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1 Introduction

The drastic reduction in communication costs brought by the diffusion of the internet initially

led to claims about a future in which technology could overcome geographic frictions and

facilitate the rapid exchange of ideas, goods and services independent of distance (Cairncross,

1997; Friedman, 2005). Empirically, this “death of distance” hypothesis has found limited

support, as most evidence points to agglomeration mattering more, not less than before

across a variety of settings (Leamer & Levinsohn, 1995; Blum & Goldfarb, 2006; Forman et

al., 2005; Agrawal et al., 2015). Instead of substituting for co-location, digital interactions

often complement it (Agrawal & Goldfarb, 2008),1 resulting in non-obvious changes in how

teams and organizations structure collaborations and develop new ideas when communication

costs are low, but teamwork and R&D require specialized expertise and resources that are

geographically dispersed (Adams et al. 2005; Jones, Wuchty & Uzzi 2008; Wuchty, Jones &

Uzzi 2007)2.

Moreover, not all types of interactions have benefited in the same way from improvements

in communication technology. Co-location plays a disproportionate role in the serendipitous

discovery of new collaborators and ideas (Catalini, 2017), and in the absence of offline oppor-

tunities for interaction, search frictions can prevent individuals from finding ideal collabora-

tors even within the boundaries of the same institution (Boudreau et al., 2017). Similarly,

exchanges that require the transfer of complex information and tacit knowledge (Polanyi,

1958; Von Hippel, 1994) still heavily rely on face-to-face interactions (Rosenthal & Strange,

2001; Gaspar & Glaeser, 1998; Storper & Venables 2004). As a result, firms, communities

of experts and teams invest substantial amounts of time, effort and resources to ensure that

the right individuals can be co-located – even if only temporarily – to discuss ideas, make

1Agrawal & Goldfarb’s (2008) study of Bitnet, an internet predecessor, finds that as more academic insti-
tutions joined the network, collaboration among affected scientists increased. Interestingly, their results hint
at the technology being a complement to offline interactions, as co-authorship increases disproportionately
among university pairs that are co-located. Other studies have found an effect of bitnet on collaborations in
the academic life sciences (Ding et al. 2010), and of the internet on cooperative R&D between firms (Forman
& Zeebroeck 2012).

2By 2000, less than 20% of papers in science and engineering were single authored. Similar patterns, and
in particular the rise of coauthorship and distant coauthorship, have been documented in economics. See
Gaspar & Glaeser (1998), Hamermesh & Oster (2004), Rosenblatt & Mobius (2004)
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progress on projects, and develop the relationships that can later support more effective

interactions over distance. Such temporary forms of co-location have been shown to foster

both idea diffusion and the formation of new collaborations (Chai & Freeman, 2018).3

If face-to-face interactions are instrumental in finding and evaluating new collaborators,

establishing trust, and advancing joint work, then as communication costs drop, this comple-

ment to remote interactions becomes not only more valuable, but possibly the key friction in

the formation and operation of geographically distributed teams. Ironically, by making on-

line communication extremely efficient, the internet may have enhanced the role that travel

technology plays in the economy.

The objective of this paper is to develop and test a simple theoretical framework for

thinking about how geographic frictions, and in particular travel costs, shape collaboration

decisions and the types of projects that are developed locally versus over distance. The

model highlights a key trade-off individuals face when deciding if they should work with

a local versus a distant collaborator: whereas the global pool of potential collaborators

is often deeper and may therefore offer an ideal match, collaboration over distance incurs

additional communication and travel costs. We build on this basic tension in a context where

individuals endogenously allocate effort to projects based on their potential, and where a

project’s riskiness or the need for complementary expertise, equipment or resources can

influence with whom a project is pursued. While simple, we believe the framework captures

an increasingly relevant challenge: to be able to solve problems of increasing complexity,

teams of specialized experts have to be put together (Jones, 2009), but this often involves

collaboration over distance.

We take advantage of a quasi-experiment – the introduction of new routes by a major

low-cost airline – to test the predictions of the theory within the context of collaborations

between scientific labs. The setting allows us to observe the full set of scientists at risk of

3Chai & Freeman (2018) compare collaboration patterns among attendees of the Gordon conference before
and after the event in a difference-in-differences framework using a carefully constructed control group of
qualitatively similar non-participants. They find that attendees are more likely to be cited by and collaborate
with other participants, especially if they were new to this community of experts. In a related paper, Campos,
de Leon & Mcquilin (2018) document that a conference cancellation led to a decrease in individuals likelihood
of co-authoring together.
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collaboration in any given year as well as important characteristics about them such as their

age, career stage, past productivity, area of specialization, and departmental funding.

The cheaper fares brought by the expansion of the low-cost airline (Southwest Airlines)4

are part of a broader, 50% reduction in the cost of air travel that took place in the United

States over the last 30 years (Perry 2014).5 Furthermore, they provide a source of plausibly

exogenous variation in the cost of conducting research between scientists at the affected

airports.

Using a difference-in-differences empirical strategy we are able to recover a causal estimate

of the effect of a reduction in travel costs not only on the rate of collaboration, but more

importantly on the type of projects scientists pursue. Results show that travel costs are

an important friction to collaboration: after Southwest entry, the number of collaborations

increases by 50%, a result that is robust to multiple falsification tests and causal in nature.

The reduction in geographic frictions is particularly beneficial for high quality scientists that

are otherwise embedded in worse local environments. Consistent with the theory, lower travel

costs also endogenously change the types of projects scientists engage in locally versus over

distance. After the shock, we observe an increase in higher quality and more novel projects,

as well as projects that take advantage of complementary knowledge and skills between sub-

fields, or that rely on specialized equipment. We test the generalizability of our findings

within chemistry to a broader dataset of scientific publications, and to mathematics, a field

where specialized equipment is less likely to be relevant. Last, we discuss implications for

the formation of collaborative R&D teams in the presence of geographic frictions.

The rest of the paper is as follows: in Section 2, we introduce our theoretical framework.

Section 3 provides additional institutional details about collaboration in chemistry and de-

scribes the data. We present the main results in Section 4, and a series of extensions targeted

at testing the generalizability of our findings in Section 5. Section 6 concludes.

4Southwest has been described as the most significant development in the market structure of the U.S.
airline industry by the Transportation Research Board (1999) and by industrial economists (Morrison 2001,
Borenstein & Rose 2007, Goolsbee & Syverson 2008).

5Kim, Morse & Zingales (2009) and Freeman, Ganguli & Murciano-Goroff (2014) note that secular declines
in both communication costs and air travel costs may have facilitated long distance collaborations.

4



2 Theoretical Framework

The objective of this section is to develop a simple theoretical framework to highlight key

trade-offs scientists face when deciding if they should collaborate with a local or a distant

co-author, and how much effort they should dedicate to a collaboration based on its intrinsic

potential. The model generates novel predictions about how travel costs shape collaboration

decisions, which we then test using our data.

We start by assuming that because the global pool of potential co-authors offers more

variety than the local one, it is on average possible to find better matches when team for-

mation is not constrained by geographic distance. The quality of a match may depend on

complementary ideas, knowledge, skills, equipment, and resources that a co-author brings to

a project. Of course, because of agglomeration forces, as the size, specialization and quality

of a region’s local pool increases, scientists will rely less on distant co-authors. To account

for this, in an extension of the baseline model we allow for the share of ‘first best’ co-authors

available locally to vary.6

Our setup is straightforward: ideas are born with intrinsic quality q, but require effort e

to be developed and achieve their full potential v. Since scientists observe a noisy signal of q

before starting a project, they will allocate more effort, time and resources to projects that

have higher potential (i.e. in our model, effort is endogenous to potential). At the same time,

since research constitutes an uncertain endeavour, even when scientists apply effort projects

are only successful with probability p, which depends on the quality of the co-author match.

Thus, the realized value of a project can be expressed as v = piqe, where pi (with i = G,B)

is higher when a good match between co-authors is achieved (pG), relative to a bad match

(pB).

Whereas the global pool may offer a better match between co-authors (i.e. pG) and

6The fraction of first best co-authors in the global pool is assumed to be z. Since the global pool can
be seen as an average over all possible local pools, the fraction of first best co-authors in a given local pool
w can be either higher, lower, or equal to z. If w > z, then scientists will never collaborate over distance,
as they would incur additional costs but would not be more likely to find an ideal co-author over distance.
Therefore, the range of values of w that provides a meaningful trade-off is 0 ≤ w < z. To simplify the
exposition, in the paper we will assume w = 0. More general cases are discussed in the Appendix.
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increase the chances of realizing a project’s full potential v, collaborating over distance

introduces additional costs, as scientists have to travel for face-to-face interactions, and may

be less effective at communicating complex information remotely. As a result, scientists face

a trade-off between less choice locally, and increased communication and travel costs over

distance. In the next sections, we perform comparative statics and explore this tension in

more detail.

2.1 Local versus Distant Collaborations

The scientist’s payoff from developing an idea with a local co-author for a given level of effort

e is:

πL(e) = pBqe− c(e) (1)

where c(e) is the cost of effort which we assume for tractability to have the following convex

function: c(e) = α
2
e2. Thus, equation (1) can be re-written as:

πL(e) = pBqe−
α

2
e2 (2)

The first order condition yields an optimal effort level of e∗L = pBq
α

, which is increasing

both in project quality q, and in the quality of the co-author match pi. Intuitively, scientists

are more willing to apply effort to projects with higher potential, and to projects they are

working on with better matched co-authors. Inserting e∗L back into (2), we obtain a scientist’s

payoff for a local collaboration given the optimal effort level as:

π∗
L =

(pBq)
2

2α
. (3)

How does this compare to a distant collaboration? In our setup, over distance scientists

have a higher chance of securing the ideal co-author because the global pool offers more

variety. At the same time, this does not happen all the time, and scientists have to incur

additional communication and travel costs ti to develop a project over distance. We assume

that with probability z scientists find a first best co-author and secure pG, and with prob-

ability (1 − z) they land a co-author of the exact same level they would have found in the

6



local pool pB. Thus, the payoff for a distant collaboration can be written as:

πD(e, t) = (1− z)[pBqeB − α
e2
B

1 + tB
− βt2B] + z[pGqeG − α

e2
G

1 + tG
− βt2G], (4)

where ei and ti with i = G,B are the optimally chosen levels of effort and travel for

perfectly matched co-authors (pG) versus imperfectly matched ones (pB).

Traveling enters as a convex cost (ti = [0, 1], scaled by a parameter β)7, but also increases

the chances of success because it improves the ability to communicate complex information,

coordinate work and make progress on a project through face-to-face interactions. This

trade-off allows for interesting cases to emerge where temporary co-location between distant

co-authors is expensive but also helpful, and can therefore lead to both higher and lower

payoffs relative to a collaboration on the same project with a local co-author. For simplicity,

we assume that once a local versus distant co-author has been chosen for a project, it is

too costly to switch type without starting a completely new project.8 We also assume that

before a substantial amount of effort and travel is dedicated to a project, the quality of a

co-author match has been revealed. The first order conditions with respect to effort and

traveling are, respectively:

eD(tD) =
piq(1 + tD)

2α

α
e2
D

(1 + tD)2
− 2βtD = 0,

where i = B,G depends on whether the distant co-author has led to a first best or a second

best match. Combining both first order conditions, one can show that the optimal levels of

travel and effort for a distant collaboration are:

t∗i =
(piq)

2

8αβ
(5)

e∗i =
piq

2α
(1 + t∗i ) =

piq

2α
(1 +

(piq)
2

8αβ
) (6)

7If ti = 1, face-to-face communication is always available (as with a local collaborator), and the cost of
effort would be the same under both scenarios. Advancements in communication technology and virtual
reality can be therefore thought of as changes in ti.

8One intuitive way to think about changing a co-author within our simple framework is to imagine the
original project failing, and a new one being launched with a different team.
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If we plug these back into the payoff function we obtain:

π∗
i =

(piq)
2

4α
(1 +

1

2
t∗i ) =

(piq)
2

4α
(1 +

(piq)
2

16αβ
) (7)

Thus, the overall payoff over distance is:

π∗
D = (1− z)π∗

B + zπ∗
G (8)

Comparing payoff equation (3) for local collaborations with equation (8) for distant ones

is informative independent of travel costs (which we discuss in detail in the next section). For

example, it allows us to explore how the relative appeal of a local versus distant collaborations

changes as the comparative advantage of the global pool (z) over the local one varies:

∂[π∗
D − π∗

L]

∂z
= π∗

G − π∗
B > 0 (9)

Intuitively, an increase in the likelihood of finding a first best co-author in the global pool

will lead to a relative increase in the payoff for distant over local collaborations. Similarly,

if scientists enjoy a high quality local environment with good matches (e.g. they are in

an agglomerated research cluster), they will find limited benefits from collaborating over

distance.

Until now, we have assumed that all scientific projects have the same risk of failure.

At the same time, more novel and exploratory projects – such as those that recombine

knowledge across disciplines – typically entail substantially more risk than incremental ones.

To account for this, we introduce risk as γ, and link it to the overall probability of success

through pG = (1+γ)pB. For a given pB, a low γ means that the quality of the match between

co-authors will have a minor influence on the chances of realizing a project’s full potential.

One can think of low γ projects as relatively more straightforward ones where most of the

techniques and ideas are established (or everyone has access to similar infrastructure to work

on them), and the gap between working with the best possible co-author versus anyone else

is small. As a result, when γ is low, the relative appeal of the global talent pool is more

limited. When a project is instead extremely risky, scientists will be more willing to travel

to work with the ideal co-author and increase their chances of success:
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∂[π∗
D − π∗

L]

∂γ
= z

∂[π∗
G]

∂γ
> 0 (10)

An extreme example of this is a project for which there are only a few leading experts or key

labs with the right equipment (e.g. CERN, LIGO etc.), and the difference between working

with them relative to working with a local alternative is large.

Last, when comparing local versus distant collaborations, it is useful to point out that

increases in the underlying, intrinsic project quality (q) have an ambiguous effect on the

choice of co-author type. As shown in the Appendix, which type of collaborations prevail

still depends on the basic trade-off between the quality of the match between scientists and

travel costs (since a distant collaboration can still leave a scientist with a match of similar

quality to the local alternative).

2.2 Reductions in Travel Costs

How does a reduction in travel costs affect the types of collaborations scientists engage in?

In this section, we perform comparative statics to see how cheaper fares like the ones brought

by a low-cost airline change the relative attractiveness of local versus distant collaborations,

and how this effect varies for projects of different type (more versus less risky, and higher

versus lower potential). To simplify the notation and exposition, we define θ = 1
β

(which is

the inverse of travel costs) as the “ease of travel”. One can think of an improvement in θ as

better infrastructure that allows scientists to meet with their distant co-authors at a lower

cost and with lower frictions. The derivative of relative profits with respect to θ is:

∂[π∗
D − π∗

L]

∂θ
= (

q2

8α
)2[(1− z)p4

B + zp4
G] > 0 (11)

θ does not matter for the returns to local collaborations (π∗
L) as no travel is required, but

makes face-to-face interactions with distant co-authors less expensive. Therefore, it is intu-

itive that with better travel technology the relative attractiveness of the global talent pool

increases,9 as accessing it is now more cost effective.

9Notice that this holds for the general case of 0 ≤ w < z, and is not limited to cases where w = 0.
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But how does this effect vary with the ex-ante relative competitiveness of the local pool?

I.e., how does this vary for regions that offered better versus worse alternatives to begin

with? Remember that this is captured in our framework by the share of first best co-authors

that are in the global pool z. Taking the first order condition with respect to θ and z we

obtain:
∂[π∗

D − π∗
L]

∂θ∂z
= (

q2

8α
)2(p4

G − p4
B) > 0 (12)

Which leads to the following prediction:

Prediction 1: A reduction in travel costs will be especially beneficial for researchers that

have access, ex-ante, to a relatively worse pool of local co-authors.

If we instead take the derivative with respect to quality:

∂[π∗
D − π∗

L]

∂θ∂q
= q(

q2

4α
)2[(1− z)p4

B + zp4
G] > 0 (13)

we see that after an improvement in ease of travel, higher quality projects are more likely to

be undertaken with better matched co-authors. Since these are on average more abundant

within the global pool, it follows that:

Prediction 2: A reduction in travel costs will be especially beneficial for distant collabora-

tions on higher quality projects.

Last, if we do not assume that all projects have the same risk of failure and explore how

the effect changes with project riskiness, we obtain:

∂[π∗
D − π∗

L]

∂θ∂γ
= z(

q2

4α
)2(1 + γ)3p4

B) > 0 (14)

which shows that a reduction in travel costs makes the global pool disproportionately more

appealing as the riskiness of projects increases,10 or restated:

Prediction 3: A reduction in travel costs will be especially beneficial for distant collab-

oration on higher risk projects.

Empirically, to proxy for riskiness we will rely on how novel the keywords used by the

authors on a focal paper are, as well as explore results for collaborations that span different

sub-fields of chemistry versus not. We now turn to our data to test these predictions.

10Intuitively, in our model this is a result of the complementarity between risk and the quality of a co-
author match.
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3 Data

3.1 Collaboration in Chemistry

Scientific research in chemistry, similar to other fields of science, is an increasingly collabora-

tive endeavour, resulting in a higher number of co-authors per paper over time. However, it

largely remains a lab-based science, and has not embraced the large scale, big science projects

observed, for example, in physics. In our sample, the median number of co-authors per paper

is 4, and many of the authors are graduate students, post-docs or technicians. These perform

most of the experiments and day-to-day work on a project. They are employed by the lab of

a faculty member (principal investigator) who obtains funding for the lab, directs research

projects, appears as a co-author on all publications, oversees resource allocation and effec-

tively decides whether to collaborate or not with other labs. While many research projects

involve a single principal investigator, collaborations between labs and principal investiga-

tors are common as well. Consistent with the findings from large scale surveys of scientists

(Freeman, Ganguli, and Raviv Murciano-Goroff 2014), in our conversations with U.S. prin-

cipal investigators in chemistry, complementary expertise, skills, materials or new types of

experiments are all mentioned as reasons for collaboration between labs. As in other fields of

science, collaborations are sourced through the principal investigators and junior members’

professional networks, serendipitous interactions at conferences, email, etc. In the paper, we

focus on collaborations between principal investigators, which are essentially collaborations

between different labs.

3.2 Data Sources

To examine the effect of changes in travel costs on scientific collaboration, we combine data

on scientists with publication records and air transportation information. Within the chem-

istry sample, biographical information on scientists enables us to effectively disambiguate

publication data, while also allowing us to separate faculty members from other types of

authors.
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Air Transportation Data - To recover information on when Southwest operated

flights between different routes, as well as information on prices, passengers and miles flown,

we use data from the Airline Origin and Destination Survey (DB1B) of the U.S. Bureau of

Transportation Statistics. The DB1B is a 10% random sample of airline tickets from re-

porting carries in each quarter. For each itinerary, the DB1B records all connecting airports

(including origin and destination), the itinerary fare, and other information. This data is

available only from 1993, hence we will focus on Southwest entry decisions that occur after

1993.

Match Between Airports and Universities . We compute distances between air-

ports and universities using Google Maps. The matching between universities and airports is

complicated by the fact that the same metropolitan area could be served by multiple airports

(e.g. O’Hare and Midway in Chicago), or that a college town could be half-way between two

airports. We chose to match universities to all airports within a 50 miles radius. We code

the year of Southwest entry for a pair of universities as the first year in which Southwest

operates a flight on any route whose endpoints (airports) are within 50 miles of the respective

universities. Results are robust to narrowing this definition further (e.g. 25 miles, 10 miles),

see Table A-9.

Data on Scientists. Our focus is on collaborations between faculty members (and

therefore effectively across labs) in the discipline of chemistry11, in part due to data avail-

ability, and in part because of the short publications cycles in this discipline. For biographical

information on scientists, our data source is the directory of graduate research published by

the American Chemical Society. Intended as a source of information for prospective grad-

uate students, this directory provides comprehensive listings of faculty affiliated with U.S.

departments granting PhDs in chemistry, chemical engineering and biochemistry. Besides

faculty names and departmental affiliations, the directory provides information on year of

birth, gender and education. The directory is published biannually in print and since 1999

11Chemistry, which focuses on the composition, structure, transformations and properties of matter, is a
large discipline, with chemistry PhD graduates accounting for 30% of U.S. PhD science graduates.
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on the web.12 We combine the directories from 1991 to 2013 to build a longitudinal panel of

over 20,000 scientists. We complement this information with department-level R&D expen-

ditures from The National Science Foundation (NSF) Survey of Research and Development

Expenditures at Universities and Colleges.

Publication Data . We match faculty names to publication data from Scopus cover-

ing more than 200 chemistry journals (including all journals from the American Chemical

Society), multidisciplinary journals and major journals in neighboring disciplines.13 Within

chemistry, the match between publications and scientists is facilitated by the fact that we

know institutional affiliations from the American Chemical Society faculty data. We match

publications to faculty based on last name, first and (if non-missing) middle initials, de-

partment and university affiliation. From publication data, we construct for each scientist

time-varying measures of past productivity (with a moving average over the last three years

of publication counts weighted by journal impact factor). We also infer our main outcome,

copublications, from bibliometric data combined with the faculty data.

A key strength of our data is that we know when individuals enter and exit the profession

and therefore are at risk of collaborating with others. If we were inferring copublications from

publication data only, we could hardly distinguish between active scholars and individuals

that have retired or are not doing research in the field. Papers are counted as a copublication

between all pairs of faculty members involved.14

Additional Key Outcomes . For part of the analysis, we will weight copublications

by the citations they have received as a proxy for their impact and quality. Citation counts

12The American Chemical Society also produced a CD-ROM for the years 1991-1993.
13Scopus is one of the two major bibliometric databases (along with ISI Web of Science). Our set of

chemistry journals includes all journals from the American Chemical Society, as well as any chemistry
journal with impact factor above 2. Our set of multidisciplinary journals includes Nature, Science, Cell and
the Proceedings of the National Academy of Sciences. Our set of major journals in neighboring disciplines
includes all journals with impact factor above 6 in physics, biology, material science and nanotechnology.

14The majority (75%) of papers matched to a faculty member have exactly one faculty author, 21%
percent have two, and less than 4% have more than two authors. Both papers with one faculty author and
papers with multiple faculty authors typically have several non-faculty authors. We focus on faculty authors
because they are the ones usually making the decision to collaborate. Papers in chemistry journals that are
not matched to any of our U.S. faculty authors are likely to be from foreign scientists, scientists working in
corporate environments and federal labs.
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originate from Scopus, are at the article level and are counted from the year of publication

until 2013. We also construct measures of novelty based on author keywords. These are

based on the entire corpus of articles within chemistry journals and related fields. For each

keyword, we calculate the share of papers in a given year that contains the keyword – a proxy

for how popular it is at any point in time. We then calculate the first and second derivative of

this measure relative to the previous year. If both the first and second derivative are positive,

then the keyword is classified as novel since its use is quickly accelerating. Additionally, if the

first derivative is zero, and the second is positive, then we are at a local minimum right before

a keyword takes off, which we also consider as novel use. Aggregating up at the paper level,

a publication is considered novel if it has an above the median number of novel keywords.

Similarly, we constructed proxies for the equipment-intensiveness of a focal publication by

first collecting a large-scale list of keywords associated with chemistry equipment,15 and then

checking this list against the keywords used in each paper. Papers with an above the median

number of equipment-related keywords are classified as equipment-intensive.

3.3 Descriptive Statistics

Our dataset covers over 20,000 scientists and their collaborations. However, we focus on a

specific subset of pairs of scientists who experience Southwest entry and for whom we have

variation in collaboration over time. Since all regressions include scientist-pair fixed effects,

pairs that never collaborate drop out of the sample. In the Appendix, we show that our

main result is robust to replacing scientist-pair fixed effects with city-pair fixed effects and

including a random sample of non-collaborating pairs.

We have 15,244 pairs of scientists who collaborate at least once.16 Excluding co-authors

that are in the same department, we have 8,311 pairs of scientists in our sample. Only

a minority (1,158) of these pairs experience Southwest entry during our analysis period of

1993-2012, either because for the other 7,153 pairs Southwest is already operating a flight,

15This was built by scraping and compiling an inventory of equipment for sale in online catalogues and
stores targeted at a wide range of chemistry labs.

16Our dyadic data is not directed, and thus is symmetric: the pair between i and j is the mirror image of
the pair between j and i. The 15,244 figure is after dropping an equal number of symmetric observations.
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or because Southwest never flies between the relevant endpoints. We drop pairs in locations

where Southwest enters but then leaves within two years, as well as pairs where Southwest

entry coincides with the move of a scientist.17 Finally, we also exclude pairs that are within

less than 200 miles of each other as air travel is unlikely to be their main travel option.18

Our final analysis covers 758 pairs of scientists corresponding to 845 individuals.

[Insert Table 1 about here]

Table 1 displays descriptive statistics for our chemistry sample at different levels of anal-

ysis: individual, individual-pair and individual-pair-year. Most individuals in the sample are

male (90%) with an average age at the time of Southwest entry of 49. We do not observe

individual research budgets but as a proxy we use departmental R&D expenses divided by

the number of faculty members in the department. The average in our sample is $279,000 at

the time of Southwest entry. According to the NSF Survey, R&D expenses include compen-

sation for R&D personnel, equipment and indirect costs. In terms of specialization19, the

largest area is physical chemistry (32%), followed by biochemistry (22%), inorganic chemistry

(13%), organic chemistry (14%) and material science (11%).

We observe the 758 pairs for 17 years on average,20 corresponding to 13,147 observations

at the individual-pair-year level. Southwest entry events map to 413 distinct new routes.

The median pair experiences Southwest entry in 1999, but we observe Southwest entry from

1994 to 2011. The mean number of copublications over the whole period is 1.9, but the

majority of pairs copublishes once. Only 9% of pairs collaborates both before and after

Southwest entry.

17Scientists in our sample may move from one department to another, in some cases leading to a change
in whether they are connected by Southwest or not. We want changes in Southwest status to be driven by
Southwest entry decisions rather than by location decisions, and thus exclude pairs who happen to move in
the same year as Southwest enters, the year before or the year after.

18Results are robust to decreasing this threshold to 100 or 50 miles.
19Specialization is inferred based upon the journals in which a scientist publishes. For instance, a fac-

ulty member who often publishes in the Journal of Biological Chemistry is assumed to be specialized in
biochemistry.

20A pair is in our sample for a maximum of 22 years (from 1991 to 2011). We observe some pairs for less
than 22 years due to pair members starting their first faculty appointment after 1991, retiring before 2011,
or otherwise no longer being listed in the ACS faculty directory (e.g. moving to industry or to a foreign
country).
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[Insert Table 2 about here]

It is useful to compare our analysis sample to other distant pairs that do not experience

Southwest entry. We have approximately 6,000 such pairs. These include pairs where South-

west is already present in the relevant market prior to 1993 when our sample starts, or has

not entered by 2012 when it ends. They also include cases where one of the pair members is a

new faculty hired after Southwest has already entered. The comparison is shown in Table 2.

The pairs that experience Southwest are not statistically different from the others in terms

of publications, but are slightly older (51 versus 49 years) and are observed on average for

a slightly longer period of time (17 versus 14 years).21 Importantly, there is no significant

difference in terms of R&D budgets or propensity to be in different subfields of chemistry.

4 Empirical Strategy and Main Results

Our empirical specification is a straightforward difference-in-differences framework at the

scientist-pair level where we exploit variation in Southwest entry across different airport

pairs over time. It includes scientist-pair fixed effects and is estimated using a Poisson

model:

Yijt = βAfterSWijt + µt + γij + εijt

where Yijt is the number of copublications between scientist i and scientist j in year t,

AfterSWijt is an indicator variable that takes value 1 after Southwest entry, µt is a year

fixed effect, γij is a pair fixed effect to control for unobservable, time-invariant differences

between pairs of scientists, and εijt is an idiosyncratic error term.

Our analysis examines the change in the rate of collaboration and in the types of papers

that emerge over time for pairs that co-author at least once. The pair fixed effects completely

capture pairs of scientists for which we never see activity, and thus we remove these from the

analysis without empirical consequences. Robust standard errors are clustered at the pair

level.

21This makes sense since a longer observation period mechanically increases the chances of experiencing
Southwest entry.
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4.1 Southwest Entry and Changes in Passengers, Prices, Miles
and Transfers

Before our main analysis, we check how the arrival of Southwest affects some of the key

passenger and fare metrics of interest in the air travel industry. In this exercise, we run

regressions at the airport-pair level, and compare a number of outcomes before and after

Southwest entry. Regressions include airport-pair fixed effects and year fixed effects. The

coefficients in Table 3 reflect the types of changes one would expect to take place after the

arrival of a low-cost competitor: the number of passengers increases by approximately 44%,

and prices drop by around 20%. We do not find any effect on the average miles flown22 or on

direct flights, and the reduction in the number of transfers is extremely small. Overall, results

are consistent with Southwest lowering the cost of air travel without drastically changing the

types of routes available or the number of miles passengers have to fly to connect between

two endpoints.

[Insert Table 3 about here]

4.2 Changes in Collaboration and Evidence for a Causal Interpre-
tation

As discussed in the theoretical framework, after a reduction in travel costs the relative at-

tractiveness of the global talent pool increases, since accessing it becomes more cost effective.

This should lead to an increase in collaboration between the affected locations. As can be

seen in Column 1 of Table 4 (which uses the main econometric specification we described at

the beginning of Section 4), after Southwest entry we observe a large and significant increase

in collaboration of approximately 50% between scientists at the connected end points.23

While the magnitude is large, it is off a small base (the mean of the dependent variable

22The data from the Bureau of Public Transportation includes the number of miles flown for each itinerary.
Differences in miles flown arise from the number of connections an itinerary involves. We compute average
miles flown as the average across all passengers travelling between two airports in a given year.

23Collaboration between scientists is increasing over time. In our regressions, this trend is captured by
the inclusion of year fixed effects. Therefore, one can interpret our estimates as the relative percentage
increase in collaboration due to Southwest entry once the underlying increasing trend in collaboration has
been accounted for.
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is approximately 0.1), and comparable with previous studies on the impact of communica-

tions, search costs and co-location on scientific collaboration: Agrawal & Goldfarb (2008)

find that Bitnet increased the likelihood of collaboration between pairs of universities by

40%; Boudreau et al. (2017) find that a 90-minute structured information sharing session

led to a 75% higher probability of co-applying for a grant; Catalini (2017) estimates that

exogenous co-location increased the chance of a collaboration between labs on the Jussieu

campus of Paris by 3.5 times.

[Insert Table 4 about here]

One may worry that Southwest entry is systematically correlated with time-varying fac-

tors such as growth of the universities (or the regional economies) at both ends of the routes,

and therefore that collaboration would have increased even in the absence of a reduction in

travel costs. While our main specification already controls for aggregate time trends through

year fixed effects, the validity of our results could be threatened by systematic, time-varying

factors that affect the target locations around the time of Southwest entry. In Column 2,

we mitigate these concerns by controlling for two possible time-varying confounders: the age

of the scientist pair, and the (log of) departmental R&D budget per faculty member. The

first one accounts for changes in the incentives to collaborate as scientists progress in their

careers, the second for changes in the local economies. Whereas the coefficients for the con-

trols are positive and significant, our main result is unaffected. In Column 3, we additionally

control for the number of years that have passed since both scientists obtained their PhD, a

proxy for their ability to both decide who they want to collaborate with. This estimated co-

efficient is negative and significant but again does not affect the estimate of Southwest entry.

In Column 4 we study the dynamic effects of the reduction in travel costs by replacing the

treatment indicator for Southwest entry from Column 1 with a set of four dummy variables

capturing the years around the treatment. For example, the indicator Southwest entry (-1) is

equal to one if the focal scientist-pair observation is recorded one year prior to the treatment.

The other indicator variables are defined analogously with respect to the year of treatment
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(0), the first year after treatment (1), and two or more years after treatment (2+).24 The

coefficient for Southwest entry (-1), which would capture any ‘effect’ of the new airline routes

before their introduction, is insignificant, suggesting that there is no collaboration pre-trend

in the data, i.e. it is only once travel costs are reduced that the coefficients turn positive

and statistically significant.

[Insert Figure 1 about here]

A graphical version of a similar exercise with a full set of coefficient estimates for the 5

years before and 5 years after Southwest entry is displayed in Figure 1. There is again no

collaboration pre-trend before Southwest launches a route, and it is only after the new route

is available that the estimated coefficients are positive and steadily increasing in magnitude.25

It is useful to highlight that publication lags in chemistry are substantially shorter than in

the social sciences: when studying the 10 major analytical chemistry journals (1985-1999),

Diospatonyi et al. (2001) find median lags between submission and publication of 3 to 10

months, with some journals publishing papers within 2 months of first submission.

In Column 5 of Table 4, we conduct a placebo test where we randomly allocate Southwest

entry events to scientist pairs. The coefficient for ‘Fake Southwest entry’ is not significant

and close to zero, suggesting that it is not the structure of the panel or changes in the

data over time that are driving the result. In Column 6 of Table 4, we conduct one more

falsification test by looking at entry events (not included in the other regressions) where

Southwest withdraws from the market within two years. For these cases, the point estimate

of Southwest entry is close to zero and insignificant.

Overall, we believe results in Table 4 and Figure 1 provide robust support for a causal

interpretation of our main effect, and reassure us that we are not simply measuring some

underlying, unobservable process that takes place with each entry event26 and drives both

Southwest decisions and the increase in scientific collaboration.
24We adopt this particular specification because it is the same used by Bernstein, Giroud, and Townsend

(2015) in their study of venture capital monitoring and air travel costs, but show robustness to specifications
with additional years in Figure 1.

25We repeat the same graph within the large sample at the CBSA-pair level in Figure A-1.
26Since we observe Southwest arrival across multiple locations and years.
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While Southwest is the largest U.S. low-cost carrier in terms of number of passengers

transported, there are other low costs airlines operating within the same market. In Ap-

pendix Table A-1, we explore how our results vary depending on whether a low-cost airline

is already operating on a route, as well as whether they differ when other airlines (low-cost

or not) start operating a flight in the same year as Southwest. Consistent with the impact

of Southwest on travel costs being largest when no low-cost alternatives existed on the same

route, estimates are approximately 12% larger when Southwest is the first low-cost to enter

(Table A-1, Column 2),27 and are positive, but non-significant when another low-cost was

already operating between the same airports (Column 3). Results are instead essentially un-

changed if we exclude cases where other low-cost airlines enter at the same time (Column 4),

other major airlines28 enter at the same time (Column 5), or any other airline enters at the

same time (Column 6). We conclude that our results are robust to considering concurrent

entry by other airlines.29

Results are also not driven by the fact that our sample includes only pairs that ever collab-

orate: when we include a random sample of non-collaborating pairs and replace individual-

pair fixed effects with university-pair fixed effects30, we find comparable effects of Southwest

entry (see Table A-6). In Appendix Table A-8 we decompose the main effect by pairs of

scientists who collaborate both before and after Southwest entry (intensive margin pairs)

versus pairs of scientists who collaborate either before or after entry, but not both (extensive

margin pairs). We find a stronger effect for intensive margin pairs (Column 3), although the

cheaper fares also seem to enable experimentation in the form of new collaborations over

distance (Column 2).

27Our list of low-cost airlines includes AirTran Airways Corporation, JetBlue, Frontier Airlines, Spirit
Air Lines, ATA Airlines, Allegiant Air, Virgin America, Sun Country Airlines, ValuJet Airlines, Vanguard
Airlines

28We classify as major airlines: Delta, American Airlines, United Airlines, US Airways, Northwest Airlines,
Continental, America West Airlines, Alaska Airlines, Trans World Airlines and Envoy Air. These correspond
to the 10 companies with the largest numbers of passengers carried between 1993 and 2012.

29One might also wonder about additional modes of transportation. As shown in Appendix Table A-2,
we find no effect of Southwest entry in the Northeast corridor, where train travel has been a consistent
alternative to flying.

30If we were to run this regression with individual-pair fixed effects, the non-collaborating pairs would be
dropped from the estimation.
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In the Appendix, we perform additional robustness to different econometric approaches,

functional forms, clustering of standard errors, treatment of outliers and inclusion in the

sample of non-collaborating pairs. Briefly, we obtain qualitatively and quantitatively similar

results using ordinary least squares instead of Poisson (see Table A-3, Column 2). We

also obtain a positive and significant coefficient for Southwest entry (though of a somewhat

smaller magnitude) when we run a linear probability model with an indicator variable for

any copublication in the focal year as the dependent variable (see Table A-3, Column 3).

Clustering at the city-pair level, rather than at the individual-pair level, hardly impacts the

standard errors (see Table A-4). The coefficient on Southwest entry remains significant when

we exclude pairs that have more than two copublications over the entire observation period,

or winsorize observations with more than two copublications (see Table A-5).

4.3 Changes in the Types of Research Projects

Having shown evidence that links Southwest entry to a plausibly causal increase in collab-

oration between the affected scientists, we now take advantage of this source of exogenous

variation to test the theoretical framework.

The first prediction of the model focuses on the impact travel costs have on scientists

embedded within better versus worse local research environments. Intuitively, more agglom-

erated regions with a greater number of potential collaborators offer on average better local

matches to begin with, which makes the global scientist pool relatively less appealing. Since

it is difficult to build accurate proxies for the number of ideal co-authors a specific scientist

may have access to without traveling, we rely on past productivity to assess if a scientist

from a given department is more versus less likely to find a good match locally.

As can be seen in Column 1 of Table 5, the increase in collaboration we observe after

the arrival of Southwest is driven by scientist pairs where at least one member is more

productive than her local peers, and is even more pronounced when both scientists are more

productive than their colleagues. Thus, the cheaper fares seem to be particularly helpful for

individuals that are talented, but potentially do not have access to co-authors of comparable

quality within their local environment. They might be in peripheral institutions because of
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imperfections in the labor market, or simply because of their geographic preferences. With

lower travel costs, these individuals are able to find and sustain better matches over distance.

The next set of predictions of the model link the reduction in geographic frictions to an

increase in the amount of time and effort allocated to higher quality (Prediction 2) and riskier

projects with distant co-authors (Prediction 3). As discussed in Section 3.2, we proxy for the

quality of projects using citations, and for riskiness by looking both at projects that span

different sub-fields, as well as research that uses novel keywords. If riskier projects are more

likely to fail, then our estimate will likely underestimate the full impact of a reduction in

travel costs on this set of more novel and experimental projects, as many will be abandoned

and never turn into a publication to begin with.

In terms of riskiness, in Column 2 of Table 5 we see that after Southwest enters, col-

laborations between different sub-fields increase disproportionately relative to other types of

collaborations.31 These across sub-field projects may benefit more from face-to-face interac-

tions because of a greater need to exchange complex information which may be new to at least

one of the participants, and because these pairs cannot rely on a shared, discipline-specific

vocabulary to streamline communications over distance.

[Insert Table 5 about here]

In terms of project quality, in Column 1 of Table 6 we condition on collaboration and

weight the dependent variable, copublications, by citations received (a proxy for scientific

impact and quality). Consistent with Prediction 2 and with the idea that lower travel costs

induce scientists to allocate disproportionately more effort to distant collaborations as quality

increases, we observe a larger effect of Southwest entry on right tail projects.

In Column 2 of Table 6, we instead test the hypothesis that better matches over dis-

tance could be driven not only by complementarities in ideas and skills (as we have seen

31The result from the first two columns of Table 5 is unchanged when we control for both interactions in
Column 3. In Appendix Table A-7 we also present a larger set of interactions beyond those predicted by
the theory. We use university-pair fixed effects instead of individual fixed effects so that we can display and
interpret the main effect of the moderators. The estimates show that researchers in more distant disciplines
or further away from each other are less likely to collaborate, but that Southwest entry helps compensate for
this greater distance in knowledge space and geography. Other moderators such as age, relative productivity
in the department, and department R&D budgets are non-significant.
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in the across sub-field collaborations), but also by complementarities in equipment and in-

frastructure. The dependent variable in Column 2 is the number of equipment-intensive

copublications. Although these publications are more rare, the effect of Southwest entry is

large and significant, suggesting that at least within chemistry equipment may play a key

role in how scientists select into distant collaborations.

Last, in Column 3 we directly look for novelty in the paper keywords as an additional

proxy for project riskiness, finding further support for Prediction 3. In the next section we

perform robustness on all of the model’s predictions within a larger dataset of chemistry and

chemistry-related journals, as well as in a different fields of science (mathematics).

[Insert Table 6 about here]

5 Extensions and External Validity in Different

Samples

The analysis and results presented in the last section describe the effect of Southwest entry on

the rate and type of collaborations between chemistry faculty members. While this approach

has the advantage of leveraging rich individual-level data and offers a cleaner identification

strategy, one may also be interested in studying the same effects within chemistry more

generally, as well as to test their validity in other fields.

In this section, we present three additional empirical exercises, starting from an analysis

of the effect of Southwest entry in different fields of science. The regressions are conducted

at the region-pair level since we do not have individual level data for biology, physics and

engineering. Results show that the effect we have identified within chemistry also applies to

other fields.

Next, we expand our chemistry analysis to include all publications in chemistry and

chemistry-related journals at the region-pair level. This allows us to test all the hypothesis of

our model within a larger set of collaborations, which is particularly helpful for studying more

rare types of projects (e.g. equipment-intensive, very high quality, novel). Consistent with
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the predictions of the model, we see a disproportionate increase in novel, cross-disciplinary

and equipment-intensive copublications.

Last, we perform an additional, deep-dive within an additional domain for which we have

collected individual-level data: mathematics. Although we find an effect of Southwest entry,

the magnitude is lower, possibly because mathematics does not rely on specialized equipment

in the same way as chemistry – and equipment-intensive collaborations were among the most

affected in that field – or because collaborations over distance are less useful to begin with

since mathematics relies on a more explicit, codified language. As in chemistry, effects

are stronger for possibly riskier collaborations between pairs of scientists that are active in

different sub-fields of mathematics.

5.1 Aggregate Changes in the Rate of Collaboration in Different
Fields Across U.S. Regions

To test if the availability of cheaper flights had an effect on scientific collaboration across

fields, we use a large-scale publication dataset covering close to a million papers matched to

U.S. regions (defined in terms of CBSAs – Core-Based Statistical Areas).32 Specifically, we

explore how collaboration between any two CBSAs changed after Southwest starts operating

a new route between them. The unit of analysis is the CBSA-pair-year (48,274 pairs),

and we include CBSA-pair fixed effects and year fixed effects to respectively control for

underlying differences across regions that are consistent over time, and overall time trend.33

The regressions also include linear time trends for the origin and destination CBSA. For the

estimation, we use a Poisson model with standard errors clustered at the CBSA-pair level.

32The starting point for the construction of this sample is the population of scientific articles published
in the top 477 scientific journals in biology, chemistry, physics and engineering between 1991 and 2012. We
have a total of 2,773,560 papers, of which 1,169,458 had at least one author with a U.S. address. Out of
all papers with U.S. addresses, we were able to successfully map 994,672 (85%) to a U.S. CBSA using a
combination of three different geocoding services (Google Maps API, Bing Maps API, and the Data Science
Toolkit). This allows us to link the vast majority of U.S. papers to the geographic regions involved in their
production.

33While this approach has the advantage of considering different fields of science, it also has important
limitations. We can no longer include scientist-pair fixed effects and account for idiosyncratic, unobservable,
and time invariant reasons that may drive collaboration between any two scientists. Core-based statistical
areas (CBSAs) may also be too large as a unit of analysis for correctly measuring the effects of interest.
Finally, our ability to test the full set of predictions of the model is limited.
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[Insert Table 7 about here]

Results are displayed in Table 7. In Column 1 we find that Southwest entry is associated

with an increase in collaborations of 65% in the full sample, with comparable effects across the

different fields of science: 17% increase in chemistry (Column 2), 64% in biology (Column 3),

15% in physics (Column 4), and 27% in engineering (Column 5). Since chemistry, according

to the estimates in Table 7, is not an outlier in either direction (if anything, the effects within

the field are on the lower end of the spectrum), we believe the main results of the paper are

generalizable to other fields.

5.2 Aggregate Changes in the Type of Chemistry Collaborations
Across U.S. Regions

Next, we study how Southwest entry changes the rate and types of chemistry collaborations

at the regional level. The analysis of collaborations between chemistry faculty members

already suggested that lower travel costs are particularly beneficial for higher-quality, riskier,

and equipment-intensive projects. However, the estimates are significant, but noisy when

looking at rare outcomes such as novel copublications. We therefore replicate our analysis

within a broader set of papers in chemistry and related fields. As in the previous subsection,

the analysis is at the CBSA-pair-year level and includes CBSA-pair fixed effects and year

fixed effects.

[Insert Table 8 about here]

The effects (see Table 8) are consistent with our previous findings, and highlight that lower

travel cost have a disproportionate effect on the right tail of the quality distribution, and on

more novel and cross-disciplinary ideas. The impact of these changes is large, with increases

in aggregate output of 21% in terms of copublication counts, 24% for novel ideas, and 26%

for projects that span different fields or that are equipment-intensive. These correspond to

roughly 300 extra copublications per year.34

34The sample mean for copublications at the CBSA-pair-year level is around 2.1, leading to an increase of
0.42 per CBSA-pair-year. We have around 2,100 pairs per year, of which around one third are in treatment
status. So a back of envelope estimate is 0.42*2100*0.33=294.
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5.3 Changes Within Mathematics

Last, we explore the effect of Southwest entry within mathematicians. The dataset includes

all faculty members in U.S. mathematics departments that have advised at least one PhD

student.35 We observe 431 pairs of individuals that experienced Southwest entry between

1993 and 2012 and have at least one copublication in that period. We adopt the same

empirical strategy as in the chemistry sample and regress copublications on an indicator

variable for Southwest entry, controlling for individual-pair fixed effects and year fixed effects.

[Insert Table 9 about here]

Results show that Southwest entry increases copublications by 25%. While the point esti-

mate is significant, the magnitude is smaller than the one we find for collaborations between

chemists. Consistent with the chemistry sample, effects are stronger for mathematicians

who are more productive than their peers, and for pairs of scientists working in different

sub-fields of mathematics.

6 Conclusions

The paper explores how geographic frictions, and in particular travel costs, shape the rate

and direction of scientific research. Our theoretical framework builds on a tension between

lower collaboration costs when co-located, and the availability of a broader set of potential

collaborators over distance. We start from this basic trade-off and then explore some of

the key choices scientists face when deciding if they should collaborate locally versus over

distance, how much effort to allocate to projects of different potential, and how much risk to

take. Whereas previous work has mostly focused on communication costs and their impact

on the rate of collaboration, our paper emphasizes other effects distance-related frictions can

have on innovative outcomes even before projects are started.

35This database is based on MathSciNet, an abstracting service run by the American Mathematical Project
and the Mathematics Geneaology Project, which is targeted at tracking PhD theses in mathematics. We
construct a sample of US-based mathematicians who advise at least one PhD student, and deduce their
location from the institution their students graduate from.

26



We test the predictions from the model by taking advantage of a source of plausibly

exogenous variation in travel costs: the differential timing of entry by a low-cost carrier

across multiple U.S. airports. Our difference-in-differences empirical strategy, combined

with a series of robustness and falsification tests, supports the idea that the availability of

lower fares had a causal effect on the probability and intensity of collaboration between

scientists.36 The effect is particularly pronounced for scientists that are less likely to find

co-authors of the same quality within their local environment, is present across multiple

fields of science (chemistry, physics, biology, engineering, mathematics), and is robust to

controlling for idiosyncratic scientist-pair characteristics, trends in collaboration over time,

and department R&D budgets. Moreover, we do not observe a pre-trend in collaboration

between scientist pairs that are going to experience lower air travel costs in the future.

Consistent with the theory, the reduction in geographic frictions also transforms the types

of projects that emerge: our estimates suggest a sizable increase in higher quality papers,

in projects that span different sub-disciplines, are more intensive in their use of specialized

equipment, and are more risky and novel. Comparisons between our findings in chemistry

and mathematics suggest that complementarities in specialized equipment – while important

for collaboration decisions between distant labs – are not the only driver behind the observed

increase in joint projects over distance. Scientists also launch more experimental projects

and projects that seem to take advantage of the complementary skills, ideas and knowledge

that a distant lab may contribute to a collaboration.

Beyond the lower fares introduced by the low-cost airline we study in the paper, the

cost per mile in the United States has dropped by over 50% in the last 30 years (Perry,

36A back of the envelope calculation suggests that Southwest entry induced close to 400 copublications
among chemistry faculty pairs. The sample mean in our sample is 0.1 copublications per year increasing by
50% to 0.15 copublications per year after Southwest entry. We have 750 pairs and 10 post-entry years on
average, leading to a back of envelope estimate of 0.05 * 750 * 10=375 copublications. While this number is
sizeable, it is small relative to the total number of copublications among chemistry faculty members in this
period. However, Southwest entry corresponds to a 20% price reduction affecting only a fraction of faculty
pairs (a large fraction of pairs are served by Southwest or other low-cost carriers before our observation
period). Over the last 30 years, the cost per mile for air travel across all routes within the U.S. dropped by
50% (Perry 2014). This suggests that reductions in air transportation overall could have had a substantial
aggregate effect on collaboration, above and beyond the particular source of variation in air travel cost we
use in this paper.
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2014),37 and convenience and routes have greatly improved. Our results should be therefore

interpreted within this broader context of improvements in our ability to travel and work with

distant co-authors. Whereas we cleanly estimate the impact of only part of these changes,

improvements in air travel are likely to affect a much larger population of individuals. This

includes inventors and researchers working within firms that have multiple sites, which will

face a similar trade-off between the possibility to form the ideal team when not constraining

the search for members to one site, and the additional communication, coordination and

travel costs this may add.38 Further exploring the trade-offs geographic frictions introduce

in these different contexts is a fruitful area for subsequent research.

37We would expect similar effects in Europe, where low-cost airlines had even more of an effect on market
structure and competition, as well as on uniting different economies.

38There is an interesting parallel here with the literature on communications costs and collaboration: while
Agrawal & Goldfarb (2008) focused on academic collaborations, Forman & Zeebroeck (2012) subsequently
found that the internet fostered R&D collaborations within firms. In principle, one could make progress on
this related question using patenting and co-invention data together with our empirical strategy.
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Tables

Table 1: Summary Statistics

Variable Obs Mean Std. Dev.

Individual Scientist Level
Age 845 49.6 11.0
Female 845 .10 .30
Average R&D budget 845 279.88 226.75
in dept. (1000s USD)
Speciality:

Physical chemistry 845 .32 .47
Biochemistry 845 .22 .41
Inorganic chemistry 845 .14 .34
Organic chemistry 845 .13 .34
Material science 845 .11 .31
Other 845 .08 .27

Individual-Pair Level
Year of SW entry 758 2001 4.5
Distance (in miles) 758 1232 808.6
Years in sample 758 17.3 4.6
Total copublications 758 1.9 3.4
Copub. both before and after 758 .09 .28
Copub. before SW entry 758 .49 .50
Copub. after SW entry 758 .60 .49
In different field of chemistry 758 .45 .50

Individual-Pair-Year :evel
Copublications 13,147 .11 .41
Dummy for any copublication 13,147 .09 .29

Individual-pair-year level conditional on copublication
Cites weighted copublications 1,177 44.9 71.8
Novel copublications 1,177 .09 .32
Equipment intensive copublications 1,177 .27 .53
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Table 2: Comparing Pairs in the Analysis Sample to Pairs Not Experiencing
Southwest

Distant Pairs Not Analysis P-Value For
Experiencing SW Sample Equality of Means

Total copublications 1.78 1.90 0.19
Number of years observed 13.85 17.51 <0.01
Age (average in pair) 49.16 51.23 <0.01
Different type of chemistry 0.46 0.45 0.79
Average R&D budget in dept. 288.9 278.1 0.17
Observations 5,954 758
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Table 3: Effects of Southwest Entry on Price, Passengers and Routes

(1) (2) (3) (4) (5)
Passengers Mean Price Average Miles Direct Flight Number

(log) (log) Flown (log) of Transfers

Southwest Entry 0.4437∗∗∗ -0.1910∗∗∗ 0.0007 0.0002 -0.0174∗∗∗

(0.0050) (0.0024) (0.0006) (0.0004) (0.0017)

Airport-Pair Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Mean of Dep. Variable 4.238 5.454 7.066 0.007 1.239
Number of Pairs 55750 55750 55739 55750 55750
Number of Observations 956029 956029 955983 956029 956029

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01, Southwest entry is
an indicator variable that takes value 1 if Southwest has started operating a flight between airports. All
specifications include airport-pair fixed effects and year fixed effects. Estimation by ordinary least squares.
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Table 4: Effect of Southwest Entry on Copublications at the Individual-Pair level

DV=Copublications (1) (2) (3) (4) (5) (6)
Baseline Controls Controls Timing Placebo 1 Placebo 2

Southwest Entry 0.505∗∗∗ 0.526∗∗∗ 0.526∗∗∗ -0.029
(0.121) (0.121) (0.121) (0.216)

Mean Age 0.153∗∗∗ 0.268∗∗∗

(0.008) (0.015)

Dept R&D Budget 0.364∗∗∗ 0.364∗∗∗

per Faculty (log) (0.127) (0.127)

Years Since Both -0.230∗∗∗

Have a PhD (0.022)

Southwest Entry (-1) 0.078
(0.152)

Southwest Entry (0) 0.485∗∗∗

(0.150)

Southwest Entry (1) 0.518∗∗∗

(0.166)

Southwest Entry (2) 0.582∗∗∗

(0.181)

Fake Southwest Entry 0.095
(Random Timing) (0.121)

Individual Pair FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Pairs 758 758 758 758 758 171
Number of Obs. 13,147 13,147 13,147 13,147 13,147 2,945

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent variable is the number of
copublications between pairs of scientists. Southwest entry is an indicator variable that takes value 1 if Southwest has started
operating a flight from airports close to the respective scientists. All specifications include individual-pair fixed effects and year
fixed effects. Column 1 is our baseline specification. Column 2 adds controls for the age of the pair members and departmental
R&D budget per faculty (both variables are means across the two pairs members). Column 3 additionally controls for the
numbers of years that have passed since both pairs members obtained their PhD. Column 4 replaces Southwest entry by a set of
indicator variables corresponding to different times from or since entry: SW entry (-1) is an indicator variable if the observation
is in the year preceding SW entry; SW entry (0) SW entry (1) SW entry (2+) are defined analogously for the year of SW entry,
the year after SW entry, and two years or more after SW entry. Column 5 is a placebo where we pretend Southwest entry has
occurred in a random year for each pair. Column 6 is a placebo where we look at the set of pairs (not included in the baseline
specification) who experienced Southwest entry followed by a Southwest exit event shortly thereafter. Estimation by Poisson
Quasi-Maximum Likelihood.
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Table 5: Effect of Southwest Entry on Copublications: Which Pairs Are Most
Affected?

DV=Copublications (1) (2) (3)

Southwest Entry 0.119 0.272∗ -0.075
(0.166) (0.143) (0.197)

SW Entry X One More Productive 0.346∗ 0.314∗

than department average (0.187) (0.180)

SW Entry X Both More Productive 0.695∗∗∗ 0.662∗∗∗

than department average (0.249) (0.237)

Southwest X Different Type of Chemistry 0.543∗∗ 0.513∗∗

(0.233) (0.216)

Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of Pairs 758 758 758
Number of Observations 13,147 13,147 13,147

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

37



Table 6: Effect of Southwest Entry on the Type of Collaborations

(1) (2) (3)
Cites Equipment-Intensive Novel

Received Copublications Copublications

Southwest Entry 0.420∗ 0.024∗∗∗ 1.175∗

(0.234) (0.280) (0.687)

Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of Pairs 189 80 37
Number of Observations 606 276 137

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are
conditional on the pair having collaborating in the focal year. The dependent variables are the number of cites
received (column 1), the number of equipment-intensive collaborations (column 2), and the number of novel
copublications (column 3). Pairs that never have a non-zero value of the dependent variable are dropped
from the regressions, hence the lower number of observations in columns 2 and 3. All specifications include
individual-pair fixed effects and year fixed effects. Estimation by Poisson Quasi-Maximum Likelihood.

38



Table 7: Southwest Entry and Collaborations Between U.S. Cities (CBSAs)

(1) (2) (3) (4) (5)
All copubs Chemistry Biology Physics Engineering

Southwest Entry 0.503∗∗∗ 0.159∗∗∗ 0.494∗∗∗ 0.141∗∗∗ 0.238∗∗∗

(0.020) (0.033) (0.032) (0.031) (0.055)

CBSA Pair Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
City Trends Yes Yes Yes Yes Yes
Number of Pairs 48,274 15,303 22,079 15,872 7,635
Number of Observations 965,480 306,060 441,580 317,440 152,700

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 These regressions
are run at the CBSA-pair level. The dependent variable is the number of copublications between pairs of
CBSAs. Southwest entry is an indicator variable that takes value 1 if Southwest has started operating a
flight from airports close to the respective cities. Column 1 is based on copublications in all journals in our
sample. Columns 2, 3, 4, 5, are based on chemistry, biology, physics and engineering journals respectively.
All specifications include CBSA-pair fixed effects, year fixed effects, an origin-CBSA time trend and a
destination-CBSA time trend. Estimation by Poisson Quasi-Maximum Likelihood.
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Table 8: Southwest Entry and Types of Collaboration Across CBSAs

(1) (2) (3) (4) (5)
Copublications Citation-Weighted Novel Across Fields Equipment

Southwest entry 0.209*** 0.240** 0.235*** 0.266** 0.264***
(0.065) (0.120) (0.071) (0.116) (0.087)

Year FE Yes Yes Yes Yes Yes
CBSA-Pair FE Yes Yes Yes Yes Yes

Observations 40,227 39,517 34,847 27,379 29,767
CBSA Pairs 6,172 5,970 4,941 3,300 3,789

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions
are run at the CBSA-pair level and are based on a large sample of publications in chemistry and chemistry-
related fields. The dependent variables in column 1 is the number of copublications between pairs of CBSAs.
Column 2 uses cites-weighted copublications as dependent variable. Column 3, 4 and 5 count the number
of novel, across-fields and equipment intensive collaborations, as inferred from the keywords associated with
the papers.

Table 9: Effect of Southwest Entry on Collaboration Among Mathematicians

DV=Copublications (1) (2) (3) (4)
Southwest Entry 0.247∗∗ 0.123 -0.370 -0.426

(0.123) (0.131) (0.309) (0.310)

SW Entry X Different 0.469∗∗∗ 0.471∗∗∗

Types of Mathematics (0.177) (0.181)

SW Entry X One More 0.555∗ 0.435
Productive than Dept Average (0.333) (0.336)

SW Entry X Both More 0.728∗∗ 0.673∗∗

Productive than Dept Average (0.315) (0.316)

Pair Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Number of Pairs 431 431 431 431
Number of Observations 5,514 5,514 5,514 5,514

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. These regressions are
based on a dataset of U.S. mathematicians constructed using MathSciNet and the Mathematics Geneaology
Project. The empirical specifications are analogous to the ones we use when studying collaborations among
chemistry faculty members.
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Figures

Figure 1: Dynamics of the Effect of Southwest Entry: Individual-Pair Level
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Notes: To generate this graph, we regress individual copublications on year fixed effects, pair effects and

a set of indicator variables corresponding to 5 years before SW entry, 4 years before SW entry, ..., 4 years

after SW entry, 5 years after SW entry (1 year before SW entry is omitted). We then plot the coefficients

associated with these indicator variables against time from/to Southwest entry, superimposing a linear fit

line before entry and after entry. The vertical bars represent 95% confidence intervals. The coefficient for the

year immediately before entry is set to zero and displayed without confidence interval since it our baseline

year.
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Online Appendix

Appendix A: Tables

Table A-1: Presence and Concurrent Entry of Other Airlines

(1) (2) (3) (4) (5) (6)
No LC LC excl. entry excl. entry excl. entry

DV=Copubs Baseline before SW before SW by other LC by MC by LC and MC

Southwest Entry 0.505∗∗∗ 0.625∗∗∗ 0.291 0.498∗∗∗ 0.477∗∗∗ 0.441∗∗∗

(0.121) (0.157) (0.199) (0.131) (0.145) (0.157)

Pair Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Number of pairs 758 479 279 649 556 480
Number of obs. 13,147 8,349 4,798 11,261 9,711 8,367

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Column 1 is the
baseline regression. Column 2 limits the sample to pairs in locations where no other low-cost airline was
operating in the year before Southwest entry. Conversely, column 3 limits the sample to pairs in locations
where another low-cost airline was operating in the year before Southwest entry. Column 4 exclude cases
where another low cost company entered in the same year as Southwest, column 5 excludes where another
major company entered in the same year as Southwest and column 6 excludes both of these groups.

Table A-2: Northeast Corridor Falsification Test

(1) (2) (3)
DV= Copublications All NE corridor excluding

only NE corridor

Southwest Entry 0.505∗∗∗ -0.745 0.559∗∗∗

(0.121) (0.597) (0.123)
Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of pairs 758 31 727
Number of observations 13,147 564 12,583

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A-3: Alternative Functional Forms

(1) (2) (3)
Poisson OLS OLS

Copublications Copublications Any copublication

Southwest Entry 0.505∗∗∗ 0.052∗∗∗ 0.030∗∗∗

(0.121) (0.015) (0.010)

Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of pairs 758 758 758
Number of obs. 13,147 13,147 13,147

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Southwest entry
is an indicator variable that takes value 1 if Southwest has started operating a flight from airports close
to the respective scientists. Column 1 is the baseline regression at the individual pair level (estimated by
Poisson Quasi-Maximum Likelihood.) Column 2 estimates the same specification with ordinary least squares.
Column 3 is a linear probability model with an indicator variable for any copublication.

Table A-4: Inference with City-Pair Clustering

DV=Copublications (1) (2) (3)
Southwest Entry 0.505∗∗∗ 0.505∗∗∗ 0.492∗∗∗

(0.121) (0.100) (0.134)
Pair Fixed Effects Individual pair Individual pair City Pair
Year Fixed Effects Yes Yes Yes
Clustering Individual pair City pair City pair
Number of obs. 13,147 13,147 13,147

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent variable is the number of copublications
between pairs of scientists. Southwest entry is an indicator variable that takes value 1 if Southwest has
started operating a flight from airports close to the respective scientists. Column 1 is our baseline regressions
with individual pair fixed effects and individual pair clustering. In column 2, we keep individual pair fixed
effects but cluster at the city pair level, using the POI2HDFE Stata command from Paulo Guimaraes that
implements the algorithm Guimaraes & Portugal (2010). In column 3, we replace individual pair fixed effects
with city pair fixed effects and cluster by city pair fixed effects
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Table A-5: Sensitivity to Outliers

DV=Copublications (1) (2) (3)
Southwest Entry 0.505∗∗∗ 0.308∗∗∗ 0.424∗∗∗

(0.121) (0.118) (0.112)
Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Comment Baseline Excluding outlier pairs Winsorizing outliers
Number of pairs 758 732 758
Number of obs. 13,147 12,701 13,147

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, The dependent variable is the number of copublications
between pairs of scientists. Southwest entry is an indicator variable that takes value 1 if Southwest has
started operating a flight from airports close to the respective scientists. Column 1 is our baseline regressions
with individual pair fixed effects and individual pair clustering. In column 2, exclude pairs that have more
than two copublications in any given years. In column 3, we winsorize observations that have more than two
copublications to two.

Table A-6: Robustness to Including Non-Collaborating Pairs

DV=copublications (1) (2) (3)

Southwest Entry 0.505∗∗∗ 0.500∗∗∗ 0.337∗∗∗

(0.121) (0.129) (0.124)
Pair Fixed Effects Individual pair University Pair University Pair
Year Fixed Effects Yes Yes Yes
Sample includes No No Yes
non-collaborating pairs
Number of obs. 13,147 13,147 1,425,523

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Southwest entry
is an indicator variable that takes value 1 if Southwest has started operating a flight from airports close
to the respective scientists. Estimation by Poisson Quasi-Maximum Likelihood. Column 1 is our baseline
regression, which includes only pairs of scientists who collaborates at some point. Column 2 keeps the same
sample but replaces individual pair fixed effect by university pair fixed effects. Column 3 adds a 10% random
sample of non-collaboration pairs to the sample of collaborating pairs and is run with university pair fixed
effects.
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Table A-7: Heterogeneous Effects of Southwest Entry

DV=Copublications (1) (2) (3) (4) (5) (6)

Southwest Entry 0.024 -0.006 -0.016 0.174 0.555∗∗∗ -0.186
(0.088) (0.144) (0.093) (0.113) (0.147) (0.203)

Both below 50 0.154 0.151
(at time of entry) (0.117) (0.119)

SW X both below 50 0.465∗∗∗ 0.528∗∗∗

(at time of entry) (0.149) (0.152)

One more productive -0.059 -0.052
than dept average (0.131) (0.130)

Both more productive 0.045 0.069
than dept average (0.141) (0.139)

SW X one more productive 0.240 0.266
than dept average (0.167) (0.166)

SW X both more productive 0.441∗∗ 0.490∗∗∗

than dept average (0.187) (0.186)

Different type -0.362∗∗∗ -0.400∗∗∗

of chemistry (0.097) (0.099)

Southwest X different 0.581∗∗∗ 0.588∗∗∗

type of chemistry (0.131) (0.131)

Both in dept. 0.186 0.230∗∗

with below median R&D budget (0.115) (0.115)

One in dept. 0.101 0.138
with below median R&D budget (0.121) (0.121)

SW X Both in dept. 0.115 0.067
with below median R&D budget (0.157) (0.162)

SW X One in dept. -0.161 -0.278∗

with below median R&D budget (0.159) (0.160)

Distance less than 0.155 0.140
1000 miles (0.123) (0.123)

SW X distance less than -0.377∗∗ -0.420∗∗

1000 miles (0.166) (0.167)

Distance between 1000 0.091 0.066
and 2000 miles (0.138) (0.141)

SW X distance between 1000 -0.474∗∗ -0.575∗∗∗

and 2000 miles (0.186) (0.197)

University Pair Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Number of pairs 758 758 758 758 758 758
Number of observations 13,147 13,147 13,147 13,147 13,147 13,147

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Distance above 2000 miles is the omitted
distance category.
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Table A-8: Intensive and Extensive Margin of Southwest Entry

DV= Copublications (1) (2) (3)
Baseline Extensive margin Intensive margin

Southwest entry 0.505∗∗∗ 0.410∗∗∗ 0.806∗∗∗

(0.121) (0.135) (0.234)

Pair Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
Number of pairs 758 692 66
Number of observations 13,147 11,969 1,178

Notes: Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. The dependent
variable is the number of copublications between pairs of scientists. Southwest entry is an indicator variable
that takes value 1 if Southwest has started operating a flight from airports close to the respective scientists.
Column 1 is the baseline specification. Column 2 restricts the sample to pairs of scientists who collaborate
either before or after entry, but not both; column 3 restrict the sample to pairs of scientists who collaborate
both before and after entry. All specifications include individual-pair fixed effects and year fixed effects.
Estimation by Poisson Quasi-Maximum Likelihood.

Table A-9: Changing the Definition of Proximate Airport

(1) (2) (3) (4)
10 miles 25 miles 50 miles 100 miles

Southwest entry 0.896∗∗∗ 0.583∗∗∗ 0.505∗∗∗ 0.323∗∗∗

(0.206) (0.116) (0.095) (0.073)

Pair Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Number of pairs 150 433 758 1,127
Number of obs. 2,600 7,275 13,147 19,292

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A-10: Using Journals to Define Field of Specialization

Field Journal (examples)
Biochemistry Journal of Biological Chemistry, Biochemistry
Inorganic Chemistry Inorganic Chemistry
Material Science Macromolecules, Advanced Materials
Physical Chemistry Journal of Physical Chemistry
Organic Chemistry Journal of Organic Chemistry, Organic Letters

The area of specialization for a given faculty member is inferred from the journals s/he publishes
in. For instance, a faculty member who publishes often in the Journal of Biological Chemistry is assumed
to be specialized in biochemistry.
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Appendix A: Figures

Figure A-1: Dynamics of The Effect of Southwest Entry: CBSA-Pair Level

−.5

0

.5

1

Copubs

−5 −4 −3 −2 −1 0 1 2 3 4 5

Years to/since Southwest entry

Notes: To generate this graph, we regress CBSA copublications on year fixed effects, pair effects, origin-

CBSA and destination-CBSA time trends, and a set of indicator variables corresponding to 5 years before

SW entry, 4 years before SW entry, ..., 4 years after SW entry, 5 years after SW entry (5 years before SW

entry omitted). We then plot the coefficients associated with these indicator variables against time from/to

Southwest entry, superimposing a linear fit line before entry and after entry.
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Appendix B: Theoretical Model Under w=0

B1: π∗D > π∗G,L

Intuitively, if scientists go on the global market for co-authors and end up with someone of

the same quality as a local co-author (the outside option), then profits will be lower because

they additionally have to pay travel costs:

(pLq)
2

2α
>

(pLq)
2

4α
(1 +

1

2
t∗L) > 0

⇐⇒ 1

2
>

1

4
+

1

8
t∗L > 0, (15)

since the maximum value of t∗L is 1. Q.E.D.

B2: π∗G,H > π∗D requires an assumption on parameters

π∗
G,H − π∗

D > 0 (16)

⇐⇒ (pHq)
2

4α
(1 +

1

2
t∗H)− (pLq)

2

2α
> 0

⇐⇒ (pH)2(1 +
1

2
t∗H) > 2(pL)2 (17)

Intuitively, the benefit of a better co-author has to compensate for higher travel costs.
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B3: π∗G > π∗D requires an assumption on parameters

(1− z)π∗
G,L + zπ∗

G,H − π∗
D > 0 (18)

⇐⇒ (1− z)
(pLq)

2

4α
(1 +

1

2
t∗L) + z

(pHq)
2

4α
(1 +

1

2
t∗H)− (pLq)

2

2α
> 0

⇐⇒ (1− z)(pL)2(1 +
1

2
t∗L) + z(pH)2(1 +

1

2
t∗H)− 2(pL)2 > 0

⇐⇒ z[(pH)2(1 +
1

2
t∗H)− (pL)2(1 +

1

2
t∗L)]− (pL)2(1− 1

2
t∗L) > 0 (19)

Intuitively, the benefit of a better co-author has to compensate for higher travel costs. Con-

ditional on this being the case, the more likely this will happen (i.e. z high), the more

attractive the choice of a distant co-author becomes.

B4:
∂[π∗

G−π∗
D]

∂q > 0 requires an assumption on parameters

First,
∂[π∗

G,H ]

∂q
:

∂π∗
G,H

∂q
=

(pH)2q

2α
(1 +

1

2
t∗H) +

(pHq)
2

4α

1

2

(pH)2q

4αβ

=
(pH)2q

2α
(1 + t∗H) (20)

Second,
∂[π∗

G,L]

∂q
:

∂π∗
G,L

∂q
=

(pL)2q

2α
(1 + t∗L) (21)

Third,
∂[π∗

D]

∂q
:

∂π∗
D

∂q
=

(pL)2q

α
(22)
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Finally, use the three previous results to show:
∂[π∗

G−π∗
D]

∂q

(1− z)
∂π∗

G,L

∂q
+ z

∂π∗
G,H

∂q
>
∂π∗

D

∂q
(23)

⇐⇒ (1− z)
(pL)2q

2α
(1 + t∗L) + z

(pH)2q

2α
(1 + t∗H) >

(pL)2q

α

⇐⇒ q

2α
[(1− z)(pL)2(t∗L − 1) + z[(pH)2(1 + t∗H)− 2(pL)2]] > 0 (24)

The first term is negative since t∗L is between 0 and 1. This reflects the idea that if you

use the global market you can end up with a co-author of the same quality as a domestic

co-author, and then you also have to incur travel costs. The second term is positive and

reflects the idea that if you use the global market you can end up with a co-author of higher

quality with probability z. Ignoring the first term q
2α

, we simplify and re-write:

⇐⇒ (1− z)(pL)2(t∗L − 1) + z[(pH)2(1 + t∗H)− 2(pL)2] > 0

⇐⇒ z[(pH)2(1 + t∗H)− (pL)2(1 + t∗L)]− (pL)2(1− t∗L) > 0 (25)

Note that the condition to satisfy
∂[π∗

G−π∗
D]

∂q
is very similar to the condition to satisfy π∗

G−π∗
D >

0. The subsection below will show that if the level condition (π∗
G − π∗

D > 0) is satisfied,

then the difference condition (
∂[π∗

G−π∗
D]

∂q
) is automatically satisfied. Therefore, no further

assumptions are needed in addition of the level condition.

B5: Comparing the level condition to the difference condition

Level condition: π∗
G − π∗

D > 0 means:

z[(pH)2(1 +
1

2
t∗H)− (pL)2(1 +

1

2
t∗L)]− (pL)2(1− 1

2
t∗L) > 0 (26)

Difference condition:
∂[π∗

G−π∗
D]

∂q
> 0 means

z[(pH)2(1 + t∗H)− (pL)2(1 + t∗L)]− (pL)2(1− t∗L) > 0 (27)
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Therefore, by combining both conditions one can show that:

∂[π∗
G − π∗

D]

∂q
> π∗

G − π∗
D

⇐⇒ z[(pH)2(1 + t∗H)− (pL)2(1 + t∗L)]− (pL)2(1− t∗L) >

z[(pH)2(1 +
1

2
t∗H)− (pL)2(1 +

1

2
t∗L)]− (pL)2(1− 1

2
t∗L)

⇐⇒ z[(pH)2(t∗H)− (pL)2(t∗L)] + (pL)2(t∗L) >

z[(pH)2(
1

2
t∗H)− (pL)2(

1

2
t∗L)] + (pL)2(

1

2
t∗L)

⇐⇒ 2z[(pH)2(t∗H)− (pL)2(t∗L)] + 2(pL)2(t∗L) >

z[(pH)2(t∗H)− (pL)2(t∗L)] + (pL)2(t∗L)

⇐⇒ z[(pH)2(t∗H)− (pL)2(t∗L)] + (pL)2(t∗L) > 0

Therefore, if a given project is preferred under a distant co-author, this effect is magnified

when project quality rises.
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Appendix C: Theoretical Model Under z > w > 0

Here we address the general case where z > w > 0 (in the main text we solved for the specific

case where w = 0).

Profits under a local co-author are:

π∗
L = (1− w)

(pBq)
2

2α
+ w

(pGq)
2

2α
=
q2

2α
(wp2

G + (1− w)p2
B). (28)

Profits under a distant co-author are:

π∗
D =

q2

4α
(zp2

G(1 +
t∗G
2

) + (1− z)p2
B(1 +

t∗B
2

)), (29)

where t∗i = (piq)
2

8αβ
.

Therefore, the difference between both profit levels can be shown to be:

π∗
D − π∗

L =
q2

4α
[p2
G(z(1 +

t∗G
2

)− 2w) + p2
B((1− z)(1 +

t∗B
2

)− 2(1− w))]. (30)

By again using the definition of β = 1
θ
, one can show that:

∂[π∗
D − π∗

L]

∂θ
= (

q2

8α
)2(zp4

G + (1− z)p4
B) > 0, (31)

and from here it is easy to see that the three predictions of the main text will be satisfied

again.
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