NBER WORKING PAPER SERIES

HOW DO TRAVEL COSTS SHAPE COLLABORATION?

Christian Catalini
Christian Fons-Rosen
Patrick Gaulé

Working Paper 24780
http://www.nber.org/papers/w24780

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
June 2018, Revised March 2019

We appreciate helpful comments from Alberto Galasso, Ina Ganguli, Avi Goldfarb, Xavier
Giroud, Jeff Furman, Stepan Jurajda, Mara Lederman, Nikolas Mittag, Alex Oettl, Erin Scott,
Paula Stephan, Scott Stern, Toby Stuart, Jane Wu, an anonymous associate editor and team of
reviewers at Management Science, seminar participants at Charles University, the EPFL, Harvard
Business School, Imperial College London, London School of Economics Stockholm School of
Economics, the Academy of Management, Universidad Carlos Ill, National University of
Singapore and Warwick Business School for helpful discussions and advice. All errors are our
own. This research contributes to the agenda Strategie AV21. Fons-Rosen acknowledges
financial support by the Spanish Ministry of Economy and Competitiveness (EC0O2014-55555-P).
Christian Catalini acknowledges the support of the Junior Faculty Research Assistance Program
at the MIT Sloan School of Management. The views expressed herein are those of the authors and
do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2018 by Christian Catalini, Christian Fons-Rosen, and Patrick Gaulé. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission
provided that full credit, including © notice, is given to the source.



How Do Travel Costs Shape Collaboration?

Christian Catalini, Christian Fons-Rosen, and Patrick Gaulé
NBER Working Paper No. 24780

June 2018, Revised March 2019

JEL No. L93,018,03,031,033,R4

ABSTRACT

We develop a simple theoretical framework for thinking about how geographic frictions, and in
particular travel costs, shape scientists' collaboration decisions and the types of projects that are
developed locally versus over distance. We then take ad- vantage of a quasi-experiment — the
introduction of new routes by a low-cost airline — to test the predictions of the theory. Results
show that travel costs constitute an important friction to collaboration: after a low-cost airline
enters, the number of collaborations increases between 0.3 and 1.1 times, a result that is robust to
multiple falsification tests and causal in nature. The reduction in geographic frictions is
particularly beneficial for high quality scientists that are otherwise embedded in worse local
environments. Consistent with the theory, lower travel costs also endogenously change the types
of projects scientists engage in at different levels of distance. After the shock, we observe an
increase in higher quality and novel projects, as well as projects that take advantage of
complementary knowledge and skills between sub-fields, and that rely on specialized equipment.
We test the generalizability of our findings from chemistry to a broader dataset of scientific
publications, and to a different field where specialized equipment is less likely to be relevant,
mathematics. Last, we discuss implications for the formation of collaborative R&D teams over
distance.
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1 Introduction

The drastic reduction in communication costs brought by the diffusion of the internet initially
led to claims about a future in which technology could overcome geographic frictions and
facilitate the rapid exchange of ideas, goods and services independent of distance (Cairncross,
1997; Friedman, 2005). Empirically, this “death of distance” hypothesis has found limited
support, as most evidence points to agglomeration mattering more, not less, than before
across a variety of settings (Leamer & Levinsohn, 1995; Blum & Goldfarb, 2006; Forman et
al., 2005; Agrawal et al., 2015). Instead of substituting for co-location, digital interactions
often complement it (Agrawal & Goldfarb, 2008),! resulting in non-obvious changes in how
teams and organizations structure collaborations and develop new ideas when communication
costs are low, but teamwork and R&D require specialized expertise and resources that are
geographically dispersed (Adams et al. 2005; Jones, Wuchty & Uzzi 2008; Wuchty, Jones &
Uzzi 2007).2

Moreover, not all types of interactions have benefited in the same way from improvements
in communication technology. Co-location plays a disproportionate role in the serendipitous
discovery of new collaborators and ideas (Catalini, 2017), and in the absence of offline oppor-
tunities for interaction, search frictions can prevent individuals from finding ideal collabora-
tors even within the boundaries of the same institution (Boudreau et al., 2017). Similarly,
exchanges that require the transfer of complex information and tacit knowledge (Polanyi,
1958; Von Hippel, 1994) still heavily rely on face-to-face interactions (Rosenthal & Strange,
2001; Gaspar & Glaeser, 1998; Storper & Venables 2004). As a result, firms, communities
of experts and teams invest substantial amounts of time, effort and resources to ensure that

the right individuals can be co-located — even if only temporarily — to discuss ideas, make

L Agrawal & Goldfarb’s (2008) study of Bitnet, an internet predecessor, finds that as more academic insti-
tutions joined the network, collaboration among affected scientists increased. Interestingly, their results hint
at the technology being a complement to offline interactions, as co-authorship increases disproportionately
among university pairs that are co-located. Other studies have found an effect of Bitnet on collaborations in
the academic life sciences (Ding et al. 2010), and of the internet on cooperative R&D between firms (Forman
& Zeebroeck 2012).

2By 2000, less than 20% of papers in science and engineering were single authored. Similar patterns, and
in particular the rise of coauthorship and distant coauthorship, have been documented in economics. See
Gaspar & Glaeser (1998), Hamermesh & Oster (2004), Rosenblatt & Mobius (2004).



progress on projects, and develop the relationships that can later support more effective
interactions over distance. Such temporary forms of co-location have been shown to foster
both idea diffusion and the formation of new collaborations (Chai & Freeman, 2018).?

If face-to-face interactions are instrumental in finding and evaluating new collaborators,
establishing trust, and advancing joint work, then as communication costs drop, if they
are a complement and not a substitute to remote interactions, they should become more
valuable. Furthermore, their absence would likely constitute the key remaining friction in
the formation and operation of geographically distributed teams. Ironically, by making
online communication extremely efficient, the internet may have enhanced the role that
travel technology plays in the economy.

The objective of this paper is to develop and test a simple theoretical framework for
thinking about how geographic frictions, and in particular travel costs, shape collaboration
decisions and the types of projects that are developed locally versus over distance. The
model highlights a key trade-off individuals face when deciding if they should work with a
local versus a distant collaborator: whereas the global pool of potential collaborators is often
deeper and may therefore offer an ideal match, collaboration over distance incurs additional
communication and travel costs. We build on this basic tension in a context where individuals
endogenously allocate effort to projects based on their potential, and where a project’s
variance in outcomes or the need for complementary expertise, equipment or resources can
influence with whom a project is pursued. The simple framework captures an increasingly
relevant challenge: to be able to solve problems of rising complexity, teams of specialized
experts have to be put together (Jones, 2009), but this often involves collaboration over
distance.

We take advantage of a quasi-experiment — the introduction of new routes by a major

low-cost airline — to test the predictions of the theory within the context of collaborations

3Chai & Freeman (2018) compare collaboration patterns among attendees of the Gordon conference
before and after the event in a difference-in-differences framework using a carefully constructed control
group of qualitatively similar non-participants. They find that attendees are more likely to be cited by, and
collaborate with other participants, especially if they were new to this community of experts. In a related
paper, Campos, de Leon & Mecquilin (2018) document that a conference cancellation led to a decrease in
individuals likelihood of co-authoring together.



between scientific labs. The setting allows us to observe the full set of scientists at risk of
collaboration in any given year as well as important characteristics about them such as their
age, career stage, past productivity, area of specialization, and departmental funding.

The cheaper fares brought by the expansion of the low-cost airline (Southwest Airlines)*
are part of a broader, 50% reduction in the cost of air travel that took place in the United
States over the last 30 years (Perry 2014).> Furthermore, they provide a source of plausibly
exogenous variation in the cost of conducting research between scientists at the affected
airports.

Using a difference-in-differences empirical strategy we are able to recover a causal estimate
of the effect of a reduction in travel costs not only on the rate of collaboration, but more
importantly on the type of projects scientists pursue. Results show that travel costs are
an important friction to collaboration: after Southwest entry, the number of collaborations
increases between 0.3 and 1.1 times, a result that is robust to multiple falsification tests
and causal in nature. The reduction in geographic frictions is particularly beneficial for
high quality scientists that are otherwise embedded in worse local environments, although
women scientists do not seem to benefit. Consistent with the theory, lower travel costs also
endogenously change the types of projects scientists engage in locally versus over distance.
After the shock, we observe an increase in higher quality and more novel projects, as well
as projects that take advantage of complementary knowledge and skills between sub-fields,
or that rely on specialized equipment. We test the generalizability of our findings within
chemistry to a broader dataset of scientific publications, and to mathematics, a field where
specialized equipment is less likely to be relevant. Last, we discuss implications for the
formation of collaborative R&D teams in the presence of geographic frictions.

The rest of the paper is as follows: in Section 2 we provide additional institutional details

about scientific collaboration, on how chemistry differs from others fields, and the data we

4Southwest has been described as the most significant development in the market structure of the U.S.
airline industry by the Transportation Research Board (1999) and by industrial economists (Morrison 2001,
Borenstein & Rose 2007, Goolsbee & Syverson 2008).

°Kim, Morse & Zingales (2009) and Freeman, Ganguli & Murciano-Goroff (2014) note that secular declines
in both communication costs and air travel costs may have facilitated long distance collaborations.



use. Section 3 introduces our empirical strategy and main results, together with a series of
robustness tests and extensions targeted at assessing the generalizability of our findings to
different samples. Section 4 develops a model to guide the interpretation of the findings, as
well as the exploration of more nuanced hypotheses about the type of projects pursued in
response to a reduction in geographic frictions. Section 5 tests these additional predictions,
and Section 6 concludes.

The reason why we first explore the difference-in-differences results on the rate of col-
laboration (Section 3) and then present the model and test hypotheses about the type of
collaborations that emerge (Sections 4 and 5) is because we follow the natural evolution of
the project. We started from an empirical assessment of the presence of an effect on the
rate of collaboration, moved to theory development to form predictions about the types of
projects affected and to identify additional data to be collected (e.g. on novelty, equipment

intensity), and then finally brought these new predictions to the data.

2 Scientific Collaboration

Scientific research is an increasingly collaborative endeavour, as reflected in the growing
number of authors per paper over time (Wuchty, Jones & Uzzi, B., 2007). Collaborations are
typically formed to combine skills and knowledge (Freeman, Ganguli, and Murciano-Goroff
2014), to access complementary generalist or specialist talent and resources (Teodoridis, 2015;
Sauermann and Haeussler, 2017), and to expand the knowledge frontier when information
is tacit and difficult to transfer or recombine without extensive, direct interactions (Stephan
2012). Increasing complexity has also been linked to a rising need for interdisciplinary teams
(Falk-Krzesinski, 2011; Milojevi, 2014), with Wu et al. (2019) showing that both small and
large teams play an important, but different role in pushing the knowledge frontier. Using
a large-scale dataset of papers, patents and software products developed over 60 years,
the authors show that while smaller teams are associated with more disruptive work and
exploration, larger ones are systematically linked to advancing existing ideas and execution.

In terms of team formation, empirical evidence shows that researchers typically source



collaborations through their professional networks (Freeman, Ganguli, and Murciano-Goroff
2014), through serendipitous interactions with colocated individuals (Catalini, 2017) and
conferences (Boudreau et al., 2017; Campos, de Leon & Mcquilin, 2018; Chai & Freeman
2018), and by relying on the information disclosed in scientific publications. As Walsh &
Nee (2015) highlight, science is organized around increasingly complex teams that resemble
the operations of small R&D-intensive firms, with knowledge as their core output.

Substantial differences, however, exist across different scientific disciplines in how col-
laboration and research is organized: for example, while mathematicians and theoretical
physicists rarely work in labs, most research in chemistry, life sciences and experimental
physics — also because of different capital, talent and infrastructure requirements — takes
place in labs (Stephan 2012).

Our core analysis is focused on collaborations within chemistry. While chemistry largely
remains a lab-based science, it has also not embraced the larger scale, big science projects
observed in physics. Team size in chemistry — as measured by the number of co-authors — is
lower than in biology and physics, though higher than in mathematics (Adams et al. 2005).
Chemistry labs are run by a faculty member (principal investigator) who obtains funding
for the lab, directs research projects, appears as a co-author on all publications, oversees
resource allocation and effectively decides whether to collaborate or not with other labs. In
our sample, the median number of co-authors per paper is 4, and many of the authors are
graduate students, post-docs or technicians. These perform most of the experiments and
day-to-day work on a project.

While many research projects involve a single principal investigator, collaborations be-
tween labs and principal investigators are common as well. Consistent with the findings
from large scale surveys of scientists (Freeman, Ganguli, and Murciano-Goroff 2014), in
our conversations with U.S. principal investigators in chemistry, complementary expertise,
skills, materials or new types of experiments are all mentioned as reasons for collaboration
across labs. As in other fields of science, collaborations in chemistry are sourced through

the principal investigators and junior members’ professional networks, serendipitous interac-



tions at conferences, email, etc. In the paper, we focus on collaborations between principal

investigators, which are essentially collaborations between different labs.

2.1 Data Sources and Key Outcomes of Interest

To examine the effect of the changes in travel costs induced by the entry of Southwest Airlines
on scientific collaboration, we combine data on scientists with publication records and air
transportation information. Within the chemistry and mathematics samples, biographical
information on scientists enables us to effectively disambiguate publication data, while also
allowing us to separate faculty members from other types of authors. We now discuss in

more detail the data sources we use and key outcomes we focus on throughout the paper.

Air Transportation Data - To recover information on when Southwest operated
flights between different routes, as well as information on prices, passengers and miles flown,
we use data from the Airline Origin and Destination Survey (DB1B) of the U.S. Bureau of
Transportation Statistics. The DBIB is a 10% random sample of airline tickets from re-
porting carries in each quarter. For each itinerary, the DB1B records all connecting airports
(including origin and destination), the itinerary fare, and other information. This data is
publicly available only from 1993, hence we will focus on Southwest entry decisions that
occur after 1993.

Match Between Airports and Universities. We compute distances between air-
ports and universities using Google Maps. The matching between universities and airports is
complicated by the fact that the same metropolitan area could be served by multiple airports
(e.g. O’Hare and Midway in Chicago), or that a college town could be half-way between two
airports. We chose to match universities to all airports within a 50 miles radius. We code
the year of Southwest entry for a pair of universities as the first year in which Southwest
operates a flight on any route whose endpoints (airports) are within 50 miles of the respective
universities. Results are robust to narrowing this definition further (e.g. 25 miles, 10 miles),
see Appendix Table A-1.

Data on Scientists. Our focus is on collaborations between faculty members (and



therefore effectively across labs) in the discipline of chemistry®, in part due to data availabil-
ity, and in part because of the short publications cycles in this discipline. For biographical
information on scientists, our data source is the directory of graduate research published by
the American Chemical Society. Intended as a source of information for prospective grad-
uate students, this directory provides comprehensive listings of faculty affiliated with U.S.
departments granting PhDs in chemistry, chemical engineering and biochemistry. Besides
faculty names and departmental affiliations, the directory provides information on year of
birth, gender and education. The directory is published biannually in print and since 1999
on the web.” We combine the directories from 1991 to 2013 to build a longitudinal panel of
over 20,000 scientists. We complement this information with department-level R&D expen-
ditures from The National Science Foundation (NSF) Survey of Research and Development
Expenditures at Universities and Colleges.

Publication Data. We match faculty names to publication data from Scopus cover-
ing more than 200 chemistry journals (including all journals from the American Chemical
Society), multidisciplinary journals and major journals in neighboring disciplines.® Within
chemistry, the match between publications and scientists is facilitated by the fact that we
know institutional affiliations from the American Chemical Society faculty data. We match
publications to faculty based on last name, first and (if non-missing) middle initials, de-
partment and university affiliation. From publication data, we construct for each scientist
time-varying measures of past productivity (with a moving average over the last three years
of publication counts weighted by journal impact factor). We also infer our main outcome,
copublications, from bibliometric data combined with faculty data.

A key strength of our data is that we know when individuals enter and exit the profession

6Chemistry, which focuses on the composition, structure, transformations and properties of matter, is a
large discipline, with chemistry PhD graduates accounting for around 15% of U.S. PhD life and physical
science graduates (NSF 2015).

"The American Chemical Society also produced a CD-ROM for the years 1991-1993.

8Scopus is one of the two major bibliometric databases (along with ISI Web of Science). Our set of
chemistry journals includes all journals from the American Chemical Society, as well as any chemistry
journal with an impact factor above 2. Our set of multidisciplinary journals includes Nature, Science, Cell
and the Proceedings of the National Academy of Sciences. Our set of major journals in neighboring disciplines
includes all journals with an impact factor above 6 in physics, biology, material science and nanotechnology.



and therefore are at risk of collaborating with others. If we were inferring copublications from
publication data only, we could hardly distinguish between active scholars and individuals
that have retired or are not doing research in the field. Papers are counted as a copublication
between all pairs of faculty members involved.’

Additional Key Outcomes. For part of the analysis, we weight copublications by
the citations they receive as a proxy for their impact and quality. Citation counts originate
from Scopus, are at the article level and are counted from the year of publication until
2013. We also construct two distinct groups of measures related to novelty using author
keywords. These are based on the entire corpus of articles within chemistry journals and
related fields. The first group of measures is based on established approaches from the
innovation literature (Boudreau, Guinan, Lakhani, and Riedl, 2016; Criscuolo, Dahlander,
Grohsjean and Salter, 2017; Azoulay, Gler, Koak, Murciano-Goroff, and Anttila-Hughes,
2012), and relies on calculating the share of keywords in any given paper that have not been
observed before. This allows us to capture both novel uses that gain traction, as well as those
that do not. To check the robustness of our results, we also experimented with different
definitions of what constitutes a novel use (e.g. bottom 5%, 10% or 25% of the keyword-use
distribution), as well as with different aggregation methods (mean share of novelty, max
share of novelty, total novelty for the focal papers), finding consistent results. We then
replicate this approach for subfields to see if a specific use might have been considered novel
in aggregate, but not within a smaller community of science.!”

The second dimension of novelty we explore is what we label as ‘novel trends’. With this
measure we are not focused on making sure we capture both failed and successful attempts

at developing new concepts (i.e. the variance in outcomes), and instead prioritize identifying

9The majority (75%) of papers matched to a faculty member have exactly one faculty author, 21%
percent have two, and less than 4% have more than two authors. Both papers with one faculty author and
papers with multiple faculty authors typically have several non-faculty authors. We focus on faculty authors
because they are the ones usually making the decision to collaborate. Papers in chemistry journals that are
not matched to any of our U.S. faculty authors are likely to be from foreign scientists, scientists working in
corporate environments and federal labs.

10We are interested in the tension between aggregate and subfield-specific novelty because our theoretical
framework predicts that across field collaborations should disproportionately benefit from reductions in travel
costs, and want to test if some of these represent arbitrage of ideas between subfields of science.



emerging new trends in science. A drawback from this measure is that it selects on successful
cases where scientists work on concepts that end up gaining broader adoption afterwards.
The reason why we find this measure interesting is because it proxies for the focal researchers
working on topics that were about to become ‘hot’. To do this, for each keyword, we calculate
the share of papers in a given year that contains the keyword — a proxy for how popular it
is at any point in time. We then calculate the first and second derivative of this measure
relative to the previous year. If both the first and second derivative are positive, then the
keyword is classified as part of a novel trend since its use is quickly accelerating. Additionally,
if the first derivative is zero, and the second is positive, then we are at a local minimum right
before a keyword takes off, which we also consider as a novel trend. Aggregating up at the
paper level, a publication is considered part of a novel trend if it has an above the median
number of novel-trend keywords (results are similar if we impose a higher threshold).

We also constructed proxies for the equipment-intensity of publications by first collecting
a large-scale list of keywords associated with chemistry equipment,'* and then checking this
list against the keywords used in each paper. Papers with an above the median number of
equipment-related keywords are classified as equipment-intensive (similar results are obtained
when using the count of equipment keywords). To test the robustness of our approach to a
completely different definition, we also classified areas of chemistry as equipment-intensive
versus not using the NSF Survey of Federal Funds for Research and Development. In partic-
ular, we first use NSF data to compute the share of departmental R&D expenditures devoted
to capital. We then calculate the specialization of each department across fields of chemistry
to assess which areas they are specialized in. Last, we use these measures to run a regression
at the department level linking department-level capital intensity to the relative prevalence
of different subfields of chemistry, and rely on the estimates to classify collaborations based

on the type of departments they are originated from.!?

1 This was built by scraping and compiling an inventory of equipment for sale in online catalogues and
stores targeted at a wide range of chemistry labs.

12The regression yields the following classification: physical chemistry, analytical chemistry, and biochem-
istry as capital-intensive fields; and organic chemistry, inorganic chemistry, and material science as not
capital intensive. Discussions with domain experts as well as anecdotal evidence supports this classification.

10



2.2 Descriptive Statistics for the Main Sample

Our dataset covers over 20,000 scientists and their collaborations. However, we focus on
a specific subset of pairs of scientists who experience Southwest entry and for whom we
have variation in collaboration over time. Since all regressions include scientist-pair fixed
effects, pairs that never collaborate drop out of the sample. In the Appendix, we show that
our main result is robust to replacing scientist-pair fixed effects with city-pair fixed effects
and including a random sample of non-collaborating pairs. Our results are also robust to
replacing pair fixed effects with individual researcher fixed effects.

We have 15,244 pairs of scientists who collaborate at least once.!® Excluding co-authors
that are in the same department, we have 8,311 pairs of scientists in our sample. Only
a minority (1,158) of these pairs experience Southwest entry during our analysis period of
1993-2012, either because for the other 7,153 pairs Southwest is already operating a flight,
or because Southwest never flies between the relevant endpoints. We drop pairs in locations
where Southwest enters but then leaves within two years, as well as pairs where Southwest

t.14

entry coincides with the move of a scientis Finally, we also exclude pairs that are within

less than 200 miles of each other as air travel is unlikely to be their main travel option.!®

Our final analysis covers 758 pairs of scientists corresponding to 845 individuals.
[Insert Table 1 about here]

Table 1 displays descriptive statistics for our chemistry sample at different levels of anal-
ysis: individual, individual-pair and individual-pair-year.'® Most individuals in the sample
are male (90%) with an average age at the time of Southwest entry of 49.6 years. We do

not observe individual research budgets but as a proxy we use departmental R&D expenses

130ur dyadic data is not directed, and thus is symmetric: the pair between i and j is the mirror image of
the pair between j and 7. The 15,244 figure is after dropping an equal number of symmetric observations.

1Scientists in our sample may move from one department to another, in some cases leading to a change
in whether they are connected by Southwest or not. We want changes in Southwest status to be driven by
Southwest entry decisions rather than by scientist location decisions, and thus exclude pairs who happen to
move in the same year as Southwest enters, the year before or the year after.

15Results are robust to decreasing this threshold to 100 or 50 miles.

16Correlation tables, as well as summary statistics for all samples are in the Appendix.
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divided by the number of faculty members in the department. The average in our sample
is $279,880 at the time of Southwest entry. According to the NSF Survey, R&D expenses
include compensation for R&D personnel, equipment and indirect costs. In terms of spe-
cialization,'” the largest area is physical chemistry (32%), followed by biochemistry (22%),
inorganic chemistry (14%), organic chemistry (13%) and material science (11%).

We observe the 758 pairs for 17 years on average,'® corresponding to 13,147 observations
at the individual-pair-year level. Southwest entry events map to 413 distinct new routes.
The median pair experiences Southwest entry in 1999, but we observe Southwest entry from
1994 to 2011. The mean number of copublications over the whole period is 1.9, but the
majority of pairs copublishes once. Only 9% of pairs collaborates both before and after

Southwest entry.
[Insert Table 2 about here]

It is useful to compare our analysis sample to other distant pairs that do not experience
Southwest entry. We have approximately 6,000 such pairs. These include pairs where South-
west is already present in the relevant market prior to 1993 when our sample starts, or has
not entered by 2012 when it ends. They also include cases where one of the pair members is a
new faculty hired after Southwest has already entered. The comparison is shown in Table 2.
The pairs that experience Southwest are not statistically different from the others in terms
of publications, but are slightly older (51 versus 49 years) and are observed on average for
a slightly longer period of time (17 versus 14 years).!? Importantly, there is no significant

difference in terms of R&D budgets or propensity to be in different subfields of chemistry.

17Specialization is inferred from the journals in which a scientist publishes. For instance, a faculty member
who often publishes in the Journal of Biological Chemistry is assumed to be specialized in biochemistry. See
Appendix Table A-4.

18 A pair is in our sample for a maximum of 22 years (from 1991 to 2011). We observe some pairs for less
than 22 years due to pair members starting their first faculty appointment after 1991, retiring before 2011,
or otherwise no longer being listed in the ACS faculty directory (e.g. because they moved to industry or to
a foreign country).

19This makes sense since a longer observation period mechanically increases the chances of experiencing
Southwest entry.
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3 Empirical Strategy and Main Results

Our empirical specification is a straightforward difference-in-differences framework at the
scientist-pair level where we exploit variation in Southwest entry across different airport
pairs over time. It includes scientist-pair fixed effects and is estimated using a Poisson
model:

Yije = BAfterSWije + pe + vij + €ije

where Y;j; is the number of copublications between scientist ¢ and scientist j in year ¢,
AfterSW;j, is an indicator variable that takes value 1 after Southwest entry, p, is a year
fixed effect, «;; is a pair fixed effect to control for unobservable, time-invariant differences
between pairs of scientists, and ¢;;; is an idiosyncratic error term.

Our analysis examines the change in the rate of collaboration and in the types of papers
that emerge over time for pairs that co-author at least once. Since our unit of analysis is the
scientist-pair-year and we include pair fixed effects, our main source of variation is the change
in Southwest status for treated pairs, where control pairs are constituted by pairs that never
experience entry or will experience it in the future. The pair fixed effects completely capture
pairs of scientists for which we never see activity, and thus we remove these from the analysis

without empirical consequences. Robust standard errors are clustered at the pair level.

3.1 Southwest Entry and Changes in Passengers, Prices, Miles
and Transfers

Before our main analysis, we check how the arrival of Southwest affects some of the key
passenger and fare metrics of interest in the air travel industry. In this exercise, we run
regressions at the airport-pair level, and compare a number of outcomes before and after
Southwest entry. Regressions include airport-pair fixed effects and year fixed effects. The
coefficients in Table 3 reflect the types of changes one would expect to take place after the
arrival of a low-cost competitor: the increase in the number of passengers is between 54%

and 57%2°, and prices drop by 17% to 19%. We do not find any effect on the average

20The 95% confidence interval for the number of passengers expressed in percentage change is [exp(0.4437—
1.96 % 0.005) — 1; exp(0.4437 — 1.96 * 0.005) + 1] or [0.543; 0.574].

13



miles flown?!

or on direct flights, and the reduction in the number of transfers is extremely
small. Overall, results are consistent with Southwest lowering the cost of air travel without
drastically changing the types of routes available or the number of miles passengers have to

fly to connect between two endpoints.
[Insert Table 3 about here]

3.2 Changes in Collaboration and Evidence for a Causal
Interpretation

After a reduction in travel costs, the relative attractiveness of the global pool of potential co-
authors should increase, since working with distant collaborators becomes more cost effective.
This should lead to an increase in collaboration between the affected locations. As can be
seen in Column 1 of Table 4 (which uses our main econometric specification), after Southwest
enters we observe a large and significant increase in collaboration between scientists at the
connected end points.??> Relying on a 95% confidence interval, we estimate that scientific
collaboration increases between 0.3 and 1.1 times.?® While the magnitude of the effect is
large, it is off a small base (the mean of the dependent variable is approximately 0.1), and
comparable with previous studies on the impact of communications, search costs and co-
location on scientific collaboration: Agrawal & Goldfarb (2008) find that Bitnet increased
the likelihood of collaboration between pairs of universities by 40%; Boudreau et al. (2017)
find that a 90-minute structured information sharing session led to a 75% higher probability
of co-applying for a grant; Catalini (2017) estimates that exogenous co-location increased

the chance of a collaboration between labs on the Jussieu campus of Paris by 3.5 times.

21The data from the Bureau of Public Transportation includes the number of miles flown for each itinerary.
Differences in miles flown arise from the number of connections an itinerary involves. We compute average
miles flown as the average across all passengers travelling between two airports in a given year.

22Collaboration between scientists is increasing over time. In our regressions, this trend is captured by
the inclusion of year fixed effects. Therefore, one can interpret our estimates as the relative percentage
increase in collaboration due to Southwest entry once the underlying increasing trend in collaboration has
been accounted for.

23The point estimate is 3 = 0.505 and the standard error 0.121. So the lower bound of the 95% confidence
interval expressed in percentages is (exp(0.505 — 1.96 * 0.121) — 1)/100=30.6%, and the upper bound is
(exp(0.505 + 1.96 % 0.121) — 1)/100=110.2%
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[Insert Table 4 about here]

One may worry that Southwest entry is systematically correlated with time-varying fac-
tors such as growth of the universities (or the regional economies) at both ends of the routes,
and therefore that collaboration would have increased even in the absence of a reduction in
travel costs. While our main specification already controls for aggregate time trends through
year fixed effects, the validity of our results could be threatened by systematic, time-varying
factors that affect the target locations around the time of Southwest entry. In Column 2,
we mitigate these concerns by controlling for two possible time-varying confounders: the
age of the scientist pair, and the (log of) departmental R&D budget per faculty member.
The first one accounts for changes in the incentives to collaborate as scientists progress in
their careers, the second for changes in the local economies. Whereas the coefficients for
the controls are positive and significant, our main result is unaffected. In Column 3, we
additionally control for the number of years that have passed since both scientists obtained
their PhD, a proxy for their ability to both decide who they want to collaborate with. This
estimated coefficient is negative and significant but again does not affect the estimate for
Southwest Entry. In Column 4 we study the dynamic effects of the reduction in travel costs
by replacing the treatment indicator for Southwest Entry from Column 1 with a set of four
dummy variables capturing the years around the treatment. For example, the indicator
Southwest Entry (-1) is equal to one if the focal scientist-pair observation is recorded one
year prior to the treatment. The other indicator variables are defined analogously with re-
spect to the year of treatment (0), the first year after treatment (1), and two or more years
after treatment (2+).2* The coefficient for Southwest entry (-1), which would capture any
‘effect’ of the new airline routes before their introduction, is insignificant, suggesting that
there is no collaboration pre-trend in the data, i.e. it is only once travel costs are reduced

that the coefficients turn positive and statistically significant.

[Insert Figure 1 about here]

24We adopt this particular specification because it is the same used by Bernstein, Giroud, and Townsend
(2015) in their study of venture capital monitoring and air travel costs, but show robustness to specifications
with additional years in Figure 1.
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A graphical version of a similar exercise with a full set of coefficient estimates for the 5
years before and 5 years after Southwest entry is displayed in Figure 1. There is again no
collaboration pre-trend before Southwest launches a route, and it is only after the new route
is available that the estimated coefficients are positive and steadily increasing in magnitude.?®
It is useful to highlight that publication lags in chemistry are substantially shorter than in
the social sciences: when studying the 10 major analytical chemistry journals (1985-1999),
Diospatonyi et al. (2001) find median lags between submission and publication of 3 to 10
months, with some journals publishing papers within 2 months of first submission.

In Column 5 of Table 4, we conduct a placebo test where we randomly allocate Southwest
entry events to scientist pairs. The coefficient for ‘Fake Southwest Entry’ is not significant
and close to zero, suggesting that it is not the structure of the panel or changes in the
data over time that are driving the result. In Column 6 of Table 4, we conduct one more
falsification test by looking at entry events (not included in the other regressions) where
Southwest withdraws from the market within two years. For these cases, the point estimate
of Southwest entry is close to zero and insignificant.?¢

Overall, we believe results in Table 4 and Figure 1 provide robust support for a causal
interpretation of our main effect, and reassure us that we are not simply measuring some
underlying, unobservable process that takes place with each entry event?” and drives both
Southwest decisions and the increase in scientific collaboration.

While Southwest is the largest U.S. low-cost carrier in terms of number of passengers
transported, there are other low cost airlines operating within the same market. In Appendix
Table A-12, we explore how our results vary depending on whether a low-cost airline is

already operating on a route, as well as whether they differ when other airlines (low-cost

25We repeat the same graph within the large sample at the CBSA-pair level in Figure A-1.

26While it may seem counterintuitive that early withdrawals are not associated with an effect, but that we
also obtain a positive estimate for Southwest Entry (0) in Column 4 of Table 4, it is important to highlight
that: a) 98% of early withdraws occur in the year of entry; b) when we separate entry events by quarter of
the year, we only find a positive effect for the year of entry when Southwest starts serving a route in the first
or second quarter of the year; ¢) the confidence interval for Southwest Entry (0) in Column 4, and for early
withdrawals in Column 6 overlap - so in a statistical sense, we cannot rule out the possibility of a positive
effect for these short spells associated with a withdrawal, even if the estimate is noisy.

2TWe observe Southwest arrival across multiple locations and years, which makes it unlikely that some
other simultaneous event is always co-occurring with the shocks we use.
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or not) start operating a flight in the same year as Southwest. Consistent with the impact
of Southwest on travel costs being largest when no low-cost alternatives existed on the
same route, estimates are larger when Southwest is the first low-cost to enter (Table A-
12, Column 2),2® and are positive, but non-significant when another low-cost was already
operating between the same airports (Column 3). Results are instead essentially unchanged
if we exclude cases where other low-cost airlines enter at the same time (Column 4), other
major airlines® enter at the same time (Column 5), or any other airline enters at the same
time (Column 6). We conclude that our results are robust to considering concurrent entry
by other airlines.?’

Results are also not driven by the fact that our sample includes only pairs that ever collab-
orate: when we include a random sample of non-collaborating pairs and replace individual-
pair fixed effects with university-pair fixed effects3!, we find comparable effects of Southwest
entry (see Table A-3). In Appendix Table A-14 we decompose the main effect by pairs of
scientists who collaborate both before and after Southwest entry (intensive margin pairs)
versus pairs of scientists who collaborate either before or after entry, but not both (extensive
margin pairs).*> We find a stronger effect for intensive margin pairs (Column 3), although
the cheaper fares also seem to enable experimentation in the form of new collaborations over

distance (Column 2).33

280ur list of low-cost airlines includes AirTran Airways Corporation, JetBlue, Frontier Airlines, Spirit Air
Lines, ATA Airlines, Allegiant Air, Virgin America, Sun Country Airlines, ValuJet Airlines and Vanguard
Airlines.

29We classify as major airlines: Delta, American Airlines, United Airlines, US Airways, Northwest Airlines,
Continental, America West Airlines, Alaska Airlines, Trans World Airlines and Envoy Air. These correspond
to the 10 companies with the largest numbers of passengers carried between 1993 and 2012.

300ne might also wonder about additional modes of transportation. As shown in Appendix Table A-13,
we find no effect of Southwest entry in the Northeast corridor, where train travel has been a consistent
alternative to flying.

31Tf we were to run this regression with individual-pair fixed effects, the non-collaborating pairs would be
dropped from the estimation.

32Tt is useful to highlight that since our unit of analysis is a pair-year and we observe the extensive margin
pairs both before and after entry, the Southwest entry variable is not absorbed by the pair fixed effects
and does have variation within these pairs. Some of these extensive margin pairs do not collaborate before
the event, and others do not collaborate after, so the estimated effect is a composition of the behavior of
both types of pairs. Since the estimate is positive and significant, we infer that on average Southwest entry
is associated with more non-previously-collaborating pairs engaging in collaboration than the other way
around.

33We also investigate whether the stronger effect for the intensive margin pairs is driven by continued
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In the Appendix, we perform additional robustness to different econometric approaches,
functional forms, clustering of standard errors, treatment of outliers and inclusion in the
sample of non-collaborating pairs. Briefly, we obtain qualitatively and quantitatively similar
results using ordinary least squares instead of Poisson (see Table A-16, Column 2). We
also obtain a positive and significant coefficient for Southwest entry (though of a somewhat
smaller magnitude) when we run a linear probability model with an indicator variable for
any copublication in the focal year as the dependent variable (see Table A-16, Column 3).
Clustering at the city-pair level, rather than at the individual-pair level, hardly impacts the
standard errors (see Column 3 of Table A-2). The coefficient on Southwest entry remains
significant when we exclude pairs that have more than two copublications over the entire

observation period, or winsorize observations with more than two copublications (see Table

A-17).

3.3 Extensions and External Validity in Different Samples

The analysis and results presented in the previous section describe the effect of Southwest
entry on the rate of collaboration between chemistry faculty members. While this approach
has the advantage of leveraging rich individual-level data and offers a cleaner identification
strategy, one may also be interested in replicating the analysis within a field with slightly
different characteristics, as well as testing external validity within a broader set of fields.
To do so, we first perform a deep-dive within mathematics (a field for which we have also
collected individual-level data), and then explore regressions at the region-pair level for
biology, physics and engineering. Results show that the effect we have identified within

chemistry is also present across these samples.

collaboration between former doctoral students or postdocs, and their advisors and sponsoring principal
investigators. To code these advisor-advisee pairs, we take advantage of the ordering convention for author
names in the field (juniors are typically listed first and principal investigators last). Results are reported in
Table A-15, and are suggestive of stronger effects among these special pairs, but the sample size is too small
to reach a conclusion.
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3.3.1 Increases in the Rate of Collaboration within Mathematics

The dataset we use for mathematics includes all U.S. faculty members that have advised at
least one PhD student.?* We observe 431 pairs of individuals that experienced Southwest
entry between 1993 and 2012 and have at least one copublication in that period. We adopt
the same empirical strategy as in the chemistry sample and regress copublications on an
indicator variable for Southwest entry, controlling for pair fixed effects and year fixed effects.

Results show that Southwest entry significantly increases copublications in mathematics too.

[Insert Table 5 about here]

3.3.2 Increases in the Rate of Collaboration Across Regions

To test if the availability of cheaper flights had an effect on scientific collaboration across a
broader set of fields, we also use a large-scale publication dataset covering close to a million
papers matched to U.S. regions (defined in terms of CBSAs — Core-Based Statistical Areas).?®
Specifically, we explore how collaboration between any two CBSAs changed after Southwest
starts operating a new route between them. The unit of analysis is the CBSA-pair-year
(48,274 pairs), and we include CBSA-pair fixed effects and year fixed effects to respectively
control for underlying differences across regions that are consistent over time, and overall

time trend.3® The regressions also include linear time trends for the origin and destination

34This database is based on MathSciNet, an abstracting service run by the American Mathematical Project
and the Mathematics Genealogy Project, which is targeted at tracking PhD theses in mathematics. We
construct a sample of US-based mathematicians who advise at least one PhD student, and deduce their
location from the institution their students graduate from.

35The starting point for the construction of this sample is the population of scientific articles published
in the top 477 scientific journals in biology, chemistry, physics and engineering between 1991 and 2012. We
have a total of 2,773,560 papers, of which 1,169,458 have at least one author with a U.S. address. Out
of all papers with U.S. addresses, we are able to successfully map 994,672 (85%) to a U.S. CBSA using a
combination of three different geocoding services (Google Maps API, Bing Maps API, and the Data Science
Toolkit). This allows us to link the vast majority of U.S. papers to the geographic regions involved in their
production.

36While this approach has the advantage of considering different fields of science, it also has important
limitations. We can no longer include scientist-pair fixed effects and account for idiosyncratic, unobservable,
and time invariant reasons that may drive collaboration between any two scientists. Core-based statistical
areas (CBSAs) may also be too large as a unit of analysis for correctly measuring the effects of interest.
Finally, our ability to test the full set of predictions of the model is limited.
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CBSA. For the estimation, we use a Poisson model with standard errors clustered at the

CBSA-pair level.
[Insert Table 6 about here]

Results are displayed in Table 6: the point estimates for Southwest entry at this more
aggregated level of analysis are significant not just in chemistry but also in biology, physics
and engineering. While the estimated coefficients for chemistry, physics and engineering are
not statistically different from each other, the difference between chemistry and biology is
significant.

Overall, we conclude that the results from the chemistry sample are generalizable to
other fields, and that the increase in collaboration is larger within biology. We now turn
to developing a simple model to place our main finding into the broader context of how
geographic frictions shape collaboration, and to guide the empirical exploration of additional

predictions.

4 Theoretical Framework

The objective of this section is to develop a simple theoretical framework to highlight key
trade-offs scientists face when deciding if they should collaborate with a local or a distant
co-author, and how much effort they should dedicate to a collaboration based on its intrinsic
potential. The model generates novel predictions about how travel costs shape collaboration
decisions, which we then test using our data.

We start by assuming that because the global pool of potential co-authors offers more
variety than the local one, it is on average possible to find better matches when team for-
mation is not constrained by geographic distance. The quality of a match may depend on
complementary ideas, knowledge, skills, equipment, and resources that a co-author brings to
a project. Of course, because of agglomeration forces, as the size, specialization and quality
of a region’s local pool increases, scientists will rely less on distant co-authors. To account

for this, in an extension of the baseline model we allow for the share of ‘first best” co-authors
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available locally to vary.?”

Our setup is straightforward: ideas are born with intrinsic quality ¢, but require effort e
to be developed and achieve their full potential v. Since scientists observe a noisy signal of ¢
before starting a project, they will allocate more effort, time and resources to projects that
have higher potential (i.e. in our model, effort is endogenous to potential). At the same time,
since research constitutes an uncertain endeavour, even when scientists apply effort projects
are only successful with probability p, which depends on the quality of the co-author match.
Thus, the realized value of a project can be expressed as v = p;qe, where p; (with i = G, B)
is higher when a good match between co-authors is achieved (pg), relative to a bad match
(pp). Although a two-sided matching framework would be more realistic, in the model we
abstract away from a setup where collaboration decisions are influenced by both sides. Our
approach follows a partial equilibrium model in which the pool of potential applicants always
accepts a collaboration when invited, and where proposers invite potential co-authors only
if they know the project is a fit for them and an interesting one for them to pursue.

Whereas the global pool may offer a better match between co-authors (i.e. pg) and
increase the chances of realizing a project’s full potential v, collaborating over distance
introduces additional costs, as scientists have to travel for face-to-face interactions, and may
be less effective at communicating complex information remotely. As a result, scientists face
a trade-off between less choice locally, and increased communication and travel costs over
distance.

It is important to highlight that the model is not focused on the decision to collaborate
or not (see for example Bikard, Murray & Gans, 2015), nor on the type of project to pursue
(this is discovered by the scientist at the start), but is explicitly centered on a situation
where a scientist is looking for the best co-author for a particular idea. Since we cannot em-

pirically measure search behavior and search frictions, the model also abstracts away from

37The fraction of first best co-authors in the global pool is assumed to be z. Since the global pool can
be seen as an average over all possible local pools, the fraction of first best co-authors in a given local pool
w can be either higher, lower, or equal to z. If w > z, then scientists will never collaborate over distance,
as they would incur additional costs but would not be more likely to find an ideal co-author over distance.
Therefore, the range of values of w that provides a meaningful trade-off is 0 < w < z. To simplify the
exposition, in the paper we will assume w = 0. More general cases are discussed in the Appendix.
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search costs, and assumes that the broader talent pool a scientist is considering is formed by
all the individuals a focal researcher is already aware of, has previously met at a conference,
has been colocated with, or has read work by. Boudreau et al. (2017) find that search
costs constitute a key friction to collaboration even within the same institution, so we make
the simplifying assumption of these costs being present both for local and distant collab-
oration decisions. In the model, we also abstract away from scientists’ budgets: although
in the regressions we are able to use departmental R&D budget data to explore heteroge-
neous effects, in the theory we do not account for the fact that scientists at better funded
institutions, or more productive scientists in general may have access to larger budgets and
may be therefore less sensitive to changes in travel costs. If that were the case, then the
reduction in travel costs could disproportionately help lower productivity researchers. We
also do not model endogenous time to project completion as a function of travel intensity,
or team dynamics beyond two authors. Nevertheless, the stylized framework allows us to
obtain several additional predictions that we then take to the data.

In the next sections, we perform comparative statics and explore the main tensions of

the model in more detail.

4.1 Local versus Distant Collaborations

The scientist’s payoff from developing an idea with a local co-author for a given level of effort
e is:

mr(e) = ppge — c(e) (1)
where c¢(e) is the cost of effort which we assume for tractability to have the following convex
function: ¢(e) = $e?. Thus, equation (1) can be re-written as:

«
7r(e) = ppge — 562 (2)

The first order condition yields an optimal effort level of ej = P24, which is increasing

both in project quality ¢, and in the quality of the co-author match pg. Intuitively, scientists

are more willing to apply effort to projects with higher potential, and to projects they are
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working on with better matched co-authors. Inserting e§ back into (2), we obtain a scientist’s

payoff for a local collaboration given the optimal effort level as:

. (pB9)?
T =g (3)

How does this compare to a distant collaboration? In our setup, over distance, scientists
have a higher chance of securing the ideal co-author because the global pool offers more
variety. At the same time, this does not happen all the time, and scientists have to incur
additional communication and travel costs t; to develop a project over distance. We assume
that with probability z scientists find a first best co-author and secure pg, and with prob-
ability (1 — z) they land a co-author of the exact same level they would have found in the

local pool pg. Thus, the payoff for a distant collaboration can be written as:

62 62
mp(e,t) = (1 — 2)[ppges — ag —|—BtB — B3] + z[pagea — aﬁ — BtZ], (4)

where e; and t; with ¢ = G, B are the optimally chosen levels of effort and travel for
perfectly matched co-authors (pg) versus imperfectly matched ones (pg).

Traveling enters as a convex cost®® (t; = [0, 1], scaled by a parameter 3)*°, but also
increases the chances of success because it improves the ability to communicate complex in-
formation, coordinate work and make progress on a project through face-to-face interactions.
This trade-off allows for interesting cases to emerge where temporary co-location between
distant co-authors is expensive but also helpful, and can therefore lead to both higher and
lower payoffs relative to a collaboration on the same project with a local co-author.

The basic dynamic we want to capture is one in which collaboration and communication
require less effort when scientists are colocated, but where travel can also be strategically used
to recreate the same efficiencies experienced in local collaborations. When communicating

over email or phone co-authors may need more time and effort to convey the same concepts

38Longer air travel incurs additional costs, including a longer time in the air, additional transfers, the
inability to perform the trip within a day, accommodation costs, time zones and fatigue. In the data,
fare prices also increase more than proportionally with distance (i.e. when we estimate TicketPrice =
b0 + bl * Distance + b2 x Distance?, we systematically obtain a coefficient b2 > 0).

391f t; = 1, face-to-face communication is always available (as with a local collaborator), and the cost of
effort would be the same under both scenarios. Advancements in communication technology and virtual
reality can be therefore thought of as changes in ¢;.
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and avoid misunderstanding, and when in person meetings are infrequent it may take more
time for a team to get everyone up to speed and make progress. In the model, distant co-
authors can either spend more effort and communicate over distance, or invest in travel and
rely on more effective face-to-face interactions.*°

For simplicity, we assume that once a local versus distant co-author has been chosen for
a project, it is too costly to switch type without starting a completely new project.** We
also assume that before a substantial amount of effort and travel is dedicated to a project,

the quality of a co-author match has been revealed. The first order conditions with respect

to effort and traveling are, respectively:

piq(1 +1tp)
tn) = 24 - 2/
eD( D) 2a
2
€D
—— —208tp =0

where ¢« = B, G depends on whether the distant co-author has led to a first best or a second
best match. Combining both first order conditions, one can show that the optimal levels of

travel and effort for a distant collaboration are:

)2

£ = @8’:3; (5)
er =Ly =B 4 (M)Q) (6)
? 200 v 2a S(Xﬁ

If we plug these back into the payoff function we obtain:

(pig)* , , 1 (pig)* , | (i)
i 4o (1+ 2 i) 4o (1+ 16aﬁ) 0
Thus, the overall payoff over distance is:
= (1 — 2)np + 27, (8)

40Furthermore, since as co-authors invest more in travel and in-person meetings one could imagine the two
effort functions should look more similar, in our model as ¢ converges to its upper bound (¢ = 1), €?/(1+t;)
converges to the cost local co-authors face, e2/2. Le., one can think of the effort cost under co-location to
be a particular case of a distant collaboration facing the minimum possible cost of effort.

410ne intuitive way to think about changing a co-author within our simple framework is to imagine the
original project failing, and a new one being launched with a different team.
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Comparing payoff equation (3) for local collaborations with equation (8) for distant ones
is informative independent of travel costs (which we discuss in detail in the next section).
For example, it allows us to explore how the relative appeal of a local versus a distant
collaboration changes as the comparative advantage of the global pool (z) over the local one

varies:
Ilmp — 7]

0z

Intuitively, an increase in the likelihood of finding a first best co-author in the global pool

=nn—7p>0 9)

will lead to a relative increase in the payoff for distant over local collaborations. Similarly,
if scientists enjoy a high quality local environment with good matches (e.g. they are in
an agglomerated research cluster), they will find limited benefits from collaborating over
distance.

Until now, we have assumed that all scientific projects have the same probability of
failure. At the same time, novel, exploratory and cross-disciplinary projects are more likely
to fail relative to incremental research or work that does not attempt to recombine knowledge
across different disciplines (National Academies, 2004; Wang, J., Veugelers, R., Stephan, P.,
2017). To account for this we introduce 7y, and link it to the overall probability of success
through pg = (1 + v)pp. What we want to capture with ~ is a tension between exploitation
(low ) and exploration (high 7). Exploratory projects, whether because they are novel or
because they bring together disciplines that rarely interact with each other, are more likely
to fail, and benefit disproportionately from finding the right co-author. The intuition here
is that for cross-disciplinary research a scientist needs to find the exact specialist to pursue
the project with,*? and similarly when novelty is high, the returns from working with a
better co-author are also higher. Novel projects are very likely to fail to begin with, and
may be particularly sensitive to the weakest member of a team, as discussed in Kremer’s
(1993) O-Ring theory. Whereas in the baseline model we discuss novelty and across-field
specialization together — as they share many similarities and both fit under the broader

framework of exploratory versus exploitative research — in the extensions we separate the

42For example one that is able to understand and interpret the contributions and language from another
discipline.
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two constructs further by incorporating uncertainty and higher variance about the potential
states of the world in Appendix D, and by modeling co-author specialization directly in
Appendix E. Since the implications are similar, in the paper we focus on the simplified
implementation based on ~.

For a given pp, a low v means that the quality of the match between co-authors will have
a minor influence on the chances of realizing a project’s full potential. Low ~, exploitation
projects are therefore relatively more straightforward research where most of the techniques
and ideas are established (or everyone has access to similar infrastructure to work on them),
and the gap between working with the best possible co-author versus anyone else is small.
When 7 is low, the relative appeal of the global talent pool is more limited. For high -,
exploration projects, instead, scientists will be more willing to travel to work with the ideal
co-author and increase their chances of success:

Olmp —mi] __ 9lmgl

5 =gy >0 (10)

An extreme example of this from a specialization perspective is a project for which there are

only a few leading experts or key labs with the right equipment (e.g. CERN, LIGO etc.),
and the difference between working with them relative to working with a local alternative is
large.

Last, when comparing local versus distant collaborations, it is useful to point out that
increases in the underlying, intrinsic project quality (¢) have an ambiguous effect on the
choice of co-author type. As shown in the Appendix, which type of collaborations prevail
still depends on the basic trade-off between the quality of the match between scientists and
travel costs (since a distant collaboration can still leave a scientist with a match of similar

quality to the local alternative).

4.2 Reductions in Travel Costs and Changes in the Types
of Collaborations

How does a reduction in travel costs affect the types of collaborations scientists engage in? In

this section, we perform comparative statics to see how cheaper fares like the ones brought by
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a low-cost airline change the relative attractiveness of local versus distant collaborations, and
how this effect varies for projects of different types (higher versus lower potential, novelty,
or interdisciplinarity, etc.). To simplify the notation and exposition, we define § = % (which
is the inverse of travel costs) as the “ease of travel”. One can think of an improvement in
0 as better infrastructure that allows scientists to meet with their distant co-authors at a

lower cost and with lower frictions. The derivative of relative returns with respect to 6 is:

W (P 2+ 2] > 0 (11)

S
0 does not matter for the returns to local collaborations (7} ) as no travel is required, but
it makes face-to-face interactions with distant co-authors less expensive. Therefore, it is
intuitive that with better travel technology the relative attractiveness of the global talent

3 as accessing it is now more cost effective.

pool increases,*

But how does this effect vary with the ex-ante relative competitiveness of the local pool?
L.e., how does this vary for regions that offer better versus worse alternatives to begin with?
Remember that this is captured in our framework by the share of first best co-authors that

are in the global pool z. Taking the first order condition with respect to # and z we obtain:

2

— (L2t —ph) >0 (12)

omp —mi] &
8a

000z
Which leads to the following prediction:
Prediction 1: A reduction in travel costs will be especially beneficial for researchers that
have access, ex-ante, to a relatively worse pool of local co-authors.
Empirically, if highly productive researchers embedded in worse local environments start
substituting local collaborations with better matched ones over distance, we should see evi-
dence of crowding out behavior.

If we take the derivative of relative returns with respect to quality too:

2

= (11— 2)ph + 2pt] > 0 (13)

Olrp — 7]

000q
we see that after an improvement in the ease of travel, higher quality projects are more likely

to be undertaken with better matched co-authors (which are more abundant over distance).

43Notice that this holds for the general case of 0 < w < z, and is not limited to cases where w = 0.
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The intuition here is that as travel costs fall, scientists are more likely to travel to match
with a better co-author. This is disproportionately valuable when the returns to travel and
effort on a project are high to begin with, i.e. for ideas of high potential. This leads us to
our second prediction:

Prediction 2: A reduction in travel costs will be especially beneficial for distant collab-
orations on higher quality projects.

Last, if we do not assume that all projects have the same probability of failure and

separate exploratory from exploitative projects by introducing v, we obtain:

2

= 2(-)(1+7)"ph > 0 (14)

O[mp — 7]

000~

which shows that a reduction in travel costs makes the global pool disproportionately more
appealing for exploratory projects (high v),* or restated:

Prediction 3: A reduction in travel costs will be especially beneficial for distant collab-
oration on novel or cross-disciplinary projects.

Empirically, to proxy for v we will rely on how novel the keywords used by the authors on
a focal paper are, as well as explore results for collaborations that span different sub-fields

of chemistry versus not. We now return to the data to test these predictions.

5 Testing the Theoretical Framework
5.1 Types of Scientists Affected and Crowding Out

Having shown evidence in Section 3 that Southwest entry led to a plausibly causal increase
in collaboration between the affected scientists, we now take advantage of this source of
exogenous variation to test the additional predictions from the theoretical framework.

The first prediction of the model focuses on the impact travel costs have on scientists
embedded within better versus worse local research environments. Intuitively, agglomerated
regions with a greater number of potential collaborators offer on average better local matches

to begin with, which makes the global scientist pool relatively less appealing. Since it is

44Intuitively, in our model this is a result of the complementarity between v and the quality of a co-author
match.
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difficult to build accurate proxies for the number of ideal co-authors a specific scientist may
have access to without traveling, we rely on past productivity to assess if a scientist from a
given department is more versus less likely to find a good match locally.

As can be seen in Panel A of Table 7 (Columns 1 to 3), the increase in collaboration
we observe in chemistry after the arrival of Southwest is driven by scientist pairs where at
least one member is more productive than her local peers, and is even more pronounced
when both scientists are more productive than their colleagues. In the mathematics sample,
where we only have a small number of observations in Column 1, the effect is positive and
significant only for pairs that are both more productive than their local peers (Column 3),
possibly because distant collaborations are more rare and selected in this field to begin with.

Overall, the cheaper fares seem to be particularly helpful for individuals that are talented,
but potentially do not have access to co-authors of comparable quality within their local
environment. They might be in peripheral institutions because of imperfections in the labor
market, or simply because of their geographic preferences. With lower travel costs, these

individuals are able to find and sustain better matches over distance.
[Insert Table 7 about here]

As mentioned in the theoretical framework, a natural consequence of highly produc-
tive scientists prioritizing distant co-authors in their collaboration portfolio because of the
lower fares is a crowding out effect on local collaborations. In Table 8, we explore if the
cheaper fares have a negative impact on the local collaboration environment. While local
copublications are slightly increasing (Column 1), this result is really a composition of two
different, counterveiling effects. On the one hand, less productive pairs seem to be working
together more with each other (Column 3). On the other hand, we see a sharp decline in
collaborations between above average productivity scientists and their local, below average
productivity peers (Column 2).% This makes sense as higher productivity individuals are

also the ones that respond the most to Southwest entry to begin with. Interestingly, we find

45 Additionally, when we consider the quality of the local collaborations of these above average productivity
scientists and their local, below average productivity peers, we find that it goes down following Southwest
entry (Appendix Table A-18 column 1), although the effect on novelty is insignificant (Column 2).
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this crowding out pattern both in the chemistry and in the mathematics sample, suggest-
ing that when better options become available over distance, highly productive scientists

substitute local collaborations with potentially better matched ones over distance.
[Insert Table 8 about here]

In Appendix Table A-19 we present additional splits of the data beyond those predicted
by the theory. The effect of Southwest is stronger for younger scientists (Panel A), and
scientists that are more distant from each other (Panel C). We do not find a statistically
significant difference in effect size by departmental R&D budget (Panel B), even though the
estimate for departments with low budgets is almost twice as large as the other ones. Last,
pairs where one or both scientists are female do not respond to lower travel costs, possibly

because women may have more constrained travel schedules.

5.2 Changes in the Type of Projects

The next set of predictions of the model link the reduction in geographic frictions to an
increase in the amount of time and effort allocated to higher quality (Prediction 2) and more
novel or cross-disciplinary projects with distant co-authors (Prediction 3). As discussed in
Section 2.1, we proxy for the quality of projects using citations, and for high v projects by
looking both at projects that span different sub-fields, as well as research that uses novel
keywords or belongs to an emerging novel trend. If exploratory projects (high ) are more
likely to fail, then our estimate will likely underestimate the full impact of a reduction
in travel costs on this set of projects, as many will be abandoned and never turn into a
publication to begin with.

In terms of project quality, in Column 1 of Table 9 we condition on collaboration and
weight the dependent variable, copublications, by citations received (a proxy for scientific
impact and quality). Consistent with Prediction 2 and with the idea that lower travel costs
induce scientists to allocate disproportionately more effort to distant collaborations as quality

increases, we observe a larger effect of Southwest entry on right tail projects.
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In terms of interdisciplinarity, in Panel A, Columns 4 to 5 of Table 7 we see that af-
ter Southwest enters, collaborations between scientists specialized in different sub-fields of
chemistry increase disproportionately relative to other types of collaborations.* These in-
terdisciplinary projects may benefit more from face-to-face interactions because of a greater
need to exchange complex information which may be new for at least one of the participants,
or because these pairs cannot rely on a shared, discipline-specific vocabulary to streamline
communications over distance.

Beyond complementarities in ideas and knowledge, cross-disciplinary work between spe-
cialized labs can also be captured through complementarities in equipment and infrastruc-
ture. In Columns 7 and 8 of Table 9, the dependent variable is respectively the number
of equipment-intensive copublications (Equipment 1), and the count of equipment-related
keywords used in the focal papers (Equipment 2).%7 Although these types of collaborations
are more rare, the effect of Southwest entry is large and significant, suggesting that at least
within chemistry specialization driven by equipment may play a key role in how scientists
select into distant collaborations. In Appendix Table A-20, we perform a similar regression
without relying on equipment-related keywords, but taking advantage of data on capital
intensity by department: results show that the lower fares have the largest effect on collab-
orations where one of the scientists belongs to a capital-intensive group, and the other one
does not.

Last, in Columns 2 to 6 of Table 9 we directly look at different measures of novelty. Re-
sults are consistent across the dependent variables and provide further support for Prediction
3. After Southwest enters, we see an increase in collaborations that focus on emerging novel
trends and topics that are about to become ‘hot’ (Column 2), as well as an increase in the
use of novel keywords (Columns 3 to 5). Interestingly, when we define novelty within the
more narrow confines of a sub-domain (Column 6), the result is insignificant, possibly be-

cause some of the novel uses from Columns 2 to 5 may represent ideas that are being slowly

46 A result that we do not find in mathematics, possibly because some of the cross-disciplinary collabora-
tions within chemistry may be driven by access to specialized equipment.
47See Section 2.1 for additional details.
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incubated within a sub-domain, but have not diffused more broadly yet.
[Insert Table 9 about here]

Next, we study how Southwest entry changes the types of collaborations that are pursued
at the regional level. The analysis of collaborations at the dyadic level between chemistry
faculty members already suggested that lower travel costs are particularly beneficial for
higher-quality, interdisciplinary, equipment-intensive and more novel projects. However, the
estimates are significant but noisy because of the smaller sample size when looking at these
rare outcomes. We therefore replicate our analysis within a broader set of papers in chemistry
and related fields. The analysis is at the CBSA-pair-year level and includes CBSA-pair fixed

effects and year fixed effects.
[Insert Table 10 about here]

The effects (see Table 10) are consistent with our previous findings, and highlight that
lower travel costs have a disproportionate effect on the right tail of the quality distribution,
and on more novel, cross-disciplinary, and equipment-intensive projects. The impact of these
changes is large, with increases in aggregate output between 9% and 40% (Column 1). This
corresponds to roughly 300 extra copublications per year.*® We also find support for the
other predictions. Novel ideas increase between 15% to 80% (Column 4), but the estimate
is noisy (as in Table 9) when we estimate novelty within sub-fields, and equipment-intensive
collaborations increase between 5% and 50%.

Our analyses so far have focused on how reductions in travel costs induced by Southwest
entry affect pair-level outcomes. Our model, however, also predicts that higher impact
projects should mostly result from distant rather than local collaborations. To test this
implication, we focus on individual researchers and change the unit of analysis to a paper,

which we flag as local or distant.*> We then regress the number of citations a paper receives

48The sample mean for copublications at the CBSA-pair-year level is around 2.1, leading to an increase of
0.42 per CBSA-pair-year. We have around 2,100 pairs per year, of which around one third are in treatment
status. So a back of envelope estimate is 0.42*%2100%0.33=294.

49Papers not involving a collaboration with another faculty member are excluded
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on an indicator variable for whether the paper resulted from a distant collaboration (the
omitted category being a local collaboration), controlling for year fixed effects and scientists
fixed effects. We find that long-distance collaborations get 6% to 7% more cites than local
ones in chemistry, and 21% to 24% more in mathematics (Table 11). These results are

consistent with the often reported stylized fact that distant collaborations are more heavily

cited (Jones, Uzzi & Wuchty 2008).

[Insert Table 11 about here]

6 Conclusions

The paper explores how geographic frictions, and in particular travel costs, shape the rate and
direction of scientific research. Whereas previous work has mostly focused on communication
costs and their impact on the rate of collaboration, our paper emphasizes other effects
distance-related frictions can have on innovative outcomes, including the type of projects
that are pursued with local versus distant teams.

While both Gaspar & Glaeser (1998) and Kim, Morse & Zingales (2008) have suggested
that the secular decline in air travel costs might have led to an increase in scientific collabora-
tions, they do not take their prediction to the data, making this the first study to do so. We
build on a vibrant literature that has looked at how scientists respond to reductions in com-
munication costs, and how changes in the infrastructure of collaboration can counterbalance
preexisting geographic frictions (Agrawal & Goldfarb 2008, Ding et al. 2010). In particular,
our finding that highly productive scientists that are embedded in worse local environments
disproportionately benefit from reductions in travel costs is complementary to Agrawal &
Goldarb’s (2008) result that reductions in communication costs allow for better matches
between top tier and middle tier institutions from the same region. It is also consistent with
Ding et al.’s (2010) finding that lower communication costs help scientists from non-elite
institutions. Relative to reductions in communication costs, which Ding et al. (2010) show

have a positive effect on women scientists, in our setting lower travel costs only help men —
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possibly because women scientists have more constraints on their travel schedules.®

The paper also extends work that studied the effect of geographic frictions at a much
smaller scale, as it provides insights on how easier access to better distant collaborators
influences local collaboration decisions. While studies at the microgeographic level have
shown that co-location influences the probability and quality of collaboration (Catalini,
2017), we show that additional, and at times opposing forces may be at work at a larger
scale through travel costs. Our findings also call for more research on the exact form search
costs take when scientists explore collaborations with local versus distant co-authors: while
our model abstracts away from these frictions, Boudreau et al. (2017) show that they are a
major obstacle even for colocated individuals.

Our theoretical framework builds on a tension between lower collaboration costs when
co-located, and the availability of a broader set of potential collaborators over distance. We
start from this basic trade-off and then explore some of the key choices scientists face when
deciding if they should collaborate locally versus over distance, how much effort to allocate
to projects of different potential, and who they should pursue a more novel or interdisci-
plinary project with. We test the predictions from this framework by taking advantage of a
source of plausibly exogenous variation in travel costs: the differential timing of entry by a
low-cost carrier across multiple U.S. airports. Our difference-in-differences empirical strat-
egy, combined with a series of robustness and falsification tests, supports the idea that the
availability of lower fares had a causal effect on the probability and intensity of collaboration

between scientists.?? The effect is particularly pronounced for scientists that are less likely to

50Policies targeted at reducing geographic frictions through lower travel costs may therefore need to account
for the total cost of travel (including the opportunity cost of time) different types of individuals actually
face.

51A back of the envelope calculation suggests that Southwest entry induced close to 400 copublications
among chemistry faculty pairs. The sample mean of 0.1 copublications per year increases by 50% to 0.15
copublications per year after Southwest entry. We have 750 pairs and 10 post-entry years on average, leading
to a back of envelope estimate of 0.05 * 750 * 10=375 copublications. While this number is sizeable, it is small
relative to the total number of copublications among chemistry faculty members in this period. However,
Southwest entry corresponds to a 20% price reduction affecting only a fraction of faculty pairs (a large
fraction of pairs are served by Southwest or other low-cost carriers before our observation period). Over the
last 30 years, the cost per mile for air travel across all routes within the U.S. dropped by 50% (Perry 2014).
This suggests that reductions in air transportation overall could have had a substantial aggregate effect on
collaboration, above and beyond the particular source of variation in air travel cost we use in this paper.
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find co-authors of the same quality within their local environment, is present across multiple
fields of science (chemistry, physics, biology, engineering, mathematics), and is robust to
controlling for idiosyncratic scientist-pair characteristics, trends in collaboration over time,
and department R&D budgets. Moreover, we do not observe a pre-trend in collaboration
between scientist pairs that are going to experience lower air travel costs in the future.
Consistent with the theory, the reduction in geographic frictions also transforms the type

of projects that emerge, influencing the direction of innovation:®?

our estimates suggest a siz-
able increase in higher quality papers, in projects that span different sub-disciplines, are more
intensive in their use of specialized equipment, and are more novel. Comparisons between
our findings in chemistry and mathematics suggest that complementarities in specialized
equipment — while important for collaboration decisions between distant labs — are not the
only driver behind the observed increase in joint projects over distance. Scientists also launch
more experimental projects and projects that seem to take advantage of the complementary
skills, ideas and knowledge that a distant lab may contribute to a collaboration.

Beyond the lower fares introduced by the low-cost airline we study in the paper, the
cost per mile in the United States has dropped by over 50% in the last 30 years (Perry,
2014),5% and convenience and routes have greatly improved. Our results should be therefore
interpreted within this broader context of improvements in our ability to travel and work with
distant collaborators. Whereas we cleanly estimate the impact of only part of these changes,
improvements in air travel are likely to affect a much larger population of individuals. This
includes inventors and researchers working within firms or public organizations that have
multiple sites and face a similar trade-off between the ability to form ideal teams when not
constraining their search for participants to one location, and the additional communication,

1.54

coordination and travel costs geographically dispersed teams entai As advancements

52For additional work focused on changes in the direction of research see Furman & Teodoridis, 2017;
Catalini, 2017.

53We would expect similar effects in Europe, where low-cost airlines had even more of an effect on market
structure and competition, as well as on uniting different economies.

54There is an interesting parallel here with the literature on communications costs and collaboration: while
Agrawal & Goldfarb (2008) focused on academic collaborations, Forman & Zeebroeck (2012) subsequently
found that the internet fostered R&D collaborations within firms. In principle, one could make progress on
this related question using patenting and co-invention data together with our empirical strategy.
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in communication technology make online interactions increasingly closer in latency and
fidelity to offline ones, more research is needed to understand why face-to-face exchanges
still appear to be a complement rather than a substitute to remote ones. In particular,
while online exchanges seem to work well for executing on existing ideas, offline ones may
still offer greater serendipity (Catalini, 2017). Moreover, trust between participants — often
a prerequisite for collaboration when uncertainty makes it difficult to precisely evaluate
individual contributions and effort — seems to still depend on individuals having spent enough
unstructured time together in the same location.

Overall, relative to location decisions, which are extremely expensive for organizations
to shape in the short run, the paper shows that investments targeted at facilitating travel
and incentivizing face-to-face interactions may have higher returns than previously expected.
This is because they not only affect the intensity of collaboration, but also the quality and
impact of the resulting work. By facilitating better matches and more productive teams,
they also support novel recombinations of ideas. While it may be tempting for firms and
public funding agencies to assume that they can rely on technology to reduce costs and
replace travel, our results support the view that — at least in the case of innovative outcomes
— this is unlikely to be the case. The findings also show that this constitutes an opportunity
for these organizations, as support for travel is a flexible policy lever that can be adjusted
over time to shape R&D trajectories.

Whereas geographic distance acts as a sizable disincentive to collaboration and idea
recombination, organizations can institutionalize and encourage travel to offset its effect.
From a policy perspective, support for travel and better infrastructure can also be used
to offer better opportunities to individuals and organizations that are located away from
key economic and innovation hubs, influence the strategic location decisions of firms, and
ultimately support economic growth. Firms with a geographically dispersed customer base
rely on air travel (both for cargo and for employees) to remain competitive, and there have
been multiple cases in recent years of headquarters being moved, among other reasons, for

better access to flights: for example in 2017 Caterpillar Inc. decided to move from Peoria
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(IL) to Chicago to better serve its customers, the vast majority of which are international.?

Further exploring the trade-offs geographic frictions introduce for individuals and firms in

these different contexts is a fruitful area for subsequent research.

55See https://www.vox.com/the-goods/2018/11/12/18080806 /air-service-small-cities-crucial
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Tables

Table 1: Summary Statistics (Main Sample)

Variable Mean  Std. Dev.

Individual Scientist Level (n=845)
Age 49.6 11.0
Female .10 .30
Average R&D budget 279.88 226.75
in dept. (1000s USD)
Speciality:

Physical chemistry .32 AT

Biochemistry 22 41

Inorganic chemistry 14 .34

Organic chemistry A3 .34

Material science A1 31

Other .08 .27
Individual-Pair Level (n="758)
Year of Southwest entry 2001 4.5
Distance (in miles) 1232 808.6
Years in sample 17.3 4.6
Total copublications 1.9 3.4
Copub. both before and after .09 .28
Copub. before Southwest entry .49 .50
Copub. after Southwest entry .60 49
Individual-Pair-Year Level (n=13,147)
Copublications A1 41
Local copubs 1.83 2.69
Local copubs with less productive colleagues 0.62 1.42
Different type of chemistry 0.46 0.50
One above average 0.67 0.47
Both above average 0.26 0.44
Individual-pair-year level conditional on copublication (n=1,177)
Cites 44.95 71.83
Equipment Intensive 1 0.35 0.58
Equipment Intensive 2 0.48 0.87
Novel trends 0.12 0.36
Mean share novel 0.10 0.24
Max share novel 0.12 0.26
Total share novel 0.13 0.31
Novel in field 0.30 0.40
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Table 2: Comparing Pairs in the Analysis Sample to Pairs Not Experiencing
Southwest

Distant Pairs Not Analysis P-Value For
Experiencing SW  Sample Equality of Means

Total copublications 1.78 1.90 0.19
Number of years observed 13.85 17.51 <0.01
Age (average in pair) 49.16 51.23 <0.01
Different type of chemistry 0.46 0.45 0.79
Average R&D budget in dept. 288.9 278.1 0.17
Observations 5,954 758

Table 3: Effects of Southwest Entry on Price, Passengers and Routes

(1) (2) (3) (4) (5)
Passengers Mean Price Average Miles Direct Flight Number
(log) (log) Flown (log) of Transfers
Southwest Entry 0.4437*  -0.1910** 0.0007 0.0002 -0.0174**
(0.0050) (0.0024) (0.0006) (0.0004) (0.0017)
Airport-Pair Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep. Variable 4.238 5.454 7.066 0.007 1.239
Number of Pairs 55750 55750 55739 55750 55750
Number of Observations 956029 956029 955983 956029 956029

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01, Southwest entry is
an indicator variable that takes value 1 if Southwest has started operating a flight between airports. All
specifications include airport-pair fixed effects and year fixed effects. Estimation by ordinary least squares.

44



Table 4: Effect of Southwest Entry on Copublications at the Individual-Pair Level

(1) (2) (3) (4) () (6)

DV=Copublications Baseline Controls Controls Timing Placebo 1 Placebo 2

Southwest Entry 0.505"**  0.526™**  0.526*** -0.029
(0.121)  (0.121)  (0.121) (0.216)
Mean Age 0.153***  0.268***
(0.008) (0.015)
Dept R&D Budget 0.364**  0.364***
per Faculty (log) (0.127) (0.127)
Years Since Both -0.230***
Have a PhD (0.022)
Southwest Entry (-1) 0.078
(0.152)
Southwest Entry (0) 0.485***
(0.150)
Southwest Entry (1) 0.518***
(0.166)
Southwest Entry (2) 0.582***
(0.181)
Fake Southwest Entry 0.095
(Random Timing) (0.121)
Individual Pair FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Pairs 758 758 758 758 758 171
Number of Obs. 13,147 13,147 13,147 13,147 13,147 2,945

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent variable is the number of
copublications between pairs of scientists. Southwest entry is an indicator variable that takes value 1 if Southwest has started
operating a flight from airports close to the respective scientists. All specifications include individual-pair fixed effects and year
fixed effects. Column 1 is our baseline specification. Column 2 adds controls for the age of the pair members and departmental
R&D budget per faculty (both variables are means across the two pairs members). Column 3 additionally controls for the
numbers of years that have passed since both pairs members obtained their PhD. Column 4 replaces Southwest entry with a
set of indicator variables corresponding to different times from or since entry: Southwest entry (-1) is an indicator variable if
the observation is in the year preceding Southwest entry; Southwest entry (0), Southwest entry (1), Southwest entry (2+) are
defined analogously for the year of Southwest entry, the year after Southwest entry, and two years or more after Southwest
entry. Column 5 is a placebo where we pretend Southwest entry has occurred in a random year for each pair. Column 6 is a
placebo where we look at the set of pairs (not included in the baseline specification) who experienced Southwest entry followed
by a Southwest exit event shortly thereafter. Estimation by Poisson Quasi-Maximum Likelihood.
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Table 5: Effect of Southwest Entry on Collaboration Among Mathematicians

(1)

DV=Copublications Mathematics
Southwest Entry 0.247**
(0.123)
Pair Fixed Effects Yes
Year Fixed Effects Yes
Number of Pairs 431
Number of Observations 5,514

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are
based on a dataset of U.S. mathematicians constructed using MathSciNet and the Mathematics Geneaology

Project.

Table 6: Southwest Entry and Collaborations Between U.S. Regions (CBSAs)

(1) (2) (3) (4) (5)

DV=Copublications All Chemistry Biology Physics Engineering
Southwest Entry 0.503***  0.159***  0.494***  0.141*** 0.238***

(0.020) (0.033) (0.032)  (0.031) (0.055)
CBSA Pair Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
City Trends Yes Yes Yes Yes Yes
Testing Ho B)=2) @=2) (6)=(2)
p-value 0.045 0.701 0.216
Number of Pairs 48,274 15,303 22,079 15,872 7,635
Number of Observations 965,480 306,060 441,580 317,440 152,700

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 These regressions
are run at the CBSA-pair level. The dependent variable is the number of copublications between pairs of
CBSAs. Southwest entry is an indicator variable that takes value 1 if Southwest has started operating a
flight from airports close to the respective cities. Column 1 is based on copublications in all journals in our
sample. Columns 2, 3, 4, 5, are based on chemistry, biology, physics and engineering journals respectively.
All specifications include CBSA-pair fixed effects, year fixed effects, an origin-CBSA time trend and a

destination-CBSA time trend.

We also report p-values of statistical tests for the equality of Southwest Entry

coefficients across samples. Estimation by Poisson Quasi-Maximum Likelihood.
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Table 7: Effect of Southwest Entry on Copublications: Which Pairs Are Most
Affected?

Panel A: Chemistry

(1) (2) (3) (4) ()

DV=Copublications Both Less  One More Both More  Same type  Different Type
Productive Productive Productive of Chemistry of Chemistry
Southwest Entry 0.228 0.566™** 0.863*** 0.340** 0.668**
(0.292) (0.153) (0.272) (0.164) (0.165)
Pair Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Testing Hy (2)=(1) (3)=(1) (4)=(5)
p-value 0.015 0.003 0.002
Number of pairs 154 403 101 417 341
Number of observations 2498 6597 1630 7183 5964

Panel B: Mathematics

(1) (2) (3) (4) ()

DV=Copublications Both Less  One more Both More Same type Different Type
Productive Productive Productive Math of Math
Southwest Entry 0.196 0.002 0.374* 0.260 0.204
(0.364) (0.192) (0.155) (0.173) (0.158)
Pair Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Testing Hy @=1)  (3)=0) (4)=(5)
p-value 0.638 0.653 0.900
Number of pairs 61 155 263 180 299
Number of observations 859 2001 3318 2223 3955

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Panel A corresponds to
our main chemistry sample. Panel B corresponds to the mathematics sample. The dependent variables in all
specifications is the number of copublications. Different columns correspond to different subsamples in terms
of productivity (columns 1-3) and whether both pair-members are specialized in the same subfield (column
4) or not. Productivity is measured as of the time of Southwest entry. All specifications are estimated by
Poisson Quasi-Maximum Likelihood and include year fixed effects and pair fixed effects.
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Table 8: Southwest Entry and Local Copublications

Panel A: Chemistry (1) (2) (3)
All Local More Productive Pairs Less Productive Pairs
Pairs with Less Productive  With Less Productive

Local Colleagues Local Colleagues

Southwest Entry 0.092** -0.686*** 0.169**

(0.040) (0.262) (0.070)
Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Nr of pairs 741 126 547
Nr of obs. 12,939 2,305 9,533
Panel B: Mathematics (1) (2) (3)

All Local More Productive Pairs Less Productive Pairs
Pairs with Less Productive  With Less Productive

Local Colleagues Local Colleagues
Southwest Entry 0.196*** -0.838* 0.471**
(0.064) (0.457) (0.219)
Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Nr of pairs 896 60 186
Nr of obs. 11,665 848 2,484

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Panel A corresponds
to our main chemistry sample. Panel B corresponds to the mathematics sample. In both samples, we
construct the set of local copublications of pairs affected by Southwest entry and use it as the dependent
variable in column A. We also tag the set of local copublications with local colleagues whose productivity is
below departmental average in the years preceding Southwest entry, and use it as the dependent variable in
columns 2 and 3. The specification of column 2 is run on the sample of pairs where both members are above
departmental average in productivity. The specification of column 3 is run on the sample of pairs where
one or both members are below departmental average in productivity. Pairs that have all zero outcomes
are dropped from the respective regressions, which results in the number of observations in columns 2 and
3 not summing up to the number of observations in column 1. All specifications are estimated by Poisson
Quasi-Maximum Likelihood and include pair fixed effects and year fixed effects.
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Table 11: Quality of Distant and Local Collaborations at the Scientist Level

(1) (2)

Cites Cites
Chemistry ~ Math
Distant collaboration 0.0674**  0.2277***

(0.0026)  (0.0069)
(Local collaboration omitted)

Individual Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
Number of pairs 4,737 2,104
Number of observations 46,060 12,187

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. The data underlying
these regressions is the same as in the main analyses but is now structured at the individual scientist level.
An observation is a paper which we tag as either a distant or a local collaboration; papers not involving
a collaboration with another faculty member are excluded. The dependent variable is the number of cites
received, and the variable of interest is whether the paper is a distant collaboration, with local collaborations
as the omitted category. All specifications are estimated by Poisson Quasi-Maximum Likelihood and include
individual scientist fixed effects and year fixed effects.
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Figures

Figure 1: Dynamics of the Effect of Southwest Entry: Individual-Pair Level
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Notes: To generate this graph, we regress individual copublications on year fixed effects, pair effects and a
set of indicator variables corresponding to 5 years before Southwest entry, 4 years before Southwest entry,
..., 4 years after Southwest entry, 5 years after Southwest entry (1 year before Southwest entry is omitted).
We then plot the coefficients associated with these indicator variables against time to/from Southwest entry,
superimposing a linear fit line before entry and after entry. The vertical bars represent 95% confidence
intervals. The coefficient for the year immediately before entry is set to zero and displayed without a

confidence interval since it our baseline year.
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Online Appendix

Appendix A: Tables

Table A-1: Changing the Definition of Proximate Airport

(1) (2) (3) (4)

10 miles 25 miles 50 miles 100 miles
Southwest Entry 0.896***  0.583™*  0.505*** 0.323**

(0.206)  (0.116)  (0.095) (0.073)
Pair Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Number of pairs 150 433 758 1,127
Number of obs. 2,600 7,275 13,147 19,292

Notes: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table A-2: Inference with City-Pair Clustering

DV=Copublications (1) (2) (3)
Southwest Entry 0.505*** 0.505*** 0.492**
(0.121) (0.100) (0.134)
Pair Fixed Effects Individual pair Individual pair City Pair
Year Fixed Effects Yes Yes Yes
Clustering Individual pair City pair City pair
Number of obs. 13,147 13,147 13,147

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent variable is the number of copublications
between pairs of scientists. Southwest entry is an indicator variable that takes value 1 if Southwest has
started operating a flight from airports close to the respective scientists. Column 1 is our baseline regressions
with individual pair fixed effects and individual pair clustering. In column 2, we keep individual pair fixed
effects but cluster at the city pair level, using the POI2HDFE Stata command that implements the algorithm
from Guimaraes & Portugal (2010). In column 3, we replace individual pair fixed effects with city pair fixed

effects and cluster by city pair fixed effects.



Table A-3: Robustness to Including Non-Collaborating Pairs

DV=copublications (1) (2) (3)
Southwest Entry 0.505™** 0.500*** 0.337**
(0.121) (0.129) (0.124)
Pair Fixed Effects Individual pair University Pair University Pair
Year Fixed Effects Yes Yes Yes
Sample includes No No Yes
non-collaborating pairs
Number of obs. 13,147 13,147 1,425,523

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Southwest entry
is an indicator variable that takes value 1 if Southwest has started operating a flight from airports close
to the respective scientists. Estimation by Poisson Quasi-Maximum Likelihood. Column 1 is our baseline
regression, which includes only pairs of scientists who collaborate at some point. Column 2 keeps the same
sample but replaces individual pair fixed effect by university pair fixed effects. Column 3 adds a 10% random
sample of non-collaboration pairs to the sample of collaborating pairs and is run with university pair fixed
effects.

Table A-4: Using Journals to Define Fields of Specialization

Field Journal (examples)

Biochemistry Journal of Biological Chemistry, Biochemistry
Inorganic Chemistry Inorganic Chemistry

Material Science Macromolecules, Advanced Materials

Physical Chemistry  Journal of Physical Chemistry
Organic Chemistry  Journal of Organic Chemistry, Organic Letters

The area of specialization for a given faculty member is inferred from the journals s/he publishes
in. For instance, a faculty member who publishes often in the Journal of Biological Chemistry is assumed
to be specialized in biochemistry.
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Table A-5: Summary Statistics (CBSA Sample Across Fields)

Mean  Standard deviation

All copubs 1.42 23.51
Chemistry copubs 0.22 3.89
Biology copubs 0.35 6.83
Physics copubs 0.21 3.10
Engineering copubs  0.07 1.33
Southwest entry 0.16 0.36
Year 1999.50 5.77

Notes: The unit of observation is a CBSA-pair-year. N=965,480. This data is used in Table 6.

Table A-6: Summary Statistics (Mathematics Sample)

Mean  Standard deviation

Copublications 0.05 0.27
Southwest entry 0.60 0.49
Year 2001.55 5.20
One more productive 0.41 0.49
Both more productive 0.44 0.50
Different speciality 0.68 0.47
Local copublications 0.26 0.67
Local copublications 0.03 0.18

with less productive colleagues

Notes: The unit of observation is a scientist-pair year. This data is used in Tables 5, 7 (panel B), and 8
(panel C).
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Table A-7: Summary Statistics (Chemistry Collaborations Across CBSAs)

Copublications 2.11 5.45
Citation-Weighted Copubs 81.64  310.41
Novel Copubs 1 0.59 1.66
Novel Copubs 2 0.36 1.17
Novel in Field 1 0.49 0.91
Across-Field Copubs 0.31 1.05

Equipment Intensive Copubs 1 0.35 1.09
Equipment Intensive Copubs 2 0.51 1.66
Southwest entry 0.36 0.48
Year 2007.22  4.72

Notes: The unit of observation is a CBSA-pair-year (N=40,227). This data is used in Table 10.
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Table A-12: Presence and Concurrent Entry of Other Airlines

(1) (2) (3) (4) (5) (6)
No LC LC excl. entry  excl. entry excl. entry

DV=Copubs Baseline before SW  before SW by other LC by MC by LC and MC
Southwest Entry 0.505***  0.625*** 0.291 0.498*** 0.477*** 0.441***

(0.121)  (0.157) (0.199) (0.131) (0.145) (0.157)
Pair Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Number of pairs 758 479 279 649 556 480
Number of obs. 13,147 8,349 4,798 11,261 9,711 8,367

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Column 1 is the
baseline regression. Column 2 limits the sample to pairs in locations where no other low-cost airline was
operating in the year before Southwest entry. Conversely, column 3 limits the sample to pairs in locations
where another low-cost airline was operating in the year before Southwest entry. Column 4 excludes cases
where another low cost company entered in the same year as Southwest, column 5 excludes cases where
another major company entered in the same year as Southwest and column 6 excludes both of these groups.

Table A-13: Northeast Corridor Falsification Test

(1) (2) (3)

DV= Copublications All NE corridor  excluding
only NE corridor
Southwest Entry 0.505*** -0.745 0.559***
(0.121) (0.597) (0.123)
Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of pairs 758 31 727
Number of observations 13,147 564 12,583

Notes: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01



Table A-14: Intensive

and Extensive Margin of Southwest Entry

DV= Copublications

(1) (2) (3)

Baseline Extensive Margin Intensive Margin

Southwest Entry 0.505™** 0.410*** 0.806™**
(0.121) (0.135) (0.234)
Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of pairs 758 692 66
Number of observations 13,147 11,969 1,178

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent variable
is the number of copublications between pairs of scientists. Southwest entry is an indicator variable that takes
value 1 if Southwest has started operating a flight from airports close to the respective scientists. Column 1
is the baseline specification. Column 2 restricts the sample to pairs of scientists who collaborate either before
or after entry, but not both; Column 3 restricts the sample to pairs of scientists who collaborate both before
and after entry. All specifications include individual-pair fixed effects and year fixed effects. Estimation by

Poisson Quasi-Maximum Likelihood.
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Table A-15: Intensive Margin Pairs: Advisor-Advisee Pairs versus Others

(1) (2)

Intensive Margin Intensive Margin
DV=Copublications Advisor-Advisee Pairs Other Pairs
Southwest Entry 1.020* 0.844***
(0.566) (0.241)
Pair Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
Number of observations 126 1,052

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Advisor-advisee pair
takes value one for pairs with at least one copublication before Southwest entry where one of is the first
author and the other is the last.

Table A-16: Alternative Functional Forms

(1) (2) (3)

Poisson OLS OLS
Copublications Copublications Any copublication
Southwest Entry 0.505™** 0.052%** 0.030***
(0.121) (0.015) (0.010)
Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of pairs 758 758 758
Number of obs. 13,147 13,147 13,147

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Southwest entry
is an indicator variable that takes value 1 if Southwest has started operating a flight from airports close
to the respective scientists. Column 1 is the baseline regression at the individual pair level (estimated by
Poisson Quasi-Maximum Likelihood.) Column 2 estimates the same specification with ordinary least squares.
Column 3 is a linear probability model with an indicator variable for any copublication.
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Table A-17: Sensitivity to Outliers

DV=Copublications (1) (2) (3)

Southwest Entry 0.505*** 0.308*** 0.424*
(0.121) (0.118) (0.112)

Pair Fixed Effects Yes Yes Yes

Year Fixed Effects Yes Yes Yes

Comment Baseline Excluding outlier pairs Winsorizing outliers

Number of pairs 758 732 758

Number of obs. 13,147 12,701 13,147

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, The dependent variable is the number of copublications
between pairs of scientists. Southwest entry is an indicator variable that takes value 1 if Southwest has
started operating a flight from airports close to the respective scientists. Column 1 is our baseline regression
with individual pair fixed effects and individual pair clustering. In column 2, we exclude pairs that have
more than two copublications in any given year. In column 3, we winsorize observations that have more

than two copublications to two.

Table A-18: Quality and Novelty of Copublications of Productive Scientists with

Less Productive Local Colleagues

(1)

Cites-weighted Novelty-weighted

Southwest entry -1.054*** -0.008
(0.322) (0.046)

Pair Fixed Effects Yes

Year Fixed Effects Yes

Number of pairs 125

Number of observations 1,547

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A-19: Heterogeneous Effects of Southwest Entry

Panel A: Age at Entry

1) 2)
One or Both Above 50 Both Below 50
Southwest Entry 0.354*** 0.796***
(0.129) (0.249)
Testing H, (1)=(2)
p-value 0.0471
Number of pairs 552 206
Number of observations 9,803 3,344
Panel B: R&D Budget at Entry
1) 2) 3)
Both Below Average One Below Average Both Above Average
Southwest Entry 0.719* 0.426* 0.431*
(0.228) (0.249) (0.200)
Testing H, (1)=(2) (1)=(3)
p-value 0.253 0.262
Number of pairs 244 220 294
Number of observations 4,245 3,833 5,069
Panel C: Distance at Entry
(1) (2) (3)
Less than 1000 Between 1000 and 2000 Above 2000
Southwest Entry 0.135 0.506*** 0.907**
(0.219) (0.174) (0.252)
Testing H, (1)=(2) (1)=(3)
p-value 0.126 0.007
Number of pairs 188 392 178
Number of observations 3,097 7,001 3,049
Panel D: Gender
(1) (2)
One or Both Female Both Male
Southwest Entry 0.059 0.585***
(0.322) (0.130)
Testing H, (1)=(2)
p-value 0.0665
Number of pairs 118 640
Number of observations 1,906 11,241

Notes: The dependent variable in all specifications is the number of copublications. All specifications include
pair fixed effects and year fixed effects. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, ***

p < 0.01.
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Table A-20: Southwest Entry in Capital-Intensive Subfields of Chemistry

(1) (2) (3)

DV=Copublications Neither in K-intensive One in K-intensive Both in K-intensive

Southwest entry 0.364 0.679*** 0.349**
(0.226) (0.208) (0.175)

Pair Fixed Effects Yes Yes Yes

Year Fixed Effects Yes Yes Yes

Number of pairs 206 229 323

Number of observations 3,502 3,983 5,662

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Appendix A: Figures

Figure A-1: Dynamics of The Effect of Southwest Entry: CBSA-Pair Level

1_

Copubs

Years to/since Southwest entry

Notes: To generate this graph, we regress CBSA copublications on year fixed effects, pair effects, origin-
CBSA and destination-CBSA time trends, and a set of indicator variables corresponding to 5 years before
Southwest entry, 4 years before Southwest entry, ..., 4 years after Southwest entry, 5 years after Southwest
entry (5 years before Southwest entry omitted). We then plot the coefficients associated with these indicator

variables against time to/from Southwest entry, superimposing a linear fit line before entry and after entry.
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Appendix B: Theoretical Model Under w=0
Bl: 7 > 7,

Intuitively, if scientists go on the global market for co-authors and end up with someone of
the same quality as a local co-author (the outside option), then returns will be lower because

they have to incur travel costs:

(pg)* _ (prg)? 1,
1+ =t 0
0”4 (H3M) >
1 1 1
<:>§>Z+§tz>0, (15)

since the maximum value of ¢} is 1. Q.E.D.

B2: 7/ ; > 7} requires an assumption on parameters

oy — Tp >0 (16)
(prq)? L, (peg)?
— 14 ~t%) — L4
4o (1+ 2 i) 2a >0
2 1 * 2
= )0+ S > 2000) 17

Intuitively, the benefit of a better co-author has to compensate for higher travel costs.
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B3: 7/ > 7}, requires an assumption on parameters

(1 =2)ngp +2ngy —7p >0 (18)
(pLq)? 1 (prq)* 1 (prg)?
— (1— 14+ ¢ 14 —t%) —
( z) 1o (+2L)+Z 1o (+2H) %0 >0

= (1= 2)(pu)(1 4 515) + 2(u (1 + 51) — 20 > 0

= 2l (4 1) — e+ 58] — (o)1~ 513) > 0 (19)

Intuitively, the benefit of a better co-author has to compensate for higher travel costs. Con-
ditional on this being the case, the greater the likelihood that this will happen (i.e. z high),

the more attractive the choice of a distant co-author becomes.

B4: mﬁ%—;%] > ( requires an assumption on parameters

First, 8[73;’1{]‘
OmGm _ (pH)2q(1 . 1. )+ (pua)* 1 (pu)*q
dq 201 2 4o 2 4daf
(pu)’q
= 1+t; 20
D0 4 ) (20)
Second, 8[7;%L]
ont  (pn)q
= = 1+t; 21
ok~ P ) (21)
Third, %52

ory,  (pL)’q
= (22)
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Finally, use the three previous results to show: Olr; —pl

9q
ong | ong y %
Rk A (2]
= (1-2) (pgfq(utz) +z(pg:q(1+t’}{) > <pLa)2q
— %[(1 — 2)(pL)*(t5 — 1) + 2[(pg)*(1 + t5) — 2(p)3] > 0 (24)

The first term is negative since ¢} is between 0 and 1. This reflects the idea that if a
scientist uses the global market, s/he can end up with a co-author of the same quality as
a local co-author, but with the addition of travel costs. The second term is positive and
reflects the idea that if a scientist uses the global market s/he can end up with a co-author

of higher quality with probability z. Ignoring the first term 5L, we simplify and re-write:

= (1=2)(po)*(t, — 1) + 2l(pn)* (1 + ty) — 2(pr)*] > 0

= z[(p)* (1 +ty) — (pr)* (L + 1)) = (p2)*(1 = ) > 0 (25)

Note that the condition to satisty M is very similar to the condition to satisty 7, —n}, >
q
0. The subsection below will show that if the level condition (7}, — 7}, > 0) is satisfied,
olng,—7p]

then the difference condition (==%_—2) is automatically satisfied. Therefore, no further

assumptions are needed in addition to the level condition.

B5: Comparing the level condition to the difference condition

Level condition: 7§, — 77, > 0 means:

<A1+ 5t) — (1 + 510 = (pr)(1 = 5t1) > 0 (26)
Difference condition: W%—TB] > (0 means
2[(pu) (14 t3) — (pr)?(L+11)] — (pr)?(1 = t7) > 0 (27)
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Therefore, by combining both conditions one can show that:
Olng; — 7p)
dq
= zlpr)* (1 +ty) — (pr)* (L +41)] = (p2)*(1 = 17) >

<A1+ 513) — (e (14 58] — ()01~ 513)

* *

<= 2[(pn)*(th) — (pr)* ()] + (pr)*(t) >

<l () — (o) (1) + (00 (513)

= 2z[(pm)*(th) — (pr)*(tL)] + 2(pr)* (1) >

(o) (th) — () (81)] + (p)*(t1)

= 2[(pn)*(ty) = (pr)* ()] + (p2)*(t1) > 0

Therefore, if a given project is preferred under a distant co-author, this effect is magnified

when project quality rises.



Appendix C: Theoretical Model Under z > w > 0
Here we address the general case where z > w > 0 (in the main text we solved for the specific

case where w = 0).

Returns under a local co-author are:

\ (rs9)® | (pcq)* _ ¢
mp = (1 —w) = =+ w == = o= (wpg + (1 — w)pp). (28)
Returns under a distant co-author are:
* q2 2 t*G 2 t*B
Tp = B(ZPGUJF3)+(1—Z)PB(1+5)), (29)
where tf = %.
Therefore, the difference between both profit levels can be shown to be:
* * q2 2 t*G 2 t*B
Tp — T = 5[196‘(2(1 + 3) —2w) +pp((1 —2)(1 + ?) —2(1 —w))]. (30)
By again using the definition of § = %, one can show that:
olryy, — 73 q?
O —Th — (Lya(apt 4 (1= 2)p) > (31)

00 ‘8«

and from here one can see that the three predictions of the main text are satisfied
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Appendix D: Extension of the Theoretical Model Based
on Project Variance

In the baseline model, the parameter ¢ representing project quality is taken as given, and the
probability of success of a project depends on the quality of a match with a given co-author.
While the global pool of co-authors offers potentially better matches and therefore a higher
probability of success, working with distant co-authors incurs travel costs. In an effort to
streamline the exposition, the baseline model also does not incorporate any form of project
heterogeneity beyond gq.

In this extension, we introduce two elements: first, there are two states of the world (good
and bad) each occurring with 50% probability. Second, there are two types of projects (safe
and risky) with the same expected value ¢, but different variance. The greater variance is
modelled by a bigger gap in the realization of g between the two states of the world.

The underlying logic of the extension is to represent a world in which novel projects are
high variance (i.e. they are more risky), while incremental ones are relatively safe. The goal
of the extension is to explore how reductions in travel costs affect high versus low variance
projects.

The two types of projects have the following properties:

e If the safe project is chosen, there are two possible states of the world, each happening
with 50% probability: ¢, in the bad state of the world and ¢3 in the good state of the

world

e If the risky project is chosen, there are two possible states of the world, each happening
with 50% probability: ¢; in the bad state of the world and ¢4 in the good state of the

world.

Assume that the expected value of ¢ is the same for both safe and risky projects, such that
G2 + q3 = q1 + q4. We impose this so that the results of our comparative statics are purely

driven by the differences in variance, not the mean. As a result, the risky project has more
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extreme outcomes both in the good and in the bad states of the world:

G <@g <q

One can think of novel projects as being extremely successful in the good state of the world
and, at the same time, complete failures in the bad state of the world. For a scientist, the
alternative is to develop a safer, incremental project with profitability levels that depend
less on the state of the world. The next two subsections compare how outcomes for a given

project type depend on the co-author being local versus distant.

D1 Local Co-Author

Once the state of the world is realized, scientists choose effort according to the equations of

the baseline model, such that:

« _ DPid;

o'

* (pz% 2
Tri = 2%

One can show that expected returns under the safe project are:

. P% 2 2
Tr.s = E((b +q3)

Similarly, expected returns under the risky project are:
2
* p
TL.R = ﬁ(Q% +q;)
D2 Distant Co-author

Expected returns under the safe project, after optimally choosing effort are:

2 2 2
% Puy 2 (Prg2) 2 (Prgs)
=—=¢5(1 + —= 1
Similarly, expected returns under the risky project are:
2 2 2
* PH 2 (Prq1) 2 (Prqs)
= ZHrp2p 4 2 1 4 A
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D3 Choice of Co-Author After a Reduction in Travel
Costs

Recall that f = %, such that an increase in # is an increase in travel efficiency (or equivalently
a reduction in travel costs). In the comparative statics presented here, we want to evaluate
how reductions in travel costs affect the optimal choice of co-author. Conditional on choosing
the safe project, the reduction in travel costs makes the choice of a distant co-author more

likely because of the following increase in expected returns:

a[ﬂ-*D,S - WE,S} _ ]91}{
00 2(8a)?

(45 +q3) >0

Similarly, conditional on choosing the risky project, the reduction in travel costs makes

the choice of a distant co-author more likely by the following increase in expected returns:

a[WB,R - WZ,R] _ pi{
00 2(8a)

(g +q5) >0

The key question we need to address is which type of project is affected the most. By
combining the two previous equations and comparing them in relative terms, we see that
the reduction in travel costs will make distant co-authors more appealing for risky projects

if 6[”75,}2_“75,1«2] 8[”5,3_”}:,3
00 00

]. One can easily show that this equation can be simplified to:
i+ > 6+ g

For simplicity, let us assume a scenario in which ¢, = ¢3 = ¢ such that the variance under
the safe project is zero, and where we still assume that the expected value is the same for

both the safe and the risky project:

20=q +q

One can generalize the values of ¢; and ¢4 in the following way: ¢; = ag and ¢4 = (2 — a)q,

Orp,R*—7r,R*|

with 0 < a < 1. It is possible to show that for any value of «, the condition 8

>

Olrp,S*—mr,S*]

50 is satisfied. This implies that reductions in travel costs make distant co-authors

more appealing especially for projects with higher variance in outcomes (e.g. more novel,

interdisciplinary).
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Appendix E: Extension of the Theoretical Model Based
on Project Specialization

In the baseline version of the theoretical framework, projects are homogeneous and co-authors
only differ in how they influence the probability of success. In this extension, instead, we
allow for a continuum of projects that have different needs for specialized (versus not) co-
authors.

More specialized projects can have higher returns, but only if the scientist manages to
attract a suitable co-author with specialized knowledge. If the co-author match is bad, then
these specialized projects underperform. Conditional on a project’s need for specialization,
scientists endogenously choose the optimal type of co-author both in terms of distance as well
as specialization. Intuitively, the trade-off is the following: in the global pool of co-authors,
one can find all possible types of specialists, but at the cost of incurring both travel as well
as search costs that increase with the co-author’s specialization. In the local pool, one is
more limited in the scope of co-author specialization available, but there are no travel costs.

The goal of this exercise is to explore how a reduction in travel costs affects the opti-
mal type of co-author chosen depending on the degree of specialization of the project. In

particular, we want to understand which type of project benefits more.

E1 Distant Co-Author

The profit function under a distant co-author is:

0 —B e? 9
9—56_a7_6t — s,

7TD(€7 t) =7

where B > 1.%% There is a continuum of projects 6 € (B, ) that differ in their degree of
specialization. The fact that B > 1 ensures that the higher the value of 6, the more beneficial
it is to have a more specialized co-author (s).

The co-author’s degree of specialization s € [0, 1] is endogenously chosen in response to

the project’s need for specialization. Intuitively, the more specialized the project is (higher

56The goal of the constant B is to ensure that this ratio increases with the project’s degree of specialization

6.
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6), the more important it is to find a specialized co-author (higher s), so that s and 6 are
complements. The search cost is a linear function of the degree of specialization reflecting
the fact that the more specialized the co-author one desires, the more one has to incur search
costs.

Last, the travel cost is t € [0, 1]. At the highest possible value of the travel cost (t = 1),
the effort cost reduces to —ae?, which is exactly the cost faced by the scientist choosing
a local co-author (as we will see in the next subsection). The first order conditions with

respect to e and t are, respectively:

vt — B
e=—

20 0 — s

t3_ae2

28

By plugging the former in the latter, we obtain the following optimal amount of travel:

=753 (75 eoa

Plugging this back into FOC(e), we get:

B o 69— B\*
els) = 16023 (9—5)

Plugging these two last equations into the profit function, we obtain:

0= (3) (525) o

E2 Local Co-Author

The profit function under a local co-author is:

e — ae’ — s,

mle) =75

where there are no travel costs. In the local pool of co-authors, one can only find up to a

given limit of co-author specialization (sy).
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The FOC with respect to effort is:

Yy 0-B
6(8)_%«9—5

Plugging this equation into the profit function, we obtain:
(s) 1 (fy)? 0 — B\’
S)=—\=< — S
"L a \2 0—s

E3 Case of Non-Binding s;: Comparison of Returns
Under Local vs Distant Co-Authors

This case occurs for projects with a low level of 6, i.e. not too specialized ones. As the
optimal co-author in terms of specialization for these projects is rather low, the local market
is perfectly capable of providing such a co-author. For this reason, there is intuitively no

need to go to the distant market. This argument is illustrated in equations below.

By plugging the equation for the optimal amount of travel, ¢(s) = ﬁ (%)2 (90:,5)2 € [0,1]

into the profit functions of both distant and local co-authors, we can easily compare profit

levels for these two co-author types. For distant co-authors,
o) = 1 (1) (5=2)
s) = — —s
D 4023 \2 0—s

-5 (3) (527) o=
= Bt(s)*

For local co-authors,

=3 () (525) -
= [2i(s)

Under the same level of co-author specialization (s), the local co-author will always be

E-3



preferred:

mL(8) > Tp(s)
<= 20t(s) > Bt(s)*
2> t(s)

Q.E.D.

Intuitively, this is driven by the fact that collaborating with the local co-author does not
add travel costs. Therefore, if the local pool offers a degree of specialization that is enough

for the project, there is no need to search for co-authors over distance.

E4 Case of Binding s;: Comparison of Returns Under
Local vs Distant Co-authors

If the upper bound of local specialization is below the optimal desired level of co-author
specialization for a given project, then it is a priori not clear anymore if local co-authors
will be preferred. By working with a local co-author, the scientist saves travel costs but does
not reach the desired specialization level for the projects (i.e. s; < s leading to t(sy) < t(s)),
which harms the overall returns due to the complementarity between project specialization
and co-author fit.

If the specialization gap under a local co-author is too large, then switching to the distant

co-author will be the optimal choice:
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For example, if t(s;) = 0.3 and t(s) = 0.8, then a distant co-author is preferred (i.e. if
the project’s level of specialization is high enough for it to require a co-author that differs
substantially from the ones available locally).

Importantly, one can easily prove 52(; ) > 0: it is more likely for scientists to choose distant

co-authors for projects with high 6, i.e. more specialized projects. These are therefore the

projects that benefit disproportionately from lower travel costs.
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