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1 Introduction

The traditional reason that a researcher runs an experiment is to address selection into

treatment. For example, a researcher might be worried that individuals with better outcomes

regardless of treatment are more likely to select into treatment, so the simple comparison of

treated to untreated individuals will reflect a selection effect as well as a treatment effect.

By running an experiment, the reasoning goes, a researcher isolates a single treatment effect

by eliminating selection.

However, there is still room for selection within experiments. In many experiments, some

lottery losers receive treatment and some lottery winners forgo treatment. Throughout this

essay, I consider experiments in which both occur, experiments with “two-sided noncompli-

ance.” In these experiments, individuals participate in a lottery. Individuals who win the

lottery are in the intervention group. They receive an intervention that affects selection into

treatment. Individuals who lose the lottery are in the control group, and they do not receive

the intervention. However, all individuals can select to receive or forgo the treatment.

Some researchers view this type of selection as immaterial, and they discard informa-

tion on it by focusing on the comparison of all lottery winners to all lottery losers. Other

researchers view this type of selection as a nuisance, and they alter information on it by

encouraging all individuals to comply with random assignment. I view this type of selection

as a useful source of information that can be combined with assumptions to learn about the

external validity of an experiment.

The ability to learn from information on selection gives a researcher new reasons to

run an experiment. An experiment is no longer a tool that eliminates selection; it is a

tool that identifies selection. Furthermore, under ancillary assumptions, an experiment is

no longer a tool that isolates a single treatment effect; it is a tool that identifies a range

of heterogeneous treatment effects. An experiment re-conceived as a tool that identifies

heterogeneous treatment effects can itself inform external validity. If treatment effects vary

across groups within an experiment, then there is no single treatment effect that is externally

valid for all policies.

In this essay, I discuss techniques from the treatment effects literature that researchers

can use to begin examination of external validity within an experiment. These techniques are

useful because of the tight relationship between treatment effect homogeneity and external

validity. I do not break new ground in terms of methodology, and I do not aim to be

comprehensive. Rather, I aim to present some existing methods simply using figures, making

them readily accessible to researchers who evaluate and design experiments.

One of the virtues of experiments is that traditional analysis is straightforward, and it

relies on assumptions that are well-known. Throughout this essay, I proceed under the well-
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known local average treatment effect (LATE) assumptions of independence and monotonicity

proposed by Imbens and Angrist (1994). Vytlacil (2002) constructs a model of selection

into treatment that assumes no more than the LATE assumptions, and I use it as the

foundation for my analysis. The model can be interpreted as a generalized Roy (1951)

model of the marginal treatment effect (MTE) introduced by Björklund and Moffitt (1987),

in the tradition of Heckman and Vytlacil (1999, 2001b, 2005), Carneiro et al. (2011), Brinch

et al. (2017) and Kowalski (2016, 2018). Therefore, the model that serves as the foundation

for my analysis also serves at the foundation for the LATE and MTE approaches within the

treatment effects literature. I do not present the model here. Instead, I focus on depicting

its implications graphically.

In Section 2, I begin by depicting information that is necessary for traditional analysis

of an experiment. Next, I include additional information that is available under the model.

This additional information consists of shares and outcomes of always takers, compliers, and

never takers, using the terminology of Angrist et al. (1996), obtained following Imbens and

Rubin (1997), Katz et al. (2001), Abadie (2002), and Abadie (2003).

In Section 3, I depict a test for heterogeneous selection into treatment that uses a subset

of the additional information and no ancillary assumptions. This test is equivalent to tests

proposed in the econometric literature by Bertanha and Imbens (2014); Guo et al. (2014);

Black et al. (2015), and Mogstad et al. (2017). Under some circumstances, it is also equivalent

to the Einav et al. (2010) test from the insurance literature. In Kowalski (2016, 2018), I

refer to this test as the “untreated outcome test,” and my innovation is in the interpretation

– I show that it identifies heterogeneous selection without any assumptions beyond the

LATE assumptions. This test for heterogeneous selection is a natural precursor to a test for

external validity because outcomes can differ across groups due to heterogeneous selection

and heterogeneous treatment effects. The key to isolating heterogeneous treatment effects,

which inform external validity, is to first isolate heterogeneous selection.

In Section 4, I depict a test for external validity proposed by Brinch et al. (2017) and

applied in Kowalski (2016). The Mogstad et al. (2017) approach can be used for inference.

Brinch et al. (2017) conduct this test under two ancillary assumptions. As I show in Kowalski

(2016), it is possible to conduct the test under only one of their ancillary assumptions;

either one will suffice. I also show that each ancillary assumption implies an upper or lower

bound on the average treatment effect for always or never takers. These bounds help me to

demonstrate how the ancillary assumptions combine with information on always and never

takers to test external validity. If either bound does not include the LATE, then the LATE

cannot be externally valid for all policies. Bounds on average treatment effects for always

and never takers are also of interest in their own right. When the LATE is not externally
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valid, these bounds inform the signs and magnitudes of the heterogeneous treatment effects

induced by hypothetical policies.

Other tests proposed by Hausman (1978); Heckman (1979); Willis and Rosen (1979);

Angrist (2004); Huber (2013); Bertanha and Imbens (2014); Guo et al. (2014); Black et al.

(2015) and Brinch et al. (2017) rely on stronger assumptions to conduct more powerful

tests of external validity. In Section 5, I engage with these tests by discussing how stronger

assumptions yield estimates of treatment effects in lieu of bounds. I conclude by discussing

implications for experimental design in Section 6.

2 An Experiment under the LATE Assumptions

In the data from an experiment, suppose that researchers can observe whether each indi-

vidual won the lottery, whether each individual received the treatment, and an outcome

for each individual. Traditional analysis of an experiment begins by comparing the average

outcomes of the intervention group and the control group. In Figure 1, I depict results from

a hypothetical experiment in which the average outcome in the intervention group is 80 units

higher than the average outcome in the control group. This difference in average outcomes

is often called the “reduced form,” as labeled along the vertical axis. It gives an estimate of

the impact of the intervention that lottery winners receive on the outcome. In experiments

with two-sided noncompliance, lottery status does not perfectly determine treatment, so the

reduced form does not give an estimate of the impact of the treatment on the outcome.

Calculation of the reduced form does not even require data on treatment. Some researchers

report only the reduced form.

Traditional analysis of an experiment next compares the average treatment probabilities

for lottery losers and winners. By the LATE independence assumption, lottery status is

independent of treatment, so I can depict the average treatment probabilities for lottery

losers and winners along the same horizontal axis in Figure 1. As depicted, pC represents the

probability of treatment in the control group, and pI represents the probability of treatment

in the intervention group. The difference pI − pC is often called the “first stage.” It gives an

estimate of the impact of winning the lottery on the fraction treated p. In experiments with

two-sided noncompliance, the first stage is less than one. In the example depicted in Figure

1, 35% of lottery losers receive treatment and 60% of lottery winners receive treatment, so

the first stage implies that winning the lottery increases the fraction treated by 25 percentage

points.

To obtain an estimate of the impact of the treatment on the outcome, traditional analysis

of an experiment divides the reduced form by the first stage. This quotient gives the local
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Figure 1: Average Outcomes of Intervention and Control Groups
Under LATE Assumptions

First Stage = 0.25 

0 1pC = 0.35 pI = 0.60

Reduced Form = 80
458

1000

0

378

p: fraction treated

Control Outcome
Intervention Outcome

LATE  =  Reduced Form 
First Stage   =  80

0.25 =  320

average treatment effect (LATE) of Imbens and Angrist (1994). Traditional analysis of an

experiment reports the LATE as the single treatment effect that the experiment isolates. In

the example depicted in Figure 1, the LATE is equal to 320 (=80/0.25). Under the LATE

assumptions, the LATE gives the average treatment effect on “compliers,” individuals whose

treatment status is determined by their random assignment, in the terminology of Angrist

et al. (1996).

Experiments with two-sided noncompliance also include two other groups of individuals

to which the LATE need not apply: “always takers” who take up treatment regardless of

random assignment and “never takers” who do not take up treatment regardless of random

assignment, in the terminology of Angrist et al. (1996). Under this terminology, the LATE

assumptions rule out the presence of “defiers” who take up treatment if and only if they lose

the lottery, so there are only always takers, compliers, and never takers. In experiments with

two-sided noncompliance, researchers cannot identify whether each individual is an always

taker, never taker, or complier: lottery winners who take up treatment could be always takers
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or compliers; lottery losers who do not take up treatment could be compliers or never takers.

However, researchers can identify some individuals as always takers and other individuals as

never takers. Lottery losers who take up treatment must be always takers; lottery winners

who do not take up treatment must be never takers.

The ability to identify some individuals as always or never takers allows researchers

to learn more about compliers. The LATE independence assumption implies that lottery

status is independent of whether an individual is an always taker, complier, or never taker.

Therefore, the observed share of treated lottery losers gives the share of always takers in

the full sample, and the observed share of untreated lottery winners gives the share of never

takers in the full sample. Furthermore, because always and never takers do not change their

treatment decisions based on their lottery status, their average outcomes should not depend

on their lottery status. Using the shares and average outcomes of always takers and never

takers, researchers can calculate the average outcomes of treated and untreated compliers, as

demonstrated by Imbens and Rubin (1997), Katz et al. (2001), Abadie (2002), and Abadie

(2003).

To illustrate the calculation of average outcomes of always takers, compliers, and never

takers graphically, I continue the hypothetical example in Figure 2. As originally shown by

Vytlacil (2002), the LATE assumptions imply an ordering from always takers to compliers

to never takers. Consistent with this ordering, I label ranges of the horizontal axis that

correspond to the shares of each group, in the order that they receive treatment. On the

left, the fraction pC of individuals who receive treatment regardless of their lottery status are

always takers. In the middle, the fraction (pI − pC) of individuals who receive treatment if

and only if they win the lottery are compliers. On the right, the remaining fraction (1− pI)

of individuals who do not receive treatment regardless of their lottery status are never takers.

Along the vertical axis of Figure 2, I plot the average treated and untreated outcomes of

the intervention and control groups over the relevant ranges of the horizontal axis. As shown,

the average treated outcome in the intervention group is 610, which represents a weighted

average of the treated outcomes of always takers and compliers. The average treated outcome

in the control group is 560, which represents the average treated outcome of always takers.

Because always takers make up 35% of the full sample and always takers combined with

compliers make up 60% of the full sample, the average treated outcome of compliers is

680 (= (0.6/(0.6-0.35))*610 - (0.35/(0.6-0.35))*560), as depicted in light shading. Similar

logic using the untreated outcomes implies that the average untreated outcome of never

takers is 230 and that the average untreated outcome of compliers is 360 (= ((1-0.35)/(0.6-

0.35))*280 - ((1-0.60)/(0.6-0.35))*230), as depicted in light shading. Researchers who would

like to replicate the calculations in this paper can use the Stata command mtebinary, which
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Figure 2: Average Treated and Untreated Outcomes of Intervention and Control Groups
and Average Treated and Untreated Outcomes of Compliers

Under LATE Assumptions

0.00 1.00

560

0

p: fraction treated

Always Takers Compliers Never Takers

230
280

610

1000

pC = 0.35 pI = 0.60

360

680

Untreated Outcome
Treated Outcome

includes examples based on the same hypothetical data that I use here (Kowalski et al.,

2016).

As shown by Imbens and Rubin (1997), the LATE is equal to the difference in the average

treated and untreated outcomes of compliers. Accordingly, in Figure 3, I depict an arrow

that gives the sign and magnitude of the LATE. However, I could have calculated the LATE

using Figure 1 alone, even if my data would not allow me to construct Figures 2 and 3.

Construction of Figures 2 and 3 requires data on outcomes by lottery status and treatment.

In contrast, construction of Figure 1 only requires data on outcomes by lottery status (for

the reduced form) and data on treatment by lottery status (for the first stage). As shown by

Angrist (1990) and Angrist and Krueger (1992), it is possible to calculate the LATE via the

Wald (1940) approach using separate datasets for the reduced form and first stage. Because

the LATE can be calculated using limited data, it stands to reason that it does not capture

all available information. Accordingly, Figure 3 provides additional information relative to
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Figure 3: Average Outcomes of Always Takers, Compliers, and Never Takers
Under LATE Assumptions

0 1
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Treated Outcome

LATE = 320 

p: fraction treated

Figure 1.

Using the additional information depicted in Figure 3, I emphasize that always and never

takers are distinct groups to which the LATE need not apply. In the hypothetical example,

these groups are sizeable. Furthermore, the average treated outcome of always takers is

known, and the average untreated outcome of never takers is known. The average untreated

outcome of always takers is not known, and the average treated outcome of never takers is

not known. If they could be identified, then it would be possible to estimate the average

treatment effect for each group as the difference between the average treated and untreated

outcomes for each group. Similarly, if they could be bounded, then would be possible to

bound on the average treatment effect on each group. Such bounds could be implied by

natural bounds on the range of outcomes in the tradition of Manski (1990), or they could

be implied by ancillary assumptions.

Even in the absence of ancillary assumptions, a researcher examining the hypothetical

example depicted in Figure 3 might question whether the LATE is likely to be equal to the
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average treatment effect for always and never takers, given that average outcomes for always

takers, compliers, and never takers appear to be so different. I formalize that intuition in

the next sections. I begin by testing whether the average outcomes are statistically different,

and then I use the differences to inform ancillary assumptions that allow for tests of external

validity.

3 Test for Heterogeneous Selection under the LATE

Assumptions

As I discuss in Kowalski (2016, 2018), the test of the null hypothesis that the difference

in average untreated outcomes between compliers and never takers is equal to zero can

be interpreted as a test for heterogeneous selection that does not require any assumptions

beyond the LATE assumptions. If the difference in average untreated outcomes between

compliers and never takers is statistically different from zero, then the test rejects selection

homogeneity. Because it compares untreated outcomes, I refer to the test as the “untreated

outcome test.” This test is equivalent to tests proposed in the econometric literature by

Bertanha and Imbens (2014); Guo et al. (2014); Black et al. (2015), and Mogstad et al.

(2017). It is also equivalent to the “cost curve” test of Einav et al. (2010) from the insurance

literature when the untreated outcome is uninsured costs.

The logic behind why the untreated outcome test identifies heterogeneous selection is

simple. Untreated compliers and never takers do not receive treatment. Therefore, a differ-

ence in their outcomes cannot reflect a difference in the treatment effect. It can only reflect

a difference in selection.

Continuing the hypothetical example, Figure 4 shows that the average untreated outcome

of compliers is 130 higher than the average outcome of never takers. If this difference is

statistically different from zero, then the test rejects selection homogeneity. Compliers select

into treatment before never takers, as shown along the horizontal axis. Therefore, individuals

with higher average outcomes select into treatment before individuals with lower average

outcomes, and the untreated outcome test statistic provides evidence of positive selection.

Empirically, the untreated outcome test can show positive or negative selection. If the

average untreated outcome of compliers were lower than the average untreated outcome of

never takers, then the untreated outcome test statistic would be negative, indicating nega-

tive selection. Within the same experiment, the untreated outcome test can show positive

selection on some outcomes while showing negative selection on others. If the outcome is

insurance, then a positive value of the untreated outcome test indicates “adverse selection”

into insurance and negative value indicates “advantageous selection” into insurance, per the
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Figure 4: Untreated Outcome Test Rejects
Test Statistic Shows Positive Selection

Under LATE Assumptions

Untreated Outcome Test: 130 ≠ 0

0 1

560

0
Always Takers Compliers Never Takers

230

360

680

1000

pC = 0.35 pI = 0.60

Untreated Outcome
Treated Outcome

LATE = 320 

p: fraction treated

cost curve test of Einav et al. (2010).

The analogous treated outcome test, which tests the null hypothesis that the difference

between the average treated outcomes of always takers and compliers is equal to zero, has

also been proposed in the econometric literature by Bertanha and Imbens (2014); Guo et al.

(2014); Black et al. (2015), and Mogstad et al. (2017). In the insurance literature, the treated

outcome test is equivalent to the “cost curve” test of Einav et al. (2010) when the untreated

outcome is insured costs. In Kowalski (2016, 2018), I emphasize that the treated outcome test

does not isolate heterogeneous selection. Intuitively, treated outcomes can reflect selection

and treatment effects. Therefore, a difference in treated outcomes can reflect heterogeneous

selection and heterogeneous treatment effects.

Continuing the hypothetical example, consider the implications of the treated outcome

test depicted in Figure 5. The treated outcome test shows that the average outcome of

always takers is 120 lower than the average outcome of compliers. As stated, the treated
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outcome test statistic is statistically different from zero, so the treated outcome test rejects.

This result could be entirely due to heterogeneous selection from always takers to never

takers, which would be the case if the average treatment effects for both groups were equal.

In that case, the average treatment effect for always takers would be equal to the LATE of

320 because the LATE is the average treatment effect for compliers. Therefore, the average

untreated outcome of always takers would be 240 (=560-320). Alternatively, the result of

the treated outcome test could be entirely due to treatment effect heterogeneity from always

takers to never takers, which would be the case if there were no selection heterogeneity across

the two groups. In that case, the average untreated outcome of always takers would be equal

to the average untreated outcome of compliers of 360. It is also possible that the treated

outcome test could detect a combination of selection and treatment effect heterogeneity,

which would be the case if the average untreated outcome of always takers were anything

other than 240 or 360. As this example demonstrates, the treated outcome test can reflect

various combinations of selection and treatment effect heterogeneity, while the untreated

outcome test can only reflect selection heterogeneity.

It is tempting to think that the treated outcome test should have the same implications

as the untreated outcome test because the distinction between treated and untreated should

be immaterial. However, as I discuss in Kowalski (2016, 2018), the distinction between

treated and untreated is material to the definition of the treatment effect. The treatment

effect is defined as the treated outcome minus the untreated outcome, not the untreated

outcome minus the treated outcome. Therefore, the treatment effect has magnitude and

direction, which is why I depict the local average treatment effect (LATE) with an arrow in

the figures. It is tempting to think that renaming the treated the untreated and vice versa

would have no consequence, but such a swap would change the direction of the arrow. In that

case, the treated outcome test would detect only selection, and the untreated outcome test

would detect various combinations of selection and treatment effect heterogeneity, creating

a different but no less material distinction between the tests.

The distinction between heterogeneity in treated and untreated outcomes forms the foun-

dation for tests for external validity. In this essay, tests for treatment effect homogeneity

are tests for external validity. The key to testing for treatment effect homogeneity is to

first test for selection heterogeneity using the untreated outcome test and to then impose

ancillary assumptions to purge selection heterogeneity from the treated outcome test so the

only treatment effect heterogeneity remains.
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Figure 5: Treated Outcome Test Rejects
Test Statistic Shows Negative Selection and/or Treatment Effect Heterogeneity

Under LATE Assumptions

Treated Outcome Test: -120 ≠ 0
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pC = 0.35 pI = 0.60

Untreated Outcome
Treated Outcome

LATE = 320 

p: fraction treated

4 Test for External Validity under Ancillary Assump-

tions

In Figure 6, I depict a test for external validity proposed by Brinch et al. (2017) and applied

in Kowalski (2016). The Mogstad et al. (2017) approach can be used for inference. The

test rejects the null hypothesis of treatment effect homogeneity if the sign of the untreated

outcome test statistic is not equal to the sign of the treated outcome test statistic. The

intuition behind why this test for treatment effect homogeneity is also a test for external

validity is that the LATE can only be externally valid for all policies if the treatment effect is

homogeneous. If the treatment effect is homogeneous, then the treated outcome test and the

untreated outcome test reflect only selection. If the untreated outcome test implies positive

selection but the treated outcome test implies negative selection in the absence of treatment

effect heterogeneity, then the treatment effect cannot be homogeneous, and the LATE cannot
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be externally valid for all policies.

Figure 6: Test for External Validity Rejects Under Ancillary Assumptions

Untreated Outcome Test: 130 ≠ 0

Treated Outcome Test: -120 ≠ 0

Test for External Validity: Sign (-120) ≠ Sign (130)
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Brinch et al. (2017) conduct this test under two ancillary assumptions: 1) weak mono-

tonicity of the untreated outcomes in the fraction treated p, and 2) weak monotonicity of the

treated outcomes in the fraction treated p. As I show in Kowalski (2016) and demonstrate

here, the test only requires one of their ancillary assumptions; either one is sufficient. I

also show that each ancillary assumption implies an upper or lower bound on the average

treatment effect for always or never takers. These bounds help me to demonstrate how the

ancillary assumptions combine with information on always and never takers to test external

validity. Intuitively, if the bounds on the average treatment effects of always and never takers

do not include the LATE, then the LATE cannot be externally valid for all policies.

Bounds on treatment effects for always and never takers are also interesting in their own

right. When the test shows that the LATE is not externally valid, the bounds demonstrate

the magnitude and direction of variation in the average treatment effect across always takers,

compliers, and never takers. The average treatment effects on always and never takers can
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be particularly policy-relevant. Suppose that a policy assigns treatment using a lottery,

but always and never takers are possible. If a hypothetical future policy were to prohibit

treatment for everyone, then its effect would depend on the average treatment effect on

always takers. On the other end of the spectrum, if a hypothetical future policy were to

mandate treatment for everyone, then its effect would depend on the average treatment effect

on never takers.

In Figure 7, I depict the bounds that result from applying the ancillary assumptions to

the hypothetical example. The LATE assumptions imply an ordering from always takers to

compliers to never takers along the horizontal axis. The ancillary assumptions imply the

same ordering along the vertical axis. Because the average untreated outcome of compliers

is larger than the average untreated outcome of never takers, yielding a positive untreated

outcome test statistic in Figure 6, the ancillary assumption on the untreated outcomes implies

a lower bound on the average untreated outcome of always takers in Figure 7. A negative

untreated outcome test statistic would imply an upper bound.

Figure 7: Test for External Validity Rejects Under Ancillary Assumptions:
Treatment Effect Bounds
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p: fraction treated
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The average treatment effect for a group is the difference between the average treated and

untreated outcomes for that group. As depicted in Figure 7, for always takers, the difference

between the observed average treated outcome and the lower bound on the average untreated

outcome implies an upper bound on the average treatment effect. As shown, the upper bound

on the average treatment effect for always takers is 200, which is less than the LATE of 320.

Therefore, the test rejects the external validity of the LATE under the single assumption

that untreated outcomes are weakly monotonic in the fraction treated p.

In Figure 7, I also depict the implications of the alternative ancillary assumption that

treated outcomes are weakly monotonic in the fraction treated p. This assumption implies

an upper or lower bound on the average treated outcome for never takers, depending on the

sign of the treated outcome test statistic. The treated outcome test statistic is negative in

Figure 6, so the assumption implies a lower bound on the average untreated outcome for

never takers in Figure 7. As shown, the lower bound on the average treated outcome for

never takers of 680 implies that the average treatment effect for never takers must be greater

than or equal to 450. However, the LATE is equal to 320, so the test also rejects the external

validity of the LATE under the alternative ancillary assumption.

In experiments with two-sided noncompliance, the test for external validity always yields

the same result under either ancillary assumption. To demonstrate, Figure 8 depicts a

different hypothetical example in which the test for external validity does not reject under

either ancillary assumption. The only change in the hypothetical data is the average treated

outcome of always takers, which changes from 560 in Figure 7 to 860 in Figure 8. This simple

change reverses the sign of the treated outcome test statistic. Under this simple change,

neither ancillary assumption rules out the external validity of the LATE, as demonstrated

by the bounds depicted in Figure 9.

5 Tests For External Validity and Estimates of Treat-

ment Effect Heterogeneity under Stronger Ancillary

Assumptions

In cases where the test of external validity does not reject under the ancillary assumptions

of weak monotonicity of the treated or untreated outcomes in the fraction treated p, re-

searchers can impose stronger assumptions to generate more powerful tests. In the process,

these stronger assumptions can be used to obtain estimates of average treatment effects on

always and never takers in lieu of bounds. Although it is natural to progress from weaker

assumptions to stronger assumptions in empirical work, the stronger assumptions were pro-
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Figure 8: Test for External Validity Does Not Reject Under Ancillary Assumptions

Treated Outcome Test: 180 ≠ 0
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p: fraction treated

Untreated Outcome Test: 130 ≠ 0 

Test for External Validity: Sign (180) = Sign (130)

posed first.

One such set of stronger assumptions is linearity of the treated and untreated outcomes

in the fraction treated p. Olsen (1980) imposes linearity of the treated outcomes only. Brinch

et al. (2017) impose both ancillary linearity assumptions simultaneously. They show that

under both ancillary linearity assumptions, the test of the null hypothesis that the untreated

outcome test statistic is equal to the treated outcome test statistic is a test for external

validity. Hausman (1978); Angrist (2004); Huber (2013); Bertanha and Imbens (2014); Guo

et al. (2014) and Black et al. (2015) propose tests that are tests of external validity if both

ancillary linearity assumptions hold, but they do not all state these assumptions.

Figure 10 demonstrates the implications of the ancillary linearity assumptions using the

same hypothetical data as Figures 8 and 9. As in Kowalski (2016, 2018), I refer to the

function that specifies how treated outcomes vary with the fraction treated p as the marginal

treated outcome function MTO(p), and I refer to the corresponding function for untreated

outcomes as the marginal untreated outcome function MUO(p). Linearity of the treated and
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Figure 9: Test for External Validity Does Not Reject Under Ancillary Assumptions:
Treatment Effect Bounds
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untreated outcomes in the fraction treated p implies that the MTO and MUO functions are

linear, as depicted in Figure 10. The difference between the MTO and MUO functions yields

the marginal treatment effect function MTE(p) from the literature. The MTE function is

linear in Figure 10 because the MTO and MUO functions are linear.

If the MTE function has a nonzero slope, then the treatment effect varies with the

fraction treated p, and the LATE cannot be externally valid for all policies. Thus, a test

for external validity under the ancillary linearity assumptions tests whether the slope of

the MTE function is zero. In the hypothetical example depicted in Figure 10, the test

for external validity rejects under the ancillary linearity assumptions. In contrast, the test

for external validity does not reject under the ancillary weak monotonicity assumptions, as

depicted in Figures 8 and 9. The comparison of the results under both sets of assumptions

demonstrates that the stronger ancillary assumptions are more powerful, as discussed in

Brinch et al. (2017).

As depicted in Figure 10, the ancillary linearity assumptions preserve the LATE of 320
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Figure 10: Test for External Validity Rejects Under Stronger Ancillary Assumptions:
Treatment Effect Estimates
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while also yielding an estimate of the treatment effect at every fraction treated p, as depicted

by the marginal treatment effect function MTE(p). The marginal treatment effect function

MTE(p) can be weighted to recover many average treatment effects of interest following

Heckman and Vytlacil (1999, 2001b, 2005), Carneiro et al. (2011), Brinch et al. (2017)

and Kowalski (2016, 2018). These average treatment effects of interest include the average

treatment effects for always and never takers.

Any alternative ancillary assumptions that identify the MTE function at every fraction

treated p also allow for tests of external validity and estimates of average treatment effects for

always and never takers. For example, Kline and Walters (2018) show that the distributional

assumptions made by the “Heckit” estimator of Heckman (1979) and the estimator used by

Mroz (1987) identify the MTE function at every fraction treated p. The assumptions made

by Willis and Rosen (1979) also identify the MTE function at every fraction treated p. As

another example, Brinch et al. (2017) propose that MUO and MTO functions are quadratic

and monotonic over the fraction treated from 0 to 1, and those assumptions identify the
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MTE function at every fraction treated p. If covariates are available, then it is also possible

to incorporate shape restrictions on how covariates enter the MTO and MUO functions to

allow for more flexible functional forms for the MTE function, as in Carneiro and Lee (2009);

Carneiro et al. (2011); Maestas et al. (2013); Kline and Walters (2016); Brinch et al. (2017);

Kowalski (2016, 2018)

Researchers can determine which ancillary assumptions they are willing to impose based

on the institutional features of their experiments. For example, in some experiments, it

could be plausible that participants select into treatment based on underlying differences

in their untreated outcomes, motivating assumptions on the untreated outcomes. In other

experiments, it could be plausible that participants select into treatment based on their

anticipated treated outcomes, motivating assumptions on the treated outcomes. The set of

plausible assumptions could vary within an experiment across outcomes.

Researchers can also determine which ancillary assumptions they are willing to impose

through examination of available covariates. For example, monotonicity in baseline covari-

ates across always takers, compliers, and never takers can lend support to the assumption of

monotonicity in untreated outcomes. The assumption of monotonicity of treated outcomes

is harder to defend based on baseline covariates, unless there is an institutional reason to

believe that the covariates affect selection and treatment effect heterogeneity. Researchers

can also use shape restrictions on how covariates enter the MTO and MUO functions to test

alternative assumptions.

6 Implications for Experimental Design

The examination of external validity in this essay reinforces a counter-intuitive insight: re-

searchers should consider designing experiments to allow for always and never takers if the

policy of interest would also entail always and never takers. Heckman and Vytlacil (2001a,

2007) make this insight clear with the concept of “policy-relevant treatment effects.” If re-

searchers are interested in treatment effects from a policy that would allow for always and

never takers, then they should consider designing experiments with interventions to yield

the same always or never takers that they would expect under the policy.

Sometimes researchers force all individuals to comply with random assignment with the

goal of estimating a LATE equal to the average treatment effect in the entire sample. How-

ever, unless the policy of interest would also force all individuals to receive treatment, an

experiment with perfect compliance is not superior to an experiment with noncompliance.

In fact, by forcing perfect compliance when the policy of interest would not force all in-

dividuals to receive treatment, researchers not only risk reducing the applicability of their
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results, but also they eliminate useful information. Such information can be used to examine

heterogeneous selection under the given policy, and it can be combined with assumptions to

examine the heterogeneous selection and treatment effects that would be induced by a range

of hypothetical policies.

If researchers are primarily interested in the impact of a range of hypothetical policies,

then they should consider designing experiments with a range of interventions instead of a

single intervention. For example, researchers can offer a range of randomized prices for a

treatment instead of simply offering the treatment for free to lottery winners. Ashraf et al.

(2010), Chassang et al. (2012), Berry et al. (2015), and Narita (2018) present experimental

designs that involve a range of interventions. These designs potentially involve a loss of

power, but they have important advantages. Experiments with a range of interventions can

inform selection and treatment effect heterogeneity even if always and never takers are not

possible. Furthermore, if the range of interventions induces a continuous fraction treated over

some range, then researchers can identify the selection and treatment effect heterogeneity

over that range without any ancillary assumptions.

Finally, researchers should collect data to facilitate examination of external validity within

and across experiments. To apply the approaches discussed in this essay, it is imperative

to collect data such that it is possible to perform tabulations of outcomes by lottery status

and treatment. It is also useful to collect data such that it is possible to perform similar

tabulations of covariates. Data on covariates also facilitate comparisons across experiments.

Approaches to assess external validity across experiments are even more powerful when used

in concert with approaches to assess external validity within experiments.
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