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1 Introduction

In the United States, the Clean Air Act and its amendments reduced damages from air pol-

lution by $35.3 trillion from 1970 to 1990. However, since these regulations impact nearly

every industrial facility in the U.S., combined enforcement and compliance costs to govern-

ments and plants over this period were also large: $831 billion (Environmental Protection

Agency, 1997, converted to 2007 dollars). While the benefits appear to justify the costs, the

sheer magnitude of these costs makes it critical to understand the efficiency of regulatory

monitoring and enforcement mechanisms for pollution control.

To better understand how environmental regulations are enforced, first consider an exam-

ple of a large oil refinery in Texas.1 In 2011, after a period with only low-level violations, the

plant was conducting work to improve productive efficiency when a valve that should have

been left open was closed. This led to a pressure buildup in a pipeline, causing a leak and

emissions of volatile organic compounds and benzene. Because these emissions came from an

unauthorized source within the facility, the plant was placed in high priority violator (HPV)

status, subjecting it to higher scrutiny and fines. In 2012, another low-level pollution release

similar to the earlier ones occurred, but this time the fine imposed was doubled because the

plant was in HPV status. Increased scrutiny and enhanced fines continued through a series

of additional releases until the plant made two separate investments in pollution abatement

and monitoring, after which it was removed from HPV status, returning to a baseline level

of scrutiny in 2013.

This example illustrates one way that the U.S. Environmental Protection Agency (EPA)

uses dynamic enforcement—where regulatory actions are a function of the plant’s history

of past actions (Landsberger and Meilijson, 1982; Shimshack, 2014)—to enforce the Clean

Air Act Amendments (CAAA). Specifically, the EPA designates repeat offenders as HPVs

and targets them with elevated scrutiny and penalties. Regulators may choose dynamic

enforcement because it avoids over-fining plants before they have a chance to fix violations,

but uses the threat of high fines as an incentive for plants to make costly investments in

1We obtained the information underlying this example from our analysis data, described in Section 3.1,
and documents from Texas (Texas Commission on Environmental Quality, 2019).
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pollution abatement. Dynamic enforcement may add value when the imposition of fines is

costly to the regulator and also when the regulator cannot contract on a plant’s compliance

costs with its regulatory policies.

CAAA enforcement incorporates substantial state-dependent scrutiny, in part through

HPV status designation. To illustrate this, Figure 1 shows mean unconditional CAAA in-

spection rates, violation rates, and fines separately for plants in compliance, regular (not-

high-priority) violators, and HPVs. In each case, the level of scrutiny increases dramatically

with regulatory status.2

Figure 1: EPA Clean Air Act Amendment Enforcement by Regulatory Status
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Note: figure reports 2007-13 unconditional mean quarterly levels of inspections, violations, and fines by
CAAA regulatory status, based on authors’ calculations from the estimation sample.

2The increasing pattern for fines in Figure 1 could be due to dynamic enforcement or to those plants
violating environmental norms more frequently or severely. Our analysis allows for both of these explanations.
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This paper seeks to quantify the gains from dynamic enforcement of the CAAA. To do

this, we first estimate the cost to industrial facilities of complying with the EPA’s current

dynamic approach. We then simulate the value of alternative enforcement regimes in affecting

plants’ emissions and compliance with the CAAA. Our modeling and estimation framework

are specific to the CAAA, but we believe that similar approaches may yield important general

insights, since dynamic enforcement is used across many settings. While the theoretical value

of dynamic enforcement is well established, our contribution is to provide evidence on the

degree to which this value holds empirically.

In order to measure the value of dynamic enforcement, one needs to account for its

benefit in lowering pollution damages and weigh that against the compliance costs to plants

and regulators. Measuring this value requires estimating a dynamic model of the costs to

plants from investment in pollution abatement relative to the costs of regulatory scrutiny.

In our model, the plant and regulator play a discrete-time dynamic game. The regulator

makes decisions regarding inspections and fines. Inspections help the regulator obtain more

precise information about CAAA compliance. Using its information—including from the

inspection when one is performed—the regulator determines whether violations have occurred

and decides whether to transition plants to regular or high priority violator status. Both

outstanding violations and elevated regulatory status can subject plants to higher inspection

rates and higher fines. The regulator bears a cost from conducting inspections and imposing

fines. To avoid making assumptions about the EPA’s objective function, we do not estimate

the regulator’s utility function, but rather model the regulator’s decisions using conditional

choice probabilities (CCPs).

Plants decide whether and when to invest in pollution abatement technologies and po-

tentially bear costs from both regulatory actions (e.g., shutting down a production line to

allow for an inspection) and investment in pollution abatement. Therefore, a plant that is in

regular or high priority violator status will consider investing in order to reduce its present

discounted value of future regulatory costs. Recovering these costs is key to understand-

ing how plants will respond to counterfactual regulatory policies, such as those that do not

condition enforcement activities on plant state.
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Our estimation makes use of extensive data with information on virtually all industrial

facilities in high polluting industries covered by the CAAA. Our data report inspections,

violations, fines, compliance status, and investment decisions for a seven-year-long panel

with over 2.3 million plant / quarter observations. These data allow us to estimate plant

costs with a non-parametric random coefficients model. We specify a fixed grid of potential

cost parameters and estimate the population weights of each. We use a generalized method

of moments (GMM) estimator that is computationally very tractable, with a quick and

convex optimization problem. Using our estimated cost parameters, we evaluate the gains

from dynamic enforcement by computing the pollution damages, assessed fines, and other

outcomes when plants optimize under counterfactual regulatory policies.

Relation to literature. This paper relates to three distinct literatures. First, there

is an empirical literature on the enforcement of environmental regulations that has largely

focused on estimating the relationship between compliance and enforcement.3 A number of

papers also show that dynamic enforcement exists across a variety of contexts.4 We add to

this literature by estimating the value of dynamic enforcement of environmental regulations.

Second, we build on the structural environmental economics literature (e.g., Timmins,

2002; Ryan, 2012; Lim and Yurukoglu, 2018; Muehlenbachs, 2015; Fowlie et al., 2016; Duflo

et al., 2018; Houde, 2018; Kang and Silveira, 2018). In particular, Duflo et al. (2018) and Kang

and Silveira (2018) estimate regulator preferences in order to evaluate the value of regulator

discretion. Duflo et al. (2018) consider a dynamic model of air pollution regulation in India

(but do not investigate dynamic enforcement), while Kang and Silveira (2018) consider a

static model of water pollution enforcement in California. Though our settings are different,

3For instance, Magat and Viscusi (1990), examine whether inspections lower emissions at a plant, Nadeau
(1997) uses variation across plant types and states to look at the effect of enforcement on the duration of
non-compliance, Shimshack and Ward (2008) show that increased enforcement can lead even compliant plants
to reduce emissions, leading to “over-compliance,” where plants emit well below the compliance threshold,
and Stafford (2002), Keohane et al. (2009) and Blundell (2020) examine how variation in the intensity of
dynamic enforcement relates to plants’ compliance status.

4E.g., for the CAAA (Evans, 2016) and the Clean Water Act (Earnhart, 2004; Shimshack and Ward,
2005) in the U.S., petroleum storage in Canada (Eckert, 2004), air pollution in Norway (Telle, 2013), soil,
water, and air pollution in Belgium (Blondiau et al., 2015), and waste management in Japan (Shinkuma and
Managi, 2012). Dynamic enforcement is also widely used beyond environmental regulations, e.g., in worker
health and safety regulation (Ko et al., 2010) and tax auditing in China (Maitra et al., 2007).
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these papers also highlight the value of heterogeneous enforcement.

Third, we use a non-parametric estimating framework for dynamic discrete choice models

with random coefficients (Arcidiacono and Miller, 2011; Fox et al., 2011; Gowrisankaran and

Rysman, 2012; Connault, 2016; Fox et al., 2016; Nevo et al., 2016). In this dimension, our

paper is most similar to Fox et al. (2011), Fox et al. (2016), and Nevo et al. (2016) in that it

uses the same fixed grid GMM approach and similar computational techniques.

2 Dynamic Enforcement in Practice and Theory

2.1 Dynamic Enforcement Under the Clean Air Act Amendments

Congress passed the Clean Air Act in 1963 in an effort to improve air quality. While the

original Act mostly provided funds for research into monitoring and limiting air pollution, a

series of amendments starting in 1965 codified air pollution standards and federal enforce-

ment of these standards. Following the National Environmental Policy Act of 1969 and the

1970 Clean Air Act Amendment, the Environmental Protection Agency (EPA) was created

to enforce air pollution standards and other environmental legislation. The Act was last

amended in 1990 to expand the scope of regulated air pollutants and increase federal en-

forcement authority. The Clean Air Act combines with its amendments to form the current

structure of air pollution regulation enforcement. We will refer to the CAAA in what follows.

The CAAA give the EPA the authority to regulate criteria air pollutants—ozone (O3),

particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOX), sulfur dioxide

(SO2), and lead (Pb)—as well as various hazardous air pollutants. The CAAA mostly man-

date command-and-control regulations, which require that plants’ pollution be at or below

thresholds that could be achieved with the best technologies and practices.5 To ensure that

plants comply with these regulations, the EPA has developed an enforcement regime that

includes a system of permitting, inspections, violations, fines, and other requirements (e.g.,

5The CAAA include some market-based regulations, such as the NOX cap-and-trade program. However,
these regulations incentivize reductions in NOX emissions beyond the command-and-control requirements.
Importantly, plants cannot simply purchase cap-and-trade permits to ensure CAAA compliance.
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self-reporting paperwork). This enforcement structure aims to reduce pollution by ensuring

that plants are complying with the CAAA emissions and technology standards and by en-

couraging plants that are out of compliance to return to compliance via plant investments in

improved processes or technology.

While the CAAA and EPA dictate the structure of CAAA enforcement, much of the

actual enforcement activity is carried out by regional- and state-level environmental pro-

tection agencies.6 In particular, the EPA divides the country into 10 geographic regions

(Environmental Protection Agency, 2017). Significant portions of the EPA’s operations are

conducted through these regional offices. For instance, regional EPA offices conduct inspec-

tions and/or issue sanctions when a state’s enforcement is below required levels, and assist

states with major cases. Further, EPA guidance explicitly states that “regions and states

can take varied approaches to improving state enforcement programs” (Environmental Pro-

tection Agency, 2013, p.5). Thus, EPA regions and states represent geographic areas across

which the interpretation of federal policy and preferences for enforcement may vary.

Under the enforcement system used during our sample period, all plants—in compliance

or otherwise—could expect to be inspected regularly. The frequency of these inspections

depended not only on baseline differences across states and regions in enforcement budgets

and priorities, but also on the size of the plant and whether the plant was located in a

National Ambient Air Quality Standards (NAAQS) non-attainment area. Non-attainment

areas were required to have plans to return to attainment, which could lead to increased

levels of scrutiny for plants in these areas.

In the course of an inspection, or via a plant self-report, regulators may uncover a violation

of the CAAA, and the plant will enter “violator” status. Being a violator subjects the plant

to additional inspections, which could possibly uncover additional violations and potential

fines. Plants can accumulate multiple violations within violator status and will only return

to compliance once those violations have been resolved. The cost to the plant of being a

violator therefore comes not only from the investment cost required to resolve outstanding

6While many of these state agencies are called something other than an “EPA” (e.g., the Florida Depart-
ment of Environmental Protection), we will refer to them as state EPAs for brevity. State and regional EPAs
are required to maintain a minimum level of enforcement, but can exceed this threshold (Shimshack, 2014).
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violations, but also from an increased level of regulatory oversight.

In addition to conducting inspections and identifying violations, the EPA can issue fines

to plants. Fines are calculated using two main components: the gravity of the violation and

the economic benefit that the plant received from the violation (Environmental Protection

Agency, 1991). The gravity component of each violation is primarily determined from the

actual or potential harm of the violation, which includes (a) the level of the violation, (b)

the toxicity of the pollutant, (c) the sensitivity of the environment into which the pollutant

is released, and (d) the duration of the violation. Additionally, gravity is adjusted based

on a number of other factors including whether there were reporting issues (e.g., permitting

and self-reporting violations), the plant’s history of noncompliance, and the plant’s ability to

pay.7 Our modeling of regulator fines takes these features into account through the plant’s

history of violations and recent investments and a series of fixed effects that seek to capture

a plant’s economic benefit of noncompliance and gravity, based on the plant’s industry and

location. Finally, because of bankruptcy laws, political pressure, and explicit caps, the EPA

is limited in the penalties it can assess. In particular, driving plants out of business for small

infractions would undermine political support for the CAAA and EPA. Thus, there is an

advantage to the EPA of obtaining compliance without issuing numerous large penalties.

The EPA can designate plants with particularly egregious or repeated violations as “High

Priority Violators” (HPV). The HPV designation is explicitly “designed to direct scrutiny

to those violations that are most important” (Environmental Protection Agency, 1999, p.1-

1) and, during our time period, is reserved for plants that meet one of ten “general” HPV

criteria or five “matrix” criteria. While some violations unambiguously merit HPV designa-

tion (e.g., “Failure to obtain a Prevention of Significant Deterioration or New Source Review

permit”), others either leave room for regulator discretion (e.g., “Substantial testing, moni-

toring, recordkeeping, or reporting violation”) or are explicitly dynamic (e.g. “Violation by

a chronic or recalcitrant violator”). Once a plant enters HPV status, it triggers a period

7While regulatory enforcement can be tailored to individual plants to some extent via adjustments for
ability to pay, enforcement is not allowed to vary based on the EPA’s perception of plants’ underlying costs.
In particular, Environmental Protection Agency (1991) states on p. 22:“... in order to promote equity, the
system for penalty assessment must have enough flexibility to account for the unique facts of each case. Yet
it still must produce consistent enough results to ensure similarly-situated violators are treated similarly.”
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of intense oversight by the EPA that includes more frequent inspections (which can lead to

uncovering additional violations), higher fines, and explicit deadlines for both EPA and plant

actions to resolve any outstanding violations. Plants in HPV status face higher regulatory

burdens, as shown in Figure 1. As with the Texas example, plants can only exit HPV sta-

tus after resolving all outstanding violations, regardless of whether those violations would

independently elevate the plant to HPV status. The combination of increased inspections,

violations, fines, and general regulatory oversight means that HPV status is—and is intended

to be—substantially costly for plants.

The use of HPV status has been contentious, and the EPA continues to update enforce-

ment policies. During the time frame of our analysis, the EPA used a “watch list” to focus

particular attention on HPVs that did not resolve all of their violations in a timely manner.

Public disclosure of the watchlist appears to have increased plants’ costs by leading to in-

creased attention from local politicians and civilian environmental protection groups (Evans,

2016). This is in keeping with evidence from Johnson (2016), who finds that publicizing

non-compliance (in that case for OSHA regulations) can be costly to plants. Further, in 2014

(after our sample period), the guidelines for plants being classified as HPVs were narrowed

and the watch list was eliminated. These changes highlight the fact that evaluating the effect

of dynamic incentives is particularly important.

2.2 General Theoretical Framework

Our theoretical model of EPA enforcement and plant investment seeks to capture the frame-

work described above in a tractable setting. Our model builds on a literature on rational

compliance and optimal punishment (Bentham, 1789; Becker, 1968). We adopt their view

that compliance, in our case with environmental regulations, is a rational decision, where a

plant chooses its compliance decisions in order to maximize its surplus.

Landsberger and Meilijson (1982) expand the Becker framework to consider dynamic en-

forcement in a two-period model of tax compliance. They focus on policies that vary an

individual’s audit rate (similar to our inspection rate) based on her previous detected viola-
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tions. Harrington (1988) analyzes dynamic enforcement with a similar framework, where the

regulator underpenalizes one-time violations in order to create incentives to avoid repeated

violations. Mookherjee and Png (1994) generalize this idea of differential enforcement activ-

ities in a static model by formalizing the concept of marginal deterrence, where the regulator

underpenalizes small violations in order to create strong marginal incentives to avoid large

violations. These policies are both examples of what we call escalation mechanisms, where

marginal deterrence is increasing in the extent of the violation or history of violations.

Most of the theoretical papers on escalation mechanisms show that increasing marginal

deterrence can increase surplus given an implicit or explicit cost of penalties or enforcement

for the regulator (Landsberger and Meilijson, 1982; Harrington, 1988; Leung, 1991; Mookher-

jee and Png, 1994; Polinsky and Shavell, 1998; Friesen, 2003). As we noted in Section 2.1, the

EPA faces such costs in enforcing the CAAA. In addition, some studies consider heteroge-

neous plants and an inability of the regulator to contract on types as a reason for escalation

mechanisms (Landsberger and Meilijson, 1982; Mookherjee and Png, 1994; Raymond, 1999;

Kang and Silveira, 2018). In this case, escalation mechanisms can add value by creating a

separating equilibrium across types. For instance, with heterogeneous investment costs, an

escalation mechanism may incentivize low-cost plants to invest in pollution abatement when

they are regular violators and fines are low while high-cost plants will wait until they become

HPVs and fines are higher.

Our model of dynamic CAAA enforcement builds on these insights. Each plant plays

a dynamic game with the regulator. Our estimation is consistent with the equilibrium of

the game being Markov Perfect or with pre-commitment on the part of the regulator.8 The

regulator would like plants to comply with environmental regulations, but also bears a cost

from conducting inspections and issuing fines. CAAA violations arise stochastically and

plants detect them concurrently with the regulator. Plants make optimizing decisions about

whether to invest in remediation of violations. These investments take time and are not

always successful in fixing violations. We allow for an escalation mechanism with dynamic

8Pre-commitment is very similar to a plant playing against a “regulatory machine” (as modeled by Duflo
et al., 2018).
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enforcement, as is present in the data. We also allow for heterogeneous plants and an in-

ability to contract on plant type. The underlying reasons for dynamic enforcement are a

regulator cost of enforcement; heterogeneous plants; delay and stochasticity in remediation

from investment; and imperfect information from inspections.

Each period t corresponds to a quarter and the future is discounted with factor β.9 Let

the regulatory state Ωt be the payoff-relevant state variables over which plant and regulatory

actions may depend; Ωt is known to the regulator and plant at the start of the period.

Each period, the regulator first receives an i.i.d. private information shock to the value

of an inspection and then decides whether or not to inspect the plant. Let I(Ω) denote

the inspection probability and Ins the actual inspection decision. The regulator and plant

then receive a signal et, which provides information on the presence and severity of CAAA

compliance issues, including emissions from multiple pollutants, plant reporting concerns,

and technology maintenance problems.

Specifically, the signal et ≡ (e1t , . . . , e
5
t ), is the predictor of compliance issues beyond the

state. It has five potentially correlated dimensions and a joint distribution that depends on

Ins. First, violations depend on e1, through the function V io(Ω, e1). Second, fines depend

on e2, through Fine(Ω, e2). Third, e3, e4, and e5 determine transitions to compliance, regular

violator, and HPV status, through Ω̃ ≡ T (Ω, e3, e4, e5). In our framework, I(·) and Fine(·)

are policies chosen by the regulator, whereas V io(·) and T (·) are dictated by e and CAAA

standards.

Following the regulator action, the plant, if not in compliance under Ω̃, makes a binary

decision of whether or not to invest in pollution abatement. Let X ∈ {0, 1} denote the

investment decision. A plant chooses its investment decision in order to minimize its expected

discounted sum of the costs from inspections, violations, fines, designation as a high priority

violator, and investment.10 A plant that invests incurs a cost from its investment, but

increases the chance that it returns to compliance in future periods. The regulator chooses

9While we capture exogenous plant exit through the discount factor, with a lower discount factor corre-
sponding to more exit, we do not endogenize exit. Duflo et al. (2018) find no difference in exit rates for plants
randomized into additional regulatory scrutiny in India; we believe that plants in our sample are less likely
to be at the margin for exit than plants in India.

10Since we do not incorporate endogenous exit in our model, we do not model the profit from operations.
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its inspection and fine policies to minimize the expected weighted sum of damages from

pollution, plant investment costs, and enforcement costs.

In order to further illustrate the value of dynamic enforcement, On-Line Appendix A1 de-

velops a simple, special case of this model, that is similar to Polinsky and Shavell (1998). Our

simple case highlights how static escalation mechanisms add value by allowing the regulator

to increase the marginal deterrence for multiple violations relative to individual violations.

Dynamic escalation mechanisms, including the approach the EPA uses to enforce the CAAA,

add more value in theory by allowing the regulator to condition on more variables. The re-

mainder of our paper investigates the extent to which this theoretical result holds in practice,

by specializing this model to our empirical context.

3 Data and Empirical Foundations

Before we turn to our empirical framework, Section 3.1 describes our data sources and Sec-

tion 3.2 develops the empirical assumptions that allow us to take our theoretical model to

the data.

3.1 Description of Data

Our main analyses principally use four publicly available databases. We summarize our use

of the databases here, with details on data construction in On-Line Appendix A2.

Primarily, we use the Environmental Compliance History Online (ECHO) enforcement

database.11 The ECHO database provides plant industry and county, enforcement actions,

measures that we use to determine investment, and compliance, regular violator, and HPV

status. We infer that a plant has invested if the ECHO data indicate either an environmental

issue resolution code or the issuance of a Prevention of Significant Deterioration (PSD)

permit.12 Our measure of investment is imperfect in that it only captures large (likely

11The ECHO database that we use includes eight components (Environmental Protection Agency,
2014a,b,c, 2015a,b,c,d,e). We deflate fines to constant 2007 dollar amounts using the U.S. Consumer Price
Index for urban consumers (OECD, 2019).

12We also infer investments for plants that exited HPV status and eliminate investments in compliance
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capital) investments rather than smaller investments in improving plant processes that may

also reduce pollution. To our knowledge, there is no comprehensive national database that

contains these types of smaller process investments. We also collected data from the Texas

Commission on Environmental Quality (TCEQ) on all changes in pollution abatement devices

at major air polluters in Texas during our time frame (Texas Commission on Environmental

Quality, 2018) and created a cross-walk from the TCEQ data to the ECHO data (Blundell

et al., 2020). The TCEQ data confirm that our measure of investment matches well with

observed changes in abatement technology.

We collapse the ECHO data from the pollution source (AFS ID) level to the plant (FRS

number) level using a crosswalk provided by the EPA, and aggregate to the quarter level. We

limit our study to the seven most polluting North American Industry Classification System

(NAICS) industrial sectors, as listed in Table 2 below. This forms our analysis data, which

are at the plant / quarter level and extend from Q1:2007 until Q3:2013.13

Table 1: Investment Rates by Regulatory Status

Compliance Regular High priority
violator violator

Investment (%) 0.00 4.91 17.50
Investment (from resolution code) (%) 0.00 4.62 16.35
Investment (from PSD permit) (%) 0.00 0.34 0.43
Investment (from HPV exit) (%) 0.00 0.00 0.80
Dropped investment in compliance (%) 0.37 0.00 0.00
Plant / quarter observations 2,252,570 66,992 36,346
Note: authors’ calculations based on estimation sample.

Table 1 summarizes investment rates by regulatory status. Our data contain 2,355,908

plant / quarter observations. As is well-documented in the literature (e.g., Evans, 2016),

compliance is high: 95.6 percent of observations indicate compliance. We find that investment

occurs in 4.9% of quarters when a plant is a violator and in 17.5% of quarters when a plant

(see Section 3.2).
13The ECHO enforcement actions data start shortly before the beginning of this period but we start our

sample in 2007 to be able to use lagged values of variables. Although this dataset supposedly continued
through 2014, we noticed fewer reported cases after Q3:2013, which we believe are due to early transitions
to the new database. This motivates our choice to end our analysis sample in Q3:2013. Our seven industries
capture 74% of plant / quarters with inspections, 75% of plant /quarters with violations, and 78% of plant
/ quarters with positive fines during our sample period, among plants that report to ECHO.
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is an HPV. We derive the vast majority of these investments (94%) from codes that indicate

the resolution of an environmental problem. We derive a much smaller set of investments

from Prevention of Significant Deterioration permits and from exiting high priority violation

status. Finally, we observe codes that are indicative of investment in 0.37% of plant / quarters

in compliance, but do not count these as investments.

Not shown in the table, our data cover 107,705 unique plants, of which 66.7 percent are

present in every quarter of our sample period. Compliance is also high when considering

individual plants: 88.4 percent of plants are never out of compliance, while 7.4 percent of

plants have at least one quarter in which they are a regular violator but are never in HPV

status. Only 4.2 percent of plants have at least one quarter in which they are in HPV status.

We combine the ECHO enforcement data with three additional datasets. First, the Na-

tional Emissions Inventory database measures emissions every three years (Environmental

Protection Agency, 2019). Our study focuses on emissions of criteria air pollutants (and not

hazardous air pollutants) as the data quality for these pollutants is much better (Environ-

mental Protection Agency, 1997). We merge the 2008 and 2011 NEI data from ECHO’s Air

Emissions Data to our base data using the FRS number and year. We use the NEI data in

combination with the AP3 data described next to understand each plant’s expected gravity

of a violation. Further, we use the NEI data to calculate the mean levels of six pollutants by

regulatory state, which are necessary for our counterfactuals.

Second, we use the AP3 database (Clay et al., 2019) for elevated (e.g., smokestack-level

rather than ground-level) emissions to get the marginal damages for criteria air pollutants in

each county in 2011. We supplement the AP3 data with a national estimate of the marginal

damages of lead from Zahran et al. (2017).14

Third, the National Ambient Air Quality Standards (NAAQS) database indicates whether

a given county is entirely or partly in non-attainment of NAAQS during our sample period.

These data enter into our measure of the expected gravity of a violation.

Table 2 provides summary statistics on the reported criteria air pollution damages for

14Zahran et al. (2017) measure the effect of leaded aviation fuel on the level of lead in children’s blood and
associate this with changes in long-run earnings. This is likely a lower bound on the marginal damages of
lead (Hollingsworth and Rudik, 2019).
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Table 2: Summary Statistics on Mean Criteria Air Pollution Levels

Observations Mean Mean level Mean
Industry in analysis level in as regular level

data compliance violator as HPV
Mining & extraction (NAICS 21) 687,400 $500 $3,997 $5,138
Utilities (NAICS 22) 112,554 $14,937 $60,656 $97,472
Manufacturing: food, textiles (NAICS 31) 139,826 $642 $2,981 $4,090
Manufacturing: wood, petroleum (NAICS 32) 617,572 $895 $2,832 $6,422
Manufacturing: metal (NAICS 33) 539,000 $319 $2,020 $3,655
Transportation (NAICS 48) 157,326 $414 $1,117 $3,228
Educational services (NAICS 61) 132,209 $662 $1,844 $2,840
Note: table reports summary statistics on total criteria air pollution damages in thousands of dollars
per plant / quarter observation in our analysis data.

our analysis data, by industry. There is substantial variation in the pollution damages across

industries. For plants in compliance, the most (least) polluting industry in our data is utilities

(educational services). Across industries, average pollution damages are highest for plants in

HPV status and lowest for plants in compliance.

3.2 Empirical Foundations of the Estimable Model

Recall that in our dynamic model, the plant’s decisions are a function of its regulatory state.

In principle, the regulatory state lists the plant’s history of prior violations and investments

and its EPA region, industrial sector, and expected gravity of violations. In practice, we

need to summarize this information for tractability. In this section we provide evidence to

motivate our state space and other modeling choices, with further substantiating tables and

figures in On-Line Appendix A4.

Investment

We first investigate the role of current and past investment in affecting violator status by

regressing whether a plant returns to compliance (from regular or high priority violator

status) on current investment, and four quarter lags of investment. We find that investment

in the previous quarter is a very strong predictor of a return to compliance, increasing the

probability of a return by 38 percentage points. Investment two quarters ago is a weaker,
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though still statistically significant and positive predictor. In contrast, current investment,

and further lags of investment are all negative predictors.15 Based on these regressions, our

state space allows for two lags of investment to affect the regulatory state. We also assume

that current investment does not impact a plant’s likelihood of returning to compliance in

the current period (but can in the subsequent two periods). Finally, the lack of a positive

current effect of investment motivates our timing assumption that investment occurs at the

end of each period, after the regulator’s actions and regulatory outcomes.

Figure 2: Effect of Investment on Regulatory State
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Focusing now on investment in the previous quarter, Figure 2 shows in more depth the

frequency with which this investment resulted in a return to compliance. If the plant starts

the period in HPV status and did not invest in the previous quarter then it will, with certainty,

finish the quarter in HPV status. If the plant did invest, there is still a 25% chance that it will

finish the period in HPV status, but there is now a 49% chance that the plant will transition

15The negative coefficient on current investment may be due to plants in violation investing when additional
problems arise.
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to compliance and a 26% chance that the plant will transition to regular violator status.

Lagged investment similarly increases the rate at which the plant transitions from regular

violator status to compliance, although some plants do transition from regular violator status

to compliance even without investment. Thus, overall, investment increases the probability

that a plant returns to compliance, but does not result in compliance with certainty.

Finally, we consider investments in compliance, to investigate whether these might help

prevent future violations. We estimate whether a plant transitions out of compliance given

recent investment, region, industry, and gravity state dummies. We find that investments in

compliance increase the likelihood that a plant transitions to both regular and high priority

violator status in the following two quarters.16 We therefore assume that any investments

that we observe in our data that occur while a plant is in compliance are economic invest-

ments (e.g., designed to increase productivity) rather than prophylactic efforts to improve

environmental compliance.

Depreciated Accumulated Violations

Figure 1 showed that inspections, violations, and fines all varied substantially based on

whether the plant is in compliance, a regular violator, or an HPV. We further investigate

whether, within these categories, previous violations are predictive of inspections, violations,

and fines. We define a summary measure for plants out of compliance called “depreciated

accumulated violations” which is the sum of the depreciated violations from the previous

quarter back to the period the plant most recently left compliance. We find that for both

regular and high priority violators, depreciated accumulated violations is a strong and positive

predictor of inspections, the probability of having a positive fine, and violations.17 We

therefore include depreciated accumulated violations as a state variable that can affect plants’

expected regulatory burden.

16This result is consistent with the evidence presented in Keohane et al. (2009) that shows that the EPA
was more likely to bring lawsuits against plants with recent large (economic) investments, a result that they
attribute to increased regulatory scrutiny after major investments.

17We use a 10% quarterly depreciation rate for accumulated violations, as this results in better predictors
for these variables than other depreciation rates.
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Gravity State

As we discussed in Section 2.1, one of the key components of the EPA’s determination of fines

is the gravity of the associated violation. The gravity of a violation is primarily determined

by its actual or potential harm, which varies with the pollutants emitted and plant location.

Gravity is not directly recorded in the ECHO database.18

We construct a version of plant-specific expected gravity that aims to capture plants’

expectations of the actual and potential harm of a violation as well as the regulatory scrutiny

brought about by a plant being in a NAAQS non-attainment area.19 We focus on the idea

that the distribution of pollution across plants in an industry forms the basis of expectations

about pollution quantities, both in terms of the mean amount of pollution and the extreme

level of pollution if it were an outlier in its industry.

For a given plant in a given county, we therefore take every plant in the same industry

nationally, and use the NEI pollution database and the AP3 damages database to calculate

the damages from criteria air pollutants if each of those plants were located in this county.

From this distribution, we take the mean of this distribution as the plant’s expected actual

damages of a violation and the 90th percentile of this distribution as the expected potential

damages of a violation. We then combine this information with the NAAQS non-attainment

database to sort plants into five gravity state bins: below and above the national median for

actual and potential damages, further splitting those above the median in both categories

into attainment and non-attainment status during our sample period.

18While the data do include the pollutant implicated in the violation, this field is only reported for 14.6% of
violations because it does not fall under the federal Minimum Data Requirements of what must be reported
to the EPA for every plant. Further, when the “pollutant” is reported, it is often a generic entry such as
“facility-wide permit violations” (conditional on an entry, 34.8% of pollutants list this code).

19Our measure of non-attainment is whether a county is in non-attainment for any pollutant during any
year of our sample period. In our data, 87% of counties are either fully in attainment or out of attainment for
at least one pollutant in every year of our sample period and only 1.6% are out of attainment for a minority
of years, implying that this is a reasonable and computationally tractable approximation.
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Heterogeneity in Regulatory Environment and Costs

Our model allows plants to find both regulatory policies (inspections and fines) costly. We

assess how these enforcement decisions vary across different regions and industries by mea-

suring the ratio of fines in HPV status to regular violator status and correlating these ratios

with the analogous ratios of inspection rates. We find a correlation of 0.06 (p=0.87) across

regions and 0.09 (p=0.86) across industries. These low correlations imply that regions and

industries differ in how enforcement escalates with the regulatory state, which will help us

identify the costs of fines separately from the costs of inspections.

Finally, our data exhibit substantially more serial correlation in investment than we would

expect to occur randomly. About 30% of investments are followed by at least one additional

investment within the next six quarters, relative to the approximately 2.3% we would observe

if investment were i.i.d. This suggests that a random coefficients model may be important.

4 Empirical Framework

This section specializes the model we developed in Section 2.2 to our empirical context,

presents our estimation approach, and discusses identification. On-Line Appendix A3 pro-

vides additional details.

4.1 Estimable Model

We do not estimate the regulator’s utility function. Rather, we specify the regulator’s policy

function as CCPs (Aguirregabiria and Mira, 2007), and then use the regulator’s CCPs to

estimate plants’ utility functions. Following the evidence in Section 3.2, we let the regulatory

state Ω have six components: (1) EPA region, (2) two-digit NAICS industrial sector, (3)

expected gravity of potential violations, as measured by county non-attainment status and

potential environmental damages for plants based on county and industry, (4) depreciated

accumulated violations with a 10% quarterly depreciation rate, (5) regular violator or high

priority violator status, and (6) two quarterly lags of investment.
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The regulatory state needs to capture all information that affects the distribution of

current and future regulatory actions in order for plants to have the same priors on expected

regulatory enforcement as our model. Formally, we impose:

Assumption 1. The environmental compliance signal at period t, et, is a function only of

the regulatory state Ωt, the regulator inspection CCPs I, and the inspection decision Inst.

Assumption 1 imposes that e is a function of the regulatory state and the regulator’s

inspection policy and decision. It rules out the possibility that an investment that is not

in the regulatory state (for instance one that occurred many periods ago) could change e.

We keep two lags of investment in the regulatory state, and both are allowed to affect the

compliance signal.

Assumption 1 is stronger than what we require for estimation: for estimation, we could

have directly assumed that plants’ have priors on violations, fines, and transitions based

only on Ω and the inspection decision, rather than assuming that the underlying signal is a

function of Ω and other information. However, Assumption 1 is critical for our counterfactual

experiments because it makes explicit how plants’ priors will change under different regulatory

regimes: it implies that a plant at a given regulatory state Ωt faced with a given inspection

decision and inspection policy will face the same distribution of e—and hence the same

distribution of violations and transitions—even under counterfactual fine policies.

Note that e depends on the inspection policy in addition to the regulatory state and

the inspection decision. Our conditioning of e on the inspection policy allows the frequency

of inspections to affect the expected distribution of signals, which we believe adds to the

credibility of our counterfactuals. However, it also implies a limitation of our potential

counterfactuals: changing the regulator’s inspection policy may change the distribution of e

in ways we cannot observe. This limits us to changing the fine policy but not the inspection

policy in our counterfactuals.

We let the flow utility for the plant from regulatory actions be:

U(Ω, e) = θIIns(Ω) + θV V io(Ω, e1) + θFFine(Ω, e2) + θHHPV (T (Ω, e3, e4, e5)), (1)
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where HPV (·) denotes HPV status designation, and θI , θV , θF , and θH are parameters. Note

that (1) implies that plants can have a cost from not only fines, but also inspections, additional

violations, and being an HPV (consistent with the evidence in Section 2.1), though not from

regular violator status.

Recall that once the pollution signal is revealed and regulatory actions are complete, the

state is Ω̃, and the plant can invest if it is not in compliance. Our data are at the level

of the plant / quarter and include a panel of plants observed over time. For each plant /

quarter, we observe the regulatory state at the point where the plant makes its investment

decision—which is Ω̃—and its investment decision. The cost of investment is θX + εXt. Both

ε0t and ε1t are idiosyncratic cost shocks. We assume that these shocks are i.i.d., known to the

plant prior to making its investment decision, and distributed type 1 extreme value. Plants

that are in compliance receive a single shock ε0t and do not make any active decision.

Group together the structural parameters as θ ≡ (θI , θV , θF , θH , θX). We generally expect

these parameters to be negative, except for θX , which we expect to be positive. We assume

that θ is fixed for the plant over time. In our estimated model, θ will vary across plants.

We assume that θ is not contractable, i.e., the regulator cannot choose different enforcement

contracts for different plants based on θ.

4.2 Estimation of Regulator CCPs

We estimate plants’ expectations of regulator actions, which are Ins, V io, Fine, and T , with

CCPs. We specify inspections as a probit of the plant’s state Ω. The remaining CCPs are a

function of the state Ω, whether an inspection occurred, and the signal e. Econometrically,

(e1, . . . , e5) are the residuals in the latent predictors for these CCPs.

We allow for (e1, . . . , e5) to be correlated. Rather then estimating V io, Fine, and T

jointly, we estimate the marginal density of V io, the conditional density of Fines given

whether a violation occurred (by including this variable in the regression), and the conditional

density of T given the fines assessed and whether a violation occurred. To condition on the

state, we estimate the CCPs separately for plants in compliance, regular violators, and HPVs
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and include indicators for two lags of investment; region, industry, and gravity state dummies;

and depreciated accumulated violations (for plants not in compliance). We estimate V io with

a probit, Fine with a tobit, and T with multinomial logits. Our CCPs include interactions

of inspection and gravity state except in cases where this led to convergence problems.20

4.3 Empirical Implementation of Random Coefficients Model

Our model allows for the parameter vector θ to differ across plants.21 Specifically, we assume

that θ for each plant takes on one of a fixed set of values (θ1, . . . , θJ) and that each parameter

vector θj, j = 1, . . . , J , occurs with probability ηj. Each plant receives a single, independent

draw of θ from the multinomial distribution of potential values. The structural parameters

that we estimate are therefore η ≡ (η1, . . . , ηJ) and not (θ1, . . . , θJ). We impose no restriction

on the structural parameters other than what is necessary based on the fact that they are

population probabilities:
J∑
j=1

ηj = 1 and 0 ≤ ηj ≤ 1, ∀j. (2)

Econometrically, the values of (θ1, . . . , θJ) are taken as given. We take a (large) fixed grid of

these values, meant to capture the range of plausible parameter values.

We estimate the parameters by adapting the methods of Fox et al. (2011) and Nevo et

al. (2016). Specifically, this framework leads to a computationally quick and convex GMM

estimator, allowing us to estimate many parameters and approximating a non-parametric

density over the θ utility parameters (Fox et al., 2016).

Our GMM estimator has the form η∗ = arg minη‖G(η)‖ = arg minη G
′(η)WG(η), where

G(η) is a K × 1 vector of moments, G′ is the transpose of G, and W is a weighting matrix.

Each individual moment Gk(η), k = 1, . . . , K, can be written as the difference between the

value of some statistic in the data, md
k and the weighted sum of the value of the statistic for

20On-Line Appendix A4 provides marginal effects for the CCPs. In general, the results match our expec-
tations.

21In addition to our random coefficient model, we estimate a homogeneous coefficients model.
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the parametrized model, mk(θj), where the weights are η1, . . . , ηJ :

Gk(η) = md
k −

J∑
j=1

ηjmk(θj). (3)

We compute each md
k and mk(θj) in an initial stage, before estimating η. This requires solving

the relevant Bellman equation and mk(θj) for each of the J grid parameters. Using these

values, we then estimate η by minimizing ‖Gk(η)‖ subject only to the constraints in (2). We

perform a two-step process to improve the efficiency of the weighting matrix W .

Because we do not see plants from their inception onwards, we need to make an assumption

about the likelihood of seeing each plant in any of its possible states. First, define a division

of the state Ω̃ into Ω̃1—which indicates the fixed states of region, industry, and gravity

state—and Ω̃2—which indicates the variable states of compliance status, lagged depreciated

accumulated violations, current violation, and lagged investments. Using this definition, we

make the following assumption for our random coefficients estimation:

Assumption 2. The observed data reflect plants that are at the steady state distribution of

Ω̃2 conditional on a given Ω̃1.

Assumption 2 would be valid if, for instance, plants enter at randomly distributed points

from the steady state distribution of Ω̃2 given Ω̃1. It would also occur if they have been

active a long time, in which case the distribution of Ω̃2 for any θj value would approach its

steady state distributions. It rules out a situation where all plants are still adapting to a new

regulatory regime.

We compute three sets of specific moments using Assumption 2. Each moment in the first

set indicates the equilibrium share of being at a particular time-varying state, conditional

on Ω̃1. Each moment in the second set indicates the conditional equilibrium share of plants

at a particular time-varying state times the share investing at this state. These moments all

follow closely from Nevo et al. (2016). Our third set of moments explicitly uses our panel

data: each multiplies a second set moment by the corresponding sum of investments in the

following six periods. As in Nevo et al. (2016), we obtain inference for our parameters and
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counterfactuals by bootstrapping, with resampling at the plant level.

We fix β = 0.951/4 per quarter. This incorporates both time-discounting at the quarterly

rate of 0.0098 and an exogenous probability of exit, which is 0.0031 per quarter in our data.

4.4 Identification

To understand how the utility parameters θ in our model are identified, consider first a two-

parameter version of the homogeneous coefficients model where plants find investment and

fines costly but do not face costs from inspections, violations or HPV status and where the

idiosyncratic investment cost shocks are zero. In this model, at any violator state, a plant

would observe its expected change in discounted future fines conditional on investment. If

investment reduced expected discounted future fines by more than the cost of investment,

then the plant will invest. Therefore, if the ratio of investment costs to fine costs, θX

−θF , was

less than the expected change in future fines, the plant would invest. Under this simple

model, the parameter ratio is identified from the lowest expected change in future fines at

which plants invest.

Conditional on having identified the ratio of the two parameters, we can identify the scale

of the parameters by adding in the type 1 extreme value investment cost shocks. The scale is

identified by the rate at which the investment probability increases with the expected change

in future fines. The steeper is this rate, the larger is this scale.

Our actual model includes five parameters per plant, which capture four dimensions of

regulatory costs borne by the plant, plus the cost of investment. Thus, to identify this model,

we need independent variation in how investment changes the expected future level of each

of these four dimensions. While there is some variation in these changes for different states,

Ω̃2, within a region, industry, and gravity state, the additional variation across these fixed

states, Ω̃1, is very helpful in identifying these parameters.

This identification argument hinges on accurately measuring plants’ expectations of future

regulatory actions with and without investment. We calculate these expected regulatory ac-

tions using the estimated regulator’s CCPs and future actions of the plant. For these CCPs
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to be valid in the context of our model, we need plants to not have private information

about future regulatory actions and outcomes beyond the functions that we estimate. If this

assumption did not hold, this would lead to serially correlated unobserved state variables,

invalidating our Assumption 1 and requiring very different estimation methods. Our specifi-

cations all include fixed effects by region, industry, and gravity state as well as a variety of

interactions in order to accurately capture plants’ beliefs.

Our random coefficients model requires an additional identification argument since we

must identify the distribution of values of θ rather than just the mean values of these pa-

rameters. If some plants repeatedly invest while other plants in the same state invest very

infrequently, this would suggest variation in investment costs. More generally, persistence

in decisions over time beyond what can be explained by the Markovian structure of the dy-

namic model with a single θ will identify heterogeneity of types. Persistence implies that

more heterogeneity will lead to a higher occurrence of extreme states, e.g., many plants in

HPV status and many plants in compliance.

We identify the distribution of regulatory costs even though, in our data, the substantial

majority of plants never leave compliance. Our model assumes that leaving compliance is

not a function of the plant’s type, θ. This allows us to identify the distribution of random

coefficients based only on the behavior of plants not in compliance.

Our model chooses parameters that most closely match the steady state equilibrium

dispersion across states and investment rates in those states to data. We also match the

serial correlation in investment in the data with our third set of moments. The greater the

correlation here, the more cost heterogeneity we would expect.

Finally, our investment variable captures large investments rather than small process

investments, since the latter are not available in our data. Our model implicitly captures

these process investments through their impact on expected future fines, but it does not

endogenize them. In other words, it does not allow them to vary in counterfactual policy

environments. If plants invest more in these processes when they are faced with higher

marginal enforcement, we would understate the importance of dynamic enforcement.
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5 Results

5.1 Model Estimates

We provide structural parameter estimates in Table 3 for our main model and a homogeneous

coefficients specification estimated via quasi-maximum likelihood.22 The table reports utility

parameters as well as the probability that a plant has each of those utility parameters. For

the quasi-likelihood model, since there is one set of coefficients, this probability is 1, and

we report bootstrapped standard errors. For the random coefficient estimates, however, we

allow the parameter vectors θ to be chosen from a wide grid of potential values. We report

the estimated probability, ηj, of observing each of the parameters, θj, in the last row of

Table 3. We report the six θj parameters with the highest probabilities ηj, and we list the θj

parameters in descending order of ηj. We do not report standard errors for this specification

as it would be difficult both to calculate them and to interpret them meaningfully, given that

most of the estimated weights are 0. Instead, we report bootstrapped standard errors for our

counterfactuals below.

Table 3: Estimates of Plants’ Structural Parameters

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.872 −2.334 −1.326 −2.498 −2.540 −1.988 0.153
(0.041)

Inspection utility (θI) −0.049 −0.194 0.444 −0.096 0.897 0.001 −2.483
(0.049)

Violation utility (θV ) −0.077 0.143 0.128 0.650 −0.100 −2.169 −2.006
(0.197)

Fine utility (millions $, θF ) −5.980 −5.181 −6.073 −6.766 −8.460 −7.494 −7.524
(1.005)

HPV status utility (θH) −0.065 −0.029 −0.234 −0.078 −0.411 0.070 −2.437
(0.015)

Weight on parameter vector 1 0.438 0.174 0.170 0.126 0.049 0.019
Note: for the quasi-likelihood approach, we estimate the costs themselves, whereas for the GMM random
coefficient approach, we estimate the weights (in the bottom row) on each potential vector of costs. For GMM
estimates, we report the 6 parameter vectors with the highest weight. Standard errors for quasi-likelihood
estimates, which are bootstrapped with resampling at the plant level, are in parentheses.

22We calculate a quasi-likelihood (and not a likelihood) because we use the regulator’s estimated CCPs in
the plant’s dynamic optimization process.
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We start with the quasi-likelihood results, which are on the left of Table 3. We find

that investments, inspections, violations, fines, and being in HPV status are all costly for

plants, with statistically significant effects for investments, fines, and HPV status.23 This is

consistent with Duflo et al. (2018), who find that both regulation and investment in pollution

abatement are costly to plants.

We next turn to the GMM random coefficients estimates. This specification estimates

that six values of θ account for nearly 98% of plants.24 Nearly half (44%) of the weight is

on a set of coefficients that are similar to the quasi-likelihood coefficients. Given that we

are estimating utility parameters, we consider the ratios of coefficients. In particular, for

plants of this type, investments are equivalent to a $450,000 fine (2.334/5.181 multiplied by

$1 million), HPV status is equivalent to a $5,600 fine per quarter, and each inspection is

equivalent to a $37,400 fine. Unlike for the quasi-likelihood estimates, violations increase

utility slightly, which means that for these plants, violations do not themselves lower utility,

although they do positively correlate with transitions to HPV status.

While it is straightforward to discuss the relative magnitude of our coefficients, under-

standing their absolute magnitude is complicated by the fact that fines may be costly to a

plant beyond just the amount assessed by the EPA. Resolving fines likely involves additional

legal work for the plant and harm its reputation more broadly (as Evans (2016) and our

estimates suggest HPV status does). This would imply that the cost to a plant of a $1 fine

may be substantially larger than $1, which would in turn imply that if an investment is

equivalent to $450,000 in fines, then it may actually cost the plant substantially more than

$450,000 to invest.

One way to evaluate the potential absolute magnitude of our coefficient estimates is to

compare our estimates of investment costs to estimates from the literature on the cost to

plants of pollution abatement capital expenditures. Becker (2005) uses the U.S. Census

Bureau’s Pollution Abatement Costs and Expenditures (PACE) survey to get estimates of

average air pollution abatement capital expenditures per plant given non-zero outlays. In

23We report the negative of the investment cost, so a negative θX implies costly investment.
24Heiss et al. (2019) note that this estimator is similar to a LASSO and hence may generate a small number

of positive parameters due to an implicit penalization of additional positive parameters.
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2007 dollars, he finds that these expenditures average $1.1 million and argues that these are

an understatement of the true cost because regulatory compliance may necessitate production

process changes that are costly and because the PACE survey does not include the cost of

permits or sacrificed output. Dividing $1.1 million by our $450,000 estimate of the investment

costs relative to fines suggests that the true cost to a plant from the imposition of a dollar

of fines is $2.4, with correspondingly higher monetary costs for other regulatory actions.

Because Becker (2005) views his estimates as a lower bound on the cost of investment, we

assume a $1 fine is equivalent to $3 in costs in some counterfactuals.

Interestingly, the second most common set of coefficients, with 17% weight, has much

lower investment costs (equivalent to a $218,300 fine) and higher HPV costs (equivalent to

a $38,500 fine per quarter). These plants find inspections beneficial.25 In fact, across the

five most common coefficient estimates, which represent 95.7% of plants, the plants with the

highest HPV costs and lowest investment costs are the ones that find inspections beneficial.

Column (6) shows that 1.9% of plants have a small but negative mean cost (or benefit)

of investment (equivalent to a -$20,300 fine per investment). Note that these plants have

extremely high costs of inspections (equivalent to a $330,000 fine), violations (a $266,600 fine),

and HPV status (a $323,900 fine per quarter), and may be very adverse to environmental

enforcement activities relative to investment.

For the five coefficients with the most weight, representing 95.7% of plants, the GMM

investment costs relative to fine costs range from $218,000 to $450,000. This range is much

smaller than the range in other regulatory enforcement coefficients relative to their means.

For instance, HPV costs relative to fine costs range from −$9,300 to $48,600 per quarter for

these plants. Thus, the GMM coefficients suggest that there is more heterogeneity in plants’

HPV, inspection, and violation cost than there is in plants’ investment costs.26

25This is in keeping with Duflo et al. (2018), who find that inspections can be beneficial to plants.
26On-Line Appendix A4 provides evidence on model fit and sensitivity checks in which we estimate our

model for a single industry, for the ten most populous states (with state fixed effects in the CCPs instead of
region fixed effects), and with richer CCPs.
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5.2 Counterfactuals

Using the coefficient estimates from Table 3, we now model how EPA enforcement activi-

ties, plant investments, overall compliance, and air pollution damages would change under

different EPA policies. Because we do not recover regulator preferences, our counterfactuals

are based on plant optimization given alternative regulatory policies and do not necessarily

stem from the equilibrium of a dynamic game. As we discussed in Section 4.1, we limit our

counterfactuals to ones with the same state-contingent inspection policy and only vary the

state-contingent fine policy and plants’ structural parameters.

We conduct two sets of counterfactual policies. Our first set evaluates the value of dynamic

enforcement. Here, we first examine how outcomes would change if the regulator fined all

plants in regular and high priority violator status identically for a given region, industry, and

gravity state, keeping total assessed fines the same as the baseline for each such group. We

compare this to a similar counterfactual where the regulator fined all plants in regular and

high priority violator status identically for a given region, industry, and gravity state, but

where it kept total pollution damages the same as the baseline within each group.27 Finally,

we consider a counterfactual where the fines for plants in HPV status are doubled, thereby

increasing the escalation rate of fines.

Table 4 presents the results of these counterfactual experiments. We report the long-

run mean values of regulatory states, regulatory actions, investment rates, plant utility, and

pollution damages.

Column (1) of Table 4 reports the observed rates of each outcome in our data, while

column (2) reports the baseline, which is calculated at the estimated parameters. In general,

our model reproduces the data well: the frequency at which plants are in each regulatory

state, the investment, inspection, and violation rates, and the mean pollution damages are

similar. Assessed fines are slightly higher in the baseline than in the data.

Column (3) of Table 4 reports the non-dynamic case when equilibrium total fines are the

same as in the baseline. We find large increases in the share of plants in HPV status and in

27For these counterfactuals, we assume that the regulator never fines plants when they are in compliance,
and we set the cost of HPV status to zero to fully remove dynamic enforcement.
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Table 4: Counterfactual Results: Changing the Escalation Rate of Fines

(1) (2) (3) (4) (5)
Same fines for Same fines for all Fines for HPVs

Data Baseline all violators; violators; pollution doubled relative
fines constant damages constant to baseline

Compliance (%) 95.62 95.11 (0.22) 66.72 (13.91) 94.49 (0.62) 95.52 (0.24)
Regular violator (%) 2.88 3.47 (0.25) 2.53 (0.57) 2.72 (0.56) 3.47 (0.26)
HPV (%) 1.50 1.42 (0.05) 30.75 (14.43) 2.79 (0.65) 1.01 (0.03)
Investment rate (%) 0.40 0.54 (0.05) 0.47 (0.06) 0.65 (0.09) 0.55 (0.05)
Inspection rate (%) 9.65 9.41 (0.06) 20.54 (5.41) 9.88 (0.23) 9.28 (0.05)
Fines (thousands $) 0.18 0.32 (0.03) 0.32 (0.03) 1.98 (1.62) 0.36 (0.03)
Violations (%) 0.55 0.54 (0.01) 5.00 (2.20) 0.74 (0.10) 0.49 (0.01)
Plant utility — 0.006 (0.034) 0.077 (0.091) 0.001 (0.039) 0.005 (0.034)
Pollution damages (mil. $) 1.65 1.53 (0.03) 4.04 (1.19) 1.53 (0.03) 1.48 (0.02)
Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region, industry,
and gravity state in our data. Plant utility reports the average flow utility across types and states including
ε except for Euler’s constant. Column (1) presents the value of each statistic in our data. Column (2)
presents the results of our model given the estimated coefficients and the existing regulatory actions and
outcomes. Other columns change the state-contingent fines and the HPV cost faced by plants. Columns
(3) and (4) impose the same fines for all regular and high-priority violators for a given fixed state. Column
(5) doubles the fines for plants in HPV status. All values are per plant / quarter. Bootstrapped standard
errors are in parentheses.

pollution damages. In particular, we find that the share of plants in HPV status would rise

from 1.4% to 30.8%. This increase comes mostly from a reduction in the share of plants in

compliance and is matched by an increase in regulator workload from a higher inspection rate

(from 9.4% to 20.5% of plant / quarters) and violation rate (from 0.5% to 5.0%). However,

the investment rate drops only moderately (from 0.54% to 0.47% of periods), suggesting that

the heterogeneity in the types of plants that invest and the timing of their investment is

important. Finally, given the much higher level of plants in HPV status, we also find much

higher levels of air pollution damages. Specifically, damages from criteria air pollutants rise

from $1.5 million per plant / quarter to $4.0 million per plant / quarter, an increase of 164%.

This provides strong evidence that dynamic fines are effective in lowering pollution damages,

conditioning on the fine level.

Column (4) of Table 4 also removes the escalation of fines with regulatory state, but now

holds pollution damages within region, industry, and gravity state constant while allowing

fines to vary. We find a slightly higher share of plants in HPV status (2.8% vs 1.4%) with
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a related slight increase in the inspection and violation rates and a slight increase in the

investment rate relative to the baseline. What is striking, however, is that mean fines increase

by 519%, from $320 per plant / quarter to $1,980 per plant / quarter.28 To the extent that

the regulator bears costs from imposing fines, this result shows that the regulator would find

it quite costly to have fine policies that do not escalate across regulatory states.

Finally, column (5) of Table 4 doubles the fines for plants in HPV status from their

baseline level. This decreases the share of plants in HPV status from 1.42% to 1.01%, while

simultaneously decreasing the inspection and violation rates and increasing the investment

rate slightly. With this fine policy, average pollution damages drop from $1.53 million to

$1.48 million per plant / quarter. We take this as evidence that while there is some benefit

to increasing the rate at which fines escalate with regulatory status, this benefit is limited.

We replicate these counterfactuals for the quasi-likelihood coefficient estimates in On-Line

Appendix A4. The effects of dynamic enforcement are larger under the random coefficients

model, demonstrating that heterogeneous plant types (with an inability to contract on plant

type) adds to the value of dynamic enforcement.

Our second set of counterfactuals evaluates how escalation mechanisms relate to policies

that charge each plant in regular or high priority violator status for its additional pollution

damages relative to compliance, much like a Pigouvian tax (Pigou, 1947).29 Charging plants

according to their pollution damages is efficient in a world where the regulator does not care

about inspection costs or imposing fines.30 These Pigou-style policies have two fundamental

differences with current EPA policies. First, to increase the marginal deterrence of HPV

status, existing fines escalate much more steeply with regulatory state than pollution dam-

ages,31 while Pigou-style policies do not escalate in this way. Second, Pigou-style policies

28The 90% confidence interval is [$1,465, $6,750], well above the baseline level.
29As with the counterfactuals that removed dynamic enforcement, these counterfactuals assume that the

regulator never fines plants when they are in compliance and that plants face no direct cost of HPV status.
30Note also that the EPA’s mandate is not to achieve the efficient level of pollution but rather to enforce the

CAAA. Explicitly, the EPA may assess civil and administrative penalties for violations under Section 113(b)
of the Clean Air Act Amendments. Since the CAAA set specific definitions of a violation, this enforcement
behavior can differ substantially from a Pigouvian tax even apart from a disutility on fines.

31Actual fines are approximately 13 times higher in high priority violator status than in regular violator
status (Table 1) while damages are only 1.7 times higher (the weighted mean from Table 2).

30



lower pollution damages by allowing for higher fines for industries that are more polluting.

Because we believe that some of the cost to plants of fines could be non-monetary, we con-

duct this experiment in two ways: (1) where the fine cost to plants is entirely monetary, so

the efficient fine is the full damages, and (2) where the fine cost to plants is three times the

imposed fine (following our discussion of Becker, 2005), so the efficient fine is one third of

the damages. Finally, our third counterfactual escalates fines at the same rate as pollution

damages, but scales them to keep aggregate pollution damages the same as the baseline.

Table 5 presents the results of these experiments. Focusing on column (2), Pigouvian fines

where the fine cost to plants is entirely monetary are extremely large: 173 times higher than

in the baseline at $55,240 per plant / quarter. Even with this massive increase in fines, the

share of plants in HPV status actually increases from 1.4% to 1.7%. Importantly, the share

of plants in regular violator status drops substantially, from 3.5% to 1.6%. This is consistent

with the theory on escalation mechanisms (Mookherjee and Png, 1994): dynamic enforcement

“underdeters” one-time violations in order to increase the marginal deterrence for repeat

violations. Further, Pigouvian fines lead to a 13.7% reduction in pollution damages (from

$1.53 million to $1.32 million per plant / quarter), so the dynamic enforcement approach

leads to inefficiently high pollution damages if it were costless for the regulator to impose

fines and the fine cost to plants was entirely monetary. Column (3) reports analogous figures

where Pigouvian fines are scaled by one-third. It shows similar results to column (2).

Finally, column (4) of Table 5 displays the outcome if we set fines so that they escalate

from regular violator to HPV at the same rate as damages, but are scaled so that total

pollution damages across all regions, industries, and gravity states is unchanged from the

baseline.32 These results demonstrate the value of dynamic enforcement: with scaled Pigou-

vian fines, average fines are 394% higher,33 the share of plants in HPV status is 934% higher,

and inspections increase by 51%, relative to the baseline.

In order to evaluate the impact of our counterfactuals across industries, Table 6 shows how

four of our counterfactual fine structures affect fines, pollution damages, and regulatory status

32In order to recover pollution damages that are the same as the baseline but with fines escalating at the
same rate as Pigouvian fines, we divide the Pigouvian fines by 168.

33The 90% confidence interval is [$445, $3,950], which is above the baseline level.
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Table 5: Counterfactual Results: Scaled Pigouvian Fines

(1) (2) (3) (4)
Pigouvian Pigouvian fines

Baseline Pigouvian fines scaled scaled to yield base
fines by 1/3 pollution damages

Compliance (%) 95.11 (0.22) 96.69 (1.05) 95.38 (1.78) 82.44 (4.60)
Regular violator (%) 3.47 (0.25) 1.60 (0.30) 2.09 (0.30) 2.88 (0.37)
HPV (%) 1.42 (0.05) 1.72 (1.02) 2.52 (1.80) 14.68 (4.89)
Investment rate (%) 0.54 (0.05) 0.86 (0.05) 0.79 (0.06) 0.53 (0.06)
Inspection rate (%) 9.41 (0.06) 9.34 (0.33) 9.60 (0.58) 14.18 (1.72)
Fines (thousands $) 0.32 (0.03) 55.24 (1.81) 19.06 (0.69) 1.58 (1.67)
Violations (%) 0.54 (0.01) 0.52 (0.12) 0.60 (0.21) 2.31 (0.60)
Plant utility 0.006 (0.034) −0.349 (0.047) −0.117 (0.038) 0.032 (0.042)
Pollution damages (mil. $) 1.53 (0.03) 1.32 (0.02) 1.32 (0.02) 1.53 (0.03)
Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region,
industry, and gravity state in our data. Plant utility reports the average flow utility across types and
states including ε except for Euler’s constant. Column (1) presents the results of our model given
the estimated coefficients and the existing regulatory actions and outcomes. Other columns change
the state-contingent fines faced by plants. All values are per plant / quarter. Bootstrapped standard
errors are in parentheses.

for three representative industries: mining, utilities, and metal (and related) manufacturing.

Column (1) recreates our baseline results, this time separately for each of the three industries,

with the other columns replicating columns (3) and (4) of Table 4 and columns (3) and (4)

of Table 5. Focusing on column (2)—which removes escalation, holding fines constant—the

increase in HPV status relative to the baseline varies across industries. While the fraction

of plants in HPV status increases by a factor of 9 for utilities, it increases more than 20

times for the other two industries. This suggests that there are substantial differences across

industries in the gains from dynamic enforcement. Column (3) shows that the increase in fines

that is required to hold pollution damages constant without dynamic enforcement also varies

substantially across industries. For utilities, average fines only increase by 284%, whereas for

mining and extraction, they increased by nearly 11 times their original level (1,094%).

Columns (4) and (5) make clear the benefits of Pigouvian fines: since utilities have sub-

stantially higher pollution damages than any other industry, their fines also increase more.

Column (5) shows that, when holding pollution damages the same as the baseline, scaled

Pigouvian fines reallocate pollution damages from utilities to other industries with lower

marginal pollution damages. However, this column also highlights the cost of Pigouvian fines:
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Table 6: Counterfactual Results: By Industry

(1) (2) (3) (4) (5)
All violators All violators Pigouvian Pigouvian

Baseline same fines; same fines; poll- fines fines scaled for
fines ution damages scaled base pollution

constant constant by 1/3 damages
Mining & extraction (NAICS 21)

Fines (thousands $) 0.17 0.17 2.03 6.10 0.69
Pollution damages (mil. $) 0.58 2.34 0.58 0.53 0.62
Regular violator (%) 4.86 3.71 3.58 3.36 4.16
HPV (%) 0.76 26.23 1.16 1.93 13.81

Utilities (NAICS 22)
Fines (thousands $) 0.88 0.88 3.38 260.83 5.82
Pollution damages (mil. $) 18.78 41.69 18.78 15.81 16.00
Regular violator (%) 4.11 2.82 3.43 1.68 2.54
HPV (%) 3.93 35.31 5.89 3.51 7.41

Manufacturing: metal (NAICS 33)
Fines (thousands $) 0.25 0.25 1.51 5.10 1.39
Pollution damages (mil. $) 0.40 1.50 0.40 0.33 0.55
Regular violator (%) 2.58 1.83 2.18 1.50 2.13
HPV (%) 1.48 31.95 2.87 2.64 15.55

Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region, industry,
and gravity state in our data. All columns use the GMM random coefficient estimates. Column (1) presents
the results of our model given the estimated coefficients and the existing regulatory actions and outcomes.
Other columns change the plants’ fines and cost of HPV status. All values are per plant / quarter.

the fine level required to achieve the same total amount of pollution damages is substantially

higher than with dynamic enforcement, and this burden falls particularly on utilities,where

fines increase by 561%. We take this as suggestive that the EPA finds imposing fines on

utilities that are commensurate with their pollution damage levels to be relatively costly.

6 Conclusion

This paper measures the value of dynamic enforcement in the context of the Clean Air

Act Amendments. We build and estimate a dynamic model of a plant which is faced with

a regulator and must choose when to invest in pollution abatement. We estimate a non-

parametric random coefficients specification that is computationally tractable and that allows

for wide heterogeneity in plants’ costs from regulatory scrutiny.

We find that there are substantial and heterogeneous costs to plants of investing in pollu-
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tion abatement and of facing regulator enforcement actions, particularly fines and designation

as a high priority violator. For 95.7% of plants, the mean investment costs are equivalent

to between $218,000 and $450,000 in fine costs and the relative heterogeneity in plants’

regulatory compliance cost is even larger.

Our counterfactuals yield three main takeaways. First, we find that dynamic enforcement

is valuable when fines are costly to the regulator: removing dynamic enforcement would in-

crease pollution damages by 164% if fines were held constant or raise fines by 519% if pollution

damages were held constant. These high benefits derive in part from the heterogeneous plant

types (and an inability to contract on type). Second, increasing the extent to which fines

escalate with the regulatory state would add little additional value: a doubling of fines for

plants in HPV status would increase assessed fines by 13% but only lower pollution damages

by 3.3%. Third, while scaled Pigouvian fines optimally reallocate enforcement to sectors with

high marginal pollution damages—specifically utilities—they do not exploit marginal deter-

rence. Pigouvian fines scaled to have the same level of pollution damages as in the baseline

lead to more plants in HPV status and fewer in regular violator status, which further leads

to a 394% increase in assessed fines. Our Pigouvian counterfactuals demonstrate empirically

the theoretical point that dynamic enforcement can add value by underdeterring first-time

violators relative to repeat offenders, in order to increase marginal deterrence.

While we believe that this analysis provides substantial evidence that dynamic enforce-

ment is valuable, our approach is limited in certain ways. First, we lack detailed pollution

data for the majority of observations in our data and can only use more aggregate pollution

information. Relatedly, our measure of plant investment in regulatory compliance is imprecise

in that it is derived from regulator responses and generally does not include smaller process

improvements that may improve plant regulatory compliance. In addition, identification of

our model relies on a series of assumptions, including that plants’ perceptions of regulatory

actions match our regulatory conditional choice probabilities. Finally, by modeling the regu-

lator using conditional choice probabilities, we give up the ability to vary inspection policies

and regulatory state transition functions in our counterfactuals. Future research could extend

our approach by modeling regulator decisions.

34



Overall, this analysis provides the first empirical estimates of the plants’ responses to

the dynamic environmental regulations used around the world. Our modeling framework

and results on dynamic enforcement for the CAAA may allow for the evaluation of dynamic

enforcement in a variety of other settings.
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On-Line Appendix

A1 Illustrative Simple Case of our Model

To illustrate the value of dynamic enforcement, we present a simple, special case of our general

model. For this special case, we assume a two-period model with β = 1. In both periods, a

single new violation occurs with probability p. Violations are costly to the regulator in that

they may result in emissions, but costless to the plant. Inspections occur with probability

I(Ω) = 1, are costless to the regulator and plant, and perfectly reveal the presence of a

violation. The regulator assigns the plant to compliance if it has 0 outstanding violations;

regular violator status if it has 1 outstanding violation; and HPV status if it has 2 outstanding

violations. We assume that the signals for violations and fines are the same: e1t = e2t , and

indicate the number of outstanding violations. Note that e11 ∈ {0, 1} and e12 ∈ {0, 1, 2}.

The remaining signals follow from the above description of the status transitions, with e3t =

1{e1t = 0}, e4t = 1{e1t = 1}, and e5t = 1{e1t = 2}.

A period 1 investment, X1 = 1, clears a period 1 violation with probability q; violations

are never cleared without investment. The pollution cost to the regulator is cEe
1
t at period t,

for some marginal pollution damage parameter cE. The regulatory state records the history

of investments and violations. Thus, for example, at period 2, the regulatory state after

the inspection is Ω̃2 = (X1, e
1
1, e

1
2). Finally, the per-period objective function to the plant is

−θXXt−Fine(Ωt, e
1
t ), where θX is the cost of investment. The regulator minimizes the sum

over the two periods of cEe
1
t , θ

XX, and its cost of assessing fines.

We allow the regulator to pre-commit to an enforcement strategy and focus on the case

with a period 1 violation—so e11 = 1—as this is the only case where the regulator might want

to incentivize period 1 investment. The simplest policy that a regulator could choose would

be a linear fine policy cF e
1
t . When θX is known and contractable and the cost of investment

is sufficiently low relative to other costs, the regulator incentivizes period 1 investment by

choosing the lowest cF that would compel the plant to invest.

With a linear fine policy, the regulator has to issue fines for the period 1 violations
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even though this has no effect on investment. Thus, this fine lowers the regulator objective

function. An alternative is for the regulator to choose a static escalation mechanism: it

could fine only when e1t = 2, which would remove the cost of fining when e1t = 1 but the

plant has not had a chance to invest, and would still incentivize investment in period 1.

For this reason, the regulator can incentivize investment for the same values of θX as the

linear fine policy with lower expected fines, thereby adding surplus. Although the model is

dynamic, this escalation mechanism is not explicitly dynamic (since it does not depend on

the regulatory state Ωt, but only on the current number of outstanding violations, e1t ). It

increases marginal deterrence in period 2 since it will result in no fines in period 1. Because

expected fines are lower, the regulator will further choose to incentivize investment for more

values of θX , thereby adding further surplus in some cases.

A dynamic escalation mechanism would increase surplus relative to the static escalation

mechanism. In this case, the regulator could fine when e1t−1 > 0, Xt−1 = 0, and when it

wants to incentivize investment. Choosing this policy for the same set of θX as above will

mimic the same investment incentives but with no fines paid in equilibrium (since plants

whose investment does not succeed in returning the plant to compliance are not fined), and

hence no fine costs. Thus, the regulator will choose to incentivize investment for even more

values of θX .

If instead of a single θX the regulator faces a distribution of θX values and cannot contract

on θX , dynamic enforcement also adds value by better selecting the set of plants which

it incentivizes to invest. For simple investment cost type distributions, the regulator will

incentivize investment for more values of θX with dynamic enforcement than with a static

escalation mechanism or with linear fines.

Overall, our illustrative simple case shows that escalation mechanisms add value by in-

creasing the marginal deterrence for two violations relative to one. Dynamic escalation mech-

anisms add more value by reducing equilibrium fines and by increasing the set of actions over

which the regulator can condition.
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A2 Data Construction Details

ECHO Database Overview

The ECHO database is divided into a number of components. We principally use four ECHO

components: (1) the Facility Registry Service dataset, (2) the Air Facility System Actions

dataset, (3) the Air Program Historical Compliance dataset, and (4) the High Priority Vio-

lator History dataset. We discuss each of these components in turn.

First, the Facility Registry Service dataset is a master list of plants. For our purposes, it

provides address information and the six-digit North American Industry Classification System

(NAICS) industrial sector for each plant. Our analyses control for the EPA region, the first

two digits of the NAICS code, and the expected gravity of violations based on industry

and county. We keep seven industries with high pollution damages that we believe to have

plants of broadly comparable costs of investment and enforcement: the three manufacturing

industries, mining and extraction, transportation, educational services (which includes school

buses), and utilities.

Second, the Air Facility System Actions (AFS) dataset (or Actions dataset for short)

records the history of regulatory actions taken by state, regional, and federal environmental

regulators, from Q4:2006 through the Q4:2014.34 We use this dataset to create our base

list of inspections, violations, fines, and investments. Since this dataset is subject to federal

minimum data requirements, we believe it provides a relatively complete description of the

regulatory action history for each plant. One potential issue with our data is that some

states were not reporting non-HPV violations prior to 2010.35 The EPA customer support

staff were not sure if the data had been corrected and suggested we review the data for

anomalous changes in the violation rate. We examined the data for changes in the prevalence

of violations in 2010 by performing a series of regressions of reported violations on state or

region dummies interacted with a dummy for post-2010. We found no systematic evidence

of an increase in reported violations, suggesting that this error had been corrected ex post.

34The EPA transitioned to a new reporting system after 2014.
35See https://echo.epa.gov/system/files/FRVMemoandAppxFinal3.22.10.pdf.
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Each record in this dataset details a regulator action, such as an inspection, a notice

of violation, a fine, or the review of an investment in pollution abatement. The unit of

observation is the AFS ID, which indicates a polluting source. Each record lists a calendar

date and provides information on the related EPA program36 and the penalty amount when

the action is a fine.37 For each plant, we combine EPA actions across all EPA programs to

capture completely its regulatory enforcement status.

Third, the Air Program Historical Compliance dataset records the historical compliance

status for each plant and EPA program at the AFS ID and quarter level. These data derive

from a combination of self-reports by plants and regulator inputs. We follow the literature

(Laplante and Rilstone, 1996; Shimshack and Ward, 2005) in treating the self-reported data as

accurate.38 We use this dataset to determine whether a plant is in compliance or a violator

in any quarter. This dataset provides a more direct measure of violator status than does

the Actions dataset, since the Actions dataset does not always indicate when a violation is

resolved. Since this dataset is at the plant / quarter level, we aggregate EPA actions to this

level and use this as the time period for our analysis. We also use this dataset to determine

whether a plant has shut down, dropping plants from the sample once they have exited.

Fourth, the High Priority Violator History dataset records the dates at which a plant

receives or resolves a high priority violation. We use this dataset to record the quarter

of entry and exit from HPV status. Analogous to the Air Program Historical Compliance

dataset, this dataset provides the most direct measure of HPV status.

Regulatory Actions and Outcomes

Compliance and violator statuses. During our sample period, the EPA’s Air Program

Historical Compliance dataset reported each plant’s compliance status for every CAAA pro-

36The CAAA include many different statutes that address different dimensions of air pollution. The EPA
enforces different statutes through different programs.

37It is possible for plants to contest fines in court. However, Helland (2001) finds that fewer than 4% of
fines are successfully contested by plants, a number that is in keeping with our own analysis of the Integrated
Compliance and Information System’s (ICIS) Federal Enforcement and Case Data.

38The literature makes this assumption because the expected penalty from purposefully deceiving regulators
is far greater than the penalty for an emissions violation.
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gram. Since there is a CAAA program for each major category of air pollutant, a plant can

simultaneously be in violation of multiple CAAA programs. We assume that a plant is a

CAAA violator if it is a violator for any CAAA programs. For each program, we classify

a plant as being a violator if compliance status is equal to “1” (in violation, no schedule),

“6” (in violation, not meeting schedule), “7” (in violation, unknown with regard to sched-

ule), “B” (in violation with regard to both emissions and procedural compliance), “D” (HPV

violation), “E” (federally reportable violation), “F” (High Priority Violator on schedule),

“G” (facility registry service on schedule), or “W” (in violation with regard to procedural

compliance).39

The Historical Compliance dataset also reports codes indicating an unknown compliance

status: “Y” (unknown with regard to both emissions and procedural compliance), “0” (un-

known compliance status), “A” (unknown with regard to procedural compliance), and “U”

(unknown by evaluation calculation). From our discussions with the EPA, these codes arise

when a plant has not been inspected within the required time frame, but there has been no

indication of a violation by the plant. Given this, we code these plants as being in compli-

ance.40 In some cases, we observe a violation at some quarter t in the Actions dataset and

the plant is reported to be a violator at quarter t+ 1 but not at quarter t. In these cases, we

assume that the reporting that indicated that the plant was in compliance at quarter t was

erroneous, and hence we record the plant as being in violator status at quarter t.

We code all other plants—except those that are listed as HPVs in the High Priority

Violator History dataset—as being in compliance. Thus, we do not use additional information

on compliance in the ECHO database for some plants and pollutants, such as continuous

emissions monitoring system reports.

Inspections. The Air Facility System Actions dataset reports multiple types of inspec-

tions, which we collapse into a single “inspection” variable. These include on- and off-site

full compliance evaluations conducted by either the federal or state EPA, partial compliance

evaluations, and stack tests. We also consider an inspection to have occurred if the EPA

39Although this list indicates both plants that are regular violators and HPVs, we determined HPV status
from the High Priority Violator History dataset, for greater accuracy.

40Evans (2016) also considers plants in unknown compliance status to be in compliance.
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issues a Section 114 letter for gathering information from the plant. In some cases we ob-

serve multiple inspections in the same quarter; e.g., if stack tests are conducted for multiple

pollutants. Since our inspection variable is dichotomous, we consider these tests together to

be equivalent to a single inspection.

Violations. The Actions dataset also reports violations. We define a violation to be

the issuance of a “Notice of Violation” (NOV). An NOV is defined as “a notice sent by the

State/EPA ... for a violation of the Clean Air Act.” There are three codes that indicate

an NOV in our data: “6A” (EPA NOV issued), “7A” (notice of noncompliance), and “7C”

(state NOV issued).41 In some cases, we observe a violation at some quarter t in the Actions

dataset but the plant is not reported to be a violator in the Historical Compliance dataset

at quarter t or t+ 1 and did not receive a fine at quarter t. We believe that these violations

likely reflect minor issues that are dissimilar to other violations, and hence we exclude them

from our analysis.

Plant Exits

The Historical Compliance dataset also allows us to understand when plants shut down.

Plants may have a compliance status of “9” (in compliance: shut down). If we observe a

plant in this status, we assume that it has exited. We remove it from our sample for the

quarter with this status and all subsequent quarters.

Investment

Our data do not directly report investments or investment costs (unlike in the Duflo et

al., 2018, study of pollution in India, for instance). Instead, we infer investments from the

behavior of EPA regulators. We determine that an investment occurred if we observe any of

the following three types of events: (1) the resolution of a major violation, (2) the issuance

of a Prevention of Significant Deterioration (PSD) permit, and (3) exit from HPV status.

We now provide detail on each of these categories.

41See https://echo.epa.gov/files/echodownloads/AFS_Data_Download.pdf.
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First, the overwhelming majority of our investments come from codes that indicate the

resolution of a major violation. There are three codes in the Actions database that we

consider evidence of this type of investment: (1) “VR” or “violation resolved,” (2)“OT”

or “other addressing action,” and (3) “C7” or “closeout memo issued.” According to the

November, 2008 Air Facility Systems National Action Types–Definitions EPA document,42

“a violation is resolved when it is addressed and a closeout memo has been issued, all penalties

have been collected and the source is confirmed to be in physical compliance.”43

Similarly, “other addressing action” is an addressing action for HPV cases with criminal

or civil action referrals. Finally, “a closeout memo is issued when a violation is resolved

with all penalties collected and the source is confirmed to be in physical compliance.” Of the

investments that are determined by a resolution code, we observe “VR” for the overwhelming

majority (77%). An additional 14% of these investments are from “C7”, and the remaining

10% are from “OT.”

Second, a PSD permit is required for new pollution sources or for major modifications

of existing sources.44 While it is possible that major modifications of existing sources may

occur for reasons other than a plant attempting to return to CAAA compliance, we believe

that changes to a plant that were substantial enough to warrant a new PSD permit issuance

likely imply a major investment in pollution abatement.

Finally, we also infer that an investment has occurred if a plant exits HPV status, even

if we do not observe one of these codes. We make this choice because we believe that a

major investment would have been necessary in order to resolve the substantial violations

that would have originally merited the determination of HPV status as well as all outstanding

violations.

To verify that our measure of investment does indeed capture investments in pollution

abatement capital equipment, we purchased additional data from the Texas Commission on

Environmental Quality (TCEQ). We started this process from https://www.tceq.texas.

42Downloaded September 2014.
43Note that we do not always observe “VR” or other investment codes when plants return to compliance

from regular violator status. Thus, we allow for the possibility that plants can return to compliance from
regular violator status without an investment.

44See https://www.epa.gov/nsr/prevention-significant-deterioration-basic-information.
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gov/agency/data/records-services/purchase-data.html. The specific dataset that we

purchased is the abatement device information from the “Air Emissions Inventory” in elec-

tronic format (Microsoft excel sheet) which is a facility level abatement device database from

the “Air Emissions Inventory Questionnaire.” To finalize the purchase, we corresponded with

the “Open Records and Reporting Services” at openrecs@tceq.texas.gov. They provided us

with the data under the Public Information Report (PIR) Code 19-43621-PIR.

We matched the Texas data manually to our base data using firm/regulated entity name,

city, and address. Although the set of plants that is regulated by this statute is a subset of

the set that show up in our EPA data, we are able to match 1,044 out of 2,109 of the EPA

plants in Texas to a plant in the TCEQ data. In all, the TCEQ data contained 1,520 plants

with a change in an emissions source or abatement device during our period, so our 1,044

matched observations represent 69% of these. (Note also that not every plant covered by

this regulation will have an abatement device and that the TCEQ data cover more industries

than the 7 in our study, but the TCEQ data do not report industry.) Overall, we believe

that our match rate is high enough to make meaningful statements regarding the abatement

device changes for larger plants in Texas.

We first investigated whether an investment in the EPA dataset correlated with the

installation of an abatement device in the TCEQ data. One issue is that the timing of

investment in the two datasets is somewhat different. On the one hand, the EPA data record

an indirect measure of investment that only appears in the data once the EPA has confirmed

that the violation has been resolved and hence we might expect the EPA measure to lag the

Texas measure. On the other hand, the Texas measure of investment only occurs after TCEQ

has recorded it in their system following a plant visit, which is supposed to occur within a

year of the device installation. TCEQ also does not require self-reporting for abatement

devices. Thus, the TCEQ measure may lag the EPA measure.

Despite these limitations, we find a strong and significant relationship between the EPA

investment measure and the TCEQ abatement device installation measure. Specifically, we

found that 45% of EPA investments have a TCEQ abatement device installation within four

quarters conditional on the plant being observed in the both datasets (and unconditionally,
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the figure is 29%). Similarly, a regression of EPA investment on TCEQ abatement device

installation within four quarters gives a coefficient of 0.031 with a t-stat of 16.9.

We also used the TCEQ abatement device measure to determine whether additional EPA

actions should be included in our measure of investment. We identified three groups of actions

that could plausibly be added: (1) an indicator for whether a penalty was paid (C3); (2) an

indicator for a violation being withdrawn (WD); and (3) indicators for the EPA determining

that the plant was no longer deemed to be in violation due to a rule change or to the plant

not being subject to the rule (2L, 2M, NM, NN). Overall, we found only 18 of these actions,

compared to 1,094 EPA investments for plants in Texas. Of these 18, only 5 had a TCEQ

abatement device change within 4 quarters. Thus, we decided not to add these codes to our

definition of investment.

Finally, we investigated whether the installation of an abatement device in compliance in

the TCEQ data predicted avoidance of violator status. Specifically, we regressed exit from

compliance on recent TCEQ abatement device installation, defined as a TCEQ abatement

device installation in the current quarter or within the previous four quarters. We find

that, similar to EPA investment, TCEQ abatement device installation in compliance actually

increases the likelihood of future violator status. Also, as with the EPA investment variable,

TCEQ abatement device installation in violator status predicts a return to compliance.

Pollution and Damages Data

National Emissions Inventory data. We match 59% of observations in the ECHO data

for 2008 and 2011 to the NEI data. The imperfect match is consistent with other studies that

use the NEI data; e.g., Shapiro and Walker (2018) achieve a 77.4% match rate between the

NEI and the Census of Manufacturing. We measure smokestack emissions for six pollutants:

PM2.5, NOX, SO2, volatile organic compounds, NH3, and Pb. For our counterfactuals, we

need the expected level of pollution by regulatory state. To obtain this, we aggregated the

matched NEI data to the region, industry, gravity state, and compliance / regular violator /

HPV status level. We then calculated the mean pollution for each of these states, imputing
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missing values. We did not use the full regulatory state here given the limited number of

matching observations in the NEI data for some states.

AP3 data. The AP3 data come from an integrated assessment model that explicitly con-

siders the impact of pollution emitted in different locations, and thereby takes into account

differences in local populations and underlying pollution levels. While we consider the dam-

ages from criteria air pollutants—ozone (O3), particulate matter (PM), carbon monoxide

(CO), nitrogen oxides (NOX), sulfur dioxide (SO2), and Pb—the AP3 data include dam-

ages from smokestack emissions that can lead to criteria air pollutants—PM2.5, NOX, SO2,

volatile organic compounds (a precursor to ozone), and NH3 (a precursor to PM).

National Ambient Air Quality Standards attainment data. We consider NAAQS

attainment status for each pollutant covered during this period. In particular, we use in-

formation on non-attainment for 8-hour ozone (1997 and 2008 standards), carbon monoxide

(1971 standard), lead (1978 and 2008 standards), PM-10 (1987 standard), and PM-2.5 (1997

and 2006 standards) in each year from the EPA’s “Green Book.” We do not include informa-

tion on the 1979 1-hour ozone standard because it was revoked on June 15, 2005; the 1971

nitrogen dioxide standard because all areas were in attainment as of September 22, 1998; or

the 2010 sulfur dioxide standard because the original areas were not designated until October

4, 2013, after the end of our sample period.

A3 Details on Empirical Framework

Plant Dynamic Optimization

A plant that is not in compliance makes an investment decision in each period, knowing that

the investment will reduce its expected future cost of regulatory enforcement. The plant’s

optimization therefore requires evaluating the value of being in a given state, Ω, at the start

of the next period.

Let V (Ω) denote the value function at the beginning of the period, Ṽ (Ω̃) denote the value

function at the point right after the regulator has moved but before the plant receives its
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draws of ε, and Com(T ) be an indicator for T designating compliance.45 We first exposit

V (Ω), the value function at the beginning of the period:

V (Ω) =
∑
i∈0,1

I(Ω)i(1− I(Ω))1−i
∫ [

U(Ω, e) + Ṽ (T (Ω, e))
]
dP (e|Ω, I, i), (A1)

where dP (e|Ω, I, i) is the integral over the density of the environmental compliance signal

e given the plant state, the inspection policy, and the inspection decision. Note that the

plant does not make any decision at the beginning of the period, and hence there is no

maximization in (A1). However, the plant must integrate over the regulator policies and e.

We now exposit Ṽ (Ω̃):

Ṽ (Ω̃) = Com(Ω̃)×
∫

[βV (Ω̃, θ) + ε0]dF (ε0) + (1− Com(Ω̃))×∫ ∫
max{βV (Ω|Ω̃, X = 0) + ε0,−θX + βV (Ω|Ω̃, X = 1) + ε1}dF (ε0)dF (ε1)

= Com(Ω̃)[βV (Ω̃, θ) + γ] + (1− Com(Ω̃))× (A2)

[ln(exp(βV (Ω|Ω̃, X = 0)) + exp(−θX + βV (Ω|Ω̃, X = 1)) + γ],

where dF (·) is the integral over the density of the type 1 extreme value distribution. The

first part of (A2) reflects the case of compliance. In this case, the plant transitions to the

same state Ω̃ in the next period. Since there is no plant choice here, in expectation, the plant

receives the continuation value plus the mean value of the type 1 extreme value distribution

which is γ, Euler’s constant. The second part of (A2) reflects the case of a plant that is a

violator or high priority violator. In this case, it makes a choice of whether to invest or not.

Since the value is computed ex ante to the realization of the idiosyncratic draws, we can

use the familiar logit aggregation. The transition state, though still not stochastic, is now

potentially different from the current state, because it updates both lagged investments and

depreciated accumulated violations.

Finally, having defined the value functions, we can write the probability of a plant choosing

45For ease of notation, we are conditioning on the plant’s parameter vector θ.

A11



investment given a regulatory state Ω̃ and its cost and utility parameters θ as:

Pr(X = 1|Ω̃, θ) =
(1− Com(Ω̃)) exp(−θX + βV (Ω|Ω̃, X = 1))

exp(−θX + βV (Ω|Ω̃, X = 1)) + exp(βV (Ω|Ω̃, X = 0))
. (A3)

Since the probability in (A3) is used in our estimators, we have written it as a function of

the structural parameter vector θ.

Computation of Bellman Equation

The plant’s decision as to whether or not to invest at any state is based on dynamic opti-

mization. As such, we solve for the Bellman equation for candidate parameter values, based

on equations (A1) and (A2). Specifically, for our quasi-likelihood estimator, we perform a

non-linear search for θ and hence we solve for the Bellman equation for each of the candidate

values of θ that are considered in the course of the non-linear search. For our GMM estima-

tor, we solve for the Bellman equation for each of the 10,001 values in our fixed parameter

grid.

The states in Ω and Ω̃ are discrete, except for depreciated accumulated violations. Our

Bellman equation discretizes this latter variable, using 20 grid points that are evenly spaced

from 0 to 9.5. The transition from Ω̃ to Ω, given in (A2), will result in a new level of

depreciated accumulated violations that does not necessarily correspond to a grid point. As

such, we use linear interpolation to calculate (A2).

The transition from Ω to Ω̃, given in (A1), is stochastic, as it depends on the regulatory

CCP. We perform this calculation by simulating from the estimated regulator CCP. Specif-

ically, we first calculate the inspection probability for each state from the predicted values

of our estimates. We then calculate the violation probability for each state and inspection

decision. Following this, we calculate the distribution of fines for each state, inspection de-

cision, and violation decision, using 20 evenly spaced points from the estimated residual

distribution—which we denote F—ranging from R−1(0.025) to R−1(0.975). Finally, we cal-

culate the transition probabilities between the three statuses of compliance, regular violator,

and HPV, for each state, inspection decision, violation decision, and discretized fine decision.
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Altogether, this gives 240 (2×2×20×3) possible regulatory outcomes using our discretized

method. We calculate the probability and mean fines for each one. The Bellman equation

then integrates over these possibilities. We compute our Bellman equation until a fixed point,

defined as a sup norm tolerance of 10−9 between subsequent iterations. Following Assump-

tion 1, when we compute Bellman equations under counterfactual policy environments, the

state-contingent inspection, violation, and transition probabilities remain the same as in the

base computations.

Empirical Implementation of Homogeneous Coefficients Model

In addition to our main random coefficient model, we estimate a model with homogeneous

coefficients θ using a quasi-likelihood nested fixed point estimator. We calculate a quasi-

likelihood (and not a likelihood) because we use the regulator’s estimated CCPs in the plant’s

dynamic optimization process. In this model, there are no serially correlated unobservables

for a plant over time, and hence, we can treat each plant i and quarter t as an independent

observation. The quasi-log-likelihood of a parameter vector θ is:

logL(θ) =
∑
i

∑
t

log

([
XitPr(X = 1|Ω̃it, θ) + (1−Xit)(1− Pr(X = 1|Ω̃it, θ))

])
, (A4)

where the Pr(X = 1) values are obtained from investment probabilities at the fixed point of

the Bellman equation.

Our nested fixed point estimator is similar to Rust (1987). One difference is that in

Rust (1987), the state transitions conditional on actions are exogenous, while here, they

derive from the regulator’s CCPs, making our estimator consistent with a dynamic game.46

We obtain inference for our parameters and counterfactuals by bootstrapping our entire

estimation process including the regulator’s CCPs, with resampling at the plant level.47

46We could also estimate the plant’s utility function with a CCP estimator (Aguirregabiria and Mira,
2007), which is quicker to compute, but we did not, since the computational time for the nested fixed point
quasi-likelihood estimator is not excessive.

47In order to facilitate coding our estimation algorithm, we created a class assignment based on this paper.
We placed the assignment at https://doi.org/10.5281/zenodo.3724953.
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Choice of Fixed Grid Values for GMM Estimation

Our fixed grid estimator requires the ex ante specification of potential parameter grid values.

We follow Fox et al. (2016) and first estimate the quasi-likelihood model and then center

our fixed grid on these estimates. This requires specifying a range for the parameter grid

around the quasi-likelihood estimates. We used a range of 15 (from 7.5 below the quasi-

likelihood model to 7.5 above) for investment and 5 for the other parameters. We chose these

ranges after experimenting to make sure that they were large enough that we did not have

parameters with positive weights near the boundary.

We choose our actual grid values by again following Fox et al. (2016) and using co-prime

Halton sequences for each parameter, using the first five prime numbers, since each plant has

five parameters. We scale the Halton sequences over the range between the minimum and

maximum values. Co-prime Halton sequences better cover the set of parameters than would

taking the interaction of the same grid points for each component (Train, 2009).

We dropped the first 20 elements of each Halton sequence as recommended in the literature

(Train, 2009). We use the next 10,000 elements of the Halton sequences plus the quasi-

likelihood estimates themselves as our fixed grid; hence J = 10, 001. We also experimented

with J = 8, 001 (using the first 8,000 elements of the Halton sequence) and found similar

results.

Inputs to Moments

As noted in Section 4.3, we have three sets of moments. In order to explain our moments,

order the states 1, . . . , K and let ω1
k denote the fixed component of state k and ω2

k denote the

variable component of state k. Then, let πk(θ) be the steady state share of plants at ω2
k given

ω1
k. For a given ω1

k, we recover the associated π(θ) values by solving the Bellman equation

for ω1
k, generating the transition matrix between variable states, and finding the vector that

is invariant when transformed by this matrix.

As in (3), each moment is constructed from some md
k and mk(θj). We now denote these

terms m1
k, m

2
k, and m3

k, and md1
k , md2

k , and md3
k , corresponding to our three sets of moments.
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Our first set of moments indicates differences in the steady state share of plants πk between

the model and the data. Specifically, for any moment Gk(η) = md1
k −

∑J
j=1 ηjm

1
k(θ), we let:

m1
k(θj) = πk(θj), (A5)

and

md1
k =

∑
i

∑
t 1{Ω̃2

it = ω2
k, Ω̃

1
it = ω1

k}∑
i

∑
t 1{Ω̃1

it = ω1
k}

. (A6)

We note a few points about these moments. This first set of moments follows closely

from Nevo et al. (2016), although we use the steady state distribution of our infinite-horizon

dynamic problem, while they use the actual distribution of their finite-horizon problem.

While in principle we could construct a moment from every Ω̃, this would be difficult in

practice given that we have over 50,000 states. Hence, we create moments for the 5,000

states which have the highest expected number of steady state observations at our estimated

quasi-likelihood parameters and given our data on Ω̃1.

Our second set of moments also follows closely from Nevo et al. (2016). The mk values

for these moments are constructed from the conditional steady state share of plants at any

variable state times the conditional share having an investment at that state:

m2
k(θj) = πk(θj)× Share[X = 1|Ω̃, θj], (A7)

and

md2
k =

∑
i

∑
t 1{Ω̃2

it = ω2
k, Ω̃

1
it = ω1

k, Xit = 1}∑
i

∑
t 1{Ω̃1

it = ω1
k}

. (A8)

We compute these moments for every state for which we compute our first set of moments,

except for states that reflect compliance, as there is no investment in these states.

Our final set of moments explicitly captures the panel data aspect of investment. The mk

values for these moments are constructed from the conditional steady state share of plants

at any variable state times the conditional share having an investment at that state times

the sum from 1 to 6 of the product of the number itself and the conditional share with that
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many investments in the next six periods:

m3
k(θj) = πk(θj)× Share[X = 1|Ω̃, θj]× (A9)(∑6

s=1 s× Share[s investments within 6 periods|X = 1, Ω̃, θj]

)
,

and

md3
k =

∑
i

∑
t

[
1{Ω̃2

it = ω2
k, Ω̃

1
it = ω1

k, Xit = 1} ×
(∑6

s=1Xi,t+s

)]
∑

i

∑
t 1{Ω̃1

it = ω1
k}

. (A10)

These moments seek to match the extent of repeated investments by plants in the data to the

model. A more traditional correlation moment would simply multiply investment at time t

with investment at time t+ 1 rather than with investment over the following six periods. We

chose this formulation because we worry that investment in two subsequent quarters might

partly reflect measurement error. We compute these moments for every state for which we

compute our second set of moments.

To calculate the investment in the 6 periods ahead in (A9), we integrate over all potential

paths conditioning on the initial state and investment decision. Each period there are ten

potential paths: every interaction of (1) investment or not, (2) violation or not, and (3)

regular violator and HPV statuses; plus the cases of compliance with and without violations,

but without investment.48 Over 6 periods, this then implies 106 = 1,000,000 possible paths

for each parameter vector in our fixed grid θj. Thus, calculation of mk for this set of moments

is time consuming.

Overall, our estimator for our base specification has 14,374 moments, composed of 5,000

of the first set and 4,687 each of the second and third set. Our computation of mk(θj) results

in a 14,374 × 10,001 matrix and takes approximately eight days on an iMacPro with eight

processors, with code written in C with MPI, or two days on the University of Arizona high

performance cluster, using 28 processors.

48To save computational time, we use the higher probability point for depreciated accumulated violations,
rather than linear interpolation.
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Weighting Matrix and Estimation of GMM Parameters ηj

We follow the standard approach in GMM estimation of weighting by an estimate of the

inverse of the variance-covariance matrix to improve the efficiency of our estimates.49 We

proceed in two stages. In stage 1, we estimate the model with a weighting matrix that does

not reflect an asymptotic approximation to the variance-covariance matrix. Then, we use our

stage 1 estimates to compute an approximation to the variance-covariance matrix.50 In stage

2, we reestimate our parameters using this weighting matrix. We now detail our computation

of the variance-covariance matrix for both stages.

In stage 1, we calculate the variance-covariance matrix of the moments inputs mk, at the

quasi-likelihood estimates θQ.51

We calculate the diagonal elements of this matrix as:

V ar(mk(θQ)) =
E[mk(θQ)mk(θQ)]− E[mk(θQ)]2

Nk

, (A11)

where Nk is the number of plant / quarter observations from the region, industry, and gravity

state for moment k. This is the general formula for the variance for the mean of Nk repeated

i.i.d. draws from a random variable.

For the off-diagonal elements, the covariance will be zero for moments with different values

of Ω̃1. We can write the covariance between moments k and l from the same Ω̃1 as:

Cov(mk(θQ),ml(θQ)) =
E[mk(θQ)ml(θQ)]− E[mk(θQ)]E[ml(θQ)]

Nk

. (A12)

The first term in (A12) will be non-zero only for the three moments that pertain to the

same state. In this case, the first term in the numerator of the covariance between the

first and second set of moments will equal the second moment, while the first term in the

49Our GMM estimator is non-standard in that it includes the constraints in (2), which limits our ability
to prove asymptotic efficiency of this estimator.

50We base our approximation on the stage 1 parameters with weights of 0.01 or greater.
51For some robustness specifications, we had collinearity issues with inverting this variance-covariance

matrix. We dropped moments with zero variance in one specification and used the diagonal of the matrix
for another specification.
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numerator between the first and third set of moments or between the second and third set

of moments will equal the third moment. The reason for this is that the moment from the

second set will only be non-zero when the moment from the first set is non-zero, while the

moment from the third set will only be non-zero when the moment from the second set is

non-zero. The second term in (A12) is simply the product of the means.

In stage 1, we invert and take a Cholesky decomposition of this estimated variance-

covariance matrix. We then pre-multiply mk(θj) for each θj and md
k by this matrix and

obtain stage 1 estimates of the weights ηj by minimizing the linear system of equations

in (3) subject to the constraints in (2), via constrained least squares. We use the Matlab

package lsqlin to perform this minimization process, which takes approximately 10 minutes

on an iMacPro. The process generates consistent estimates of η that we use to construct a

weighting matrix.

We then estimate the variance-covariance matrix ofG(η) using our stage 1 GMM estimates

of η. From (3), the variance of G(η) is simply the squared weighted sum of the variance

conditional on the individual parameters, since the probability of each individual parameter

occurring is independent across observations.

We again take a Cholesky decomposition of the inverse of this revised variance-covariance

matrix, pre-multiply the matrix of moments mk(θj) across all θj values, and re-run our

estimation of the ηj weights. This provides our stage 2 estimates of ηj, which are the ones

that we report.

Bootstrap Procedure for Inference

We bootstrap to obtain standard errors for both our quasi-likelihood and GMM estimates.

For our GMM estimates, we provide standard errors on the counterfactual estimates only

rather than also on the structural parameters.

Our bootstrap for the GMM estimator proceeds with the following repeated procedure:

1. We first draw an alternative dataset by sampling with replacement at the plant level.

The new dataset has the same number of plants as the original data, though not
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necessarily the same number of plant / quarter observations.

2. We then use this new dataset to recalculate the regulatory CCPs.

3. Using these functions, we calculate the inputs to the moments, mk(θj) and md
k. We

limit the moments to those based on the 5,000 states which have the highest expected

number of steady state observations at our estimated quasi-likelihood parameter. Note

that the exact number of moments, mk, varies across iterations of the bootstrapping

procedure, depending on how many of those 5,000 states are in compliance.

4. We then calculate our initial weighting matrix and estimate our first-stage GMM struc-

tural parameters η using this weighting matrix.

5. We then calculate the second stage weighting matrix for the moments based on these

first-stage estimates, and use this weighting matrix to re-estimate the structural pa-

rameters.

6. Finally, we use these estimates to calculate all of the outcomes for each counterfactual.

We report the standard deviation of the outcomes across the bootstrap iterations as

the standard error of our counterfactual outcomes.

We report results from 100 bootstrap draws, using the University of Arizona high per-

formance cluster to perform the computations simultaneously. Our bootstrap for the quasi-

likelihood process is similar: it uses the output created in steps 1 and 2 above. It then es-

timates the structural parameters with a non-linear search and performs the counterfactual

computation with the new structural parameters, regulator CCPs, and dataset (analogous

to step 6).

A4 Extra Figures and Tables
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Table A1: Investment and Resolution of Violations

Dependent variable: return to compliance
Current investment −0.115 (0.002)
One quarter lag of investment 0.380 (0.006)
Two quarters lag of investment 0.083 (0.007)
Three quarters lag of investment −0.012 (0.005)
Four quarters lag of investment −0.051 (0.005)
Number of observations 103,338
Note: regression includes region, industry, and gravity state dummies. Regression uses
the estimation sample restricted to plants not in compliance at the start of the period.
Standard errors, which are clustered at the plant level, are in parentheses.

Table A2: State Transitions After Investment in Compliance

Outcome: transition to regular violator status
One quarter lag of investment 1.29 (.09)
Two quarters lag of investment 1.21 (.17)

Outcome: transition to HPV status
One quarter lag of investment 0.48 (.12)
Two quarters lag of investment 1.11 (.17)
Note: table shows estimates from a multinomial logit regression. Regression
includes region, industry, and gravity state dummies. Regression uses the es-
timation sample restricted to plants in compliance at the start of the period.
Standard errors, which are clustered at the plant level, are in parentheses.

Table A3: Regressions of Regulatory Actions on Depreciated Accumulated Violations

Dependent variable: Inspection Fine amount Violation
Accumulated violations with no depreciation 0.004 −0.014 −0.000

(0.007) (0.004) (0.001)
Accumulated violations with 10% depreciation 0.132 0.128 0.008

(0.025) (0.016) (0.006)
Accumulated violations with 20% depreciation −0.031 −0.059 −0.006

(0.022) (0.013) (0.004)
HPV status at start of period 0.115 0.032 0.006

(0.006) (0.002) (0.001)
Number of observations 103,338 103,338 103,338
Note: regressions include region, industry, and gravity state dummies. Regression uses the estimation
sample restricted to plants not in compliance at the start of the period. Standard errors, which are
clustered at the plant level, are in parentheses.
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Figure A1: Mean Inspection Probabilities and Fines by EPA Region
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Note: authors’ calculations based on estimation sample. States in each EPA region are indicated next to
value.

Table A4: Percent of Observations With Gravity State by Regulatory State

Gravity Actual Potential NAAQS In Regular HPV
damage damage attainment compliance violator

1 Low Low Either 37.19 36.29 38.98
2 Low High Either 2.89 2.44 2.08
3 High Low Either 4.07 4.16 3.64
4 High High Yes 28.22 29.34 26.58
5 High High No 27.63 27.77 28.72

Total: 100 100 100
Note: authors’ calculations based on the estimation sample. Regulatory actions
and outcomes are based on start of period regulatory status.
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Figure A2: Mean Inspection Probabilities and Fines by Industrial Sector
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Note: authors’ calculations based on estimation sample. Industrial sector measured by 2-digit NAICS code.

Figure A3: Depreciated Accumulated Violations and Monitoring and Enforcement
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Table A5: Regulatory CCPs Marginal Effects: Inspections

In Regular HPV
compliance violator

Plant time-varying state
Lag investment (0 to 1) — 0.050 0.012
2nd lag investment (0 to 1) — 0.100 0.043
Deprec. accum. vio. (mean to mean + 1) — 0.126 0.110

Plant fixed state
Non-attainment (given highest gravity) −0.028 −0.022 0.006
Highest gravity and attainment (versus lowest) −0.000 −0.022 −0.022
SE EPA region (versus SW) −0.101 −0.026 0.040
Utility sector (versus manuf. food) 0.107 0.193 0.134
Mean 0.086 0.272 0.428
Pseudo R2 0.085 0.091 0.075
Note: table shows marginal effects from probit regressions. Regressions include region, industry, and
gravity state dummies. We run each regression separately by start of period regulatory status (compli-
ance, a regular violator, or HPV). Each entry reports a marginal effect as described in the table.

Table A6: Regulatory CCPs Marginal Effects: Violations

In Regular HPV
compliance violator

Regulator actions
Inspection (0 to 1) 0.021 0.063 0.085

Plant time-varying state
Lag investment (0 to 1) — −0.007 −0.026
2nd lag investment (0 to 1) — −0.001 0.029
Deprec. accum. vio. (mean to mean + 1) — 0.026 0.041

Plant fixed state
Non-attainment (given highest gravity) 0.001 0.001 0.010
Highest gravity and attainment (versus lowest) −0.000 0.006 −0.010
SE EPA region (versus SW) −0.002 −0.010 −0.026
Utility sector (versus manuf. food) −0.001 −0.003 −0.013
Mean 0.000 0.102 0.156
Pseudo R2 0.182 0.152 0.099
Note: table shows marginal effects from probit regressions. Regressions include region, industry, and
gravity state dummies. Most regressions also include inspection × gravity state interactions. We run
each regression separately by start of period regulatory status (compliance, a regular violator, or HPV).
Each entry reports a marginal effect as described in the table.
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Table A7: Regulatory CCPs Marginal Effects: Fines

In Regular HPV
compliance violator

Regulator actions
Violation (0 to 1) 0.000 0.020 0.279
Inspection (0 to 1) 0.000 0.024 0.176

Plant time-varying state
Lag investment (0 to 1) — 0.002 −0.592
2nd lag investment (0 to 1) — 0.002 0.139
Deprec. accum. vio. (mean to mean + 1) — 0.000 0.000

Plant fixed state
Non-attainment (given highest gravity) 0.000 0.005 0.196
Highest gravity and attainment (versus lowest) 0.000 −0.001 −0.117
SE EPA region (versus SW) 0.000 −0.150 0.125
Utility sector (versus manuf. food) 0.000 −0.005 0.025
Mean 0.035 0.637 8.268
Pseudo R2 0.187 0.245 0.108
Note: table shows marginal effects from tobit regressions. Regressions include region, industry, and
gravity state dummies. Most regressions also include inspection × gravity state interactions. We run
each regression separately by start of period regulatory status (compliance, a regular violator, or HPV).
Each entry reports a marginal effect as described in the table.

Figure A4: Model Fit: Further Investments in the Six Periods After Initial Investment
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Table A8: Regulatory CCPs Marginal Effects: Status Transitions

Beginning State: Compliance Regular violator High priority violator

Transition to: Into Into Into Into Into Into
regular HPV compliance HPV compliance regular
violator violator

Regulator actions
Fines (mean to mean + std. dev.) 0.000 0.000 −0.048 0.001 −0.018 −0.001
Violation (0 to 1) 0.676 0.166 −0.123 0.132 −0.118 −0.017
Inspection (0 to 1) 0.006 0.004 −0.007 0.013 −0.013 −0.002

Plant time-varying state
Lag investment (0 to 1) — — 0.313 −0.004 0.461 0.248
2nd lag investment (0 to 1) — — 0.136 0.007 −0.046 −0.008
Deprec. accum. vio. (mean to mean + 1) — — 0.032 0.004 −0.030 0.013

Plant fixed state
Non-attainment (given highest gravity) 0.000 0.000 0.004 0.002 0.007 −0.005
Highest gravity and attainment (versus
lowest)

−0.000 −0.000 −0.012 −0.000 0.000 −0.001

SE EPA region (versus SW) 0.002 −0.004 0.186 −0.152 −0.044 0.044
Utility sector (versus manuf. food) −0.000 0.000 −0.011 0.011 −0.004 −0.006
Pseudo R2 0.502 0.175 0.307
Note: table shows marginal effects from multinomial logit regressions. Regressions include region, industry,
and gravity state dummies. Most regressions also include inspection × gravity state interactions. We run
each regression separately by start of period regulatory status (compliance, a regular violator, or HPV). Each
entry reports a marginal effect as described in the table.

Table A9: Estimates of Plants’ Structural Parameters: More Interactions in CCPs

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.856 −2.856 −2.318 −2.482 −1.906 −1.778 4.404
(0.023)

Inspection utility (θI) −0.083 −0.083 −0.228 −0.130 0.106 −2.553 −2.323
(0.028)

Violation utility (θV ) 0.039 0.039 0.260 0.767 −0.362 −1.356 −0.870
(0.074)

Fine utility (millions $, θF ) −5.328 −5.328 −4.529 −6.114 −5.993 −7.055 −7.238
(0.225)

HPV status utility (θH) −0.081 −0.081 −0.045 −0.094 −0.168 −2.564 0.377
(0.007)

Weight on parameter vector 1 0.273 0.265 0.213 0.175 0.049 0.008
Note: standard errors for quasi-likelihood estimates, which we calculate via an outer product formula, are
in parentheses. GMM estimates are for a one-step estimator, unlike main results. For GMM estimates,
we report the 6 parameter vectors with the highest weight. The CCPs used in these estimates include
region-by-industry fixed effects instead of region and industry fixed effects.
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Table A10: Estimates of Plants’ Structural Parameters for Mining and Extraction Only

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.316 −1.175 −2.219 −2.189 −0.964 −5.324 −8.918
(0.074)

Inspection utility (θI) −0.129 −1.111 −0.993 −0.938 −0.201 2.320 −0.496
(0.121)

Violation utility (θV ) −0.218 −1.490 −2.481 −2.225 −1.449 −1.609 −2.616
(0.657)

Fine utility (millions $, θF ) −5.891 −3.505 −6.039 −4.307 −3.728 −7.091 −8.272
(1.155)

HPV status utility (θH) −0.058 −0.205 −0.074 −0.333 −0.341 −0.821 0.215
(0.018)

Weight on parameter vector 1 0.603 0.209 0.131 0.022 0.012 0.010
Note: standard errors for quasi-likelihood estimates, which we calculate via an outer product formula, are
in parentheses. GMM estimates are for a one-step estimator, unlike main results. For GMM estimates,
we report the 6 parameter vectors with the highest weight. Estimation uses only data from mining and
extraction (2-digit NAICS code 21). Within this, the estimation uses the 6-digit NAICS codes with the
most plant / quarters, 211111, 211112, 212312, and 212321, and EPA regions 3-8. Estimation replaces
2-digit NAICS code fixed effects in the CCPs with 6-digit NAICS code fixed effects.

Table A11: Estimates of Plants’ Structural Parameters for 10 Most Populous States

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −3.354 −2.843 −3.856 −6.458 −3.689 −0.813 −3.838
(0.036)

Inspection utility (θI) −0.038 0.572 −1.195 −0.070 −0.286 −1.539 0.311
(0.042)

Violation utility (θV ) 0.827 0.041 1.209 −0.359 0.467 3.314 −0.447
(0.076)

Fine utility (millions $, θF ) −7.139 −8.967 −9.615 −8.258 −5.384 −4.934 −5.670
(0.271)

HPV status utility (θH) −0.184 −0.181 −0.129 −0.155 −0.020 −2.466 −0.257
(0.009)

Weight on parameter vector 1 0.417 0.222 0.144 0.053 0.051 0.048
Note: standard errors for quasi-likelihood estimates, which we calculate via an outer product formula, are
in parentheses. GMM estimates are for a one-step estimator, unlike main results. For GMM estimates, we
report the 6 parameter vectors with the highest weight. Estimation uses only data from CA, TX, NY, FL,
IL, PA, OH, MI, GA, and NC and replaces region fixed effects in the CCPs with state fixed effects.
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Table A12: Counterfactual Results With the Quasi-Likelihood Estimates: Changing the
Escalation Rate of Fines

(1) (2) (3) (4) (5)
Same fines for Same fines for all Fines for HPVs

Data Baseline all violators; violators; pollution doubled relative
fines constant damages constant to baseline

Quasi-likelihood estimates
Compliance (%) 95.62 94.66 (0.12) 91.45 (2.84) 94.81 (0.15) 95.06 (0.12)
Regular violator (%) 2.88 3.91 (0.11) 3.78 (0.13) 3.49 (0.11) 3.91 (0.11)
HPV (%) 1.50 1.43 (0.04) 4.77 (2.91) 1.70 (0.14) 1.03 (0.03)
Investment rate (%) 0.40 0.44 (0.01) 0.43 (0.02) 0.51 (0.02) 0.45 (0.01)
Inspection rate (%) 9.65 9.43 (0.06) 10.60 (1.36) 9.52 (0.09) 9.31 (0.05)
Fines (thousands $) 0.18 0.32 (0.04) 0.32 (0.04) 1.51 (0.29) 0.38 (0.05)
Violations (%) 0.55 0.54 (0.01) 1.08 (0.85) 0.60 (0.06) 0.50 (0.01)
Plant utility — −0.007 (0.004) −0.003 (0.006) −0.013 (0.004) −0.008 (0.004)
Pollution damages (mil. $) 1.65 1.54 (0.02) 1.87 (0.26) 1.54 (0.02) 1.50 (0.02)
Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region, industry,
and gravity state in our data. Plant utility reports the average flow utility across types and states including
ε except for Euler’s constant. Column (1) presents the value of each statistic in our data. Column (2)
presents the results of our model given the estimated coefficients and the existing regulatory actions and
outcomes. Other columns change the state-contingent fines and HPV cost faced by plants. Columns (3)
and (4) impose the same fines for all regular and high-priority violators for a given fixed state. Column (5)
doubles the fines for plants in HPV status. All values are per plant / quarter. Bootstrapped standard errors
are in parentheses.
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