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“One is led by the facts to conclude that, with respect to the qualitative behavior of co-
movements among series, business cycles are all alike. To theoretically inclined
economists, this conclusion should be attractive and challenging, for it suggests the
possibility of a unified explanation of business cycles.” Lucas (1977)

1 Introduction

In their quest to explain macroeconomic fluctuations, theoretically inclined economists have

often favored models in which a single, recurrent shock acts as the sole, or main, driver of the

business cycle.1 One may be skeptical of such an approach as different business-cycle episodes

seem to have had different proximate causes (e.g., an oil shock vs a financial shock). Nonetheless,

a parsimonious, single-shock representation may well encapsulate diverse business-cycle triggers

if they all operate through a common, dominant propagation mechanism.

This paper aims at shedding new light on what this propagation mechanism looks like. But

rather than postulating a particular model and using it to offer a structural interpretation of the

data, we do it the other way around. We start with the data, identify a one-shock representation

that can successfully capture the bulk of the business cycle, and use its properties (IRFs, variance

contributions, etc) to inform theory.2

The exercise offers a succinct description of main dynamic comovement patterns in the data.

We argue that these patterns are at odds with models that emphasize exogenous or endogenous

TFP movements, news about the medium and long run, or demand shocks of the New Keynesian

type as important drivers of the business cycle. Instead, the bulk of the business cycle can be

attributed to a mechanism that fits the notion of a non-inflationary demand shock.

This finding echoes Beaudry and Portier (2014) and offers support to recent attempts to

disentangle demand-driven fluctuations from nominal rigidities and Philips curves, such as

Angeletos and La’O (2013), Bai, Ŕıos-Rull, and Storesletten (2017), Beaudry and Portier (2018),

Beaudry, Galizia, and Portier (2018), Benhabib, Wang, and Wen (2015), Huo and Takayama

(2015), and Ilut and Saijo (2018). More generally, our approach provides a set of impulse response

functions (IRFs) that a successful business-cycle model needs to replicate. It can thus been seen

as a complement to Chari, Kehoe, and McGrattan (2007), which also aims at informing the

construction of such models but does it in a completely different way, namely, by characterizing

the data in terms of deviations from the predictions of the textbook RBC model.
1For example, this driver is a monetary shock in Lucas (1973, 1975), a technology shock in Kydland and

Prescott (1982), and a sunspot in Benhabib and Farmer (1994).
2As is standard in the empirical literature on shocks—see Ramey (2016) for a review—what we are after is not

the shock per se but rather its empirical footprint, which embeds the propagation mechanism. To echo Cochrane
(1994): “The study of shocks and propagation mechanisms are of course not separate enterprises. Shocks are only
visible if we specify something about how they propagate to observable variables.”
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The empirical method. Our method of extracting information from the data builds on

Uhlig (2003). We first estimate a VAR on the following key macroeconomic variables: unemploy-

ment, GDP, consumption, investment, total hours worked, labor productivity, utilization-adjusted

TFP, the labor share, inflation, and the federal funds rate. We next identify the shock that has

the maximal contribution to the volatility of unemployment at the business-cycle frequencies

(6-32 quarters). We finally compare this shock to other shocks, each one of which is identified by

targeting different variables and/or different frequencies. This provides us with a collection of a

one-dimensional cuts of the data, or an “anatomy,” whose main features and implications for

theory are described below.3

The main business-cycle shock. Consider the business-cycle frequencies and the following

set of variables: unemployment, total hours worked, GDP, and investment. The shock that

is identified by targeting any one of these variables is nearly indistinguishable, in terms of

IRFs and contribution to variances, from the shock that targets any other variable in that set.

Furthermore, any of these shocks triggers positive comovement in all the variables and accounts

for about two-thirds of the business-cycle volatility of the targeted variable and for more than

one half of the business-cycle volatility in the remaining variables.4

This finding motivates the concept of the main business-cycle shock: we use this term to

refer to the common dynamic patterns encapsulated in any of the identified shocks described

above. These patterns in turn form the basis of the lessons we draw for theory. In the context

of parsimonious models, the documented IRFs help paint a picture of the “right” model. And in

the context of medium-scale models, the invariability of these patterns across targeted variables

helps reveal an important weakness of the state of the art.

Disconnect between the short and the long run. The shock that explains the bulk of

the business cycle accounts for little of the long-term variation in output, investment, consumption,

and labor productivity. Symmetrically, the shock that explains the bulk of the long-term volatility

in any of these variables makes a negligible contribution to the business cycle.

This finding complements Blanchard and Quah (1989) and Gaĺı (1999), who argue that the

shock that drives productivity and output in the long run accounts for a small fraction, and

possibly the wrong sign, of the business-cycle movements in unemployment or hours. It also
3While the method used here is a variant of that developed in Uhlig (2003), our application is novel, and so are

the facts reported below and the lessons drawn for theory. That paper sought to identify two shocks that jointly
drive real GNP in the short to medium run, but faced the challenge of separating one shock from the other. Our
application contains two innovations. On the one hand, we bypass the aforementioned challenge by focusing on
one-shock cuts of the data. On the other hand, we extract more information from the data by taking multiple
such cuts across variables and frequencies. As argued below, the compilation of stylized facts obtained in this way
proves exceedingly useful in the context of small and large models alike. Beaudry, Nam, and Wang (2011) and
Barsky and Sims (2012) also use variants of Uhlig’s method, although for different purposes.

4As discussed later on, the consumption response is also positive albeit less tightly connected.
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challenges models that, following Beaudry and Portier (2006), emphasize news of the productivity

in the long run: in such models, the business cycle is itself a powerful signal of the long run,

which is hard to square with our evidence. An alternative, consistent with our evidence, is that

the business cycle is driven by belief shifts that are unrelated to productivity and represent news

of the short-term economic outlook.5

Disconnect from TFP at all frequencies. Our main business-cycle shock is disconnected

from the variation in TFP at any frequency. This is inconsistent with the baseline RBC model,

where the business cycle is driven by exogenous technology shocks,6 as well as with variants of

that model that let other shocks, including financial and uncertainty shocks, trigger endogenous

fluctuations in aggregate TFP. It is also at odds with versions of the New Keynesian model that

tie the shifts in aggregate demand to rational expectations of future TFP (e.g., Lorenzoni, 2009).

We next present evidence that represents a broader challenge to that model.

Disconnect from inflation and Phillips curves. In the New Keynesian model, demand

shocks induce deviations from flexible-price allocations, which in turn drive inflation.7 It follows

that our main business-cycle shock is consistent with the New Keynesian model only if the cycles

it induces are characterized by a strong comovement between the real quantities and inflation.

We instead find that the main business-cycle shock is nearly orthogonal to inflation at all

frequencies. For instance, the shock that targets unemployment accounts for almost 70% of

the business-cycle variation in that variable and only for 10% of the business-cycle variation in

inflation. And conversely, the shock that targets inflation explains 80% of the business-cycle

variation in inflation and only 9% of the business-cycle variation in unemployment.

A similar disconnect is present between inflation and the labor share, an often-used proxy of

the real marginal cost in the New Keynesian literature. Furthermore, the disconnect does not

appear to be explained by the offsetting contribution of demand and supply shocks: it survives a

purge of the effect of supply shocks, as proxied by the movements in TFP or labor productivity.

Finally, the magnitude of the inflation response to the main business-cycle shock is close to zero.

It is possible to bypass these challenges by assuming a sufficiently flat Philips curve and by

attributing the residual between actual and predicted inflation to mysterious markup shocks.

But it is unclear what these shocks stand for and also whether the required degree of flatness of
5See our work in Angeletos, Collard, and Dellas (2017) for a model along these lines and Levchenko and

Pandalai-Nayar (2015) for complementary time-series evidence. Broadly consistent is also Bachmann and Zorn
(2018), which uses firm-level survey data to argue that the bulk of the short-run variation in investment is
accounted by the variation in expectations of demand.

6This applies not only to neutral but also to investment-specific technology shocks: the aforementioned
disconnect extends to relation between our main business-cycle shock and the relative price of investment.

7In the basic New Keynesian model inflation encapsulates the present discounted value of these deviations,
just as in the basic asset-pricing model prices encapsulate the present discounted value of dividends.
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the Philips curve is consistent with micro-economic evidence.8 Another possibility, which we

find more appealing, is that our main business-cycle shock captures a type of demand-driven

fluctuations that, unlike those formalized in the New Keynesian model, do not necessarily

represent either departures from flexible prices or movements along a Phillips curve.

Medium-scale models. By construction, our empirical strategy is best suited for guiding

the construction and evaluation of small models that aspire to capture the business cycle with a

single-shock mechanism. Yet, its prodding power extends to larger, DSGE models that employ

multiple shocks. We demonstrate this point by deploying our method in two such models.

The first is the sticky-price model of Justiniano, Primiceri, and Tambalotti (2010); this is

essentially the same as that developed in Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007). The second is the flexible-price model found in Angeletos, Collard, and

Dellas (2017); this is essentially the RBC model augmented with a mechanism that allows waves of

optimism and pessimism about the short-run economic outlook to obtain without commensurate

movements in either actual or expected TFP. We view the first model as representative of the

New Keynesian paradigm and the second as an example of the aforementioned literature that

aims at disentangling demand-driven fluctuations from nominal rigidities and Philips curves.

In each model, we perform an anatomy similar to that carried out in the data: we consider

different linear combinations of the model’s shocks, each one constructed by maximizing the

business-cycle volatility of a different macroeconomic quantity. In the first model, the theoretical

objects turn out to be less interchangeable than their empirical counterparts: they display

relatively distinct IRFs and contribute excessively to the variable targeted in their construction.

This is because this model—like many other models in the literature—attributes the business

cycle to a fortuitous combination of specialized shocks, none of which generates the empirically

relevant comovement patterns in the key macroeconomic quantities. By contrast, the model in

our prior work replicates the pattern seen in the data because its core mechanism—the variation

in expectations of the short run—alone matches the main business-cycle shock in the data.

The objective of these comparisons is not to assert the superiority of the specific model

developed in our prior work. Rather, it is to illustrate two broader points: (i) even state-of-the-art

DSGE models appear to lack the kind of propagation mechanism encapsulated in our empirical

findings; and (ii) the recent literature that aims at disentangling demand-driven business cycles

from nominal rigidities and Philips curves holds the promise for rectifying this problem.

Layout. The rest of the paper is organized as follows. Section 2 describes the empirical

method. Section 3 reviews our empirical findings and their implications for theory. Section 4
8This is the subject of a large literature on menu-cost models and product-level price data (e.g., Golosov and

Lucas Jr, 2007; Midrigan, 2011; Bils, Klenow, and Malin, 2012; Alvarez and Lippi, 2014).
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contains the application to medium-scale models. Section 5 concludes. The Appendices contain

a detailed description of the data, a few additional results, and a number of robustness checks.

2 Data and Method

Our data consists of quarterly observations on the following nine, key macroeconomic variables:

GDP, investment, consumption, hours and labor productivity in the non-farm business sector,

unemployment, the labor share, inflation (GDP deflator), and the federal funds rate. Appendix

A.1 contains precise definitions and data sources. Appendix A.5 establishes the robustness of

our results to the inclusion of additional variables, such as stock prices and the relative price of

investment. Here, we comment on two choices: the measures of investment and consumptions;

and the sample period.

The measure of investment used in our baseline VAR includes consumer expenditure on

durables together with gross domestic private investment and changes in inventories, while our

measure of consumption consists of consumption expenditure on non-durables and services. In

choosing these measures, we follow the standard practice used in the evaluation of models that

abstract from durables, such as those considered in Section 4. Appendix A.2 shows the robustness

of our results to a VAR that separates business investment from consumption durables.

The sample considered in our baseline VAR starts in the first quarter of 1960 and ends in

the last quarter of 2007. The choice of the ending point was based on two considerations. First,

it makes our empirical analysis fully compatible with the models studied in Section 4, as these

models were originally estimated over 1960-2007. And second, the post-2007 period has been

characterized by the zero lower bound and severe financial frictions, features that pose challenges

to linear VARs and also are missing from the aforementioned models. Appendix A.3 shows that

our results are robust to extending the sample to 2015Q4.

We now turn to the description of the empirical method. This is based on running a VAR on

a few key macroeconomic variables and identifying the linear combination of the VAR residuals

that contributes the maximum to the forecast error volatility of a particular variable in a

particular frequency band (in the time domain). Below, we provide the formal details of this

procedure, which, as we have already mentioned, is related to that pioneered by Uhlig (2003)

and subsequently used in Barsky and Sims (2012) and Beaudry, Nam, and Wang (2011).

The VAR takes the form

A(L)Xt = ut,

where Xt is a N × 1 vector of the macroeconomic variables under consideration, A(L) ≡∑p
τ=0AτL

τ is a matrix polynomials in the backshift operator L, with A(0) = A0 = I, and ut is
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the vector of VAR residuals, with E(utu′t) = Σ for some positive definite matrix Σ.9

The Wold representation of the VAR can be written as

Xt = B(L)ut

where B(L) = A(L)−1 is an infinite matrix polynomial of the form B(L) =
∑∞
τ=0BτL

τ . We

assume that there exists a linear mapping between the VAR innovations, ut, and some underlying

shocks, εt, that are mutually independent and normalized to be of unit variance:

ut = Sεt

where S is a N ×N matrix and εt is such that E(εtε′t) = I. The shocks in εt need not correspond

to particular theoretical shocks in a model; they are merely transformations of the VAR residuals.

Notwithstanding this qualification, column j of matrix S gives the impact effect of the j-th

component of ε on all the variables.

The matrix S has to satisfy SS′ = Σ but is not uniquely pinned down unless additional

restrictions are imposed. In any event, this matrix can be rewritten as S = S̃Q, where S̃ is an

arbitrary orthogonalization matrix and Q is an orthonormal matrix (QQ′ = I). In what follows,

S̃ is given by the Cholesky decomposition of the covariance matrix of residuals, so that the εt’s

are obtained by a recursive orthogonalization à la Sims (1980).

For any given orthonormal matrix Q, the VMA(∞) representation of the VAR can be written

as follows:

Xt = C(L)Qεt =
∞∑
τ=0

CτQεt−τ ,

where Cτ = Bτ S̃. Column j of matrix Cτ , Cτ,j then gives the impact effect of the j–th element

of ε on the VAR variables at horizon τ . By the same token, if we take any column vector q and

consider the shock defined by the linear combination q′εt, the impact effects of this shock on the

same variables at horizon τ , for τ ∈ {0, 1, ...}, is given by

Γτ =
N∑
j=1

qjCτ,j = Cτq.

Any structural VAR involves the identification of one or more such column vectors; the

sequence {Γτ}∞τ=0 then represents the IRFs of the identified shock. For our purposes, the vector

q is chosen so as to maximize the contribution of the linear combination q′εt to the volatility of

a particular variable k over a particular frequency band [ω, ω]. (When studying business-cycle

frequencies, we set ω = 2π/32 and ω = 2π/6; but we also consider other frequency bands in

order to investigate the interaction between the short and the long term.)
9The reported results assume two lags, as suggested by the standard Bayesian criteria, but we have verified

that the results remain essentially the same if we use 4 or 6 lags.
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We start by computing the appropriate bandpass filtered volatility of variable k using the

VAR and the vector ε. The spectral density of variable k at frequency ω, Fk(ω), is given by10

Fk(ω) = 1
2πCk(e

−iω)Ck(e−iω)

where Ck(z) is the k-th row of the polynomial matrix C(z) and Ck(z) denotes the complex

conjugate transpose of Ck(z). We have made use of the fact that E(εε′) = I. The volatility of

variable k, σ2
k, over the frequency band [ω;ω] is then given by11

σ2
k =

∫
Ω
Fk(ω)dω

where Ω = {ω ∈ R s.t. ω 6 |ω| 6 ω}.

Due to the independence of the elements of ε, the spectral density of variable k attributed to

each of these elements is12

Gk(ω) = 1
2πCk(e

−iω)Ck(e−iω)

Gk(ω) is a (N × N) diagonal matrix whose j-th diagonal element gives the spectral density

of variable k at frequency ω generated by the j-th ε. The volatility of variable k over [ω, ω]

explained by the ε vector is then given by

Σk ≡
∫
ω∈[ω,ω]

Gk(ω)dω

which is a diagonal matrix whose (j, j) element gives the volatility of variable k in the frequency

range [ω, ω] that is explained by the j-th ε.

Let as call this element σ2
k,j . The share of the total volatility of variable k in the band [ω, ω]

that is explained by the j-th ε is then given by

Θk,j =
σ2
k,j

σ2
k

Our objective is to obtain the orthonormal vector q that combines the εs in a way that

generates the highest contribution to the volatility of variable k. Such a q solves the problem

max
q

q′Θkq

s.t. q′ q = 1
10See Hamilton (1994).
11In practice, we define the frequency gain function

f(ω) =

{
1 if ω 6 |ω| 6 ω

0 otherwise.

which corresponds to the filter gain for the ideal bandpass filter for frequencies [ω, ω] and apply the inverse fast
Fourier transform algorithm to the filtered spectral density F̃k(ω) = f2(ω)Fk(ω).

12Note that in order to determine the effects of ε we reversed the ordering between Ck(e−iω) and Ck(e−iω).
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where Θk is a diagonal matrix whose j–th element is given by Θk,j . It follows that q is the

eigenvector associated to the largest eigenvalue of matrix Θk. This has a similar flavor as the

method of identifying a principle component or a factor (e.g., Stock and Watson, 2005), except

for the fact that our “factor” targets exclusively the volatility of a particular variable over a

particular frequency band.

3 Empirical findings

By construction, any of the shocks we identify represents a one-dimensional cut of the data.

Varying the targeted variable and the targeted frequencies allows to consider multiple such cuts

of the data. The “anatomy” offered in this paper is a compilation of the conditional comovement

patterns revealed by such cuts of the data. This section presents the main findings of this

proceedure and discusses their implications for macroeconomic theory.

3.1 The Main Business Cycle Shock: Targeting Unemployment

We start with the shock that targets the volatility of unemployment at the business cycle

frequencies, namely the range of 6-32 quarters. Table 1 reports the contribution of this shock to

the volatility of various macroeconomic variables in that range (short run) as well over the 80-∞

range (long run). Figure 1 shows the corresponding impulse response functions (IRFs).

Table 1: Variance Contributions of Unemployment Shock

u Y h I C π R r TFP Y/h w wh/Y

Short Run 68.15 59.93 55.99 65.02 20.67 10.70 27.03 15.73 6.02 12.15 5.11 29.96
Long Run 11.85 4.17 8.83 4.84 3.96 12.48 21.09 16.40 4.11 4.05 5.32 5.63

Note: The shock is constructed by targeting unemployment. The first row (Short Run) reports the contribution of this shock
to the volatility of the various variables between 6 and 32 quarters, the second row (Long Run) between 80 quarters and ∞.
The variables are denoted as follows: Y = GDP, h = hours in the non-farm business sector, I = investment, C = consumption,
u = unemployment rate, π = inflation rate (GDP deflator), R = nominal interest rate (Federal Funds rate), r = real interest
rate (with expected inflation constructed from the VAR), TFP = utilization-adjusted Total Factor Productivity, Y/h =
labor productivity, w = real wage, wh/Y = labor share.

What are the main properties of the identified shock?

First, it explains two thirds of the business-cycle volatility in unemployment and investment,

nearly as much of that in GDP, and more than one half of that in hours. It also gives rise to a

realistic business cycle, with all the aforementioned variables, as well as consumption, moving in

tandem. These properties together with those reported in the next subsection justify labeling

the identified shock as the “main business-cycle shock.”

Second, the identified shock contains little statistical information about the business-cycle
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Figure 1: Impulse Response Functions to the Unemployment Shock
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variation in either TFP or labor productivity. In particular, although the shock triggers a

procyclical response in labor productivity and in TFP, this response is only short-lived and

insignificant in the sense that the shock accounts for only about one-tenth of the business-cycle

variation in labor productivity and nearly one-twentieth of that in TFP. To interpret this fact, it

is useful to note that, as is shown in the Appendix, the identified shock also leads to a significant,

short-lived increase in capacity utilization and accounts for more than 50% of its volatility at

the business-cycle frequency.

Third, the contribution of the shock to output fades out at long horizons. This finding

extends and reinforces the key message of Blanchard and Quah (1989): what drives the business

cycle appears to be distinct from what drives output in the longer term. This point is further

corroborated by the evidence reported in Subsection 3.3 below.

Fourth, the shock triggers a procyclical, albeit small and delayed, movement in inflation. This

invites the interpretation of the identified shock as a demand shock under the lenses of the New

Keynesian model. We discuss in detail in Section 3.5 the challenges faced by this interpretation.

For now, we note that the identified shock explains only one tenth of the business-cycle variation

in inflation, which is comparable to its contribution to TFP and labor productivity—and much

lower than its contribution to unemployment and the other macroeconomic quantities.

Fifth, the shock triggers a weak and delayed procyclical movement in the real wage. This

echoes the more familiar result that the unconditional correlation between real wages and output
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is small and is consistent with models that feature some form of real wage rigidity. But it could

also be that the measured wages are not allocative.

Sixth, the shock triggers a countercyclical response in the labor share for the first few quarters,

which is reversed later on. This is essentially the product of the aforementioned responses of the

real wage and labor productivity: the labor share coincides with the gap between the real wage

and labor productivity. It is also in line with the evidence in Chari, Kehoe, and McGrattan

(2007) and elsewhere about the strong cyclicality of the labor wedge. But as it will become

clear shortly, the data does not favor theories that tie the variation in the labor wedge to either

technology shocks or expectations about future productivity.

Finally, the shock triggers a syncronous procyclical movement in the real interest rate. In the

Keynesian model, this could result from monetary policy implementing a countercyclical nominal

interest rate coupled with unresponsive inflation. But it is also consistent with a neoclassical

model in which the boom reflects an increase in the demand for goods today relative to goods

tomorrow, which in turn manifests as an increase in the relative price of the former.

3.2 The Main Business Cycle Shock: Targeting Other Quantities

Figure 2 compares the IRFs of the shock that targets the unemployment rate (black line) to the

IRFs of the shocks that are identified by targeting the business-cycle volatility of a some other

key macroeconomic quantities: GDP (red line), hours (green line), investment (blue line), and

consumption (gray line). As is evident from the figure, the IRFs are nearly indistinguishable:

targeting any one of these variables seems to give rise to the same shock.

Figure 3 paints a similar picture by considering the scatterplots of the series of innovations

corresponding to the shock that targets unemployment against those corresponding to the other

shocks. The scatterplots are virtually on top of the 45-degree line, indicating, once again, that

all the shocks are essentially same.

These findings explain why we view all these one-shock representations of the data as

interchangeable: they all seem to encode the same information, whether in terms of innovations

(Figure 3) or in terms of propagation (Figure 2). It is this kind of information that we henceforth

refer to as the “main business-cycle shock” in the data.

Table 2 turns to variance contributions. Consider unemployment, GDP, hours and investment.

The shock that targets any of these variables explains between 50% and 80% of the business-cycle

volatility in all of these variables. This echoes a similar finding from Stock and Watson (2005).

That paper uses a different method, namely factor analysis, but finds that a single factor can

account for most of the short-run variation in industrial production and employment. The main

added value here is, not the corroboration of this result through the use of a different method,
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Figure 2: The Main Business-Cycle Shock, IRFs
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Figure 3: The Main Business-Cycle Shock, Scatterplots
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Note: The left panel is the scatter plot of the innovations of the shock that targets GDP (on the vertical axis)
against those of the shock that targets unemployment (on the horizontal axis). The remaining two panels repeat
this for the shocks that target investment and hours.
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but rather the finding that such “singleness” extends to the dynamic comovement patterns of

the key macroeconomic quantities, the documentation of these patterns (summarized in Figures

1 and 3), and their use to draw new lessons for macroeconomic theory.

Table 2: The Main Business-Cycle Shock, Variance Contributions

u Y h I C π R r TFP Y/h w wh/Y

u 68.15 59.93 55.99 65.02 20.67 10.70 27.03 15.73 6.02 12.15 5.11 29.96

Y 55.40 78.24 48.87 70.64 36.65 12.49 16.21 7.77 15.65 36.32 8.19 42.96
h 53.21 50.95 70.91 52.51 21.39 7.75 18.67 15.75 5.83 4.37 4.63 26.91
I 56.94 67.79 48.22 81.22 23.69 11.20 22.37 10.53 11.53 25.95 5.55 37.39
C 23.09 42.48 23.51 25.93 62.28 16.84 5.27 6.02 9.01 23.02 11.31 18.74
Note: The rows correspond to different targets in the construction of the shock. The columns give the
contributions of the constructed shock to the business-cyle volatility of the variables.

We close this subsection by commenting on the behavior of consumption, which is a bit

more subtle. Recall that the measure of consumption in the VAR under consideration excludes

spending on durables; the latter is instead included in the measure of investment. With this

qualification in mind, note that, as shown in Table 1, the shock that targets unemployment

accounts for only 21% of the fluctuations in consumption. And symmetrically, as shown in Table

2, the shock that targets consumption explains only 23% of the fluctuations in unemployment.

Splitting our measure of investment to its business and household components (see Appendix

A.2) refines the picture as follows: the shock that targets unemployment explains 23% of the

fluctuations in consumer spending on non-durables and services, 38% of those in consumer

spending on durables, and 62% of the fluctuations in gross private domestic investment. And

symmetrically, the shock that targets consumer spending on non-durables and services explains

23% of the fluctuations in unemployment; the shock that targets consumer spending on durables

explains 38% of the fluctuations in unemployment; and the shock that targets business investment

explains 51% of the fluctuations on unemployment.

These findings are consistent with the well-known fact that consumer spending on durables

is much more cyclical than spending on non-durables and services. But they also raise an

intriguing question. Is the relatively weak relation between our main business cycle shock and

consumer spending consistent with a consumer-centric view of the business cycle? Or does the

relative stronger relation between the former and investment speak in favor of investment-centric

theories, such as those articulated in Justiniano, Primiceri, and Tambalotti (2010) and Caballero

and Simsek (2017)? We leave any further investigation of this issue for future research.
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3.3 The Short Run vs the Long Run and the Role of TFP

On the basis of Table 1, we claimed that whatever drives the business cycle plays a small role in

the long-term movements of economic activity. We now examine the reverse, namely, whether

the shock that best accounts for the long-term movements has any bearing on the business cycle.

We then probe in greater detail the role played by technology, as proxied by the movements in

utilization-adjusted TFP and the relative price of investment at various frequencies and horizons.

We finally discuss the implications of our results for theories that attempt to tie the business

cycle to news about the future.

Figure 4: Long-Run Shocks
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Consider the shock that targets the frequencies corresponding to 80-∞ quarters, for any of

the following variables: GDP, investment, consumption, TFP, and labor productivity.13 Figure

4 shows that these shocks are indistinguishable in terms of IRFs. The same picture emerges if

we look at the variance contributions of these shocks either in the long term (Table 3) or in the

short term (Table 4). This finding is consistent with a single unit-root force, such as a persistent

technology shock, driving the long-term volatility in all these variables, and allows us to think of

any of these shocks as the “main long-run shock.”
13Here, we omit the shocks that target unemployment and hours because these variables are stationary. Also,

we have verified that the shocks considered here are nearly identical to those identified by a long-run restriction
as in Blanchard and Quah (1989): there is no essential difference between the shocks that target the frequency
exactly at ∞ (which is what such a long-run restriction does) and the alternatives considered here.
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As is evident from Table 4, this shock accounts for less than 15% of the business-cycle

volatility in unemployment and hours, and only a little more of that in investment. This is, in

effect, the mirror image of the disconnect between the short and the long run seen in the second

row of Table 1, which reported the long-run contribution of the main business-cycle shock.

Table 3: Long-Run Shocks, Contributions at Long-Run Frequencies (80-∞ q)
Targeted Variable Y I C TFP Y/h

Output 99.15 96.51 99.03 93.71 98.08
Investment 96.57 98.15 96.34 94.49 97.45
Consumption 98.89 96.12 99.10 93.04 97.90
TFP 93.72 93.64 93.53 95.75 95.46
Labor Productivity 98.27 97.22 98.12 96.13 98.99

Table 4: Long-Run Shocks, Contributions at Business-Cycle Frequencies (6-32 q)
Targeted Variable u Y h I C π R r TFP Y/h wh/Y

Output 14.26 22.26 12.30 16.67 24.49 11.16 16.63 11.11 16.67 24.53 11.95
Investment 14.82 22.80 12.10 18.40 24.66 12.56 17.36 11.68 21.31 28.40 10.87
Consumption 13.54 21.00 11.55 15.93 23.31 10.92 16.40 10.91 15.90 23.38 11.15
TFP 13.33 18.74 10.63 14.58 23.24 14.71 19.67 12.84 23.59 26.86 8.29
Labor Productivity 13.91 21.27 11.37 15.77 24.08 11.73 17.35 11.63 19.98 26.99 10.47

Let us now probe in more detail the role of TFP.14 In Table 1 we saw that the main

business-cycle shock contains little statistical information about both the short and the long-run

movements in TFP. In Table 4, we similarly see that the shock that drives TFP in the long-

run explains only a small fraction of business-cycle fluctuations in unemployment, hours, and

investment. The same is true for the shock that drives TFP in the medium run, in line with

the results of Barsky and Sims (2011): as can be seen in Table 15 in Appendix A.5, the shock

that targets TFP in the medium run accounts for only 8% of the business-cycle variation in

unemployment, despite the fact that this contains almost all the available information about

future TFP (namely it accounts for about 80% of the variation in TFP in the medium-run

frequencies).

In short, the shock that drives the bulk of the business cycle appears to be disconnected from

TFP at all frequencies. This is further illustrated in Figure 5, which reports the fraction of the

variance of the forecasts of GDP and TFP explained by the shock that targets unemployment.

As is evident in this figure, this shock explains more than 50% of the GDP movements over the

first two years, but less than than 7% of the TFP movements at any horizon.

Let us now relate these findings to those in the literature.
14Recall that our measure of TFP is adjusted for utilization, as in Fernald (2014).
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Figure 5: Variance Contributions to GDP and TFP
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First, consider Blanchard and Quah (1989). This work seeks to represent the data in terms

of two shocks, a “supply shock” and a “demand shock.” To this goal, it runs a VAR on two

variables, GDP and unemployment; identifies the supply shock as the shock that accounts for the

GDP movements in the very long run (at ∞) and the demand shock as the residual shock; and

documents that each one of these shocks accounts for nearly one half of business-cycle volatility

in GDP. The additional information contained in our larger VAR reduces the contribution

of—our various proxies of—the supply shock to between one tenth and one fifth.

Second, consider Uhlig (2003). This work, too, pursues a two-shock representation of the

data. The main differences from Blanchard and Quah (1989) are that it considers a larger

VAR and that it uses a different identification scheme: it identifies the two shocks that jointly

maximize the prediction error variances in real GNP for horizons between 0 and 5 years. Uhlig

offers a tentative interpretation of one shock as being a productivity shock of the RBC type and

the other as a cost-push shock of the New Keynesian type. This interpretation finds little support

in our anatomy, especially our finding regarding the disconnect between our main business-cycle

shock and TFP at all horizons.15

Third, consider Beaudry and Portier (2006). The first part of that paper uses a two-variable

VAR with TFP and the SP500 index to identify a shock—interpreted as TFP news—that

accounts simultaneously for the bulk of the short-run movements in stock prices and the bulk of

the long-run movements in TFP.16 The second part of that paper proceeds to argue, with the
15We emphasize that the interpretation offered in Uhlig (2003) was tentative as that paper was not completed.

Also note that the approach adopted in that paper allows the identification of the two shocks together but does not
separate one shock from the other, so the aforementioned interpretation relied on particular orthogonalizations.
Finally, because the VAR considered in that paper did not contain TFP, the disconnect documented here could
not have been detected.

16This is accomplished by using two alternative identification schemes—a short-run restriction that isolates the
innovations in stock prices that are orthogonal to current TFP, and a long-run restriction that lets a shock pick
all the long-run movements in TFP—and by showing the coincidence of the identified shocks.
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help of larger VARs and more delicate identifying assumptions, that such TFP news also account

for about 50% of the short-run volatility in hours and total private spending, and up to 80%

of that in consumption. In short, TFP news emerges as the main driver of the business cycle.

This picture is at odds with the evidence reported in Table 4: the shock that best predicts the

long-run movements in TFP accounts for only 10% of the short-run volatility in hours, 14% of

that in investment, and 23% of that in consumption. It is also inconsistent with Figure 5, which

indicates that the main business-cycle shock itself contains little news about future TFP.17

Fourth, consider Ben Zeev and Khan (2015). That paper argues that the main driver of

the business-cycle fluctuations in employment is news about investment-specific technology, as

proxied by the relative price of investment. If that were the case, one would expect our main

business cycle shock to contain substantial predictive power for future movements in the relative

price of investment. Figure 6 shows that this is not the case: our main business-cycle shock

contains negligible information about the relative price of investment at all frequencies. Similarly,

when we consider the shock that best encapsulates the available information about the future

movements of the relative price of investment in either the medium or the long run, we find that

this shock explains only 7 to 8% of the business-cycle volatility in unemployment.18

Figure 6: Variance Contribution to Relative Price of Investment
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Finally, consider Lorenzoni (2009) where the news about future TFP is contaminated with

noise. Furthermore, the noise triggers a business cycle that is orthogonal to past, current and
17We believe that the picture painted by Beaudry and Portier (2006) owes much to two elements. The first

is that the small, two-variable VAR used in the first part of that paper overstates the news that the short-run
movements in stock prices contain about long-run movements in TFP. The second is that the more delicate
identifying assumptions made in the second part of that paper could be confounding such news with other shocks.
We have corroborated these points by adding the SP500 index to our VAR; verifying that the properties of the
main business-cycle shock remain unchanged; and inspecting the properties of the shock that drives the short-run
volatility in stock prices. As can been seen in Table 11 in Appendix A.5, this shock explains a small fraction of
either the business-cycle fluctuations in the key macroeconomic quantities or the long-run fluctuations in TFP.

18These findings obtain from an extended VAR that includes the relative price of investment; see Appendix A.5.
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future TFP. Does this mean that noise in this model offers a structural interpretation to the

main business-cycle shock in the data? The answer is negative. In this model, the fluctuations

in employment are driven almost entirely by shifts in expectations of long-term TFP, which in

turn implies that these fluctuations account for a large fraction of the forecastable movements in

future TFP—a prediction contradicted by our evidence.

This discussion also highlights how our approach relates to Chahrour and Jurado (2018).

This paper shows that, although SVARs may not allow a separate identification of the news and

noise components of the beliefs about future TFP, they may allow econometricians to recover the

innovations in the expectations of future TFP. In a similar vein, we bypass the aforementioned

identification challenge and, instead, address the more basic question of whether the business

cycle is tied to the forecasts of future TFP.

3.4 What we have learned so far

On the basis of the empirical findings presented above, we reach the following conclusion.

Tentative lesson. It is possible to account for the bulk of the business-cycle fluctuations in key

macroeconomic quantities—namely unemployment, hours, GDP, investment, and, to a somewhat

lesser extent, consumption—using a parsimonious model in which the shock driving the business

cycle has the following key properties:

• it causes strong positive comovements in the aforementioned quantities;

• it is essentially orthogonal to TFP at all horizons;

• it is an indicator of the short-run but not of the medium- and long-run outlook.

As already discussed, these properties are hard to reconcile, not only with the baseline

RBC model, but also with a variety of models that tie the business cycle to expectations of

productivity and income in the medium- long run. They also speak against models in which

financial, uncertainty, or other shocks matter primarily by triggering endogenous procyclical

movements in aggregate TFP. Benhabib and Farmer (1994) and Bloom et al. (2018) are notable

examples of such models: the former generates such procyclical TFP movements out of animal

spirits, the latter out of uncertainty shocks.

By contrast, the data seems consistent with extensions of the RBC model that let shocks

trigger strong, procyclical, and transitory movements in the measured labor wedge without

commensurate movements in aggregate TFP. Such movements could be the symptom not only

of labor-market frictions but also of other real frictions. For example, in Angeletos, Collard,

and Dellas (2017) such movements are the byproduct of higher-order uncertainty about the
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short-term economic outlook; in Arellano, Bai, and Kehoe (2018) they are attributed to the

interaction of financial frictions and firm-level uncertainty shocks; and in Golosov and Menzio

(2015) they obtain from animal spirits in frictional labor markets.

Last but not least, the data seems consistent with New Keynesian models that attribute the

business cycle to the interaction of nominal rigidities with shifts in aggregate demand (provided

that the latter do not represent news about future TFP). In the rest of the paper, we discuss

the challenges faced by such a structural interpretation of our main business-cycle shock.19

This is done in two steps. First, we relate the empirical regularities encapsulated in our

anatomy to the predictions of the textbook New Keynesian model (Subsection 3.5). Second, we

take a close look at the mechanics and the empirical performance of state-of-the art, medium-scale,

DSGE models (Section 4). The first exercise focuses on the predictions of the New Keynesian

model regarding the comovement of inflation and real economic activity; the second turns to

the comovement of the different macroeconomic quantities. Both exercises lead to the same

conclusion: the business cycle in the data is unlike that on display in the dominant paradigm and

can instead be understood better within a class of models that allow realistic, demand-driven

fluctuations to obtain without a strict reliance on nominal rigidities and Philips curves.

3.5 Inflation

In the New Keynesian framework, demand shocks (e.g., taste, financial or other shocks that affect

consumer spending) are able to generate realistic business cycles only when the combination of

nominal rigidity with certain monetary policies allows such shocks to trigger sufficiently large

deviations from the underlying flexible-price allocations. This is because the latter coincide with

the equilibrium allocations of the baseline RBC model, which in turn is unable to generate the

empirically relevant comovement patterns in the macroeconomic quantities out of demand shocks.

Using the aforementioned deviations is therefore the only way to get the right comovements in

the New Keynesian model. But such deviations represent movements along the Philips curve,

which explains why the comovement of inflation and of real activity is at the core of the model.

From this perspective, the relation between the business cycle and inflation is the litmus test

of the New Keynesian model, just as the relation between the business cycle and productivity is

the litmus test of the RBC model. We already noted that the connection between the business

cycle and inflation is rather weak in the sense that our main business-cycle shock accounts for
19There are of course other possibilities which we do not address in this paper, such as the possibility that the

business cycle is driven by tax shocks (Mertens and Ravn, 2013). We also do not discuss financial shocks in detail
for two reasons: first, such shocks were presumably not as important in our sample (recall that our data stops in
2007 so as to exclude the recent financial crises); and second, such shocks often represent either endogenous TFP
fluctuations or demand shocks of the New Keynesian type.
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only a small portion of the business-cycle volatility in inflation. We now turn to the shock that

makes the maximal contribution to the business-cycle volatility in inflation.

Tables 5 and Figure 7 show the variance contributions of that shock and its IRFs, respectively.

To facilitate the comparison of this shock to the main business-cycle shock, we also include the

variance contributions and IRFs of the shock that targets unemployment.

Table 5: Inflation vs Unemployment Shock

Target u Y h I C π

Inflation 8.86 8.93 10.01 5.84 19.06 80.78
Unemployment 68.15 59.93 55.99 65.02 20.67 10.70

Figure 7: IRFs to the Inflation and Unemployment Shocks
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The shock that targets inflation looks like a cost-push shock of the New Keynesian type in

the sense that it makes inflation and output move in opposite directions. However, this relation,

too, is rather weak, in the sense that the shock accounts for only 9% of the business-cycle

volatility in unemployment and GDP, although it explains 80% of the volatility in inflation. This

is essentially the mirror image of the picture encountered earlier when looking at the inflation

contributions of the shocks that targeted the key macroeconomic quantities.

From either perspective, the business cycle therefore appears to be disconnected from the

movements in inflation. Figure 8 further illustrates this disconnect by drawing the fraction of

the variance of the forecasts of inflation at different horizons explained by the shock that targets

unemployment (which may be interpreted as a demand shock): this shock accounts for a very
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small fraction of the movements of inflation at any horizon.

Figure 8: Variance Contribution of Unemployment Shock to GDP and Inflation
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As shown in Figure 14 in Appendix A.4, the disconnect survives the purge of real economic

activity and inflation from the effect of supply shocks, as proxied by the shocks that account

for TFP at the various frequencies. Hence, the disconnect does not seem to be driven by the

combination of offsetting “demand” and “supply” shocks.

Last but not least, the same disconnect characterizes the relation between inflation and the

labor share, a commonly used proxy of real marginal cost (Gaĺı and Gertler, 1999). As shown in

Table 13, the shock that targets the labor share explains 80% of its own business-cycle volatility

but only 6% of that of inflation. And symmetrically, the shock that accounts for the bulk of

business-cycle variation in inflation contains negligible statistical information about the variation

in the labor share (both at the same frequencies and lower frequencies).

In short, the signal-to-noise ratio in inflation vis-a-vis either the real marginal cost, as

captured by the labor share, or the output gap, as captured by our main business-cycle shock, is

nearly zero. To use an analogy, the NKPC is as successful in accounting for the movements in

inflation as the basic asset-pricing model is in accounting for movements in asset prices.20

What is more, the disconnect between the business cycle and inflation seen in Figure 8 is

comparable to that between the business cycle and TFP seen earlier in Figure 5. In this regard,

the failure of baseline New Keynesian model is as significant as that of the baseline RBC model.

We now shift our focus from variance contributions and signal-to-noise ratios to the magnitude

of the response of inflation to the main business-cycle shock; think of this as the slope of the

Phillips curve. In particular, we show that, although the main business-cycle shock causes
20As documented by Campbell and Shiller (1988), innovations in asset returns contain negligible information

about future dividends. In the same vein, our evidence points out that the business-cycle innovations in
inflation contain negligible information about the corresponding fundamentals. See King and Watson (2012) for
complementary evidence.
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a positive inflation response (as seen in Figure 9), the magnitude of this response is hard to

account for within the New Keynesian model.

Consider the standard version of the NKPC. This is can stated as follows:

πt = κxt + βEt[πt+1] = κEt

 ∞∑
j=0

βjxt+j

 (1)

where πt is the inflation rate, xt is the real marginal cost, β ∈ (0, 1) is the discount factor, κ is

given by κ = (1−θ)(1−βθ)/θ, and θ is the probability of not been able to reset prices. Following

common practice, we consider the labor share as a proxy for xt. It then follows that, if we

interpret the main business-cycle shock as a demand shock in the context of the New Keynesian

model, we can use the identified IRF of the labor share to that shock in a parametrized version

of (1) to obtain the model’s prediction of the response of inflation to that shock.

A typical textbook calibration, as in Gaĺı (2008), sets θ = 2/3 (prices are, on average, reset

every 3 quarters) and β = 0.99. With these values, the response of inflation implied by the NKPC

is given by the blue dashed line in Figure 9. Clearly, this is enormous relative to that in the

data. This illustrates the difficulty the baseline New Keynesian model faces in accommodating

the type of demand shock encapsulated in our main business-cycle shock.

Figure 9: The Main Business-Cycle Shock and the NKPC
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To sum up, the evidence presented here raises two challenges for the New Keynesian model.

One, just discussed, regards the small magnitude of the response of inflation to the main business

cycle shock. The other, which was discussed earlier, regards the near orthogonality of the forces

that drive inflation and those that drive real economic activity.

These challenges are not entirely new. For instance, the weak comovement of inflation and

real economic activity is evident, albeit not as pronounced, in the unconditional moments, too.

It is also the subject of a large empirical literature on the Phillips curve; see the survey by

Mavroeidis, Plagborg-Møller, and Stock (2014).
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The New Keynesian literature has sought to bypass these challenges by: (i) assuming that

the Phillips curve is much flatter than the one in the textbook version of the model; and (ii)

attributing almost all of the variation in inflation to markup or cost-push shocks. However, it is

questionable how much flatness of the Philips curve can be supported by the micro-economic

evidence on price behavior.21 Furthermore, the micro-foundations used to support a flat Philips

curve do not justify large responses to some shocks and small responses to other shocks. As a

result, the literature has attempted to account for the volatility in inflation through markup

shocks that, not only look a priori suspect, but also predict implausibly large fluctuations in

economic activity under flexible prices.22

An alternative hypothesis, which we favor, is that demand-driven fluctuations operate outside

the realm of Phillips curves and are compatible with flexible prices. This hypothesis has a long

history in Keynesian thinking (e.g., Diamond, 1982; Cass and Shell, 1983) and has recently been

revived by the literature cited in the beginning of the Introduction.

4 An Application to Medium-Scale DSGE Models

So far, we have tried to interpret the data through the lenses of parsimonious, textbook-type

models that aspire to account for the bulk of the business-cycle variation in real quantities with

a single shock/propagation mechanism. This has obvious limitations. If one wishes to account

simultaneously for the short- and the long-run movements in real economic activity, one has to

add a second shock. If one wishes also to account for inflation, one has to add a third shock.

And so on. This can quickly lead to a medium- or even large-scale DSGE models.

The relative advantages/disadvantages of small and large models are well known; we do

not wish to review them here. What we wish to do, though, is to illustrate that our method

can be deployed to evaluate models of the latter type, too. We also wish to provide additional

support for two ideas: (i) that the main business-cycle shock characterized here cannot be easily

accounted for by state-of-the-art New Keynesian models; and (ii) that this defect could be due

to the exclusion of demand-driven business cycles from the flexible-price core of these models.
21This is the subject of a large, ongoing literature on product-level price data and menu-cost models. Although

there is no conclusive verdict yet, it is worth noting that the evidence in Bils, Klenow, and Malin (2012) challenges
the DSGE practice of attributing a flat Phillips curve to Kimball-like kinked demand curves and strong pricing
complementarities. Also note that the gap seen in Figure 9 cannot be accounted for by sticky wages—another core
ingredient of the DSGE literature—because the predicted value for inflation has been constructed taking as given
the empirical response of the labor share. Finally, the introduction of past-price indexation—which leads to the
replacement of the standard version NKPC with the so-called hybrid version—helps generate more sluggishness in
the response of inflation but does not close the aforementioned gap, unless it is accompanied by the assumption of
a higher price-stickiness.

22For instance, the markup shock in Smets and Wouters (2007) is akin to having a joint tax on capital and labor
that varies between 6% and 21% (this is the mean estimate of the markup plus/minus two standard deviations).
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To these goals, we consider two off-the-shelf DSGE models. One is the New Keynesian

model found in Justiniano, Primiceri, and Tambalotti (2010). This is essentially the same model

as that in Smets and Wouters (2007) but with more appropriate measures of investment and

consumption.23 We henceforth refer to this model as JPT. The other is the RBC model in

Angeletos, Collard, and Dellas (2017), henceforth referred to as ACD. The main differences

between JPT and ACD is that the latter has flexible prices and also contains a “confidence

shock,” namely a shock that helps generate waves of optimism and pessimism about aggregate

demand in the short run.24,25 We use the ACD model, not only because it is ours, but also

because we view it us representative of a broader class of models that allows for demand-driven

fluctuations under flexible prices.26

We take each model in its original form and set its parameters to the values estimated in the

respective paper. It is worth noting that these models are comparable in the following respects.

First, they both have been estimated with maximum likelihood over the 1960–2007; this means,

in effect, that they have been parameterized so as to maximize their fit vis-a-vis the data used

in our empirical exercises. Second, each model features a theoretical shock whose estimated

contribution to the business-cycle volatility of employment, investment and GDP exceeds 50%:

this is the investment-specific demand shock in JPT and the confidence shock in ACD. Finally,

these models do equally well in matching the familiar, unconditional business-cycle moments.

Notwithstanding all these similarities, as is shown below, these models perform quite differently

under the new lens provided by our approach.

For each model, we construct the linear combinations of the theoretical shocks that maximize

the business-cycle volatility of GDP, investment, consumption or hours in the model. These

objects are meant to be the theoretical counterparts for the shocks we identified in the data. To
23The measure of consumption used in Smets and Wouters (2007) includes expenditure on durables, which

is at odds with the specification in the model. Justiniano, Primiceri, and Tambalotti (2010) fix this problem
by including such expenditure to the measure of investment, just as we have done both here and in Angeletos,
Collard, and Dellas (2017).

24ACD treats the variation in confidence as the product of an exogenous shock to higher-order beliefs; recent
work by Angeletos and Lian (2017) and Ilut and Saijo (2018) illustrates how such variation can obtain endogenously
in response to more conventional shocks, allowing one to think of variation in beliefs as a propagation mechanism
rather than as a shock.

25There are a few additional differences between ACD and JPT. First, JPT contains increasing returns in
production whereas ACD has constant returns; this improves the empirical fit of JPT by letting it generate
procyclical movements in labor productivity as a result of demand shocks. Second, due to its assumption of
flexible prices and wages, ACD is silent on inflation determination and thus has no use for markup shocks. And
third, ACD includes news shocks, as in Barsky and Sims (2012), in order to distinguish between beliefs about the
short run (associated with higher-order beliefs) and the long run (associated with news about future TFP).

26As noted in the Introduction, this class includes Angeletos and La’O (2013), Angeletos and Lian (2017), Bai,
Ŕıos-Rull, and Storesletten (2017), Beaudry and Portier (2014), Benhabib, Wang, and Wen (2015), Chahrour and
Gaballo (2017), Golosov and Menzio (2015), Huo and Takayama (2015), Ilut and Schneider (2014), and Ilut and
Saijo (2018).
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Figure 10: Comparing Business-Cycle Factors
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avoid confusion between these objects and the underlying theoretical shocks, we henceforth refer

to the former as “factors” and reserve the term “shocks” for the latter.27

The top panel in Figure 10 reports the IRFs of the various factors in JPT and the bottom in

ACD. As seen in this figure, the various factors are highly interchangeable in the ACD model, as

they are in the data, whereas they are quite distinct in the JPT model. This is evident in the

responses of output and consumption to the various factors, as well as in the comparison of the

consumption factor to the other factors.

Table 6: Contribution of Factors in Data and Models

Y C I h Y/h π

Output Factor
Data 78.24 36.65 70.64 48.87 36.32 12.49
JPT 75.15 18.83 63.99 51.64 49.88 3.76
ACD 75.37 44.88 66.52 64.07 8.62 0.00

Investment Factor
Data 67.79 23.69 81.22 48.22 25.95 11.20
JPT 52.06 12.32 92.48 53.69 19.05 2.38
ACD 57.69 19.13 86.34 60.41 10.71 0.00

Consumption Factor
Data 42.48 62.28 25.93 23.51 23.02 16.84
JPT 11.85 61.83 5.79 3.54 22.67 9.06
ACD 43.61 78.53 22.30 43.30 4.42 0.00

Hours Factor
Data 50.95 21.39 52.51 70.91 4.37 7.75
JPT 50.87 0.96 60.03 79.64 2.67 6.60
ACD 57.67 37.11 58.31 89.69 29.38 0.00

A similar picture emerges from Table 6, which compares, one by one, the empirical factors

to their theoretical counterparts in terms of variance contributions. In particular, consider the
27Clearly, our “factors” should not be confused with those in dynamic factor analysis.

24



investment factor. In JPT, this factor explains 92% of the business-cycle volatility in investment

versus 12% for consumption. In the data, the corresponding numbers are 81% and 23%. And

in ACD, they are 86% and 19%. This illustrates that the investment factor in JPT is too

“specialized” relative to its counterpart in either the data or ACD. The same applies to the

consumption factor. This overspecialization is problematic because the business cycle in the

model looks different depending on the viewing angle adopted (i.e., which variable we target),

whereas this is not the case in the data.

We now shed light on this result as well as on the mechanics of the models by doing a

decomposition of the factors in terms of the underlying theoretical shocks. In Table 7 we calculate,

for each model, the contribution of each theoretical shock to the part of the business-cycle

volatility of the targeted variable that is accounted by the corresponding factor. This reveals

the effective weights of the various shocks in each factor.

Table 7: Decomposition of Factors into Model Shocks

JPT ACD

Factor A shock I shock C shock other confidence other

y 31% 66% 1% 2% 88% 12%
i 0% 99% 0% 1% 80% 20%
c 33% 1% 65% 1% 93% 7%
h 0% 96% 2% 2% 99% 1%

Note: In JPT, “A shock” is a permanent technology shock, “I shock” is a transitory investment-
specific demand shock, “C shock” is a transitory discount-factor or consumer-specific demand
shock, and “other” includes a monetary policy shock and shocks to price and wage markups.
In ACD, “confidence” is a transitory shock to higher-order beliefs, which triggers waves of
optimism and pessimism about aggregate demand in the short run, and “other” includes both
transitory and permanent technology shocks, news shocks, and the same kind of investment-
and consumption specific shocks as those in JPT.

Let us first consider the JPT model. In this model, the investment and hours factors are both

accounted almost fully (> 95%) by the investment-specific shock. By contrast, the consumption

factor is explained by the combination of two other shocks: the discount-factor shock (65%) and

the technology shock (32%). And the GDP factor is explained in part by the investment-specific

shock (66%) and in part by the technology shock (30%). The different factors are therefore

different mixtures of three theoretical shocks: the technology shock, the investment-specific

shock, and the discount-factor shock.

To understand why this feature is responsible for the non-interchangeability of the factors

seen in the top panel of Figure 10 we need to combine the above decomposition with the IRFs of

the various shocks. The latter are shown in the top panel of Figure 11. Clearly, the three shocks
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generate distinct co-movement patterns. Furthermore, none of these shocks alone looks like

the main business-cycle shock in the data. And most crucially, neither the investment-specific

demand shock (which is the main driver of investment and hours) nor the consumption-specific

demand shock (which is the main driver of consumption) generates a positive co-movement

between consumption and investment in the short run.

The decomposition documented in Table 7 together with the IRFs seen in Figure 11 explain

why the model in JPT cannot replicate the conditional co-movement patterns revealed by our

business-cycle anatomy. This is despite the fact that this model performs very well in the domain

of unconditional business-cycle moments. In our view, this illustrates a key weakness of the state

of the art: not only the specific model under consideration, but also a diverse set of models such

as those found in Blanchard, L’Huillier, and Lorenzoni (2013), Jermann and Quadrini (2012),

Schmitt-Grohe and Uribe (2012) and Bai, Ŕıos-Rull, and Storesletten (2017), appear to lack the

type of shock and/or propagation mechanism captured by our empirical findings.

Figure 11: Main Business-Cycle Shock in Data vs Theoretical Shocks in JPT and ACD

JPT: A, I, and C shocks

1 5 10 15 20

0

1

Output

1 5 10 15 20

0

1

Consumption

1 5 10 15 20

0

5

Investment

1 5 10 15 20

0

1

Hours Worked

1 5 10 15 20

0

1

Labor Productivity

1 5 10 15 20

−0.05

0.00

0.05

Inflation Rate

Technology Shock Consumption Shock Investment Shock

u Factor in Data, Shared area: 68% HPDI

ACD: Confidence Shock

1 5 10 15 20

0.0

0.5

Output

1 5 10 15 20

0.0

0.5

Consumption

1 5 10 15 20

0

2

Investment

1 5 10 15 20

0.0

0.5

Hours Worked

1 5 10 15 20

0.00

0.25

Labor Productivity

1 5 10 15 20

0.00

0.05

Inflation Rate

Confidence Shock, u Factor in Data, Shared area: 68% HPDI

Consider next the model in ACD. In this model, all the factors are largely driven by one

and the same shock, the confidence shock. As explained in more detail in Angeletos, Collard,

and Dellas (2017), this shock represents a shift in higher-order beliefs, helps capture waves

of optimism and pessimism about the short-term economic outlook, and rationalizes a joint

movement in the measured labor and capital wedges. But what is key for the present purposes

is the observation, evident in the bottom panel of Figure 11, that this shock is very similar to

the main business-cycle shock in the data, in terms of co-movements and relative volatilities.

This explains why the estimation of the ACD model favors this shock over the alternatives and

also why the factors in that model are as interchangeable as those in the data.
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The exercise conducted above relies on constructing the linear combinations of the model’s

shocks that contribute the most to the predicted volatility of certain variables. This procedure

seems ideal for revealing the theoretical comovement properties of each model. Another advantage

is that its implementation does not depend on the stochastic dimension of the model under

consideration: it can be conducted even if the model has fewer shocks than the variables in our

VAR (as it is indeed the case here). One may nevertheless be concerned that this procedure fails

to take into account sampling uncertainty. We address this issue in Appendix A.6 by conducting

a Monte Carlo exercise: we use each model to generate a large number of artificial time series,

we run exactly the same VAR on the data and on the artificial time series, and we compare the

median IRFs obtained from the models to those in the data.28 The picture that emerges from

this variant exercise is consistent with the one painted here.

What is the bottom line? Our findings do not have to be read as evidence of the superiority

of our own model over those considered in the New Keynesian literature; each framework has its

own strengths and weaknesses.29 We nevertheless hope that the exercise offers a clear illustration

of the following points. First, our characterization of the data can be useful in the context of

small and large models alike. Second, even state-of-the-art DSGE models appear to lack the

kind of comovements/propagation mechanism encapsulated in our empirical findings. And third,

the recent literature that aims at disentangling demand-driven business cycles from nominal

rigidities and Philips curves holds the promise for rectifying this problem.

5 Conclusions

We have proposed a strategy for dissecting the macroeconomic time series and guiding macroe-

conomic theory. The strategy involves using a VAR to construct a variety of shocks, each of

which maximizes the volatility of a particular individual variable at particular frequencies. The

constructed shocks, which may or may not have direct theoretical counterparts, help reveal

certain conditional co-movement patterns in the data.

On the basis of this “anatomy” of the data, we argued that the bulk of the business-cycle

volatility in the key macroeconomic quantities can be accounted for by essentially the same
28This exercise is similar to those conducted in, inter alia, Chari, Kehoe, and McGrattan (2008) and Christiano,

Eichenbaum, and Vigfusson (2007). As explained in Appendix A.6, it requires two modifications: first, we drop
unemployment and labor productivity from the VAR; first, we augment ACD with a mechanical model for inflation.
These modifications are necessary in order to be able to run exactly the same VAR on the data and two models.

29For instance, the New Keynesian framework is, naturally, better suited for studying monetary policy.
Furthermore, JPT connect their estimated shock to empirical proxies of the level of the financial friction faced by
firms, whereas ACD lack such independent evidence. Having said that, the survey evidence reported in Bachmann
and Zorn (2018) seems to corroborate a core aspect of the mechanism in ACD, namely that investment is driven
by expectations of demand rather than by shocks to the cost of financing or other costs.
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shock. This justifies a shift of emphasis from medium-scale models with multiple specialized

shocks towards parsimonious models that contain a dominant, even single, driving force. It

also provides a set of conditional properties that the theoretical IRFs of such a model ought to

display in order to be empirically successful.

We then argued that many existing theories fail to pass this test. In particular, the evidence

seems to speak against theories that emphasize any of the following forces: technology shocks;

financial and other shocks that matter primarily by affecting the concurrent level of aggregate

TFP; shifts in expectations about future TFP and the medium- to long-run productivity prospects

of the economy; and demand shocks that operate through a Phillips-curve mechanism.

We finally argued that our empirical strategy can be used, not only to guide the construction

of small models, but also to evaluate the performance of medium-scale models. In particular,

we used a representative example from the New Keynesian DSGE literature to illustrate how

models that perform very well along familiar dimensions—such as the matching of unconditional

business-cycle moments or out of sample forecasting—may nevertheless perform relatively poorly

when inspected through the lenses of our approach. Despite all the bells and whistles, such

models still lack the kind of driving force, or propagation mechanism, that seems to underly the

co-movement of the key macroeconomic quantities in the data.

This failure suggests that these models suffer from an important mis-specification. In our

view, this failure derives to a large extent from the fact that the flexible-price core of these models

is problematic to start with, in the sense that this core is itself unable to accommodate the

kind of non-inflationary demand shock we have uncovered with our empirical strategy. It is this

feature of the existing paradigm that forces one to conceptualize demand shocks as movements

along a Philips curve, thus also leading to a number of empirical “puzzles” such as the missing

disinflation of the Great Recession.

There is now a growing literature that attempts to accommodate demand-driven business

cycles without nominal rigidities and Phillips curves. We hope that the characterization of the

data performed in the present paper will not only encourage further research on this front but

also serve as a useful diagnostic test of the empirical potential of such attempts.
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A Appendices

A.1 The Data

The data is from the Federal Reserve Economic Database (FRED). TFP corresponds to the

TFP time series corrected for utilization produced by Fernald (2012) (downloaded 2016). Tables

8 and 9 describe the original data and the transformations used in our VARs. Table 10 reports

the raw (unconditional) correlations over the business-cycle frequencies.

Table 8: Description of Data
Data Mnemonic Freq. Transform

Real gross domestic product per capita A939RX0Q048SBEA Q –
Gross Domestic Product GDP Q –
Gross Domestic Product: Implicit Price Deflator GDPDEF Q –
Personal Consumption Expenditures: Nondurable Goods PCND Q –
Personal Consumption Expenditures: Services PCESV Q –
Personal Consumption Expenditures: Goods PCDG Q –
Gross Private Domestic Investment GPDI Q –
Nonfarm Business Sector: Real Output Per Hour of All Persons OPHNFB Q –
Nonfarm Business Sector: Labor Share PRS85006173 Q –
Nonfarm Business Sector: Average Weekly Hours PRS85006023 Q –
Civilian Employment CE16OV M Ave
Civilian Noninstitutional Population CNP16OV M EoP
Civilian Unemployment Rate UNRATE M Ave
Effective Federal Funds Rate FEDFUNDS M Ave
Total Factor Productivity (Growth rate) DTFPu Q –
Note: Q: Quarterly, M: Monthly, EoP: end of period, Ave: quarterly average.

Table 9: Variables in the VARs
Real GDP per capital Y=log(A939RX0Q048SBEA)
Real consumption per capita C=log((PCND+PCESV)*A939RX0Q048SBEA/GDP)
Real investment per capita I=log((PCDG+GPDI)*A939RX0Q048SBEA/GDP)
Hours worked H=log(PRS85006023*CE16OV/CNP16OV)
Inflation Rate π=log(GDPDEF/GDPDEF(-1)
Interest Rate R=FEDFUNDS/400
Productivity (NFB) YSHnfb=OPHNFB
Labor Share wh/y=log(PRS85006173)
Real Wage W=log(PRS85006173/OPHNFB)
TFP TFP=log(cumulative sum (DTFPu/400))

Construction of IRFs:
Total Labor Productivity YSH=Y-H
Real Interest Rate r=R-E[π′]
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Table 10: Raw Correlations

Yt Ct It ht ut wtht/Yt Yt/ht wt Rt πt rt

Yt – 0.85 0.95 0.88 -0.89 -0.21 0.55 0.40 0.36 0.22 0.32
Ct 0.85 – 0.74 0.85 -0.79 0.02 0.31 0.36 0.40 0.33 0.29
It 0.95 0.74 – 0.84 -0.85 -0.27 0.57 0.35 0.24 0.09 0.27
ht 0.88 0.85 0.84 – -0.93 0.01 0.18 0.20 0.51 0.34 0.44
ut -0.89 -0.79 -0.85 -0.93 – -0.05 -0.21 -0.27 -0.62 -0.43 -0.51
wtht/Yt -0.21 0.02 -0.27 0.01 -0.05 – -0.51 0.39 0.35 0.41 0.12
Yt/ht 0.55 0.31 0.57 0.18 -0.21 -0.51 – 0.60 -0.38 -0.35 -0.24
wt 0.40 0.36 0.35 0.20 -0.27 0.39 0.60 – -0.08 0.01 -0.14
Rt 0.36 0.40 0.24 0.51 -0.62 0.35 -0.38 -0.08 – 0.76 0.77
πt 0.22 0.33 0.09 0.34 -0.43 0.41 -0.35 0.01 0.76 – 0.16
rt 0.32 0.29 0.27 0.44 -0.51 0.12 -0.24 -0.14 0.77 0.16 –
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A.2 Separating Consumer Durables and Business Investment

Figure 12 and Table 11 revisit our results after splitting our measure of investment to its

business and consumer components, namely Gross Private Domestic Investment and Personal

Consumption Expenditure on Durables. Clearly, our results are not seriously affected by this

change of specification. A single shock can still account for the bulk of the business-cycle

fluctuations in the key macroeconomic quantities, and this shock remains essentially orthogonal

to both TFP and inflation.

Figure 12: IRFs
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Table 11: Variance Contributions

u Y h I Cd Cnd+s π R r TFP Y/h w wh/Y

u 66.50 58.20 55.53 61.68 37.60 23.34 11.42 31.61 19.34 6.75 10.15 5.00 27.19

Y 53.21 76.77 48.39 63.51 48.68 36.12 11.98 19.71 10.60 8.73 35.49 9.01 40.63
h 54.77 52.46 66.79 53.86 31.23 25.68 8.14 26.43 19.19 9.81 3.37 4.28 23.37
GPDI 51.33 58.86 45.60 81.66 30.74 19.62 10.52 32.84 17.99 6.62 18.95 4.99 31.67
Cd 41.31 54.53 35.43 38.09 71.15 28.61 14.77 10.79 3.85 11.61 28.55 10.53 27.93
Cnd+s 23.53 41.42 26.74 21.36 25.56 61.97 14.73 5.52 6.68 4.12 18.15 11.44 17.89

TFP 2.33 4.77 5.84 2.42 6.95 3.62 4.35 4.49 9.05 81.95 35.77 23.58 3.15
π 11.09 9.12 11.41 4.78 14.48 19.05 79.81 14.34 17.91 3.92 3.62 14.95 4.25
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A.3 Extending the Sample Period

Figure 13 and Table 12 repeat our anatomy for the extended sample 1960Q1-2015Q4. As can be

seen both from the figure and the table, our main results survive as we extend the sample to

include the Great Recession period. In particular, the same disconnect with inflation and TFP

obtains.

Figure 13: IRFs
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Table 12: Variance Contributions

Y h I C u π R r TFP Y/h w wh/Y

u shock 55.69 50.17 63.44 21.08 68.89 5.29 20.69 13.92 5.69 9.68 3.32 28.96

Y shock 79.02 45.77 69.50 35.84 51.52 8.00 16.37 8.87 6.28 32.23 7.18 41.46
h shock 48.37 69.91 51.78 23.16 49.04 3.94 18.39 14.03 8.17 2.56 2.90 20.71
I shock 66.98 46.61 82.06 23.48 55.69 6.85 20.97 11.01 4.42 20.34 4.06 35.87
C shock 35.98 21.52 22.51 64.90 19.55 7.75 3.88 7.71 2.10 12.50 9.35 11.79

TFP shock 4.66 6.56 3.18 3.80 3.02 5.01 4.89 9.74 86.26 33.25 26.46 2.29
π shock 5.97 5.91 3.89 12.94 5.36 82.25 13.01 16.87 2.97 2.83 11.85 1.93
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A.4 Inflation, Supply Shocks, and the Labor Share

Figure 14 revisits Figure 8 after purging the effects of the shocks that account for both the short-

and the long-run movements in TFP. Table 13 compares the shocks that target, respectively,

inflation and the labor share at the business-cycle frequencies.

Figure 14: The Business Cycle and Inflation, After Purging the Effects of TFP
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Table 13: Unemployment Shock versus Labor-Share Shock

π wh/y

Inflation 80.78 4.70
Labor share 5.95 79.04
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A.5 An Extended VAR

The VAR is extended to include data on stock prices (SP ), the volatility of asset markets

(V ol), the capacity utilization rate (z) and the relative price of investment (pinv). Stock prices

are measure by the nominal SP500 index, as downloaded from http://www.econ.yale.edu/

˜shiller/data.htm, averaged to obtain quarterly data and deflated by the GDP price deflator.

The volatility index is borrowed from Bachmann, Elstner, and Sims (2013) and is the same as

that used in Bloom (2009). The utilization rate and the relative price of investment are borrowed

from Christiano, Trabandt, and Walentin (2010).

As can be seen in Table 14, the results reported in the main text are robust to the introduction

of these variables. The following additional observations can also be made. First, the utilization

shock is another facet of our main business-cycle shock: it is similar to the unemployment, hours,

GDP and investment shocks both in terms of IRFs and variance contributions. Second, the

shock that drives the relative price of investment at the business-cycle frequencies accounts for a

small fraction of the corresponding variation in unemployment and the other key macroeconomic

quantities. And third, the same applies to asset-market volatility, contradicting the tight relation

between the latter and the business cycle suggested by Bloom (2009) on the basis of a smaller

VAR. Finally, Table 15 complements Figure 5 and 6 in the main text by showing that the shocks

that drive either TFP or the relative price of investment in either the medium run or the long

run account for a small fraction (typically less than 10%) of the business cycle volatility in

unemployment and the other key macroeconomic quantities.
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Table 14: Extended VAR, Short-Run Contributions of Short-Run Shocks

u Y h I C π R r TFP Y/h w wh/Y P i z SP V ol.

u shock 64.41 54.85 50.41 54.49 25.07 15.89 42.05 24.48 6.88 13.82 4.58 24.59 10.52 54.28 9.77 12.67
y shock 52.91 67.63 43.77 57.64 27.99 15.48 23.53 11.66 16.95 35.19 5.67 34.29 10.96 47.46 9.32 10.28
h shock 50.88 47.12 60.63 47.92 25.11 11.30 44.14 32.91 4.26 5.72 5.04 16.24 10.57 50.31 9.00 10.19
i shock 54.16 59.09 44.77 66.09 19.47 14.70 30.67 15.75 10.70 24.62 4.23 31.66 10.27 52.21 10.25 13.88
c shock 25.29 34.95 25.40 21.41 55.61 17.01 16.36 9.44 10.92 15.54 9.57 11.58 9.28 23.34 13.63 6.60
z shock 54.38 50.39 49.48 53.38 23.95 19.68 49.27 27.32 4.85 10.36 5.22 18.38 12.78 64.26 11.36 10.27

π shock 10.72 10.70 12.74 6.10 17.98 67.15 15.78 12.18 5.67 4.71 10.69 4.48 5.85 14.20 10.31 4.97

TFP shock 6.94 15.22 4.18 8.41 9.80 13.71 4.59 9.58 81.96 49.72 30.00 8.03 5.25 6.55 6.56 2.58
pinv shock 8.26 8.42 8.34 8.31 6.40 4.73 12.83 8.53 1.83 3.36 1.78 2.54 72.43 9.45 3.02 2.22

SP shock 15.18 13.76 17.23 15.53 15.60 9.47 8.72 4.11 4.84 3.97 8.63 10.11 14.71 13.70 75.93 27.84
V ol shock 11.44 7.48 12.50 12.41 5.02 4.19 7.65 10.07 3.64 4.37 3.64 9.31 6.77 8.95 25.45 81.64

Note: pinv: relative price of investment, z: capacity utilization, SP : stock prices as measured by the SP500 Index, V ol.: asset market volatility as
measured by VIX. All other variables as in Table 1. Different rows correspond to different shocks and each of the shocks is identified by targeting
the volatility of corresponding variable at the business-cycle frequencies.

Table 15: Extended VAR, Short-Run Contributions of Medium- and Long-Run Shocks

u Y h I C π R r TFP Y/h w wh/Y P i z SP V ol.

Part I: short-run contributions of shocks that drive the long run
TFP shock 8.29 9.70 9.05 11.67 8.07 7.79 6.54 8.27 10.36 9.70 11.61 8.15 7.72 6.47 20.53 10.95
pinv shock 7.27 8.17 8.63 9.91 7.89 7.84 5.87 7.44 9.96 7.09 12.44 6.93 8.26 5.86 21.42 11.87

Part II: short-run contributions of shocks that drive the medium run
TFP shock 10.22 18.80 6.35 13.34 8.78 13.66 6.73 10.56 65.17 52.99 28.26 9.77 4.43 7.31 8.45 5.37
pinv shock 8.39 9.49 7.66 9.75 7.24 5.50 7.53 6.09 10.20 10.14 9.33 7.99 39.33 7.22 19.58 11.16
Note: Different rows correspond to different shocks and each of the shocks is identified by targeting the volatility of corresponding variable
either in the long run (80−∞ quarters, Part I) or in the medium run (32− 80 quarters, Part II).
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A.6 Running the Same VAR on Real and Artificial Model Data

In this section, we rely on Monte Carlo simulations to explore the ability of the JPT and the

ACD model to account for the main business-cycle shock in the data. Both models have a

stochastic dimension smaller than that of our benchmark VAR. We therefore first rerun our

benchmark exercise on a restricted VAR featuring Output, Consumption, Investment, Hours

worked, Fernald’s measure of Total Factor Productivity (corrected for utilization), the nominal

interest rate and the inflation rate. As can be seen in the first row of Figure 15, this smaller

VAR gives rise to the same picture as our baseline VAR: the shocks that target output, hours,

investment and consumption are essentially indistinguishable from one another.

Because the smaller VAR run here has exactly the same stochastic dimension as the JPT

model, it can be readily run on artificial data generated by that model. By contrast, the

ACD model has one dimension less: being a flexible-price, no-monetary model, it is makes no

prediction about inflation (and nominal variables). To be able run the same VAR on artificial

date from that model, we augment it with the simplest model of inflation we could think of:

an exogenous AR(1) process.30 Clearly, this add-on has no effect on the model’s predictions

regarding any of the real variables. It only permits us to run the same VAR on the two models

under consideration.

Each model is then simulated 1000 times to generate artificial time series for the aforemen-

tioned set of variables. Each artificial time series has the same length as in the data (192 quarters).

Note that, in order to avoid any dependence on initial conditions, we actually simulated 292

observations and discarded the first 100. Then, for each set of simulated data, we estimated the

same VAR as in actual data and applied our methodology to extract the various VAR-based

shocks, or “factors,” and build their IRFs. The second and the third row of Figure 15 show

the median of the so-obtained distribution of IRFs for the JPT and ACD models, respectively.

The comparison of these rows to one another and with the first row (the data) corroborates the

lesson obtained in the main text on the basis of the theoretical state-space representation of the

two models: the factors in JPT are less interchangeable than their counterparts either in ACD

or the data.

30We estimated this process using inflation data alone. This gave an estimate of 0.89 for the persistence
parameter and 0.27% for the standard deviation of the innovation. All the other (real) parameters of the model
were fixed at their values in the original article. Finally, the nominal interest rate was obtained directly from the
Fisher equation, using the AR(1) process for inflation and the model’s prediction about the real rate.
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Figure 15: Main Business-Cycle Shock
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