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1 Introduction

Standard models of delegation assume that agents possess superior information to that of principals
and conclude that devolution of decision-making powers to agents is a way to take advantage of
that superior information (Aghion and Tirole, 1997; Dessein, 2002; Mookherjee, 2006). Decen-
tralization – a key way in which governments delegate power – often comes with informational
gains but also costs as it requires administrative capabilities at lower levels. Moreover, the value
of the information available under decentralization may depend on the planned scale of operation,
which may or may not justify the costs. Suppose for example that an organization plans to provide
assistance to low-income families. If resources are sufficient to cover all households, then it does
not pay to decentralize the selection decision: the program can be rolled out from the center with
universal coverage. If resources are insufficient to cover all households, then it might be important
to decentralize the program by creating local branches to screen households and prioritize assign-
ment according to need. But if resources are so meager that very few families can be covered in
each district, it may again be inconvenient to pay the cost of developing the local branches and
preferable for the center to pick recipients based on the knowledge at hand.

How the state rolls out a new monitoring technology among its front-line providers—the subject of
this paper—raises similar considerations. In 2014, the government of Paraguay decided to roll out
a new monitoring technology (a GPS-enabled cell phone) for supervisors to track their agricultural
extension agents (AEAs). AEAs are tasked with visiting farmers scattered over large tracts of
land and giving them access to various support services including timely information about prices
and best farming practices. In the eyes of the central government, AEAs were likely shirking due
to the monitoring difficulties afflicting their supervisors, and GPS phones could help mitigate the
problem. Because the government did not have the resources to provide phones to all the AEAs
at once, they faced two questions: 1) what should the extent of the roll-out be? and 2) should the
supervisors, who presumably had some understanding of which AEAs would best respond to the
new technology, decide who should receive the phones or should the central government allocate
them? In addition to administrative costs of devolving this decision to supervisors, the answers to
these questions hinge not only on the amount of the information supervisors possess but also on the
fact that the value of that information depends on the scale of planned roll-out.

In this paper, we examine the impact that the new monitoring technology had on the performance of
AEAs as measured by the share of their assigned farmers that they visited in a given week. Based
on a novel experimental design, we develop an approach that allows us to measure not only the
value of supervisors’ information, but also how the value of information varies at different levels of
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coverage. Specifically, we first elicited the preferences of supervisors regarding which half of their
AEAs should be prioritized to receive the phone. We then randomly assigned phones to AEAs, who
thus fell into one of four cells of a 2-by-2 treatment-by-selection matrix. This simple design allows
us to measure both the average impact of the monitoring technology as well as the differential
impact on the AEAs that the supervisors thought the treatment would impact most. This latter
estimate quantifies the advantage over random assignment that supervisors possess in targeting the
cell phones.

We find that the cell phones had a sizeable effect on AEA performance, increasing the share of
farmers visited in the last week by an average of 6 percentage points. This represents a 22 percent
increase over the AEAs in the control group. Because we do not find any impact of cell phones on
AEAs who do not have supervisors, we interpret this effect to be a result of increased monitoring as
opposed to the cell phones directly improving productivity. Also consistent with our interpretation,
we find that AEAs under new monitoring are more likely to agree with the statement that their
supervisor knows their whereabouts. We find no evidence that treated AEAs increased the number
of visits at the cost of conducting shorter ones.

Importantly, supervisor-chosen AEAs respond more to increased monitoring, entirely driving the
average increase of 6 percentage points. Among these AEAs, treatment increased the likelihood
that a farmer was visited in the past week by 15.4 percentage points compared to a statistically
insignificant 3.6 percentage points decrease among those who were not selected. This finding
corroborates the notion that going down the hierarchy from the top program officers to local super-
visors on the ground could allow the organization to leverage superior, dispersed knowledge about
how best to allocate treatment.

Supervisors have superior information regarding AEA characteristics, only some of which are ob-
servable to the principal or an econometrician. Having collected a rich dataset on the AEAs, in-
cluding information on both cognitive and non-cognitive traits, we develop a two-step estimation
procedure in the spirit of a sample selection model to decompose the value of information into
observable and unobservable traits of an AEA. We use this to compute a series of marginal treat-
ment effects under various selection rules and coverage rates. These marginal treatment effects are
critical inputs to decide whether to decentralize the treatment assignment decision. In addition, the
approach we develop would allow program leadership to optimize the program’s roll-out scale.

We find that in general both commonly observed demographic traits (e.g., gender) and even harder-
to-measure characteristics such as their cognitive ability or personality type do a poor job of ex-
plaining supervisors’ targeting decisions. Among the few observable traits that predict targeting,
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the AEAs party affiliation is one of the most robust. Supervisors are much less likely to place mem-
bers of the incumbent party under additional monitoring, suggesting that non-benevolent motives
may have influenced, at least in part, their targeting decisions. Nevertheless, when we allow the
treatment effects to vary by a rich set of observable characteristics, it is the unobservable compo-
nent of the supervisors’ choices that most robustly predicts the responsiveness of an AEA to the
additional monitoring.

While our findings suggest that supervisors have valuable information, the decision of whether
to decentralize depends on the information held by the principal, the feasible allocation rules she
could adopt, and the extent of available resources. In order to explore the potential for centralized
vs decentralized assignment, we construct a number of counterfactuals corresponding to differ-
ent degrees of sophistication of the central authority. Given our model estimates, we compute
marginal treatment effects for every AEA in our sample and use these to estimate the program’s
impact under four different allocation rules at varying coverage rates. In particular, we consider
1) a totally uninformed principal who allocates randomly; 2) a minimally informed principal who
targets AEAs who have to travel longer distances; 3) a more sophisticated principal who collects
and analyzes baseline data on AEAs and targets predictably low productivity AEAs; and 4) the
most sophisticated principal who pilots an experiment and thereafter targets AEAs in descending
order of predicted responsiveness to treatment.

We find that the value of supervisor information is substantial relative to a regime in which the prin-
cipal simply allocates phones at random and that this difference in program impact is maximized at
53 percent coverage. At this coverage, the supervisor allocation increases the share of farmers vis-
ited by 6.9 percentage points versus only a 3.3 percentage point increase under random assignment.
A slightly more effective approach compared to random assignment would be to simply allocate
the phones to the AEAs who have to travel the longest distance to attend to their farmers. This
method generally outperforms random assignment (a 2.0 percentage point advantage at 50 percent
coverage), but the supervisor still outperforms this simple assignment mechanism.

A more effective centralized policy identifies and prioritizes the workers who are expected to be
the least productive. This strategy does not rely on reports from the supervisors. We operationalize
this policy by estimating among the control AEAs the relationship between AEA productivity and
observable characteristics, and then predicting productivity without a GPS-phone for all AEAs.
Assuming that the government has the information and capacity to approximate this procedure,
we find that the government can perform at least as well as, and in many cases better than, the
supervisors. The reason is that while this minimally informed principal does not have as much
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information as the supervisor, it is possible to make better use of it than supervisors appear to do.
This in turn suggests that imperfect processing of information, or bias, prevents supervisors from
being as effective as they could.

The most effective but most information-demanding centralized policy we consider uses AEA ob-
servables to predict response to treatment rather than to predict baseline productivity. This would
require the principal to first conduct a pilot experiment, the results of which would be used to
predict responsiveness among the remaining untreated AEAs. Treating AEAs in descending order
of predicted responsiveness, even when lacking information on unobservables, vastly outperforms
decentralized assignment by the supervisors. The high performance of these last two methods high-
light that innovations in information and communication technologies, as well as the introduction
of experimental methods to inform policy, can play a role in reducing information frictions and
alter optimal organizational structure.

Our study speaks to several literatures. First and foremost, our study contributes to a large but
mostly theoretical literature on why organizations decentralize decision-making authority.1 Re-
cently, some empirical progress has been made in understanding why private-sector firms decen-
tralize. For instance, based on the insight by Aghion and Tirole (1997) that organizations are more
likely to decentralize if the principal and agent have congruent preferences, Bloom et al. (2012) find
that firms are more decentralized when located in regions that are judged to contain more trustwor-
thy people by those in the headquarters location. The authors view trust as a proxy for congruency
of preferences.

Given the standard assumption that agents are better informed than the principal, access to costly
information can also determine a firm’s decision to decentralize. For example, Acemoglu et al.
(2007) show using data on French and British firms in the 1990s that firms closer to the techno-
logical frontier, firms in more heterogeneous environments, and younger firms are more likely to
choose decentralization—settings that presumably proxy for environments where learning is more
difficult. Despite the progress that these and other studies have made, direct empirical evidence on
the existence of superior information by agents is still lacking.

One notable exception is Duflo et al. (2016) who conducted a field experiment that increased the
frequency of inspections of industrial plants in Gujarat, India. In the control group, plants were
audited as usual at the discretion of the inspectors, whereas in the treatment group, the audits
were conducted more frequently but at random. They found that despite the increased regulatory
scrutiny, the treatment plants did not significantly reduce pollution emissions. This is because

1Mookherjee (2006) provides an excellent review of the theory on decentralization.
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the discretionary inspections targeted the plants with higher pollution signals. Because the largest
penalties are reserved for extreme pollution violations, this is the population whose behavior is
most likely to be impacted by audits.

We complement this study in some important ways. Our experiment was designed to identify
who the supervisors would target for monitoring without having to rely on strong functional form
assumptions. As a result, we can experimentally identify the decentralized counterfactual to a
centralized approach. Moreover, that counterfactual depends both on supervisors’ informational
advantage and on potential preference biases, which we allow for but are absent from the targeting
rules in Duflo et al. (2016). Thus, we incorporate elements that are crucial to the evaluation of the
relative merits of decentralization.

Similar to the public sector, private sector employers also need to monitor their employees. de
Rochambeau (2017) discusses the roll-out of GPS tracking devices in a trucking company. She
finds that managers allocate the tracking device to drivers who perform less well at baseline, and
that these truckers benefit most from the device. In fact, she finds that monitoring high-performing
drivers can be counter-productive as their intrinsic motivation decreases.

The problem of how best to deploy monitoring technology is similar to the issue of how best
to target social programs. In this regard, our paper is most related to two studies. Alderman
(2002) examines the targeting of an Albanian social assistance program. He shows that even after
controlling for the assets that were used in the targeting of the program, household consumption
was predictive of the targeting. The author interprets this as evidence that local officials responsible
for targeting the program relied on their local information. Alatas et al. (2012) conducted a field
experiment in 640 villages in Indonesia to compare proxy-means testing against community-based
targeting of a social program. They find that proxy-means testing targets consumption better than
community-based targeting. They argue that this difference is not due to elite capture or local
information, but rather a difference in how local communities define poverty. Similar to difficulties
in targeting social programs, banks could benefit from community knowledge to help them lend to
the most entrepreneurial people. Hussam et al. (2017) find that community members have useful
information on marginal returns and this information is useful above and beyond what a machine
learning algorithm would predict from observables.

Our study also has clear parallels to the literature on marginal treatment effects (MTE) (Heck-
man and Vytlacil, 2005). As in the MTE literature, we express our evaluation problem as a joint
model of potential outcomes and selection as determined by a latent index crossing a threshold.
In contrast with the standard MTE setup, our selection equation does not model an AEA’s self-
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selection into treatment but rather the selection by a supervisor. Crucially, only those AEAs who
were randomized into treatment were in fact treated. Thus, when we compute the MTEs we do
not have to extrapolate to subgroups of “always-takers” and “never-takers” because we only have
compliers by design. In this respect, our approach implements a variant of the selective trial de-
signs proposed by Chassang et al. (2012). In that paper, the authors recast randomized control trials
into a principal-agent problem and show theoretically how one can recover the MTEs necessary to
forecast alternative policies and treatment assignments by eliciting subjects’ willingness to pay for
the treatment. Instead of eliciting our agents’ willingness to pay for the treatment, we elicit the
targeting preferences of the supervisor, who in our context is the relevant decision maker.

Finally, our study adds to a growing body of experimental evidence on the impact of new moni-
toring technologies for reducing shirking in the public sector. Similar to our setting, some of these
studies involve weak or no explicit financial incentives. For example, Aker and Ksoll (2017) moni-
tored teachers of adult education in Niger by calling both the teacher and the students to ask whether
the class was held and how many students attended. They found that the calls led to fewer canceled
classes and better student test scores. Callen et al. (2015) used a similar cell phone technology
to monitor health facility inspectors and found that this increased the frequency of inspections,
especially for those with ‘better’ personality traits.

Other studies have introduced new technologies for monitoring but have also overlaid financial
incentives. For instance, Duflo et al. (2012) required teachers to take a picture of themselves with
their students at the beginning and end of each school day using a camera with tamper-proof date
and time functions, whereas Banerjee et al. (2008) asked nurses to time-stamp a register at the
beginning, middle, and end of the day. Both studies found these treatments increased teacher and
nurse attendance, but in both cases, the impact was found to be mostly due to concomitant financial
incentives. Dhaliwal and Hanna (2017) found that fingerprint readers in health centers decreased
absence even though financial incentives provided by the monitoring technology were rather weak.
Banerjee et al. (2015) and Khan et al. (2016) look at on-the-job performance rather than attendance
(among police and tax collectors respectively) and employ both monitoring and incentives. These
papers do not give a definitive answer regarding whether most of the improvement in performance is
due to the monitoring or the incentives. The first paper suggests a significant impact of monitoring
alone, while the second suggests an insignificant impact.

We contribute to this literature by showing that a cell phone technology can be effective in reduc-
ing shirking for individuals such as agricultural extension agents whose job requires them to visit
farmers who live out in rural areas, often quite far from the local agricultural ministry offices in
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town.

2 Background

Agricultural extension services in Paraguay are centered around the Ministry of Agriculture based
in Asunción. Below the central ministry are 19 Centros de Desarrollo Agropecuario (CDAs, which
exist at the department level, similar to a state in the United States) and below the CDA level
there are 182 Agencias Locales de Asistencia Técnica (ALATs, which are at the municipality level,
similar to a county in the United States). The Paraguayan Ministry of Agriculture has close to 1000
agricultural extension agents working within ALATs spread across four main agencies. We work
with the biggest of these agencies, Dirección de Extensión Agraria (DEAg).

The main job of extension agents is to help farmers access institutional services that will help them
improve their production. The goal is to increase farmers’ output directed both for own consump-
tion as well as the market. Another goal is to increase farmers’ connection to, and participation in,
markets. The official thematic areas are soil improvement, food security, product diversification,
marketing, improvement of life quality, and institutional strengthening. Much of what extension
agents do resembles the role of middlemen, connecting farmers with cooperatives, private enter-
prises, and specialists. Extension occurs both one-on-one and in group meetings. Meetings often
take place during farm visits in which problems with the farm are diagnosed and dealt with. Meet-
ings are also used to talk about technical topics and lead product or process demonstrations. This
includes working on demonstration plots and organizing farmer field trips. Each extension agent
is assigned to work with approximately 80 producers. Extension agents do not usually offer free
goods or services to farmers. Although the headquarters for extension agents are in towns, most
of their daily work involves driving out to visit farmers in the rural areas where these farmers live
and work. Extension agents come from a variety of backgrounds including agricultural sciences,
veterinary sciences, nutrition, law, and teaching.

Within every ALAT there is a supervisor who, in addition to working with his own farmers, must
also monitor the other extension agents working in the ALAT. We will refer to individuals who
work purely as agricultural extension agents, as ‘AEAs.’ By this definition, DEAg has over 200
AEAs working within the organization at any time.

In June 2014, the Ministry of Planning, in association with the Ministry of Agriculture, decided to
provide AEAs with GPS-enabled cell phones. This initiative had several objectives. One was to
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improve coordination and communication between the AEAs and their supervisors. For example,
it would give the AEA a mechanism to take a picture of a farmers’ crop which was suffering
from some pest, circulate it, and get a response for the farmer of how to deal with that pest. But
crucially, it would allow the supervisors to see where AEAs were at all times, how long they spent
in each place, and what they did there (since the AEA is supposed to document every meeting he
participates in). AEAs can submit reports and review reports they have already submitted through
the phone. Supervisors, in turn, as well as CDA-level managers, can view reports submitted by all
the AEAs they oversee.

In the terms of the hierarchical agency model we will lay out in the next section, we view the
ministerial leadership introducing the new technology as the principal, we will refer to the ALAT-
level supervisors as “supervisors”, and the AEAs as the “agents.”

3 Model

Consider a hierarchy composed by a principal, a supervisor, and a continuum of agents with mass 1.
The supervisor is responsible for monitoring the agents. In such a hierarchy there are two possible
agency problems: that between the agent and his supervisor and that between the supervisor and
the principal. We will focus mainly on the problem between agent and supervisor, and analyze how
it changes when the agents are placed under a new monitoring technology. The question will be
whether the principal can obtain better results by relying on supervisors in deciding how to deploy
the technology.

Agents and monitoring Each agent caters to a mass 1 of farmers. A visit by an agent i yields a
constant benefit B to each farmer. Agents receive a wage w and choose a share si ∈ [0,1] of farmers
to visit. The agent obtains an intrinsic motivation misi from visiting a share si of farmers, but also
incurs a cost aisi+bi

s2
i
2 . The share si is a measure of agent effort, and because it directly constitutes

a measure of service provision (visits to farmers), the principal cares about it. From now on, we
will refer to si as effort and assume that it is noncontractible.

The supervisor operates a monitoring technology such that with probability qi ∈ (0,1), she learns
si and reprimands the agent in proportion to the amount by which his effort falls short, 1− si. The
agent gets a disutility from being reprimanded equal to (1− si)ri, with ri > 0.2 While monitoring

2Alternatively, one may assume that the supervisor draws a farmer at random, and finds he has not been visited with
probability 1− si, in the event of which she proceeds to reprimand the agent with a fixed intensity ri. It is also possible
to extend the model to make qi a function of monitoring effort by the supervisor. The choice of monitoring effort
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allows the supervisor to obtain information about the agent’s effort, it can potentially weaken in-
trinsic motivation. When monitored, the intrinsic motivation payoff of agent i becomes (mi−gi)si,
which is potentially negative. It reflects the fact that agents may feel aggrieved to an extent gi ≥ 0
when under close supervision. In sum, wages and effort costs accrue to the agent regardless of
supervision, while reprimand and intrinsic motivation payoffs accrue in relation to monitoring in-
tensity qi. Thus, agent i can be seen to maximize utility,

ui (si) = w−aisi−bi
s2

i
2
+qi [(mi−gi)si− (1− si)ri]+ (1−qi)misi,

or, collecting terms,

ui (si) = ωi +µisi−bi
s2

i
2
+qisiρi,

where ωi ≡ w− riqi,µi ≡ mi− ai,ρi ≡ ri− gi. Agent i chooses the share si of farmers to visit
to maximize utility ui(si), and he does so after learning the level of monitoring intensity qi he is
under. Because ui(si) is concave, agent i’s optimal effort is s∗i (qi) = max

{
0, qiρi+µi

bi

}
. Since bi

only affects effort through ratios involving ρi and µi, parameters that can be scaled arbitrarily, we
normalize bi = 1, yielding,

s∗i (qi) = max{0,min{qiρi +µi,1}} . (1)

The term µi – a proxy for net-of-cost intrinsic motivation – is individual-specific and for some
agents potentially negative. Even more important for our purposes, the term ρi, which captures
both the agent’s distaste for being reprimanded (which raises effort) and his resentment at being
monitored (which lowers effort) is also potentially negative for some agents. We will assume ρi

to be drawn from a continuous distribution F(ρi) over a support [ρl,ρh], where ρh > 0 but ρl is
potentially negative.

New technology and treatment effects We assume that qi can take one of two levels {ql,qh} ∈
(0,1), with qh≡ ql +ti∆q , ∆q> 0, where ql denotes a status quo level of monitoring, and ti ∈ {0,1}
reflects whether agent i is “treated” to a new monitoring technology.3 In order to characterize
treatment effects neatly and avoid awkward truncation issues, in what follows we will assume that

remains unmodeled here, in order to stick with the simplest formulation that will deliver the results of interest. Such
an extension could also involve an agency problem in the supervisor’s choice of monitoring effort without affecting the
essence of our results. The only tension between supervisor and principal that may arise in our simpler setting relates
to the deployment of the monitoring technology to be described below.

3Here we assume treatment only affects the agent’s problem by raising monitoring intensity, although it could
in principle also affect µi via the agent’s cost ai. This is plausible as some technologies, like GPS phones, can be
productivity-enhancing. However, as we will show later, the data do not support that possibility.
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min{qhρl,qlρl}+µi > 0 and qhρh +µi < 1, which guarantees interior solutions for si.

While µi and ρi both affect the level of effort, only ρi affects the response of effort to a change
in monitoring technology. Thus, in the remainder of this section we will refer to different levels
of ρ as agents’ “types.” Under increased monitoring, an agent of type ρ increases his effort by
ρ∆q≡ T (ρ), which captures the treatment impact of the new technology for that agent. Note that
since ρl can be negative, T (ρ) can be negative for some types. To deploy the new monitoring
technology on any given agent costs an amount c per agent. If the new technology is deployed
over all agents, then all agents are “treated.” Given a continuum of agents, the total (and average)
treatment impact is

∫
ρh
ρl

T (ρ) f (ρ)dρ , achieved at a total (and average) cost c. If the new technology
is deployed on all agents with type above some level k, the total treatment impact over all agents is∫ ρh

k T (ρ) f (ρ)dρ , achieved at total cost c(1−F(k)). Note that our definition of the total treatment
abstracts from spillover effects across agents. These effects could be modeled, but we keep the
theory consistent with our empirical approach to measuring marginal treatment effects, which will
likewise abstract from spillovers.

Inspection of the expression for the treatment impact
∫

ρh
ρl

T (ρ) f (ρ)dρ yields the following:
Remark 1. If ρl ≥ 0, the total (and average) treatment impact is guaranteed to be positive. If

ρl < 0, the total (and average) treatment impact is positive if and only if, given ∆q, the density f (·)
places enough weight on positive types.

This remark, while somewhat obvious, highlights the conditions under which a new technology
rolled out to all agents, or a representative sample of them, would yield positive results when
assessed through a standard impact evaluation that estimates average treatment effects. In addition,
the definition of T (ρi) implies that equilibrium agent effort s∗i (weakly) increases in monitoring
technology qi for all agents with ρi > 0, and an improvement in monitoring technology (an increase
in qi) has a more positive effect on the effort of agents with a higher type ρi.

The value of information and optimal decentralization To isolate a central advantage of decen-
tralization, we assume that the principal knows the distribution of types F(ρ), but does not know
the type of any specific agent. The supervisor, in contrast, knows both F(ρ) and agents’ individual
types – this constitutes the information advantage of the supervisor vis-a-vis the principal. Both
principal and supervisor know all other model parameters. The thought experiment of interest is
whether, given a new monitoring technology, the principal would want to delegate to supervisors
the choice of which agents to treat with it.

Centralization We take a centralized regime to be one in which the principal makes all deci-
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sions without any further input beyond what she already knows, namely F(ρ).4 Thus, she can only
make a general decision about whether to adopt the new technology or not and cannot determine
whether any one agent is more profitably treated than another. We denote the scale of adoption
with m (for the measure of the treated, not to be confused with the individual-specific intrinsic
motivation mi used earlier). If roll-out has scale m, and treated agents are selected at random, the
total treatment impact will be m

∫
ρh
ρl

T (ρ) f (ρ)dρ , which increases linearly in m as illustrated by the
strictly increasing diagonal line in Figure 1 depicting the impact of random treatment assignment.
The cost will be mc. The principal will adopt whenever

∫
ρh
ρl

T (ρ) f (ρ)dρ ≥ c (breaking indifference
in favor of adoption), i.e., whenever the average treatment effect of the new technology is larger
than its marginal and average cost. If this condition is met, a roll-out at 100% would produce a
total treatment impact equal to the average treatment effect, recommending not only adoption, but
also adoption at full scale.

Decentralization In the decentralized regime, the principal can pay a cost d ≥ 0 to delegate to
the supervisor the decision over which agents to place under the new monitoring technology.5 For
simplicity, we focus on a well-meaning supervisor who deploys the new technology to maximize
agent output. Our empirical approach allows for potential supervisor bias. If the marginal cost of
the new technology is lower than the treatment effect for the type with highest type ρh, a benevolent
supervisor will place agents under the new monitoring system starting from the highest type ρh and
work downwards. How far down he goes depends on the scale of roll-out for the new technology.
If the supervisor chooses which agents to treat but the scale of roll-out is fixed, he will choose the
highest types to fill the quota. Thus, if the supervisor is told to place a share m of agents under the
new technology, he will treat every agent with type ρ ∈

[
ρm ≡ F−1(1−m),ρh

]
. This implies,

Remark 2. If supervisors know agents’ types and assign treatment with a benevolent intent of

maximizing visits to farmers, treatment effects on those agents selected by supervisors will be higher

4We equate centralization with a regime where the principal makes all decisions based upon her own information,
and decentralization to one where the principal delegates decisions to supervisors, or, equivalently, one where super-
visors submit information that mechanically drives the principal’s decisions. Thus, we abstract from the interesting
distinctions made by Dessein (2002) between delegation and strategic communication.

5The delegation cost can arise due to the need to transfer certain administration means to the supervisor or from
establishing additional communication and administration channels to track the supervisor’s recommendations and/or
technology deployment decisions. In some empirical settings, like the one discussed in the introduction on screening
candidates for income support, the costs of decentralization are fixed and likely large. The reason is that identifying
the best units to treat–even if they are just a few–may require deploying a nation-wide organizational operation. In
other settings costs may be small, and in others even negative, since centralization may at times be costlier. In the latter
cases, there will be no tension – decentralization is both informationally advantageous and cheaper – and therefore
of less analytical interest to us. In the case in which decentralization costs are variable rather than fixed there will be
quantitative differences in terms of the roll-out rates that make centralization preferred to decentralization, but the basic
point will remain that marginal treatment effects and roll-out rates matter.
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than treatment effects on agents selected at random.

If, against our assumptions, the supervisor is not well informed, then the treatment effects among
agents selected by the supervisor could be similar to those among agents selected at random. If
the supervisor has mistaken views or is not benevolent, treatment effects among agents selected by
him could be even lower than among those selected at random: a supervisor who ranks types to be
treated in an inverse way (i.e., starting with ρl and working upwards) would in fact minimize the
impact of technology adoption.

Getting back to the case of an informed and benevolent supervisor, it is helpful to consider the
situation in which the supervisor also has control over the scale of adoption. In this situation, he
will choose the lowest treated type k to maximize,∫

ρh

k
T (ρ) f (ρ)dρ− c(1−F(k)),

which yields T (k∗) = c. In words, the supervisor will choose to treat every agent down to a type k∗

whose marginal treatment effect from the new technology equals the marginal cost.

Optimal decentralization Consider the case where the supervisor, under decentralization, has
authority over the selection of agents to be treated but not over the scale of technology adoption.6

Given a scale of adoption m, the principal will choose to decentralize if and only if
∫

ρh
ρm

T (ρ) f (ρ)dρ−
cm−d ≥

(∫
ρh
ρl

T (ρ) f (ρ)dρ− c
)

m, or equivalently, iff,

ι (m)≡
∫

ρh

F−1(1−m)
T (ρ) f (ρ)dρ−m

∫
ρh

ρl

T (ρ) f (ρ)dρ ≥ d, (2)

where ι (m), graphed in the bottom panel of Figure 1, captures the informational gain from de-
centralization. This gain is the difference between the total treatment effect that can be attained
through the centralized and decentralized approaches, graphed in the top panel of Figure 1.

Note that when m = 0 and ρm = ρh, the marginal gain from expanding roll-out under the decentral-
ized scheme is at a maximum since the supervisor would treat the most responsive agent first. But
because the new technology would be applied to very few agents, the value of the informational
gain from decentralization is zero and does not justify paying a fixed positive cost d to decentralize.
On the other extreme, where m = 1 and ρm = ρl , the difference in value again goes to zero because
the advantage of treating the more responsive agents first is completely diluted. Since all agents

6A realistic example fitting our empirical setting is when a new technology is acquired by government and is made
available to an agency in a fixed amount.
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will be treated, there is no need to decentralize.

For every value m strictly between 0 and 1, the total treatment effect attained by a supervisor
who treats the most responsive agents first is larger than that which can be attained by assigning
treatment at random. As illustrated in Figure 1, the value of information ι (m) is decreasing in m

near m = 1 (or, equivalently, increasing in ρm near ρl). This is true up to a type ρ̄ for whom the
marginal treatment effect T (ρ̄) is equal to the average treatment effect T̄ ≡

∫
ρh
ρl

T (ρ) f (ρ)dρ .7 The
value of information ι (m) then increases in m as m approaches 0 (or equivalently decreases in ρm as
ρm approaches ρh. Given these considerations, and recalling continuity of F , standard intermediate
value theorem arguments imply:
Proposition 1. (i) If 0 < ι (ρ̄)< d, then decentralization is never optimal and if d = 0, decentral-

ization is always optimal. (ii) If 0 < d < ι (ρ̄), there exist two values m′ < m′′ in [0,1] such that

for any scale of roll-out of the new technology m ∈ [m′,m′′] the principal prefers decentralization

to centralization; whereas for m /∈ [m′,m′′], centralization is preferred.

This proposition establishes that the case for decentralization rests on the value of its informational
gain relative to its cost, which in turn depends crucially on the scale at which the new technology
is to be adopted.

The model makes clear that there are interventions which can never yield positive value if imple-
mented centrally and/or fully, but could deliver value if implemented in a decentralized manner with
a limited roll-out. To see this, suppose an intervention satisfies

∫
ρh
ρl

T (ρ) f (ρ)dρ < c, yielding an
average treatment impact below marginal and average cost, so adoption at a 100% scale would yield
a loss. But suppose also that treatment impact is larger than cost for a set of highest types, so that
T (ρ)> c for all types in ρ ∈ (ρ ′,ρh], with T (ρ ′) = c, and that

∫ ρh
ρ ′ T (ρ) f (ρ)dρ > c(1−F(ρ ′))+d.

In other words, there is a set of types for whom treatment effects are larger than the marginal cost
by more than the cost of decentralization. In this situation the principal would gain by delegating
to the supervisor the adoption decision if the latter will treat only those types in (ρ ′,ρh]. This
suggests that impact evaluation cannot abstract from the extent of roll-out and its implementation
mode, i.e., centralization versus decentralization, since the implementation mode affects who gets
treated. In other words, determining whether a technology is valuable – presumably the ultimate
goal of an impact evaluation – requires assessing the likely total treatment impact under different
roll-out extents under both the centralized and decentralized approaches.

Our empirical study will investigate three claims stemming from the two remarks and proposition
derived in this section. First, does the intervention at hand deliver a positive treatment impact on

7Differentiating ι (m) we get (T (ρm)− T̄ ) f (ρm), where f (·)> 0.
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average? Second, do supervisors have valuable knowledge (net of potential limitations in benev-
olence) about which agents ought to be treated given partial roll-out? If so, we should observe
treatment effects among those selected by supervisors to be larger than among agents who were
selected into treatment at random. Third, could the scale of roll-out alter the relative advantage of
decentralization vs centralization? Answering these questions will require developing a method for
ascertaining the marginal treatment impact on different types of agents while designing centraliza-
tion approaches with varying levels of information.

4 Research Design

Our experiment was conducted on 180 local technical assistance agencies (ALATs, Agencia Local
de Asistencia Técnica). On average, each ALAT consists of a supervisor and three agricultural
extension agents (AEAs). Some ALATs have a single AEA, but 48 ALATs have at least 2 AEAs.
We asked the supervisors of the latter group to indicate which half of his AEAs should receive the
phones first given the program’s objective to increase worker performance. We refer to these AEAs
as “selected.” These 48 ALATs were then randomly assigned into three groups according to how
and when the agents would receive their phones.

The main group of ALATs is in cells A, B, C, and D in Figure 2. The ALATs in cells B and D

(a quarter of the ALATs), serve as the treatment group. In these ALATs all AEAs, both selected
and non-selected, received the GPS-enabled cell phone which increased monitoring. The ALATs
in cells A and C, (half of the ALATs), serve as our control group as no AEAs received the phones
in these groups. The average difference in performance between AEAs in cells B and D and AEAs
in cells A and C estimates the average impact of treatment. And, the difference-in-differences
computed as the performance by AEAs in cells (B−A)− (D−C) estimates whether the impact
on selected AEAs is larger than the impact on non-selected AEAs. This difference-in-differences
allows us to determine whether supervisors had valuable information on how to direct treatment.
A third group of ALATs (cells E and F) received partial treatment. Only those AEAs who had
been selected by their supervisors for treatment were treated immediately (cell E). This design
helped make the elicitation of supervisors’ preferences credible and relevant. Eight months after
the delivery of these phones, a second wave of phones were delivered to the AEAs in group F .

The difference in performance between the AEAs in cell F and in cell C provides a test of whether
allocating phones to the selected AEAs can also affect the performance of non-selected AEAs in
the same ALAT. This would be the case if the supervisors also responded to the treatment of those
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in cell E by monitoring more intensively the AEAs without the cell phone in cell F . Unfortunately,
after the randomization we discovered that several AEA characteristics were not balanced across
these treatment arms. Consequently, our estimates of spillover effects vary considerably depend-
ing on the model specification. For this reason, we have decided to restrict our main analysis to
the shaded cells (A, B, C, and D) where, as we demonstrate below, the randomization functioned
properly.

4.1 Taking the Theory to the Data

Recall that the performance of AEAs whenever interior is given by equation (1):

s∗i = qiρi +µi.

To operationalize this equation, recall that the level of monitoring for each AEA, qi, is a function
of the monitoring technology ti, according to the expression qi = ql +∆qti where ti takes value 0
when AEAs do not get a cell phone and 1 when they do. Because our objective is to see AEAs
respond to exogenous changes in qi, we normalize ql = 0 and can rewrite the expected disutility of
being reprimanded (net of monitoring grievance) to be qiρi = βiti, where βi = ∆qρi.

The central goal of our approach is to model various selection criteria and estimate the marginal
treatment effects under each criterion for varying levels of roll-out. A key element in this approach
will be to consider different degrees of observability of the individual parameters (µi,βi), in an indi-
vidual AEA’s effort function in equation s∗i = µi +βiti. In particular, we will map these parameters
into a vector of fixed characteristics (X i) and two independently random characteristics (εi,ηi), to
write: µi(X i,εi) and βi(X i,ηi). While the vector X i may be observable to both the principal and
supervisor, the elements (εi,ηi), may only be partially observed by the supervisor.

Average treatment effect We can estimate the average treatment impact of the cell phone on
effort by imposing some familiar (but mild) structure on individual parametric heterogeneity as
follows: µi = µ ′X i + εi and βi = β0. An individual AEA’s effort function becomes

s∗i = µ
′X i +β0ti + εi, (3)

where s∗i measures the share of farmers AEA i visited in the past week. The coefficient β0 provides
a causal estimate of the difference in performance between AEAs in both treated cells B and D
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relative to AEAs in the control cells A and C. Thus, the first theoretical claim that the intervention
yields positive value is captured by contrasting the null hypothesis β0 = 0 against the alternative
β0 > 0.

Given our research design, we cluster the standard errors at the ALAT level and also report p-values
based on a score bootstrap procedure procedure to account for the fact that we have relatively few
clusters (Wu, 1986; Kline and Santos, 2012). In estimating Equation 3, we can also include the
single AEA ALATs, which were assigned phones at random. In this randomization, one-third
of AEAs initially received a phone, with two-thirds serving as a control. When including these
ALATs, the vector X i contains an indicator for whether or not the ALAT has a single AEA.

Average treatment effect by supervisor’s choice To test whether supervisors are able to select
those AEAs whose effort would most increase when monitored, we can simply re-parameterize
βi = β0 + β1DS

i , where DS
i is an indicator for whether AEA i was selected to receive a phone.

Equation 3 then becomes
s∗i = µ

′X i +β0ti +β1(DS
i × ti)+ εi, (4)

where included within the vector X i is the indicator DS
i . With this specification, we can compare the

difference in performance between selected AEAs in the treatment and control groups (cells B−A)
net of the difference in non-selected AEAs in the treatment and control group (cells D−C). Thus,
the second theoretical claim that supervisors have valuable information about which AEAs should
be targeted is captured by contrasting the null hypothesis β1 = 0 against the alternative β1 > 0. We
directly observe s∗i and can thus estimate µ ′ and β = (β0,β1) via ordinary least squares since ti is
randomly assigned. This is because the supervisor’s selection DS

i is elicited in a way that does not
affect treatment assignment in cells A, B, C, and D.

4.2 Estimating the Marginal Treatment Effects of the Program

A strictly positive value for β1 in estimating equation (4) is a necessary condition for a decentralized
approach to be preferred, but it is not a sufficient condition. Two other considerations are pertinent.
First, is the value β1 large enough to justify paying the cost d of decentralization? Second, what
would the average treatment effect be at scales other than 50 percent? We asked supervisors to
select half of their AEAs but this pilot implementation does not directly tell us what β1 would be at
different selection shares. In this section we develop a method for tracing out the impact for all pos-
sible roll-out scales under different implementation regimes that vary the degree of informational
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advantage associated with decentralization.

Marginal treatment effects under different selection models

In order to lay out the main intuitions surrounding the value of decentralization, our theory con-
sidered the stark contrast between a totally uninformed principal and a fully informed, benevolent
supervisor. We will allow for intermediate cases in our empirical approach – the econometric op-
erationalization of the theory will in fact extend it in two directions. First, we allow for supervisors
to be less than fully benevolent. Second, we allow them to be less than perfectly informed about
the responsiveness of AEAs to treatment. In addition, this framework will allow us to consider a
principal who is partially informed.

Each organizational situation – decentralization or centralization under different informational ca-
pabilities of the principal – will be modeled as leading to the selection of AEAs according to a
suitably defined latent index model.

When we implement empirically the study of supervisors choices, how worthy of treatment a par-
ticular AEA is in the eyes of the supervisor will be seen as a function of observables Xi and unob-
servables ui according to the function Γ′Xi +ui. In what follows we develop some structure to link
this empirical object to the theory.

In the case of decentralization, supervisors select AEAs according to some value they perceive
from treating supervisor i,

vi = βi(X i,ηi)+ψi(X i,ζi), (5)

where vi is AEA i’s desirability for selection as seen by the supervisor, βi(X i,ηi) represents the
heterogeneous effect of receiving the cell phone and ψi is a preference for treating AEA i that
depends on X i and an independent, idiosyncratic preference term ζi. A benevolent supervisor
would only select AEAs based on an index vi = βi(·). Thus, the additional term ψi captures the
potential non-benevolence of the supervisor. In addition, supervisors may not observe ηi perfectly
but, instead, observe a signal θi = ηi+ξi, where ξi∼ Fξ (·) is a white noise (hence mean zero) term;
as the variance of ξi goes to zero, the supervisor gets closer to being perfectly informed. Given
the random element (ξ ), the supervisor faces uncertainty. A risk neutral supervisor will assign
monitoring technology to AEAs depending on the expected value E{vi|X i,θi,ζi}. The expectation
is taken over ξ , and conditional on ζ , since to the supervisor the former represents noise while the
latter may capture preferences.

17



Given a selection criterion (such as vi), and a well defined measure of diversity across AEAs as
given by a joint distribution over (X i,θi,ζi), it is possible for the supervisor to rank order all AEAs
according to the value E{vi|X i,θi,ζi}, with minimum element Ev and maximum element Ev to such
order. We assume there is enough variation that the rank order is strictly monotonic. Therefore,
any roll-out of scale m under a selection criterion based on vi implies treating all AEAs who satisfy
E{vi|X i,θi,ζi} ≥ cp(m), where cp(m) is a putative cost (hence the subscript). This cost is putative
in the sense that it is the cost of treatment that the supervisor would have to perceive in order
to decide to treat a share m of AEAs. Thus, cp(m) satisfies dcp

dm < 0, limm→0 cp(m) = Ev, and
limm→1 cp(m) = Ev. These conditions say that for the supervisor to want to treat more AEAs, the
putative cost of treatment must be lower; for the supervisor to treat no AEAs, the putative marginal
cost of treating a single AEA must exceed the benefit of treating the most valuable AEA; and that
for the supervisor to treat all AEAs, the expected desirability of treating the least valuable AEA
must cover the putative cost. When E{vi|X i,θi,ζi} ≥ cp(m) is true, the selection indicator denoted
by DM

i (X i,θi,ζi,cp) takes the value 1, and 0 otherwise.

The fundamental difference between X i and ηi is that elements in the vector X i are potentially ob-
servable by a sophisticated principal who can gather and analyze data. Elements in X i could contain
AEA-related demographic and psychometric data. The term ηi is fully unobservable to the princi-
pal, and can potentially be known only to a supervisor who establishes a more personal connection
with the AEA. Thus, decentralization has two potential informational advantages: supervisors may
(or may not) know and use data on X i better than the principal, and they are the only ones who can
potentially know something about ηi. To the extent that ηi enters the function βi(.) the supervisor
will have an unassailable informational advantage over the principal.

To make further progress, we need to parameterize the dependence of µi(·) , βi(·), and ψi(·) on X i.
We parameterize each of these linearly. Slightly abusing notation, and anticipating our assumption
that η is mean zero, we can re-write equations (3) and (5 respectively as,

s∗i = (µ ′X i + εi)︸ ︷︷ ︸
µi(·)

+(β ′X i +ηi)︸ ︷︷ ︸
βi(·)

ti

= µ
′X i +(β ′X i)× ti + εi +ηi× ti. (6)

and
vi = (β ′X i +ηi)︸ ︷︷ ︸

βi(·)

+(ψ ′X i +ζi)︸ ︷︷ ︸
ψi(·)

. (7)
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Marginal treatment impact under an uninformed principal An uninformed principal knows
nothing about individual values of βi, so she can only select which AEAs should be placed under
the new technology at random. Using equation 6, given a scale of roll-out m (the share of AEAs to
be treated), the total treatment effect on expected performance is∫

X i

((Eε,η(s∗|t = 1,X i)−Eε,η(s∗|t = 0,X i))m)dΞ(X i) = mβ
′X̄ ,

where Ξ is a cumulative distribution function describing variation in the vector X , which is unob-
servable to a fully uninformed principal. This equation says that if no AEAs are treated, the total
gains are zero. If all AEAs are treated, the total gains are equal to the average treatment effect of
the intervention. If a partial measure m∈ (0,1) is treated, the total gains are proportional to roll-out
m, and the marginal impact of enhancing roll-out is always the average impact β

′X̄ .

Marginal treatment impact under decentralization A supervisor observes each AEA’s char-
acteristics (X i,θi,ζi), and selects AEAs to treat according to the value of the expected index
E{vi|X i,θi,ζi} as given by,

E{vi|X i,θi,ζi} = (β ′X i +E{ηi|X i,θi})︸ ︷︷ ︸
E{βi(·)|θi,X i}

+(ψ ′X i +ζi)︸ ︷︷ ︸
ψi(·)

= (β ′+ψ
′)︸ ︷︷ ︸

Γ
′

Xi +(E{η |X i,θi,ζi}+ζi)︸ ︷︷ ︸
ui

. (8)

This equation is important for our linking the theory with the empirics of AEA selection by super-
visors. The AEA observables in Xi matter both because they affect response to treatment (through
β ′, as in the theory), but also because supervisors may have biases (through ψ ′). Unobservables in
ui may also reflect components that affect response to treatment (through η) and biases (through
ζ ).

A key hurdle is that we do not have a direct measure of E{vi|X i,θi,ζi}, but we only observe the
supervisor selection decision DS

i . To recover Γ, we further assume that ηi, ξi, and ζi are mean
zero, normally distributed random variables with variances σ2

η , σ2
ξ

, and σ2
ζ

, respectively. Given
all of these distributional assumptions, the variable ui can be characterized as drawn from Φ, a
cumulative Normal (0,σ2

u =
σ2

η

σ2
η+σ2

ξ

σ2
η +σ2

ζ
) (this stems from the fact that the supervisor is Bayesian

and updates his expectation of η upon observing θ ). This, in turn, implies that DS
i takes the familiar
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form of a probit model:8

Pr{DS
i = 1|X i}= Φ

(
1

σu
(Γ′X i− cp(m))

)

Under these assumptions, standard arguments yield E{ηi|ui}=
σηu
σ2

u
ui, where σηu =

(
σ2

η

σ2
η+σ2

ξ

σ2
η

)
. It

follows that E{ηi|DS
i ,X i,m}=

σηu
σu

φ( 1
σu (Γ

′X i−cp(m)))

DS
i −Φ( 1

σu (Γ
′X i−cp(m)))

≡ σηu
σu

λ (DS
i ,Xi,m). Using these expressions

after taking conditional expectations in equation 6, we get 9

E{s∗i |X i,DS
i , ti,m}= µ

′X i +(β ′X i)× ti +E{εi|Xi,DS
i }+E{ηi|Xi,DS

i ,m}× ti

= µ
′X i +(β ′X i)× ti +

σηu

σu
λ (DS

i ,Xi,m)× ti. (9)

Note that εi and ηi are independent of X i by definition and ti by way of the randomized experiment.
Thus we can estimate equation 9 via a two-step procedure using OLS. The first step allows us to
estimate the selection model that will yield λ (DS

i ,Xi,m) and the second step yields estimates for
the coefficients in equation 9.

Equation 9 is the crucial resource to estimate the marginal treatment impact of the intervention
under different scenarios of decentralization and informational advantage. To see this, consider
first the simplest case where neither the principal nor the supervisor can observe any AEA traits
so the vector X i is constant. The expected index on which the supervisor selects is E{vi|θi,ζi} =
E{η |θi,ζi}+ ζi = ui. Given the 50 percent roll-out in the experiment, we know that under de-
centralization, the total treatment impact of 50 percent roll-out is β0 +β1 from OLS estimation of
equation 4. In order to trace the marginal treatment impact at any other roll-out m, we only need to
consult the value of ui at the m percentile in the Normal distribution of ui.10 Thus, it is possible to
trace the total treatment gain from following the supervisor’s selection criterion for all m.

As the expression E{η |θi,ζi}+ζi = ui makes clear, we cannot tell whether a supervisor’s selection
is due to information on unobservables that affect true responsiveness to treatment (η) as opposed
to unobservables that make the supervisor select an AEA for other reasons (ζ ). But if β1 > 0 we

8In our estimation, cp is not separately identified from including a constant vector in X i and thus we normalize it
to zero. We revisit cp in section 7.

9We do not impose any restrictions on ui and εi and so also include λ (Di,Xi,m) as a main effect without any
interaction with ti. This parameter (along with µ) is not of direct interest to us and is not required for identification, but
may improve the efficiency of the other estimates.

10We do not recover separate values for σu and ση , since all parameters are scaled by σu in the probit regression.
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know the supervisor gets a precise enough signal on η , and places enough weight on it, so that even
if she is biased in her choices, her selection yields higher treatment impact than selecting the AEAs
at random.

In most situations, supervisors will know characteristics of their AEAs, and so the expected index
E{vi|X i,θi,ζi} on which supervisors select will indeed be a function of X i. In this situation, each
expansion of roll-out will imply extending treatment to new AEA types, where the type space as
seen by the supervisor is some unidimensional path in a higher dimensional space of traits X i and
the supervisor-only observed ui. The analyst does not observe ui, but can form an expectation of it
conditional on an AEA with traits X i being selected. Knowing traits X i and a conditional expecta-
tion on ui for an AEA being selected at a given level of roll-out, Equation 9 delivers the treatment
impact. Thus, it is possible to derive the total treatment gain from following the supervisor’s selec-
tion criterion for all m.

Further uses of the model: evaluating supervisors, and the potential for sophisticated cen-
tralization We have now described ways to obtain marginal treatment impacts at varying roll-outs
for the cases of an uninformed centralized principal and an informed supervisor. But the selection
model laid out in this section can be put to other uses. First, it is possible to evaluate the supervisors
in a more complete way than simply saying whether they have an informational advantage over the
principal. We can ask the extent to which their advantage is related to their knowledge of ele-
ments that are potentially observable to the principal (X i) versus things the principal cannot expect
to learn (η). Moreover, the analyst can econometrically evaluate the extent to which supervisors
make optimal use of observable data in X i.

Second, with gains in the ability to gather and process data, a principal could learn some traits of its
AEAs, captured by X i. This opens up consideration to a new class of counterfactuals, with a natural
one involving the marginal treatment impact for varying m for a decision maker that knows X i but
does not observe θi. Thus, we can ask whether a sophisticated centralized principal can emulate or
surpass the performance of supervisors despite her informational disadvantage. We perform these
exercises in Section 7.

Discussion We have presented a heterogeneous treatment effect model where supervisors have
private information about the treatment effects. Equation 9 shares the same functional form as
the “Heckit” selection model. However, in most settings where the Heckit is applied, ti = DS

i . In
settings that mirror ours where DS

i is assigned according to εi or ηi, inclusion of the λ (·) control
function in estimation is required for identification because of non-random censoring of potential
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outcomes, the raison d’etre for the literature on selection correction. However, control functions
require credible instruments; without an instrumental variable that could be excluded from one
equation or the other, if one instead assumes a uniform distribution for ui and then uses OLS in
the firs stage for DS

i ), λ (·) would be collinear with the vector Xi (Olsen, 1980). Even in contexts
where there are credible instruments that generate experimental variation, selection models have
been used to extrapolate treatment effect heterogeneity among never-takers and always-takers from
instrument-implied local average treatment effects (Heckman and Vytlacil, 2005; Kline and Wal-
ters, 2017).

In our context, however, ti is independently and randomly assigned, and not equal to DS
i . While

supervisor preferences are elicited, they are not used to determine assignment in our main sample.
This means that we neither have censored potential outcomes nor always-takers and never-takers.
Instead, we have a randomized experiment with full compliance as well as information about su-
pervisor preferences that were not implemented, and so we are able to credibly estimate treatment
effects along the full distribution of ηi, an exercise that requires no extrapolation. Because we
observe treatment effects for non-selected AEAs (i.e., those with DS

i = 0), even if misspecified,
λ (DS

i ,Xi) is just a transformation of DS
i and Xi , and with inclusion of controls, its independent

variation is driven primarily by DS
i .11

5 Data

We collected two main sources of data. The first is a survey of AEAs. Each AEA and supervi-
sor independently filled out answers on a paper questionnaire with survey enumerators available
to answer any questions. The survey contains questions regarding the AEAs’ demographics, work
history, and measures of personality such as the digit span test measuring cognitive ability, the
Perry public service motivation index (Perry, 1996), the moral disengagement scale (Moore et al.,
2012), and the Big-5 inventory (John et al., 2008), which we combine into two higher-order per-
sonality traits called Stability and Plasticity. Stability combines Neuroticism, Agreeableness, and
Conscientiousness and therefore keeps track of traits that are usually found in the literature to pre-
dict earnings and job attainment, such as the tendency to remain emotionally stable and motivated

11Thus, if one wanted to stick with OLS in the first stage rather than a Probit, while continuing to assume a lin-
ear conditional expectation function E{ηi|ui} ∝ ui, the coefficient on λ (·) in the second stage would be numerically

equivalent to estimating an OLS regression in one step with DS
i

2 in place of λ (·), a result that follows immediately from
the Frisch-Waugh theorem. Its unique role in our context derives from its tagging supervisors’ choices so that it may
reflect their perceptions of how AEAs respond to treatment.
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and be organized and thorough. Plasticity, which aggregates Extraversion and Openness, is a mea-
sure of a person’s gregariousness and openness to new experiences. These two meta-traits tend to
account for much of the shared variance among the lower order dimensions (DeYoung, 2006).

The second source of data we have is two rounds of farmer phone surveys. We called farmers who
were beneficiaries of the AEAs and asked questions about their interactions with the AEAs such as
how often they saw the AEA and how satisfied they were with his work.

The timeline of events is as follows. In March of 2014, the ALAT-level supervisors chose which
AEAs they would like to prioritize for receiving a phone with the objective of expanding effort in
service to farmers. In April, we were given a list of the names of all farmers who were beneficiaries
of the AEAs and their phone numbers when applicable. The first round of phones was distributed
to the AEAs between April 30, 2014 and July 16, 2014. Individuals from the central ministry
office traveled across the country to meet with the AEAs who were scheduled to receive phones,
distribute the phones to them, and teach them how to use the phones. This process took over two
months because it involved 19 meetings spread across the country.

After the first round of phones was distributed, we conducted two types of data collection. From
July 7 through September 7, 2014 we conducted the first round of farmer phone surveys. Addition-
ally, during September 2014, we conducted the survey of all AEAs as well as their supervisors. We
treat AEA characteristics such as sex, age, years of education, and the personality indices as being
fixed and not affected by the roll-out of the phones. On the other hand, we treat variables such as
the AEAs’ perceptions of whether their supervisors know where they are during the working week
as potentially being affected by the roll-out of the phones. In the control group, those ALATs where
no AEAs received phones, these responses should not be impacted by the roll-out of the phones.

After completing the first round of surveying, the second round of phones was distributed between
February 10 and March 13, 2015. We then conducted a second round of farmer phone surveys
between March 24 and May 7, 2015. The Ministry of Agriculture planned to distribute phones to
all AEAs who had not yet received one before the end of 2015 but in the end did not do so.

The ministry did not give any phones to AEAs who were not on our randomized list. There were
a few cases in which phones broke down or sick AEAs were not able to pick up their phones. For
this reason we look at intent-to-treat (ITT) estimates using our initial random assignment.

In early 2014, we were given full information, including job title, job location, and client names
and phone numbers for 368 agricultural extension agents - 139 supervisors and 229 AEAs. In late
2014, we were able to interview 301 of these – 119 supervisors and 182 AEAs. We interviewed
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79% of the AEAs in our original administrative data, 15% no longer worked for DEAg, and 6%
were absent the day of the surveying.

The job description of an AEA involves working with 80 farmers. Thus, it is no surprise that
the median AEA in our data listed the names of 80 farmers with whom he worked; the mean of
the distribution is 75 with a standard deviation of 26. The median AEA in our data listed phone
numbers for 78% of the farmers he served, while the mean share listed is 73%. These numbers vary
very little for AEAs versus supervisors.

We conducted two rounds of farmer phone surveys, but we wanted to leave open the possibility of
conducting three rounds. For AEAs and supervisors in multi-AEA ALATs who listed 75 or more
farmer phone numbers, we randomly chose 75 farmers to call and then randomly divided them to
call 25 farmers in each of three rounds. For those who listed fewer than 75 farmer phone numbers,
we randomly divided their farmers into thirds to call in each of the three rounds. Similarly, for
AEAs and supervisors in single-AEA ALATs who listed 24 or more farmer phone numbers, we
randomly chose 24 farmers to call and then randomly divided them to call 8 farmers in each round.
For those who listed fewer than 24 farmer phone numbers, we randomly divided their farmers into
thirds to call in each of the tree rounds.

In total, we called 2,635 farmers in the first round and 2,642 in the second round for the 182 AEAs
who responded to the AEA survey. Of those, 68% led to completed surveys.12 Conditional on
completing the survey, 70% of farmers confirmed that the AEA that had provided their number
worked with them and thus were asked more detailed questions about their interaction with that
AEA.13 This leads to 2,519 usable phone calls.

Table 1 presents sample means and a randomization check of the cellphone assignment for various
AEA characteristics. The table distinguishes between treated and control small single-AEA ALATs
(columns 1 and 2) and treated and control large multi-AEA ALATs (columns 3 and 4). On average,
AEAs are 37 years old, and 76% of them are male. The AEAs were able to recall an average of
5.2 digits in the memory digit span test, which is a commonly-used measure of cognitive ability.14

12In 18% of cases, we reached voicemail on all five tries, 7% of cases were wrong numbers, 4% were out-of service
phone numbers, and 2% of farmers did not agree to complete the survey.

13We first asked the farmers to talk about any AEAs with whom they worked and did not offer up the name of the
AEA we had on record for them. We only asked the farmer about the specific name we had on record if either the
farmer worked with an AEA whose name he couldn’t remember or if he did not list the name of the AEA we had on
record on his own.

14For the digit span test, the enumerator read out loud a random number that the AEA was then required to recite
back. The test began with a number that was two digits long and then increased incrementally in the number of digits
until the AEA could no longer recall a number correctly on both of two chances.
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AEAs are also required to travel on average 12 kms to visit a given farmer. Overall the results
in Table 1 suggest that the treatment, which was randomized at the ALAT level, was done in a
balanced way.15

6 Results

In this section, we begin by estimating the impact of the cell phones on AEA performance. Ac-
cording to the model, under certain conditions (cell phones improve monitoring and there are suffi-
ciently many AEAs who respond positively to it), the increase in monitoring induced by the phones
should boost the effort levels of the AEAs and thus increase the number of farmers visited. Subse-
quently, we test whether the impact of cell phones was higher among the AEAs who were selected
by the supervisors, which would be the case if supervisors were able to target the AEAs with high-
est responsiveness to treatment. Finally, we estimate heterogeneous treatment effects, which we
use to evaluate impacts under various counterfactual scenarios with different scales of roll-out.

6.1 Increased Monitoring and Performance

As we discussed in Section 2, the primary task of an AEA is to visit farmers. In columns (1) through
(5) of Table 2, we estimate the impact of the phone on whether the farmer reported having been
visited by his AEA in the last week. In columns (1) through (3), our estimation sample includes all
AEAs in the small and large ALATs, excluding those randomized into the partial treatment cells
(cells E and F). In column (1), we present the estimates without any additional controls. In column
(2), we add a set of basic controls (e.g., age and gender), and in column (3), we further augment
the specification to include controls measuring AEA personality type (e.g., Big 5 meta-traits and
Digit Span). In column (4), we re-estimate the specification presented in column (3), excluding the
single-AEA ALATs.

We find that the increase in monitoring leads AEAs to visit their farmers more often. They are
approximately 6 percentage points more likely to have visited a given farmer in the past week,

15In Appendix Table A1, we also check for balance on a set of ALAT-level characteristics extracted from the
population and agricultural censuses, as well as the 2013 presidential elections. We look at 18 comparisons, and
only one shows significant imbalance across treatment and control. The results in the table again suggest that the
randomization led to balance across treatments. The most noticeable difference between small and large ALATs is that
large ALATs are located districts with both larger urban and rural populations, and a lower share of their population is
rural.
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which is an increase of 22% over the control group. As expected given the random assignment, the
estimated impact is robust across the various specifications, and when we restrict the estimation to
only multi-AEA ALATs, which will be our main sample moving forward. Overall, the demographic
and personality-based controls have little predictive power.16

Supervisors are in charge of both supervising the AEAs in their ALAT as well as serving their
own farmers. In column (5), we test the impact of the phone on the visits to those farmers who
are served by a supervisor. We find a small and insignificant impact (point estimate = -0.008;
clustered standard error = 0.036). This suggests that the impact of the phone is related to the
greater monitoring ability it gives supervisors and not due to productivity-enhancing functions of
the phone (e.g., ease in communication), which would have the same effect on both supervisors
and AEAs. As a further check, AEAs were asked whether they agreed with the statement that their
supervisor usually knows where they are during the work week. In column (6), we see that having
a phone significantly increased the extent to which AEAs agreed with this statement.

While the treatment led to more visits, this does not necessarily imply that the AEAs are exerting
more effort. AEAs could be making more visits but making them shorter. In column (7), we test
for this possibility but do not find evidence to support the idea. The point estimate, which suggests
that treated AEAs spend only 1.6 percent less time on each visit, or approximately one and a half
minutes, is small and statistically insignificant.

In Appendix Table A2, we examine the effects of the treatment on other dimensions of perfor-
mance. We consider four additional measures: 1) how satisfied the farmer is with the AEA (1=very,
2=somewhat, 3=not at all); 2) an indicator for whether the farmer thought the AEA conducted help-
ful training sessions; 3) an indicator for whether the farmer did not find the AEA helpful at all; 4)
and the first principal component for the three measures, with higher values indicating worse per-
formance. All four measures are significantly correlated with AEA visits (see Appendix Table A3).
Farmers who receive more visits from their AEAs are also more likely to think the AEA conducts
helpful training sessions, are more satisfied with their AEAs, and more likely to find the AEA help-
ful in some way. In general, we find that the additional monitoring improved performance along
these dimensions as well, although the estimates are measured with less precision. Based on our
principal component measure, the treatment improved aggregate performance by 0.14 of a standard
deviation (standard error = 0.07).

16In results not shown here we look separately at short-run versus long-run impacts of the phones, and find that they
are quite similar. The impact of the phones does not diminish over time.
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6.2 Do Supervisors Have Useful Information?

Recall that our model assumes AEAs differ in their responsiveness to enhanced monitoring and that
supervisors know this information. If supervisors wish to increase the number of farmers visited,
then when tasked with the responsibility of assigning increased monitoring, they should target the
AEAs for whom a larger increase in performance ought to be expected. Our research design allows
us to test this precisely.

Prior to the randomization, supervisors identified which half of their AEAs they believed should
receive the phones. Given these selections, we test for the value of information using a simple
difference-in-differences estimator for our sample of large ALATs. We compare the performance
of AEAs who were selected and received the phone against those who were selected but did not
receive the phone, net of the difference in performance between those who were not selected and
received the phone against those who were not selected and did not receive the phone (i.e., (B−
A)− (D−C)).

From Table 3, we see that the effects of the phones on performance are entirely driven by the effects
on the AEAs prioritized to receive the phone prior to the randomization. These AEAs increased
the share of farmers visited in the last week by approximately 15 percentage points . Compared
to the prioritized AEAs in the control, this effect represents a substantial increase of 54 percent.
From column (2), we also see that prioritized AEAs in the control group are 3.3 percentage points
less likely to have visited their farmers relative to the non-selected, although this difference is not
statistically significant.

In sum, we find strong evidence that the phones do have an impact on AEA behavior and that su-
pervisors possess useful information regarding which AEAs’ performance will improve most after
receiving a phone. This of course begs the question of what characteristics the supervisors used to
create their prioritized list and the extent to which supervisors used information on characteristics
analysts could hope to obtain. The next subsection answers these questions.

6.3 Heterogeneous Treatment Effects

In Table 4, we present estimates from a Probit regression, in which the dependent variable is an
indicator for whether the AEA was prioritized by the local supervisor. Based on standard observ-
able characteristics, we find that supervisors tended to prioritize AEAs who were younger, married,
and had to travel further distances to visit their farmers (although this last characteristic is only sig-
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nificant at a 89 percent level of confidence). In terms of their personality traits, supervisors were
more likely to select AEAs with lower levels of the Big-5 Stability meta-trait. Individuals with
higher stability scores may be more likely to stay motivated and have better relationships with their
supervisors.

Interestingly, we also find that supervisors of the large ALATs, who except for one supervisor
are all registered with the incumbent political party, are significantly less likely to place AEA’s
who are members of the incumbent party under increased monitoring. This suggests that either
supervisors are acting non-benevolently or, as we will subsequently test, that party affiliation serves
as a marker for those who are less likely to respond to treatment. Despite the richness of our data,
our ability to predict the choices of the supervisors is fairly low: the highest pseudo R2 is only
18.5%. This opens the possibility that supervisors are also selecting AEAs based on unobservable
but productive characteristics (η) or unobservable and idiosyncratic characteristics (ψ), features
that are not captured by demographic traits or even indicators of cognitive and non-cognitive ability.
Ultimately, the only way to determine whether there could be an advantage to decentralization, is
to rely on our experimental design, and ask whether supervisors select AEAs who will be more
responsive to treatment.

In Table 5, we present a series of second stage estimates based on Equation 9. In column (1), we
present a specification without any additional controls or interaction terms, whereas in columns (2)
and (3) we include additional controls along with their interactions with the treatment indicator.
For columns (2) and (3), the first stage regressions correspond to the ones presented in Table 4.

The key finding in Table 5 concerns the inverse Mills ratio and particularly its interaction with
treatment. The inverse Mills ratio captures the expected unobservable traits that recommended an
AEA for selection by the supervisor. Because no controls were included, the coefficient on the
inverse Mills ratio interacted with treatment in column (1) replicates the findings from Table 3 that
supervisors are selecting individuals with higher treatment effects. When we allow the effects of the
treatment to vary by the characteristics that we found were predictive of the likelihood of selection
(columns 2 and 3), we find that the inverse Mills ratio is still highly predictive of responsiveness
to treatment, direct evidence that the unobservable reasons supervisors are selecting AEAs are
productive rather than non-germane. In addition to the unobservable traits, the treatment effect
also varies by the cognitive ability of the AEAs; those who performed worse on the digit span
test exerted more additional effort in response to the treatment. Moreover, once we account for
these differential effects, we do not find statistical evidence that members of the incumbent party
respond less to the treatment. This suggests that non-benevolent motives may have influenced the
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supervisors’ targeting.

The results so far suggest several questions. What is the basis for the supervisors’ informational
advantage? At a given cost of decentralization, does the informational advantage justify the cost?
To answer these questions, one needs to know two elements. First, what is the scale of roll-out
anticipated. Under decentralization, the anticipated scale of roll-out should be whatever is optimal,
and this motivates the need to identify that optimal level. Second, how much information does the
central authority have? In the next section, we apply the framework introduced in Section 4 to
provide answers to these questions.

7 Counterfactuals

In this section, we exploit our heterogeneous treatment effects model to compute counterfactual
treatment effects under alternative selection rules. This allows us to assess the benefits of decen-
tralization relative to centralization under different informational assumptions.

The first step is to define a counterfactual aggregate benefit under an arbitrary selection rule DCF
i

as:

∆YCF = E{βi(Xi,ηi)︸ ︷︷ ︸
how much?

×DCF
i︸︷︷︸

who?

}

=
∫

E{β (Xi,ηi)|DCF
i = 1}Pr{DCF

i = 1}dX i (10)

In keeping with the rest of our notation, we write our arbitrary selection rule as a threshold problem,
DCF

i (Xi,ui) = 1[Γ̃′X i + ũi ≥ cp]; because we have not made any distributional assumptions about
ũi, this does not impose additional assumptions. Note that the assumed cost cp is not directly
observable, and the threshold problem is not a unique representation of the selection rule—any
monotonic transformation of the latent index and cp will yield the same choices. However, we are
not trying to directly obtain either of these objects: only the consequences Pr{DCF

i = 1|Xi,cp} and
E{β (Xi,ηi)|DCF

i }, which map into the scale of rollout m and the aggregate counterfactual impact
∆YCF .

One example of a selection rule is the one implicitly applied by supervisors, DS
i (Xi,ui), which an-

chors our portrait of what can be achieved under decentralization. Note that from our estimation of
Equation 9, we have recovered E{βi(·)|Xi,ui}, and under distributional assumptions, the selection
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rule under decentralization, DS
i (Xi,ui). Given this, we can use Equation 10 to trace out the ex-

pected treatment effects of the cell phones under decentralization for any given threshold cp or, by
extension, any scale of roll-out m. But, we can impose any other selection rule capturing different
counterfactual scenarios corresponding to different forms of centralized assignment and trace out
the expected treatment effects for all roll-out levels in each scenario.

Uninformed Principal A natural, if extreme, benchmark is that of a principal who does not have
any information about how best to target roll-out. In this situation, the selection rule is random
allocation. At a roll-out level m, a fraction m of all AEAs receives a cell phone, and the expected
total treatment effect is m% of the average treatment effect (considering, as in the theory section, a
large number of AEAs who can then be approximated by a continuum). The dotted line in Figure
3 plots this counterfactual selection rule at various roll-out levels. For instance, if the principal
decided to allocate the phones to everyone then the expected aggregate treatment of the program
would be 6.4 percentage points, which corresponds to the average treatment effect in column (3) in
Table 5. If instead she decided to treat only half of the AEAs, then we would expect an aggregate
treatment effect of only 3.2 percentage points. Thus, it is easy to see that with a random selection
rule, we get a set of counterfactuals that traces a straight line from zero to the average treatment
effect. In Table 6, we present our estimated treatment effects at different roll-out levels for the
various allocation rules we consider. The number displayed in bold represents the largest treatment
effect under a given allocation rule.

Supervisor We can contrast the random allocation rule with the aggregate benefits based on the
supervisor’s selection rule. In this case, the selection rule is given by Pr{DS

i = 1|X i}=Φ( 1
σu
(Γ′X i−

cp)) and the expected aggregate treatment effect is ∆E{s∗i |X i,DS
i ,Ti}= β

′X i +
σηu
σu

λ (DS
i ,Xi). This

counterfactual is depicted in Figure 3 with the solid line. Note that by construction, the curve
must cross three points: the origin, 0.064 at 100% roll-out, and 0.070 at 53.8% roll-out which
corresponds to the share of AEAs that received the phones under the actual research design.

The difference between the supervisor counterfactual and the random allocation rule measures the
benefits of decentralization at each level of roll-out under the assumption that the principal does
not possess any information. As we can see from the figure, the difference between the random
allocation and the supervisor rule is maximized at a roll-out threshold of 53% where the additional
treatment effect is over 3.5 percentage points. The optimal scale of roll-out under decentralization
is not 53%, however, but 77%, at which level the total treatment effect is 7.7 percentage points. The
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total treatment effect starts to decline at a roll-out scale of 77% as we begin to assign to treatment
individuals for whom the treatment effect is negative. The existence of individuals for whom the
treatment effect is negative is consistent not only with our model (as ρ is allowed to be negative), but
with the findings in de Rochambeau (2017), who showed that the introduction of a new monitoring
device for truck drivers in Liberia lowered the productivity of the intrinsically motivated.

What underlies the informational advantage of the supervisor over an uninformed principal? One
way to tackle this question is to ask how much of the supervisor’s advantage is predicated on the
use of information on observables X i versus information on unobservables ηi. The dot-dash line in
Figure 3 traces out the counterfactual treatment effect under the assumption that the supervisor does
not use his signal of η . In other words, the dot-dash line tells us what the treatment effects would
be under a supervisor who cannot use information on unobservables. In this case, the selection
rule and expected treatments are only computed based on the observable (to the econometrician)
traits, setting λ = 0. The dot-dash curve is much closer to the one under random assignment. This
suggests that, in our setting, most of the supervisor’s informational advantage is driven by access
to information that is likely hard to collect for a centralized authority lacking personal contact with
the AEAs.

Giving Centralization A Chance: Counterfactual Treatment Effects With A Partially In-
formed Principal

Minimally informed principal: Assignment based on distance traveled Thus far, we have
assumed that the principal does not have any prior information about how AEAs will respond to
the program, which is extreme although it may not be a wholly unreasonable approximation to the
situation facing the leadership of government programs in low state capacity contexts. This does
not suggest however that adopting a sensible heuristic might not outperform a random assignment
mechanism, which would of course affect the centralization versus decentralization calculus. One
such heuristic might be to simply allocate the phones to the AEAs who have to travel the farthest
in order to visit their farmers. This requires some information on the work environment of AEAs,
and it constitutes the case we associate with a minimally informed principal. This counterfactual is
displayed in Figure 4 with a dashed light gray line. We find that this method generally outperforms
random assignment (a 2.0 p.p. advantage at 50 percent coverage), but it cannot beat the supervisor
at any roll-out level.
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Significantly informed principal: Assignment based on predicted baseline performance We
consider a second type of partially informed principal that has the capacity to gather information
on individual AEA characteristics, and can map them onto their baseline productivity. To this end,
we run a simple prediction model in which, among the AEAs in the control ALATs, we regress
the share of farmers visited on our set of basic and cognitive controls (see Appendix Table A4 for
the estimation results). Using the estimated coefficients, we can then compute an AEA’s expected
productivity based on his or her observable traits. Given this information, a sensible centralized
policy would be to assign cell phones starting with the AEAs who had the lowest predicted produc-
tivity, and as roll-out increases, expand coverage to AEAs with higher productivity. As we see in
Figure 4, under this approach centralization would dominate decentralization at virtually all levels
of roll-out. It is worth noting that the data requirements to estimate our performance-prediction
model are not trivial and often beyond the capacity of government programs in several developing
countries.

A sophisticated principal: Experimentation and assignment based on response to treatment
For all its data demands, the approach in the previous section that assigns phones based on baseline
performance prediction does not exhaust the possibilities open to a central authority who has the
capacity to gather and analyze data. The key shortcoming of that approach is that baseline perfor-
mance is not always a great predictor of responsiveness to treatment. While baseline performance
can reflect individual heterogeneity in, say, linear terms of the effort cost function, response to
treatment depends on other cost drivers, such as the disutility from receiving a reprimand.

To overcome these difficulties, a sophisticated principal can conduct a pilot experiment at a low roll-
out level and establish a map between AEA observable characteristics and response to treatment.
Then it is possible to construct an assignment rule DCF

i (Xi) that allocates phones starting with those
AEAs who are predicted to have the highest response to treatment and work downwards to treat
progressively less responsive AEAs, tracing out the total treatment effect for each roll-out level.
Note that we are priviliging principals in the “sophisticated” case because they would need to have
digit span and Big-5 measures for all of their workers, which may be as much of a data constraint
as running the pilot RCT.

As shown in Figure 4, this approach outperforms all others by a wide margin. The largest gap
relative to the decentralized supervisor-choice approach is above 1.7 percentage points and occurs
at a roll-out level of 38.4%. A sophisticated principal would be more interested in setting roll-out
at its optimal scale: the maximum total treatment effect for an ‘experimenting principal’ is 9.0
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percentage points and is achieved at a roll-out of 70%.

Note that relative to “blind centralization,” which treats everyone and attains a total treatment effect
of 6 percentage points, this arrangement saves on almost a third of the phones and attains almost
1.5 times the total treatment impact. Relative to the decentralized supervisor choice, the sophisti-
cated centralized approach distributes roughly 10% fewer phones and attains roughly 1.3 additional
percentage points in total treatment effect.

8 Conclusions

One of the primary benefits of decentralization is that mid-level supervisors are presumably better
informed than their principals about how to implement a particular task. But the importance of this
superior information will often depend on the scale of the task at hand. Because decentralization
is costly, the decision to devolve decision-making powers to supervisors requires knowing not only
the value of their information, but this value at different scales of roll-out. Despite the fact that the
informational advantage of middle managers is a maintained assumption in much principal-agent
theory, evidence of the presence and extent of that advantage has been scarce. We also have little
evidence on the effects of decentralization in a context in which the scale of implementation affects
the average treatment effects.

In this paper, we establish that middle managers in the government hierarchy do have information
which can improve targeting of an intervention. We develop an approach to trace out the total
treatment effects of the intervention at all levels of roll-out. The context is an initiative by the
federal government in Paraguay to introduce a new monitoring device that enables supervisors in
rural areas to track their agricultural extension agents.

Our experimental design randomly assigned monitoring devices across AEAs and independently
elicited the preferences of their supervisors as to which AEAs should be prioritized for monitoring.
Crucially, in the main sample, treatment assignment was kept independent of supervisor recommen-
dations. This allows us to establish that supervisors have valuable knowledge because the AEAs
selected by them are far more responsive to treatment. We find that the informational advantage of
supervisors is tied to information other than observables that analysts might reasonably collect, and
argue theoretically that the value of this information advantage varies with the scale of anticipated
roll-out for the new technology. In addition, we estimate the full schedule of marginal treatment
effects as roll-out scale is expanded from 0 to 100 percent. We do this for the selection rule that
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supervisors are seen to have used as well as several other counterfactual assignment rules.

Our counterfactual assignment rules approximate what principals with varying levels of informa-
tion might achieve when targeting AEAs for treatment in a centralized fashion. In our setting,
impacts resulting from treatment decided upon by a minimally informed principal are not as high
as those attained under decentralization. However, a reasonably well-informed principal can ap-
proach the level of impact of decentralization. And in the best case scenario for centralization, a
principal who can conduct a pilot RCT to obtain predictors of individual response to treatment can
outperform supervisor choices; such a principal would substantially reduce the roll-out scale and
still attain larger aggregate gains in AEA performance.

Overall our findings suggest that as information and communication technologies continue to im-
prove the capabilities of government and organizations more generally, the informational benefits
that lower level agents bring become less clear. Although studies have shown that innovation in
information technologies can lead to more decentralization (Bresnahan et al., 2002; Bloom et al.,
2009), our findings suggest the opposite may occur, particularly if these technologies primarily
serve to reduce the information gap between principals and agents (or middle managers such as
supervisors).

Of course, the value of the information that supervisors possess is specific to the task and context,
which may raise concerns of external validity. But while our findings may not be generalizable,
our method is, as it can be easily exported to other settings. Our approach is designed for settings
in which spillovers across treatment units are minimal. Thus, it would be interesting to extend our
framework to incorporate the potential effects of spillovers in the calculus to decentralize. We view
this as a potential avenue for future research.
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Figure 1: Treatment effects, roll-out extent, and the value of information
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ALATs
Control Group 100% Coverage 50% Coverage

Selected AEA A B E
Not selected AEA C D F

The columns correspond to ALATs, and the rows correspond to AEAs. For the ALATs in the column labeled
Coverage 100% (cells B and D), every AEA received a cell phone independently of whether or not they had been
selected by their supervisor. For the ALATs in the column labeled Coverage %50 (cells E and F), only the selected
AEAs received cell phones (i.e. those in cell E). The control group contains cells A and C, where none of the AEAs
received a cell phone.

Figure 2: Experimental Design
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The y-axis shows the total treatment effect at different scales of roll-out under different assignment rules. With
supervisor preference the treatment assignment is what would be achieved under decentralization if supervisors made
the assignment decision based on all the information they had; supervisor preference without unobservables refers to
the case in which supervisors made their decision based purely on the observable AEA characteristics; and under
random assignment the treatment assignment is made randomly.

Figure 3: Supervisor versus Random Assignment
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The y-axis shows the total treatment effect at different scales of roll-out under different assignment rules. Under
random assignment the treatment assignment is made randomly; with supervisor preference the treatment assignment
is what would be achieved under decentralization if supervisors made the assignment decision based on all the
information they had; prioritize by distance is what would happen if treatment were assigned first to those AEAs
whose beneficiaries live further from the local ALAT office; prediction (basic and cognitive controls) uses the control
group to predict baseline performance using the observable variables and then treats first those AEAs who are
predicted to be the worst performers in the baseline; sophisticated prediction runs a pilot experiment at low roll-out to
establish a map between treatment response and observables and then treats first those AEAs who are predicted to
have the highest treatment response.

Figure 4: Supervisor versus Alternative Allocation Rules
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Table 1: Covariate Balance Across AEAs

Small ALATs Large ALATs

(1) (2) (3) (4)

Control
Difference

(T-C) Control
Difference

(T-C)

Male 0.611 0.139 0.750 -0.135
[0.502] {0.327} [0.436] {0.397}

Age 36.889 0.153 37.838 4.393
[11.386] {0.964} [10.815] {0.106}

Married 0.278 0.056 0.441 0.059
[0.461] {0.684} [0.500] {0.519}

Average Distance 10.425 3.156 12.678 -1.355
[8.410] {0.295} [9.206] {0.449}

Incumbent Party 0.611 0.014 0.559 -0.020
[0.502] {0.927} [0.500] {0.893}

Digit Span 5.333 0.333 5.191 0.270
[0.840] {0.255} [1.069] {0.340}

Big 5 — Stability -0.083 0.345 -0.057 0.112
[1.126] {0.283} [1.126] {0.646}

Big 5 — Plasticity -0.496 0.713∗∗ -0.140 0.325
[1.208] {0.046} [1.111] {0.161}

Perry: Public Service Motivation Index -0.493 0.465 -0.141 0.337
[1.455] {0.311} [0.875] {0.377}

Moore: Moral Disengagement Index 0.245 0.172 -0.019 -0.073
[0.975] {0.617} [0.896] {0.765}

Selected 0.603 -0.026
[0.493] {0.685}

Number of AEAs 18 24 68 26
Number of ALATs 17 23 22 11
p-value from Joint Test 0.812 0.560

“Control” and “Treatment” for small ALATs refer to ALATs that received cell phones in round 3 and
rounds 1 and 2, respectively. The number of AEAs and ALATs in columns (1) and (3) correspond
to the respective numbers in the control group. Those in columns (2) and (4) correspond to the re-
spective numbers in the treatment group. The fraction of selected AEAs exceeds 50% because when
ALATs had an odd number of AEAs, supervisors were told to round up. The joint test in the bottom
row runs a regression of treatment assignment on all listed covariates. The joint test p-value is from a
wild bootstrapped F-test imposing the null hypothesis that all coefficients equal zero. Standard devia-
tions reported in square brackets and p-values from a Wu (1986) wild bootstrap procedure with 100,000
replication draws reported in curly braces. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, corresponding to the
bootstrapped p-values.
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Table 2: Average Effects of Receiving a Cell Phone on Productivity

Farmer was visited in the last week
Supervisor

knows
Log length of

meeting (mins)

(1) (2) (3) (4) (5) (6) (7)

Treated 0.069∗∗ 0.067∗∗ 0.067∗∗ 0.057∗ -0.008 0.185∗ -0.016
(0.031) (0.027) (0.027) (0.030) (0.036) (0.103) (0.060)
{0.024} {0.017} {0.021} {0.089} {0.831} {0.065} {0.817}

Selected 0.011 0.015 0.018 0.011 -0.080 -0.034
(0.033) (0.027) (0.029) (0.029) (0.138) (0.036)
{0.754} {0.595} {0.592} {0.744} {0.567} {0.377}

Male 0.040 0.040 0.032 -0.029 0.301∗ -0.048
(0.027) (0.030) (0.033) (0.046) (0.147) (0.042)
{0.210} {0.273} {0.466} {0.551} {0.053} {0.288}

Age 0.003∗ 0.003∗ 0.003 -0.000 -0.008 0.004∗∗

(0.001) (0.001) (0.002) (0.002) (0.008) (0.002)
{0.060} {0.081} {0.128} {0.936} {0.368} {0.029}

Married -0.004 -0.003 0.020 -0.041 0.014 -0.053
(0.030) (0.030) (0.031) (0.034) (0.141) (0.043)
{0.895} {0.924} {0.560} {0.257} {0.925} {0.269}

Distance to Farmers (log) 0.038 0.036 0.032 -0.069∗∗ -0.139 -0.018
(0.027) (0.028) (0.034) (0.028) (0.119) (0.047)
{0.200} {0.246} {0.420} {0.026} {0.279} {0.726}

Incumbent Party -0.021 -0.020 -0.040 0.058 0.254∗ 0.001
(0.025) (0.025) (0.025) (0.057) (0.151) (0.052)
{0.420} {0.452} {0.154} {0.355} {0.098} {0.984}

Digit Span 0.010 0.013 0.030 0.051 0.013
(0.012) (0.013) (0.018) (0.052) (0.018)
{0.440} {0.368} {0.158} {0.344} {0.521}

Big 5 — Stability 0.012 0.011 0.035 0.141∗∗∗ 0.018
(0.015) (0.016) (0.020) (0.050) (0.024)
{0.513} {0.592} {0.104} {0.006} {0.523}

Big 5 — Plasticity -0.011 -0.011 -0.023 0.111∗ -0.017
(0.011) (0.010) (0.017) (0.064) (0.017)
{0.340} {0.330} {0.197} {0.082} {0.347}

Servicer AEA AEA AEA AEA Supervisor AEA AEA
Mean of Control Dep. Var .271 .271 .271 .274 .308 4.593 4.414
R2 0.006 0.013 0.014 0.012 0.032 0.199 0.013
Number of Phone Surveys 1842 1842 1842 1584 1173 1819
Number of AEAs 136 136 136 94 107 126 132
Number of ALATs 71 71 71 33 107 65 71
Includes Small ALATs X X X X X X

Big 5 stability and plasticity measures normalized to have mean zero and unit variance. Outcomes in all columns other than
(6) are from the farmer phone survey. These regressions include unreported indicators for small ALATs, survey wave, and
an interaction of the two. Outcome in column (6) is from the AEA survey and is from a regression of a five-value index
ranging from (1) “Strongly Disagree” to (5) “Strongly Agree.” Cluster robust standard errors and p-values from a Wu (1986)
wild bootstrap procedure with 100,000 replication draws reported in parentheses and curly braces, respectively. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01, corresponding to the bootstrapped p-values.
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Table 3: Do Supervisors Have an Informational Advantage?

Farmer was visited in the last week

(1) (2) (3) (4)

Treated 0.0607∗ -0.0233 -0.0397 -0.0361
(0.034) (0.043) (0.035) (0.038)

{0.0723} {0.608} {0.278} {0.389}
Treated × Selected 0.142∗∗ 0.161∗∗ 0.154∗∗

(0.058) (0.051) (0.050)
{0.0349} {0.0149} {0.0276}

Selected 0.0113 -0.0332 -0.0445 -0.0409
(0.033) (0.036) (0.027) (0.028)
{0.756} {0.480} {0.189} {0.273}

R2 0.004 0.009 0.017 0.018
Number of Phone Surveys 1584 1584 1584 1584
Number of AEAs 94 94 94 94
Number of ALATs 33 33 33 33
Includes Basic Controls X X
Includes Cognitive Controls X

Regressions also include survey wave indicators. Basic controls include gender, age,
marital status, and average distance to farmers. Cognitive controls include digit span,
the Big 5 stability meta-trait, and the Big 5 plasticity meta-trait. Cluster robust standard
errors and p-values from a Wu (1986) wild bootstrap procedure with 100,000 replication
draws reported in parentheses and curly braces, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01, corresponding to the bootstrapped p-values.
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Table 4: First Stage Probit Regressions

(1) (2)

Male -0.519 -0.511
(0.349) (0.395)
{0.165} {0.257}

Age -0.036∗∗ -0.037∗∗

(0.018) (0.017)
{0.029} {0.027}

Married 0.863∗∗ 0.791∗

(0.459) (0.441)
{0.045} {0.064}

Average Distance 0.331 0.318
(0.173) (0.197)
{0.121} {0.115}

Incumbent Party -0.808∗∗ -0.840∗∗

(0.359) (0.367)
{0.044} {0.043}

Digit Span -0.111
(0.142)
{0.474}

Big 5 — Stability -0.234∗

(0.124)
{0.085}

Big 5 — Plasticity 0.122
(0.154)
{0.431}

Pseudo R2 0.159 0.185
Number of AEAs 94 94
Number of ALATs 33 33

Coefficients are from a probit regression
of an indicator for the AEA being se-
lected on AEA characteristics. Cluster
robust standard errors and p-values from
a Kline and Santos (2012) wild boot-
strap procedure with 100,000 replication
draws reported in parentheses and curly
braces, respectively. ∗ p < 0.10, ∗∗ p <

0.05, ∗∗∗ p < 0.01, corresponding to the
bootstrapped p-values.
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Table 5: Treatment Effect Heterogeneity on Observable and Unobservable Characteristics

(1) (2) (3)

Main Effects:
Inverse Mills Ratio -0.021 -0.019 -0.016

(0.023) (0.016) (0.016)

Average Treatment Effect 0.062∗ 0.058∗ 0.064∗

(0.035) (0.026) (0.028)
{0.093} {0.067} {0.064}

Interactions with Treatment:
Inverse Mills 0.088∗∗ 0.064∗∗ 0.064∗∗

(0.036) (0.022) (0.025)
{0.034} {0.018} {0.035}

Male -0.021 -0.004
(0.051) (0.066)
{0.721} {0.961}

Age -0.003 -0.005
(0.003) (0.003)
{0.325} {0.208}

Married -0.084 -0.094
(0.061) (0.052)
{0.241} {0.135}

Average Distance to Farmers (log) 0.101 0.104
(0.068) (0.077)
{0.252} {0.362}

Incumbent Party -0.081∗ -0.069
(0.038) (0.048)
{0.056} {0.153}

Digit Span -0.064∗∗

(0.027)
{0.034}

Big5 — Stability -0.038
(0.049)
{0.562}

Big5 — Plasticity 0.035
(0.025)
{0.317}

R2 0.009 0.023 0.028
p-value for Observable Interactions 0.209 0.147
p-value for Observable Interactions (Not Wild) 0.031 0.001
Number of Phone Surveys 1584 1584 1584
Number of AEAs 94 94 94
Number of ALATs 33 33 33
Basic Controls X X
Cognitive Controls X

Left-hand side variable is whether the farmer was visted in the last week. The
inverse Mills ratio is the generalized residual—the expected value of the error
term—from a probit regression of being selected on the corresponding controls
from the column. Regressions also include survey wave indicators. Main effects
of basic and cognitive controls omitted for space. The p-value for all observable
interactions reported in the bottom rows is the implied p-value from a wild
bootstrapped F-test for coefficients on treatment interacted with age, married,
average distance, male, digit span, and Big 5 measures. Cluster robust standard
errors and p-values from a Wu (1986) wild bootstrap procedure with 100,000
replication draws reported in parentheses and curly braces, respectively. ∗ p <

0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, corresponding to the bootstrapped p-values.
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Table 6: Treatment Effects by Roll-Out Levels and Allocation Rules

Rollout Random Supervisor Distance Prediction Sophisticated

0.25 0.016 0.043 0.032 0.049 0.059
0.54 0.034 0.070 0.051 0.075 0.085
0.70 0.045 0.077 0.054 0.076 0.090
0.75 0.048 0.077 0.058 0.078 0.088
0.76 0.048 0.077 0.058 0.079 0.088
0.77 0.049 0.077 0.057 0.077 0.088
0.97 0.062 0.069 0.069 0.069 0.070
1.00 0.064 0.064 0.064 0.064 0.064

This table displays estimated treatment effects at the different roll-out
levels shown in the first column for the various allocation rules we con-
sider. The number displayed in bold represents the largest treatment ef-
fect under a given allocation rule. The allocation rules shown are random
- treatment assignment is made randomly; supervisor - treatment assign-
ment is what would be achieved under decentralization with supervisors
making the assignment decision; distance - treatment is assigned first to
those AEAs whose beneficiaries live further from the local ALAT office;
prediction - uses the control group to predict baseline performance using
the basic and cognitive controls and then treats first those AEAs who are
predicted to be the worst performers in the baseline; and sophisticated -
runs a pilot experiment at low roll-out to establish a map between treat-
ment response and observables and then treats first those AEAs who are
predicted to have the highest treatment response.
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Table A1: Covariate Balance Across ALATs

Small ALATs Large ALATs

(1) (2) (3) (4)

Control
Difference

(T-C) Control
Difference

(T-C)

# of rural hhds 2298 320 3218 879
[1978] {0.633} [1696] {0.407}

Share of hhds that are rural 0.809 -0.094∗ 0.708 -0.039
[0.104] {0.082} [0.217] {0.597}

Average hhd size 4.71 0.01 4.70 0.14
[0.34] {0.950} [0.35] {0.302}

Land per farm (hectares) 41.35 7.63 43.40 0.68
[43.49] {0.711} [42.48] {0.973}

Cropland per farm (hectares) 12.58 -3.23 6.88 2.30
[21.46] {0.608} [8.15] {0.797}

Share of farmers working with DEAg AEAs 0.082 -0.020 0.096 0.014
[0.109] {0.562} [0.072] {0.878}

Corn yield (metric tons) per hectare 2.14 0.16 1.97 0.26
[1.49] {0.748} [0.90] {0.601}

Share of farms with running water 0.466 0.035 0.476 -0.051
[0.247] {0.673} [0.210] {0.490}

Colorado (winner) vote share 0.455 -0.007 0.472 -0.023
[0.093] {0.802} [0.083] {0.544}

Number of ALATs 17 21 22 11
p-value from Joint Test 0.299 0.178

“Control” and “Treatment” for small ALATs refer to ALATs that received cell phones in
round 3 and rounds 1 and 2, respectively. The first three variables come from the 2002
census, the next five come from the 2008 agricultural census, and the final variable comes
from the 2013 presidential elections. The number of AEAs and ALATs in columns (1) and
(3) correspond to the respective numbers in the control group. Those in columns (2) and (4)
correspond to the respective numbers in the treatment group. The joint test in the bottom
row runs a regression of treatment assignment on all listed covariates. The joint test p-value
is from a wild bootstrapped F-test imposing the null hypothesis that all coefficients equal
zero. Standard deviations reported in square brackets and p-values from a Wu (1986) wild
bootstrap procedure with 100,000 replication draws reported in curly braces. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01, corresponding to the bootstrapped p-values.
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Table A2: Average Effects of Receiving a Cell Phone on Other Measures of Performance

(1) (2) (3) (4)
Satisfied Received Training Good for Nothing PCA

Treated -0.085 0.056 -0.037 -0.145∗

(0.049) (0.031) (0.022) (0.072)
{0.119} {0.117} {0.134} {0.079}

Selected 0.072 -0.014 0.017 0.071
(0.052) (0.023) (0.021) (0.065)
{0.250} {0.564} {0.461} {0.336}

Male -0.062 -0.001 -0.012 -0.048
(0.058) (0.030) (0.025) (0.081)
{0.352} {0.987} {0.669} {0.601}

Age -0.003 0.002 -0.003∗ -0.007∗

(0.002) (0.002) (0.001) (0.004)
{0.203} {0.173} {0.064} {0.094}

Married 0.063 -0.022 0.024 0.085
(0.036) (0.029) (0.021) (0.065)
{0.115} {0.484} {0.286} {0.228}

Distance to Farmers (log) -0.004 -0.028 0.025 0.053
(0.053) (0.027) (0.023) (0.073)
{0.952} {0.365} {0.323} {0.510}

Incumbent Party 0.151∗∗ -0.037 0.031 0.156∗∗

(0.052) (0.024) (0.025) (0.067)
{0.027} {0.136} {0.242} {0.038}

Digit Span -0.026 0.001 -0.006 -0.023
(0.015) (0.011) (0.010) (0.027)
{0.135} {0.900} {0.588} {0.443}

Big 5 — Stability 0.008 0.000 -0.010 -0.007
(0.019) (0.012) (0.008) (0.027)
{0.687} {0.980} {0.216} {0.811}

Big 5 — Plasticity 0.035 -0.014 0.012 0.049
(0.024) (0.012) (0.012) (0.034)
{0.194} {0.270} {0.325} {0.196}

Servicer AEA AEA AEA AEA
Mean of Control Dep. Var 1.458 .765 .183 .011
R2 0.027 0.019 0.026 0.020
Number of Phone Surveys 1838 1841 1841 1838
Number of AEAs 135 136 136 135
Number of ALATs 71 71 71 71
Includes Small ALATs X X X X

The outcome measure in the fourth column is the first principle component from a poly-
choric PCA of the outcome variables in the first three columns. These regressions in-
clude unreported indicators for small ALATs, survey wave, and an interaction of the two.
Cluster robust standard errors and p-values from a Wu (1986) wild bootstrap procedure
with 100,000 replication draws reported in parentheses and curly braces, respectively. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, corresponding to the bootstrapped p-values.
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Table A3: Correlation Matrix of Performance Measures

(1)

Share visited Satisfied Received Training Good for Nothing PCA

Share Visited 1
Satisfied -0.311∗∗ 1
Received Training 0.375∗∗∗ -0.522∗∗∗ 1
Good for Nothing -0.372∗∗∗ 0.495∗∗∗ -0.783∗∗∗ 1
PCA -0.415∗∗∗ 0.774∗∗∗ -0.908∗∗∗ 0.885∗∗∗ 1
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The sample includes only AEAs in the control group. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A4: Predictors of Productivity in the Control Group

(1)

Male 0.040
(0.040)
{0.585}

Age 0.002
(0.002)
{0.516}

Married 0.070
(0.037)
{0.142}

Average Distance to Farmers (log) 0.019
(0.034)
{0.626}

Incumbent Party 0.014
(0.031)
{0.657}

Digit Span 0.032∗∗

(0.013)
{0.014}

Big5 — Stability 0.008
(0.016)
{0.710}

Big5 — Plasticity -0.010
(0.010)
{0.356}

R2 0.018
p-value for Model 0.156
p-value for Model (Not Wild) 0.000
Number of Phone Surveys 1091
Number of AEAs 68
Number of ALATs 22

The sample is all AEAs in the control group
in large ALATs. Regressions also include
survey wave indicators. The p-value for the
model reports the implied p-value from a
wild bootstrapped F-test for the null that
all reported coefficients are equal to zero.
Cluster robust standard errors and p-values
from a Wu (1986) wild bootstrap procedure
with 100,000 replication draws reported in
parentheses and curly braces, respectively. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, corre-
sponding to the bootstrapped p-values.
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