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1 Introduction

In the United States, the Clean Air Act and its amendments reduced damages from air pol-

lution by $35.3 trillion from 1970 to 1990. However, since these regulations impact nearly

every industrial facility in the U.S., combined enforcement and compliance costs to govern-

ments and plants over this period were also large: $831 billion (Environmental Protection

Agency, 1997, converted to 2007 dollars). While the benefits appear to justify the costs, the

sheer magnitude of these costs makes it critical to understand the efficiency of regulatory

monitoring and enforcement mechanisms for pollution control.

To better understand how environmental regulations are enforced, first consider an ex-

ample of a large oil refinery in Texas.1 In 2011, after a period with only low-level violations

involving emission releases, the plant was conducting work to improve productive efficiency

when a valve that should have been left open was closed. This led to a pressure buildup in a

pipeline, causing a leak and emissions of volatile organic compounds and benzene. Because

these emissions came from an unauthorized source within the facility, the plant was placed

in high priority violator (HPV) status, subjecting it to higher scrutiny and fines. In 2012,

another low-level pollution release similar to the earlier ones occurred, but this time the fine

imposed was doubled because the plant was in HPV status. Increased scrutiny and enhanced

fines continued through a series of additional releases until the plant made two separate in-

vestments in pollution abatement—including substantial upgrades to emissions-monitoring

systems—after which the plant was removed from HPV status, returning to a baseline level

of scrutiny in 2013.

This example illustrates one way that the U.S. Environmental Protection Agency (EPA)

uses dynamic enforcement—where regulatory actions are a function of the plant’s history of

past actions (Landsberger and Meilijson, 1982; Shimshack, 2014)—to enforce the Clean Air

Act Amendments (CAAA). Specifically, the EPA designates repeat offenders as HPVs and

targets them with elevated scrutiny and penalties. Regulators who dislike imposing fines

may choose dynamic enforcement because it avoids over-fining plants before they have a

1We obtained the information underlying this example from Texas and federal enforcement records.
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chance to fix violations, but uses the threat of high fines as an incentive for plants to make

costly investments in pollution abatement. Dynamic enforcement may add value when the

imposition of fines is costly to the regulator and when the regulator cannot contract on a

plant’s compliance costs in its regulatory actions.

CAAA enforcement incorporates substantial state-dependent scrutiny, in part through

HPV status designation. To illustrate this, Figure 1 shows mean unconditional CAAA in-

spection rates, fines, and violation rates, separately for plants in compliance, regular (not-

high-priority) violators, and HPVs. In each case, the level of scrutiny increases dramatically

across these statuses.2

Figure 1: EPA Clean Air Act Amendment Enforcement by Regulatory Status
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Note: figure reports 2007-13 unconditional mean quarterly levels of inspections, fines, and violations by
CAAA regulatory status, based on authors’ calculations from the estimation sample.

This paper seeks to quantify the gains from dynamic enforcement of the CAAA. To do

this, we first estimate the cost to industrial facilities of complying with the EPA’s current

2The increasing pattern for fines in Figure 1 could be due to dynamic enforcement or to those plants
violating environmental norms more frequently or severely. Our analysis allows for both of these explanations.
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dynamic approach. Second, we simulate the value of alternative enforcement regimes in

affecting plants’ emissions and compliance with the CAAA. Our modeling and estimation

framework are specific to the CAAA, but we believe that similar approaches may yield

important general insights, since dynamic enforcement is used across many settings,3 and it

is widely recognized that dynamic enforcement can add value in theory (e.g. Landsberger

and Meilijson, 1982; Harrington, 1988; Leung, 1991; Polinsky and Shavell, 1998).

Until recently, the empirical literature on enforcement has largely focused on evaluating

how plant compliance relates to enforcement.4 For instance, Magat and Viscusi (1990),

examine whether inspections lower emissions at a plant, while Nadeau (1997) uses variation

across plant types and states to look at the effect of enforcement on the duration of non-

compliance. More recently, Shimshack and Ward (2008) show that increased enforcement can

lead even compliant plants to reduce emissions, leading to “over-compliance,” where plants

emit well below the compliance threshold, and Stafford (2002), Keohane et al. (2009) and

Blundell (2019) examine how variation in the intensity of dynamic enforcement relates to

plants’ compliance status.

However, this empirical literature has not been able to evaluate the value of dynamic en-

forcement. To do this, one needs to account for the value of enforcement in lowering pollution

and weigh that benefit against the compliance cost to plants and regulators. With dynamic

enforcement, measuring this value requires estimating a dynamic model of the costs to plants

from investment in pollution abatement relative to the costs of regulatory scrutiny. These

are some of the many challenges that lead Shimshack (2014) to conclude that environmental

monitoring and enforcement is “both understudied and controversial” (p. 3).

To measure the value of dynamic enforcement we develop and estimate the parameters of

a discrete-time dynamic game of a plant faced with a regulator. In our model, the regulator

3E.g., for the CAAA (Evans, 2016) and the Clean Water Act (Earnhart, 2004; Shimshack and Ward,
2005) in the U.S., petroleum storage in Canada (Eckert, 2004), air pollution in Norway (Telle, 2013), soil,
water, and air pollution in Belgium (Blondiau et al., 2015), and waste management in Japan (Shinkuma and
Managi, 2012). Dynamic enforcement is also widely used beyond environmental regulations, e.g., in worker
health and safety regulation (Ko et al., 2010) and tax auditing in China (Maitra et al., 2007).

4Exceptions are two recent papers on the value of regulatory discretion, which we discuss below (Duflo et
al., 2018; Kang and Silveira, 2018).

3



makes decisions regarding inspections and fines. Inspections can improve the ability of the

regulator to detect violations of the CAAA, such as increased air pollution. The regulator

then uses its information to determine whether violations have occurred and to decide whether

to transition plants to regular violator or high priority violator status. Both outstanding

violations and elevated regulatory states can subject plants to higher inspection rates and

higher fines. The regulator bears a cost from conducting inspections and imposing fines.

To avoid making assumptions about the EPA’s objective function, which we would have

difficulty identifying, we do not estimate the regulator’s utility function, but rather model

the regulator’s decisions using conditional choice probabilities (CCPs).

Each plant, in turn, decides whether and when to invest in pollution abatement technolo-

gies. We allow for plants to bear costs from both regulatory actions (e.g., shutting down a

production line to allow for an inspection) and investment in pollution abatement. There-

fore, a plant that is in regular or high priority violator status will consider incurring the

investment cost in order to reduce its present discounted value of future regulatory costs.

Recovering these costs is the key step in being able to understand how plants will respond to

counterfactual regulatory policies, such as those that do not condition enforcement activities

on plant state.5

Our estimation makes use of extensive data with information on virtually all industrial

facilities in high polluting industries covered by the CAAA. Our data report inspections, fines,

violations, compliance status, and investment decisions for a seven-year-long panel with over

2.3 million plant / quarter observations. These extensive data allow us to specialize our

theoretical framework to an empirical model that appropriately accounts for plants’ dynamic

incentives to invest in pollution abatement with heterogeneity in plants’ costs of investment

and enforcement.

We estimate two main econometric models. First, we implement a quasi-likelihood fixed

point estimator where mean investment and regulatory costs are identical across plants.6

5Because we do not recover the regulator’s preferences, our counterfactuals are based on plant optimization
given alternative regulatory policies and do not necessarily stem from the equilibrium of the dynamic game.

6We calculate a quasi-likelihood (and not a likelihood) because we use the regulator’s estimated CCPs in
the plant’s dynamic optimization process.
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The specification and estimation of this model follow from Rust (1987)’s classic work on

bus engine replacement. Second, we estimate a model where plants have heterogeneous

costs. Specifically, we estimate a non-parametric random coefficients model similar to Fox

et al. (2016) where we specify a fixed grid of potential cost parameters and estimate the

population weights of each. We use a generalized method of moments (GMM) estimator

that is computationally very tractable, with a quick and convex optimization problem.7

Summary of results. The estimates from the homogeneous cost model confirm the

findings in Duflo et al. (2018) that plants find environmental enforcement expensive. We

find that fines and classification as a high priority violator both carry substantial costs. In

particular, the mean cost to a plant from being a high priority violator is equivalent to a

fine of $10,900 per quarter. This cost may result from high priority violator status affecting

the plant’s reputation and relationship with the surrounding community. We also find that

investment and inspections are costly to plants, with a new investment being equivalent to a

$480,000 fine (holding constant other regulatory actions) and an inspection being equivalent

to a $8,200 fine (though not statistically significant). Because a fine may impose costs on

plants beyond the amount assessed by the EPA (for instance, the legal or reputational fallout

from fines may be costly), these figures should be interpreted as lower bounds on the actual

dollar cost to plants of investment and enforcement actions.

The estimates from our random coefficients model show that there are substantial differ-

ences in plants’ regulatory and investment costs, but that nearly all plants find investment,

fines, and HPV status substantially costly. In particular, 96% of plants have investment costs

of between $218,000 and $450,000 in equivalent fine costs, which are similar to, but lower

than, the homogeneous cost model. The heterogeneity of compliance costs across plants

may further increase the value of dynamic enforcement, since the regulator cannot contract

enforcement decisions on plant costs.

Using our estimated parameters, we construct counterfactual estimates of how plants’

investment decisions and regulatory status would change if the regulatory structure were

different. In particular, we focus on (1) changing the rate at which fines escalate as plants

7We provide an intuitive discussion of identification in Section 4.5.
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move from regular to high priority violator status and (2) how the current system of dynamic

enforcement compares to scaled Pigouvian fine structures where plants pay a fine equal to

the scaled damages from their pollution.8

Our random coefficient estimates show that if we were to completely eliminate any esca-

lation of fines by making fines the same for all plants in (regular or high-priority) violator

status, while keeping total equilibrium fines the same as in the baseline, there would be nearly

23 times as many plants in HPV status, leading to 167% increase in pollution damages and

requiring regulators to conduct 120% more inspections. Correspondingly, eliminating fine

escalation while holding pollution damages constant leads to 530% higher fines. In contrast,

increasing the rate that fines escalate in HPV status would have only a small effect on long-

run regulatory states and pollution damages. Pigouvian fines would lead to lower pollution,

but at the cost of the regulator needing to impose substantially higher fines. Finally, Pigou-

vian taxes scaled so that aggregate pollution is the same as in the baseline would lead to a

413% increase in fines.

Relation to literature. This paper relates to three distinct literatures. First, as noted

above, we connect the theoretical and empirical literatures on the role of dynamic enforce-

ment of environmental regulations by estimating the value of dynamic enforcement. Second,

we build on a literature that structurally estimates plant behavior in the presence of energy

and environmental regulatory policies (Timmins, 2002; Ryan, 2012; Lim and Yurukoglu, 2015;

Muehlenbachs, 2015; Fowlie et al., 2016; Duflo et al., 2018; Houde, 2018; Kang and Silveira,

2018). In particular, two recent papers estimate the value of regulatory discretion and compli-

ance. Duflo et al. (2018) estimate a dynamic model of environmental regulatory enforcement

for plants in India given regulator discretion over which plants to inspect. The dynamics in

their context stem largely from the fact that plants must make discrete investment decisions,

rather than from dynamic enforcement. Though our ultimate research question is some-

what different, our conception of investment is similar to theirs. Our identification builds

on theirs in that we observe multiple regulatory regimes—based on EPA regions and indus-

8Pigouvian fines are efficient in a world where the regulator finds conducting inspections and imposing
fines costless, but can be costly in our setting because they may force the regulator to impose high fines.
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trial sectors—and that we model random coefficients. Kang and Silveira (2018) also seek to

understand the value of regulatory discretion, by estimating a game between the regulator

and municipal water treatment plants in California. Given the specifics of their setting, they

focus on static regulator incentives and compliance stemming from continuous effort, rather

than from discrete investments, as in our case.

Third, we use a non-parametric estimating framework for dynamic discrete choice models

with random coefficients (Arcidiacono and Miller, 2011; Fox et al., 2011; Gowrisankaran and

Rysman, 2012; Connault, 2016; Fox et al., 2016; Nevo et al., 2016). In this dimension, our

paper is most similar to Fox et al. (2011), Fox et al. (2016), and Nevo et al. (2016) in that it

uses the same fixed grid GMM approach and similar computational techniques.

The remainder of the paper is organized as follows. Section 2 documents the regulatory

context and then presents our general theoretical model, that is designed to capture the

key features of this environment. Section 3 details our data and provides reduced-form

evidence that motivates the choices in our estimable model. Section 4 describes our empirical

framework. Section 5 presents our results and counterfactuals. Section 6 concludes.

2 Dynamic Enforcement in Practice and Theory

2.1 Dynamic Enforcement Under the Clean Air Act Amendment

Congress passed the Clean Air Act in 1963 in an effort to improve air quality. While the

original Act mostly provided funds for research into monitoring and limiting air pollution, a

series of amendments starting in 1965 codified air pollution standards and federal enforce-

ment of these standards. Following the National Environmental Policy Act of 1969 and the

1970 Clean Air Act Amendment, President Nixon, with the approval of Congress, created

the Environmental Protection Agency (EPA) to enforce air pollution standards and other

environmental legislation. The Act was last amended in 1990 to expand the scope of regu-

lated air pollutants and increase federal enforcement authority. While the current state of

air pollution regulation is the result of both the Clean Air Act and a long series of amend-
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ments, the Clean Air Act Amendments (CAAA) combine to form the current structure of

air pollution regulation enforcement. We will refer to the CAAA in what follows.

The CAAA give the EPA the authority to regulate criteria air pollutants—ozone (O3),

particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOX), sulfur dioxide

(SO2), and lead (Pb)—as well as various hazardous air pollutants. The CAAA mostly man-

date command-and-control regulations, the most relevant of which to our context is the

requirement that plants use the best available control technology (BACT) in their produc-

tion processes.9 BACT requires that plants’ pollution be at or below thresholds that could

be achieved with best practices. To ensure that plants comply with these regulations, the

EPA has developed an enforcement regime that includes a system of permitting, inspections,

violations, fines, and other requirements (e.g., self-reporting paperwork). This enforcement

structure aims to reduce pollution by ensuring that plants are complying with the CAAA

emissions and technology standards and by moving plants that are out of compliance back

into compliance via plant investments in improved processes or technology.

While the structure of CAAA enforcement is dictated by the CAAA and the EPA, much

of the actual enforcement activity is carried out by regional- and state-level environmental

protection agencies.10 In particular, the EPA divides the country into 10 geographic regions.

Significant portions of the EPA’s operations are conducted through these regional offices.

For instance, regional EPA offices conduct inspections and/or issue sanctions when a state’s

enforcement is below required levels, and assist states with major cases. Further, EPA

guidance explicitly states that “regions and states can take varied approaches to improving

state enforcement programs” (Environmental Protection Agency, 2013, p.5). We use EPA

regions and states for identifying variation because they represent a unit of analysis that

captures both the interpretation of federal policy and geographic preferences for enforcement.

Under the enforcement system used during our sample period, all plants—in compliance

9The CAAA includes some market-based regulations, such as the NOX cap-and-trade program. However,
these regulations incentivize reductions in NOX emissions beyond BACT requirements. Importantly, plants
cannot simply purchase cap-and-trade permits to ensure CAAA compliance.

10While many of these state agencies are called something other than an “EPA” (e.g., the Florida Depart-
ment of Environmental Protection), we will refer to them as state EPAs for brevity. State and regional EPAs
are required to maintain a minimum level of enforcement, but can exceed this threshold (Shimshack, 2014).
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or otherwise—could expect to be inspected regularly. The frequency of these inspections

depended not only on baseline differences across states and regions in enforcement budget

and priorities, but also on the size of the plant and whether the plant was located in a

National Ambient Air Quality Standards (NAAQS) non-attainment area. Non-attainment

areas were required to have plans to return to attainment, which could lead to increased

levels of scrutiny for plants in these areas.

In addition to conducting inspections and identifying violations, the EPA can issue fines

to plants. Fines are calculated using two main components, the gravity of the violation and

the economic benefit that the plant received from the violation (Environmental Protection

Agency, 1991). The gravity component of each violation is primarily determined from the

actual or potential harm of the violation, which includes (a) the level of the violation, (b) the

toxicity of the pollutant, (c) the sensitivity of the environment into which the pollutant is

released, and (d) the length of time of the violation. Additionally, gravity is adjusted based

on a number of other factors including whether there were reporting issues (e.g., permitting

and self-reporting violations), the plant’s history of noncompliance, and the plant’s ability to

pay.11 Our modeling of regulator fines takes these features into account through the plant’s

history of violations and recent investments and a series of fixed effects that seek to capture

a plant’s economic benefit of noncompliance and gravity, based on the plant’s industry and

location. Finally, because of bankruptcy laws, political pressure, and explicit caps, the EPA

is limited in the penalties it can assess. In particular, driving plants out of business for small

infractions would undermine political support for the CAAA and EPA. Thus, there is an

advantage to the EPA of obtaining compliance without issuing numerous large penalties.

In the course of an inspection, or via a plant self-report, regulators may uncover a violation

of the CAAA, and the plant will enter “violator” status. Being a violator subjects the plant

to additional inspections, which could possibly uncover additional violations and potential

fines. Plants can accumulate multiple violations within violator status and will only return

11While regulatory enforcement can be tailored to individual plants to some extent via adjustments for
ability to pay, enforcement is not allowed to vary based on the EPA’s perception of plants’ underlying costs.
In particular, (Environmental Protection Agency, 1991, p.22) states “... in order to promote equity, the
system for penalty assessment must have enough flexibility to account for the unique facts of each case. Yet
it still must produce consistent enough results to ensure similarly-situated violators are treated similarly.”
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to compliance once those violations have been resolved. The cost to the plant of being a

violator therefore comes not only from the investment cost required to resolve outstanding

violations, but also from an increased level of regulatory oversight.

The EPA can designate plants with particularly egregious or repeated violations as “High

Priority Violators” (HPV). The HPV designation is explicitly “designed to direct scrutiny

to those violations that are most important” (Environmental Protection Agency, 1999, p.1-

1) and, during our time period, is reserved for plants that meet one of ten “general” HPV

criteria or five “matrix” criteria. While some violations unambiguously merit HPV designa-

tion (e.g., “Failure to obtain a Prevention of Significant Deterioration or New Source Review

permit”), others either leave room for regulator discretion (e.g., “Substantial testing, moni-

toring, recordkeeping, or reporting violation”) or are explicitly dynamic (e.g. “Violation by

a chronic or recalcitrant violator”). Once a plant enters HPV status, it triggers a period

of intense oversight by the EPA that includes more frequent inspections (which can lead to

uncovering additional violations), higher fines, and explicit deadlines for both EPA and plant

actions to resolve any outstanding violations. Plants in HPV status face higher regulatory

burdens, as shown in Figure 1. As with the Texas example, plants can only exit HPV sta-

tus after resolving all outstanding violations, regardless of whether those violations would

independently elevate the plant to HPV status. The combination of increased inspections,

violations, fines, and general regulatory oversight means that HPV status is—and is intended

to be—substantially costly for plants.

During the time frame of our analysis the EPA further used a “watch list” to focus partic-

ular attention on HPVs that did not resolve all of their violations in a timely manner. While

the watch list was originally intended to target oversight by the EPA, reporters obtained the

list of included plants via Freedom of Information Act requests and publicized the list. The

public disclosure of the watchlist appears to have increased plants’ costs by leading to in-

creased attention from local politicians and civilian environmental protection groups (Evans,

2016). This is in keeping with evidence from Johnson (2016) which finds that publicizing

non-compliance (in that case for OSHA regulations) can be costly to plants.

Finally, the HPV system has been changed over time. In 2014 (after our sample period),
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the guidelines for plants being classified as HPVs were narrowed and the watch list was

eliminated. These changes highlight the fact that the EPA is still working to determine

the optimal enforcement policies, which makes evaluating the effect of dynamic incentives

particularly important.

2.2 General Theoretical Framework

Our theoretical model of EPA enforcement and plant investment seeks to capture the frame-

work described above in a tractable setting. Our model builds on a literature on rational

compliance and optimal punishment (Bentham, 1789; Becker, 1968). We adopt the view

(from Becker) that compliance with environmental regulations is a rational decision, where

a plant chooses its compliance decisions in order to maximize its surplus.

Landsberger and Meilijson (1982) expand the Becker framework to consider dynamic en-

forcement in a two-period model of tax compliance. They focus on policies that vary an

individual’s audit rate (similar to our inspection rate) based on her previous detected viola-

tions. Harrington (1988) analyzes dynamic enforcement with a similar framework, where the

regulator underpenalizes one-time violations in order to create incentives to avoid repeated

violations. Mookherjee and Png (1994) generalize this idea of differential enforcement activ-

ities in a static model by formalizing the concept of marginal deterrence, where the regulator

underpenalizes small violations in order to create strong marginal incentives to avoid large

violations. These policies are both examples of what we call escalation mechanisms, where

marginal deterrence is increasing in the extent of the violation or history of violations.

Most of the theoretical papers on escalation mechanisms show that increasing marginal

deterrence can increase surplus given an implicit or explicit cost of penalties for the regulator

(Landsberger and Meilijson, 1982; Harrington, 1988; Mookherjee and Png, 1994; Polinsky

and Shavell, 1998; Friesen, 2003). As we noted in Section 2.1, the EPA faces such costs in

enforcing the CAAA. In addition, some models specify heterogeneous plants and an inability

of the regulator to contract on types as a reason for escalation mechanisms (Landsberger and

Meilijson, 1982; Mookherjee and Png, 1994; Raymond, 1999; Kang and Silveira, 2018). In this
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case, escalation mechanisms can add value by creating a separating equilibrium across types.

For instance, with heterogeneous investment costs, an escalation mechanism may incentivize

low-cost plants to invest in pollution abatement when they are regular violators and fines are

low while high-cost plants will wait until they become HPVs and fines are higher.

Our model of dynamic CAAA enforcement builds on these insights. We model each

plant as playing a dynamic game with the regulator, with the equilibrium of the game being

Markov Perfect.12 The regulator would like plants to comply with environmental regulations,

but also bears a cost from conducting inspections and issuing fines. Violations of the CAAA

arise stochastically and plants detect them concurrently with the regulator. Plants make

optimizing decisions about whether to invest in remediation of CAAA violations. These

investments take time and are not always successful in fixing violations. We allow for an

escalation mechanism with dynamic enforcement, as is present in the data. We also allow for

heterogeneous plants and an inability to contract on plant type. The underlying reasons for

dynamic enforcement are a regulator cost of enforcement; heterogeneous plants; delay and

stochasticity in remediation from investment; and imperfect information from inspections.

More specifically, each period t corresponds to a quarter and the future is discounted with

factor β.13 We define the regulatory state Ωt to be the payoff-relevant state variables over

which plant and regulatory actions may depend; Ωt is known to the regulator and plant at

the start of the period.

Each period, the regulator first receives an i.i.d. private information shock to the value

of an inspection and then decides whether or not to inspect the plant. Let the inspection

probability be given by I(Ω) and let Ins(Ωt) denote the actual inspection decision. The

regulator and plant receive a (unidimensional) signal et about the plant’s environmental

performance, based in part on the inspection.

The state Ω and signal e have three effects. First, Ω and e reveal whether there is a new

violation, with the function V io(Ω, e). Second, the regulator’s fine policy, Fine(Ω, e), is a

12Our estimation is also consistent with a plant playing against a “regulatory machine” (Duflo et al., 2018).
13While we capture exogenous plant exit through the discount factor, with a lower discount factor corre-

sponding to more exit, we do not endogenize exit. Duflo et al. (2018) find no difference in exit rates for plants
randomized into additional regulatory scrutiny in India; we believe that plants in our sample are less likely
to be at the margin for exit.

12



function of both. Third, they also determine the regulatory state that the plant will face at

the point when it takes its action, which we denote Ω̃. Let T (Ω, e) = Ω̃ denote this transition

function and let HPV (Ω̃) denote HPV status designation under Ω̃. In our framework, we

allow the regulator to vary Fine(·, ·) but not V io(·, ·), T (·, ·), or HPV (·), as we assume these

latter three reflect environmental norms and are dictated by e. Following this, the plant, if

not in compliance under Ω̃, makes a binary decision of whether or not to invest in pollution

abatement. Let X ∈ {0, 1} denote the investment decision.

A plant chooses its investment decision in order to minimize its expected discounted sum

of the costs from inspections, fines, violations, designation as a high priority violator, and

investment.14 A plant that invests incurs a cost from its investment, but increases the chance

that it returns to compliance in future periods. The regulator chooses its inspection and fine

policies to minimize the expected weighted sum of damages from pollution, plant investment

costs, and enforcement costs.

In order to further illustrate the value of dynamic enforcement, On-Line Appendix Sec-

tion A1 develops a simple, special case of our general model, that is similar to Polinsky

and Shavell (1998). This simple case shows that static escalation mechanisms add value

by allowing the regulator to increase the marginal deterrence for repeated violations rela-

tive to one-time violations. Dynamic escalation mechanisms add more value by allowing the

regulator to condition on more variables.

3 Data and Empirical Foundations

Before we turn to our empirical framework, Section 3.1 describes our data sources and Sec-

tion 3.2 develops the empirical assumptions that allow us to take our theoretical model to

the data.

14Since we do not incorporate endogenous exit in our model, we do not model the profit from operations.

13



3.1 Description of Data

Our main analyses principally use four publicly available databases. We summarize the

databases here, with details in On-Line Appendix A2.

Primarily, we use the Environmental Compliance History Online (ECHO) enforcement

database. The ECHO database provides plant industry and county, enforcement actions,

measures that we use to determine investment, and compliance, regular violator, and HPV

status. We infer that a plant has invested if the ECHO data indicate either an environmental

issue resolution code or the issuance of a Prevention of Significant Deterioration (PSD)

permit.15 Our measure of investment is imperfect in that it only captures large (likely

capital) investments rather than smaller investments in improving plant processes that may

also reduce pollution. To our knowledge, there is no comprehensive national database that

contains these types of smaller process investments. We also collected data from the Texas

Commission on Environmental Quality (TCEQ) on all changes in pollution abatement devices

at major air polluters in Texas during our time frame. These data confirm that our measure

of investment matches well with observed changes in abatement technology. (See On-Line

Appendix A2 for more detail.)

We collapse the ECHO data from the pollution source (AFS ID) level to the plant (FRS

number) level using a crosswalk provided by the EPA and aggregate to the quarter level. We

limit our study to the seven most polluting North American Industry Classification System

(NAICS) industrial sectors, as listed in Table 2 below. This forms our analysis data, which

are at the plant / quarter level and extend from Q1:2007 until Q3:2013.16 Table 1 provides

summary statistics of these data. They contain 2,252,570 plant / quarter observations. Not

reported in the table, these data cover 107,705 unique plants, of which 66.7 percent are

present in every quarter of our sample period.

As is well-documented in the literature (e.g., Evans, 2016), compliance is high: 95.6 per-

15As discussed below, we eliminate investments in compliance (see Section 3.2) and also infer investments
for plants that exited HPV status (On-Line Appendix A2).

16The ECHO enforcement actions data start shortly before the beginning of this period but we start our
sample in 2007 to be able to use lagged values of variables. Although this dataset supposedly continued
through 2014, we noticed fewer reported cases after Q3:2013, which we believe are due to early transitions
to the new database. This motivates our choice to end our analysis sample in Q3:2013.
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Table 1: Summary Statistics on Estimation Sample

Status: Compliance Regular violator High priority violator

Regulator actions:
Inspection (%) 8.49 23.43 39.61
Fine amount (thousands of $) 0.04 0.61 8.05

(0.78) (1.41) (11.35)
1{Fine> 0} (%) 0.15 2.75 11.92

Regulatory outcomes:
Violation (%) 0.32 3.24 9.34
Entrance into HPV status (%) 0.14 1.64 0.00

Plant actions:
Investment (%) 0.00 4.91 17.50
Investment (from resolution code) (%) 0.00 4.62 16.35
Investment (from PSD permit) (%) 0.00 0.34 0.43
Investment (from HPV exit) (%) 0.00 0.00 0.80
Dropped investment in compliance (%) 0.37 0.00 0.00

Plant / quarter observations 2,252,570 66,992 36,346
Note: authors’ calculations based on estimation sample. Standard deviations are reported in parentheses.
Regulatory actions and outcomes are based on lagged status. Plant actions are based on current status.

cent of observations indicate compliance. Compliance is also high when considering individual

plants: 88.4 percent of plants are never out of compliance, while 7.4 percent of plants have

at least one quarter in which they are a regular violator but are never in HPV status, and

only 4.2 percent of plants have at least one quarter in which they are in HPV status.

Consistent with Figure 1, plants in compliance are inspected at much lower rates (8.5%)

than are plants in regular violator status (23.4%) and plants in HPV status (39.6%). Sim-

ilarly, fines are much higher for violators and even higher for HPVs. Violating plants are

more likely to incur further violations. Violating plants are also much more likely to enter

HPV status than are plants in compliance.

We find that investment occurs in 4.9% of quarters when a plant is a violator and in 17.5%

of quarters when a plant is an HPV. We derive the vast majority of these investments from

codes that indicate the resolution of an environmental problem. We derive a much smaller

set of investments from Prevention of Significant Deterioration permits and from exiting high

priority violation status. Finally, we observe codes that are indicative of investment in 0.37%
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of plant / quarters in compliance, but do not count these as investments, as noted above.

We combine the ECHO enforcement data with three additional datasets. First, the

National Emissions Inventory database measure emissions every three years. Our study

focuses on emissions of criteria air pollutants (and not hazardous air pollutants) as the data

quality for these pollutants is much better (Environmental Protection Agency, 1997). We

merge the 2008 and 2011 NEI data from ECHO’s Air Emissions Data to our base data using

the FRS number and year. We use the NEI data in two ways. First, in combination with the

AP3 data described next, we use the NEI data to understand each plant’s expected gravity of

a violation. Second, we use these data to calculate the mean levels of six different pollutants

by regulatory state, which are necessary for our counterfactuals.

Second, we use the AP3 database (Clay et al., 2019) for elevated (e.g., smokestack-level

rather than ground-level) emissions to get the marginal damages for criteria air pollutants in

each county in 2011. We supplement the AP3 data with a national estimate of the marginal

damages of lead from Zahran et al. (2017).17

Third, the National Ambient Air Quality Standards (NAAQS) database indicates whether

a given county is entirely or partly in non-attainment of NAAQS during our sample period.

These data enter into our measure of the expected gravity of a violation.

Table 2: Summary Statistics on Mean Criteria Air Pollution Levels

Observations Mean Mean level Mean
Industry in analysis level in as regular level

data compliance violator as HPV
Mining & extraction (NAICS 21) 687,400 $501 $3,829 $4,789
Utilities (NAICS 22) 112,554 $14,892 $58,630 $77,941
Manufacturing: food, textiles (NAICS 31) 139,826 $642 $2,831 $2,510
Manufacturing: wood, petroleum (NAICS 32) 617,572 $895 $2,800 $5,894
Manufacturing: metal (NAICS 33) 539,000 $319 $1,967 $2,652
Transportation (NAICS 48) 157,326 $416 $1,008 $2,881
Educational services (NAICS 61) 132,209 $785 $1,730 $1,943
Note: table reports summary statistics on total criteria air pollution damages in thousands of dollars
per plant / quarter observation in our analysis data.

17Zahran et al. (2017) measures the effect of leaded aviation fuel on the level of lead in children’s blood
and associates this with changes in long-run earnings. This is likely a lower-bound on the marginal damages
of lead.
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Table 2 provides summary statistics on the reported criteria air pollution damages for

our analysis data, by industry. There is substantial variation in the pollution damages

across industries. The most (least) polluting industry in our data in compliance is utilities

(educational services). Across industries, plants in violator status emit more pollution that

plants in compliance. For most industries, this effect is particularly pronounced for plants in

HPV status.

3.2 Empirical Foundations of the Estimable Model

Recall that in our dynamic model, the plant’s decisions are a function of its regulatory state.

In principle, the regulatory state lists the plant’s history of prior violations and investments

and its EPA region, industrial sector, and expected gravity of violations. In practice, we

need to summarize this information for tractability. In this section we provide evidence to

motivate our state space and other modeling choices.

Investment

We first investigate the role of current and past investment in affecting violator status.

Table A1 provides a regression of whether a plant returns to compliance (from regular or high

priority violator status) on current investment, and four quarter lags of investment. We find

that investment in the previous quarter is a very strong predictor of a return to compliance,

increasing the probability of a return by 38 percentage points. Investment two quarters

ago is a weaker, though still statistically significant and positive predictor. In contrast,

current investment, and further lags of investment are all negative predictors.18 Based on

these regressions, our state space allows for two lags of investment to affect the regulatory

state. We also assume current investment does not impact a plant’s likelihood of returning to

compliance in the current period (but can in the subsequent two periods). Finally, the lack

of a current effect of investment motivates our timing assumption that investment occurs at

the end of each period, after the regulator’s actions and regulatory outcomes.

18The negative coefficient on current investment may be due to plants in violation investing when additional
problems arise.
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Figure 2: Effect of Investment on Regulatory State

0
20

40
60

80
10

0
Pe

rc
en

t t
ha

t t
ra

ns
iti

on
 to

 e
ac

h 
re

gu
la

to
ry

 st
at

e

Lagged state: regular violator Lagged state: HPV
No Investment Investment No Investment Investment

Transition to compliance Transition to regular violator
Transition to HPV

Note: authors’ calculations based on estimation sample. Initial state and investment are from previous
quarter.

Focusing now on investment in the previous quarter, Figure 2 shows in more depth the

frequency with which this investment resulted in a return to compliance. If the plant starts

the period in HPV status and did not invest in the previous quarter then it will, with certainty,

finish the quarter in HPV status. If the plant did invest, there is still a 25% chance that it will

finish the period in HPV status, but there is now a 49% chance that the plant will transition

to compliance and a 26% chance that the plant will transition to regular violator status.

Lagged investment similarly increases the rate at which the plant transitions from regular

violator status to compliance, although some plants do transition from regular violator status

to compliance even without investment. Thus, overall, investment increases the probability

that a plant returns to compliance, but does not result in compliance with certainty.

Finally, we consider investments in compliance, to investigate whether these might help

prevent future violations. We estimate whether a plant transitions out of compliance given

recent investment, region, industry, and gravity state dummies. The results, in Table A2 in
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On-Line Appendix A4, show that investments in compliance increase the likelihood that a

plant transitions to both regular and high priority violator in the following two quarters.19

We therefore assume that any investments that we observe in our data that occur while

a plant is in compliance are economic investments (e.g., designed to increase productivity)

rather than prophylactic efforts to improve environmental compliance.

Depreciated Accumulated Violations

Table 1 showed that inspections, fines, and violations all varied substantially based on

whether the plant is in compliance, a regular violator, or an HPV. We investigate here

whether, even within these three broad categories, previous violations are predictive of in-

spections, fines, and violations. We define a summary measure called “depreciated accumu-

lated violations” which, for plants out of compliance, is the sum of the depreciated violations,

from the previous quarter back to the period the plant most recently left compliance.

Figure A3 in On-Line Appendix A4 displays the relationship between depreciated accu-

mulated violations (using a 10% quarterly depreciation rate) and inspections, the probability

of having a positive fine, and violations. The figure splits the results into regular and high

priority violators; plants in compliance have a value of zero for depreciated accumulated vi-

olations, by construction. We find that depreciated accumulated violations is a strong and

positive predictor of all of these events, for both regular and high priority violators.20

Gravity State

As we discussed in Section 2.1, one of the key components of the EPA’s determinants of fines

is the gravity of the associated violation. The gravity of a violation is primarily determined

by its actual or potential harm, which varies with the pollutants emitted and plant location.

19This result is consistent with the evidence presented in Keohane et al. (2009) that shows that the EPA
was more likely to bring lawsuits against plants with recent large (economic) investments, a result that they
attribute to increased regulatory scrutiny after major investments.

20Table A3 in On-Line Appendix A4 justifies a 10% quarterly depreciation rate of accumulated violations
relative to other possible depreciation rates.
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Gravity is not directly recorded in the ECHO database.21

We construct a version of plant-specific expected gravity that aims to capture plants’

expectations of the actual and potential harm of a violation as well as the regulatory scrutiny

brought about by a plant being in a NAAQS non-attainment area. We focus on the idea

that the distribution of pollution across plants in an industry forms the basis of expectations

about pollution quantities, both in terms of the mean amount of pollution and the extreme

level of pollution if it were an outlier in its industry.

For a given plant in a given county, we therefore take every plant in the same industry

nationally, and use the NEI pollution database and the AP3 damages database to calculate

the damages from criteria air pollutants if each of those plants were located in this county.

From this distribution, we take the mean of this distribution as the plant’s expected actual

damages of a violation and the 90th percentile of this distribution as the expected potential

damages of a violation. We then combine this information with the NAAQS non-attainment

database to sort plants into five gravity state bins: below and above the national median for

actual and potential damages, further splitting those above the median in both categories

into attainment and non-attainment status during our sample period.22 Table A4 in On-Line

Appendix A4 provides summary statistics on the gravity state in our sample.

Heterogeneity in Regulatory Environment and Costs

Identification of our model will be aided by having heterogeneity in the regulatory environ-

ment. Figure A1 in On-Line Appendix A4 provides a scatter plot by EPA region of the cost of

being in HPV status relative to violator status in terms of inspections (the ratio between the

inspection probability in HPV status to regular violator status) against the same measure in

21While the data do include the pollutant implicated in the violation, this field is only reported for 14.6% of
violations, because it does not fall under the federal Minimum Data Requirements of what must be reported
to the EPA for every plant. Further, when the “pollutant” is reported, it is often a generic entry such as
“facility-wide permit violations” (conditional on an entry, 34.8% of pollutants list this code).

22Our measure of non-attainment is whether a county is in non-attainment for any pollutant during any
year of our sample period. In our data, 87% of counties are either fully in attainment or out of attainment
for at least one pollutant in every year of our sample period and only 1.6% are out of attainment for a
minority of years. Hence, treating all counties that are not always in attainment equivalently is a reasonable
approximation that allows us to avoid making assumptions about plants’ expectations regarding transitions
in and out of non-attainment status.
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terms of fines, while Figure A2 provides a scatterplot of the analogous ratios by industry. We

find substantial variation and little correlation in both of these measures, with correlations

of −0.08 (p=0.83) and 0.06 (p=0.91) respectively. This shows that there is variation across

regulatory environments that can help identify the structural parameters and also motivate

our inclusion of region and industry as state variables.

Finally, we evaluate the severity of heterogeneity in the correlation of investments across

plants, as this heterogeneity may reflect heterogeneous investment costs. Figure A4 in On-

Line Appendix A4 calculates the mean total number of additional investments in the six

quarters after each investment. We compare the means from the data with bars that show

the rates that we would observe if investment were i.i.d. across our data.23

Our data exhibit substantially more serial correlation in investment than we would ex-

pect to occur randomly. About 30% of investments are followed by at least one additional

investment within the next six quarters, relative to the approximately 2.3% we would observe

if investment were i.i.d. This suggests that a random coefficients model may be important.

4 Empirical Framework

4.1 Estimable Model

Our data are at the level of the plant / quarter and include a panel of plants i observed over

time periods t. For each plant / quarter, we observe the regulatory state at the point where

the plant makes its investment decision—which is Ω̃it—and the investment decision, Xit.

We specialize our model developed in Section 2.2 to these data. Given identification

challenges, we do not estimate the regulator’s utility function. Rather, we specify the regula-

tor’s policy function as CCPs (Aguirregabiria and Mira, 2007), and then use the regulator’s

CCPs to estimate plants’ utility functions. Following the evidence in Section 3.2, we let

the regulatory state Ω have six components: (1) depreciated accumulated violations with a

23We calculated this figure by taking the investment rate in the data, which is 0.00404, and assuming
that each period, each plant invested with this probability. We then calculated the expected number of
investments under this scenario.
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10% quarterly depreciation rate, (2) regular violator or high priority violator status, (3) two

quarterly lags of investment, (4) EPA region, (5) two-digit NAICS industrial sector, and (6)

expected gravity of potential violations, as measured by county non-attainment status and

potential environmental damages for plants based on county and industry.

Recall that Ω and e together determine the distribution of enforcement actions and reg-

ulatory state transitions. We make the following assumption about e.

Assumption 1. The environmental compliance signal at period t, et, is a function only of

the regulatory state Ωt, inspection decision Inst, and regulator CCPs I.

Assumption 1 rules out the possibility that an investment that is not in the regulatory

state (for instance one that occurred many periods ago) could change the compliance signal.

We keep two lags of investment in the regulatory state, and both are allowed to affect the

compliance signal. Assumption 1 also implies that e does not affect the future state directly,

but only through its effect on current period violations, V io, and state transitions, T .24

In our model, the regulator chooses stage-contingent inspection policies and state- and

signal-contingent fine amounts. Note that Assumption 1 allows for the distribution of et to

depend on the state-contingent inspection policies. Since we do not observe e, it would be dif-

ficult to model how changes in inspection probabilities would affect the resulting distribution

of e and through that, violations and transitions. Thus, we limit our counterfactuals to ones

where inspection policies are the same as in the data. We do evaluate counterfactuals with

different fine policies (as well as ones with different values of plants’ structural parameters)

because the fine policy is a function of e but does not affect transitions conditional on the

regulatory state (which includes lagged investments).

We let the flow utility for the plant from regulatory actions be:

U(Ω, e) = θIIns(Ω) + θFFine(Ω, e) + θV V io(Ω, e) + θHHPV (T (Ω, e)). (1)

where θI , θF , θV , and θH are parameters. Note that (1) implies that plants can have a cost

24We do not specify the distribution of et because we never directly recover it. Instead, we estimate
regulator CCPs—which are a function of et—and impose a functional form directly on the CCPs.
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from not only fines, but also inspections, additional violations, and being an HPV (consistent

with the evidence in Section 2.1), though not from regular violator status.

Recall that once the pollution signal is revealed and regulatory actions are complete, the

state at this point is Ω̃, and the plant can invest if it is not in compliance. The cost of

investment is θX + εXt. Both ε0t and ε1t are idiosyncratic cost shocks. We assume that these

shocks are i.i.d., known to the plant prior to making its investment decision, and distributed

type 1 extreme value. Plants that are in compliance receive a single shock ε0t and do not

make any active decision. On-Line Appendix A3 provides the Bellman equations for the

plant’s dynamic optimization problem.

Group together the structural parameters as θ ≡ (θI , θF , θV , θH , θX). We generally expect

these parameters to be negative, except for θX , which we expect to be positive. We assume

that θ is fixed for the plant over time. In our random coefficient specifications, θ will vary

across plants. In this case, we assume that θ is not contractable, i.e., the regulator cannot

choose different enforcement contracts for different plants based on θ.

4.2 Estimation of Regulator CCPs

We estimate the regulator’s CCPs and then use them to estimate plants’ utility functions.

Each CCP is estimated separately for plants in compliance, regular violators, and HPVs

(based on their lagged reported status). We start by estimating probit regressions of the

probability of an inspection at any state, controlling for two lags of investment; region,

industry, and gravity state dummies; and depreciated accumulated violations (for plants not

in compliance). We estimate similar probit regressions for violations based on the state and

whether an inspection occurred. To predict fines, we estimate tobit regressions that further

add whether a violation occurred to the regressors in the violation CCPs.

Finally, to understand plants’ transitions between states, we estimate multinomial logits

for T (Ω, e)—which are the transition probabilities from Ω to Ω̃—that condition on fines and

all the regressors in the fines CCP. Our CCPs include interactions of inspection and gravity

state except in some cases, where this led to convergence problems. We examined robustness
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to region / industry interactions, and found similar results (see Section 5.1).

4.3 Empirical Implementation with Homogeneous Coefficients

We estimate two models, one with homogeneous coefficients and the other with random coef-

ficients across plants. We explain each in turn, with further details in On-Line Appendix A3,

and then discuss identification.

We fix β = 0.951/4 per quarter. This incorporates both time-discounting at the quarterly

rate of 0.0098 and an exogenous probability of exit, which is 0.0031 per quarter in our data.

We estimate θ in our model with homogeneous coefficients using a quasi-likelihood nested

fixed point estimator. In this model, there are no serially correlated unobservables for a plant

over time, and hence, we can treat each plant / quarter as an independent observation. The

quasi-log-likelihood of a parameter vector θ is:

logL(θ) =
∑
i

∑
t

log

([
XitPr(X = 1|Ω̃it, θ) + (1−Xit)(1− Pr(X = 1|Ω̃it, θ))

])
, (2)

where the Pr(X = 1) values are obtained from investment probabilities at the fixed point of

the Bellman equation.

Our nested fixed point estimator is similar to Rust (1987). One difference is that in

Rust (1987), the state transitions conditional on actions are exogenous, while here, they

derive from the regulator’s CCPs, making our estimator consistent with a dynamic game.25

We obtain inference for our parameters and counterfactuals by bootstrapping our entire

estimation process including the regulator’s CCPs, with resampling at the plant level.

4.4 Empirical Implementation with Random Coefficients

Our second model allows for the parameter vector θ to differ across plants. Specifically, in

this model, we assume that θ for each plant takes on one of a fixed set of values (θ1, . . . , θJ)

25We could also estimate the plant’s utility function with a CCP estimator (Aguirregabiria and Mira,
2007), which is quicker to compute, but we did not, since the computational time for the nested fixed point
quasi-likelihood estimator is not excessive.
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and that each θj, j = 1, . . . , J occurs with probability ηj. Each plant receives a single,

independent draw of θ from the multinomial distribution of potential values. The structural

parameters to be estimated are therefore η ≡ (η1, . . . , ηJ) and no longer (θ1, . . . , θJ). We

impose no restriction on the structural parameters other than what is necessary based on the

fact that they are population probabilities:

J∑
j=1

ηj = 1 and 0 ≤ ηj ≤ 1, ∀j. (3)

Econometrically, the values of (θ1, . . . , θJ) are taken as given.26 We take a (large) fixed grid

of these values, meant to capture the range of plausible parameter values.

We estimate the parameters here by adapting the methods of Fox et al. (2011) and Nevo

et al. (2016). Specifically, this framework leads to a computationally quick GMM estimator,

allowing us to estimate many parameters, approximating a non-parametric density over the

θ utility parameters (Fox et al., 2016).

Our GMM estimator has the form η∗ = arg minη‖G(η)‖ = G′(η)WG(η), where G(η) is

a K × 1 vector of moments, G′ is the transpose of G, and W is a weighting matrix. Each

individual moment Gk(η), k = 1, . . . , K, can be written as the difference between the value

of some statistic in the data, md
k and the weighted sum of the value of the statistic for the

parametrized model, mk(θj), where the weights are given by ηj:

Gk(η) = md
k −

J∑
j=1

ηjmk(θj). (4)

We compute each md
k and mk(θj) in an initial stage, before estimating η. This requires solving

the Bellman equation and mk(θj) for each of the J grid parameters. Using these values, we

then estimate η by minimizing ‖Gk(η)‖ subject only to the constraints in (3). This estimator

is convex (Fox et al., 2016). We perform a two-step process to improve the efficiency of the

weighting matrix W .

Because we do not see plants from their inception onwards, we need to make an assumption

26Fox et al. (2016) provide asymptotic results where J increases with the sample size.
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about the likelihood of seeing each plant in any of its possible states. First, define a division

of the state Ω̃ into Ω̃1—which indicates the fixed states of region, industry, and gravity

state—and Ω̃2—which indicates the variable states of compliance status, lagged depreciated

accumulated violations, current violation, and lagged investment. Using this definition, we

make the following assumption for our random coefficients estimation:

Assumption 2. The observed data reflect plants that are at the steady state distribution of

Ω̃2 conditional on a given Ω̃1.

Assumption 2 would be valid if, for instance, plants enter at randomly distributed points

from the steady state distribution of Ω̃2 given Ω̃1. It would also occur if they have been

active a long time, in which case the distribution of Ω̃2 for any θj value would approach its

steady state distributions. It rules out a situation where all plants are still adapting to a new

regulatory regime.

We compute our specific moments using Assumption 2. Each moment in the first set

indicates the probability of being at a particular time-varying state in equilibrium, conditional

on Ω̃1. Each moment in the second set indicates the conditional equilibrium probability of

being at a particular time-varying state times the investment probability at this state. These

moments all follow closely from Nevo et al. (2016). Our third set of moments explicitly uses

our panel data: each moment multiplies one of the moments from the second set by the sum

of investments in the following six periods, as in Figure A4.

As in Nevo et al. (2016), we obtain inference for our parameters and counterfactuals by

bootstrapping, with resampling at the plant level. On-Line Appendix A3 provides detail on

our parameter grid, moments, and weighting matrix computation.

4.5 Identification

To understand how the utility parameters θ in our model are identified, consider first a two-

parameter version of the homogeneous coefficients model where plants find investment and

fines costly but do not face costs from inspections, violations or HPV status and where the

idiosyncratic investment cost shocks are zero. In this model, at any violator state, a plant
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would observe its expected change in discounted future fines conditional on investment. If

investment reduced expected discounted future fines by more than the cost of investment,

then the plant will invest. Therefore, if the ratio of investment costs to fine costs, θX

−θF , was

less than the expected change in future fines, the plant would invest. Under this simple

model, the parameter ratio is identified from the lowest expected change in future fines at

which plants invest.

Conditional on having identified the ratio of the two parameters, we can identify the scale

of the parameters by adding in the type 1 extreme value investment cost shocks. The scale is

identified by the rate at which the investment probability increases with the expected change

in future fines. The steeper is this rate, the larger is this scale.

Our actual model includes five parameters, which capture four dimensions of regulatory

costs borne by the plant, plus the cost of investment. Thus, to identify this model, we

need independent variation in how investment changes the expected future values of each of

the four regulatory levels. While there is some variation in these changes for different states

within an region, industry, and gravity state, variation across these fixed states is very helpful

in identifying these parameters.27

This identification argument hinges on accurately measuring plants’ expectations of future

regulatory actions with and without investment. We calculate these expected regulatory

actions using the estimated regulator’s CCPs and future actions of the plant. For these

CCPs to be valid in the context of our model, we need plants to not have private information

about future regulatory actions and outcomes beyond the functions that we estimate. If this

assumption did not hold, this would lead to serially correlated unobserved state variables,

substantially complicating dynamic estimation. Our specifications all include fixed effects by

region, industry, and gravity state as well as a variety of interactions in order to accurately

capture plants’ beliefs.

Our model with random coefficients requires an additional identification argument since

we must identify the distribution of values of θ rather than just the mean values of these

parameters. If some plants repeatedly invest while other plants in the same state invest very

27Figures A1 and A2 document substantial variation in escalation across regions and industries, respectively.
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infrequently, this would suggest variation in investment costs. More generally, persistence

in decisions over time beyond what can be explained by the Markovian structure of the

dynamic model with a single θ will identify heterogeneity of types. Persistence implies that

more heterogeneity will lead to a higher occurrence of extreme states, e.g., many plants in

HPV status and many plants in compliance.

Our model chooses parameters that most closely match the steady state equilibrium

dispersion across states and investment rates in those states to data. We also match the

serial correlation in investment in the data with our third set of moments. As in Figure A4

in On-Line Appendix A4, the greater the correlation here, the more cost heterogeneity we

would expect.

Finally, our investment variable captures large investments rather than small process

investments, since the latter are not available in our data. Our model implicitly captures

these process investments through their impact on expected future fines but it does not

endogenize them. In other words, it does not allow them to vary in counterfactual policy

environments. If plants invest more in these processes when they are faced with higher

marginal enforcement, we would understate the importance of dynamic enforcement.

5 Results

5.1 Model Estimates

We estimate two models to recover plants’ utility functions: a model with the same pa-

rameters across plants (estimated with quasi-likelihood) and a random coefficients model

(estimated with GMM). Both models use the same regulator CCPs, which we discuss before

turning to plant cost estimates. Tables A5-A8 in On-Line Appendix A4 present marginal

effect estimates for these regulatory CCPs. In general, these tables show that the impact

of different state variables on regulator actions conforms to our expectations. Plants with

more depreciated accumulated violations are more likely to be inspected, as are plants with

more investments, likely for the regulator to check whether the investment was successful
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in resolving a violation. There are also substantial differences across regions and industries

in inspection probabilities. Further, violations increase fines and increase the likelihood of

transitioning to a more severe regulatory state. Critically, investments substantially increase

the likelihood of a return to compliance.

Table 3 provides cost estimates for both the quasi-likelihood and random coefficient mod-

els. The table reports utility parameters as well as the probability that a plant has each

of those utility parameters. For the quasi-likelihood model, since there is one set of coeffi-

cients, this probability is 1, and we report bootstrapped standard errors. For the random

coefficient estimates, however, we allow the parameter vectors θ to be chosen from a wide

grid of potential values. We report the estimated probability, ηj, of observing each of the

parameters, θj, in the last row of Table 3. We report the six θj parameters with the highest

probabilities ηj, and we list the θj parameters in descending order of ηj. We do not report

standard errors for this specification as it would be difficult both to calculate them and to

interpret them meaningfully, given that most of the estimated weights are 0. Instead, we

report bootstrapped standard errors for our counterfactuals below.

Table 3: Estimates of Plants’ Structural Parameters

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.872∗∗∗ −2.334 −1.326 −2.498 −2.540 −1.988 0.153
(0.041)

Inspection utility (θI) −0.049 −0.194 0.444 −0.096 0.897 0.001 −2.483
(0.049)

Violation utility (θV ) −0.077 0.143 0.128 0.650 −0.100 −2.169 −2.006
(0.197)

Fine utility (millions $, θF ) −5.980∗∗∗ −5.181 −6.073 −6.766 −8.460 −7.494 −7.524
(1.005)

HPV status utility (θH) −0.065∗∗∗ −0.029 −0.234 −0.078 −0.411 0.070 −2.437
(0.015)

Weight on parameter vector 1 0.438 0.174 0.170 0.126 0.049 0.019
Note: For the quasi-likelihood approach, the costs themselves are estimated, whereas for the GMM random
coefficient approach, the weights (in the bottom row) on each potential vector of costs are estimated. For
GMM estimates, we report the 6 parameter vectors with the highest weight. Standard errors for quasi-
likelihood estimates, which are bootstrapped with resampling at the plant level, are in parentheses. ∗∗∗, ∗∗,
and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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We start with the quasi-likelihood results, which are on the left of Table 3. We find

that investments, inspections, violations, fines, and being in HPV status are all costly for

plants, with statistically significant effects for investments, fines, and HPV status.28 This is

consistent with the results in Duflo et al. (2018) where the authors find that both regulation

and investment in pollution abatement are costly to plants.

Given that we are estimating utility parameters, we consider the ratios of coefficients. The

cost of an investment is equivalent to about $480,000 (-2.872/5.980 multiplied by $1 million)

in fines, while one quarter in HPV status is equivalent to a $10,900 fine. This direct HPV

cost is in addition to the impact of HPV status on fines, inspections, and violations, which

are also costly to plants. Finally, though not statistically significant, the point estimates

suggest that each inspection is equivalent to a fine of $8,200, and each violation is equivalent

to a $12,900 fine.

While it is straightforward to discuss the relative magnitude of our coefficients, under-

standing their absolute magnitude is complicated by the fact that fines may be costly to a

plant beyond just the amount assessed by the EPA. Resolving fines likely involves additional

legal work for the plant and may involve reputational costs to plants beyond the EPA (as

Evans (2016) and our estimates suggest HPV status does). This would imply that the cost to

a plant of a $1 fine may be substantially larger than $1, which would in turn imply that if an

investment is equivalent to $480,000 in fines, then it may actually cost the plant substantially

more than $480,000 to invest.

One way to evaluate the potential absolute magnitude of our coefficient estimates is to

compare our estimate of investment cost to estimates from the literature on the cost to

plants of pollution abatement capital expenditures. Becker (2005) uses the U.S. Census

Bureau’s Pollution Abatement Costs and Expenditures (PACE) survey to get estimates of

average air pollution abatement capital expenditures per plant given non-zero outlays. In

2007 dollars, he finds that these expenditures average $1.1 million and argues that these are

an understatement of the true cost because regulatory compliance may necessitate production

process changes that are costly and because the PACE survey does not include the cost of

28We report the negative of the investment cost, so a negative θX implies costly investment.
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permits or sacrificed output. Dividing $1.1 million by our $480,000 estimate of the investment

costs relative to fines suggests that the true cost to a plant from the imposition of a dollar of

fines may be close to $3, with correspondingly higher monetary costs for regulatory actions.

We next turn to the GMM random coefficients estimates, which are in the remaining

columns of Table 3. Our GMM specification estimates that six values of θ account for nearly

98% of plants.29 Nearly half (44%) of the weight is on a set of coefficients that are similar

(but not identical) to the quasi-likelihood coefficients. In particular, for plants in this group,

investments are equivalent to a $450,000 fine, HPV status is equivalent to a $5,600 fine

per quarter, and each inspection is equivalent to a $37,400 fine. Violations are estimated to

increase utility slightly, which means that for these plants, violations do not themselves lower

utility, although we do find that they are correlated with transitions to HPV status.

Interestingly, the second most common set of coefficients, with 17% weight, has much

lower investment costs (equivalent to a $218,300 fine) and higher HPV costs (equivalent to a

$38,500 fine per quarter). These plants find inspections beneficial.30 In fact, across the five

most common coefficient estimates, which represent nearly 96% of plants, the plants with the

highest HPV costs and lowest investment costs are the ones that find inspections beneficial.

Column (6) shows that 1.9% of plants have a small but negative mean cost (or benefit)

of investment (equivalent to a -$20,300 fine per investment). Note that these plants have

extremely high costs of inspections (equivalent to a $330,000 fine), violations (a $266,600 fine),

and HPV status (a $323,900 fine per quarter), and may be very adverse to environmental

enforcement activities relative to investment.

For the five coefficients with the most weight, representing 95.7% of plants, the GMM

investment costs relative to fine costs range from 218, 000 to 450, 000. This range is much

smaller than the range in other regulatory enforcement coefficients relative to their means.

For instance, HPV costs relative to fine costs range from −12, 000 to 48, 600 per quarter.

Thus, the GMM coefficients suggest that there is more heterogeneity in plants’ HPV, inspec-

29Our small number of values is consistent with Fox et al. (2016), who provide Monte Carlo evidence of the
fixed grid estimator as an approximation to a model with continuous random coefficients and find few grid
values with positive weights. It is also consistent with the constrained linear optimization that solves for the
weights—where the ηj values must be between 0 and 1 and sum to 1—being similar to a LASSO estimator.

30This is in keeping with Duflo et al. (2018), who find that inspections can be beneficial to plants.
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tion, and violation cost than there is in plants’ investment cost.

To evaluate model fit, Figure A5 in On-Line Appendix A4 considers the predictions for

both models as to the total number of additional investments in the six quarters after each

investment, also repeating the evidence in the data from Figure A4 on this point. The random

coefficients model is much closer to fitting the actual data than is the quasi-likelihood model,

which underpredicts the rate of repeated investments.

Finally, we conduct three different sensitivity checks of our coefficient estimates, all in

On-Line Appendix A4.31 First, in Table A9, we present specifications where we allow for

interactions between all regions and industries in the CCP regressions. These results are

similar to our main estimates in Table 3. Second, in Table A10, we present specifications

with a single industry, mining and extraction, which ensures greater homogeneity in plants

than in our base specification.32 These results are also similar to the main results, with

investments equivalent to between $335,000 and $1,078,000 in fines. Finally, since most

enforcement occurs at the state rather than regional level, Table A11 presents specifications

that use only the 10 most populous states, with state fixed effects in the CCPs instead of

region fixed effects. These results are similar to, although again with a somewhat greater

dispersion than, our main results (with investments equivalent to between $165,000 and

$782,000 in fines).

5.2 Counterfactuals

Using the coefficient estimates from Table 3, we now model how EPA enforcement activi-

ties, plant investments, overall compliance, and air pollution damages would change under

different EPA policies. From Assumption 1, the state-contingent environmental compliance

signal, e, is a function only of the inspection decision and the regulator’s inspection policy.

To assure the same stage-contingent distribution of e as in the baseline, our counterfactuals

31For these models, we estimated both quasi-likelihood and GMM specifications. To minimize the compu-
tational burden, we did not bootstrap standard errors for these specifications.

32We chose mining and extraction because its 6-digit NAICS sub-industries are relatively homogeneous
in their production activities. Our CCPs here includes “industry” dummies that represent 6-digit NAICS
sub-industries within mining (e.g., crude petroleum and natural gas extraction; sand and gravel mining).
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change the state-contingent fine policy and plant disutility from HPV status, but do not

change inspection policies.

We conduct two sets of counterfactual policies. Our first set evaluates the value of dynamic

enforcement. Here, we first examine how regulatory states, pollution, and investment would

change if the regulator fined all plants in regular and high priority violator status identically

for a given region, industry, and gravity state, keeping total equilibrium fines the same as

the baseline for each such group. We compare this to a similar counterfactual where the

regulator fined all plants in regular and high priority violator status identically for a given

region, industry, and gravity state, but where it kept total pollution damages the same as the

baseline within each group.33 Finally, we compare this to a counterfactual where the fines for

plants in HPV status are doubled, thereby increasing the rate at which fines escalate with

regulatory status.

Table 4 presents the results of these counterfactual experiments. We report the long-

run mean values of regulatory states, regulatory actions, investment rates, plant utility, and

pollution damages. The top panel reports results for our quasi-likelihood model while the

bottom panel reports results for our random coefficient model.

Column (1) of Table 4 reports the observed rates of each outcome in our data, while

column (2) reports the baseline, which is calculated at the estimated parameters. In general,

our model reproduces the data well: for both models, the frequency at which plants are in

each regulatory state, the investment, inspection, and violation rates, and the mean pollution

damages are similar. Fines are slightly higher in the baseline than in the data for both models.

Comparing the estimates from the two models, we find similar means, with 1.4% of plants in

HPV status in the long run under our homogeneous coefficients estimates and 1.3% in HPV

status under our random coefficients estimates. Long-run investment rates are also similar,

occurring in 0.44% and 0.54% of periods, across the two models respectively.

Column (3) of Table 4 reports the non-dynamic case when equilibrium total fines are the

same as in the baseline. Both the quasi-likelihood and random coefficient estimates show

33For these counterfactuals, we assume that the regulator never fines plants when they are in compliance,
and we set the cost of HPV status to zero to fully remove dynamic enforcement.

33



Table 4: Counterfactual Results: Changing the Escalation Rate of Fines

(1) (2) (3) (4) (5)
Same fines for Same fines for Fines
all regular and all regular and for HPVs

Data Baseline high priority high priority doubled
violators; violators; relative
total fines total pollution to baseline
constant constant

Quasi-likelihood estimates
Compliance (%) 95.62 94.66 (0.12) 91.45 (2.84) 94.81 (0.15) 95.06 (0.12)
Regular violator (%) 2.88 3.91 (0.11) 3.78 (0.13) 3.49 (0.11) 3.91 (0.11)
HPV (%) 1.50 1.43 (0.04) 4.77 (2.91) 1.70 (0.14) 1.03 (0.03)
Investment rate (%) 0.40 0.44 (0.01) 0.43 (0.02) 0.51 (0.02) 0.45 (0.01)
Inspection rate (%) 9.65 9.43 (0.06) 10.60 (1.36) 9.52 (0.09) 9.31 (0.05)
Fines (thousands $) 0.18 0.32 (0.04) 0.32 (0.04) 1.51 (0.29) 0.38 (0.05)
Violations (%) 0.55 0.54 (0.01) 1.08 (0.85) 0.60 (0.06) 0.50 (0.01)
Plant utility −− −0.007 (0.004) −0.003 (0.006) −0.013 (0.004) −0.008 (0.004)
Pollution damages (mil. $) 1.65 1.54 (0.02) 1.87 (0.26) 1.54 (0.02) 1.50 (0.02)
GMM random coefficient estimates
Compliance (%) 95.62 94.36 (0.08) 66.55 (11.52) 93.74 (0.52) 94.74 (0.08)
Regular violator (%) 2.88 3.44 (0.17) 2.52 (0.44) 2.72 (0.48) 3.44 (0.17)
HPV (%) 1.50 1.34 (0.04) 30.08 (11.90) 2.68 (0.54) 0.96 (0.03)
Investment rate (%) 0.40 0.54 (0.04) 0.47 (0.06) 0.65 (0.07) 0.54 (0.04)
Inspection rate (%) 9.65 9.30 (0.06) 20.21 (4.53) 9.77 (0.19) 9.18 (0.06)
Fines (thousands $) 0.18 0.30 (0.03) 0.30 (0.03) 1.90 (1.55) 0.35 (0.03)
Violations (%) 0.55 0.53 (0.01) 4.90 (1.88) 0.72 (0.09) 0.48 (0.01)
Plant utility −− 0.006 (0.023) 0.074 (0.068) 0.000 (0.026) 0.005 (0.023)
Pollution damages (mil. $) 1.65 1.51 (0.02) 3.97 (1.01) 1.51 (0.02) 1.47 (0.02)
Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region,
industry, and gravity state in our data. Column (1) presents the results of our model given the estimated
coefficients and the existing regulatory actions and outcomes. Other columns change the state-contingent
fines and HPV cost faced by plants. All values are per plant / quarter. Bootstrapped standard errors are
in parentheses.

that this leads to large increases in the share of plants in HPV status and a large increase

in pollution. In particular, with the quasi-likelihood estimates we find that the percent

of plants in HPV status would increase from 1.4% to 4.8%, while the random coefficient

estimates imply that 30.1% of plants would be in HPV status. This change in the share of

plants in HPV status comes mostly from a reduction in the share of plants in compliance

The dramatic increase in the HPV rate with random coefficients emphasizes that dynamic

enforcement is particularly important in the presence of heterogeneous and non-contractable

plant costs. The increase for this model is matched by an increase in regulator workload from
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a higher inspection rate (from 9.3% to 20.2% of plant / quarters) and violation rate (from

0.5% to 4.9%). However, investment rate drops only moderately (from 0.54% to 0.47% of

periods), suggesting that the heterogeneity in the types of plants that invest and the timing of

their investment is important. Finally, given the much higher level of plants in HPV status,

we also find much higher levels of air pollution. Specifically, with the random coefficient

estimates, damages from criteria air pollutants rise from $1.5 million per plant / quarter to

$4.0 million per plant / quarter, an increase of 167%. This provides strong evidence that

dynamic fines are effective in lowering pollution, conditioning on a mean equilibrium level of

fines.

Column (4) of Table 4 also removes the escalation of fines with regulatory state, but

now holds pollution damages within region, industry, and gravity state constant by allowing

fines to vary. Focusing on the random coefficient estimates, there is a slightly higher share

of plants in HPV status (2.7% vs 1.3%) with a related slight increase in the inspection and

violation rates and a slight decrease in the investment rate. What is striking, however, is that

mean fines increase by 533%, from $300 per plant / quarter to $1,900 per plant / quarter.34

To the extent that regulators bears costs from imposing fines, this result shows that it would

be quite costly for them to have fine policies that do not escalate across regulatory states.

Finally, column (5) of Table 4 doubles the fines for plants in HPV status from their baseline

level. For the random coefficient estimates, this decreases the share of plants in HPV status to

0.96% from 1.3%, while simultaneously decreasing the inspection and violation rates slightly

and increasing the investment rate slightly. With this fine policy, average pollution damages

drop from $1.51 million to $1.47 million per plant / quarter. We take this as evidence that

while there is some benefit to increasing the rate at which fines escalate with regulatory

status, this benefit is limited.

Our second set of counterfactuals evaluates how escalation mechanisms relate to policies

that charge each plant in regular or high priority violator status for its additional pollution

damages relative to compliance, much like a Pigouvian tax (Pigou, 1947).35 Charging plants

34The 95% confidence interval is [$1,560, $5,150], well above the baseline level.
35These counterfactuals all assume that the regulator never fines plants when they are in compliance and

that plants face no direct cost of HPV status.
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according to their pollution damages is efficient in a world where the regulator does not care

about inspection costs or imposing fines.36 These Pigou-style policies have two fundamental

differences with current EPA policies. First, to increase the marginal deterrence of HPV

status, existing fines escalate much more steeply with regulatory state than pollution dam-

ages,37 while Pigou-style policies do not escalate in this way. Second, Pigou-style policies

lower pollution damages by allowing for higher fines for industries that are more polluting.

Because we believe that some of the cost to plants of fines could be non-monetary, we con-

duct this experiment in two ways: (1) where the fine cost to plants is entirely monetary, so

the efficient fine is the full damages, and (2) where the fine cost to plants is three times the

imposed fine (following our discussion of Becker, 2005), so the efficient fine is one third of the

damages. Finally, we conduct a third counterfactual where fines escalate at the same rate as

pollution damages, but are scaled so that aggregate pollution damages are the same as the

baseline.

Table 5 presents the results of these experiments. Focusing on column (2), Pigouvian fines

where the fine cost to plants is entirely monetary are extremely large: 182 times higher than

in the baseline at $54,760 per plant / quarter. Even with this massive increase in fines, the

share of plants in HPV status actually increases from 1.3% to 1.7%. Importantly, the share

of plants in regular violator status drops substantially, from 3.4% to 1.6%. This is consistent

with the theory on escalation mechanisms (Mookherjee and Png, 1994): dynamic enforcement

“underdeters” one-time violations in order to increase the marginal deterrence for repeat

violations. Finally, Pigouvian fines lead to a 13.2% reduction in pollution damages (from

$1.51 million to $1.31 million per plant / quarter), so the dynamic enforcement approach

leads to inefficiently high pollution if it were costless for the regulator to impose fines and

the fine cost to plants was entirely monetary.

Column (3) of Table 5 presents the counterfactual results if plants’ cost of fines were

36Note also that the EPA’s mandate is not to achieve the efficient level of pollution but rather to enforce the
CAAA. Explicitly, the EPA may assess civil and administrative penalties for violations under Section 113(b)
of the Clean Air Act Amendments. Since the CAAA set specific definitions of a violation, this enforcement
behavior can differ substantially from a Pigouvian tax even apart from a disutility on fines.

37Actual fines are approximately 13 times higher in high priority violator status than in regular violator
status (Table 1) while damages are only 2.1 times higher (the weighted mean from Table 2).
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Table 5: Counterfactual Results: Scaled Pigouvian Fines

(1) (2) (3) (4)
Pigouvian Pigouvian fines

Baseline Pigouvian fines scaled scaled to
fines by 1/3 yield base

pollution
Quasi-likelihood estimates
Compliance (%) 94.66 (0.12) 97.56 (0.12) 96.63 (0.22) 90.89 (1.68)
Regular violator (%) 3.91 (0.11) 1.77 (0.10) 2.45 (0.17) 3.75 (0.27)
HPV (%) 1.43 (0.04) 0.67 (0.07) 0.92 (0.11) 5.35 (1.48)
Investment rate (%) 0.44 (0.01) 0.83 (0.02) 0.74 (0.03) 0.43 (0.06)
Inspection rate (%) 9.43 (0.06) 9.00 (0.05) 9.10 (0.06) 10.79 (0.55)
Fines (thousands $) 0.32 (0.04) 55.30 (2.07) 19.10 (2.67) 0.30 (1.77)
Violations (%) 0.54 (0.01) 0.42 (0.01) 0.46 (0.02) 1.23 (0.26)
Plant utility −0.007 (0.004) −0.353 (0.055) −0.130 (0.030) −0.003 (0.017)
Pollution damages (mil. $) 1.54 (0.02) 1.32 (0.02) 1.32 (0.02) 1.54 (0.07)
GMM random coefficient estimates
Compliance (%) 94.36 (0.08) 95.89 (1.07) 94.60 (1.47) 82.02 (4.08)
Regular violator (%) 3.44 (0.17) 1.58 (0.19) 2.08 (0.20) 2.86 (0.29)
HPV (%) 1.34 (0.04) 1.68 (1.06) 2.46 (1.48) 14.26 (4.28)
Investment rate (%) 0.54 (0.04) 0.86 (0.04) 0.79 (0.04) 0.52 (0.05)
Inspection rate (%) 9.30 (0.06) 9.25 (0.34) 9.51 (0.47) 13.96 (1.52)
Fines (thousands $) 0.30 (0.03) 54.76 (8.26) 18.89 (2.76) 1.54 (1.27)
Violations (%) 0.53 (0.01) 0.51 (0.11) 0.59 (0.16) 2.25 (0.55)
Plant utility 0.006 (0.023) −0.345 (0.063) −0.116 (0.032) 0.031 (0.032)
Pollution damages (mil. $) 1.51 (0.02) 1.31 (0.02) 1.31 (0.02) 1.51 (0.02)
Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region,
industry, and gravity state in our data. Column (1) presents the results of our model given the
estimated coefficients and the existing regulatory actions and outcomes. Other columns change the
state-contingent fines faced by plants. All values are per plant / quarter. Bootstrapped standard
errors are in parentheses.

three times the fine imposed by the regulator. Though pollution damages are higher than in

column (2), the basic idea from column (2) is repeated: Pigouvian fines lead to fewer plants

in regular violator status than the baseline, but more plants in high priority violator status

and substantially higher fines.

Finally, column (4) of Table 5 displays the outcome if we set fines so that they escalate

from regular violator to HPV at the same rate as damages, but are scaled so that total

pollution damages across all regions, industries, and gravity states is unchanged from the

baseline. For the quasi-likelihood estimates, this requires dividing fines by 919 from the

Pigouvian levels, while for the GMM estimates, we divide by 167. Starting with the quasi-
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likelihood results, the value of dynamic fines is clear: while pollution is unchanged from the

baseline and the share of plants in regular violator status has declined slightly, the share

of plants in HPV status is 274% higher, leading to a higher inspection rate. Interestingly,

average fines are actually slightly (although not statistically significantly) lower, due to the

reallocation of pollution across industries that Pigouvian fines allow. When we turn to

the model with heterogeneity in plant costs, however, the value of dynamic enforcement

relative to the Pigouvian fine escalation is evident: average fines are 413% higher if fines

escalate proportionally with damages,38 the share of plants in HPV status is 964% higher,

and inspections increase by 50%.

In order to understand in more detail the impact of our two sets of counterfactuals,

Table A12 in On-Line Appendix A4 shows how four of our counterfactual fine structures

affect fines, pollution, and regulatory status across industries. Column (1) again recreates

our baseline results, this time separately for each of the seven industries with the other

columns replicating columns (3) and (4) of Table 4 and column (3) and (4) of Table 5.

Focusing on column (2) relative to the baseline, the prevalence of HPV status varies across

industries. While the fraction of plants in HPV status increases by a factor of 9 for utilities,

it increases by more than 30 times for mining and extraction and educational services. This

suggests that there are substantial differences across industries in the gains from dynamic

enforcement.

Column (3) shows that the increase in fines that is required to hold pollution constant

without dynamic enforcement also varies substantially across industries. For utilities, average

fines only increase by 288%, whereas for mining and extraction, fines increase by over 11 times

(1,119%). Columns (4) and (5) make clear the benefit of Pigouvian fines: since utilities

have pollution damages that are substantially higher than any other industry, they face

substantially higher fines in both of these counterfactuals, which leads to relatively large

pollution declines from utilities. However, these results also highlight the cost of Pigouvian

fines: the fine level required to achieve the same total amount of pollution is substantially

higher than with dynamic enforcement, and this burden falls particularly on utilities, where

38The 95% confidence interval is [$410, $3,400], which is above the baseline level.
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fines increase by 580%. We take this as suggestive that the EPA finds imposing fines on

utilities that are commensurate with their pollution levels to be relatively costly.

6 Conclusion

This paper empirically evaluates the value of dynamic enforcement in the context of Clean

Air Act Amendments. We build and estimate a dynamic model of a plant which is faced

with a regulator and must choose when to invest in pollution abatement. We estimate a

random coefficients specification that is computationally tractable and that allows for wide

heterogeneity in plants’ costs from regulatory scrutiny.

We find that there are substantial costs to plants of investing in pollution abatement

and also of facing regulator enforcement actions, particularly fines and designation as a high

priority violator. We also find that there is substantial heterogeneity across plants in their

regulatory compliance costs.

Our counterfactuals show that dynamic enforcement has allowed regulators to reduce

pollution without imposing high fines or needing to conduct frequent inspections. They also

show that this benefit is higher with heterogeneous plant types (and an inability to contract on

type). Increasing the escalation of fines decreases pollution further, although the magnitude

of the change is moderate. Finally, we demonstrate empirically the theoretical point that

dynamic enforcement underdeters first-time violators to increase marginal deterrence.

While we believe that this analysis provides substantial evidence that dynamic enforce-

ment is valuable, our approach is limited in certain ways. Our analysis is limited by the

lack of detailed pollution data for the majority of observations in our data. Identification of

our model relies on a series of assumptions, including that plants’ perceptions of regulatory

actions match our regulatory conditional choice probabilities. Further, by modeling the reg-

ulator using conditional choice probabilities, we give up the ability to vary inspection policies

and regulatory state transition functions in our counterfactuals. Future research could im-

prove on our approach by modeling regulator decisions for a single state, where more detailed

data may make understanding the determinants of the variation in investment costs possible,
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although this would come at the cost of less underlying variation in enforcement policies.

Overall, this analysis provides the first empirical estimates of the plants’ responses to

the dynamic environmental regulations used around the world. A comparison of our random

coefficients estimates to our estimates with homogeneous coefficients shows that heterogeneity

in plant costs is particularly important in understanding dynamic regulations. Our modeling

framework and results on dynamic enforcement for the CAAA may improve analysis and

modeling for the evaluation of dynamic enforcement in a variety of other settings.
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On-Line Appendix

A1 Illustrative Simple Case of our Model

To illustrate the value of dynamic enforcement, we present a simple, special case of our general

model. For this special case, we assume a two-period model with β = 1. In both periods, a

single new violation occurs with probability p. Inspections occur with probability I(Ω) = 1,

are costless to the regulator and plant, and perfectly reveal the presence of a violation. Thus,

the signal et indicates the number of outstanding violations and et ∈ {0, 1, 2}. Violations are

also costless. HPV status is also costless and hence not modeled.

A period 1 investment clears a period 1 violation with probability q; violations are never

cleared without investment. The pollution cost to the regulator is cEet at period t, for

some marginal pollution damage parameter cE. The regulatory state records the history of

investments and violations. Thus, for example, at period 2, the regulatory state after the

inspection is Ω̃2 = (X1, e1, e2). Finally, the per-period objective function to the plant is

−θXXt−Fine(Ωt, et), where θX is the cost of investment. The regulator minimizes the sum

over the two periods of cEet, θ
XX, and its cost of assessing fines.

We focus on the case with a period 1 violation—so e1 = 1—as this is the only case where

the regulator might want to incentivize period 1 investment. The simplest policy that a

regulator could choose would be a linear fine policy cF et. When θX is known and contractable

and the cost of investment is sufficiently low relative to other costs, the regulator incentivizes

period 1 investment by choosing the lowest cF that would compel the plant to invest.

With a linear fine policy, the regulator has to issue fines for the period 1 violations

even though this has no effect on investment. Thus, this fine lowers the regulator objective

function. An alternative is for the regulator to choose a static escalation mechanism: it

could fine only when et = 2, which would remove the cost of fining when et = 1 but the

plant has not had a chance to invest, and would still incentivize investment in period 1. For

this reason, the regulator can incentivize investment for the same values of θX as the linear

fine policy with lower expected fines, thereby adding surplus. This policy is not explicitly
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dynamic (since it does not depend on the regulatory state Ωt, but only on the current signal

et) but increases marginal deterrence in period 2 since it will result in no fines in period 1.

Because expected fines are lower, the regulator will further choose to incentivize investment

for more values of θX , thereby adding further surplus in some cases.

A dynamic escalation mechanism would increase surplus relative to the static escalation

mechanism. In this case, the regulator could fine when et−1 > 0, Xt−1 = 0, and when it

wants to incentivize investment. Choosing this policy for the same set of θX as above will

mimic the same investment incentives but with no fines paid in equilibrium (since plants

whose investment does not succeed in returning the plant to compliance are not fined), and

hence no fine costs. Thus, the regulator will choose to incentivize investment for even more

values of θX .

If instead, the regulator faces a distribution of θX values and cannot contract on θX , dy-

namic enforcement also adds value by better selecting the set of plants which it incentivizes

the invest. For simple investment cost type distributions, the regulator will incentivize in-

vestment for more values of θX with dynamic enforcement than with a static escalation

mechanism or with linear fines.

Overall, our illustrative simple case shows that escalation mechanisms add value by in-

creasing the marginal deterrence for two violations relative to one. Dynamic escalation mech-

anisms add more value by reducing equilibrium fines and by increasing the set of actions over

which the regulator can condition.

A2 Data Construction Details

ECHO Database Overview

The ECHO database is divided into a number of components. We principally use four ECHO

components: (1) the Facility Registry Service dataset, (2) the Air Facility System Actions

dataset, (3) the Air Program Historical Compliance dataset, and (4) the High Priority Vio-

lator History dataset. We discuss each of these components in turn.
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First, the Facility Registry Service dataset is a master list of plants. For our purposes, it

provides address information and the six-digit North American Industry Classification System

(NAICS) industrial sector for each plant. Our analyses control for the EPA region, the first

two digits of the NAICS code, and the expected gravity of violations based on industry

and county. We keep seven industries with high pollution damages that we believe to have

plants of broadly comparable costs of investment and enforcement: the three manufacturing

industries, mining and extraction, transportation, educational services (which includes school

buses), and utilities.

Second, the Air Facility System Actions (AFS) dataset (or Actions dataset for short)

records the history of regulatory actions taken by state, regional, and federal environmental

regulators, from Q4:2006 through the Q4:2014.39 We use this dataset to create our base

list of inspections, violations, fines, and investments. Since this dataset is subject to federal

minimum data requirements, we believe it provides a relatively complete description of the

regulatory action history for each plant.40 Each record in this dataset details a regulator

action, such as an inspection, a notice of violation, a fine, or the review of an investment

in pollution abatement. The unit of observation is the AFS ID, which indicates a polluting

source. Each record lists a calendar date and provides information on the related EPA

program41 and the penalty amount when the action is a fine.42 For each plant, we combine

EPA actions across all EPA programs to capture completely its regulatory enforcement status.

Third, the Air Program Historical Compliance dataset records the historical compliance

status for each plant and EPA program at the AFS ID and quarter level. These data derive

from a combination of self-reports by plants and regulator inputs. We follow the literature

(Laplante and Rilstone, 1996; Shimshack and Ward, 2005) in treating the self-reported data as

39The EPA transitioned to a new reporting system after 2014.
40A small number of states did not report certain required fields at times during this period, but these data

were retroactively corrected and the EPA now considers them to be complete. To verify this, we confirmed
that there are similar state-level rates of regulator violators prior to and after the start of 2010.

41The CAAA includes many different statutes that address different dimensions of air pollution. The EPA
enforces different statutes through different programs.

42It is possible for plants to contest fines in court. However, Helland (2001) finds that fewer than 4% of
fines are successfully contested by plants, a number that is in keeping with our own analysis of the Integrated
Compliance and Information System’s (ICIS) Federal Enforcement and Case Data.
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accurate.43 We use this dataset to determine whether a plant is in compliance or a violator

in any quarter. This dataset provides a more direct measure of violator status than does

the Actions dataset, since the Actions dataset does not always indicate when a violation is

resolved. Since this dataset is at the plant / quarter level, we aggregate EPA actions to this

level and use this as the time period for our analysis. We also use this dataset to determine

whether a plant has shut down, dropping plants from the sample once they have exited.

Fourth, the High Priority Violator History dataset records the dates at which a plant

receives or resolves a high priority violation. We use this dataset to record the quarter

of entry and exit from HPV status. Analogous to the Air Program Historical Compliance

dataset, this dataset provides the most direct measure of HPV status. Because an exit from

HPV status requires resolving all outstanding CAAA violations, we also assume that the

plant needs to make an investment in pollution abatement to leave HPV status.

Regulatory Actions and Outcomes

Compliance and violator statuses. During our sample period, the EPA’s Air Program

Historical Compliance dataset reported each plant’s compliance status for every CAAA pro-

gram. Since there is a CAAA program for each major category of air pollutant, a plant can

simultaneously be in violation of multiple CAAA programs. We assume that a plant is a

CAAA violator if it is a violator for any CAAA programs. For each program, we classify

a plant as being a violator if compliance status is equal to “1” (in violation, no schedule),

“6” (in violation, not meeting schedule), “7” (in violation, unknown with regard to sched-

ule), “B” (in violation with regard to both emissions and procedural compliance), “D” (HPV

violation), “E” (federally reportable violation), “F” (High Priority Violator on schedule),

“G” (facility registry service on schedule), or “W” (in violation with regard to procedural

compliance).44

The Historical Compliance dataset also reports codes indicating an unknown compliance

43The literature makes this assumption because the expected penalty from purposefully deceiving regulators
is far greater than the penalty for an emissions violation.

44This list indicates both plants that are regular violators and HPVs. As we discussed in Section 3.1, we
determined HPV status from the High Priority Violator History dataset.
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status: “Y” (unknown with regard to both emissions and procedural compliance), “0” (un-

known compliance status), “A” (unknown with regard to procedural compliance), and “U”

(unknown by evaluation calculation). From our discussions with the EPA, these codes arise

when a plant has not been inspected within the required time frame, but there has been no

indication of a violation by the plant. Given this, we code these plants as being in compli-

ance.45 In some cases, we observe a violation at some quarter t in the Actions dataset and

the plant is reported to be a violator at quarter t+ 1 but not at quarter t. In these cases, we

assume that the reporting that indicated that the plant was in compliance at quarter t was

erroneous, and hence we record the plant as being in violator status at quarter t.

We code all other plants—except those that are listed as HPVs in the High Priority

Violator History dataset—as being in compliance. Thus, we do not use additional information

on compliance in the ECHO database for some plants and pollutants, such as continuous

emissions monitoring system reports.

Inspections. The Air Facility System Actions dataset reports multiple types of inspec-

tions, which we collapse into a single “inspection” variable. These include on- and off-site

full compliance evaluations conducted by either the federal or state EPA, partial compliance

evaluations, and stack tests. We also consider an inspection to have occurred if the EPA

issues a Section 114 letter for gathering information from the plant. In some cases we ob-

serve multiple inspections in the same quarter; e.g., if stack tests are conducted for multiple

pollutants. Since our inspection variable is dichotomous, we consider these tests together to

be equivalent to a single inspection.

Violations. The Actions dataset also reports violations. We define a violation to be

the issuance of a “Notice of Violation” (NOV). An NOV is defined as “a notice sent by the

State/EPA ... for a violation of the Clean Air Act.” There are three codes that indicate

an NOV in our data: “6A” (EPA NOV issued), “7A” (notice of noncompliance), and “7C”

(state NOV issued).46 In some cases, we observe a violation at some quarter t in the Actions

dataset but the plant is not reported to be a violator in the Historical Compliance dataset

45Evans (2016) also considers plants in unknown compliance status to be in compliance.
46See https://echo.epa.gov/files/echodownloads/AFS_Data_Download.pdf.
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at quarter t or t+ 1 and did not receive a fine at quarter t. We believe that these violations

likely reflect minor issues that are dissimilar to other violations, and hence we exclude them

from our analysis.

Plant Exits

The Historical Compliance dataset also allows us to understand when plants shut down.

Plants may have a compliance status of “9” (in compliance: shut down). If we observe a

plant in this status, we assume that it has exited. We remove it from our sample for the

quarter with this status and all subsequent quarters.

Investment

Our data do not directly report investments or investment costs (unlike in the Duflo et

al., 2018, study of pollution in India, for instance). Instead, we infer investments from the

behavior of EPA regulators. We determine that an investment occurred if we observe any of

the following three types of events: (1) the resolution of a major violation, (2) the issuance

of a Prevention of Significant Deterioration (PSD) permit, and (3) the exit from HPV status.

We now provide detail on each of these categories.

First, as shown in Table 1, the overwhelming majority of our investments come from

codes that indicate the resolution of a major violation. There are three codes in the Ac-

tions database that we consider evidence of this type of investment: (1) “VR” or “violation

resolved,” (2)“OT” or “other addressing action,” and (3) “C7” or “closeout memo issued.”

According to the November, 2008 Air Facility Systems National Action Types–Definitions

EPA document,47 “a violation is resolved when it is addressed and a closeout memo has

been issued, all penalties have been collected and the source is confirmed to be in physical

compliance.” Similarly, “other addressing action” is an addressing action for HPV cases

with criminal or civil action referrals. Finally, “a closeout memo is issued when a violation

is resolved with all penalties collected and the source is confirmed to be in physical compli-

47Downloaded September 2014.
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ance.” Of the investments that are determined by a resolution code, we observe “VR” for

the overwhelming majority (77%). An additional 14% of these investments are from “C7”,

and the remaining 10% are from “OT.”

Second, a PSD permit is required for new pollution sources or for major modifications

of existing sources.48 While it is possible that major modifications of existing sources may

occur for reasons other than a plant attempting to return to CAAA compliance, we believe

that changes to a plant that were substantial enough to warrant a new PSD permit issuance

likely imply a major investment in pollution abatement.

Finally, we also infer that an investment has occurred if a plant exits HPV status, even

if we do not observe one of these codes. We make this choice because we believe that a

major investment would have been necessary in order to resolve the substantial violations

that would have originally merited the determination of HPV status as well as all outstanding

violations.

To verify that our measure of investment does indeed capture investments in pollution

abatement capital equipment, we collected additional data from the Texas Commission on

Environmental Quality (TCEQ). The TCEQ data provide information on the installation

and removal of pollution control devices for all plants covered by Texas Administrative Code,

Title 30, Rule 101.10. This regulation applies to plants with the highest emissions, which is

a subset of plants in Texas that are regulated by the EPA. The installation of control devices

forms a direct marker of an investment, corresponding to our definition.

We matched the Texas data manually to our base data using firm/regulated entity name,

city, and address. Although the set of plants that is regulated by this statute is a subset of

the set that show up in our EPA data, we are able to match 1,044 out of 2,109 of the EPA

plants in Texas to a plant in the TCEQ data. In all, the TCEQ data contained 1,520 plants

with a change in an emissions source or abatement device during our period, so our 1,044

matched observations represent 69% of these. (Note also that not every plant covered by

this regulation will have an abatement device and that the TCEQ data cover more industries

than the 7 in our study, but the TCEQ data do not report industry.) Overall, we believe

48See https://www.epa.gov/nsr/prevention-significant-deterioration-basic-information.
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that our match rate is high enough to make meaningful statements regarding the abatement

device changes for larger plants in Texas.

We first investigated whether an investment in the EPA dataset correlated with the

installation of an abatement device in the TCEQ data. One issue is that the timing of

investment in the two datasets is somewhat different. On the one hand, the EPA data record

an indirect measure of investment that only appears in the data once the EPA has confirmed

that the violation has been resolved and hence we might expect the EPA measure to lag the

Texas measure. On the other hand, the Texas measure of investment only occurs after TCEQ

has recorded it in their system following a plant visit, which is supposed to occur within a

year of the device installation. TCEQ also does not require self-reporting for abatement

devices. Thus, the TCEQ measure may lag the EPA measure.

Despite these limitations, we find a strong and significant relationship between the EPA

investment measure and the TCEQ abatement device installation measure. Specifically, we

found that 45% of EPA investments have a TCEQ abatement device installation within four

quarters conditional on the plant being observed in the both datasets (and unconditionally,

the figure is 29%). Similarly, a regression of EPA investment on TCEQ abatement device

installation within four quarters gives a coefficient of 0.031 with a t-stat of 16.9.

We also used the TCEQ abatement device measure to figure out whether additional EPA

actions should be included in our measure of investment. We identified three groups of actions

that could plausibly be added: (1) an indicator for whether a penalty was paid (C3); (2) an

indicator for a violation being withdrawn (WD); and (3) indicators for the EPA determining

that the plant was no longer deemed to be in violation due to a rule change or to the plant

not being subject to the rule (2L, 2M, NM, NN). Overall, we found only 18 of these actions,

compared to 1,094 EPA investments for plants in Texas. Of these 18, only 5 had a TCEQ

abatement device change within 4 quarters. Thus, we decided not to add these codes to our

definition of investment.

Finally, we investigated whether the installation of an abatement device in compliance in

the TCEQ data predicted avoidance of violator status. Specifically, we regressed exit from

compliance on recent TCEQ abatement device installation, defined as a TCEQ abatement
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device installation in the current quarter or within the previous four quarters. We find

that, similar to EPA investment, TCEQ abatement device installation in compliance actually

increases the likelihood of future violator status. Also, as with the EPA investment variable,

TCEQ abatement device installation in violator status predicts a return to compliance.

Pollution and Damages Data

National Emissions Inventory data. We match 59% of observations in the ECHO data

for 2008 and 2011 to the NEI data. The imperfect match is consistent with other studies that

use the NEI data; e.g., Shapiro and Walker (2015) achieve a 77.4% match rate between the

NEI and the Census of Manufacturing. We measure smokestack emissions for six pollutants:

PM2.5, NOX, SO2, volatile organic compounds, NH3, and Pb. For our counterfactuals, we

need the expected level of pollution by regulatory state. To obtain this, we aggregated the

NEI data to the region, industry, gravity state, and compliance / regular violator / HPV

status level. We then calculated the mean pollution for each of these states, imputing missing

values. We did not use the full regulatory state here given the limited number of matching

observations for some states in the NEI.

AP3 data. The AP3 data comes from an integrated assessment model that explicitly

considers the impact of pollution emitted in different locations, and thereby takes into ac-

count differences in local populations and underlying pollution levels. While we consider the

damages from criteria air pollutants—ozone (O3), particulate matter (PM), carbon monoxide

(CO), nitrogen oxides (NOX), sulfur dioxide (SO2), and Pb—the AP3 data include damages

from smokestack emissions that can lead to criteria air pollutants—PM2.5, NOX, SO2, volatile

organic compounds (a precursor to ozone), and NH3 (a precursor to PM).

National Ambient Air Quality Standards attainment data. We consider NAAQS

attainment status for each pollutant covered during this period. In particular, we use in-

formation on non-attainment for 8-hour ozone (1997 and 2008 standards), carbon monoxide

(1971 standard), lead (1978 and 2008 standards), PM-10 (1987 standard), and PM-2.5 (1997

and 2006 standards) in each year from the EPA’s “Green Book.” We do not include informa-
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tion on the 1979 1-hour ozone standard because it was revoked on June 15, 2005; the 1971

nitrogen dioxide standard because all areas were in attainment as of September 22, 1998; or

the 2010 sulfur dioxide standard because the original areas were not designated until October

4, 2013, after the end of our sample period.

A3 Computational Details

Plant Dynamic Optimization

A plant that is not in compliance makes an investment decision in each period, knowing that

the investment will reduce its expected future cost of regulatory enforcement. The plant’s

optimization therefore requires evaluating the value of being in a given state, Ω, at the start

of the next period.

Let V (Ω) denote the value function at the beginning of the period, Ṽ (Ω̃) denote the value

function at the point right after the regulator has moved but before the plant receives its

draws of ε, and Com(T ) be an indicator for T designating compliance.49 We first exposit

V (Ω), the value function at the beginning of the period:

V (Ω) =
∑
I∈0,1

I(Ω)I(1− I(Ω))1−I
∫ [

U(Ω, e) + Ṽ (T (Ω, e))
]
dP (e|Ins,Ω), (A1)

where dP (e|Ins,Ω) is the integral over the density of the environmental compliance signal e

given the inspection decision and plant state. Note that the plant does not make any decision

at the beginning of the period, and hence there is no maximization in (A1). However, the

plant must integrate over the regulator policies and e.

49For ease of notation, we are conditioning on the plant’s parameter vector θ.
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We now exposit Ṽ (Ω̃):

Ṽ (Ω̃) = Com(Ω̃)×
∫

[βV (Ω̃, θ) + ε0]dF (ε0) + (1− Com(Ω̃))×∫ ∫
max{βV (Ω|Ω̃, X = 0) + ε0,−θX + βV (Ω|Ω̃, X = 1) + ε1}dF (ε0)dF (ε1)

= Com(Ω̃)[βV (Ω̃, θ) + γ] + (1− Com(Ω̃))× (A2)

[ln(exp(βV (Ω|Ω̃, X = 0)) + exp(−θX + βV (Ω|Ω̃, X = 1)) + γ],

where dF (·) is the integral over the density of the type 1 extreme value distribution. The

first part of (A2) reflects the case of compliance. In this case, the plant transitions to the

same state Ω̃ in the next period. Since there is no plant choice here, in expectation, the plant

receives the continuation value plus the mean value of the type 1 extreme value distribution

which is γ, Euler’s constant. The second part of (A2) reflects the case of a plant that is

a violator or high priority violator. In this case, it makes a choice of whether to invest or

not. Since the value is computed ex ante to the realization of the idiosyncratic draws, we

can use the familiar logit aggregation. The transition state, though still not stochastic, is

now potentially different than the current state, because lagged investments and depreciated

accumulated violations are both updated.

Finally, having defined the value functions, we can write the probability of a plant choosing

investment given a regulatory state Ω̃ and its cost and utility parameters θ as:

Pr(X = 1|Ω̃, θ) =
(1− Com(Ω̃)) exp(θX + βV (Ω|Ω̃, X = 1))

exp(θX + βV (Ω|Ω̃, X = 1)) + exp(βV (Ω|Ω̃, X = 0))
. (A3)

Since the probability in (A3) is used for our estimators, we have written it as a function of

the structural parameter vector θ.

Computing the Bellman Equation

The plant’s decision as to whether or not to invest at any state is based on dynamic opti-

mization. As such, we solve for the Bellman equation for candidate parameter values, based

on equations (A1) and (A2), to estimate both models. Specifically, for our quasi-likelihood
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estimator, we perform a non-linear search for θ and hence we solve for the Bellman equation

for each of the candidate values of θ that are considered in the course of the non-linear search.

For our GMM estimator, we solve for the Bellman equation for each of the 10,001 values in

our fixed parameter grid.

The states in Ω and Ω̃ are discrete, except for depreciated accumulated violations. Our

Bellman equation discretizes this latter variable, using 20 grid points that are evenly spaced

from 0 to 9.5. The transition from Ω̃ to Ω, given in (A2), will result in a new level of

depreciated accumulated violations that does not necessarily correspond to a grid point. As

such, we use linear interpolation to calculate (A2).

The transition from Ω to Ω̃, given in (A1), is stochastic, as it depends on the regulatory

CCP. We perform this calculation by simulating from the estimated regulator CCP. Specif-

ically, we first calculate the inspection probability for each state from the predicted values

of our estimates. We then calculate the violation probability for each state and inspection

decision. Following this, we calculate the distribution of fines for each state, inspection de-

cision, and violation decision, using 20 evenly spaced points from the estimated residual

distribution—which we denote F—ranging from F−1(0.025) to F−1(0.975). Finally, we cal-

culate the transition probabilities between the three statuses of compliance, regular violator,

and HPV, for each state, inspection decision, violation decision, and discretized fine decision.

Altogether, this gives 240 (2×2×20×3) possible regulatory outcomes using our discretized

method. We calculate the probability and mean fines for each one. The Bellman equation

then integrates over these possibilities. We compute our Bellman equation until a fixed point,

defined as a sup norm tolerance of 10−9 between subsequent iterations. Following Assump-

tion 1, when we compute Bellman equations under counterfactual policy environments, the

state-contingent inspection, violation, and transition probabilities remain the same as in the

base computations.
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Choice of Fixed Grid Values for GMM Estimation

Our fixed grid estimator requires the ex ante specification of potential parameter grid values.

We follow Fox et al. (2016) and first estimate the quasi-likelihood model and then center

our fixed grid on these estimates. This requires specifying a range for the parameter grid

around the quasi-likelihood estimates. We used a range of 15 (from 7.5 below the quasi-

likelihood model to 7.5 above) for investment and 5 for the other parameters. We chose these

ranges after experimenting to make sure that they were large enough that we did not have

parameters with positive weights near the boundary.

We choose our actual grid values by again following Fox et al. (2016) and using co-prime

Halton sequences for each parameter, using the first five prime numbers, since each plant has

five parameters. We scale the Halton sequences over the range between the minimum and

maximum values. Co-prime Halton sequences better cover the set of parameters than would

taking the interaction of the same grid points for each component (Train, 2009).

We dropped the first 20 elements of each Halton sequence as recommended in the literature

(Train, 2009). We use the next 10,000 elements of the Halton sequences plus the quasi-

likelihood estimates themselves as our fixed grid; hence J = 10, 001. We also experimented

with J = 8, 001 (using the first 8,000 elements of the Halton sequence) and found similar

results.

Inputs to Moments

As noted in Section 4.4, we have three sets of moments. From (4), each set of moments is

defined by some md
k and mk(θj). We now detail the three sets of moments.

Our first set of moments is the steady state probability of being at any variable state Ω̃2

conditional on the fixed state Ω̃1. Specifically, for any moment Gk(η) = md
k −
∑J

j=1 ηjmk(θ),

where k ∈ 1, . . . , K references the specific state ω̃2 ∈ Ω̃2 and ω̃1 ∈ Ω̃2, we can write:

mk(θj) = Pr[Ω̃2 = ω̃2|Ω̃1 = ω̃1, θj], (A4)
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and

md
k =

∑
i

∑
t

1{Ω̃2
it = ω̃2, Ω̃1

it = ω̃1}
1{Ω̃1

i = ω̃1}
. (A5)

We compute (A4) by solving the Bellman equation given θj and then evaluating the steady

state distribution under optimizing behavior. We use a matrix inverse formula to solve for

the steady state distribution.

We note a few points about these moments. This first set of moments follows closely

from Nevo et al. (2016), although we use the steady state distribution of our infinite-horizon

dynamic problem, while they use the actual distribution of their finite-horizon problem.

While in principle we could construct a moment from every Ω̃, this would be difficult in

practice given that we have over 50,000 states. Hence, we create moments for the 5,000

states which have the highest expected number of steady-state observations at our estimated

quasi-likelihood parameters and given our data on Ω̃1.

Our second set of moments also follows closely from Nevo et al. (2016). The mk values

for these moments are constructed from the conditional probability of being at any variable

state and having an investment at that state:

mk(θj) = Pr[Ω̃2 = ω̃2|Ω̃1 = ω̃1, θj] Pr[X = 1|Ω̃, θj], (A6)

and

md
k =

∑
i

∑
t

1{Ω̃2
it = ω̃2, Ω̃1

it = ω̃1, Xit = 1}
1{Ω̃1

i = ω̃1}
. (A7)

We compute these moments for every state for which we compute our first set of moments,

except for states that reflect compliance, as there is no investment in these states.

Our final set of moments explicitly captures the panel data aspect of investment. The mk

values for these moments are constructed from the conditional probability of being at any

variable state and having an investment at that state, multiplied by the expected number of

A14



investments in the next six periods:

mk(θj) = Pr[Ω̃2 = ω̃2|Ω̃1 = ω̃1, θj]× Pr[X = 1|Ω̃, θj]× (A8)(∑6
s=1 sPr[s investments within 6 periods|X = 1, Ω̃, θj]

)
,

and

md
k =

∑
i

∑
t

1{Ω̃2
it = ω̃2, Ω̃1

it = ω̃1, Xit = 1} ×
(∑6

s=1Xi,t+s

)
1{Ω̃1

i = ω̃1}
. (A9)

These moments seek to match the extent of repeated investments by plants in the data—as

displayed in Figure A4—to the model. A more traditional correlation moment would simply

multiply investment at time t with investment at time t+1 rather than with investment over

the following six periods. We chose this formulation because we worry that investment in two

subsequent quarters might partly reflect measurement error. We compute these moments for

every state for which we compute our second set of moments.

To calculate the investment in the 6 periods ahead in (A8), we integrate over all potential

paths conditioning on the initial state and investment decision. Each period there are ten

potential paths: every interaction of (1) investment or not, (2) violation or not, and (3)

regular violator and HPV statuses; plus the cases of compliance with and without violations,

but without investment.50 Over 6 periods, this then implies 106 = 1,000,000 possible paths

for each parameter vector in our fixed grid θj. Thus, calculation of mk for this set of moments

is time consuming.

Overall, our estimator for our base specification has 14,374 moments, composed of 5,000

of the first set and 4,687 each of the second and third set. Our computation of mk(θj) results

in a 14,374 × 10,001 matrix and takes approximately eight days on an iMacPro with eight

processors, with code written in C with MPI, or two days on the University of Arizona high

performance cluster, using 28 processors.

50To save computational time, we use the higher probability point for depreciated accumulated violations,
rather than linear interpolation.
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Weighting Matrix and Estimation of GMM Parameters ηj

We follow the standard approach in GMM estimation of weighting by an estimate of the

inverse of the variance-covariance matrix to improve the efficiency of our estimates.51 We

proceed in two stages. In stage 1, we estimate the model with a weighting matrix that does

not reflect an asymptotic approximation to the variance-covariance matrix. Then, we use our

stage 1 estimates to compute an approximation to the variance-covariance matrix. In stage

2, we reestimate our parameters using this weighting matrix. We now detail our computation

of the variance-covariance matrix for both stages.

In stage 1, we calculate the variance-covariance matrix of the moments inputs mk, at the

quasi-likelihood estimates θQ.52

The diagonal elements of this matrix are calculated as:

V ar(mk(θQ)) =
E[mk(θQ)mk(θQ)]− E[mk(θQ)]2

Nk

, (A10)

where Nk is the number of plant / quarter observations from the region, industry, and gravity

state for moment k. This is the general formula for the variance for the mean of Nk repeated

i.i.d. draws from a random variable.

For the off-diagonal elements, the covariance will be zero for moments with different values

of Ω̃1. We can write the covariance between moments k and l from the same Ω̃1 as:

Cov(mk(θQ),ml(θQ)) =
E[mk(θQ)ml(θQ)]− E[mk(θQ)]E[ml(θQ)]

Nk

. (A11)

The first term in (A11) will be non-zero only for the three moments that pertain to the

same state. In this case, the first term in the numerator of the covariance between the

first and second set of moments will equal the second moment, while the first term in the

numerator between the first and third set of moments or between the second and third set

51Our GMM estimator is non-standard in that it includes the constraints in (3), which limits our ability
to prove asymptotic efficiency of this estimator.

52For some robustness specifications, we had collinearity issues with inverting this variance-covariance
matrix. We dropped moments with zero variance in one specification and used the diagonal of the matrix
for another specification.
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of moments will equal the third moment. The reason for this is that the moment from the

second set will only be non-zero when the moment from the first set is non-zero, while the

moment from the third set will only be non-zero when the moment from the second set is

non-zero. The second term in (A11) is simply the product of the means.

In stage 1, we invert and take a Cholesky decomposition of this estimated variance-

covariance matrix. We then pre-multiply mk(θj) for each θj and md
k by this matrix and

obtain stage 1 estimates of the weights ηj by minimizing the linear system of equations in (4)

subject to the constraints in (3), via constrained least squares. We use the Matlab package

lsqlin to perform this minimization process, which takes approximately 10 minutes on an

iMacPro. The program outputs consistent estimates of η.

We then estimate the variance-covariance matrix ofG(η) using our stage 1 GMM estimates

of η. From (4), the variance of G(η) is simply the squared weighted sum of the variance

conditional on the individual parameters, since the probability of each individual parameter

occurring is independent across observations.

We again take a Cholesky decomposition of the inverse of this revised variance-covariance

matrix, pre-multiply the matrix of moments mk(θj) across all θj values, and re-run our

estimation of the ηj weights. This provides our stage 2 estimates of ηj, which are the ones

that we report.

Bootstrap Procedure for Inference

We bootstrap to obtain standard errors for both our quasi-likelihood and GMM estimates.

For our GMM estimates, we provide standard errors on the counterfactual estimates only

rather than also on the structural parameters.

Our bootstrap for the GMM estimator proceeds with the following repeated procedure:

1. We first draw an alternative dataset with sampling with replacement at the plant

level. The new dataset has the same number of plants as the original data, though not

necessarily the same number of plant / quarter observations.

2. We then use this new dataset to recalculate the regulatory CCPs.
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3. Using these functions, we calculate the inputs to the moments, mk(θj) and md
k. We

limit the moments to those based on the 5,000 states which have the highest expected

number of steady-state observations at our estimated quasi-likelihood parameter. Note

that the exact number of moments, mk, varies across iterations of the bootstrapping

procedure, depending on how many of those 5,000 states are in compliance.

4. We then calculate our initial weighting matrix and estimate our first-stage GMM struc-

tural parameters η using this weighting matrix.

5. We then calculate the second stage weighting matrix for the moments based on these

first-stage estimates, and use this weighting matrix to re-estimate the structural pa-

rameters.

6. Finally, we use these estimates to calculate all of the outcomes for each counterfactual.

We report the standard deviation of the outcomes across the bootstrap iterations as

the standard error of our counterfactual outcomes.

We report results from 100 bootstrap draws, using the University of Arizona high per-

formance cluster to perform the computations simultaneously. Our bootstrap for the quasi-

likelihood process is similar: it uses the output created in steps 1 and 2 above. It then es-

timates the structural parameters with a non-linear search and performs the counterfactual

computation with the new structural parameters, regulator CCPs, and dataset (analogous

to step 6).

A4 Extra Figures and Tables
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Table A1: Investment and Resolution of Violations

Dependent variable: return to compliance
Current investment −0.115∗∗∗ (0.002)
One quarter lag of investment 0.380∗∗∗ (0.006)
Two quarters lag of investment 0.083∗∗∗ (0.007)
Three quarters lag of investment −0.012∗∗ (0.005)
Four quarters lag of investment −0.051∗∗∗ (0.005)
Number of observations 103,338
Note: regression includes region, industry, and gravity state dummies. Regression uses the
estimation sample restricted to plants not in compliance in the previous quarter. Standard
errors, which are clustered at the plant level, are in parentheses. ∗∗∗, ∗∗, and ∗ indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A2: State Transitions After Investment in Compliance

Outcome: transition to regular violator status
One quarter lag of investment 1.29∗∗∗ (.09)
Two quarters lag of investment 1.21∗∗∗ (.17)

Outcome: transition to HPV status
One quarter lag of investment 0.48∗∗∗ (.12)
Two quarters lag of investment 1.11∗∗∗ (.17)
Note: table shows estimates from a multinomial logit regression. Regression
includes region, industry, and gravity state dummies. Regression uses the
estimation sample restricted to plants in compliance in the previous quarter.
Standard errors, which are clustered at the plant level, are in parentheses.
∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

Table A3: Regressions of Regulatory Actions on Depreciated Accumulated Violations

Dependent variable: Inspection Fine amount Violation
Accumulated violations with no depreciation 0.004 −0.014∗∗∗ −0.000

(0.007) (0.004) (0.001)
Accumulated violations with 10% depreciation 0.132∗∗∗ 0.128∗∗∗ 0.008

(0.025) (0.016) (0.006)
Accumulated violations with 20% depreciation −0.031 −0.059∗∗∗ −0.006

(0.022) (0.013) (0.004)
Lagged HPV status 0.115∗∗∗ 0.032∗∗∗ 0.006∗∗∗

(0.006) (0.002) (0.001)
Number of observations 103,338 103,338 103,338
Note: regressions include region, industry, and gravity state dummies. Regression uses the estimation
sample restricted to plants not in compliance in the previous quarter. Standard errors, which are
clustered at the plant level, are in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the
1%, 5%, and 10% levels, respectively.
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Figure A1: Mean Inspection Probabilities and Fines by EPA Region
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Note: authors’ calculations based on estimation sample. States in each EPA region are indicated next to
value.

Table A4: Percent of Observations With Gravity State by Regulatory State

Gravity Actual Potential NAAQS In Regular HPV
damage damage attainment compliance violator

1 Low Low Either 37.19 36.29 38.98
2 Low High Either 2.89 2.44 2.08
3 High Low Either 4.07 4.16 3.64
4 High High Yes 28.22 29.34 26.58
5 High High No 27.63 27.77 28.72

Total: 100 100 100
Note: authors’ calculations based on the estimation sample. Regulatory actions
and outcomes are based on lagged status.
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Figure A2: Mean Inspection Probabilities and Fines by Industrial Sector
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Note: authors’ calculations based on estimation sample. Industrial sector measured by 2-digit NAICS code.

Figure A3: Depreciated Accumulated Violations and Monitoring and Enforcement
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Note: authors’ calculations based on estimation sample.
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Figure A4: Further Investments by a Plant Following Initial Investment
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Note: authors’ calculations based on estimation sample. The i.i.d. model is a hypothetical using the sample
mean investment probability.

Table A5: Regulatory CCPs Marginal Effects: Inspections

In Regular HPV
compliance violator

Regulator actions

Plant time-varying state
Lag investment – 0.050 0.010
2nd lag investment – 0.100 0.035
Deprec. accum. violations – 0.126 0.105

Plant fixed state
Non attainment (when high gravity) -0.025 -0.022 0.000
High gravity (when attainment) -0.001 -0.022 -0.017
SE EPA region (versus SW) -0.120 -0.026 0.042
Industry utilities (versus manuf. food) 0.108 0.193 0.135
Mean 0.086 0.272 0.428
Pseudo R2 0.093 0.091 0.081
Note: table shows results from probit regressions. Regressions include region, industry, and gravity
state dummies. Regressions are run separately depending on whether the plant is in each regulatory
status (compliance, a regular violator, or high priority violator) at the end of the previous period. Each
entry is the marginal effect of having the independent variable move from the mean of each regulatory
status to one standard deviation above the mean, with the exception of the plant fixed states, where
the marginal effect is calculated as described in the table.

A22



Table A6: Regulatory CCPs Marginal Effects: Violations

In Regular HPV
compliance violator

Regulator actions
Inspection 0.021 0.063 0.085

Plant time-varying state
Lag investment – -0.007 -0.026
2nd lag investment – -0.001 0.029
Deprec. accum. violations – 0.026 0.041

Plant fixed state
Non attainment (when high gravity) 0.001 0.001 0.010
High gravity (when attainment) -0.000 0.006 -0.010
SE EPA region (versus SW) -0.002 -0.010 -0.026
Industry utilities (versus manuf. food) -0.001 -0.003 -0.013
Mean 0.000 0.102 0.156
Pseudo R2 0.185 0.152 0.099
Note: table shows results from probit regressions. Regressions include region, industry, and gravity
state dummies. Some regressions also include inspection × gravity state interactions. Regressions
are run separately depending on whether the plant is in each regulatory status (compliance, a regular
violator, or high priority violator) at the end of the previous period. Each entry is the marginal effect of
having the independent variable move from the mean of each regulatory status to one standard deviation
above the mean, with the exception of the plant fixed states, where the marginal effect is calculated as
described in the table.
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Table A7: Regulatory CCPs Marginal Effects: Fines

In Regular HPV
compliance violator

Regulator actions
Violation 0.000 0.020 0.289
Inspection 0.000 0.024 0.186

Plant time-varying state
Lag investment – 0.002 -0.622
2nd lag investment – 0.002 0.131
Deprec. accum. violations – 0.000 0.000

Plant fixed state
Non attainment (when high gravity) 0.000 0.005 0.196
High gravity (when attainment) 0.000 -0.001 -0.116
SE EPA region (versus SW) 0.000 -0.150 0.134
Industry utilities (versus manuf. food) 0.000 -0.005 0.079
Mean 0.035 0.637 8.268
Pseudo R2 0.187 0.245 0.114
Note: table shows results from tobit regressions. Regressions include region, industry, and gravity
state dummies. Regressions also include inspection × gravity state interactions. Regressions are run
separately depending on whether the plant is in each regulatory status (compliance, a regular violator,
or HPV) at the end of the previous period. Each entry is the marginal effect of having the independent
variable move from the mean of each regulatory status to one standard deviation above the mean, with
the exception of the plant fixed states, where the marginal effect is calculated as described in the table.
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Table A8: Regulatory CCPs Marginal Effects: Status Transitions

Beginning State: Compliance Regular violator High priority violator

Transition to: Into Into Into Into Into Into
regular HPV compliance HPV compliance regular
violator violator

Regulator actions
Fines

0.000 0.000 -0.047 0.000 -0.017 0.000
Violation 0.674 0.000 -0.123 0.000 -0.126 0.000
Inspection 0.006 0.004 -0.006 0.013 -0.013 -0.002

Plant time-varying state
Lag investment – – 0.313 0.000 0.442 0.000
2nd lag investment – – 0.137 0.000 -0.042 0.000
Deprec. accum. violations – – 0.032 0.000 -0.031 0.000

Plant fixed state
Non-attainment (given highest gravity) 0.000 0.000 0.004 0.002 0.007 -0.003
Highest gravity and attainment (versus
lowest)

-0.000 -0.000 -0.011 -0.000 0.004 -0.003

SE EPA region (versus SW) 0.001 -0.004 0.187 -0.149 -0.013 0.048
Utility industry (versus manuf. food) -0.000 0.000 -0.010 0.011 0.007 0.003
Mean 0.000 1.000 2.000
Pseudo R2 0.5049 0.1760 0.3224
Note: table shows results from multinomial logit regressions. Regressions include region, industry, and gravity
state dummies. Most regressions also include inspection × gravity state interactions. ∗∗∗, ∗∗, and ∗ indicate
statistical significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered at the plant
level.
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Figure A5: Further Investments by a Plant Following Initial Investment, in Data and Models

0
.0

5
.1

.1
5

.2
Pr

ob
ab

ili
ty

 o
f 1

 o
r m

or
e 

fu
rth

er
 in

ve
st

m
en

ts

1 2 3 4 5 6

Probability in data Probability with random coefficients
Probability with QML

Note: authors’ calculations based on estimation sample and estimated models evaluated at steady state.

Table A9: Estimates of Plants’ Structural Parameters: More Interactions in CCPs

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.856∗∗∗ −2.856 −2.318 −2.482 −1.906 −1.778 4.404
(0.023)

Inspection utility (θI) −0.083∗∗∗ −0.083 −0.228 −0.130 0.106 −2.553 −2.323
(0.028)

Violation utility (θV ) 0.039 0.039 0.260 0.767 −0.362 −1.356 −0.870
(0.074)

Fine utility (millions $, θF ) −5.328∗∗∗ −5.328 −4.529 −6.114 −5.993 −7.055 −7.238
(0.225)

HPV status utility (θH) −0.081∗∗∗ −0.081 −0.045 −0.094 −0.168 −2.564 0.377
(0.007)

Weight on parameter vector 1 0.273 0.265 0.213 0.175 0.049 0.008
Note: standard errors for quasi-likelihood estimates, which are calculated via an outer product formula, are
in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
GMM estimates are for a one-step estimator, unlike main results. For GMM estimates, we report the 6
parameter vectors with the highest weight. The CCPs used in these estimates include region-by-industry
fixed effects instead of region and industry fixed effects.
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Table A10: Estimates of Plants’ Structural Parameters for Mining and Extraction Only

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.316∗∗∗ −1.175 −2.219 −2.189 −0.964 −5.324 −8.918
(0.074)

Inspection utility (θI) −0.129 −1.111 −0.993 −0.938 −0.201 2.320 −0.496
(0.121)

Violation utility (θV ) −0.218 −1.490 −2.481 −2.225 −1.449 −1.609 −2.616
(0.657)

Fine utility (millions $, θF ) −5.891∗∗∗ −3.505 −6.039 −4.307 −3.728 −7.091 −8.272
(1.155)

HPV status utility (θH) −0.058∗∗∗ −0.205 −0.074 −0.333 −0.341 −0.821 0.215
(0.018)

Weight on parameter vector 1 0.603 0.209 0.131 0.022 0.012 0.010
Note: standard errors for quasi-likelihood estimates, which are calculated via an outer product formula, are
in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
GMM estimates are for a one-step estimator, unlike main results. For GMM estimates, we report the 6
parameter vectors with the highest weight. Estimation uses only data from mining and extraction (2-digit
NAICS code 21). Within this, the estimation uses the 6-digit NAICS codes with the most plant / quarters,
211111, 211112, 212312, and 212321, and EPA regions 3-8. Estimation replaces 2-digit NAICS code fixed
effects in the CCPs with 6-digit NAICS code fixed effects.

Table A11: Estimates of Plants’ Structural Parameters for 10 Most Populous States

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −3.354∗∗∗ −2.843 −3.856 −6.458 −3.689 −0.813 −3.838
(0.036)

Inspection utility (θI) −0.038 0.572 −1.195 −0.070 −0.286 −1.539 0.311
(0.042)

Violation utility (θV ) 0.827∗∗∗ 0.041 1.209 −0.359 0.467 3.314 −0.447
(0.076)

Fine utility (millions $, θF ) −7.139∗∗∗ −8.967 −9.615 −8.258 −5.384 −4.934 −5.670
(0.271)

HPV status utility (θH) −0.184∗∗∗ −0.181 −0.129 −0.155 −0.020 −2.466 −0.257
(0.009)

Weight on parameter vector 1 0.417 0.222 0.144 0.053 0.051 0.048
Note: standard errors for quasi-likelihood estimates, which are calculated via an outer product formula, are
in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
GMM estimates are for a one-step estimator, unlike main results. For GMM estimates, we report the 6
parameter vectors with the highest weight. Estimation uses only data from CA, TX, NY, FL, IL, PA, OH,
MI, GA, and NC and replaces region fixed effects in the CCPs with state fixed effects.
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Table A12: Counterfactual Results: By Industry

(1) (2) (3) (4) (5)
All violators All violators Pigouvian Pigouvian

Baseline same fines; same fines; fines fines scaled
fines pollution scaled for base

constant constant by 1/3 pollution
Mining & extraction (NAICS 21)

Fines (thousands $) 0.16 0.16 1.95 6.04 0.66
Pollution damages (mil. $) 0.57 2.29 0.57 0.52 0.61
Regular violator (%) 4.82 3.70 3.60 3.33 4.14
HPV (%) 0.69 25.57 1.08 1.89 13.39

Utilities (NAICS 22)
Fines (thousands $) 0.85 0.85 3.30 258.60 5.78
Pollution damages (mil. $) 18.55 41.04 18.55 15.67 15.86
Regular violator (%) 4.07 2.81 3.41 1.67 2.51
HPV (%) 3.80 34.62 5.72 3.45 7.26

Manufacturing: food, textiles (NAICS 31)
Fines (thousands $) 0.29 0.29 1.73 7.15 1.24
Pollution damages (mil. $) 0.73 1.97 0.73 0.66 0.85
Regular violator (%) 2.93 2.07 2.50 2.05 2.40
HPV (%) 1.37 31.87 2.05 2.21 16.04

Manufacturing: wood, petroleum, pharma (NAICS 32)
Fines (thousands $) 0.51 0.51 2.58 11.98 2.40
Pollution damages (mil. $) 1.05 2.82 1.05 0.93 1.30
Regular violator (%) 3.46 2.39 2.74 1.61 2.92
HPV (%) 1.82 36.16 3.92 2.13 15.02

Manufacturing: metal (NAICS 33)
Fines (thousands $) 0.23 0.23 1.45 5.04 1.35
Pollution damages (mil. $) 0.39 1.47 0.39 0.33 0.54
Regular violator (%) 2.56 1.83 2.16 1.49 2.12
HPV (%) 1.39 31.26 2.76 2.56 15.13

Transportation (NAICS 48)
Fines (thousands $) 0.18 0.18 0.92 2.45 0.32
Pollution damages (mil. $) 0.44 1.48 0.44 0.42 0.46
Regular violator (%) 2.42 1.96 2.09 2.00 2.07
HPV (%) 1.15 19.81 3.89 6.68 13.67

Educational services (NAICS 61)
Fines (thousands $) 0.06 0.06 0.53 2.28 0.96
Pollution damages (mil. $) 0.68 1.78 0.68 0.66 0.81
Regular violator (%) 0.91 0.67 0.78 0.62 0.73
HPV (%) 0.36 26.75 1.44 1.04 16.49

Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region, industry,
and gravity state in our data. All columns use the GMM random coefficient estimates. Column (1) presents
the results of our model given the estimated coefficients and the existing regulatory actions and outcomes.
Other columns change the plants’ fines and cost of HPV status. All values are per plant / quarter.

A28


