good 1 depends on its own network size (N1) if the two goods are non-
compatible, and N1+N2 if the two goods are compatible. The model also needs to assume that each firm’s 
compatibility choice involves fixed costs only and the marginal cost of operation is independent of network size.  
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2. Background 

Since the 1960s, bike-sharing systems have gone through a few generations, mostly driven by 

technological development in electronically-locking racks, telecommunication systems, smartcards and 

fobs, mobile phone access, and on-board computers (DeMaio, 2003, 2004, 2009). The history of bicycle 

ownership and usage in China is relatively long and bike-sharing systems have followed diverse 

development paths in different cities (Zhang et al., 2015). Traditional bike-sharing systems provide bike 

rental service through stations, which means that each bike is docked at a station, riders must pick up a 

bike from one station, and return it to this or another station within the same network. The distance 

between stations and origins/destinations may be far and the capacity of stations is limited, thus the 

coverage of traditional bike-sharing systems is often restricted.  

We focus on the emerging dockless bike-sharing platforms that originated in China. Users no long 

need to pick up bikes from docked stations, neither do they have to dock bikes at pre-set stations. They 

can use smart mobile phones to scan the QR code on bike smart locks and reset it after finishing the trip 

at any authorized area, which is well summarized by an ofo slogan “anytime and anywhere.” From the 

second half of 2015, the whole bike-sharing industry has gone through explosive growth, which 

absorbed venture investment up to 4 billion USD and accumulatively placed more than 25 million bikes 

in hundreds of Chinese cities. It is estimated that the boom of dockless bike-sharing has contributed 

221.3 billion RMB to economic development, created more than 390,000 jobs, and led to a welfare 

improvement equivalent to 175.9 billion RMB in 2017 (China Academy of Information and 

Communications Technology, 2018). There are also environmental benefits from dockless bike-sharing, 

in terms of reduced petrol consumption and decreased CO2 and NOX emissions (Zhang and Mi, 2018). 

Ofo and Mobike are two leading platforms in dockless bike-sharing, both originated in China but 

now operating worldwide. As the first dockless bike-sharing platform, ofo was launched on September 

7, 2015 in Beijing with bikes colored yellow. At the very beginning, ofo restricted its service within 

college campus and limited bike outflow in many cities, which offers an opportunity for the placebo 

test described in Section 6. The campus-specific operation strategy was eliminated on November 17, 

2016 when ofo declared full embrace of city coverage. Mobike is the main competitor of ofo, which 

originated in Shanghai on April 22, 2016 with bikes colored orange. As of January 2018, ofo has placed 



� 
�

dockless bikes in more than 250 cities in 20 countries. In comparison, Mobike had placed their bikes in 

176 cities of 7 countries by the end of 2017.  

The quick growth of ofo and Mobike has encouraged entrepreneurs and angel investors to enter 

the market of dockless bike-sharing. Some estimates suggest that nearly 30 new bike-sharing platforms 

were established in 2016 alone.16 However, various industry reports conclude that ofo and Mobike 

account for 90% to 95% of the bike-sharing markets from the very beginning, so that the other platforms 

are almost negligible.17 That is why we focus on the competition between ofo and Mobike, especially 

how the new entrant (Mobike) affects the incumbent (ofo). 

Because we only have access to ofo data, we collect Mobike’s entry data from media reports, and 

cross-validate it with postings on Mobike’s Weibo home page.18 As detailed in Section 4, our sample 

covers the period from May 29, 2016 to September 14, 2017, and only includes the cities that ofo has 

entered by September 14, 2017. Within this sample of cities, if Mobike enters the city after ofo’s entry, 

then the city is categorized as “ofo First.” If ofo enters the city after Mobike’s entry, it is categorized as 

“Mobike First.” If only ofo enters, it is “ofo Alone.” In total, our sample consists of 104 cities, of which 

59 are ofo First, 23 are ofo Alone, and 22 are Mobike First. In another 6 cities out of our sample, both 

Mobike and ofo have entered but we could not find the exact entry date of Mobike and therefore could 

not define the sequence of entry precisely. We also exclude Beijing from the sample because Beijing is 

the birthplace of ofo and ofo had experimented with many operation policies in Beijing before it started 

to explore other cities. Appendix Table 1 lists the names of the 104 cities in our sample. Figure 1 plots 

them on the map of China. 

A few bike-sharing studies have examined the network feature of docked bikes. Zheng et al. 

(2017) set up a structural demand model to estimate consumer preference for docked bikes in the 

London bike-sharing system, emphasizing that the consumer must plan a trip with both the origin and 

the destination close to a bike station. Because of this constraint, the scope and location of the station 

���������������������������������������� �����������
��� See the report from National Business Daily: http://www.nbd.com.cn/articles/2017-01-05/1067671.html. 
�	� On October 25,2017, two second-tier bike-sharing platforms, Youon and Hellobike, agreed to merge. On 
April 4, 2018, Meituan took the full control of Mobike at a price of 2.7 billion USD. These two market events 
may shake the market structure profoundly, whereas both happened after our sample period.�
�
�Weibo is one of China's biggest Twitter-like microblogging platforms operated by Sina.�
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network is important for consumer demand. They demonstrate these network effects and conclude 

that the existing design of the station network is far from ideal. Using data from a similar bike-sharing 

system in Paris, Kabra et al. (2016) estimate an even-more detailed demand system. They stress that 

both station accessibility and bike availability are important for consumer demand, where station 

accessibility refers to how far a consumer must walk to a nearby bike station and bike availability 

refers to whether a bike is available when one walks to the station.  

Both accessibility and availability problems can be mitigated in dockless bike-sharing, but they 

are not completely eliminated. When it no longer requires a dock to park the bike, there is a 

possibility to find a bike near one’s home or workplace. However, less constraint on parking location 

may also make bikes more dispersedly distributed in the city, and therefore reduces bike availability 

at a particular location. In this sense, consumption-as-supply becomes more important in a dockless 

system, as consumers rely more on other consumers to “supply” a bike in an accessible hotspot. It also 

changes the nature of the network effect from a fixed network of bike stations to an evolving network 

of bikes “floating” throughout the city.  

Another problem that dockless bikes can mitigate is bike rebalance. O’Mahony and Shmoys 

(2015) study this problem in the docked bike-sharing system of New York City. Since demand at 

certain stations can be highly asymmetric during rush hours, stations at the origin of popular 

commuting routes will quickly run out of bikes while stations near the destination of the routes will be 

overwhelmed by bikes without any dock to return to. O’Mahony and Shmoys (2015) design a system 

that uses bike trailers to rebalance the demand and supply during rush hours and uses trucks to 

rebalance overnight. This rebalance problem is mitigated in dockless bike-sharing, because dockless 

bikes no longer need physical docks to complete the trip. However, some imbalance may still exist 

throughout the day, for example, traffic demand throughout the day may reduce bike supply needed 

for the afternoon rush hours, rendering a shortage at the popular origin but an excess at other 

locations. Pan et al. (2018) propose a deep reinforcement learning framework to solve this imbalance 

problem and demonstrate its effectiveness based on Mobike’s transactional data.  

 Our paper differs from all the above, as we focus on platform competition while taking the nature 

of network effects as given. Because dockless systems rely on consumers’ actual demand to define bike 
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accessibility and bike availability, the two competing systems are substitutes and complements at the 

same time. On one hand, if ofo and Mobike bikes are available at the same location, they are perfect 

substitutes. But depletion of ofo bikes can be complemented by the remaining Mobike bikes, hence 

having the competitor’s bikes at the same place could increase bike availability and enhance consumer 

willingness to use bike-sharing. On the other hand, if ofo and Mobike bikes are placed at different 

locations, the overall network of bike-sharing is expanded. More consumers will find bikes accessible 

near the origin, and their usage will increase bike availability at the destination. It can even expand the 

overall network to new locations. Because the two networks are substitutes and complements to each 

other, it is hard to predict whether competition would have a net market expanding or market stealing 

effect on the incumbent.  

 

3. Conceptual Framework 

In this section, we present a simple conceptual framework in order to clarify the network nature of 

bike-sharing and describe how the entrant platform could bring market stealing or market expanding 

effects to the incumbent. We will also sketch a few incentives that the incumbent and the entrant may 

have in price and bike investment, as the result of the market expanding or market stealing effects. 

 

3.1 Demand Side 

Consider a city of population N in multiple periods. In period 1, the city is served by ofo only, with 

!"
#$# bikes around. At the beginning of period 2, Mobike enters with !%#&'() bikes. Upon Mobike’s 

entry, ofo invest !*
#$# bikes into the market. So the total number of bikes increases from !" = !"

#$# in 

period 1 to !* = !"
#$# + !%#&'() + !*

#$#  in period 2 (assuming bikes are durable goods with no 

depreciation). After period 2, ofo and Mobike coexist in the market (with potentially new investments 

in the future).  

If consumers are aware of bike-sharing, adoption of bike-sharing app(s) is free. But consumer 

awareness is a function of total bikes available in the market (!-) as well as the total number of other 

consumers that have adopted the app(s) (.-). For simplicity, we define the “cost” of awareness as 
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0'-
12#3- = 0 !-, .- . The expected utility of using bike-sharing is also dependent on !- and .-, because 

they affect bike availability and bike access. For consumer 5, we define her utility of using any bike-

sharing app as 6'- = 6 !-, .- − 8- + 9'- where 8- is the price of bike-sharing and 9' is iid noise 

conforming to a random distribution. If there are more than one platform in the market, we assume they 

charge the same price because the bikes are perfect substitutes at the same time and location. 

Normalizing the utility of the outside good (no bike-sharing) as zero, we have consumer i’s problem as: 

Period 1: 
6'" = max	 6 !", ." − 8" − 0 !", ." + 9'", 0

!" = !"
#$#

." = 1@ABCDE
'F"

, 

 

Period 2: 

6'* = 	max	(6 !*, .* − 8* + 9'*, 0)	5H	6'" > 0
6'* = max 6 !*, .* − 8* − 0 !*, .* + 9'*, 0 	5H	6'" = 0

!* = !"
#$# + !%#&'() + !*

#$#

.* = ." + 1@AJCD	&	@ABFLE
'F"

. 

Conditional on bikes available on the market (!-),	there could be direct positive network effects 

among bike-sharing users, because other users can supply the bike to nearby locations ( M@MEN > 0) and 

raise consumer awareness ( MOMEN < 0). The former is similar to the direct positive network effects among 

consumers of UBER, Lyft, and Zipcar, whereas the latter has often occurred in technology diffusion 

driven by word-of-mouth. If the number of riders exceeds the number of bikes to a great extent, the 

network effects may become negative as riders compete for the limited bike supply ( M@MEN < 0). We have 

seen similar non-monotonic network effects in theme parks, where consumers may appreciate the 

presence of a few other consumers in the same park but their utility declines when the park becomes 

too crowded.  

Although bike-sharing is run by one-sided platforms, it still embodies indirect network effects 

between demand and supply. More bikes in the market will increase the utility of bike-sharing (M@MQN > 0), 

more bikes displayed on the market will raise consumer awareness (MOMQN < 0), and more app users will 

motivate the platform to invest in more bikes. These indirect network effects are similar to those enjoyed 

by two-sided platforms, except that the supply response to demand increase is implemented by the 
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platform directly, not by individual sellers, drivers, advertisers, or content providers on the other side 

of the platform.  

From this set up, it is clear that Mobike’s entry could have market expanding and market stealing 

effects at the same time. For the consumers that have adopted ofo in period 1 (."), their utility from 

bike-sharing will increase upon Mobike’s entry but part of their bike usage will leak to Mobike. The 

extent of leakage depends on the number of Mobike and ofo bikes on the market.19 For example, if 

ofo’s market share in period 2 (R*
#$#) is proportional to the share of ofo bikes among all bikes on the 

market (i.e. R*
#$# ∝ QB

TUTVQJ
TUT

QB
TUTVQJ

TUTVQWTXAYZ
), Mobike’s market stealing effect (on the existing ofo users) can 

be written as ." − ." ∙ R*
#$#. In the meantime, the increased bike volume could increase the total user 

base, because some non-users in period 1 may become aware of bike-sharing and find it attractive to 

use bike-sharing from a bigger network. A fraction of these new users (R-
#$#)20	will use ofo bikes, thus 

expanding ofo’s user base by (.* − .") ∙ R*
#$# . The overall effect on ofo is therefore (.* − .") ∙

R*
#$# − (." − ." ∙ R*

#$#) = .* ∙ R*
#$# − .", which could be positive or negative depending on whether 

the market expanding effect on the new users exceeds the market stealing effect on the old users.  

In the conceptual framework, we do not model how often a user uses bike-sharing, so the market 

stealing/expanding effects are expressed in the number of users. In the empirical section, we will 

quantify these effects by number of users and number of trips separately.  

 

3.2 Supply Side 

What is the supply-side implication of the market stealing and market expanding effects? A 

complete answer to this question requires careful modeling on the supply side. Since both platforms are 

VC-funded in a nascent market, it is difficult to pin down their objective function. Without an adequate 

objective function, we are not sure whether the platform behavior observed in the data reflects optimal 

���������������������������������������� �����������
19 In reality, how the two platforms split the market also depends on where they place their bikes, which is a 
complicated, strategic decision. Here we abstract from that for simplicity.  
20 Here we assume old and new users utilize the two platforms in the same way, and ofo cannot apply different 
prices on old and new users. By this assumption, the market share of ofo is the same for old and new users.  
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behavior in the long run equilibrium, or is simply a result of liquidity constraint, learning by doing, or 

bounded rationality. With this caveat in mind, we sketch the strategic incentives that could arise on the 

supply side but caution that they are too speculative to guide empirical estimation. 

In our framework, the key decisions facing the platforms are price and investment.21 If we assume 

each platform’s objective (Π) is the sum of current profit and the continuation value, we can write 

platform j’s problem as: 

max
QN
^,3N

^
Π_- = (8-

_ − `a(!_-, R-
_, !-, .-)) ∙ .- ∙ R-

_ − !-
_ + b ∙ c-V"

_ (.-,!-, R-
_) 

where	`a !_-, R-
_, !-, .-  is the marginal cost of operation, c-V"

_ (.-,!-, R-
_) is the continuation value, 

and b is the discount factor. Since the two platforms are modeled as perfect substitutes (and we do not 

model their potential differentiation in bike location), they must charge the same price.  

Intuitively, the equilibrium price should depend on consumer willingness to pay and operation cost. 

As discussed before, consumers expect higher utility from a bigger network. Hence consumer 

willingness to pay will likely increase with Mobike’s entry. In addition to direct and indirect network 

effects, there could also be economy of scale in the operation of bike-sharing platforms, because 

consumption-as-supply may reduce the need to address the imbalance of demand and supply in the 

whole market (M%dMEN
< 0; M%dMQN

< 0). This effect could drive the platforms to compete harder in price, 

which counters the incentive to raise price in response to higher consumer willingness to pay. How the 

market price changes upon Mobike’s entry is thus an empirical question.  

As for investment, it is clearly a strategic decision that could impact current profits and the 

continuation value. With no clear functional form assumption on the continuation value, we will focus 

the discussion on Period 2 profits only.  

From Mobike’s point of view, bike investment has the benefits of expanding the overall market 

from zero to .* , and a share of this expanded market 1 − R*
#$#  is captured by Mobike. The 

corresponding operational profits in period 2, namely .* ∙ 1 − R*
#$# ∙ (8* − `a%#&'()), is part of 

the benefits that Mobike weighs against the cost of 	!%#&'() when it considers entry. More specifically, 
���������������������������������������� �����������
21 In reality, platforms also choose which city to enter and when. Our conceptual framework focuses on one city 
and assumes a fixed sequence of entry, so we shy away from these long run decisions. 
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if Mobike takes !*
#$# as given (which may not be true given the sequence of action), Mobike realizes 

that its own investment (!%#&'())	could have market expanding and market stealing effects at the same 

time. The market expanding effect is embodied in a larger user base for bike-sharing ( MEJ
MQWTXAYZ > 0), 

while the market stealing effect is embodied in a bigger market share among bike riders (M("efJ
TUT)

MQWTXAYZ > 0). 

Both will motivate Mobike to enter.  

From ofo’s point of view, it is subject to the market expanding and market stealing effects of new 

bike investments in period 2 (!%#&'() + !*
#$#), but it only needs to incur the cost of !*

#$#. Again, ofo’s 

investment (!*
#$#) could expand the whole market ( MEJ

MQJ
TUT > 0) and guard against the loss of market 

share to Mobike (MfJ
TUT

MQJ
TUT > 0). The former generates positive spillover to Mobike, while the latter is a 

negative spillover.  

If the net effect of !%#&'() + !*
#$# is market expansion for ofo (i.e. .* ∙ R*

#$# − ." > 0), ofo will 

trade off this market expanding effect against the cost of	!*
#$#. In that situation, both platforms could 

enjoy net positive spillovers from the competitor’s investment but do not account for the positive 

spillovers that their own investment may generate for the competitor. This will generate an incentive to 

free-ride and under-invest, as compared to the ofo-Alone market. Conversely, if the overall effects of 

!%#&'() + !*
#$#  is market stealing for ofo (which corresponds to .* ∙ R*

#$# − ." < 0) , then 

competition could lead to over-investment as compared to the ofo-Alone market, because Mobike’s 

investment is motivated by stealing the market from ofo, which is a negative externality on ofo that 

Mobike does not take into account when it enters. Similarly, ofo’s investment could be motivated by 

guarding against the market stealing from Mobike, which can lead to over-investment by ofo (as 

compared to ofo Alone).  

The linkage between entry and market stealing/market expanding effects has been studied 

extensively in the excessive-entry literature (Chamberlain 1933; Mankiw and Winston 1986). The main 

insight from that literature is that, if entry involves a large fixed cost and the effect of the entry is mostly 

market stealing rather than market expansion, there will be excessive entry under competition. This is 



� ���

because entrants do not incorporate the negative externality (market stealing) it imposes on the 

incumbent. Alternatively, monopoly (or a cartel among competitors) will internalize all the externality 

among competitors but does not consider how its decision affects consumer surplus. As a result, the 

monopoly will under-invest as compared to the social planner (who maximizes total welfare including 

consumer surplus). Berry and Waldfogel (1999) confirm this insight in radio stations, an example of 

two-sided platforms before the digital era. They find that entry of new radio stations has a significant 

market stealing effect on existing stations, which generates incentives for excessive entry.  

As shown below, we find that Mobike’s entry has a market stealing effect on ofo before ofo 

responded to the entry with extra bike investment. This explains why Mobike was motivated to enter. 

We also find that Mobike’s entry has a market expanding effect on ofo after ofo has invested in more 

bikes post-entry. The sequential investment could be explained by ofo investing to guard against the 

market stealing by Mobike but the two platforms’ joint investment produces an overall market 

expansion due to the positive network externality in bike-sharing.  

It is also worth noting that our framework follows the literature of network compatibility: we 

assume that the network effects depend on the total number of bikes available in the market and the 

total number of consumers that use bike-sharing, not the bikes or users on a particular platform. This 

setting is similar to many markets with compatible network goods (such as telephone). However, in 

traditional settings, the equilibrium network size (.-) is determined by consumer willingness to pay for 

network size ( M@MEN), which is often assumed to be exogenous and out of the control of the platforms. 

Here, consumer utility from bike-sharing depends on both the size of the user network (.-) and the size 

of the bike network (!-). Since the platforms can use their investment (!-) to influence the equilibrium 

network size (.-), network size is endogenized in bike-sharing.  

Though we focus on bike-sharing, similar considerations could arise in traditional network goods. 

For example, telephone service providers could invest in more or less transmission equipment, which 

affects the speed and quality of telephone calls; cellular companies could construct new towers; and 

internet backbones could upgrade the bandwidth of internet cables. Given these similarities, what we 

learn from competition in bike-sharing could be useful to understand other network markets with 

compatibility. 
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4. Data and Sample Construction 

We combine data from several resources: ofo aggregates transactional data by time and geography, 

a few online platforms provide data about weather and air quality, and city attributes are available in 

the 2016 China City Statistical Yearbook. Below we first explain each data source, and then describe 

our sample construction. 

 

4.1 Transactional Data from ofo 

ofo has kept full records of consumer usage, including the start and end times of each trip, longitude 

and latitude of the origin and the destination, listing price for the ride, and the amount actually paid 

after coupon redemption. From the first usage time of each physical bike, we can also calculate ofo’s 

bike placement in each city over time. To protect user privacy, consumer data are aggregated to grid or 

city level.  

We start with daily trip volume qgct, the total number of ofo bike trips that are consumed in city 

g, day h and grid i. Grids are defined according to the longitude and latitude of the origin up to two 

decimal places. For example, trips originating from (23.1632°N, 113.3578°E) and (23.1677°N, 

113.3529°E) will be counted as trips within the same grid (23.16°N, 113.35°E). Aggregating it to the 

city level, we have jkl mno = jkl	( pqnoq ) for city g at day h.  

Daily trip volume also provides an opportunity to describe the spatial distribution of bike trips. We 

construct two measures: one is jkl	(#stuvw), namely the total number of unique grids covered by (the 

origin) of any ofo bike trips in a city-day. This measure aims to describe the width of the spatial network 

of ofo bikes as realized by consumption. The second measure aims to describe how evenly the 

consumption is distributed in this network, which corresponds to the flatness of the network. In 

particular, we follow the definition of the Gini Coefficient, whereas “inequality” refers to trip 

distribution among grids instead of income distribution among population. Adopting the same method 

as Alesina et al. (2016), we define the base as all grids that are ever covered by ofo within a city 

throughout our sample period. If at day h city g no trip occurs in grid i, then xyz- = 0. Assuming 

that there are n grids in the city and g = 1 to n are indexed in the non-decreasing order, we define the 

Gini Coverage Index as: 
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|5}5z- =
1
} } + 1 − 2

(} + 1 − i)xyz-~
yF"

xyz-~
yF"

. 

Another way to define |5}5z- is conditional on the grids that ofo has already covered in the city before 

Mobike’s entry, which is a subset of the base used in the first version of |5}5z-. We will report results 

on both measures of |5}5z-. 

Both ofo and Mobike charge consumers by trip and time spent in the trip. ofo’s listing price is 1 

RMB per hour, while Mobike’s listing price is 1 RMB per 30 minutes. The two prices are essentially 

identical, because bike-sharing platforms position themselves as “means of transportation for the last 

mile” and ofo data indicates that more than 99% of the trips end in less than 30 minutes. On top of the 

listing price, both platforms engaged in aggressive marketing campaigns such as trip coupons, free 

riding day, and monthly card for 1 RMB. These campaigns led to fluctuations in price actually paid. We 

thus define two variables to capture the transaction price: the first is Average Revenue per Trip (�no), 

which is the simple average of total amount actually paid per ride within a city-day. It is a proxy for the 

average transaction price per trip. Considering that many consumers can ride for free because of coupon 

or other marketing activities, we also compute Percent of Free Trips (%ÅtÇÇno) as an alternative 

measure of price within a city-day. 

To examine market expansion and market stealing, it is important to distinguish old and new users 

on the ofo platform. If user 5 registers on the ofo app at day h, she is a new user on day h and becomes 

an old user in any day after h. From all users’ registration history, we define log(#NewUsers) based on 

the total number of new users that register on ofo in that particular city-day. We also define %ActiveOld 

as the percent of old users that have used any ofo bike in that city-day, and #Trips_perOld as the ratio 

between the total trips initiated by old users and the total count of old users. 

As mentioned in Section 2, in some cities ofo started on a college campus and gradually expanded 

to the rest of the city. We define the dummy ÉnÑÖ�Üw equal to 1 if ofo restricts its operation within the 

college campus and 0 otherwise. 

 

4.2 Weather Data and Air Quality 

Weather conditions and air quality have profound impacts on the choice of travel means. Long 

before the emergence of bike-sharing, researchers had examined the effects of weather on bike use 
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(Hanson and Hanson, 1977; Hopkinson, 1989; Nankervis, 1999) and explored the impact of air 

pollution exposure on commuting modes (Hertel et al., 1989; Chertok et al., 2004). We use a website 

crawler to obtain relevant data from two open-source databases. China Meteorological Data Service 

Center (CMDSC) provides an inquiry interface for hourly data from meteorological stations, which is 

averaged within each calendar day and completed through co-kriging interpolation if data from some 

stations are missing.22 China Air Quality Online Monitoring and Analysis Platform collects historical 

air quality data from the Ministry of Ecology and Environment and makes it available to the public. We 

choose Air Quality Index (AQI) as the measure of air quality in a city-day.23 

 

4.3 Predetermined City-Level Attributes 

From media report and published executive interviews, we identify four groups of city attributes 

that may affect whether a platform enters a city: (i) economic development and overall population size 

are the principal determinants of potential market scale; (ii) public transportation such as bus and taxi24 

may complement bike-sharing; (iii) penetration of mobile Internet and smartphones are fundamental 

because bike-sharing relies on real-time communication among the electronic lock of the bike, the user’s 

mobile phone app, and the platform’s system servers; (iv) topography (e.g. steep slope) and land forms 

(e.g. unpaved roads) could restrict the usage of bikes, because bikes provided by the platforms are all 

non-automatic. 

To control for the first three aspects, we collected seven city-level variables from the 2016 China 

City Statistical Yearbook25: log of population, GDP per capita, the number of taxis, the number of buses, 

road surface, the number of mobile phones, and the number of households that have access to the 

Internet, which are all rescaled by total population except for log population itself. To measure terrain 

ruggedness, we utilize Digital Elevation Model (DEM) to calculate the average gradient for each city. 

���������������������������������������� �����������
��� Please see Vicente-Serrano et al. (2003) for detailed introduction of co-kriging interpolation.�
��� One potential threat to this measure lies in that air quality data disclosed by China government is under suspicion of being 
manipulated. However, Liang et al. (2016) finds that data from the U.S. diplomatic posts and the nearby Ministry of 
Environmental Protection sites produced highly consistent air quality assessment in five major cities.�
24 Unfortunately, the 2016 China City Statistical Yearbook does not include data on subway. But all our 
specifications include city fixed effects, which will absorb any time-invariant effect of subway and other omitted 
public transportation means. 
��� China City Statistical Yearbook 2016 reports statistics by the end of 2015, thus predetermined for our sample.�
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All these attributes are summarized in Panel B of Table 1 and hereinafter referred to as city attributes. 

 

4.4 Sample Construction 

The original data extracted from ofo spans from September 7, 2015 to September 14, 2017. We 

then clean the data in a few steps: first, we exclude all autonomous prefectures and administrative 

districts, because they are not included in China City Statistical Yearbook. Second, we exclude the 6 

cities that Mobike entered but with missing entry dates. Without a specific entry date, we cannot confirm 

the entry sequence of ofo and Mobike and thus cannot define PostEntry, which is the core independent 

variable of interest and will be introduced in the next Section. Third, we exclude Beijing from the 

sample. Because Beijing is the birthplace of ofo, ofo had experimented with its pricing and operation 

strategies in Beijing extensively before it entered the second city, Shanghai. Thus, Beijing is hardly 

comparable to any other cities. After data cleaning, we arrive at a sample of 19,631 city-day 

observations, which cover 104 cities from May 29, 2016 to September 14, 2017. 

Table 2 summarizes the sample in two panels: one for variables at the city-day level and the other 

for variables at the city level. We report both panels by full sample first and then by ofo First, ofo Alone 

and Mobike First cities. To protect ofo’s business secrets, we mask the mean of trip volume and revenue 

per ride in Panel A. But from Panel B, it is obvious that ofo First cities are bigger than ofo Alone cities 

in almost all dimensions, including population, public transportation, and mobile/internet access. ofo 

First cities also have higher GDP per capita, better air quality index and lower average gradient than 

ofo Alone cities. Mobike First cities are more similar to ofo First cities than to ofo Alone cities. These 

summary statistics are consistent with the facts that platforms tend to enter bigger and more developed 

cities first. Such selection prompts us to pay close attention to the comparability between ofo First and 

ofo Alone cities. We will deal with it in the next section. 

 

5. Econometric Framework 

Our main specification is difference-in-differences (DID), where we define Mobike’s entry as the 

“treatment” in ofo First cities, and use ofo Alone cities to control for the organic growth of ofo. 

Specifically, the baseline specification is: 
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áz- = àz + â- + ä ∙ ãåRhç}héèz- + ê ∙ ëz- + í ∙ ìz ∙ H h + î ∙ |z ∙ h + 9z-.      (1) 

where áz- represents outcome variables such as Log(Q), P, and %Free at city g and date h; àz and 

â- denote city and time fixed effects respectively; ëz- denotes weather and air quality variables; ìz 

denotes city attributes as of 2016; and 9z- is the error term. It is noteworthy that â- contains two sets 

of time fixed effects: the first set represents calendar date fixed effects. They aim to capture nationwide 

shocks on specific dates, including national holiday, nationwide news about bike-sharing, and 

nationwide advertising campaigns initiated by any bike-sharing platform. The second set of â- 

captures the intrinsic growth of ofo and is therefore defined by the number of days since ofo began 

operation in city c. We refer to them as relative day fixed effects. 

PostEntryct is the key regressor of interest, which takes the value of one if Mobike exists in city c 

on date t. For ofo First cities, PostEntryct is zero before Mobike’s entry and becomes one at and after 

Mobike’s entry. For ofo Alone cities, PostEntryct is always zero. For Mobike First cities, PostEntryct is 

always one. Therefore, data on Mobike First cities do not help us identify changes pre- and post-entry, 

though they could sharpen our understanding of ofo performance when it competes against Mobike. 

For this reason, our main specification restricts the sample to ofo First and ofo Alone cities. We will 

include Mobike First cities for robustness check. 

 To address the possibility that bike-sharing may diffuse differently in different types of cities,  

we follow Duflo (2001) to interact city attributes (ìz) with multiple functions of time (H(h)).26 In 

particular, H(h) includes: (i) a third-order polynomial function of the relative days since ofo’s entry; 

(ii) calendar date fixed effects, and (iii) relative day fixed effects. In addition, we also control for linear 

time trends specific to ofo First cities by adding the interaction between linear time trend h and a 

dummy variable indicating ofo First cities (|z). 

DID relies on the assumption of parallel pre-treatment trends, which could be checked by a 

standard event-study regression (e.g., Jacobson, 1993; Autor, 2003). Specifically, we use the following 

equation to test pre-treatment trends: 

 áz- = àz + â- + ïe( ∙ 0z(*"
(F*  

+ä ∙ ãåRhç}héèz- + ê ∙ ëz- + í ∙ ìz ∙ H h + î ∙ |z ∙ h + 9z-.            (2) 

���������������������������������������� �����������
26 City attributes alone will be absorbed by city fixed effects. 
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where 0z( is a set of dummies indicating that date t is k days before Mobike’s entry into city c. We 

pool all days more than three weeks before Mobike’s entry as k = 21, and choose the day before 

Mobike’s entry (i.e., k = 1) as the omitted default category. Thus, the coefficients { }21

2k k
l- =

 test the 

comparability between ofo First and ofo Alone cities for every day up to 3 weeks before Mobike’s entry. 

If the two groups of cities are statistically comparable, ïs should be jointly indistinguishable from zero. 

Although including time trends and allowing them to be heterogeneous by city attributes could 

mitigate the concern of omitted variable bias, reverse causality is still a key identification challenge. If 

Mobike’s entry decision is a strategic response to ofo’s performance in a specific city, the coefficient of 

ãåRhç}héèz- could reflect the endogenous entry decision and does not represent the causal effect of 

competition on ofo. To address this concern, we need an instrumental variable that is correlated with 

Mobike’s entry into a city but independent of ofo’s market performance in that city. We construct the 

instrument based on the predicted Mobike entry date, which is the date on which we predict Mobike to 

enter city g according to Mobike’s VC funding rounds and g’s pre-determined city attributes.  

In particular, we assume Mobike could enter any city since its company establishment date 

(November 1, 2015). Thus, the time span between November 1, 2015 and Mobike’s actual entry date 

into city c is the “survival time” in a typical duration model. This is well defined for every ofo First city. 

For ofo Alone cities, since Mobike has not entered the city by the end of our sample, we treat the 

survival time as censored at 683, exactly the number of days between November 1, 2015 and September 

14, 2017. We then fit the survival time in a proportional hazard duration model, where the explanatory 

variables are predetermined city attributes, the timing and amount of the 8-round Mobike financing 

from venture capital, and a new variable describing the cumulative number of days since Mobike’s 

latest round of VC finance. From the estimates of the duration model, we then predict the median 

survival time for each city and add it to the starting date (November 1, 2015). This defines the predicted 

entry date of Mobike. From the predicted entry date, we can compute a new post-entry dummy 

(ãåRhç}héèz-) as the IV for ãåRhç}héèz-. 

We argue that the predicted Mobike entry date is likely exogenous to city-specific unknowns, 

because city attributes are all pre-determined and Mobike’s VC funding is not driven by a particular 

city.  More specifically, Mobike’s VC funding may depend on ofo’s nationwide performance, which 
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is controlled by calendar date fixed effects in the main specification, but we assume it is independent 

of ofo’s performance in a particular city at a particular time. We will perform statistical tests on the IV 

when we present the baseline results. 

 

6. Empirical Results 

In this section, we report three sets of empirical results: the first set is baseline results on trip 

volume and revenue per ride, including results with instrument and robustness checks. The second set 

aims to unpack market stealing and market expanding effects by new and old users and by time since 

Mobike’s entry. The third set describes changes in the ofo network after Mobike’s entry. 

 

6.1 Baseline Results 

Following Equation (1), Table 2 reports the baseline DID results, where the key dependent 

variables are total trip volume (log	(ôz-), revenue per ride (8z-), and percent of free trips (%öéõõ). For 

each dependent variable, we report the coefficient of ãåRhç}héèz-  (β) from a series of OLS 

regressions. The simplest one includes only city and time fixed effects (Column 1), the median ones 

add interactions between H(h) and city attributes (Columns 2 to 4), and the most sophisticated ones 

add linear time trends specific to the ofo First group (Columns 5 to 7). All these columns convey the 

same message: Mobike’s entry has increased ofo’s trip volume and boosted ofo’s revenue per ride. If 

we take Column 7 as the preferred specification, it suggests that ofo’s trip volume goes up 40.8% after 

Mobike’s entry, ofo’s revenue per ride goes up by 0.041 RMB, and the percent of free trips goes down 

by 3.7 percentage points. These findings suggest a strong market expanding effect from Mobike’s entry. 

As shown in Appendix Table 2, similar results can be achieved when we drop ofo Alone cities from the 

sample (which effectively reduces the DID into just before-after comparison), or add Mobike First cities 

into the sample (which increases observations for post entry). 

To test the assumption of comparable pre-treatment trends, Figure 2 plots the point estimates of  

{ }21

2k k
l- =

 from Equation (2), along with the estimated 95% confidence intervals. The three panels of 

Figure 2 correspond to the three key dependent variables (log	(ôz-), 8z- , and %öéõõ). All these 

estimates are statistically indistinguishable from zero, neither do they imply any obvious trends jointly. 
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This suggests that, after our control of observables, ofo Alone and ofo First cities follow similar trends 

before Mobike’s entry, although the two sets of cities differ in absolute population and other attributes. 

To further address the concern of endogenous entry, we use the predicted entry date to construct 

an IV for ãåRhç}héèz-. Table 3 first reports the first stage (Column 1) and then the IV results for 

log	(ôz-), 8z-, and %öéõõ (Column 2 to 4). The Kleibergen-Paap F Test is over 8000, suggesting that 

our IV is strongly correlated with ãåRhç}héèz- . After using the IV, the key coefficients of 

ãåRhç}héèz- (ä)	have the same sign and similar magnitudes as in the OLS regressions. 

We perform two robustness checks on the IV results. First, since the proportional hazard model 

relies on the functional form of baseline hazard, we confirm that results are stable when we use Weibull 

(reported), log-normal, or log-logistic distribution for baseline hazard. Second, Mobike was established 

on November 1, 2015 but did not enter the first city (Shanghai) until April 22, 2016. We have tried to 

use December 1, 2015, January 1, 2016, February 1, 2016, March 1, 2016 and April 1, 2016 as 

alternative starting dates. Results under these alternatives are similar to what is reported in Table 3.27 

Above all, the IV results suggest that the market expanding effects found in the baseline regressions are 

not driven by reverse causality or omitted variable bias. 

As mentioned in Section 2, ofo had experienced a “campus period” when it restricted its operation 

within a college campus. In contrast, Mobike always regards the whole city as the target market and 

does not differentiate operation on and off campus. These institutional details offer an opportunity for 

a placebo test: the competition effects should be weaker in the “campus period” of ofo because ofo does 

not compete head to head with Mobike in this period. To carry out the test, we decompose ãåRhç}héèz- 

into 1z1ú3ùf ∙ ãåRhç}héèz-  and (1 − 1z1ú3ùf) ∙ ãåRhç}héèz- , and estimate their coefficients 

separately. The OLS and IV results are shown in Table 4. Compared with the baseline results (Table 2 

and Table 3), we find that the market expanding effects are solely driven by the time when ofo expanded 

into the city. This finding confirms that the market expansion effects occur because ofo and Mobike 

compete head-in-head in the city. 

Finally, we perform a falsification test by focusing on pre-entry data only (ofo First pre-entry plus 

ofo Alone data) and assuming a false entry on 1, 2, …, 7 days before the publicly announced entry date. 

���������������������������������������� �����������
�	� Results for the robustness check of 2SLS estimates are reported in Appendix Table 3.�
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Results are reported in Figure 3, along with the estimated 95% confidence interval. The three panels 

correspond to the three dependent variables. For comparison, we also plot the baseline OLS results 

(Table 2 column 7) on the very right. In short, the coefficients of false entry are all statistically 

insignificant from zero, which is very different from the baseline results. This suggests that our Mobike 

entry dates are accurate and the effects are attributable to the actual entry of Mobike. 

 

6.2 Marketing expanding or market stealing? 

 As described in Section 3, Mobike’s entry may be motivated by both expanding the market to new 

users and stealing the market from ofo. Since ofo can track when a user started to use the ofo app, we 

repeat our DID specification for new and old users separately. Note that both new and old are from ofo’s 

point of view, as we do not know whether a user has also downloaded the Mobike app or not.  

 Results are presented in Table 5. The OLS results suggest that Mobike’s entry has increased the 

number of new users (for ofo) by 65.2%, and this effect is even greater if we use the instrument (73.5%). 

However, percent of active old users declines 4.1~4.4 percentage points post entry, which is a significant 

fraction of the sample mean28. Because every new user becomes an old user after the registration day, 

the pool of old users is cumulative over time. Thus 4.1~4.4% of this pool is a significant market stealing 

effect if all of them switch to Mobike. Conditional on older users on ofo, Table 5 shows that the average 

number of trips they take on ofo does not change significantly post Mobike entry. In short, we observe 

market expansion into new users and market stealing of old users, the sum of which gives rise to the 

overall market expansion effects documented in the baseline results.  

 Another way to unpack the market expanding and market stealing effects is by timing of bike 

investment. Within the 59 ofo First cities, ofo put new bikes on the market right after Mobike’s entry in 

21 cities, ofo did not invest any new bikes after the entry in 5 cities, and ofo invested with a delay in 

the remaining 32 cities29. In the last group, the average time window between Mobike’s entry date and 

ofo’s first new bike investment date (post-entry) is 19 days. Thus, we define a dummy variable 1û'~2#û 

equal to one for the days post-Mobike entry but before ofo makes any new bike investment post-entry. 

���������������������������������������� �����������
28 We are not allowed to report the sample mean because it is a business secret. 
29� Bike placement records are missing for 1 ofo First city and 2 ofo Alone cities.�
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We then replace ãåRhç}héèz-  with two separate variables ( ãåRhç}héèz- ∙ 1û'~2#û  and 

ãåRhç}héèz- ∙ (1 − 1û'~2#û)) in the DID specification. This allows us to detect whether Mobike’s 

entry has different effects in the “window” period versus afterwards.  

 Results are reported in Table 6. Interestingly, in the window period, Mobike’s entry has a negligible 

effect on ofo’s total trip volume, does not push up revenue per ride for ofo, but steals away some bike 

usage from ofo’s old users. However, these effects are reversed into market expansion after ofo started 

to invest new bikes in the ofo First cities. Obviously, when to invest new bikes and how much to invest 

could be ofo’s strategic decisions, so we do not know whether the reversion from market stealing to 

market expansion is driven by ofo’s investment decision or something else. This is the topic we will 

explore in the next subsection. 

 

6.3 Changes in the ofo network 

 The network of dockless bike-sharing is highly dynamic: platform investment directly affects when 

and where a bike is first available to the public; however, the realized network of bikes depends on 

consumption. If platforms put all new bikes in the central subway station, they can be quickly dissipated 

into nearby neighborhoods and form a consumption-driven network. Because bikes are dockless, the 

network will evolve over time, not only by how many bikes are used by ofo consumers from where to 

where, but also by how many Mobike bikes are available nearby and how many consumers choose ofo 

over Mobike. In this sense, the market presence of Mobike can shape the width and depth of the ofo 

network, through market expanding and market stealing. We try to quantify this impact in this 

subsection. 

 We start by checking out ofo’s investment decisions. Ofo executives told us that ofo often has 

planned bike investment in a particular city by stages. If Mobike entry occurs between two stages, they 

do not have a company-wide policy to systematically respond to the entry by additional investment. 

That being said, a city-specific decision is made by local managers, who may adjust the investment plan 

over time. Thus, it is unclear whether the ofo investment we have observed in the data (post-entry) is 

ofo’s strategic response to entry or is simply the investment that ofo would have made anyway. Raw 

data check confirms this ambiguity. We plot the timing and magnitude of investment city by city; some 
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of them seem to have sped up investment post-Mobike’s entry, while others have slowed down post 

entry. We have also tried to include new or accumulative bike investment on the right-hand of the 

regression equation, but it would be absorbed by the heterogeneous trends that already exist in the 

specification. Thus we conclude that, without knowing the initial investment plan city by city, it is 

impossible to project how much of the observed investment is due to ofo’s strategic response to 

Mobike’s entry.  

 One crude way to compare investment before and after Mobike’s entry is to compare ofo’s total 

bike investment to population. Figure 4 plots the horizontal axis as calendar time. The green solid line 

plots the ratio of the total population of the cities with Mobike competition to the total population of 

the cities that ofo has covered at that time. This ratio grows drastically after August 2016, because more 

and more cities witness the ofo-Mobike competition. The red dashed line plots the ratio of the total bike 

investment that ofo has made in cities with Mobike competition to the total bike investment that ofo has 

made across all cities. If ofo always invests proportionally to city population, the two lines should 

coincide. Figure 4 shows that the investment line is above and grows faster than the green line, 

suggesting that overall ofo has made more bike investment in the cities with Mobike competition.  

 Without a better way to single out ofo’s strategic investment decision, we try to control for it in 

bike utilization rate, which is defined as the total number of ofo trips per city-day divided by the total 

number of ofo bikes in that city day. It reflects the average number of trips an ofo bike completes in the 

city-day. 

Changes in utilization rate can be demand driven and supply driven. On the demand side, a user 

who rides a bike from A to B will facilitate another user to use the same bike at B. If these are the only 

two trips completed by this bike, the bike’s utilization rate is 2. If no one uses that bike again at B in 

that day, the utilization rate is 1. On the supply side, if the platform’s truck relocates the bike from B to 

C, the usage from point C and on will also count in the bike’s utilization in that day. If Mobike’s entry 

mostly steals consumers away from ofo, it should reduce ofo’s average utilization rate. If Mobike’s 

entry encourages more new users to try ofo and reduces ofo’s relocation effort, it could increase ofo’s 

average utilization rate.  

In Table 7 Column 1, we use log (bike utilization rate) as the dependent variable (because it is 



� �	�

highly skewed) and report the DID coefficient on ãåRhç}héèz-. With and without instruments, the 

coefficient is consistently positive and significant with at least 95% confidence. The magnitude 

(0.392~0.457) implies a huge improvement in bike utilization rate, suggesting that Mobike’s entry has 

positive spillovers on ofo, even after we account for the new bike investments that ofo has made after 

Mobike’s entry.  

The rest of Table 7 uses three variables to describe the width of the ofo network (# of grids reached), 

the flatness of the ofo network (Gini Coefficient Index), and the flatness of the ofo network within the 

grids that ofo has reached before Mobike’s entry. The last one depends on Mobike’s entry, so we can 

only compare it before and after the entry, without any control group. For the other two variables, we 

use the same DID specification as Equation 1. 

Again, results are consistent with and without instruments. They suggest that Mobike’s entry 

allows ofo bikes to reach more grids in the city and makes the ofo bikes distributed more evenly 

throughout the city. One potential explanation is that competition integrates the two bike-sharing 

networks and the market expansion on new users expands the network coverage. However, we cannot 

rule out the possibility that ofo strategically put bikes at more obscure places upon Mobike’s entry, 

which will directly expand and flatten the ofo network. 

 

7. Conclusion 

Based on the sequential entries of two bike-sharing platforms, we document how the entrant affects 

the market performance of the incumbent platform. Since bike-sharing features positive network effects 

but bike usage is geographically restricted, we have a rare opportunity to observe variations in platform 

competition. We find that the entrant expands the overall market, resulting in higher quantity, higher 

price, better bike utilization, and a wider, flatter network for the incumbent. However, the entrant also 

steals a significant fraction of the old users away from the incumbent, which justifies the entry decision.�

Since the market is still under development and both platforms are VC funded, we do not take any 

position on how and why the two platforms make the observed investment decisions. But we note that 

market expanding effects from the competitor could generate an incentive to free-ride and under invest, 
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while market stealing effects could generate an incentive for over-investment and excessive entry. How 

these two forces play out in the platforms’ investment decision is a topic worth study in the future.�

More generally, our work challenges the classical “winner-takes-all” concern in a nascent market 

with network effects. According to that concern, positive network effects would enable the incumbent 

to become a natural monopoly and then abuse its monopoly power to the harm of consumers. However, 

even if the incumbent intends to follow this path, it takes time to get to “winner-takes-all” and 

competitor(s) can enter the market during this time. In a nascent market where the incumbent has 

energized the potential demand, entrants have incentives to free ride on the opening of the new market 

and steal consumers from the incumbent. Consequently, competition could push the market to evolve 

away from the simple “winner-takes-all” trajectory, as the incumbent and entrants would play a dynamic 

game and their incentives in investment, marketing and product enhancement could all be modified, 

depending on the market expanding and market stealing effects of these actions.�

Lastly, our findings also highlight the importance of the outside good when we consider platform 

competition with network effects. Since platform entry generates both market expanding and market 

stealing effects, our work suggests that the competition with the outside good is at least as important as 

the between-platform competition in bike-sharing.�
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Table 1 Data Summary (mean of key outcomes are masked by “NA” for confidentiality) 
Sample Full Sample ofo First ofo Alone Mobike First 
Variables N Mean Std. Dev N Mean Std. Dev N Mean Std. Dev N Mean Std. Dev 
Panel A City-Day Level Variables             
Dummy for Post-entry Status 19631 0.616  0.486  13560 0.639  0.480  2633 0 0 3438 1 0 
Log (Trip Volume) 19631 NA  2.124  13560 NA  2.074  2633 NA  1.386  3438 NA  1.968  
Average Revenue per Trip (RMB) 19631 NA  0.207  13560 NA  0.195  2633 NA  0.229  3438 NA  0.230  
Percent of Free Trips (0-100) 19631 NA  22.774  13560 NA  23.716  2633 NA  19.869  3438 NA  20.276  
Log (# of New Users) 19631 NA  1.997  13560 NA  1.974  2633 NA  1.789  3438 NA  1.648  
Percent of Active Old Users 19631 NA  13.668  13560 NA  12.955  2633 NA  16.471 3438 NA  13.905  
Average # of Trips per Active Old User 19631 NA  0.388  13560 NA  0.410  2633 NA  0.351  3438 NA  0.305  
Log (Number of Grids Covered by ofo) 19631 5.469  1.210  13560 5.539  1.265  2633 4.709  0.862  3438 5.777  0.959  
Gini Coverage Index 19631 0.864  0.090  13560 0.882  0.086  2633 0.788  0.092  3438 0.852  0.067  
Dummy for ofo Operation within Campus 19631 0.163  0.369  13560 0.220  0.415  2633 0.000  0.000  3438 0.061  0.240  
Speed of Wind 19631 2.677  0.883  13560 2.661  0.901  2633 2.679  0.861  3438 2.740  0.823  
Temperature 19631 21.276  7.690  13560 20.167  8.164  2633 23.515  5.708  3438 23.935  5.838  
Precipitation 19631 0.171  0.486  13560 0.152  0.455  2633 0.208  0.519  3438 0.219  0.567  
Relative Humility 19631 73.831  16.310  13560 72.662  16.786  2633 74.259  16.763  3438 78.115  12.990  
AQI (Air Quality Index) 19631 84.196  47.688  13560 87.795  51.345  2633 77.956  37.909  3438 74.782  36.304  
Panel B City Level Variables             
Logarithmic Population (10,000) 104 6.101  0.632  59 6.196  0.558  23 5.814  0.818  22 6.143  0.535  
GDP per Capita (10,000 RMB) 104 6.699  3.356  59 6.940  3.254  23 5.981  3.118  22 6.804  3.885  
Number of Taxis 104 5076.103  6903.375  59 6351.334  6265.299  23 2040.783  1951.386  22 4829.455  10325.500  
Number of Buses 104 3029.936  4474.697  59 3774.835  4871.471  23 942.235  730.883  22 3214.847  5073.091  
Road Surface (10,000 Square Meters) 104 3281.349  3189.038  59 3951.990  3476.455  23 1627.596  1267.843  22 3211.735  3248.628  
Number of Mobile Phone Users (10,000) 104 688.125  585.702  59 806.576  603.333  23 366.957  217.516  22 706.227  689.128  
Number of Internet Households (10,000) 104 142.173  159.780  59 170.593  184.558  23 70.609  44.449  22 140.773  145.571  
Average Gradient (‰) 104 458.766  570.863  59 447.244  547.904  23 596.891  745.032  22 345.262  391.150  
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Table 2 Competition Effects on Usage Volume and Price 

 
 (1) (2) (3) (4) (5) (6) (7) 
Panel A Dependent Variable Log (Trip Volume) 
PostEntry 0.370* 0.439** 0.535*** 0.491** 0.346** 0.402** 0.408** 
 (0.211) (0.181) (0.199) (0.207) (0.166) (0.181) (0.185) 
Within Adjusted R2 0.104 0.233 0.106 0.111 0.241 0.120 0.117 
Panel B Dependent Variable Average Revenue per Trip 
PostEntry 0.029*** 0.027*** 0.030*** 0.035*** 0.031*** 0.031*** 0.041*** 
 (0.009) (0.008) (0.010) (0.011) (0.008) (0.010) (0.011) 
Within Adjusted R2 0.075 0.122 0.049 0.057 0.123 0.049 0.059 
Panel C Dependent Variable Percent of Free Trips (0-100) 
PostEntry -2.288** -2.311** -3.132** -3.589** -2.170** -2.717** -3.695*** 
 (1.131) (1.117) (1.487) (1.563) (0.971) (1.287) (1.399) 
Within Adjusted R2 0.085 0.140 0.073 0.070 0.140 0.074 0.070 
Dummy for Operation within Campus YES YES YES YES YES YES YES 
Weather Condition YES YES YES YES YES YES YES 
Air Quality YES YES YES YES YES YES YES 
City FE YES YES YES YES YES YES YES 
Date FE YES YES YES YES YES YES YES 
Day FE YES YES YES YES YES YES YES 
Treatment Group Trend     YES YES YES 
Linear Time Trend  YES   YES   
City Attributes�Date FE   YES   YES  
City Attributes�Day FE    YES   YES 
Number of Clusters 82 82 82 82 82 82 82 
Observations 16193 16193 16193 16193 16193 16193 16193 

Notes: Column 1 only controls for city fixed effects and time fixed effects. Column 2 adds the interaction 
between predetermined city attributes and a third-order polynomial function of the relative days since ofo’s 
entry. Column 3 and 4 interact the city attributes with calendar date fixed effects and relative day fixed effects 
respectively. Column 5-7 further include linear time trends specific to the ofo First group cites. The 
specification of Column 7 is taken as benchmark settings in the following analyses. Standard errors are in 
parentheses and are clustered at the city level. ***Denotes significance at the 1%, ** 5 %, and * 10% level. 
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Table 3 2SLS Estimates 

 
 (1) (2) (3) (4) 

Dependent Variables PostEntry Log (Trip Volume) 
Average Revenue 

per Trip 
Percent of 
Free Trips 

Models First-Stage 2SLS 2SLS 2SLS 
Predicted PostEntry 0.949***    
 (0.011)    
PostEntry  0.478** 0.045*** -3.999*** 
  (0.199) (0.012) (1.493) 
Dummy for Operation within Campus YES YES YES YES 
Weather Condition YES YES YES YES 
Air Quality YES YES YES YES 
City FE YES YES YES YES 
Date FE YES YES YES YES 
Day FE YES YES YES YES 
Treatment Group Trend YES YES YES YES 
City Attributes�Day FE YES YES YES YES 
Kleibergen-Paap F Test 8000.251 / / / 
Number of Clusters 82 82 82 82 
Observations 16193 16193 16193 16193 

Notes: The instrument variable Predicted PostEntry is derived from a duration model which treats the time 
span between Mobike entry dates and November 1, 2015 as “survival time” and uses city attributes and VC 
finance of Mobike as regressors. We assume that the baseline hazard follows Weibull distribution. Column 
1 reports the first-stage with the Kleibergen-Paap F test larger than 8000. Column 2-4 show 2SLS 
estimates under the benchmark settings, which are similar to baseline results in both significance and 
magnitude. Further robustness checks of starting date choice and the assumption of baseline hazards are 
reported in Appendix Table 3. Standard errors are in parentheses and are clustered at the city level. 
***Denotes significance at the 1%, ** 5 %, and * 10% level. 
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Table 4 Placebo Test Using ofo Campus Period 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notes: The key independent variable PostEntryct is decomposed into 1campus�PostEntryct and(1- 1campus)�PostEntryct, where 
1campus is the dummy for operation within campus in benchmark settings. Every two columns under the same outcome variable 
report OLS and 2SLS estimates separately. Column 1-6 point to the common conclusion that the market expanding effects 
emerge when ofo expanded to the whole city while absent during “campus period.” Standard errors are in parentheses and are 
clustered at the city level. ***Denotes significance at the 1%, ** 5 %, and * 10% level.

 (1) (2) (3) (4) (5) (6) 
Dependent Variables Log(Trip Volume) Average Revenue per Trip Percent of Free Trips 
Models OLS 2SLS OLS 2SLS OLS 2SLS 
PostEntry�Dummy for Operation within Campus  -0.371 -0.211 0.000 0.016 0.367 -0.758 
 (0.298) (0.293) (0.027) (0.028) (4.100) (4.068) 
PostEntry�Dummy for Operation in the Whole City 0.618*** 0.673*** 0.060*** 0.063*** -5.451*** -5.688*** 
 (0.190) (0.200) (0.012) (0.013) (1.505) (1.588) 
Dummy for Operation within Campus NO NO NO NO NO NO 
Weather Condition YES YES YES YES YES YES 
Air Quality YES YES YES YES YES YES 
City FE YES YES YES YES YES YES 
Date FE YES YES YES YES YES YES 
Day FE YES YES YES YES YES YES 
Treatment Group Trend YES YES YES YES YES YES 
City Attributes�Day FE YES YES YES YES YES YES 
Number of Clusters 82 82 82 82 82 82 
Within Adjusted R2 0.107 / 0.042 / 0.056 / 
Observations 16193 16193 16193 16193 16193 16193 
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Table 5 Market Expanding vs. Market Stealing Effects 

Notes: Every two columns under the same outcome variable report OLS and 2SLS estimates separately 
which adopt the benchmark settings in Table 2 Column 7. Standard errors are in parentheses and are 
clustered at the city level. ***Denotes significance at the 1%, ** 5 %, and * 10% level. 

 

 (1) (2) (3) (4) (5) (6) 

Dependent Variables Log (# of New Users) 
Percent of 

Active Old Users 
Average # of 

Trips per Active Old User 
Models OLS 2SLS OLS 2SLS OLS 2SLS 
PostEntry 0.652*** 0.735*** -4.126*** -4.353*** -0.005 -0.003 
 (0.228) (0.243) (1.446) (1.551) (0.036) (0.039) 
Dummy for Operation within Campus YES YES YES YES YES YES 
Weather Condition YES YES YES YES YES YES 
Air Quality YES YES YES YES YES YES 
City FE YES YES YES YES YES YES 
Date FE YES YES YES YES YES YES 
Day FE YES YES YES YES YES YES 
Treatment Group Trend YES YES YES YES YES YES 
City Attributes�Day FE YES YES YES YES YES YES 
Number of Clusters 82 82 82 82 82 82 
Within Adjusted R2 0.265 / 0.075 / 0.006 / 
Observations 16193 16193 16193 16193 16193 16193 
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Table 6 Market Expanding vs. Market Stealing Effects: Unpacked by the Timing of Investment 

Notes: The key independent variable PostEntryct is decomposed into 1window�PostEntryct and(1- 1 window)�PostEntryct, where 1 window is a dummy for the window 
period when Mobike enters some city while ofo has not invested new bikes. Bike investment data is missing for 3 cities so the number of clusters decrease to 
79 in this table. Panel A and Panel B report OLS and 2SLS estimates respectively. Standard errors are in parentheses and are clustered at the city level. 
***Denotes significance at the 1%, ** 5 %, and * 10% level. 

 (1) (2) (3) (4) (5) (6) 

Dependent Variables 
Log(Trip 
Volume) 

Average Revenue 
per Trip 

Percent of Free 
Trips 

Log (# of 
New Users) 

Percent of 
Active Old Users 

Average # of Trips 
per Active Old User 

Panel A Model OLS 
PostEntry�Dummy for Window without 
New Investment 

0.039 0.037** -1.886 0.432* -2.696 -0.121*** 
(0.179) (0.015) (1.530) (0.233) (1.633) (0.042) 

PostEntry�Dummy for Window with 
New Investment 

0.628** 0.046*** -4.078*** 0.788*** -5.253*** 0.065 
(0.241) (0.014) (1.423) (0.292) (1.725) (0.045) 

Within Adjusted R2 0.111 0.062 0.072 0.243 0.076 0.018 
Panel B Model 2SLS 
PostEntry�Dummy for Window without 
New Investment 

0.084 0.042*** -2.117 0.507** -2.778 -0.126*** 
(0.191) (0.016) (1.566) (0.244) (1.691) (0.045) 

PostEntry�Dummy for Window with 
New Investment 

0.654*** 0.048*** -4.222*** 0.821*** -5.268*** 0.065 
(0.244) (0.014) (1.456) (0.296) (1.766) (0.045) 

Dummy for Operation within Campus YES YES YES YES YES YES 
Weather Condition YES YES YES YES YES YES 
Air Quality YES YES YES YES YES YES 
City FE YES YES YES YES YES YES 
Date FE YES YES YES YES YES YES 
Day FE YES YES YES YES YES YES 
Treatment Group Trend YES YES YES YES YES YES 
City Attributes�Day FE YES YES YES YES YES YES 
Number of Clusters 79 79 79 79 79 79 
Observations 15770 15770 15770 15770 15770 15770 
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Table 7 Bike Utilization and Geographical Reach 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent Variables Log (Bike Utilization Rate) 
Log (# of Grids 
covered by ofo) 

Gini Coverage Index 
Gini Coverage Index 
of Pre-Entry Grids 

Models OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 
PostEntry 0.392** 0.457** 0.195** 0.225** -0.035*** -0.038*** -0.027** -0.031*** 
 (0.185) (0.198) (0.081) (0.086) (0.008) (0.008) (0.010) (0.011) 
Dummy for Operation within Campus YES YES YES YES YES YES YES YES 
Weather Condition YES YES YES YES YES YES YES YES 
Air Quality YES YES YES YES YES YES YES YES 
City FE YES YES YES YES YES YES YES YES 
Date FE YES YES YES YES YES YES YES YES 
Day FE YES YES YES YES YES YES YES YES 
Treatment Group Trend YES YES YES YES YES YES NO  
City Attributes�Day FE YES YES YES YES YES YES YES YES 

Sample Benchmark Benchmark Benchmark Benchmark Benchmark Benchmark 
ofo Alone 
Excluded 

ofo Alone 
Excluded 

Number of Clusters 79 79 82 82 82 82 59 59 
Within Adjusted R2 0.092 / 0.202 / 0.112 / 0.041 / 
Observations 15770 15770 16193 16193 16193 16193 13560 13560 
Notes: Bike investment data is missing for 3 cities so the number of clusters decreases to 79 in Column 1 and 2. “Pre-Entry Grids” could not be defined 
for ofo Alone group cities, which are excluded in Column 7 and 8. Every two columns under the same outcome variable report OLS and 2SLS estimates 
separately which adopt the benchmark settings in Table 2 Column 7. Standard errors are in parentheses and are clustered at the city level. ***Denotes 
significance at the 1%, ** 5 %, and * 10% level. 

 



� ���

 
Table A1 List of Cities 

 
City Name Administrative Area Code ofo Entry Date Mobike Entry Date Group 

Tianjin 120000 27-Aug-16 12-Feb-17 ofo First 
Shijiazhuang 130100 31-Aug-16 6-Mar-17 ofo First 
Tangshan 130200 1-Apr-17 17-Apr-17 ofo First 
Qinhuangdao 130300 28-Apr-17 12-Jun-17 ofo First 
Handan 130400 14-Apr-17 6-May-17 ofo First 
Baoding 130600 9-Mar-17 19-Jun-17 ofo First 
Langfang 131000 20-Apr-17 17-May-17 ofo First 
Taiyuan 140100 17-Aug-16 14-May-17 ofo First 
Datong 140200 3-Mar-17 27-Jun-17 ofo First 
Jinzhong 140700 6-May-17 17-May-17 ofo First 
Xinzhou 140900 10-Jul-17 / ofo Alone 
Hohhot 150100 1-May-17 / ofo Alone 
Wuhai 150300 30-Jun-17 / ofo Alone 
Erdos 150600 9-Jun-17 8-May-17 Mobike First 
Shenyang 210100 8-May-17 17-May-17 ofo First 
Dalian 210200 26-Jun-17 16-Apr-17 Mobike First 
Shanghai 310000 9-May-16 22-Apr-16 Mobike First 
Nanjing 320100 14-Jun-16 12-Jan-17 ofo First 
Wuxi 320200 2-Mar-17 3-Mar-17 ofo First 
Suzhou 320500 15-Jan-17 18-Jun-17 ofo First 
Nantong 320600 29-Apr-17 / ofo Alone 
Yangzhou 321000 20-Apr-17 9-Mar-17 Mobike First 
Zhenjiang 321100 28-Apr-17 / ofo Alone 
Hangzhou 330100 12-Sep-16 16-Apr-17 ofo First 
Ningbo 330200 14-Jan-17 6-Dec-16 Mobike First 
Wenzhou 330300 14-May-17 8-Apr-17 Mobike First 
Jiaxing 330400 6-Apr-17 27-Apr-17 ofo First 
Jinhua 330700 31-Mar-17 20-May-17 ofo First 
Taizhou 331000 18-May-17 1-Jul-17 ofo First 
Hefei 340100 24-Aug-16 13-Feb-17 ofo First 
Wuhu 340200 16-Mar-17 26-Mar-17 ofo First 
Maanshan 340500 28-Dec-16 11-May-17 ofo First 
Anqing 340800 6-Dec-16 / ofo Alone 
Fuzhou 350100 19-Aug-16 7-Feb-17 ofo First 
Xiamen 350200 17-Dec-16 20-Dec-16 ofo First 
Quanzhou 350500 14-Mar-17 8-Mar-17 Mobike First 
Zhangzhou 350600 13-Mar-17 9-Mar-17 Mobike First 
Ningde 350900 25-Apr-17 / ofo Alone 
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Nanchang 360100 20-Aug-16 24-Feb-17 ofo First 
Jiujiang 360400 20-Apr-17 20-May-17 ofo First 
Ganzhou 360700 20-Apr-17 16-Jun-17 ofo First 
Shangrao 361100 14-May-17 / ofo Alone 
Jinan 370100 29-Aug-16 25-Jan-17 ofo First 
Qingdao 370200 21-Feb-17 7-May-17 ofo First 
Zibo 370300 3-Apr-17 / ofo Alone 
Zaozhuang 370400 29-Jun-17 17-May-17 Mobike First 
Yantai 370600 5-May-17 / ofo Alone 
Weifang 370700 28-Apr-17 / ofo Alone 
Jining 370800 17-Jun-17 17-May-17 Mobike First 
Tai'an 370900 10-Apr-17 23-May-17 ofo First 
Weihai 371000 25-Apr-17 7-May-17 ofo First 
Rizhao 371100 29-Apr-17 19-Mar-17 Mobike First 
Dezhou 371400 23-May-17 27-Apr-17 Mobike First 
Zhengzhou 410100 11-Aug-16 6-Mar-17 ofo First 
Kaifeng 410200 17-May-17 17-May-17 ofo First 
Luoyang 410300 20-Apr-17 10-Apr-17 Mobike First 
Puyang 410900 22-Jul-17 11-Aug-17 ofo First 
Xuchang 411000 4-Jun-17 / ofo Alone 
Sanmenxia 411200 19-Jun-17 / ofo Alone 
Wuhan 420100 18-Apr-16 29-Dec-16 ofo First 
Shiyan 420300 19-Aug-17 / ofo Alone 
Yichang 420500 9-Apr-17 7-Apr-17 Mobike First 
Xiangyang 420600 2-Apr-17 1-May-17 ofo First 
Ezhou 420700 16-May-17 16-Jul-17 ofo First 
Xiaogan 420900 10-May-17 / ofo Alone 
Huanggang 421100 15-May-17 25-Aug-17 ofo First 
Xianning 421200 6-Jun-17 12-Jun-17 ofo First 
Changsha 430100 26-Aug-16 14-Feb-17 ofo First 
Zhuzhou 430200 24-Apr-17 / ofo Alone 
Xiangtan 430300 24-Apr-17 / ofo Alone 
Guangzhou 440100 8-Jun-16 27-Sep-16 ofo First 
Shaoguan 440200 1-Jun-17 / ofo Alone 
Shenzhen 440300 11-Sep-16 16-Oct-16 ofo First 
Zhuhai 440400 20-Oct-16 21-Jan-17 ofo First 
Shantou 440500 12-Apr-17 19-Feb-17 Mobike First 
Jiangmen 440700 10-Apr-17 27-Mar-17 Mobike First 
Heyuan 441600 9-Jun-17 / ofo Alone 
Dongguan 441900 24-Feb-17 13-Jan-17 Mobike First 
Zhongshan 442000 7-Apr-17 16-Jun-17 ofo First 
Jieyang 445200 17-Apr-17 / ofo Alone 
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Nanning 450100 7-Sep-16 21-Feb-17 ofo First 
Guilin 450300 1-Mar-17 30-May-17 ofo First 
Haikou 460100 28-Feb-17 17-Feb-17 Mobike First 
Chengdu 510100 22-Aug-16 16-Nov-16 ofo First 
Deyang 510600 22-Apr-17 9-Mar-17 Mobike First 
Mianyang 510700 17-Mar-17 6-Mar-17 Mobike First 
Leshan 511100 10-May-17 17-May-17 ofo First 
Nanchong 511300 8-May-17 17-May-17 ofo First 
Meishan 511400 8-Jul-17 23-Jun-17 Mobike First 
Ziyang 512000 1-Jun-17 23-May-17 Mobike First 
Guiyang 520100 6-Mar-17 9-Apr-17 ofo First 
Liupanshui 520200 6-May-17 / ofo Alone 
Zunyi 520300 27-Apr-17 21-May-17 ofo First 
Kunming 530100 27-Aug-16 8-Jan-17 ofo First 
Xi'an 610100 27-May-16 19-Feb-17 ofo First 
Xianyang 610400 29-Apr-17 17-May-17 ofo First 
Weinan 610500 20-May-17 21-May-17 ofo First 
Yan'an 610600 22-May-17 16-Aug-17 ofo First 
Yulin 610800 23-May-17 3-Aug-17 ofo First 
Lanzhou 620100 25-Aug-16 10-Jul-17 ofo First 
Xining 630100 8-May-17 / ofo Alone 
Yinchuan 640100 25-Apr-17 25-Apr-17 ofo First 
Urumqi 650100 5-Jul-17 7-Jul-17 ofo First 
Karamay 650200 22-Aug-17 / ofo Alone 
Notes: This list only includes cities in our final sample. Beijing and the 6 cities without detailed 
entry sequence are excluded. Administrative Area Code is a unique number to identify 
administrative area, which is issued by the China central government. / means that entry dates 
are missing for ofo Alone cities. 
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Table A2 Robustness Check of Different Subsamples 

 

Notes: This table further examines the robustness of results in Table 2 and 3. Column 1,2,5,6,9 and 10 drop ofo Alone cities and re-estimate the coefficients 
under the benchmark specification, resulting from the concern that our list of controls could not fully guarantee the comparability between ofo First and ofo 
Alone cities. The other columns include the Mobike First group which is equivalent to the “always-treated” group in the context of DID framework and 
make full use of the data sample. Standard errors are in parentheses and are clustered at the city level. ***Denotes significance at the 1%, ** 5 %, and * 10% 
level. 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Dependent Variables Log (Trip Volume) Average Revenue per Trip Percent of Free Trips 
Subsamples ofo Alone 

Excluded 
Mobike First 

Included 
ofo Alone 
Excluded 

Mobike First 
Included 

ofo Alone 
Excluded 

Mobike First 
Included 

Models OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS 
PostEntry 0.401** 0.473** 0.373* 0.428** 0.044*** 0.048*** 0.039*** 0.042*** -3.245** -3.510** -3.600*** -3.804*** 
 (0.192) (0.206) (0.190) (0.202) (0.013) (0.014) (0.011) (0.012) (1.307) (1.387) (1.297) (1.376) 
Dummy for Operation within Campus YES YES YES YES YES YES YES YES YES YES YES YES 
Weather Condition YES YES YES YES YES YES YES YES YES YES YES YES 
Air Quality YES YES YES YES YES YES YES YES YES YES YES YES 
City FE YES YES YES YES YES YES YES YES YES YES YES YES 
Date FE YES YES YES YES YES YES YES YES YES YES YES YES 
Day FE YES YES YES YES YES YES YES YES YES YES YES YES 
Treatment Group Trend NO NO YES YES NO NO YES YES NO NO YES YES 
City Attributes�Day FE YES YES YES YES YES YES YES YES YES YES YES YES 
Number of Clusters 59 59 104 104 59 59 104 104 59 59 104 104 
Within Adjusted R2 0.103 / 0.133 / 0.074 / 0.053 / 0.079 / 0.061 / 
Observations 13560 13560 19631 19631 13560 13560 19631 19631 13560 13560 19631 19631 
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Table A3 Robustness Check of 2SLS Estimates 
 

 (1) (2) (3) (4) (5) 
Panel A Dependent Variables Log (Trip Volume) 

Starting Dates 
Distribution 

12/1/15 1/1/16 2/1/16 3/1/16 4/1/16 

Weibull 0.484** 0.480** 0.487** 0.498** 0.505** 
 (0.201) (0.202) (0.204) (0.205) (0.206) 
Loglogistic 0.450** 0.456** 0.464** 0.469** 0.479** 
 (0.198) (0.199) (0.200) (0.201) (0.205) 
Lognormal 0.456** 0.459** 0.461** 0.469** 0.477** 
 (0.199) (0.201) (0.202) (0.204) (0.207) 
Panel B Dependent Variables Average Revenue per Trip 

Starting Dates 
Distribution 

12/1/15 1/1/16 2/1/16 3/1/16 4/1/16 

Weibull 0.045*** 0.045*** 0.046*** 0.046*** 0.046*** 
 (0.012) (0.012) (0.012) (0.013) (0.013) 
Loglogistic 0.043*** 0.044*** 0.044*** 0.045*** 0.046*** 
 (0.012) (0.012) (0.012) (0.012) (0.013) 
Lognormal 0.044*** 0.043*** 0.043*** 0.043*** 0.043*** 
 (0.012) (0.012) (0.012) (0.013) (0.013) 
Panel C Dependent Variables Percent of Free Trips 

Starting Dates 
Distribution 

12/1/15 1/1/16 2/1/16 3/1/16 4/1/16 

Weibull -4.023*** -4.031*** -4.101*** -4.153*** -4.158*** 
 (1.502) (1.508) (1.522) (1.534) (1.537) 
Loglogistic -3.796** -3.804** -3.889** -3.962** -4.017** 
 (1.496) (1.506) (1.508) (1.519) (1.542) 
Lognormal -3.872** -3.832** -3.804** -3.851** -3.837** 
 (1.489) (1.505) (1.517) (1.533) (1.554) 

Notes: The three panels experiment with instrument variables constructed from duration 
models that use December 1, 2015, January 1, 2016, February 1, 2016, March 1, 2016 
and April 1, 2016 as starting dates of Mobike, under different assumptions for the 
functional form of baseline hazard (that is, Weibull, log-log and log-normal 
distributions). For each outcome variable, there are 5*3 = 15 estimates of �. This table 
provides further support to Table 3 in the sense that results in Table 3 are not driven by 
the choice of starting dates or distribution function. Standard errors are in parentheses 
and are clustered at the city level. ***Denotes significance at the 1%, ** 5 %, and * 10% 
level. 
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Figure 1 Geographical Distribution of Different City Groups 
 

 
Notes: This figure depicts the geographical distribution of 3-type cities. Cities in our 
final sample are labeled with different color. Beijing and the 6 cities without detailed 
entry sequence are excluded. The base map of China comes from Resource and 
Environment Data Cloud Platform (http://www.resdc.cn). 
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Figure 2 Test of Common Pre-Trend Assumption 

 

 
Notes: Point estimates of !"# #$%

%&  in equation 2 as well as corresponding 95% confidence interval. The 
day before Mobike’s entry is omitted as base and days more than 3 weeks before the entry are all counted 
as 21. All the coefficients are indistinguishable from 0 even at the 10% significance level, which implies 
that ofo Alone and ofo First cities follow similar pre-entry trends. All the other controls are the same as 
Table 2 Column 7. Standard errors are in parentheses and are clustered at the city level. 
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Figure 3 Falsification Test of Forwards of PostEntry 

 

 
Notes: We restrict the sample to ofo Alone cities and pre-entry observations of ofo First cities, and generate 
false entry on 1,2,…,7 days before the publicly announced Mobike entry. Point estimates of the false entry 
as well as 95% confidence interval are depicted together with the baseline estimates from Table 2 Column 
7 plotted on the very right. Standard errors are in parentheses and are clustered at the city level. 
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Figure 4 Comparison between Population and Bike Investment Distribution 

 
Notes: The horizontal axis is calendar month. The green solid line is the ratio of population of 
cities with Mobike competition to the total population of all cities that ofo has entered at that time. 
The red dashed line is the ratio of accumulative number of bike placement of cities with Mobike 
competition to the total bike investment in all cities that ofo has entered at that time. It is 
noteworthy that both numerator and denominator change as Mobike enters more cities and we 
could not guarantee that both of these two ratios keep increasing all the time. 
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