We are grateful to the editor Esther Duflo, an anonymous co-editor, and four anonymous referees. We thank Pascaline Dupas and the J-PAL Board and Reviewers who provided important feedback that improved the design and implementation of the experiment. We thank Ran Abramitzky, Ned Augenblick, Jeremy Bulow, Kate Casey, Arun Chandrasekhar, Raj Chetty, Stefano DellaVigna, Mark Duggan, Karen Eggleston, Erica Field, Matthew Gentzkow, Gopi Shah Goda, Susan Godlonton, Jessica Goldberg, Michael Greenstone, Guido Imbens, Seema Jayachandran, Damon Jones, Supreet Kaur, Melanie Morten, Maria Polyakova, Matthew Rabin, Al Roth, Kosali Simon, Ebonya Washington, Crystal Yang and seminar participants at UC Berkeley, Stanford, Cornell, MIT, UCLA, UCSB, Harvard Kennedy School, University of Chicago, and IFPRI for their helpful comments. Javarcia Ivory, Matin Mirramezani, Edna Idna, Anlu Xing and especially Morgan Foy provided excellent research assistance. We thank the study doctors and field staff team for their participation and dedication. We thank the administration at Stanford, SIEPR, and J-PAL particularly Lesley Chang, Rhonda McClinton-Brown, Dr. Mark Cullen, Dr. Douglas K. Owens, Ann Dohn, Ashima Goel, Atty. Ann James, Atty. Tina Dobleman, Nancy Lonhart, Jason Bauman, Sophie Shank, James Turitto, Florian Grosset and Luke Sonnet. We thank Uber for donating ride-sharing services, Alameda County for donating the influenza vaccinations and Dr. Michael and Denise Lenoir for subletting their clinic. The study was made possible by a grant from the Abdul Latif Jameel Poverty Action Lab - Health Care Delivery Initiative with supplemental support from NBER P30AG012810. The experiment is registered at clinicaltrials.gov (NCT03481270) and in the AEA RCT Registry (0002497). The authors declare they have no conflicts of interest. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2018 by Marcella Alsan, Owen Garrick, and Grant C. Graziani. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

We study the effect of physician workforce diversity on the demand for preventive care among African-American men. In an experiment in Oakland, California, we randomize black men to black or non-black male medical doctors. We use a two-stage design, measuring decisions before (pre-consultation) and after (post-consultation) meeting their assigned doctor. Subjects select a similar number of preventives in the pre-consultation stage, but are much more likely to select every preventive service, particularly invasive services, once meeting with a racially concordant doctor. Our findings suggest black doctors could reduce the black-white male gap in cardiovascular mortality by 19%.

Marcella Alsan
Stanford Medical School
Center for Health Policy/PCOR
117 Encina Commons, Room 218
Stanford, CA 94304
and NBER
malsan@stanford.edu

Owen Garrick
Bridge Clinical Research
333 Hegenberger Road
Suite 208
Oakland, CA 94621
owen.garrick@bridgeclinical.com

Grant C. Graziani
University of California, Berkeley
530 Evans Hall
Berkeley, CA 94720
gcgraziani@berkeley.edu

A data appendix is available at
http://www.nber.org/data-appendix/w24787
A randomized controlled trials registry entry is available at
https://www.socialscienceregistry.org/trials/2497
I. Introduction

African-American men have the lowest life expectancy of any major demographic group in the United States (Arias, Heron, and Xu 2017) and live on average 4.5 fewer years than non-Hispanic white men (Murphy et al. 2017). Reasons for this disparity are multifactorial and include lack of health insurance, lower socioeconomic status, and structural racism (IOM 2003). Approximately 60% of the difference in life expectancy between black and white men is attributable to chronic diseases, which are amenable to primary or secondary prevention (Harper, Rushani, and Kaufman 2012; Silber et al. 2014). Some examples are poorly controlled hypertension (associated with stroke and myocardial infarction), diabetes (associated with end organ disease including kidney failure), and delayed diagnosis of cancers. These data suggest at least part of the mortality disparity is related to underutilized preventive healthcare services.

One frequently discussed policy prescription put forth by the Institute of Medicine (IOM) as well as the National Medical Association (NMA), the Association of American Medical Colleges (AAMC), and the American Medical Association (AMA) to address racial health disparities is to diversify the healthcare profession by increasing the number of under-represented minorities. Blacks comprise approximately 13% of the U.S. population but only 4% of physicians and less than 7% of recent medical school graduates (AAMC 2014, AAMC 2016). Evidence on whether patient and physician racial concordance improves satisfaction and health outcomes is mixed, perhaps due to methodological or contextual differences. Recent studies have found that gender- or race-match between doctors and patients in a hospital setting reduces mortality (Greenwood, Carnahan, Huang 2018; Hill, Jones, and Woodworth 2018) yet in the outpatient setting, the results are less clear. Meghani et al. (2009) perform a meta-analysis of thirty observational studies in public health and medicine concerning four racial and ethnic groups. They conclude that the evidence in favor of patient-doctor concordance in medical care is inconclusive and recommend additional research. We advance this literature by providing experimental evidence on whether and to what extent diversity in the physician workforce improves medical decisions and outcomes among minority populations.

Our study builds upon several findings in economics. First, randomized trials in development economics have demonstrated puzzlingly low demand for high return preventive healthcare services among low-income populations (for a review see Dupas 2011; Banerjee and Duflo 2011, Chapter 3). Similar patterns are found in the U.S. — compared to non-Hispanic white men, African-American men are six percentage points less likely to visit the doctor and eight percentage points less likely to report receipt of the flu shot; insurance and education do not fully explain these gaps.

Many factors likely contribute to this puzzle including lack of information, inadequate or low quality healthcare supply, and misperceptions about the etiology of disease. Given the prominent history of neglect and exploitation of disadvantaged populations by health authorities, mistrust

1See “Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care” (IOM 2003); “Addressing Racial Disparities in Health Care: A Targeted Action Plan for Academic Medical Centers” (AAMC 2009); “Major Minority Physician Associations Come Together” (NMA 2018); and “Reducing Disparities in Health Care” (AMA 2018).

2Authors’ own calculations using the National Health Interview Survey (Blewett et al. 2018a).
of the medical establishment is sometimes invoked as a contributing factor. Evidence consistent
with historical abuse dampening demand and increasing mistrust has been found specifically among
African-American men in the immediate aftermath of the U.S. Public Health Service syphilis ex-
periment in Tuskegee, Alabama, (Alsan and Wanamaker 2018) and persisting decades after colonial
medical campaigns in Central Africa (Lowes and Montero 2018). Recent studies in public health
demonstrate that African-American men continue to score higher on medical mistrust measures
than other groups (Kinlock et al. 2017, Nanna et al. 2018, Hammond et al. 2010).

Second, contributions in cultural economics have highlighted how norms of behavior are influ-
enced by social identity (Akerlof and Kranton 2000; Benjamin, Choi, and Strickland 2010). Most
notably, Tabellini (2008) shows how cooperation can be sustained in a one-shot prisoner’s dilemma
among agents who perceive a non-economic benefit from cooperating with those closer in social
distance. Third, natural experiments in labor and education have underscored how diversity, or lack
thereof, may be particularly relevant in asymmetrical power relationships. For instance, Glover,
Pallais, and Pariente (2017) find that minority workers exert less on the job effort in grocery stores
with biased majority managers. A spate of studies has found that same race or same gender
teachers are positively correlated with grades and career path, potentially through a role model
effect.

There are several ways in which racial diversity could play a role in medicine, specifically as it
relates to the patient-doctor relationship. Taste-based discrimination (Becker 1957) on the part of
the patient or doctor could imply that individuals are averse to interacting with those who do not
share their racial background. On the other hand, internalized racism, or negative beliefs about one’s
racial group, could lead to the opposite phenomenon. Third, a common racial background might
facilitate communication — a critical component of clinical care as both patient and physician have
potentially life-saving information to exchange. Fourth, and not mutually exclusive, concordance
may foster trust leading to cooperation (i.e. compliance with doctors’ advice or willingness to
engage). As noted by Arrow (1963), “...it is a commonplace that the physician-patient relation
affects the quality of the medical care product.”

In this study, we examine whether doctor race affects the demand for preventive care among
African-American men. We induce exogenous variation by randomly assigning subjects to black
and non-black doctors. Our experiment was conducted in Oakland, California, where we recruited
over 1,300 black men from about 20 local barbershops and two flea markets. At these recruitment
sites, subjects filled out baseline questionnaires and received a coupon for a free health screening.
To facilitate our experiment, we set up a clinic to provide preventive services to the subjects. The
clinic was staffed with fourteen black and non-black male doctors from the Bay Area as well as a
diverse team of receptionists. Doctors and staff were told the study was designed to improve the

3For more from industry, see: Stoll, Raphael, and Holzer (2004); Giuliano, Levine, and Leonard (2009); Hjort
(2014); and Bertrand et al. (2018).
4See: Ehrenberg, Goldhaber, and Brewer (1995); Dee (2004); Dee (2005); Bettinger and Long (2005); Carrell,
Page, and West (2010); Fairlee, Hoffmann, and Oreopoulos (2014); and Lusher, Campbell, and Carrell (2018).
5Throughout the paper, we use “black” to refer to African-Americans and “non-black” to refer to Caucasian and
Asian-Americans.
take-up of preventive care among black men in Oakland, but not specifically informed about the role of doctor race. Subjects learned of their (randomly) assigned doctor via tablet in the privacy of their own patient room.

The experiment proceeded in two stages and cross-randomized doctor race with incentives for the flu vaccine at the individual level. In the pre-consultation stage, patients were introduced to their doctor via the tablet by way of text and photo, both standardized as described in Section II. Subjects were then provided the opportunity to select which, if any, of the four advertised cardiovascular screening services they would like to receive. These services included body mass index (BMI) measurement, blood pressure measurement, diabetes screening, and cholesterol screening. The last two tests required a blood sample, and subjects were made aware of this feature. After making their selections for cardiovascular screening, subjects were informed they could also elect to receive a flu shot, administered by their assigned doctor. For subjects randomized to receive a flu incentive to encourage vaccine selection, the incentive amount was also listed. We conjectured that if subjects disliked doctors who did not share their racial background, those randomly assigned to non-black doctors would, on average, demand fewer preventives simply based on the tablet photo.

In the second stage, subjects met their assigned doctor in person. We refer to this stage throughout the paper as post-consultation (since decisions occur after interacting with their doctor). Subjects could revise their choice of preventives during this stage, after which the doctor administered the selected services. We therefore measure how black vs. non-black doctors affect demand between the pre- and post-consultation stages, which we refer to as the delta, since it represents the change in selected services across the two periods. These are two choice events occurring after randomization and both represent experimental outcomes. Following the patient-doctor interaction, subjects filled out feedback forms and exited the clinic.

It is important to note that the study provided only preventive (i.e. care recommended during a state of relatively good health to avoid future illness) as opposed to curative (i.e. care needed during a state of illness to restore health) interventions. Individuals often have imperfect knowledge regarding the health benefits of prevention, perhaps because they have been misinformed, never informed, or informed by someone they don’t trust, which can dampen demand. Hence the role of study doctors was limited to information provision on the benefits of receiving care even when not feeling sick and then providing those chosen.

Approximately half of the subjects we recruited from the community visited our clinic. Those who presented were negatively selected relative to those who completed the barbershop survey but did not come to the clinic. Subjects who redeemed the clinic coupon were 13 percentage points more likely to be unemployed (compared to 18% among non-participants) and 19 percentage points more likely to have a high school education or less (compared to 44% among non-participants). In terms of health and healthcare utilization, they had significantly lower self-reported health, were less likely to have a primary care physician, and more likely to have visited the emergency room.

\[\text{We use the term preventives to refer to screenings and immunizations.}\]
\[\text{According to the CDC, up to 40% of annual deaths in the U.S. are deemed preventable (CDC 2014).}\]
Once at the clinic, subjects randomly assigned to a black doctor elected to receive the same number of preventive services as those assigned to a non-black doctor in the pre-consultation stage. In sharp contrast, we find that subjects assigned to black doctors, upon interacting with their doctor, are 18 percentage points more likely to take up preventives relative to those assigned to non-black doctors. These findings are robust to corrections for correlated error structures within doctor; the inclusion of fixed effects for clinic date, field staff, and recruitment location; as well as various permutations of the study doctors, including dropping the “best” black and “worst” non-black doctor.

Why would black male subjects randomly assigned to black male doctors elect to receive more services upon interacting with them? We provide several pieces of evidence that better communication between black subjects and black doctors explains our results, and discuss alternative mechanisms below. First, in our controlled study environment, the role of the doctor was circumscribed to informing subjects about the benefits of preventive services, and then providing those chosen. Second, for non-invasive tests (those that do not require blood or an injection), both non-black and black doctors shifted out demand in the post-consultation stage relative to the pre-consultation stage, though the effect was larger for the latter. Yet, for invasive tests, those that carry more risk and thus likely require more trust in the person providing the service, only subjects assigned to black doctors responded: increasing their take-up of diabetes and cholesterol screenings by 20 and 26 percentage points (49% and 71%), respectively. Third, subjects are more likely to talk to their assigned doctor about health issues if the assigned doctor is African-American, a result which is particularly strong among those who obtain an invasive exam.

The experimental findings highlighting improved communication for black male patients paired with black male doctors are consistent with those collected in a non-experimental manner. We surveyed 1,490 black and white adult males who matched our sample in terms of educational attainment. The respondents were asked to select a doctor of a particular race based on accessibility, quality, and communication. With respect to quality (i.e. which doctor is the most qualified) black and white respondents both selected doctors of the same race about 50% of the time. However, for questions regarding communication, in particular which doctor would understand your concerns, the proportion of respondents choosing doctors of their own racial background jumped to nearly 65% for blacks and 70% for whites.

An alternative interpretation of our results is that the estimated treatment effect is picking up an attribute correlated with the race of the doctor in our sample and which affects the outcome of interest. A prominent candidate for a hard-to-measure characteristic that may correlate with doctor race is quality. The non-experimental findings cited above demonstrate black male respondents believe that non-black doctors are as qualified as black doctors. Yet, actual doctor quality within the context of our study could vary.

8 These patterns are also found in nationally representative non-experimental data.
9 This could arise if, for example, black doctors are more qualified than non-black doctors in the population and we failed to draw our sample from an area of overlapping support — or if the distributions were similar, but we drew from different tails.
We address the possibility of differential quality across doctor race in the study setting in several ways. First, doctors were balanced on observables in age, experience, and medical school rank: characteristics we collected from their resumes. In addition, we created a survey for the study doctors designed to assess their typical patient characteristics, their persuasiveness, and their current medical knowledge using questions typically found on medical credentialing exams. Interestingly, the non-black study doctors were more likely to state their patients comply with medical advice and that they are able to persuade both white and black adult male patients to take up testing they had initially refused.

If black doctors were higher quality than non-black doctors we might have expected them to be rated higher on feedback forms, yet black and non-black doctors were rated equally (highly). This compression likely reflects the design. Differences in quality that would stem from diagnostic or treatment skills were not elicited in our study, which narrowly focused on encouraging the take-up of preventives. Furthermore if black doctors were higher quality, they should perform better with all patients and on all tests. Although our recruitment efforts were focused on African-American men, 12 clients identified as from another racial or ethnic background. Among this out-of-sample group, individuals were 20 percentage points less likely to choose invasive services in the post-consultation stage when randomized to black doctors (a finding that is more extreme than 97% of bootstrap coefficients on draws of 12 in-sample subjects). Moreover for the in-sample subjects, the differences in post-consultation preventive test take-up were much more muted for non-invasive screenings (e.g. blood pressure) than for exams that required blood (e.g. cholesterol). Thus, in order for an attribute correlated with the race of black doctors to be driving our results, it must manifest only when treating African-American male patients and especially for invasive exams.

This leads to another competing explanation, perhaps black male doctors exerted more effort with patients who shared their racial background. Since communication requires some amount of effort, this is not an interpretation to which we object (though we note if communication is more natural within concordant pairs, black doctors might be expending less effort to achieve the same or better results — i.e. communication may be more efficient). Time spent with patients has been used as a proxy for provider effort (Das et al. 2016). Equating time spent with effort is problematic in our setting because it reflects many different factors. A longer time spent could simply reflect the treatment effect (i.e. subjects elect to receive more services from black doctors), low quality (i.e. difficulty performing the services), or communication (i.e. a better patient-doctor connection facilitating credible information exchange). We find that black doctors indeed spent more time with subjects, but this finding is driven by the treatment effect — the difference in visit lengths is small and statistically insignificant after adjusting for the selected services. If we examine

10 Moreover, all of the non-black doctors, but only 67% of black doctors, practiced internal medicine.
11 This survey occurred after the completion of the experiment. We thank the Editor for the suggestion.
12 A potential explanation for this result is bias in subjective ratings of doctors (Garcia et al. 2019; Sotto-Santiago, Slaven, Rohr-Kirchgraber 2019; Poole 2019) though this seems less likely since we did not detect differences in the pre-consultation stage.
13 To avoid conflict, we provided services for the handful of people from other backgrounds who were consented in to the study but deleted them from the main analytical sample.
another potential proxy for effort, the allocation of services to the “highest need” subjects, we fail to find evidence that doctors of either race were expending effort to target interventions. Lack of targeting also reflects our instruction to the study doctors to try and encourage all patients to take up preventives.

Although years of experience in the medical field do not differ by race of doctor, it is possible that black male doctors have more familiarity with serving black male patients. This sorting would be consistent with national statistics on doctor-patient pairings as well as with the tendency for minority physicians to work in medically underserved areas with more low-income and minority patients (Komaromy et al. 1996; Walker, Moreno, Grumbach 2012). Our study doctor survey reveals that black doctors were more likely to have seen at least five black adult male patients a week, though this experience does not predict doctor fixed effects. In addition, in the context of our own experiment, non-black physicians did not “close the gap” with black doctors vis-à-vis post-consultation preventive care take-up over time.

Lastly, we do not find evidence for the controversial hypothesis that subjects or doctors were discriminating against each other. First, there was no race-preference elicited in the pre-consultation (tablet) stage. Second, the comments and ratings on feedback forms were consistently positive for both sets of doctors. As for provider-level discrimination, all doctors who were involved in the study knew the goal was to improve the preventive care of black men (though were blind to the notion that their race was being randomized, thus we could not administer implicit association tests). Taste-based discrimination by doctors would again be inconsistent with non-black doctors being rated as highly as black doctors. We also failed to find evidence that doctors of different races were using distinct thresholds to test patients for disease, as the distributions of test results conditional on testing were indistinguishable across groups.

Racial concordance between subjects and doctors appears to be a particular component of social distance that is influential in affecting demand. Alternative concordance measures, such as whether subjects and assigned doctors share approximately the same age or educational attainment, do not predict healthcare demand in any meaningful way. Nor does race interact with these other concordance measures. Such findings should be interpreted with caution since these characteristics were not randomized.

Similar to prior scholarship on incentives for preventives among low-income communities, (Banerjee et al. 2010; Cohen and Dupas 2010; Thornton 2008) we find that financial incentives for the flu shot increased demand for the vaccine: by 19 percentage points for a $5 incentive and 30 percentage points for a $10 incentive in the pre-consultation stage. Yet not all those who selected an incentivized flu shot actually received it: about 18% of subjects randomized to black doctors and 26% randomized to non-black doctors declined the shot in the post-consultation stage (many cited contraindications). And regardless of incentive level, black doctors increased demand in the post-consultation stage — convincing about 26% of subjects who initially turned down an incentive and refused a flu shot to obtain it, suggesting subsidies and (meeting with) black doctors are not

\footnote{Chandra and Staiger (2010) also fail to find evidence of prejudice in heart attack treatment.}
perfect substitutes.

In the setting of imperfect information regarding the benefit of healthcare, demand curves cease to be a sufficient statistic for welfare calculations (Pauly and Blavin 2008; Baicker, Mullainathan, and Schwartzstein 2015; Chetty, Looney, and Kroft 2009). Furthermore, we incentivized take-up for only one preventive yet demand for every preventive was affected by a black doctor treatment. Thus, to make progress on valuation, we combine published estimates on the health value of interventions offered in our clinic with results from our study. The health value estimates come from cost-effectiveness simulations in which the screen-positive population obtains and complies with guideline-recommended therapy. Using this approach, we calculate that black doctors would reduce mortality from cardiovascular disease by 16 deaths per 100,000 per year, accounting for 19% of the black-white gap in cardiovascular mortality (Kahn et al. 2010; Dehmer et al. 2017; Murphy et al. 2017; and Harper, Rushani, and Kaufman 2012). If these effects extrapolate to other leading causes of death amenable to primary or secondary prevention, such as HIV/AIDS or cancer, the gains would be even larger.

These calculations presume that there is a supply of African-American male doctors who could screen and treat black male patients. This might not be a safe assumption. Black males are especially under-represented in the physician workforce, comprising about 12% of the U.S. male population but only 3% of male doctors. According to a recent report by the AAMC (2015), the number of black male medical students has been roughly constant since 1978 (when 542 matriculated into medical school compared to 515 in 2014). Returning to the non-experimental results, black male respondents were 26 percentage points less likely than white respondents to state that a doctor who matched their race and sex was available to them.

The remainder of the paper proceeds as follows. Section II describes the experimental design and the hypotheses tested. Section III describes the data, empirical approach, and the characteristics of study subjects. Section IV presents the main findings and Section V explores potential mechanisms and validity concerns. Section VI discusses health benefits and Section VII concludes.

II. Experimental Design and Hypotheses Tested

A. Design

The experiment was conducted in Oakland, California, in the fall and winter of 2017–2018 (see Figure 1 for study design and flow). We recruited men from 19 black barbershops as well as two flea markets in and around the East Bay (about 88% of all recruited were at barbershops). Field officers (FO) approached men in the barbershops to enroll in the study. After obtaining written informed consent, the subject was given a short baseline survey. The baseline survey included

15 Black females represent 13% of the U.S. population and 7% of the female physician workforce. Physician workforce figures are from AAMC (2014); population figures are from 2013 Census Bureau Population Estimates.
16 Protocol information and links to the pre-analysis plan as well as other study documents are provided in the Online Appendix.
17 Baseline survey included in the Online Appendix. Field officers were mostly minority or first-generation college students planning to apply to medical school. Six were black and three were Hispanic; most were male. FOs were
questions on socio-demographics, healthcare, and mistrust. For completing the survey, the men received a coupon (worth up to $25) for their haircut or, at the flea market, a cash incentive. After completing the baseline survey, the subjects were given a coupon to receive a free health screening for blood pressure, BMI, cholesterol, and diabetes at the clinic we operated on eleven Saturdays (see Appendix Figure 1). Subjects were encouraged to come to the clinic promptly, and subjects who did not have transport could receive a ride to the clinic courtesy of Uber.[18] Attendance at the clinic was encouraged with a $50 incentive.

Upon arrival at the clinic, subjects who had a valid coupon were escorted into a waiting room where a ticket number was dispensed. Once their ticket number was called, they were led to a private patient room by a receptionist officer (RO).[19] ROs wore crimson polo shirts with a Stanford-Bridge Clinical logo and khaki pants. The RO would then provide the subject with a tablet, which randomized the subject to a flu vaccine incentive and to a black or non-black doctor. Fourteen doctors participated in the experiment, including eight non-black and six black. We recruited study doctors using electronic and print advertisements to Alameda-Contra Costa Medical Association as well as with announcements at various meetings throughout the Bay Area. We only refused one physician who completed the steps for the application, due to liability considerations.

SurveyCTO programmed in-form randomization using a computerized random assignment algorithm for the tablets.[20] Note that the tablet was the first time subjects learned about the opportunity to receive a flu vaccine, since it was not advertised.[21] The RO would collect the coupon and give the subject his $50 participation incentive, then instruct the subject on how to use the tablet. Two practice questions were answered by the subject with the RO present to make sure they could operate the tablet.[22] The RO then exited the patient room and allowed the subject to make their medical decisions in private.

The tablet introduced the subject to their assigned doctor and emphasized the doctor would be providing the services:

Your assigned doctor for today is Dr. [Last Name]. On the next page, you will be

18 Field officers used their own smart phones to obtain the rides. Forty-seven subjects used free rides as transport to the clinic; 64 accepted a ride after leaving the clinic.

19 Receptionist officers were generally first-generation or minority college students planning to apply to medical school as well, including two white, two black, two Hispanic and one South Asian student; most were female.

20 At least four doctors were on site every Saturday (for reference, the median number of physicians at a community health center is five (Ku et al. 2015)). The algorithm ensured the per subject probability of receiving a black doctor was one-half and the probability of receiving a $10, $5, or no incentive for choosing flu was one-third (see Figure 1).

21 We were concerned, based on focus group work, that men would believe they had to receive a flu vaccine at the clinic and therefore would not attend.

22 Fourteen subjects were illiterate and needed to have the RO read the tablet to them. We test for robustness to dropping those observations in Section IV.
asked to select the services you wish to receive from Dr. [Last Name]. Dr. [Last Name] will administer all the services that you choose.

In addition, the same generic information about doctor training was provided:

Dr. [Last Name] is a medical doctor licensed to practice in the state of California and currently practicing in the Bay Area.

The text was accompanied by a large headshot photo of the doctor in a white coat with a red background. Doctors were told the purpose of the photos was for identification cards and were not aware that the photos were shown to subjects on a tablet in the pre-consultation stage. Tablet screenshots can be found in Figure[2]. To protect the identity of the study doctors, there are no photos in the figure. The screenshots are not shown to scale, the tablet screen was approximately 10 inches. As described further below, subjects seemed to read the text on the tablet since they responded to information about the incentive for a flu shot and whether the test required a blood sample.

The next screen listed four services in a random order (blood pressure measurement, body mass index measurement, cholesterol testing, and diabetes testing) as well as the doctor photo and queried the subjects on which services they would like to receive. The need for a finger prick of blood for diabetes and cholesterol was clearly demarcated. Selecting “none of the above” was also an option.

The following screen apprised the subject that they could also obtain the flu shot, which would “protect you and your community.” Those randomized to receive an incentive were then informed they would obtain $5 or $10 for selecting the flu shot. The doctor’s photo was shown for a third time and the subject was asked whether they would like to receive a shot from Dr. [Last Name]. If the subject responded affirmatively, a list of screening questions would appear for contraindications. Subjects were informed the $5 or $10 incentive would be given regardless of whether they had a contraindication. This was necessary to encourage reporting of any condition which could make flu vaccination potentially dangerous (e.g. allergic response). However, subjects who were reluctant to receive the shot in the first place could lie about having a problem. The RO returned to the patient room, collected the tablet, recorded the responses, and handed a clipboard to the assigned doctor[24].

Study doctors were instructed to encourage patients to receive all preventives[24]. The doctors, subjects, and field staff were not informed that doctor race was being randomized, though they could have inferred it. They were explicitly told that the purpose of the study was to improve the take-up of preventive health screening services for African-American men (the study was officially labeled the “Oakland Men’s Health Disparities Project”). Doctors were aware that subjects were randomized, so that they would only meet with subjects assigned to them. Due to the nature of

23Doctor assignment was double checked by a second FO. It’s possible that subjects could have doubted information on the tablet, such as whether the assigned doctor would actually meet them. Yet many seemed to believe (and respond) to the flu shot incentive by choosing it and our results on this subset are similar. Results available on request.

24Similar to Coffman and Niehaus (2018) who study homophily in the context of the seller-buyer relationship, we did not provide a specific script for the doctors to use in their meetings. A script could have limited communication and made doctors appear less genuine/trustworthy in what was a real clinical encounter.
the malpractice coverage we were able to provide, study doctors were instructed not to provide medical care other than the services that were covered by the study. Subjects were also informed that the doctors were only able to provide the set of preventives listed on the tablet. If subjects had alarming values on any of their tests, there was an emergency protocol in place. After the visit was completed, subjects filled out a feedback form. They were then escorted out of the clinic by an RO and the ride-sharing service was called if needed. The study was approved by the IRB committee of Stanford and by the IRB committee at NBER for the non-experimental sample. The IRB committees at Berkeley and MIT ceded authority to Stanford.

B. Conceptual Framework and Hypotheses Tested

The experimental design allows us to test two competing hypotheses, which are formalized in the Online Appendix. The model follows Pauly and Blavin (2008) and Baicker, Mullainathan, and Schwartzstein (2015), allowing patients to have false beliefs about the benefits of preventive care leading to underutilization (i.e. demanding less than what is privately optimal). This assumption mirrors what we observed in the field with many patients expressing false beliefs or present-bias. For example, one subject had been diagnosed with diabetes in the past but “refused to believe it.” Others thought flu shots caused sickness, or that other non-proven remedies could ward off illness instead, echoing findings in Pettey et al. (2016). Several said that they would get the shot later. One patient made a possible reference to the syphilis experiment in Tuskegee stating he did not want the flu shot out of “fear of being experimented on.” We note that this subject’s belief was accurate in the sense that he indeed was an enrollee in our study, and therefore part of an experiment. It also reflects many findings from the medical literature which suggest that African-Americans are wary of participating in clinical trials and part of this hesitation may be related to Tuskegee (Murthy, Krumholz, Gross 2004; Braunstein et al. 2008; Scharff et al. 2010).

If, in addition to the discomfort associated with testing, individuals have a strong aversion for doctors who do not share their race (as in Becker 1957), then simply learning their doctor is African-American via a photo on the tablet in the pre-consultation stage is hypothesized to increase demand relative to the control group.

In the post-consultation stage, we assume a doctor provides information sufficient for the patient to correct his false belief, yet whether that information is considered credible or comprehensible depends on the social distance between the two agents (Tabellini 2008). If homophily facilitates the successful transmission of information between doctor and patient, then differences across subjects assigned to doctors of different races would only be detected after the consultation. Finally, there is the possibility that both forces are at work: aversion to a particular race of doctor in the pre-consultation stage reinforced by a lower perceived benefit, on average, from the same, in the post-consultation stage, leading to a widening of the take-up gradient across doctors.

25“Disbelief of diabetes diagnosis” has been associated with medication non-adherence among African-American patients (Shiyanbola, Brown, and Ward 2018).

26For a formalization and discussion of other possible cases, please see the Online Appendix.
III. Empirical Strategy and Sample Characteristics

The purpose of the study is to estimate the causal effect of doctor race on the preventive healthcare decisions of African-American men. We begin by presenting an overview of our estimation framework and the data used in the study. We then turn to describing characteristics of the study sample.

A. Estimating Equations

Using experimental data, we estimate the following equation:

\[Y_i = \alpha + \beta_1 \cdot 1_{i}^{BlackMD} + \beta_2 \cdot 1_{i}^{$5} + \beta_3 \cdot 1_{i}^{$10} + \Gamma'X_i + \epsilon_i \]

where \(i \) is an individual subject. \(Y_i \) is the demand for preventives during various stages of the experiment. \(1_{i}^{BlackMD}, 1_{i}^{$5}, \) and \(1_{i}^{$10} \) are indicators for random assignment to a black doctor, a five dollar flu incentive, and a ten dollar flu incentive, respectively. \(X_i \) are characteristics of the subject and are included in some specifications to improve precision. In addition, to explore mechanisms, characteristics are interacted with randomized components. The results from our analysis of Equation 1 will show that the flu incentives only consistently affect demand for the flu. In addition, we stack the data where each observation is a subject-by-preventive service and we fully interact the black doctor treatment with indicator variables for each service. This allows us to test whether the treatment effect varies across services.

When estimating standard errors for the main treatment effect of interest, we approach the data as if our design involved randomizing clusters of patients to a particular doctor instead of individual assignment of subjects to doctors of a given race (Abadie et al. 2017; Bertrand, Duflo, and Mullainathan 2004). These standard errors are likely incorrect given the small number of clusters (Cameron and Miller 2015); therefore, we also report randomization inference (RI) p-values using all 3,003 \(\binom{14}{6} \) combinations of doctor race. When examining interactions between having a black doctor and other covariates, we generate plots of the joint distribution of RI draws (see Heß 2017). The mode of inference decision involves a Type I and Type II error tradeoff and our focus is on minimizing the former.

To further probe mechanisms, we collected non-experimental data from a survey of 1,490 other black and white male respondents whose education profile mirrored that of our experimental sample. The sampling frame was a panel of respondents managed by Qualtrics. We designed the survey to capture whether the preference for a racially concordant provider is unique to black male respondents and whether it varies across healthcare domains. Specifically, we estimate the following equations:

\[Y_i = \alpha + \beta_1 \cdot 1_{i}^{BlackMD} + \beta_2 \cdot 1_{i}^{$5} + \beta_3 \cdot 1_{i}^{$10} + \Gamma'X_i + \epsilon_i \]
$1_{RaceMD=k} = \alpha + \beta_1 \cdot 1_{RaceResp=k} + \Gamma'X_i + \epsilon_i \quad (2a)$

$1_{RaceMD=RaceResp} = \alpha + \beta_1 \cdot 1_{BlackResp} + \Gamma'X_i + \epsilon_i \quad (2b)$

$1_{RaceMD=RaceResp} = \alpha + \beta_1 \cdot 1_{BlackResp} + \lambda_l \cdot 1_{Domain} + \Gamma'X_i + \epsilon_{il} \quad (2c)$

where i indicates respondent, k signifies race (black or white) and l is one of the domains cited by the World Health Organization (WHO) as features of a responsive health system: access, quality, and communication (Gostin et al. 2003). X_i in the above refers to respondent’s age, education, and income. Equation 2a examines whether respondents are relatively more likely to prefer doctors who share their racial background, where RaceMD and RaceResp are either both black or both white. Equation 2b tests whether the preference for racial concordance differs between black and white respondents. Finally, Equation 2c investigates whether the importance of concordance differs across domains as well as by race of the respondent.

B. Sample Characteristics

We first examine characteristics of the subjects who chose to come to the clinic, then proceed to check that observable characteristics are balanced across arms before turning to our main findings.

Recruitment and Participation — To examine participation in the experiment, we modify Equation 1, regressing X_i on a dummy for Clinic Presentation. These results are gathered in Table 1. In general, those who came to the clinic were older, had lower self-reported health, visited the emergency room more in the past two years, and were less likely to have a primary care physician (PCP) compared to those that did not come. The selected men also had lower reported income; were less likely to be married; were more likely to be receiving unemployment, disability, or Supplemental Security Income; were 19 percentage points more likely to have a high school diploma or less; and were 13 percentage points more likely to be unemployed.

Recall that the visit to the clinic was incentivized and barriers associated with not having a car or a license were alleviated by providing free transport to and from the clinic. The combined reduction in transport barriers and incentive to attend likely contributed to this pattern of participation.

Balance — Treatment groups are well-balanced on observables with two exceptions (see Table 2). The cell containing subjects who were randomized to a non-black doctor and $10 incentive for flu are more likely to be uninsured and less likely to have good self-assessed health. The only significant joint F-test is on self-reported health, but including these two covariates, among others, in Equation 1 does not alter our results (see discussion below). Appendix Table 1 demonstrates that the groups are also well-balanced when examining randomization to a black doctor or a flu

29The other domains include respect, autonomy, confidentiality, timeliness, and familial support.

30See Data Appendix for variable definitions.

31Our main clinic sample includes all of those who identify as African-American and are at least 18 years of age on the baseline survey as well as approximately 9% who skipped the demographic questions but were recruited in a black barbershop. In Section IV we assess sensitivity to various sample restrictions.
incentive amount separately.

IV. Experimental Results

Main Results — We now turn to our experimental results and the principle aim of our analysis. Do black male subjects randomized to black male doctors demand more preventives? Table 3 presents the main results conditioning only on the randomized treatments: doctor race and flu incentive. In the pre-consultation stage, across every test offered, the race of the doctor in the photo did not influence demand in any significant way (see Table 3 Panel (A)). These results are also apparent when comparing the means of pre-consultation take-up among black and non-black doctors in Figure 3 (the pair of vertical bars on the left side of each figure). Such findings are inconsistent with racial aversion playing a major role in take-up decisions. Rather, they are supportive of pre-consultation case 3 of the model in the Online Appendix — in which subjects do not add doctor-related costs to their utility calculation or add it equally across doctor race types.

We find that the incentive influences pre-consultation demand for the flu shot. Approximately 20% of subjects selected the flu shot on the tablet in the absence of an incentive. A $5 incentive increased flu take-up by about 19 percentage points, and a $10 incentive increased it by 30 percentage points. With a $10 incentive, almost 50% selected the flu shot on the tablet, though, as mentioned previously, not all subjects who initially chose flu shots received it since subjects could revise their decision, usually by endorsing a contraindication. The responsiveness of pre-consultation demand to information about the incentive suggests that subjects were attending to the tablet.

In the post-consultation stage of the experiment, the effect of being randomized to a black doctor is statistically significant and, as we calculate below, medically meaningful particularly for invasive exams. Table 3 Panel (B) Column (1) shows that subjects randomized to a black doctor are 11 percentage points more likely to demand a blood pressure measurement, an increase of 15% compared to the non-black doctor mean. According to the estimates in Panel (B) Column (2), the effect of a black doctor on BMI take-up is 16 percentage points or 27%. Note that, for both of these tests, subjects assigned to non-black doctors are also demanding more exams (see Figure 3 Panels (A) and (B)); however, those assigned to black doctors do so more frequently. The RI p-values are much lower than in Panel (A) (e.g. 0.22 for BMI compared to a minimum of 0.43 across all tests in the pre-consultation panel), but are not below the conventional levels of statistical significance.

Moving to the invasive tests — those that required blood samples from the subject or involved an injection — the results demonstrate an even larger relative effect of black doctor assignment on demand for preventives among black male patients. In contrast to the non-invasive services, subjects assigned to non-black male doctors were not, on average, more likely to agree to the invasive services after meeting the doctor (See the light (gray) bars in Figure 3 Panels (C)–(F)). A subject randomly assigned to a black doctor was 20 percentage points (49%) more likely to agree to a diabetes screening and 26 percentage points (71%) more likely to accept a cholesterol screening (Table 3 Panel (B))

\[32\text{We present baseline results with only the black doctor treatment in Section IV.}\]
Columns (3–4)). With respect to the flu vaccine, which was cross-randomized with an incentive, subjects randomly assigned to a black male doctor were 10 percentage points more likely (56%) to agree to the flu shot conditional on financial incentives offered in the pre-consultation stage to choose the flu.\footnote{See Thirumurthy, Asch, and Volpp (2019) for a discussion on the “uncertain effects” of financial incentives in health.}

Columns (6) and (7) explore the effect of having a black doctor on two composite measures, the share of the four non-incentivized exams (all screenings except the flu shot) and the share of invasive exams (cholesterol, diabetes, and flu). Overall, the treatment effect increases take-up by 18 and 19 percentage points, respectively. These results are consistent with the conceptual framework in which all doctors relay basic information regarding the benefits of preventive care yet social distance acts to discount information from a discordant source (post-consultation case 1).

Figure 4 Panel (A) plots the post-consultation black vs. non-black doctor difference in take-up by exam. The figure reveals the percent difference between black and non-black doctors is positively correlated with the invasiveness of the test. Blood pressure is a non-invasive test and was performed in the patient room. Therefore, it is unsurprising that this low risk and low hassle test had the lowest black doctor effect relative to non-black doctors. BMI measurement required the doctor to escort the subject down the hallway to a public room where there was a scale and height machine. The doctor used both devices to measure the height and weight of the subject and then calculated the BMI. Cholesterol and diabetes tests required a finger prick of blood (usually two separate sticks). The cholesterol and diabetes tests also took longer than other tests — on average, visit lengths for subjects who selected diabetes tests were about six minutes longer; a cholesterol screening added about three minutes. For more invasive tests, the results suggest there was a greater advantage to being assigned a black doctor.

Table 3 Panel (C) presents the difference between post- and pre-consultation demand (i.e. the delta). This is similar to conditioning on the first choice, which, per above, was not statistically different across race of male doctor, and is a direct measure of how much demand changes after meeting the randomly assigned doctor. For instance, in Column (4), subjects assigned to a black doctor were 25 percentage points more likely to select a cholesterol screening after meeting their physician than those assigned to a non-black doctor.

The distribution of randomization inference coefficients corresponding to Column (7) are shown in Figure 5 Panels (A)–(C). The figures demonstrate that the experimental estimate for pre-consultation is in the middle of the empirical distribution, but the post and delta coefficients are in the extreme right tail.\footnote{Appendix Figure 2 plots the histogram of delta as a share of the four non-incentivized tests (i.e. excluding the flu). There is heaping on zero, reflecting the fact that many subjects did not change their choices. Most changes that did occur between the pre- and post-consultation stages were from 0 to 1. In other words, subjects initially refused the screening but revised their decision after meeting with their assigned doctor, consistent with doctors’ counseling increasing their perceived benefit. Black doctors shifted more of the distribution right, in the direction of obtaining more exams. There were a handful of reversals: reflecting subjects who chose the screening test initially, then declined after meeting the doctor. These are represented as mass left of zero in Appendix Figure 2, and, while very rare for non-incentivized exams, were more frequent for subjects assigned to non-black doctors.}
To benchmark the effects shown in Panel (C), we follow DellaVigna and Kaplan (2007) and calculate persuasion rates as a measure for how much subjects changed their behavior upon exposure to a black doctor. Figure 1 Panel (B) demonstrates that the persuasion rate is high relative to studies surveyed in DellaVigna and Gentzkow (2010).

The above results suggest the treatment effect for invasive exams is stronger than for non-invasive ones. To investigate this further, we stack the data to create a subject-preventive panel, fully absorbing the black doctor coefficient by interacting it with indicators for every service (see Table 4). This specification allows us to test the joint significance of the black doctor*invasive interactions as well as the differential effects of the black doctor treatment for invasive exams. The results are shown in the bottom four rows. Consistent with the above, in the pre-consultation stage the F-tests for the interaction of black doctor with invasive exams and its difference with non-invasive exams are around one and not significant. The last two columns examine post-consultation and delta outcomes, respectively, and demonstrate a consistent additional marginal effect of black doctor and invasive exams which differs significantly from non-invasives, particularly in Column (3). In Panel (B) of Figure 5, we present the pdfs of the test statistics associated with each permutation of the \(\binom{14}{6} \) combinations of doctor race.

Robustness — In Appendix Table 2, we probe whether our results are sensitive to the inclusion of covariates thought to influence health, such as subject age (and its square), having a regular PCP, insurance, the clinic visit date, education, income, and self-assessed health. The results are very similar to those presented in Table 3 and Figure 3. As a robustness check, we include different fixed effects (RO, date, and recruitment location (Appendix Table 3 Panel (A)) and different samples (i.e. including everyone who consented regardless of their race or ethnicity, excluding those who could not read, including only those who responded to every demographic question (Appendix Table 3 Panel (B))); again the results are very similar. We also show that the results are not sensitive to dropping indicators for flu incentive levels (Appendix Table 4). Finally, race appears to be a special facet of social distance — sharing the same age or educational background as doctors does not seem to positively influence take-up (see Table 5). In sum, the results presented thus far reveal that, for African-American men in our study, the opportunity to meet with a black male doctor has a consistent, large, and robust positive effect on the demand for preventives.

V. Mechanisms

In this section, we explore potential mechanisms for our results. We do so in five ways: first, by using data from the physician notes and subject feedback forms to further our understanding of the clinical encounter; second, by examining heterogeneity across subjects; third, by using non-experimental data; fourth, by conducting further analyses to understand the role of race in the decision-making process; and fifth, by employing a combination of qualitative and quantitative methods to disentangle the mechanisms at play.

35 We also select covariates using a post double selection LASSO approach, but fail to find consistent predictors of take-up other than our treatment variables (Duflo 2018; Belloni, Chernozhukov, and Hansen 2014).

36 In unreported results, we do not find evidence that knowing another subject at the clinic, a practice question we asked to ensure subjects could operate the tablet, affected demand.

37 Caution should be used in interpreting these results as neither education nor age was randomly assigned.
evidence from an additional survey we conducted on approximately 1,500 black and white men concerning preferences over doctors; fourth, by using publicly available, nationally representative data from a survey of health utilization; and fifth, using survey responses and background information from the study doctors. We begin by examining the role of communication. Then we discuss other possible interpretations of our results including physician effort, quality, and discrimination.

A. Communication Between Patients and Doctors

Our primary data sources for understanding what transpired during the clinical encounter are doctors’ notes on the patient and subject feedback forms about their clinical experience. As mentioned above, doctors were instructed to provide only the advertised services to subjects. In Table 6 Panel (A) Column (1) we find evidence that subjects assigned to black doctors were 10 percentage points more likely to try and talk to their doctor about issues unrelated to the preventive care. The doctors also indicated whether there was anything “notable” about the patient encounter on the patient files. Subjects were 11 percentage points more likely to have this section filled in if their assigned doctor was black (Column (3)). We analyzed the content of these notes by having three students who were blinded to the treatment hand code them as related or unrelated to the screening. Subjects assigned to black doctors were 9 percentage points more likely to discuss personal matters or health issues unrelated to the screening (Column (5)). Although the aforementioned results lack precision, they suggest that communication was an important feature of the concordant patient-doctor interaction. Indeed, when we interact black doctor with an indicator for the subject receiving any invasive exam (even numbered columns in Panel (A) Table 6) the interaction terms are positive and large in magnitude. Thus, the relationship between black doctor and communication was strongest among subjects who obtained an invasive exam.

The interactions in Columns (2), (4), and (6) are depicted in Figure 6 Panels (A) to (C). Each figure has three components: the top pdf plots RI coefficients associated with the interaction between invasive exam and black doctor (x-axis), and the bottom right pdf plots RI coefficients for the main effect of black doctor (y-axis). The bottom left scatterplot illustrates the joint occurrence of RI draws — points in the upper right of this plot represent those with a positive main effect and interaction. The study estimates are indicated with a red cross and this is generally one of the more extreme points.

Qualitative evidence from the subject feedback forms and doctors’ notes also support the mechanism of improved communication and the correction of false beliefs. One subject randomized to a black doctor wrote: “Dr. XXYY was excellent, he talked me into getting a flu shot and the conspiracy theories. I said ‘Oh!’ Great visit and putting me on track to monitor my sugar and cholesterol. Thanks!” As for the doctors’ notes, a frequent phrase was “initially refused but agreed after counseling.” Finally, we note that the experimental results on communication are robust to controlling for the time spent with subjects (see Appendix Table 5 Panel (A)). Thus, per minute communication was more likely to occur between racially concordant doctors.

In Table 7 we test whether subjects assigned to black doctors were more responsive to the
treatment based on their baseline demographic characteristics (Panel (A)), study clinic experience (Panel (B)), or past healthcare experience (Panel (C)). We focus on invasive exams because of the evidence from Table 3 that black doctors affected demand for these services most. We fail to find strong evidence of an important interaction effect between black doctor and either low income (reported household income below $5,000), age (an indicator for younger than 40), or low education (an indicator for a high school degree or less). The absence of a statistically significant finding in this latter case is interesting, since, if black doctors were simply better at providing information to the less well-informed, the results would presumably be strongest among those with lower levels of education. Though it does comport with our conceptual framework that emphasizes how the source of the information and the connection between source and recipient, not just the information itself, matters for clinical decision-making.

In contrast, both Panels (B) and (C) reveal important interactions between the black doctor treatment and either hassle costs associated with the study clinic or limited prior healthcare experience, respectively. In particular, subjects who were randomized to a black doctor but had longer wait times (an indicator for over an hour) demanded more services than those exposed to a similarly lengthy wait time, but who were assigned to a non-black doctor. Subjects who experienced high congestion (greater than nine people in the waiting room, the 50th percentile) or those who were recruited from farther away locations (longer than 18 minutes by car, the 50th percentile) also elected to receive more services when randomized to a black doctor than a non-black doctor.[38]

African-Americans visit the emergency room more often than non-Hispanic whites, which some have linked to lack of insurance, lower socioeconomic status, and mistrust that precludes healthcare utilization until an advanced stage of illness (Arnett et al. 2016, Brown et al. 2012). Panel (C) demonstrates that those who use the emergency room more often increased their demand for services when randomized to a black doctor. This result is particularly strong for the uninsured: in unreported results, the coefficient on the interaction between black doctor and number of ER visits is roughly seven times greater if a subject reported having no insurance.[39] Similarly, those who had no recent screening had a heightened response.

Research in medicine finds that black men have higher levels of medical mistrust than their white counterparts, and this mistrust is correlated with delays in care, lower healthcare utilization, and worse health outcomes (Kinlock et al. 2017, Nanna et al. 2018, Hammond et al. 2010). As discussed above, we find that subjects increased their demand of all preventive services when assigned to a black doctor, and this effect was heightened if the screening test was invasive. More invasive procedures, such as taking blood or providing injections, require a higher degree of trust between doctor and patient. We examine whether men who scored higher on our medical mistrust measure responded differently to the black doctor treatment than other groups. In Column (3) of

[38]The wait time and congestion interactions have fewer observations due to missing data for the first two clinic days. These variables are balanced across black and non-black doctor treatment.

[39]We also asked a question about usual source of care in the baseline survey, but many subjects selected multiple options making their responses difficult to interpret. As in Zhou et al. (2017), we find that the uninsured use the ER at a similar rate to the insured, though they have fewer total hospital admissions and doctor visits. Results available on request.
Panel (C) we find that subjects were 5 percentage points more likely to obtain preventive services per a one unit increase in medical mistrust (on a collapsed scale of 1–3, see Data Appendix for details) when randomized to a black vs. non-black doctor. For the uncollapsed physician mistrust measure (scale of 1–5), 50 subjects said they would “not at all” trust doctors to make decisions on their behalf. These high-mistrust subjects were 14 percentage points (clustered s.e. 0.066) more likely to take up invasive exams after meeting with a black doctor than the least mistrustful group who “completely” trusted their doctor.

The interactions in Table 7 Panel (C) are depicted in Figure 6 Panels (D)–(F). The study estimates are again indicated with a red cross, which is generally an outlier in the joint distribution. Taken together, these results suggest that black men who had an inferior clinical experience (characterized by lengthy wait times and congestion) or those who were relatively inexperienced with respect to regular outpatient care were those who responded most strongly to a black doctor treatment.

An additional source of data we use to inform mechanisms is from a survey we conducted on 1,490 African-American and white (self-identified) males. We matched the survey sample to the recruited participants in terms of education, so that approximately half of the survey respondents had a high school education or less. Given a choice between a black, white, or Asian male doctor, respondents were asked to choose which doctor ranked the highest across three WHO domains: quality, communication, and accessibility.\footnote{Questions were multiple choice asking if, holding constant male sex and age, respondents preferred a doctor who was either black, Asian, or white. No other information was provided.} The results are reported in Table 8.

First we examine respondent preferences for a doctor of the same race, i.e. concordance (Equation 2a). In Column (1), we find that black respondents were more likely than white respondents to select black male doctors as the most qualified. Column (2) demonstrates that white respondents selected white doctors more often than black respondents. This finding is consistent across other domains, whereby both sets of respondents were relatively more likely to choose a concordant physician rather than a discordant physician (see Columns (4) and (5) and Columns (7) and (8)).

Second, we examine whether preferences for concordance vary across race (Equation 2b). Column (3) tests whether respondents were more or less likely to rate concordant doctors as most qualified. We find that white respondents were 6 percentage points more likely to select white doctors as most qualified than black respondents select black doctors as the most qualified. Both sets of respondents view concordance as important for communication (about 69%, see Column (6)) and there is no difference between the two groups. Turning to accessibility, responses from the two groups differ significantly (Column (9)), a point we return to when discussing external validity.

Third, we estimate Equation 2c which tests whether concordance is stronger for some domains than others. In Column (10) we find that black and white respondents were 17 percentage points more likely to select a concordant doctor when the question was about communication as opposed to when the question referred to quality. The importance of concordance for communication was similar across respondent race.
Figure 7 summarizes the results from Table 8. The figure plots the percent of respondents from a given race selecting a doctor of their own race across the three domains. We find a slight preference for concordance when it comes to quality, though both sets of respondents are very close to the (red) 50 percent line, indicating that, on average, respondents were as likely to select concordant physicians as they were to select discordant physicians. In sharp contrast, for questions related to communication, both black and white respondents shift rightwards: reflecting a clear preference for concordant doctors. Nearly 65% of black respondents and 70% of white respondents reported that a doctor of their own race would understand their concerns best.

To understand whether these patterns are also found in nationally representative data, we use the Medical Expenditure Panel Survey (MEPS), which queries individuals on characteristics of their doctor as well as utilization (Blewett et al. 2018b). Respondents were more likely to see a doctor of their own racial/ethnic group — though that varies across the race of the respondent. Specifically, 85% of white respondents and 71% of Asian respondents reported their usual medical provider was of the same race (see Appendix Table 6). Although more black respondents report their doctor is black than respondents of other backgrounds, only 26% of black respondents said they had black doctors. The pattern for Hispanics is similar. This may reflect under-representation of African-Americans and Hispanics in the physician workforce, a point we return to when discussing external validity below.

Appendix Table 7 reports correlations between patient-doctor concordance and three outcomes: whether a respondent would go to their doctor for preventive care, whether they think their doctor listens to them carefully, and whether their doctor’s instructions were easy to understand. The sample is limited to adult males. The estimating equation includes indicators for patient and doctor race/ethnicity as well as concordant interactions.\(^{41}\) The interaction between black male patient and black doctor is consistently positive and significant, indicating that said patients are more likely to seek out preventive care, feel their concerns are understood, and comprehend medical advice when paired with a black doctor.\(^{42}\)

B. Threats to Internal Validity

In this section, we consider whether doctor race represents a causal effect. Race is not randomly assigned in the population. Thus, in the sample of doctors we hired, race could be correlated with a characteristic that influences the ability of doctors to encourage subjects to take up preventives (i.e. our outcome of interest). Prominent potential omitted variables include quality and effort, which are hard to measure outside of the clinic context. In addition, with a finite number of physicians, the findings might be driven by outliers in either group. Finally, there is the concern that either subjects or doctors discriminate. We discuss each of these possible interpretations in turn.

Physician Quality — Physician quality is thought to influence patient outcomes, but is acknowl-
edged to be complex and difficult to measure, particularly in primary care (Young, Roberts, and Holden 2017; AHRQ 2016). Some measures of quality include malpractice complaints, physician report cards, and training characteristics. In this study, we use all of the aforementioned, plus an additional survey we designed to assess typical patient panel characteristics as well as persuasiveness and content knowledge of our study doctors.

Turning to the quality metrics, first, all doctors were vetted by a medical liability company and Stanford attorneys as a requirement of their participation. Second, after the encounter, we asked subjects to fill out a feedback form before leaving the clinic. They rated their experience on a scale of 1 to 5 and then asked whether they would recommend their doctor to a friend. As seen in Table 6 Panel (B) Columns (3) and (5) there are no statistical differences between ratings and recommendations among those assigned to black or non-black doctors. We interpret these results with caution however, given that the satisfaction measures were all very high and without much variation. For instance, the mean experience rating was about 4.8 with 85% of subjects characterizing it as excellent (a rating of 5) and 99% saying they would recommend their doctor to a friend.

Third, we gleaned details of doctors’ training from their resumes and a study doctor survey querying them on their patient demographics, overall persuasiveness, and working medical knowledge using board style questions. Characteristics such as experience, medical school rank, and board question performance were similar across groups, though black male doctors were less likely to be trained in internal medicine than their non-black counterparts (see Appendix Table 8 Panel (A)). Non-black study doctors were more likely to state their patients comply with medical advice and that they are able to persuade patients from all backgrounds to take up testing they had initially refused (see Appendix Table 8 Panel (B)). African-American doctors were more likely to see racially concordant male patients, findings consistent with nationally representative data (Appendix Table 6).

To further analyze quality, we modify Equation 1 replacing the black doctor indicator with a fixed effect for each study doctor. We then examine what explains the correlation between doctor attributes and the fixed effect estimates (see Table 9). Physician race explains approximately 45% of the cross-sectional variation and is highly significant. In Column (2) we add experience with black male patients, although the coefficient is positive it one-sixth the size of race and is not itself significant. In Columns (3) to (5) we include doctor race with and an indicator for a top 10 medical school, years of experience, and internist, respectively. All do little to explain the variation in fixed effects. Column (6) includes all the aforementioned covariates in the same specification. Comparing Column (1) and (6), race accounts for about 86% of the R-squared.

43 Patients may provide feedback based on a different maximand and satisfaction scores do not systematically covary with other quality metrics (Chandra et al. 2016). There may also be bias in patient satisfaction scores, though this would be at odds with results in the pre-consultation stage (Garcia et al. 2019; Sotto-Santiago, Slaven, Rohr-Kirchgraber 2019; Poole 2019).
44 Note that the survey was performed after the doctors were unblinded as part of the revision.
45 We also fail to find any significant effect when interacting this variable with doctor race.
46 Additionally, the R-squared with all of the control variables except the black doctor indicator is equal to 0.183.
If race of doctor in the study was highly correlated with quality, then we should find black doctors perform better on subjects from all backgrounds. Twelve individuals did not identify as African-American, but were still seen at the clinic because they had been consented to participate during recruitment. These clients were randomized across eight of the fourteen study doctors, equally balanced by race, and were 20 percentage points less likely to choose invasive services from black doctors in the post-consultation stage. We compare this result to a placebo test where we randomly select 12 in-sample subjects and regress the share of services received on black doctor. We find that the coefficient on black doctor for the out-of-sample group is lower than 97 percent of these bootstrap coefficients (see Figure 8). To the extent that quality is a relatively stable attribute of a clinician, this finding is inconsistent with a correlation between doctor race and quality confounding the interpretation of our results.\footnote{47}

As an additional measure of within study quality, we tabulate the number of mechanical errors on the medical devices by doctor. There were very few errors in total and they did not vary across race.\footnote{48}

Physician Effort — Another potential explanation is that black doctors exerted more effort when working with black patients than non-black doctors. Similar to quality, physician effort is difficult to measure. Often, time spent with the patient is used as a metric, but in our study this equivalence is complicated. As mentioned in the introduction, a longer time could reflect the treatment effect (i.e. subjects elect to receive more services from black doctors), low quality (i.e. difficulty performing the test), or communication (i.e. a better patient-doctor connection facilitating credible information exchange). In Table 6 Panel (B) Column (1) we find that black doctors spent approximately four more minutes with subjects. However, this finding is mainly related to our treatment effect of black doctor on invasive exam take-up. Indeed when we condition on such take-up (Panel (B) Column (2)) neither the main effect of black doctor nor the interaction with invasive are significant, though invasive testing does lengthen the encounter by 12 minutes.\footnote{49}

We also examine whether study doctors exerted more effort by targeting services to the those at increased risk for disease (as defined by national guidelines — see Data Appendix for details). Such targeting would require clinical acumen and effort since doctors were provided no information on the subjects’ medical histories prior to their brief encounter. Results in Appendix Table 9 fail

\footnote{47}{We note that these results may understate racial discordance given that the 12 subjects were recruited from black barbershops. We also examine communication outcomes among the non-criteria subjects. In Appendix Figure 3 Panel (A) we do not find a significant difference in the length of black study doctors’ notes with this sample, however, we do find that non-criteria subjects are much less likely to talk to black doctors (Appendix Figure 3 Panel (B)). We thank an anonymous referee for the suggestions.}

\footnote{48}{We also find no differences in online ratings of the study doctors on the site vitals.com. On a scale of 1 to 5, the average black doctor score was 4.4 and the average non-black doctor score was 4.6, though only half of the doctors were rated on the site.}

\footnote{49}{Likewise, Appendix Table 5 Panel (B) Column (1) controls for each individual test and shows that visits with black doctors were about one minute longer, though not significantly so.}
to find evidence of targeting.

Outliers — A third possibility is that our results are driven by outliers. As noted above, there are no prominent differences in observables (if anything, the set of black doctors attended lower ranked medical schools and were slightly less likely to be internists, see Appendix Table 8). To test whether any particular physician is driving our results, we estimate the black doctor effect dropping one doctor at a time. The results gathered in Appendix Figure 4 demonstrate that the results are remarkably stable across the leave-one-out estimates. If we drop the “best” black doctor, we obtain a consistent coefficient of 0.120 (cluster s.e. 0.043). In the most stringent condition, we omit the “best” black and the “worst” non-black doctor and still find a treatment effect near 11 percentage points. The randomization inference procedure also addresses this concern.

Discrimination — A fourth possibility is that subjects derive disutility from non-black doctors thus decreasing demand. Our results suggest this is unlikely. First, if aversion for a particular race was strong, we would have expected to observe this in the pre-consultation stage, when subjects were first introduced to the doctor by tablet photo. As previously noted, though, we find no statistical differences in the pre-consultation tablet selections (Table 3). Second, in the post-consultation stage, we find that, on average, subjects assigned to non-black doctors increased their demand relative to the pre-consultation stage (see light (gray) bars in Figure 3), just not as much of an increase as with black doctors (and not at all with invasive exams).

Discrimination by non-black doctors could manifest as higher risk thresholds to test African-American patients for disease. Yet the distributions of test results conditional on testing, presented in Figure 9 are indistinguishable across race groups, suggesting both sets of doctors were following protocol and offering preventives to all subjects. Lastly, we note that if discrimination by patients or doctors were an important part of the explanation for our results, we would have expected variation in subject feedback across doctor race and lower scores for non-black doctors. Instead we find that the average ratings were very high and there was no difference across doctor race.

We qualitatively examine the subject comments regarding the clinical experience by visualizing the occurrence of specific words using the WordStat content analysis software. The plots of the subject comments are indistinguishable across those assigned to black and non-black physicians (Appendix Figure 5). The same analysis focused on doctors’ notes (Appendix Figure 6) illustrates the centrality of the word “PCP” for non-black doctors and “patient” for black doctors. We examined the nature of this difference and found that non-black doctors were often recording reasons for refusals — the most common being that the subject said that he would obtain preventives from his PCP. In fact, for patients seeing non-black doctors, 60% of the references to PCP in the doctor notes are in the context of an excuse (e.g. “cholesterol and flu shot from PCP”), whereas this occurs in only 14% of the references to PCP by black doctors.

50Chandra and Staiger (2010) note the “Beckerian intuition” of taste-based prejudice implies that “providers may consciously or unconsciously use a higher benefit threshold before providing care to minority patients (for example, recommending a treatment to non-minority patients if it prolongs their life by at least three months, but only treating minority patients if it prolongs their life by at least five months).”
C. Threats to External Validity

In order to benchmark our results and assess their relevance for the larger discussion on reducing health disparities in the U.S., it’s important to compare our study doctors and sample to the general population, bearing in mind that extrapolation should be done with caution.

Subjects — In terms of demographic characteristics, our clinic study subjects were more likely to be uninsured (28%) and unemployed (31%), as compared to black men in the U.S. (about 17% and 7%, respectively). For the entire study sample, including those who did not come to the clinic, the average uninsured rate was 26% and the unemployment rate was 24%. However, the study samples are very similar in terms of average age and education relative to the rest of the U.S. (43 years and 58% with a high school education or less in the U.S. versus 43 years and 63% with a high school education or less in the clinic sample and 43 years and 53% for all recruited).

Turning to health characteristics, the average value for systolic blood pressure was 132.7 mm Hg consistent with stage 1 hypertension (distributions of medical screening results are displayed in Figure 9). The average BMI value was 27.4 kg/m\(^2\) consistent with an overweight categorization. The average hemoglobin A1c was 5.8%, consistent with a diagnosis of pre-diabetes. About 1.4% of the sample had a hypertensive crisis — a critically high value of blood pressure requiring urgent care, 4.4% were morbidly obese, and 3.1% of the subjects had a hemoglobin A1c value in the seriously elevated range (i.e. >9%).

In terms of disease prevalence, about 30% of the screened study sample had values of blood pressure, BMI, and cholesterol consistent with hypertension, obesity, and dyslipidemia, respectively; and 15% had hemoglobin A1c levels diagnostic of diabetes. Despite our sample having higher rates of unemployment and uninsurance, these figures are unfortunately very similar to the prevalence of the aforementioned conditions among black men in the U.S. more broadly, as seen in Figure 10. If anything our screened study sample was slightly healthier than the average African-American male in the U.S. Specifically, the prevalence of high blood pressure in black men in the U.S. is 41%, compared to 30% for white men, the prevalence of hypercholesterolemia is 33% for black men compared to 37% for white men, and the prevalence of diabetes is 18% for black men vs. 9% for white men (Fryar et al. 2017; Hales et al. 2017; CDC 2017b; and CDC 2017c). These comparisons suggest that our findings are not due to a sample of individuals with worse health on average.

Doctors — How representative were the doctors hired for our study? All doctors who participated knew the clinic provided preventive services to black men, many of whom lacked alternative medical options. Therefore, these doctors are plausibly drawn from the least prejudiced part of the distribution. The doctors also gave up their Saturdays in exchange for a fixed hourly compensation that they received through direct deposit or check. Doctors of both races attended highly ranked

\(^{51}\) Calculations on the U.S. population come from 2016 1-year American Community Survey data (Ruggles et al. 2017). Our study sample also appears more disadvantaged compared to ACS summary statistics for Alameda County.

\(^{52}\) Some subjects indicated that they were on medications for these conditions; we only include them in the estimate if they chose to receive a screening.

\(^{53}\) For a detailed review of recent trends in African-American health, see Simon et al. (2016).

\(^{54}\) The compensation was competitive with the market rate for moonlighting physicians in the Bay Area https://www.whitecoatinvestor.com/forums/topic/moonlighting-rates/.
medical schools. Across all 14 study doctors, eight graduated from schools ranked in the top 10 of the U.S. News Research Rankings, a much higher share of graduates relative to the population at large. Black doctors in the study graduated from slightly lower ranked schools, consistent with the national data (see Appendix Figure 7).

One way our study was unique, however, was that subjects had easy access to a black male doctor once randomized to them. Several studies report that minority doctors are more likely than white doctors to work in underserved areas and see patients who share their racial background (Moy and Bartman 1995; Komaromy et al. 1996; Cantor et al. 1996; Walker, Moreno, Grumbach 2012). Yet despite this allocation, there remains a difference in access. Returning to our non-experimental evidence in Figure 7 by far the largest divide between black and white male respondents is with regards to accessibility of a doctor who is of their same race and sex background (37% vs. 62%). In Table 8 Column (9), black male respondents were 26 percentage points less likely to respond that a black male doctor is available near them than white males report white male doctors are available, conditional on age, income, and education.

As stated in the introduction, African-Americans comprise only 4% of practicing physicians in the U.S. Both African-American and Hispanic physicians are significantly under-represented if comparing the ratios of the share of the recent medical school graduates to their share in the U.S. population. Non-Hispanic white physicians approach a ratio of one and Asian physicians approach a ratio of four (see Appendix Figure 8). Moreover, the pipeline of African-American medical school graduates is relatively flat — hovering around 6% for the last decade, an increasingly lower share of the African-American population (see Appendix Figure 9). This aspect of the study was also noted by one of the subjects: “Really excited about the black male doctors!!!”

VI. Health Valuation

In behavioral hazard models, individuals may underuse medical care due to misperceptions; thus the demand curve ceases to be a sufficient statistic for welfare calculations (Pauly and Blavin 2008; Baicker, Mullainathan, and Schwartzstein 2015; Chetty, Looney, and Kroft 2009). In addition, most of the preventives we offered were not cross-randomized with incentives. Thus, we value the effect of a black doctor in preventing cardiovascular-disease-related deaths using recently published medical studies (Kahn et al. 2010, Dehmer et al. 2017).\footnote{Both Kahn et al. and Dehmer et al. perform a Monte-Carlo simulation on a representative U.S. population to compare screening to a no screening condition, and assume that those who screen positive receive guideline-recommended therapy. Since both studies were published relatively recently, treatment efficacy is likely to reflect the current state of care, though varying the fraction of screen-positive who obtain and follow appropriate treatment recommendations will alter the results, particularly if this fraction also interacts with doctor race. The Dehmer et al. study assumes only 90% of those offered screening take it up, thus we divide by 0.9 to make the results consistent with the Kahn et al. study. The Dehmer et al. study also provides estimates of the effects of screening subdivided by race and sex. Such stratification is not available in Kahn et al. Further details on the studies and the calculation can be found in the Online Appendix.}

Since these models are concerned with the effect of screening on health, we combine their estimates with the coefficient on black doctor in

\footnote{In the baseline survey, we asked how much choice individuals had in where they go for medical care — only 37% of respondents answered that they had “a great deal of choice.”}
the post-consultation stage.

We find that black doctors reduce myocardial infarctions by 1,072 per 100,000 and cardiovascular-related deaths by 622 per 100,000 (or 15.6 per year) for black men over about a 40-year time horizon. The difference in annual age-adjusted mortality rates for cardiovascular disease between non-Hispanic white (268.4 per 100,000) and non-Hispanic black males (350.3 per 100,000) in the U.S. is 81.9 per 100,000 (Murphy et al. 2017). Therefore, the treatment effect we estimate for black doctors could reduce this gap by approximately 19%.

The difference in annual age-adjusted mortality rates for influenza and pneumonia between non-Hispanic white and non-Hispanic males in the United States is 2.7 per 100,000 (20.3 versus 17.6). Flu vaccination for adults over the age of 18 is estimated as averting 2.7 deaths per 100,000 per year (based on CDC 2016 and CDC 2017a). Multiplying the treatment effect of black doctors by the efficacy of flu vaccination to prevent flu deaths among adults, we obtain 0.27, which is roughly 10% of the gap in mortality for this cause of death.

Harper, Rushani, and Kaufman (2012) calculate that 41% of the life-expectancy gap between black and white males in 2008 was due to cardiovascular disease and diabetes. Therefore, our estimates of the black doctor treatment effect suggest the overall life-expectancy gap between black and white males exclusive of infant mortality could be reduced by approximately 8% or 5 months from cardiovascular disease and diabetes alone. If we extrapolate the screening benefit to other preventable leading causes of death and health disparities among African-American men (i.e. HIV and cancer), the life expectancy gain could be even larger since these chronic illnesses account for another 26% of the black-white male life expectancy gap.

The assumption that all who screen positive receive appropriate care is an upper bound on the marginal impact of the screening effect of black doctors on lives saved. However, a more realistic assumption of leakage (or lack of compliance) conditional on screen positive exams could deliver even larger differential effects of doctor race on lives saved since compliance with recommendations conditional on having a disease might also vary with concordance (Traylor et al. 2010).

VII. Conclusion

In this study, we examine the effect of diversity of the physician workforce on the demand for preventive care among African-American men using a randomized trial. We find that, when patients and doctors had an opportunity to meet in person, patients assigned to a black doctor increased their demand for preventives, particularly those which were invasive. These findings were stronger among subjects who had limited prior experience with routine medical care. Data from the clinical

57We use a 40-year time horizon since screenings for blood pressure, cholesterol, and diabetes are modeled as beginning at 18, 20, and 30 years of age.

58Garthwaite, Gross, and Notowidigdo (2018) calculate a substantial cost to hospitals from uncompensated care, in particular uninsured visits to the ER. To the extent preventive services reduce ER visits, our intervention could translate into cost savings for hospitals. As noted above, we found that those who were uninsured and used the ER were particularly sensitive to the black doctor treatment.

59Certain types of cancer or cancer-related deaths can be prevented through care and treatment adherence (e.g. HPV vaccine, tobacco cessation, earlier stage diagnoses).
encounter demonstrate that subjects brought up more issues and were more likely to seek advice from black doctors, as reflected in the doctors’ notes.

These findings are consistent with a framework in which agents underestimate the benefit of preventive care, and thus have low demand. Physicians, through their counseling and rapport with patients, which varies by social distance, can help correct false beliefs and increase demand. Subsidies also increase demand, though we find financial incentives do not completely substitute for information from a trusted source. Some subjects who selected flu shots initially, encouraged by the incentive, declined to actually receive them (often citing contraindications). Moreover, black doctors continued to increase demand even among subjects who initially refused a flu shot despite a financial incentive.

Our back of the envelope calculations suggest the increased demand induced by black doctors could reap substantial health benefits. Specifically, we calculate that increased screening could lead to a 19% reduction in the black-white male cardiovascular mortality gap and an 8% decline in the black-white male life expectancy gap. Given the current supply of black doctors, a more diverse physician workforce might be necessary to realize these gains.
References

Table 1: Participation in Experiment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL A: Health and Medical Care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinic Presentation</td>
<td>-0.126</td>
<td>0.033</td>
<td>0.244</td>
<td>0.513</td>
<td>-0.332</td>
<td>-0.011</td>
<td>-0.072</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.028)</td>
<td>(0.469)</td>
<td>(0.183)</td>
<td>(0.746)</td>
<td>(0.042)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Mean</td>
<td>0.81</td>
<td>0.57</td>
<td>4.74</td>
<td>1.24</td>
<td>1.93</td>
<td>1.64</td>
<td>0.69</td>
</tr>
<tr>
<td>Observations</td>
<td>1,148</td>
<td>1,241</td>
<td>935</td>
<td>1,031</td>
<td>1,041</td>
<td>1,232</td>
<td>1,096</td>
</tr>
</tbody>
</table>

PANEL B: Socio-demographics							
Clinic Presentation	0.038	3.411	-0.053	0.129	0.190	0.198	0.113
	(0.027)	(0.811)	(0.022)	(0.025)	(0.029)	(0.027)	(0.024)
Mean	0.24	41.06	0.20	0.18	0.44	0.25	0.18
Observations	1,074	1,241	1,201	1,176	1,141	1,171	1,198

Note: Table reports results from a regression of various baseline characteristics on clinic presentation. Observation count varies due to missing responses in the baseline survey. Reported mean is among subjects that did not present to the clinic. See Data Appendix for other variable definitions. Robust standard errors in parentheses.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Non-Black MD - $5</td>
<td>Non-Black MD - $10</td>
<td>Black MD - $0</td>
<td>Black MD - $5</td>
<td>Black MD - $10</td>
<td>F-test</td>
<td>p-value</td>
<td>N</td>
</tr>
<tr>
<td>Mean (S.D.)</td>
<td>0.72 (0.45)</td>
<td>-0.033 (0.066)</td>
<td>-0.181 (0.067)</td>
<td>0.007 (0.065)</td>
<td>-0.016 (0.064)</td>
<td>0.004 (0.063)</td>
<td>2.075</td>
<td>0.067</td>
<td>563</td>
</tr>
<tr>
<td>Non-Black MD - $5</td>
<td>0.62 (0.49)</td>
<td>-0.026 (0.068)</td>
<td>0.036 (0.065)</td>
<td>-0.015 (0.069)</td>
<td>-0.025 (0.067)</td>
<td>-0.021 (0.066)</td>
<td>0.250</td>
<td>0.940</td>
<td>614</td>
</tr>
<tr>
<td>Non-Black MD - $10</td>
<td>1.69 (3.54)</td>
<td>-0.149 (0.434)</td>
<td>0.867 (0.609)</td>
<td>-0.212 (0.443)</td>
<td>0.145 (0.558)</td>
<td>-0.391 (0.419)</td>
<td>1.336</td>
<td>0.247</td>
<td>511</td>
</tr>
<tr>
<td>Black MD - $0</td>
<td>1.20 (3.52)</td>
<td>-0.392 (0.415)</td>
<td>0.839 (0.734)</td>
<td>1.956 (1.490)</td>
<td>-0.214 (0.466)</td>
<td>0.230 (0.663)</td>
<td>1.332</td>
<td>0.249</td>
<td>511</td>
</tr>
<tr>
<td>Black MD - $5</td>
<td>1.61 (0.74)</td>
<td>0.162 (0.105)</td>
<td>-0.046 (0.100)</td>
<td>0.032 (0.105)</td>
<td>0.016 (0.105)</td>
<td>-0.034 (0.100)</td>
<td>0.979</td>
<td>0.430</td>
<td>611</td>
</tr>
<tr>
<td>Black MD - $10</td>
<td>0.63 (0.49)</td>
<td>-0.042 (0.074)</td>
<td>0.033 (0.070)</td>
<td>-0.059 (0.073)</td>
<td>0.008 (0.070)</td>
<td>-0.019 (0.071)</td>
<td>0.415</td>
<td>0.838</td>
<td>537</td>
</tr>
<tr>
<td>Has Primary MD</td>
<td>0.22 (0.42)</td>
<td>0.042 (0.066)</td>
<td>0.146 (0.067)</td>
<td>0.112 (0.070)</td>
<td>0.057 (0.064)</td>
<td>-0.010 (0.062)</td>
<td>0.928</td>
<td>0.223</td>
<td>517</td>
</tr>
<tr>
<td>Uninsured</td>
<td>44.96 (14.76)</td>
<td>-1.051 (1.973)</td>
<td>-0.100 (2.001)</td>
<td>-0.261 (1.982)</td>
<td>-1.109 (2.048)</td>
<td>-0.495 (1.944)</td>
<td>0.109</td>
<td>0.990</td>
<td>620</td>
</tr>
<tr>
<td>Age</td>
<td>0.14 (0.35)</td>
<td>0.043 (0.052)</td>
<td>-0.037 (0.045)</td>
<td>0.069 (0.055)</td>
<td>-0.015 (0.047)</td>
<td>0.024 (0.050)</td>
<td>1.120</td>
<td>0.348</td>
<td>586</td>
</tr>
<tr>
<td>Married</td>
<td>0.32 (0.47)</td>
<td>-0.045 (0.066)</td>
<td>-0.008 (0.066)</td>
<td>-0.051 (0.065)</td>
<td>0.008 (0.065)</td>
<td>0.025 (0.065)</td>
<td>0.394</td>
<td>0.853</td>
<td>570</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.62 (0.49)</td>
<td>0.006 (0.070)</td>
<td>-0.006 (0.070)</td>
<td>-0.029 (0.072)</td>
<td>0.055 (0.068)</td>
<td>0.034 (0.068)</td>
<td>0.344</td>
<td>0.886</td>
<td>556</td>
</tr>
<tr>
<td>≤ High School Education</td>
<td>0.47 (0.50)</td>
<td>-0.026 (0.072)</td>
<td>-0.033 (0.071)</td>
<td>-0.043 (0.072)</td>
<td>0.022 (0.070)</td>
<td>-0.042 (0.069)</td>
<td>0.258</td>
<td>0.936</td>
<td>571</td>
</tr>
<tr>
<td>Low Income</td>
<td>0.03 (0.18)</td>
<td>0.022 (0.033)</td>
<td>0.045 (0.034)</td>
<td>0.031 (0.034)</td>
<td>0.015 (0.031)</td>
<td>-0.029 (0.025)</td>
<td>1.715</td>
<td>0.129</td>
<td>684</td>
</tr>
</tbody>
</table>

Note: Column (1) reports the mean and standard deviation. Columns (2)–(6) report regression coefficients and standard errors for each randomization group relative to the omitted group (Column (1), the non-black doctor and no incentive group). Columns (7) and (8) show the F-statistic and associated p-value testing whether the treatment arms are jointly equal to zero. Observation count varies due to missing responses in the baseline survey. Attrition is an indicator for the 47 subjects that did not complete the study because they left before the clinic encounter (3 of the 50 subjects who attrited self-identified as a race/ethnicity other than African-American or as a female and are therefore excluded). See Data Appendix for other variable definitions. Robust standard errors in parentheses. Standard deviations in brackets.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blood Pressure</td>
<td>BMI</td>
<td>Diabetes</td>
<td>Cholesterol</td>
<td>Flu Vaccination</td>
<td>Share Four</td>
<td>Share of Invasives</td>
</tr>
<tr>
<td>Black Doctor</td>
<td>0.025</td>
<td>0.023</td>
<td>0.050</td>
<td>0.010</td>
<td>-0.009</td>
<td>0.027</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>{0.045}</td>
<td>{0.043}</td>
<td>{0.048}</td>
<td>{0.052}</td>
<td>{0.039}</td>
<td>{0.040}</td>
<td>{0.039}</td>
</tr>
<tr>
<td>$5 Incentive</td>
<td>0.028</td>
<td>-0.059</td>
<td>0.085</td>
<td>0.067</td>
<td>0.192</td>
<td>0.030</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>{0.037}</td>
<td>{0.041}</td>
<td>{0.045}</td>
<td>{0.030}</td>
<td>{0.047}</td>
<td>{0.022}</td>
<td>{0.028}</td>
</tr>
<tr>
<td>$10 Incentive</td>
<td>-0.023</td>
<td>-0.009</td>
<td>0.028</td>
<td>-0.014</td>
<td>0.299</td>
<td>-0.004</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>{0.037}</td>
<td>{0.035}</td>
<td>{0.028}</td>
<td>{0.039}</td>
<td>{0.031}</td>
<td>{0.020}</td>
<td>{0.027}</td>
</tr>
<tr>
<td>$5 Incentive</td>
<td>0.044</td>
<td>0.019</td>
<td>0.110</td>
<td>0.065</td>
<td>0.221</td>
<td>0.059</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>{0.036}</td>
<td>{0.056}</td>
<td>{0.047}</td>
<td>{0.036}</td>
<td>{0.039}</td>
<td>{0.032}</td>
<td>{0.030}</td>
</tr>
<tr>
<td>$10 Incentive</td>
<td>-0.026</td>
<td>-0.010</td>
<td>0.054</td>
<td>-0.004</td>
<td>0.219</td>
<td>0.003</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>{0.038}</td>
<td>{0.028}</td>
<td>{0.045}</td>
<td>{0.040}</td>
<td>{0.026}</td>
<td>{0.028}</td>
<td>{0.028}</td>
</tr>
<tr>
<td>Prob(\beta_{RI: Black Dr} ></td>
<td>\beta_{Study Est.})</td>
<td>0.635</td>
<td>0.645</td>
<td>0.431</td>
<td>0.875</td>
<td>0.850</td>
<td>0.637</td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.56</td>
<td>0.50</td>
<td>0.37</td>
<td>0.35</td>
<td>0.20</td>
<td>0.44</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>{0.043}</td>
<td>{0.048}</td>
<td>{0.047}</td>
<td>{0.047}</td>
<td>{0.039}</td>
<td>{0.047}</td>
<td>{0.028}</td>
</tr>
<tr>
<td>BLACK DOCTOR</td>
<td>0.107</td>
<td>0.161</td>
<td>0.204</td>
<td>0.256</td>
<td>0.100</td>
<td>0.182</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>{0.074}</td>
<td>{0.099}</td>
<td>{0.062}</td>
<td>{0.071}</td>
<td>{0.037}</td>
<td>{0.064}</td>
<td>{0.046}</td>
</tr>
<tr>
<td>$5 Flu Incentive</td>
<td>0.044</td>
<td>0.019</td>
<td>0.110</td>
<td>0.065</td>
<td>0.221</td>
<td>0.059</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>{0.036}</td>
<td>{0.056}</td>
<td>{0.047}</td>
<td>{0.036}</td>
<td>{0.039}</td>
<td>{0.032}</td>
<td>{0.030}</td>
</tr>
<tr>
<td>$10 Flu Incentive</td>
<td>-0.026</td>
<td>-0.010</td>
<td>0.054</td>
<td>-0.004</td>
<td>0.219</td>
<td>0.003</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>{0.038}</td>
<td>{0.028}</td>
<td>{0.045}</td>
<td>{0.040}</td>
<td>{0.026}</td>
<td>{0.028}</td>
<td>{0.028}</td>
</tr>
<tr>
<td>Prob(\beta_{RI: Black Dr} ></td>
<td>\beta_{Study Est.})</td>
<td>0.251</td>
<td>0.220</td>
<td>0.039</td>
<td>0.023</td>
<td>0.047</td>
<td>0.036</td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.72</td>
<td>0.60</td>
<td>0.42</td>
<td>0.36</td>
<td>0.18</td>
<td>0.53</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>{0.043}</td>
<td>{0.048}</td>
<td>{0.047}</td>
<td>{0.047}</td>
<td>{0.039}</td>
<td>{0.047}</td>
<td>{0.028}</td>
</tr>
<tr>
<td>PANEL C: Delta (Post - Pre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Doctor</td>
<td>0.082</td>
<td>0.138</td>
<td>0.154</td>
<td>0.246</td>
<td>0.108</td>
<td>0.155</td>
<td>0.169</td>
</tr>
<tr>
<td></td>
<td>{0.100}</td>
<td>{0.101}</td>
<td>{0.059}</td>
<td>{0.072}</td>
<td>{0.050}</td>
<td>{0.077}</td>
<td>{0.051}</td>
</tr>
<tr>
<td>$5 Flu Incentive</td>
<td>0.017</td>
<td>0.078</td>
<td>0.024</td>
<td>-0.002</td>
<td>0.029</td>
<td>0.029</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>{0.052}</td>
<td>{0.043}</td>
<td>{0.022}</td>
<td>{0.029}</td>
<td>{0.035}</td>
<td>{0.026}</td>
<td>{0.016}</td>
</tr>
<tr>
<td>$10 Flu Incentive</td>
<td>-0.003</td>
<td>-0.001</td>
<td>0.026</td>
<td>0.010</td>
<td>-0.080</td>
<td>0.008</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>{0.028}</td>
<td>{0.028}</td>
<td>{0.047}</td>
<td>{0.055}</td>
<td>{0.030}</td>
<td>{0.028}</td>
<td>{0.039}</td>
</tr>
<tr>
<td>Prob(\beta_{RI: Black Dr} ></td>
<td>\beta_{Study Est.})</td>
<td>0.468</td>
<td>0.277</td>
<td>0.051</td>
<td>0.005</td>
<td>0.098</td>
<td>0.116</td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.16</td>
<td>0.11</td>
<td>0.05</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>{0.043}</td>
<td>{0.048}</td>
<td>{0.047}</td>
<td>{0.047}</td>
<td>{0.039}</td>
<td>{0.047}</td>
<td>{0.028}</td>
</tr>
<tr>
<td>Observations</td>
<td>637</td>
<td>637</td>
<td>637</td>
<td>637</td>
<td>637</td>
<td>637</td>
<td>637</td>
</tr>
</tbody>
</table>

Note: Table reports OLS estimates of Equation 1. The outcome varies by column heading. Control mean refers to subjects randomized to a non-black doctor for the non-flu screenings and to subjects randomized to a non-black doctor and no incentive for the flu vaccination. Robust standard errors clustered at the doctor level in curly brackets. Prob refers to the randomization inference p-value from permuting doctor race for each of the 3,003 (14) combinations.
<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Mass Index</td>
<td>-0.062</td>
<td>-0.114</td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td>{0.032}</td>
<td>{0.025}</td>
<td>{0.026}</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>-0.210</td>
<td>-0.358</td>
<td>-0.148</td>
</tr>
<tr>
<td></td>
<td>{0.019}</td>
<td>{0.077}</td>
<td>{0.076}</td>
</tr>
<tr>
<td>Diabetes</td>
<td>-0.185</td>
<td>-0.293</td>
<td>-0.108</td>
</tr>
<tr>
<td></td>
<td>{0.027}</td>
<td>{0.064}</td>
<td>{0.061}</td>
</tr>
<tr>
<td>Flu</td>
<td>-0.213</td>
<td>-0.395</td>
<td>-0.182</td>
</tr>
<tr>
<td></td>
<td>{0.030}</td>
<td>{0.053}</td>
<td>{0.057}</td>
</tr>
<tr>
<td>Black MD * BP</td>
<td>0.022</td>
<td>0.103</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>{0.044}</td>
<td>{0.075}</td>
<td>{0.099}</td>
</tr>
<tr>
<td>Black MD * BMI</td>
<td>0.017</td>
<td>0.157</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>{0.043}</td>
<td>{0.097}</td>
<td>{0.102}</td>
</tr>
<tr>
<td>Black MD * Cho</td>
<td>0.008</td>
<td>0.254</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>{0.052}</td>
<td>{0.071}</td>
<td>{0.072}</td>
</tr>
<tr>
<td>Black MD * Dia</td>
<td>0.051</td>
<td>0.205</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>{0.048}</td>
<td>{0.061}</td>
<td>{0.058}</td>
</tr>
<tr>
<td>Black MD * Flu</td>
<td>0.002</td>
<td>0.109</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>{0.040}</td>
<td>{0.039}</td>
<td>{0.051}</td>
</tr>
<tr>
<td>Black Doctor * Invasive Test Interactions = 0</td>
<td>1.257</td>
<td>7.434</td>
<td>4.364</td>
</tr>
<tr>
<td>Prob(F_{RI} > F_{Study})</td>
<td>0.482</td>
<td>0.058</td>
<td>0.151</td>
</tr>
<tr>
<td>Sum of Invasives = Sum of Non-Invasives</td>
<td>0.054</td>
<td>4.366</td>
<td>9.921</td>
</tr>
<tr>
<td>Prob(F_{RI} > F_{Study})</td>
<td>0.829</td>
<td>0.088</td>
<td>0.008</td>
</tr>
<tr>
<td>Observations</td>
<td>3,185</td>
<td>3,185</td>
<td>3,185</td>
</tr>
</tbody>
</table>

Note: Table reports OLS estimates. The outcome variable is individual test take-up by stage. The omitted category is blood pressure. Robust standard errors clustered at the doctor level in curly brackets. Prob indicates randomization inference p-value based on F-tests using the 3,003 (146) combinations of doctors.
Table 5: Demand for Preventives with Alternative Concordance Measures

<table>
<thead>
<tr>
<th></th>
<th>Age, 5 Years</th>
<th>Age, 10 Years</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.008</td>
<td>-0.005</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>{0.030}</td>
<td>{0.039}</td>
<td>{0.026}</td>
</tr>
<tr>
<td>$X \times$ Black Doctor</td>
<td>0.008</td>
<td>0.037</td>
<td>-0.018</td>
</tr>
<tr>
<td></td>
<td>{0.053}</td>
<td></td>
<td>{0.048}</td>
</tr>
<tr>
<td>Black Doctor</td>
<td>0.165</td>
<td>0.153</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>{0.051}</td>
<td></td>
<td>{0.059}</td>
</tr>
<tr>
<td>Observations</td>
<td>620</td>
<td>620</td>
<td>620</td>
</tr>
</tbody>
</table>

Note: Table reports OLS estimates of Equation 1. The outcome is the delta share of the invasive screenings. Columns (1) and (2) explore age concordance (i.e. doctor and subject born within five years of each other), Columns (3) and (4) examine concordance within a wider age window (i.e. doctor and subject born within 10 years of each other), and Columns (5) and (6) explore concordance across educational attainment (i.e. subject has at least a bachelor of arts degree). Indicators for incentive levels are included but not reported. Robust standard errors clustered at the doctor level in curly brackets.
Table 6: Communication, Time Spent, and Satisfaction with Doctor

<table>
<thead>
<tr>
<th></th>
<th>PANEL A: Communication</th>
<th></th>
<th>PANEL B: Time Spent and Satisfaction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outcome =</td>
<td>Subject Talk to MD</td>
<td>Doctor Notes about Subject</td>
<td>Non-Preventive Notes</td>
</tr>
<tr>
<td>Black Doctor * Invasive</td>
<td>0.115</td>
<td>0.167</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{0.088}</td>
<td>{0.072}</td>
<td>{0.057}</td>
<td></td>
</tr>
<tr>
<td>Black Doctor</td>
<td>0.100</td>
<td>0.006</td>
<td>0.111</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>{0.150}</td>
<td>{0.132}</td>
<td>{0.130}</td>
<td>{0.159}</td>
</tr>
<tr>
<td>Invasive Test</td>
<td>0.039</td>
<td>-0.149</td>
<td>-0.079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{0.053}</td>
<td>{0.070}</td>
<td>{0.042}</td>
<td></td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.35</td>
<td>0.35</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Observations</td>
<td>637</td>
<td>637</td>
<td>637</td>
<td>637</td>
</tr>
<tr>
<td></td>
<td>Outcome =</td>
<td>Length Visit, Minutes</td>
<td>Subject Rating of Experience</td>
<td>Subject Recommend MD</td>
</tr>
<tr>
<td>Black Doctor * Invasive</td>
<td>0.399</td>
<td>-0.110</td>
<td>-0.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{1.363}</td>
<td>{0.140}</td>
<td>{0.026}</td>
<td></td>
</tr>
<tr>
<td>Black Doctor</td>
<td>4.384</td>
<td>2.253</td>
<td>-0.019</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>{1.730}</td>
<td>{1.307}</td>
<td>{0.053}</td>
<td>{0.134}</td>
</tr>
<tr>
<td>Invasive Test</td>
<td>11.996</td>
<td>0.116</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{1.234}</td>
<td>{0.125}</td>
<td>{0.022}</td>
<td></td>
</tr>
<tr>
<td>Control Mean</td>
<td>20.53</td>
<td>20.53</td>
<td>4.80</td>
<td>4.80</td>
</tr>
<tr>
<td>Observations</td>
<td>498</td>
<td>498</td>
<td>574</td>
<td>574</td>
</tr>
</tbody>
</table>

Note: Table reports OLS estimates from a modified version of Equation 1. Even columns include an interaction between black doctor and an indicator for whether the subject chose any invasive preventive service (cholesterol, diabetes, or flu). See Figure Panels (A)–(C) for plots of the joint occurrence of RI draws. Indicators for incentive levels are included but not reported. See Data Appendix and text for variable definitions. Robust standard errors clustered at the doctor level in curly brackets.
Table 7: Heterogeneity by Demographics, Hassle Costs, and Medical Care Experience

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
<td>Delta Share Invasives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANEL A: Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X =$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Income ≤ High School Education Younger than 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Doctor * X</td>
<td>0.061</td>
<td>-0.043</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>{0.091}</td>
<td>{0.071}</td>
<td>{0.039}</td>
</tr>
<tr>
<td>X</td>
<td>0.031</td>
<td>0.044</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>{0.031}</td>
<td>{0.057}</td>
<td>{0.013}</td>
</tr>
<tr>
<td>Black Doctor</td>
<td>0.130</td>
<td>0.180</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>{0.037}</td>
<td>{0.037}</td>
<td>{0.051}</td>
</tr>
<tr>
<td>Observations</td>
<td>571</td>
<td>556</td>
<td>620</td>
</tr>
<tr>
<td>PANEL B: Hassle Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X =$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Wait Time</td>
<td>0.157</td>
<td>0.150</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>{0.050}</td>
<td>{0.034}</td>
<td>{0.077}</td>
</tr>
<tr>
<td>High Congestion</td>
<td>-0.033</td>
<td>-0.042</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>{0.019}</td>
<td>{0.012}</td>
<td>{0.026}</td>
</tr>
<tr>
<td>Long Commute</td>
<td>0.135</td>
<td>0.115</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>{0.049}</td>
<td>{0.058}</td>
<td>{0.055}</td>
</tr>
<tr>
<td>Observations</td>
<td>451</td>
<td>451</td>
<td>618</td>
</tr>
<tr>
<td>PANEL C: Medical Care Experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X =$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Recent Screening</td>
<td>0.113</td>
<td>0.010</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>{0.044}</td>
<td>{0.006}</td>
<td>{0.032}</td>
</tr>
<tr>
<td>ER Visits</td>
<td>-0.003</td>
<td>-0.005</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>{0.034}</td>
<td>{0.004}</td>
<td>{0.017}</td>
</tr>
<tr>
<td>Medical Mistrust</td>
<td>0.144</td>
<td>0.151</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>{0.047}</td>
<td>{0.050}</td>
<td>{0.061}</td>
</tr>
<tr>
<td>Observations</td>
<td>604</td>
<td>511</td>
<td>611</td>
</tr>
</tbody>
</table>

Note: Table reports OLS estimates from a modified version of Equation 1 including interactions between black doctor and certain baseline characteristics. See Figure 6 Panels (D)–(F) for plots of the joint occurrence of RI draws. The outcome variable for every specification is the delta in demand for the share of invasive preventives. Observation count varies due to missing responses in the baseline survey. Indicators for incentive levels are included but not reported. See Data Appendix and text for variable definitions. Robust standard errors clustered at the doctor level in curly brackets.
Table 8: Perceptions of Doctors among Black and White Male Respondents

<table>
<thead>
<tr>
<th></th>
<th>Quality</th>
<th>Communication</th>
<th>Access</th>
<th>Communication vs. Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black MD Concordance</td>
<td>Black MD Concordance</td>
<td>Black MD Concordance</td>
<td>Black MD Concordance</td>
</tr>
<tr>
<td>Black Respondent</td>
<td>0.350 (0.025)</td>
<td>0.531 (0.024)</td>
<td>0.241 (0.024)</td>
<td>-0.028 (0.025)</td>
</tr>
<tr>
<td>White Respondent</td>
<td>0.273 (0.029)</td>
<td>0.479 (0.027)</td>
<td>0.175 (0.030)</td>
<td>0.171 (0.014)</td>
</tr>
<tr>
<td>Mean</td>
<td>0.11</td>
<td>0.27</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.12</td>
<td>0.08</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Observations</td>
<td>1,490</td>
<td>1,490</td>
<td>1,490</td>
<td>1,490</td>
</tr>
</tbody>
</table>

Note: Columns (1), (2), (4), (5), (7), and (8) report OLS estimates of Equation 2a, testing whether respondents have a preference for doctors of the same race with respect to three domains of healthcare: quality, communication, and access, respectively. Columns (3), (6), and (9) report OLS estimates of Equation 2b, testing whether preference for own race varies across black and white respondents. Column (10) reports OLS estimates of Equation 2c, comparing preference across domain and race. The comparison group mean is the average white respondents who prefer black doctors in Columns (1), (4), and (7); the average black respondents who prefer white doctors in Columns (2), (5), and (8); the average white respondents who prefer white doctors in Columns (3), (6), and (9); and the average white respondents who select concordance in regards to quality in Column (10). See Data Appendix and text for variable definitions. All specifications include categorical controls for age, education, and household income levels. Robust standard errors in parentheses for Columns (1)–(9). Robust standard errors clustered at the respondent level in curly brackets for panel analysis (Column (10)).
Table 9: Examining Doctor Fixed Effects

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor Fixed Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Doctor</td>
<td>0.142</td>
<td>0.135</td>
<td>0.143</td>
<td>0.137</td>
<td>0.151</td>
<td>0.177</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.043)</td>
<td>(0.054)</td>
<td>(0.050)</td>
<td>(0.069)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>>5 Black Patients / Week</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td></td>
<td></td>
<td></td>
<td>(0.073)</td>
<td></td>
</tr>
<tr>
<td>Top 10 Ranked Medical School</td>
<td></td>
<td></td>
<td>-0.005</td>
<td></td>
<td>-0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td></td>
<td>(0.065)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of Experience</td>
<td></td>
<td>0.002</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Internist</td>
<td></td>
<td>0.028</td>
<td>0.102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.071)</td>
<td>(0.079)</td>
<td></td>
<td>(0.079)</td>
<td></td>
</tr>
<tr>
<td>$\text{Prob}(\beta_{\text{RI: Black Dr}} > \beta_{\text{Study Est.}})$</td>
<td>0.010</td>
<td>0.024</td>
<td>0.021</td>
<td>0.025</td>
<td>0.008</td>
<td>0.019</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.445</td>
<td>0.455</td>
<td>0.445</td>
<td>0.472</td>
<td>0.451</td>
<td>0.516</td>
</tr>
<tr>
<td>Observations</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Note: Table reports OLS estimates. The outcome variable is the individual doctor fixed effects for the delta share invasives. Robust standard errors in parentheses. Prob indicates randomization inference p-value based on 3,003 $\binom{14}{6}$ combinations of doctors.
Figure 1: Study Design and Flow

1,374 recruited
At Oakland barbershops & flea markets

667
Did not redeem clinic coupon

707
Redeemed clinic coupon

637
Completed the study

70
Excluded:
12 self-identify as not African-American
2 self-identify as women
6 missing consent forms
50 attrit (did not see doctor)

324
Randomized to non-black doctor

313
Randomized to black doctor

120
No vaccine incentive

96
$5 vaccine incentive

108
$10 vaccine incentive

96
No vaccine incentive

106
$5 vaccine incentive

111
$10 vaccine incentive

Pre-Consultation: Tablet Selection
BMI BP DIA CHO FLU NONE

VISIT WITH DOCTOR

Post-Consultation: Receive Services
BMI BP DIA CHO FLU NONE

SUBJECT FEEDBACK

Note: Two-stage randomization design and flow of subjects from recruitment through clinic exit. Note that 70 subjects were randomized but are not included in the analysis study either because they did not meet criteria (i.e. they self-identified as a different race/ethnicity or as a female, were underage, or did not consent) or they left before the clinic encounter (i.e. attrited).
Note: Screenshots of clinic survey tablet: Panel (A) introduces subject’s doctor; Panel (B) presents the non-incentivized screenings available (the order was randomized); Panel (C) informs the subject about the flu shot and associated incentive (if applicable); Panel (D) asks the subject whether he would like to receive a flu vaccination. Screenshots not shown to scale; tablet screen was approximately 10 inches.
Figure 3: Demand for Preventives

(a) Blood Pressure

(b) BMI

(c) Cholesterol

(d) Diabetes

(e) Flu Shot: With Incentive

(f) Flu Shot: Without Incentive

Note: Pre- and post-consultation selection for preventives by randomized doctor race.
Figure 4: Post-Consultation Take-Up and Persuasion Rates by Preventive

(a) Post % Differences by Preventives

(b) Persuasion Rates

Note: Panel (A) plots the percent difference between black doctors vs. non-black doctors in post-consultation demand by preventive. Note that the percent difference in demand for the flu with an incentive (not shown) is equal to about 25%. The preventives are ordered by their y-axis value. Panel (B) plots persuasion rates (see text for more details). Each blue bar represents the persuasion rate for one of the five non-incentivized clinic screenings: from left to right, blood pressure, body mass index, diabetes, flu without an incentive, and cholesterol. Gray bars represent persuasion rates of studies from Table 1 of DellaVigna and Gentzkow (2010).
Figure 5: PDFs of Permutation Coefficients and Test Statistics

Note: Panels (A)–(C) plot the distribution of black doctor coefficients on \(\binom{14}{6} \) different physician treatment assignments. The (red) vertical line represents the study estimate of the black doctor coefficient. The outcome in Panels (A)–(C) is the share of invasive screenings selected and the stage varies by panel label. Panels (D)–(F) plot the distribution of invasive = non-invasive \(F \)-tests on \(\binom{14}{6} \) different physician treatment assignments. The (red) vertical line represents study estimate \(F \)-test.
Figure 6: Joint Distribution of RI Estimates of Black Doctor and Black Doctor Interaction

(a) Subject Talk
(b) Doctor Notes
(c) Non-Preventive Notes
(d) No Recent Screening
(e) ER Visits
(f) Medical Mistrust

Note: The upper left panel plots the distribution of black doctor interaction coefficients. The bottom right panel plots the distribution of black doctor coefficients. Bottom left panel plots the joint distribution of randomization inference coefficients on black doctor (y-axis) and the black doctor interaction (x-axis). Red crosses represent the intersection of study estimates of corresponding coefficients. See Data Appendix and text for variable definitions.
Figure 7: Non-Experimental Preference for Concordance

Note: Figure plots the percent of black and white survey respondents who select a doctor of the same race in response to various questions. Choice set included black, white, or Asian male doctors.
Figure 8: Permutation Test of Black Doctor Effect on Non-Criteria Sample

Note: Figure plots the black doctor coefficient on a random selection of N subjects with replacement, where $N = 12$. We limit the random selection to subjects who were assigned to the eight doctors who saw the 12 out-of-sample subjects. Permutation test runs the main regression (Equation 1) 1,000 times. Vertical (red) line signifies the coefficient from the subjects who did not meet study criteria.
Note: Distribution of medical screening results for subjects who elected to receive preventives by race of doctor.
Note: Figure plots the percentage of each demographic group diagnosed with the listed conditions. Hypertension is defined as a systolic blood pressure value greater or equal to 140 mm Hg, obesity as a BMI greater or equal to 30 kg/m^2, high cholesterol as a cholesterol value greater or equal to 200 mg/dL, and diabetes as an A1c value greater or equal to 6.5%. Study sample values are for subjects who opted to receive a screening. Values for the U.S. population are from Fryar et al. (2017), Hales et al. (2017), and CDC (2017b, 2017c).