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ABSTRACT 

This paper develops a simple but important point which is often 

overlooked: It is quite possible that the best policy for a rational, 

optimizing agent is to do nothing for long periods of time—-even if new, 

relevant information becomes available. We illustrate this point using the 

market for durable goods. Lumpy costs in durables transactions lead 

consumers to choose a finite range, not just a single level, for their 

durables consumption. The boundaries of this range change with new 

information and, in general, obey the permanent income hypothesis. However, 

as long as the durable stock is within the chosen region, the consumer will 

not change her stock. Hence individuals will make durable transactions 

infrequently and their consumption can differ substantially from the 

prediction of the strict PIH. 

Such microeconomic behavior means that aggregate data cannot be generated 

by a representative agent; explicit aggregation is required. By doing that, 

we showed that time series of durable expenditures should be divided to two 

separate series: One on the average expenditure per purchase and the other 

on the number of transactions. The predictions of the PIH hold for the 

former, but not for the latter. For example, the short-run elasticity of the 

number of purchases with respect to permanent income is much larger than one 

for plausible parameter values. We put our theory to a battery of empirical 

tests. Although the tests are by no means always consistent with the theory, 

most empirical results are in line with our predictions. 
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The assumption of optimizing behavior Is the bedrock on which most of 

economic theory stands. It is also the characteristic that, for better or for 

worse, distinguishes economics from the other social sciences. Economists 

are probably the only people on earth who believe 
-- or act as if they 

believe -— that homo sapj behaves like homo economicus. 

This paper does not question the hypothesis that people optimize. 

(Probably, some other paper should.) Instead, it tries to square the 

assumption of optimizing behavior with the coninon observation that human 

behavior seems highly inertial. Like Newton's bodies at rest or in motion, 

people often seem to cling to their past behavior despite clear evidence 

calling for change. We will argue that the existence of lumpy costs of 

changing a decision variable makes inertial behavior optimal under quite 

general conditions. And we will illustrate this general idea with a detailed 

analysis of a formal model of the purchase of consumer durables. one which 

differs in some significant respects from the standard permanent income 

hypothesis (PIH). 

1. RATIONAL INERTIA: BASIC IDEAS 

The standard type of optimizing behavior posited in economic models is 

continuous reoptimizatlon. According to this view of behavior, the Individual 

or firm controlling a decision variable, xt, Is given new constraints and/or 

information each period (call that the vector zt), computes the value of the 

decision variable that maximizes his objective function (call it 4), and 

then sets xt=4 in every period. This optimum 
Is normally defined by some 

kind of tangency condition. Examples abound. In consumption theory, x' is 

consumption, zt Includes interest rates, current income and wealth, and 

expectations about the future; the "Euler equation" Is based on the notion 
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that the consumer optimizes intertemporally in both period t and period t÷1. 

In portfolio theory, xt is a vector of portfolio shares and zt includes 

current wealth and the presumed varlance—covariance matrix; wealthhoiders 

are supposed to adjust their portfolios every time their perceived 

variance—covariance matrix changes. 

Figure 1 is a trivially simple graph displaying this general idea. Here 

V(x;z) is the objective function, which moves any time z changes. The 

decision maker Is assumed always to select x = argmax V(x;z) (point E), 
which induces a behavioral relation of the form xt = F(zt), Changes in z 
induce prompt responses In xt. 

It seems doubtful, however, that many people behave this way —— 

especially If the period is relatively short. (The authors of this paper 

certainly don't.) Instead, people are alleged to be 'creatures of habit." 

Econometric evidence certainly supports the general idea that behavior is 

inertial. For example, empirically estimated decision rules of the form x = 
F(Zt) are almost always Improved by the addition of xt_1 to the righthand 

side. Pervasive inertia seems to be a stylized fact of economic life. 

Inertia may be irrational, as other social scientists will argue. 

Laziness, procrastination, and other human frailties —— in general, a failure 

to pursue one's best interests —— can all lead to inertial behavior. About 

this, economists have little to say. But it Is also possible 
—— and this Is 

the central point of the paper —— that Inertia can be rational when there are 

lumpy costs of changing one's decision variable. It is easy to see why. 

Ignoring, for the moment, how such costs might arise, suppose that our 

prototypical decisionmaker incurs a fixed cost, b, each time he changes his 

control variable. Now look back at Figure 1 and suppose that, because zt has 

changed since the last decision period, the decislonmaker finds himself at a 
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point like P rather than at point E. Here x is too low, But if V(x) — 

V(x_1) Is 'small relative to b, It will not pay to raise x. Hence we have 

argued intuitively that fixed costs will lead to some range around x (shown 
in the diagram as (s,a)) within which it does not pay to change the decision 

variable, Within this range, behavior is strictly Inertial: the decisioninaker 

"does nothing." We like to think of this conclusion as showing that what 

Akerlof and Yellen (1985) called near rationality is actually full 

rationality. In the presence of fixed transactions costs, continuous 

reoptimization would be Irrational. 

While literally fixed costs are the easiest case to understand, they ar€ 

not needed to rationalize inertial behavior. Any type of lumpy transactions 

cost will do. Such costs, we would argue, are pervasive facts of economic 

life. In some contexts, there are explicit transactions costs —— such as the 

large commission a real-estate agent receives for selling your house, or the 

costs a firm Incurs In printing and distributing new price lists ("menu 

costs"). These costs probably have much to do with why people change houses 

Infrequently,1 why Investors do not reoptimize their stock portfolios every 

morning,2 and why firms do not change prices every time either demand or cost 

changes .3 

In other cases, the costs may be implicit. Sometimes the cost Is a time 

cost, as when consumers spend hours searching for Information on performance 

characterislcs and prices of heterogeneous durable goods 
—- not to mention ci 

houses or jobs. Other times, the transactions cost Is more naturally 

expressed as a utility cost, as when the individual finds the process of 

change or acquiring Information inherently distasteful. (Job Interviews and 

moving may be good examples.) Or the Implicit cost may simply arise from the 

fact that a human being can only cope with so many problems at once, a point 
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often stressed by Herbert Simon. Hence there is a kind of "shadow cost" for 

using the scarce resource of mental capacity. (Why else would CEOs delegate 

decisions?> 

Finally, some markets have large spreads between the prices at which you 

can buy and sell, so that a buyer loses a lump of value the moment he takes 

the good home. This type of lumpy cost is particularly prevalent in the 

markets for consumer durables. One rationalization was provided by Akerlof 

(1970), who argued that markets in which goods are heterogeneous and quality 

is not readily observable are subject to the "lemons principle." (If this is 

a good car, why are you selling It?) Whether or not caused by the lemons 

principle, the gap between buying and selling prices may be a major reason 

why any one consumer is active in the market for any particular durable only 

sporadically. The rest of the time, he Is "doing nothing." 

Of course, the econometric fact that xt_1 is almost always a significant 

determinant of xt has been noti' 1 many times before. The usual "explanation" 

is the partial-adjustment model, according to which convex costs of changing 

x make it optimal to adjust xt to x gradually. Under the assumption that 

adjustment costs are quadratic, a linear partial-adjustment rule like: 

* 
xt - xt_1 = x(xt - xt_1) 

can be derived from rigorous microfoundations. And so the assumption is 

frequently made, usually without thinking twice about what it means. 

There are two major problems with this common approach (and many others 

in particular applications). The first is empirical: the estimated value of A 

is almost always "implausibly slow" when interpreted as a speed of 

adjustment. The second Is theoretical: while the existence of adjustment 

costs is believable, the assumption that they are convex, much less 

quadratic, is not in most applications. Think, for example, of money demand, 
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where the partial-adjustment model is almost universally employed. Can anyone 

take seriously the hypothesis that the cost of changing your cash balance by 

$100 rather than $99 greatly exceeds the cost of changing it by $1 rather 

than zero? Or think about applying the quadratic assumption to adjustment 

costs for installing fixed capital, where it has been used to rationalize the 

Q-theory of investment,4 Does a firm really incur much higher adjustment 

costs for the sixteenth drill press it installs than for the first? Other 

examples could be listed. Frankly, we find it hard to think of many cases in 

which the assumption of jaj marginal adjustment costs is more 
plausible than the assumption of riin, or even zero, marginal 
adjustment costs. 

This is not just a minor theoretical quibble. While quadratic adjustment 

costs make partial adjustment optimal, zero or decreasing marginal adjustment 

costs make it optimal to adjust all at once or not at all. Look back at 

Figure 1 once again. If the decisionmaker must pay a lumpy transactions cost 

each time he changes x, he will not adjust x toward x* in small increments 

period after period. Instead, he will either do nothing or jump all the way 

to x* at once. Partial adjustment is simply too costly when transactions 

costs are lumpy. (Think, for example, of the costs you would incur in selling 

and buying a car every month,) 

The case of fixed transactions costs has been extensively studied in the 

inventory literature, where the so—called (S,s) or two—bin policy emerges as 

the optimal strategy in awide range of circumstances. Specifically (see 

Figure 2), firms facing i.i.d. demand shocks will find it optimal to set a 

lower bound on inventory, s, and then tO restore inventories to S each time 

that lower limit is reached. If demand is serially correlated, or if 

something else is changing through time, the rule becomes an (St, t) policy. 
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We show below that the (St,st) rule is optimal for consumers buying 

durables whose selling prices are lower than buying prices —— due, say, to 

the lemons principle.5 But this is just one example of what we think is a 

very general phenomenon. The same logic applies to business purchases of 

capital goods, where adjustment cost functions are unlikely to resemble those 

assumed by Q-theory, Instead, elements of fixed costs probably dictate that 

an (S,s) rule be followed. Obviously, inventories are the application for 

which (S,s) rules were invented; and (S,s) inventory management rules are 

apparently in wide use. Switching to financial decisions, the Baumol-Tobin 

model of transactions demand for money, when properly thought through 

(remember the saw-tooth diagram?) is an (S,s) rule for money demand. And the 

fixed cost of recalculating a variance-covarlance matrix to take account of 

new information (and then of calling your broker with instructions) suggest 

that optimal portfolios probably should follow a multi—dimensional (S,s) rule 

rather than, say, the standard CAPH solution.6 As noted above, "sticky" 

prices are probably more sensibly rationalized by fixed menu costs than by 

quadratic adjustment costs. And the standard assumption in dynamic theories 

of labor demand —— that a firm incurs rising marginal adjustment costs in 

hiring new workers —— is difficult to believe. More likely, its marginal 

adjustment costs are declining, in which case some kind of (S,s) rule will be 

optimal rather than the partial—adjustment rule used, e.g., by Sargent 

(1978).7 

Finally, we offer an admittedly speculative application of (S,s) 

reasoning to the debate over rational expectations. Suppose people really do 

have rational (that is, model—consistent) expectations, but must pay a fixed 

cost (in money, time, and/or disutility) each time they recalculate, say, 

their expected rate of inflation by solving their multi-equation econometric 
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model. Then their actual expectations will exhibit inertial behavior: people 

will stick to previous forecasts until they have good reason to believe that 

recalculation will yield benefits large enough to repay the costs. At 

the micro level, this sort of inertial behavior is quite different from 

the gradual adjustment considered by Taylor (1975) and Friedman (1979). 

Whether or not expectations appear close to adaptive at the macro level 

depends on whether people change their forecasts asynchronously or all at 

once. 

In all these applications and more we believe that the particular 

version of inertia embodied in (S,s) rules is a more plausible 

characterization of optimal behavior than the partial-adjustment model. But 

the discussion so far has been entirely intuitive. It Is now time to prove 

that the (S,s) rule is optimal for purchases of consumer durables. 

2. AN (S,s) RULE FOR CONSUMER DURABLES: THE CERTAINTY CASE 

Suppose a consumer derives utility from two comodities: a perishable 

good X and a durable good K which depreciates at a constant exponential rate 

i. Denote by q < 1 the ratio of the selling price of durables to the buying 

price; thus the lumpy transactions cost incurred in replacing a durable good 

Is a fraction 1—q of the purchase price. Assume the instantaneous utility 

function takes the usual PIH form: 

u(Kt,Xt) = aK + bX, y < 1, 

where we assume, as is usual, that the flow of services from durables is 

proportional to the stock. Assuming time separability and an infinite 

horizon, the consumer wants to maximize: 
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U = J u(Kt,Xt)etdt, 
0 

where p is the rate of subjective time discounting. 

It is clear that, because of the lumpy transactions costs, durable 

purchases will take place only occasionally, for continuous replacement would 

imply infinite transactions costs. Let durables be purchased at dates t1, 

t2,..., and let Sn denote the durable stock immediately after the nth durable 

purchaseS (By notational convention, let denote the opening stock, that 

is, S0 K0.) That good will be replaced at time t÷j, by which time it has 

deteriorated to a value s given by: 

(1) sn=Sne 

Thus the discounted utility obtained while the nth "car1 is held will be: 

tn+1 (ttn) - t 
J u{s e , x}e dt 

tfl 

Summing over all lifetime purchases of durables and using the specific 

functional form yields the following expression for lifetime utility: 

—(ty+p)t —(iiy+p)t+i 
(2) U = tal(uy+p)] E [e 

— e j(Sn e11 fl)1] 
n=Q 

+ b 
f e_Pt(Xt)1 dt , 

0 

which is homogenous of degree In its arguments [S0, S1, S2,. .} and X. 

To derive the budget constraint, let the nondurable good be the numeraire 

and assume that the relative price of durables to nondurables is a constant, 

p. Hence the resale price of "one unit" of the durable good is qp. At time 
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t, n > 1, net expenditure on durables is, therefore: 

(3) En pS 
— 

qps_1 
= 

PSn 
— 

qpS_1 e 

With this definition, the lifetime budget constraint is simply: 

-rt 

(4) W = f e't Xtdt + Z 
Ene 

' 

0 n=i 

where W denotes total (human and nonhuman) lifetime wealth exclusive of 

durables. Notice that the budget constraint is linearly homogenous in its 

arguments X and S0. S1, S2 

The intertemporal optimization problem of the consumer is to maximize (2) 

subject to (4) and given K0. The solution consists of a plan for nondurable 

consumption, Xt, and two infinite series of trigger points {S1, S2, . . .} and 

(s0, Si *..) which denote the stocks immediately after the purchase and 

just before resale, respectively. This is a complicated problem; but the 

homogeneity of lifetime utility and the linearity of the budget constraint 

simplify the solution significantly and reduce the Infinite number of 

parameters in the s and S series to only three: s0 and fixed ratios, 

S1-÷/S and Sn/Sn for n > 1. Similarly, as in the standard PIll, the 

nondurable consumption plan, Xt, is characterized by only two parameters: 

initial consumption and a constant exponential growth rate. Moreover, the 

growth rates of the consumption plans of both goods are the same, which 

reduces the total number of parameters to four. All this is summarized in 

the following theorem: 

Theorem 1:8 The optimal consumption plan (S, s, X) has the following 

properties: 
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(i) X0, {S1,S2,,..) and {so,sl,s2,...) are all homogeneous of degree 

one in the vector (W, K0).9 

(ii) The ratio s,/S defined by (1) Is the same for all n > 0, meaning 

that the interval between purchases, •r, Is constant. 

(iii) The ratio S÷1/S, for n > 0 is constant and equal to e9 where 

g 

Proof: 

It is easier to prove the theorem by defining the consumption plan by 

(S,t,X), where t is the vector of purchase dates, than by (S,s,X). We want 

to show that if (S*,t*,X) is the optimal consumption plan when wealth is (W, 

K0) then (cS*,t*,cXt) is optimal when wealth is (cW cK0). Since the budget 

constraint is linear, the feasibility of (S*,t*,X) with wealth (W, K0) 

immediately implies that (cS*,t*,cX) Is feasible with wealth (cW, cK0). The 

homogeneity of the utility function implies that If (S*,t*,X) is preferred 

to (S',t,X), then (cS*,t*,c4) is preferred to (cS',t',cX) for every c > 

0, Therefore (cS*,t*,cX) is optimal with wealth (cW, cK0) and part (1) of 

the theorem is established. 

The above applies to the optimal consumption plan starting at time 0. 

But since the utility function is assumed to be stationary and the horizon is 

infinite, the same comparisons can be made at other starting times. 

Therefore, the optimal consumption plan beginning at time t1 will be 

($S*,t*,14), if the new vector of wealth is ($W, AK) for some constant $. 

As a result t2 - t1 = t1 — t0, and furthermore tn+1 — tn = t, the same 

constant. Since equation (1) is s,/S = ett and t is a constant, part (ii) 
is proved. 
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The proportionality of both components of consumption to lifetime wealth 

means that a constant fraction, h, of wealth is allocated to durable 

consumption each time a new purchase is made. This constant is defined as: 

(5) h pS/W. 

At the moment just before the (n+1)—st purchase is made, the consumer (who 

last bought a durable at time 
— r) holds 

(W — pS)erT 

in financial wealth and 

qpSeIt 

in durables. Hence: 

(6) Wn+i 
= (Wn — pSn)&'t ÷ qpS e1T 

Since Sn+i/Sn = Wn+1/Wn we can divide both sides of equation (6) by W to 

get, 

Sn+i/Sn Wn+i/Wn (1_pS/W)ert + (qpSnt4)et = (1_h)er + qhewr 

which is a constant, as specified in part (iii) of the theorem. 

The separability of both the utility function and the budget constraint 

in durables and nondurables implies that what was proved for the former holds 

for the latter as well. In particular part (iii) of Theorem 1 means that the 

growth rate of nondurable consumption, denoted by g, is constant. Similarly 

the ratio of consumption at time t, X(tn), to wealth at time t, W, is a 

constant. Hence: 

X(tn+i) — — S÷1 
(7) 

X(t) 
— — 

which is a constant. Since Xt grows at an exponential rate g, (7) implies 

that = e for n > 0, which establishes part (iii) and completes the 
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proof of Theorem 1. Q.E.O. 

Where nondurables are concerned, Theorem I simply repeats the standard 

implications of the PIH, omitting the obvious (but important) point that the 

time pattern of income is irrelevant to the time pattern of consumption 

('transitory income doesnt matter'). This, of course, is a direct product of 

our assumption of separability in the utility function. For durables, 

however, Theorem 1 modifies the PIH in several important respects. 

The simplest way to describe these changes is to say that the PIN holds 

in the "long run' but not in the "short run.' Specifically, Figure 3 shows 

the optimal path for durables, which follows a sawtooth pattern. The width of 

the "corridor" in which the sawtooth takes place, log(S/s), depends mainly on 

q, the extent of lumpy transactions costs. (As q -* 0, the corridor narrows 

and durables behave just like nondurables.) Between purchase dates, there are 

obviously deviations from the strict PIN, e.g., Kt is not proportional to Wt 

for all t. But the corridor itself follows the standard PIN pattern: It rises 

at rate g and its height (In levels) is proportional to lifetime wealth. 

3. EXTENSION TO UNCERTAINTY 

We conjecture that an analogous theorem holds when labor income is 

stochastic. After all, we know that (S,s) rules are optimal in a wide variety 

of problems in which various things are random in various ways. Nonetheless, 

extending the theorem to the case of uncertainty is not straightforward. 

There are two main technical difficulties. 

The first is that the proportionality result of the standard permanent 

income theory without durables no longer holds when labor income Is 

stochastic —— as Campbell (1986) and Hayashi (1982), among others, have 

noted. Instead, the best that can be established appears to be a weaker 
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homogeneity result. For example, Hayashi (1982) assumes constant relative 

risk aversion utility and that labor income is given by: 

Yt = (1 + et), 

where is constant and et is a white noise disturbance, The latter is a very 

restrictive and empirically unattractive specification. However, It enables 

him to prove that optimal consumption is homogeneous of degree one In the 

vector (,A), where A Is nonhuman wealth. Notice that consumption Is not 

proportional to A + H, where H is "human wealth,' i.e., the expected 

discounted present value of earnings. Instead, the ratio A/H affects 

consumption. Since our Theorem 1 essentially grafts an (S,s) approach to 

durabies onto the standard PIH, we cannot expect the proportionality result 

to hold under uncertainty, 

Second, once unanticipated declines in permanent income are admitted, it 

becomes possible for a consumer to have a durable stock that is "too large 

as well as one that is "too small." Hence, we must deal with two-sided (S,s) 

policies. In fact, the work of Grossman and Laroque (1987) suggests that the 

optimal plan is actually described by four parameters: a lower limit, an 

upper limit, and two target stocks. Specifically, in a model with no labor 

Income, stochastic property income, and no nondurable consumption good, but 

otherwise identical to ours, they prove the following theorem: 

Theorem (Grossman and Laroque): Suppose the individual can Invest in a 

riskless asset and n risky assets, all of which evolve as continuous—time Ito 

processes. Then the optimal strategy for holding the durable good is 

described by the following four—parameter extension of the (S,s) rule: 

If K < s, make a purchase up to Sj. 
If s K< a, do nothing. 

If K > a, make a sale down to SL, 
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where (S,SL, SU, a) are all proportional to total wealth, A + K. 

Figure 4 depicts this rule. As the graph shows, SL is smaller than S, 

which seems odd at first. The reason Is that transactions costs lost in 

selling a large durable good of size a exceed those lost In selling a small 

durable of size .10 

HayashUs result and Grossman and Laroque's theorem lead us to the 

following conjecture for our model with durables: 

Conjecture: Suppose the interest rate and the depreciation rate are 

nonstochastic, the utility function is as assumed before, and human wealth 

evolves according the Ito process: 

dH/H = gdt + wdz, 

where dz is a standard Weiner process. Then the (s ,SL, S, a) rule described 

above is optimal and all four parameters are homogeneous of degree one in the 

vector (A, H, K). 

Notice that we do not claim that s, SL, Su and a are proportional to 

total wealth. That is probably untrue. Under uncertainty, ratios like s/(A+H) 

and a/(A-FH) presumably depend on the composition of wealth, just as in 

Hayashi's case. For example, since s is a linearly homogeneous function of 

(K,A,H): 

s = f(K,A,H), 

we know that: 

s/H = f(K/H,A/H,1). 

At any moment at which the lower barrier is hit, K 
= 5, so: 

s/H = f(s/H, A/H, 1), 

which defines s/H as a function of A/H. Grossman and Laroque's theorem 
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proves, for their case, that this function has only one root. 

We cannot simply adapt their proof because human capital is a nontraded 

asset, whereas all of their assets are freely tradable. The technical problem 

is that, while Grossman and Laroque can reduce their two state variables (K 

and A) to one, the best we can do is to reduce our three state variables (K, 

A, and H) to two. That makes the problem enormously more difficult and their 

proof inapplicable to our case. We can, however, establish the homogeneity 

result conditional on the (s, SL, S, a) rule being optimal. Specifically, we 

can prove: 

Theorem 2: If the (s, SL, Su a) strategy is optimal, then s, SL, S, 

and a are all homogeneous of degree one in the vector (A, H, K). 

Proof: The proof simply follows the logic of the first part of the proof 

of Theorem 1. FIrst we show that if a strategy (s, SL, S, a) is feasible 

when the wealth vector is (A, H, K), then a strategy (bs, bSL, bS1j, ba) is 

feasible when the wealth vector Is (bA, bH, bK). To see this, start by 

writing the laws of motion that hold whenever a durable purchase is not made: 

dH/H = gdt + wdz 

dK/dt = - pIK 

dA/dt = rA + y - 

where y Is labor Income, defined by: 

y = rH — dH/dt. 

Clearly, these are all linear homogeneous. Furthermore, at instants at which 

a durable purchase is made, we have: 
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A+-A=_Et =-[pS -p j 
tn tn fl n n-I 

K+-K=St - 
tn tn fl t 

which are also linear homogenous. Thus, if A, H, y and K are all multiplied 

by any constant b, we get a feasible solution by multiplying X, s, SL, S, 

and o by the same constant b. Given feasibility, optimality follows directly 

from the homogeneity of the utility function, just as before. 

4, AGGREGATE IMPLICATIONS 

Though the (S,s) rule rests on solid microfoundations and is probably 

optimal in a wide variety of problems, it has not been used much in economics 

because of the difficulties It poses for aggregation. Clearly, the fiction of 

a representative agent will no longer do because decislonmakers hit their 

trigger points at different times. In the context of consumer durables, the 

whole economy at any one time consists of a small number of people who spend 

a lot and a large number of people who spend zero. Critics of the (S,s) 

approach argue either that It cannot be aggregated or that, once aggregated, 

it just leads back to the partial—adjustment model. But, as one of us showed 

several years ago (Blinder, 1981a), neither is quite true. This section is 

devoted to drawing out the aggregate implications of the (S,s) model of 

individual purchases of consumer durables. 

As usual, exact aggregation Is not possible In full generality; special 

assumptions must be invoked. We allow Individual consUmers to differ In two 

respects. First, people with the same (permanent) Incomes will not hold the 

same stocks of durables because of different past histories. Rather, they 

will be at different points within the relevant (S,s) range. Second, people 
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have different permanent incomes, and hence different optimal (S,s) ranges. 

For concreteness, we assume that there are n income groups with permanent 

incomes (ordered from highest to lowest) y, Y2, •, Y and, 
correspondingly, n monitoring ranges, (S1,s1), ..., 

Suppose there is one homogeneous durable good, which we call a car, that 

depreciates exponentially at rate i.11 The richest group buys new cars, holds 

them for a period T1 defined by: 

s1 

1 

and then sells them to the next richest group, which holds them for a period 

12 defined by: 

-p12 

2 

and so on until the poorest group, which holds the car for a period Tn 

defined by: 

s - 

where 5n defines the quality of car that is scrapped. (The Tj's may well be 

equal.) Notice that if buyers and sellers are to match up, we must have: S2 
= 

s1, S3 = 2'•• and so on. Since all the S's and S'S are proportional to the 
corresponding y's, this puts an implicit constraint on the distribution of 

income. Naturally, we do not believe that the income distribution adjusts to 

clear the automobile market. Prices no doubt do most of the adjusting. In 

addition, there are many types of cars, not just one. Rather than (futilely) 

attempt to solve the full general equilibrium problem, we simply assume that 
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the income distribution is 1right. This is, of course, "one of those 

aggregation assumptions.1' But it seems a big improvement over assuming that 

everyone is alike. 

With an eye on the spending concept that appears in the national income 

accounts, that is, expenditures on new automobiles, we focus our attention on 

the market for new cars and assume that the econometriclan gets observations 

only quarterly even though people make decisions continuously. Only income 

group 1 buys new cars, and each member of this group follows the purchase 

rule:12 

If Kt(1-6) < s, buy a new car Sit in period t. 
If Kt(1—) > s, buy nothing. 

Here Kt is the quality of cars held at the start of period t and is the 

discrete—period depreciation rate defined by: 

(8) 1-=e0 

where 8 is the length of the data period (9 = 1/4 for quarterly data). While 

the trigger points and sit are common for all members of the group, the 

Initial stocks, Kt, differ across individuals. Assume a continuum of 

individuals with density function ft(Kt). Then, the optimal purchase rule 

implies that the number of buyers in period t is: 

1-6 

Nt 
= I dKt 

— 
Ft(sj,t...1). 

51,t—1 

The purchasers fall in the range indicated in Figure5, which sketches a 

density function ft(Kt). The lower limit of the shaded area is the "worst" 

car with which anyone in this income group could have started period t. No 
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one in the top income group is to the left of sl,t_1. The upper limit of the 

shaded area is the lowest quality car that will be kept. Anyone to the right 

Sit 
of will keep his car (at least until next period). Everyone who buys 

spends the same amount, Ct = Sit, so total expenditures on new cars in 

period t are: 

(10) Et CtNt = Sit[ Ff} - 

Equation (10) is the market demand function for durables implied by the 

(S,s) theory; so the aggregation problem has now been solved. However, the 

Implications of (10) are far from transparent. To begin with, it may help to 

work out a concrete example. The most obvious benchmark is the steady state 

distribution of f(K). In a steady state, the age distribution of cars is 

n 

uniform between 0 and T E 
Ij; 

that is, if h denotes age, the density 
j=i 

function of age is: 

f(h)=i/T 0<h<T 
= 0 otherwise 

Age and automobile quality are related by: 

K = S1 eh 

So, by the usual formula for change-of-variables: 

f(K) = ]f(h) = 5 < K < S1 

Thus the cumulative distribution function needed for (9) is: 

logK-logs 

(ii) F(K) = s < K S1 
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Using (11), (10) can be written: 

e logs1 
— 

logs1 — 
E—S —+ ' 1 

t 1tLT I' 

where we have used (8) to replace —log(1-6) by iiO. Finally, remembering that 

Sj and sj are proportional to yj, we have: 

Alogy 
(12) Et = A Yit[ T + 

.iT I 

where A is the ratio S1/y1. 

Notice that (12) has an interesting accelerator mechanism which 

disappears in the steady state, but which can cause large fluctuations in 

aggregate demand in the short run. To show that this formula makes good 

intuitive sense, let us insert some concrete numbers. Suppose I = 15 (say, 

five income groups each holding for three years), j = .20 (20% annual 

depreciation rate), e = .25 (quarterly data), and income is constant. Then E 

= S1/60 per quarter or S1/15 per year, as is only natural. 

We hardly needed a deep theory to tell us that, in a steady state with a 

useful life of 15 years, 1/15 th of all households will buy a new car each 

year. Of much greater interest are the non-steady-state properties of 

equation (10). Let us ask first what happens if there is an 'income shock," 

meaning an unanticipated rise in permanent income, which perturbs the system 

away from the steady state. By differentiation in (10) we have: 
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dE dS s ds 

dYt 

— t t It 1- t i—s 

since sl,t_1 is predetermined. And by the proportionality result we know 

that dS/dy = Sly and ds/dy = s/y. Hence: 

dE SN S s s 

t t 

Now multiply by Yt and divide by Et to convert to an elasticity. The result 

is: 

S1 Sit dtY —f (—) 
(13) —-=1+ 

- 

t t F'1' F' — 

Thus the short—run income elasticity of the demand for durables is greater 

than one. Is it much greater? Yes. Take the steady—state case as a used' 1 

benchmark again. Substituting the particular formulas into (13) leads 
to: 

sit sit 1 

s1 
- 

e The 
Ft(---)-Ft(siti) 

which, for the values used above, is 20. 

Thus, we seem to have reached the rather startling conclusion 
that the 

short—run income elasticity of the demand for, say, automobiles is 21! 
That 

sounds wilds but there is a straightforward intuitive explanation behind it. 

If the permament income of every household rises by 1%, then the average 

purchase size, S1. rises by 1%. That contributes the 
1.0 to (13), and is the 

whole story in the steady state. But, in addition, there will be more buyers 
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In the short run. How many more? In the steady state, we have seen that a 

fraction: 

Si 

Nt I f(Kt)dKt 
= 

Si 

of all households will purchase a car each quarter. Now suppose that income, 

and hence the lower bound s1, rises by 1%. In the first period thereafter, 

the number of new car purchasers rises to: 

s1(1.01) 
1—& 

Nt I f(Kt)dKt 

Using the steady state distribution of Kt: 

(1.01)s1 

101 
= 

dKt 
= [log [ •Sij - logs1l 

= — [.te 
+ log(1.O1) 

+ I iT 

Hence the proportionate increase in sales is: 

01 
Nt_Nt — .01 

e 
T 

With the numerical values = .20, 0 = .25, this is a 20 increase in the 

number of buyers. 

Still, an elasticity of 21 seems a bit much. We can easily 
see several 

reasons why it is too high, however. For one thing, it assumes that demand is 
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always met at unchanged prices. In reality, a sudden 20% increase in demand 

might encounter rising supply price. For another, a 1% rise in GNP does not 

raise everyone's (permanent) income by 1%, even if we ignore the distinction 

between permanent and current income. Some people in the relevant range will 

experience income increases much greater than 1%; but they will still raise 

their car purchases from zero to one, not to two or three. Others will 

experience no increase at all, and hence will not demand more cars. So, as Is 

usual, heterogeneity tends to smooth things out. Finally, it is worth 

pointing out that quarter-to-quarter changes in purchases of durable goods 

are quite variable; 20% increases or decreases are not unheard of, especially 

for automobiles. 

Of course, in the real world, It Is not only the richest consumers that 

buy new cars. Fortunately, both the demand function (10) and the elasticity 

result (13) can be generalized to allow for an arbitrary number of different 

types of cars, each with its own clientele. Let j=1,. . . ,in index car types and 

let permanent incomes y,..., yj1 
indicate the income classes that buy car 

type j. (The nfs need not be equal,) Only those with permanent income y 
buy car j when It is new, Hence aggregate expenditure on new cars Is: 

(10') Et 
= s [F [5] - F [S1] 1 

where F(.) is the density function of existing stocks of car type I. This is 

the generalization of equation (10). Following the same steps as before, we 

find that if all incomes rise proportionately: 

S1 S 
—f —f = 1 1 + aYE ii I 

Filt F1 .1 — tsl,t-1 

23 



where Aj is the weight of car type j. Around the steady state, with .t, T and 

0 common to all cars, we get: 

aEY 1 

the same result as before. 

It is interesting to compare the predicted short-run income elasticity 

(say. 21) to the corresponding elasticity in the stock—adjustment model: 

(14) Et = A(yt - Kt) + 

Taking the derivative and converting to an elasticity around the steady state 

(where E = K and K = y), gives: 

dyE &' 

which can certainly exceed unity. However, for this elasticity to be far 

above unity, the speed of adjustment must be a large multiple of the 

depreciation rate, which Is not only unlikely but runs counter to empirical 

estimates. 

In fact, a well-known problem with stock-adjustment models is that they 

tend to produce implausibly small estimated "speeds of adjustment" —- the 

coefficient A. The (S,s) model gives this econometric parameter an entirely 

different interpretation, however. It follows from (10) that: 

S 
eK lttl—6 

where denotes the effect of a uniform rightward shift of the density 

function of Initial stocks. Using the steady—state density function 

and the fact that: 
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e1 

we obtain: 

oE — _eT10) - i.iT 

For the parameter values we have been using as examples (T=15, T1=3, ii=.2) 

the expression above turns out to be —0.5 in annual data (0=1). But this is 

strictly a steady—state estimate for a particular choice of parameter values. 

The basic point is that, according to the (S,s) model, the estimate of 8E/8K 

has nothing to do with how quickly people adjust to shocks. It depends 

mainly on the density function ft(Kt), 

5. EMPIRICAL IMPLICATIONS AND TESTS 

Equation (10) cannot be estimated by conventional econometric techniques 

since we have no time series on the distribution function F(,). However, the 

model can be tested informally by drawing out its implications for observable 

variables and checking them against the data. 

5.1 Relative Variances 

One fairly clear implication of the model is that Nt, the number of units 

purchased, should have much more time series variability than Ct, the average 

purchase of those who make a purchase. For the period over which data for Ct 

and Nt exist for automobiles (1959:1 to 1987:2):13 

(AlogN) = 0.106 

a(logC) = 0.018 

a(AlogY) = 0.010 

25 



where t = real disposable income per capita 

Ct = average real car price paid by consumers 

Nt = per capita sales of cars to consumers. 

The theory clearly passes this crude test. 

5.2 Tests of the "Random Walk" Hypothesis 

Hall (1978) pointed out that nondurable consumption should, 

approximately, follow a random walk. More precisely, no variable dated t-1 or 

earlier should help predict the change in consumption from t-1 to t. Since in 

our model the variable Ct should follow the standard PIH precisely, Hall's 

tests apply to this time series directly. But, according to the (S,s) model, 

Mt does not obey the PIH. Specifically, it follows from (9) that both lagged 

Nt and lagged income matter. So both Mt and Et 
= CtNt should fall Hall's 

tests. 

We test these implications with quarterly data on automobile purchases 

for the period 1960:1 to 1987:2.14 

First, following Hall, we ask if Et = CtNt can be predicted by Its own 

past values, other than Et_i. The result is (with absolute t—ratios in 

parentheses): 

Et = constant + 0.66Et_1 + 0.23Et_2 — 0.O8Et_3 - 0,O2Et4 
(7.0) (2.3) (0.9) (0.2) 

= .77; OW = 1.99; F(392) = 1.89 (p = .14). 

The F test fails to reject the omission of longer lags; but that seems to be 

a quirk, for the hypothesis was decisively rejected for several shorter 

samples in earlier versions of this paper.15 Notice also that the coefficient 

of Et_1 is far from the usual value, near unity. According 
to our theory, the 

problems should come from Nt, not from Ct. That turns out to be the case, as 

the following two regressions show. 
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Ct = constant + 0.87Ct_i + 0.l6Ct_2 + 0.19Ct.3 — 0.2OCt_4 
(8.8) (1.2) (1.4) (1.9) 

R2 = .98; OW = 1.93; F(3,92) = 1.99 (p .12) 

Nt = constant + 0.73Nt.i + 0.29Nt2 - 0.15Nt3 + 0.03Nt4 
(7,9) (2,8) (1.5) (0.4) 

= .85; OW 2.02, F(3,92) 
= 3.33 (p = .023) 

Longer lags are inconsequential at the 10% level in the Ct equation, which 

resembles Halls regressions. But Nt_2 matters In the Nt equation; the 

F-statistic for omitting the longer lags rejects the null hypothesis at well 

beyond the 5% level. 

Next, again following Hall, we ask if lagged values of disposable income 

can predict expenditures on autos. The result is: 

Et = constant + 0.7lEt_i + 0.88Vt_i — 0.7OVt_2 + 0.O6Yt_3 — 0.26Vt_4 
(11.4) (3.4) (2.0) (0.2) (1.0) 

R2 = .79; OW = 2.30; F(4,91) = 3.47 (p = .011) 

In this regression, the null hypothesis that all lagged V's can be excluded 

Is easily rejected. Once again, the failure to reject comes from some 

significant explanatory power of lagged income in predicting the number of 

cars, but not the averaqe expenditure per car: 

Ct = constant + 1.OOCt1 — 0.0003Yt_i — O.0023Yt_2 + O.0O37Yt_3 — 0.0009Yt_4 
(50.0) (0.2) (1.3) (2.1) (0.7) 

R2 = .98; OW = 2,17; F(4,91) = 1.90 (p = .12) 

Nt = constant + 0.S3Nt_i + — 6.90Vt2 — 0.74Yt_3 — 
(17.5) (2.7) (1.7) (0.2) (0.2) 

R2 = .86; OW = 2.49; F(4,91) = 3,07 (p = .020) 

These results are generally favorable to the (S,s) model. In particular, 

rejections of the simple PIH using data on durables stem from the behavior of 

Nt, not from the behavior of Ct, just as our model predicts. 
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5.3 Reactions to Income Changes 

The next testable implications follow from the earlier discussion of 

income elasticities. In the long—run, the number of buyers is constant and S1 

is proportional to permanent income. So the long—run elasticity should be 

exactly one. But the theory calls for a short—run elasticity well in excess 

of one, and hence it predicts considerable overshooting. Furthermore, since 

an income shock in period t changes the distribution of initial stocks 

carried into the next period, it affects Et+i and thus reverberates for a 

long while in complex ways. However, the model gives us some hints about what 

the dynamic reactions of E to V should look like. After a positive income 

shock there are more "new cars" and fewer 'old cars,' so the effects on 

spending in some future periods should be negative. To summarize, the theory 

calls for a large short—run response of E to Y, followed by a period in which 

some negative coefficients are observed (cyclical behavior seems likely), and 

leading eventually to a long-run elasticity of unity. By contrast, the 

stock-adjustment model predicts that actual stocks should adjust smoothly and 

gradually to desired stocks. 

To put these implications to the test, we need statistical proxies for 

perniament income. Two different procedures were tried. 

First, a bivariate vector autoregression (VAR) was estimated using 

quarterly data on: 

Yt = log of real disposable income per capita 

and a measure of spending on durables such as: 

et 
= log of real expenditures on durables (or just on autos, 

or just on non-auto durables) per capita, or 

= log of number of cars purchased per capita, 
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and lag lengths ranging from two to eight quarters (for both variables). 

Following Flavin (1981) and many others, the econometrically estimated income 

innovations were Interpreted as (proportional to) Innovations in permanent 

income. We do not report the VARS themselves,16 Instead, Tables 1—4 report 

the estimated impulse response functions of spending to a unit innovation In 

income. In interpreting these numbers, It Is useful to know that, In common 

with many other recent time series studies of income,17 our estimated VARs 

often imply that Innovations to log income lead to very long lasting changes 

in the level of log Income. Hence it not surprising that they also often lead 

to very long lasting Increases In spending on durabies, 

As is often the case with VARs, the shapes of the impulse response 

functions are distressingly sensitive to the lag length; here longer VARs 

generally (but not always) display more cyclical behavior. A few general 

tendencies emerge, however. First, the response patterns are almost always 

cyclical, although the cycles are rarely pronounced enough to produce 

negative coefficients. Second, elasticities greater than unity are common, 

and they sometimes last quite a while. Third, with very few exceptions, the 

strongest responses do not occur in the quarter Immediately following the 

income Innovations; instead, the coefficients rise before falling. These 

empirical findings are broadly consistent with the (S,s) model, with the 

possible exception that negative coefficients seem rarer than the theory 

suggests. 

Are they also consistent with the principal competing theory, the 

stock-adjustment (SA) model? It appears not. Write the SA model as: 

Et = X(y - Kt) + Kt. 
where Kt is the beginning-of-period stock. Then, using the Identity: 

Kt = (1 - )Kti + 
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Table 1 

Impulse Response Functions of et to yt: 
et = log real expenditures on durables per capita 

= log real disposable income per capita 
(n = maximum lag in VAR) 

n=2 n=4 n=6 n=8 

1 1.16 1.14 1.06 1.15 

2 1.14 1.43 1.27 1.30 

3 1.10 1.67 1.53 1.46 

4 1.00 1.69 1.11 1.08 

5 0.89 1.60 0.35 0.13 

6 0.80 1.44 0.25 0.61 

7 0.72 1.27 0.08 0.38 

8 0.64 1.09 0.06 0,29 

9 0.58 0.91 0.08 0.35 

10 0.52 0.75 0.09 0.28 

20 0.22 0.14 0.43 0.32 

40 0.09 0.07 0.28 0.27 

60 0.04 0.04 0.19 0.22 

80 0.02 0.02 0.13 0.18 

Note: Estimated on quarterly data from 1955:1 to 1987:2. 
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Table 2 

Impulse Response Functions of log et to Yt 
et = log real expenditures on automobiles per capita 

Yt = 10; real disposable income per capita 
(n maximum lag in VAR) 

fl fl4 fl 
1 3,76 3.78 3.57 4.03 

2 2.70 3.79 3,48 3.94 

3 2.43 4.28 4.13 4.36 

4 2.04 3.67 2.62 3.04 

5 1,75 3.02 0.75 0.77 

6 1.51 2.36 0,25 2,75 

7 1.30 1.86 —0,13 1.13 

8 1.13 1.47 0.04 1.21 

9 0.99 1.21 0.28 1.03 

10 0.87 1.01 0.57 0.82 

20 0.33 0.23 0.51 0.52 

40 0.10 0.03 0.24 0.41 

60 0.03 0.01 0,11 0,27 

80 0,01 0.00 0.05 0.18 

Note: Estimated on quarterly data from 1955:1 to 1987:2. 
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Table 3 

Impulse Response Functions of log to yt: 
Nt = number of cars per capita 

Yt = log real disposable income per capita 
(n = maximum lag in VAR) 

1 2.65 2.60 2.46 2.96 

2 1.48 2.57 2.52 2.89 

3 1.67 2.48 2.65 2.79 

4 1.38 2.43 1.49 2.28 

5 1.29 2.11 1.13 1.39 

6 1.15 1.81 1.17 4.32 

7 1.04 1.57 0.87 2.56 

8 0.94 1.34 0.83 2.96 

9 0.86 1.15 0.81 2.14 

10 0.78 1.00 1.00 1.99 

20 0.31 0.29 0.71 0.29 

40 0.06 0.04 0.28 0.14 

60 0.01 0.00 0.12 0.05 

80 0.00 0.00 0.05 0.02 

Note: Estimated on quarterly data from 1961:1 to 1987:2. 
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Table 4 

Impulse Response Function of et to yt: 
et = log real expenditure on nonauto durables per capita 

Yt = log real disposable income per capita 
(n = maximum lag in VAR) 

n=2 n=4 n=6 n=8 

1 0.62 0.62 0.49 0.47 

2 0.60 0.98 0.82 0.78 

3 0.62 1.12 0.85 0.77 

4 0.61 1.17 0.65 0.53 

5 0.59 1,18 0.23 0,11 

6 0.58 1.14 0.24 0.06 

7 0.57 1.06 0.16 0,02 

8 0.55 0.97 0.15 -0.01 

9 0.54 0.87 0.18 0.04 

10 0.53 0.77 0.20 0.11 

20 0.41 0.16 0.25 0.23 

40 0.23 0.08 0.18 0.17 

60 0.12 0.04 0.12 0.12 

80 0.07 0.03 0.08 0.09 

Note: Estimated on quarterly data from 1955:1 to 1987:2. 
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it is a simple matter to compute the Impulse response function, which is: 

in levels in elasticities18 

0 

1 (6-x)x (6-A)(A/6) 

2 (1-x)(&-x)x (1-x)(&-A)(x/6) 

3 (1—A)2(6—A)X (1—x)2(6—A)(A/6) 

Notice that, after the first period, the coefficients are positive or 

negative according as & A. Estimated SA models tend to produce 6 > A, so 

positive values of &-A seems to be the empirically relevant case. The 

coefficients in Tables 1-4 are, indeed, predominantly positive. However, when 

6 exceeds A, the initial coefficient of the impulse response function In 

elasticity form (which is most relevant to a logarithmic specification) 

should be smaller than unity -— which is the case only in Table 4. Finally, 

since both 6—A and (1—A) are proper fractions, the coefficients of the 

impulse response functions implied by the SA model are monotonically 

decreasing, whereas the estimated coefficients in the tables exhibit cycles. 

Hence the SA model does not seem consistent with the estimated impulse 

response functions. 

The second method of looking at lagged responses begins by constructing 

a time series on permanent income explicitly, following the method in Blinder 

(1981b). Specifically, real disposable income was assumed to follow an AR(2) 

process around a deterministic trend. This process was 
estimated and used to 

project Income Into the future. The estimates were then discounted and added 

to compute a time series on permanent income: 
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= trend component + Et Z 

j=O (1+r) 

where Y denotes detrended income per capita. Using this series, we then ran 

per capita regressions of the form: 

logE = (L) logY + 

where (L) is a polynomial in the lag operator, for the four different 

measures of spending on durables listed above and for alternative lag 

lengths. 

The results of this experiment were less successful, mainly because 

substantial autocorrelation remained in the residuals even when long lags 

were allowed. Since most results were insensitive to lag length, Table 5 

reports only the regressions using eight lags. 

Note that the long-run elasticities of spending on all forms of durables 

exceed unity, which contradicts the simple PIH. However, column 3 makes note 

of something the theory leaves out. While the theory assumes that everyone 

has one car and that only certain consumers buy new cars, the facts are that 

many households own more than one car and that income changes sometimes shift 

people from being used—car buyers to being new—car buyers, or vice-versa. 

Hence, the decision to hold multiple cars is, presumably, income elastic. 

Since logE = logC ÷ logN, we expect a long-run income elasticity of E of 

roughly one the income elasticity of N. Columns 2 and 3 estimate the 

latter at 2.50 and the former at 2.14 implying a negative income elasticity 

of Ct.'9 

However, the prediction that the short-run elasticity should exceed unity 

is not borne out for non-auto durables; the estimated elasticity is about one 

35 



Table 5 

Lagged Response of Durables to Permanent Income 

(1) (2) (3) (4) 
Real Real Real 

Expenditures Expenditures Number Expenditures 
on Durables on Autos of Cars on Non-Auto Durables 

(coefficients with standard errors in parentheses) 

Constant —6.52 -11.01 —6.74 —5.80 

(.47) (.96) (.99) (.47) 

Time trend 0.0026 -0.0029 -0.0126 0.0044 

(.0005) (.0009) (.0009) (.0005) 

1.24 3.37 3.06 .52 

(.44) (.91) (.92) (.45) 

1.03 2.71 2.30 .50 

(.63) (1.30) (1.31) (.64) 

.38 -0.78 —.74 .78 

(.62) (1.28) (1.29) (.63) 

.04 —.69 -.72 .28 

(.59) (1.21) (1.22) (.60) 

-.26 -.75 -.59 —.10 
- 

(.59) (1.22) (1.23) (.60) 

Yt5 
—.30 -.31 .11 —.34 

(.63) (1.30) (1.31) (.64) 

.14 1.44 1.17 —.22 

(.74) (1.52) (1.53) (.75) 

V -.29 —1.87 —1.68 .13 
t 

(.78) (1.61) (1.62) (.79) 

-.61 -0.97 -.42 -.41 

(.49) (1.02) (1.01) (.49) 

.980 .881 .808 .983 

SSR .1674 .7088 .7187 .1714 

0.57 1.11 1.12 0.34 

Long—Run 
Elasticity 1.37 2.14 2.50 1.12 

Note: Estimated on quarterly data 1959:1 to 1987:2. Regressions also 

included several dummy variables for auto strikes, credit controls, and 

1986 tax effects. 
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standard error below one. 

The estimates are not particularly favorable to the (S,s) model. But 

they should, perhaps, be taken with a grain of salt owing to their poor 

statistical properties and to the gross disparities between Table 5 and 

Tables 1-4. 

5.4 Age Distribution 

The model strongly suggests that the age distribution of durables should 

affect purchases —— and in a particular way. Specifically (see Figure 5), the 

density between s and s1/(1-) governs the number of cars that are 
purchased. Hence it is neither the stock of the newest cars nor the stock of 

oldest cars that should have the greatest influence on new car purchases, but 

rather the stock of cars in the age range where new-car buyers tend to trade 

in -- say, 1-4 year old cars. 

As a test, we obtained annual data on the age distribution of cars in 

the U.S. from an industry trade publication.20 These data are based on 

automobile registrations at midyear and, given our decision to consider used 

cars up to 10 years old, are available back to 1959. Cars are identified by 

model year. We grouped them into two—year age bands as follows. Take the data 

pertaining to registrations as of midyear 1959 as an example. Cars in the 

1959 model year were sold mostly from about September 1958 to about September 

1959. Thus, in July 1959, they ranged in age from zero to about nine months 

old. We skipped these brand new cars and used, as our youngest vintage, cars 

from the 1958 and 1957 model years. These would generally have been between 

nine months and 33 months old. As a shorthand, we call these "one and two 

year old cars;" in symbols, K2. Proceeding analogously, we defined "three and 

year old cars" (K4 ) and so on up to "nine and ten year old cars," 
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K'1° , which was the oldest vintage we considered. We also, of course, have 

data on the total stock of cars irrespective of age, Kt. 

The empirical question is: Which version of Kt is the best predictor of 

new car purchases, Nt?2' Our theory suggests that K4 or perhaps K2 might do 

best while the SA model tacitly assigns declining weights to older vintages. 

We used several measures of association. The most naive just compares the 

simple correlations between logN and various measures of logK (in per 

capita terms). Here K2 and K4 had about equal correlations (in logs) 

with Nt (around 0.3), while K8 and K9"° correlated much less well. This is 

hardly a precise test, but it leans in the right direction. 

Next, we ran causality tests asking whether two lags of each Kt variable 

Granger—cause Nt. Unfortunately, there are so few data points that these 

tests were almost totally uninformative. (For example, the marginal 

significance level for omitting K56 was 0.03 on a 1961-1985 sample, but 0.71 

when the sample stopped at 1983.) 

Finally, despite our distrust of the model, we ran stock adjustment 

equations using alternative measures of the K variable. Here the results were 

quite different: the sum of squared residuals was minimized when 

(i.e., cars aged 9—10 years) was used as the stock variable. 

6. SUP+IARY AND CONCLUSIONS 

This paper develops a simple but important point which is often 

overlooked by economists: It is quite possible that the best policy for a 

rational, optimizing agent Is to do nothing for some period of time——even if 

new, relevant, and unexpected information becomes available. 
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We illustrated this point using the market for durable goods. Assuming 

that there are lumpy costs in durables transactions, consumers choose a 

finite range, not just a single level, for their durables consumption. The 

boundaries of this range change with new information and, in particular, have 

the homogeneity property we associate with the permanent income hypothesis. 

However, as long as the durable stock Is within the chosen region, the 

consumer will not change his or her stock. Hence individuals will make 

durable transactions infrequently and their consumption might differ 

substantially from the prediction of the strict PIH which ignores transaction 

costs. 

One implication of such microeconomic behavior is that aggregate data 

cannot be generated by a representative agent; explicit aggregation is 

required. By doing that, we showed that time series of durable expenditures 

should be divided to two separate series: One on the average expenditures 

per purchase and the other on the number of transactions. The predictions of 

the PIH hold for the former, but not for the latter. For example, the 

short—run elasticity of the number of purchases with respect to permanent 

income is much larger than one for plausible parameter values. The 

underlying reason for this large elasticity is that only a fraction of the 

population buys a durable each period. A small change in the behavior of the 

total population might therefore translate into a large change in the 

fraction of consumers who are active in the market in a given period. Hence 

the durable goods market is inherently more volatile than the market for 

nondurable goods and services. 

We put our theory to a battery of empirical tests. Although the tests 

are by no means always consistent with the theory, most empirical results are 

in line with our predictions. Using tests of the Hall (1978) type, we showed 
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that time series on average expenditures on cars but not the number of cars, 

are consistent with the standard predictions of the PIH; short run impulse 

responses of car sales to income innovations are significantly larger than 

one; variance of the sales series is much larger than both the variance of 

the income process and the average transaction size. 

This indicates that there may be more than a grain of truth in our 

theory, a theory which demonstrates that there is nothing irrational about 

consumers' behavior which does not always respond to new, unexpected 

information. Failure to realize that might prevent understanding important 

macroeconomic phenomena. 
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FOOTNOTES 

1. This Is a major point of Grossman and Laroque (1987). 

2, Again see Grossman and Laroque or, for a somewhat different specification 

based on proportional, rather than fixed, transactions costs, Constantinides 

(1986). 

3. See Sheshinski and Weiss (1977) or, more recently, Caplin and Spulber 

(1987). 

4. See Abel (1980). 

5. The lemons principle is not the only rationale for a gap between buying 

and selling prices. In addition, we have worked out a basically equivalent 

iiodel in which the lumpy transactions cost is a loss of utility, 

6. Constantinides (1986) argues that proportional transactions costs also 

lead to similarly inertial behavior. 

7. Again, proportional adjustment costs lead to a somewhat different form of 

Inertial behavior; see Caplin and Krishna (1987). 

8. The setup and proof of this theorem owes much to the earlier work of 

Flemming (1969). 

9. As long as t=O is not the first purchase moment, a stronger result holds: 

X0, all the S, and all the S, are proportional to W0, that is, two 

individuals with different K0 but identical financial wealth choose the same 

(S,s) boundaries. (See Figure 3). 

10. Readers of Grossman and Laroque (1987) may wonder why we describe their 

rule by four parameters while the authors themselves describe it as a 

three-parameter rule. The reason is that they collapse our two 5L and Sj 

parameters into a single parameter by writing their counterpart to S as 

proportional to wealth net of transactions costs. As we have just noted, 

transactions costs are larger when you trip the upper boundary than when 
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you trip the lower s boundary; hence wealth net of transactions costs differs 

in the two cases. 

11. Later we will show that it is easy to generalize to an arbitrary number 

of cars, so long as they all depreciate at the same rate. 

12. Since we are interested in modelling purchases of new cars, we need only 

be concerned with crossings of the lower border, s. An Individual who--say, 

because of a drop in permanent income——finds himself above and sells his 

late model used car to buy an older one does not affect new car purchases. 

13. The data are unpublished arid were kindly furnished by the Bureau of 

Economic Analysis. The period of observation is 1959:1 through 1987:2, and 

all data are seasonally adjusted. Ct is average expenditure per new car 

purchased by consumers, deflated by the PCE deflator. Nt is per capita 

retail sales of new passenger cars to consumers (business and government 

expenditures are excluded). 

14. All regressions also included dummy variables for strikes, the 1980 

credit controls, and the tax—induced buying spurt in the second half of 1986. 

15. For example, just ending the sample at 1985:4 leads to a marginal 

significance level of 0.005 rather than the .14 reported in the 
text. 

16. All regressions include a constant, a time trend, and the dummies 

mentioned in footnote 14. 

17. See, for example, Campbell and Mankiw (1986). 

18. Elasticities are evaluated around the steady-state y/E ratio of 1I(&t). 

19. In fact, when estimated freely, this elasticity is strongly negative. 

20. MVMA Annual Facts and Figures (Motor Vehicles Manufacturers' Association: 

Detroit), various issues. 
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21. For this purpose, we took our quarterly data on auto sales and aggregated 

them into years beginning in July of the stated year. That is, the 1959 

observation covers sales during the last two quarters of 1959 and the first 

two quarters of 1960. 
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