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1 Introduction

The kidney exchange market in the US enables approximately 800 transplants per year for
kidney patients that have a willing but incompatible live donor. Exchanges are organized
by matching these patient-donor pairs in swaps to enable transplants. Each such transplant
extends and improves the patient's quality of life and saves hundreds of thousands of dollars
in medical costs, ultimately creating an economic value that is estimated at more than a
million dollars.1 Since monetary compensation for living donors is forbidden and deceased
donors are in increasingly short supply, kidney exchange markets play an important role in
mitigating the shortage of organs available for transplant.2

This paper shows that, despite signi�cant success, the kidney exchange market su�ers from
market failures that result in hundreds of lost transplants per year. Our descriptive evidence
shows that the market is fragmented and operates ine�ciently. The ine�ciency arises from
two standard market failures. First, kidney exchange platforms use ine�cient mechanisms:
hospitals are not rewarded for submitting high social value patients and donors to the plat-
form. Second, there are signi�cant agency problems: hospitals face most of the costs of
participating in national platforms but receive only a fraction of the bene�ts. Both of these
problems give hospitals ine�cient incentives, which result in kidney exchange taking place at
an ine�ciently small scale. These market failures are serious, but �xable. We show how to
combine theory and data to design e�cient mechanisms, and discuss policies that address the
agency problems. Our estimates suggest that �xing these problems would generate between
200 to 440 additional transplants per year (25% to 55% of the current total).

Our argument has three parts. First, we use administrative datasets to show that the market
is fragmented, ine�cient and shows signs of agency problems. Second, we develop a simple
model to explain the market failures and propose solutions. Third, we combine the model
and data to estimate the magnitude of the ine�ciencies and to design practical alternative
mechanisms and policies.

The �rst part documents three key facts using data on all transplants in the United States
and proprietary data from the three largest kidney exchange platforms. First, the market
is highly fragmented. Instead of most transactions being arranged by a few large platforms,

1Kidney exchange is amongst a handful of recent innovations that clearly improve health care delivery
while savings costs (see Chandra and Skinner, 2012, for a perspective on trends in health care costs in the
US). Transplantation roughly doubles the life expectancy of patients with end-stage kidney disease, and is
cheaper than the alternative treatment of dialysis. Medicare provides nearly universal coverage, irrespective
of age, for patients with End-Stage Renal Disease. This program comprises of about 7% of Medicare's annual
budget (see USRDS, United States Renal Data System, 2016). The cost savings of transplantation relative
to dialysis alone have been estimated to be over $270,000 (see Section 2).

2There are over 97,000 patients currently waiting for a kidney from a deceased donor, but less than a
�fth are expected to be transplanted in the next year. Becker and Elias (2007) argue that this waitlist could
be completely eliminated if there was monetary compensation for live donors and advocate for the creation
of this market. However, this type of transaction is widely panned by bioethicists, and almost all countries
forbid monetary compensation for organs. The National Organ Transplantation Act prohibits compensating
donors in exchange for acquiring organs in the United States. The motivation for kidney exchange is to use
donor swaps to help patients �nd an organ in an ethically and legally acceptable way (Roth, 2007).
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62% of kidney exchange transplants involved patients and donors from the same hospital.
Second, we �nd direct evidence of ine�cient exchanges in the market. Kidney exchanges
performed within hospitals often transplant kidneys from easy-to-match donors to easy-to-
match patients. Existing theory has shown that these matches are ine�cient (Roth et al.,
2007). Third, hospital behavior is inconsistent with pure maximization of patient welfare.
Many hospitals do not participate in national platforms. In addition, evidence suggests
that hospitals are sensitive to �nancial and administrative costs of participating in kidney
exchange, even though these costs are small relative to the social value of transplants. Even
when hospitals do participate, the typical hospital does not conduct all kidney exchanges
through a national platform. Instead, most hospitals continue to operate as competing small
kidney exchange platforms.

The second part develops a model to explain these facts and design policy responses. Al-
though kidney exchange markets do not directly use monetary incentives to acquire organs,
we can analyze them with standard neoclassical producer theory. A kidney exchange plat-
form produces a �nal good (transplants) from intermediate goods (submissions of patients
and donors) supplied by a competitive fringe (hospitals) according to a production func-
tion. This model is motivated by three key institutional features. First, hospitals are the
key decision-makers steering participants towards kidney exchange (Roth et al., 2005; Ash-
lagi and Roth, 2014; Rees et al., 2009). Second, due to biological compatibility constraints,
some patients and donors generate considerably more transplants than others when they join
a platform. Third, the structure of optimal matches make transplants a natural numeraire
good. Platforms can e�ectively transfer transplants from one hospital to another by choosing
which hard-to-match patients to transplant.

Much of the economics of kidney exchange markets is determined by the shape of the pro-
duction function. Returns to scale determine whether it is e�cient to match patients in large
platforms, or whether a fragmented market can be e�cient. Marginal products determine
the value of di�erent types of patients and donors to the platform, which is a key determinant
of e�cient mechanisms.

Theorem 1 shows that ine�ciency comes from the two market failures we discussed. The
�rst market failure is that platforms use ine�cient mechanisms. When a hospital submits
a patient or a donor to a platform, current mechanisms reward hospitals according to the
probability with which that hospital's patient is matched. But the theorem shows that,
to maximize hospital welfare, hospitals should be rewarded with the marginal product (the
expected number of additional transplants enabled by the submission) of their submissions
plus a small adjustment term. Because existing platforms do not reward hospitals based on
the marginal product of their submissions, even a hospital that maximizes the number of its
own patients that are transplanted has to perform socially ine�cient matches. This problem
can be addressed by using points mechanisms that reward hospitals according to marginal
products. The second market failure is that hospital objectives may di�er from pure social
welfare maximization, which we refer to as an agency problem. For example, hospitals may
participate too little in kidney exchange because they face most of the costs but only receive a
fraction of the bene�ts. This problem can be addressed with subsidy policies and mandates.

The third part combines the theory and data to quantify the ine�ciency in the market and
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to suggest policy responses. To do so, we estimate the production function using administra-
tive data from the largest kidney exchange platform and detailed information on matching
algorithms and operational procedures.

The estimated production function yields three sets of results. First, we measure the returns
to scale of the production function and estimate the ine�ciency from market fragmentation.
We �nd that the largest kidney exchange platform is well above the minimum e�cient scale.
At the same time, almost all single-hospital hospital platforms are far below the e�cient
scale. We estimate that the gains from moving all the production to the e�cient scale is
at least 200 transplants per year, and likely closer to 400. These improvements correspond
to an economic value of between $220 and $440 million annually, of which approximately a
quarter is due to savings on healthcare costs. Thus, consistent with the descriptive evidence
and the shape of the production function, fragmentation has a large e�ciency cost.

Second, we use the estimated production function to design more e�cient mechanisms. Op-
timal mechanisms should reward submissions approximately according to marginal products,
while current mechanisms reward submissions according to probabilities of matching. We
�nd that marginal products are considerably di�erent from probabilities of matching, which
implies that existing mechanisms are far from optimal. We discuss how optimal points mech-
anisms based on our estimates could be used to improve hospital incentives.

Third, we study the importance of the two market failures. The loss in hospital welfare due
to the ine�cient mechanism depends on the wedge between current and optimal rewards,
and on the elasticity of supply from hospitals. We have estimated the wedges and the
marginal products, but our data do not have enough information to credibly estimate supply
elasticities. Therefore, we calculate this deadweight loss under a broad range of assumptions
on elasticities. Except under extreme assumptions, the deadweight loss is signi�cant but
lower than the ine�ciency due to market fragmentation. Hence, both the current mechanism
and agency problems cause signi�cant ine�ciency in the market. These results motivate
a combined approach that improves the mechanism design and implements policies that
encourage hospital participation in the national platforms.

2 Background and Data

2.1 Basics of Kidney Exchange

End-Stage Renal Disease (ESRD) a�icts more than half a million Americans. The disease is
almost universally covered by Medicare, even for patients under the age of 65. The Medicare
ESRD program accounts for 7% of its budget, mostly spent on patients undergoing dialysis
(USRDS, United States Renal Data System, 2016). The preferred treatment for ESRD
patients is transplantation, which increases the quality and length of life by several years
and is cheaper than dialysis. Transplantation saves approximately $270,000 per Medicare
bene�ciary and even more for privately insured patients (Wolfe et al., 1999; Irwin et al., 2012;
Held et al., 2016). Moreover, the health risks to living donors are small. Taken together,
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these facts indicate that living donor kidney transplants have large economic value. Held et
al. (2016) estimated the economic value of a kidney transplant at $1.1 million with a detailed
cost-bene�t analysis.3

There is a severe shortage of organs for transplantation. Each year, approximately 13,000
patients are transplanted using organs from deceased donors and another 5,500 from living
donors. Demand far outstrips this supply with approximately 35,000 patients added to the
deceased donor kidney waitlist in each of the recent few years. The shortage has resulted
in the kidney waitlist growing to almost 100,000 patients and about 8,000 patients on the
list dying or being categorized as too sick to transplant while waiting on the list.4 Monetary
compensation cannot be used to address this shortage because of ethical and legal reasons,
and compensation is forbidden in almost every country (Becker and Elias, 2007), including
the US.

Kidney exchange is an innovative way to ameliorate this shortage (Roth et al., 2004; Sönmez
and Ünver, 2013a). It serves patients who have a willing live donor with whom they are not
biologically compatible. Such patients can swap donors with others in the same situation,
enabling transplants for many patients. These swaps are organized by kidney exchange
platforms that match patients and donors registered with them. The platforms receive three
types of submissions. The most common type is a pair, consisting of a patient and a living
but incompatible donor. The second type is an altruistic donor, who is willing to donate a
kidney to a stranger without requiring a transplant for an associated patient. Finally, there
are some unpaired patients, who do not have a willing live donor.

Platforms organize transplants in two ways. The �rst, called a cycle, involves a set of pairs.
The kidney from one pair's donor is transplanted into the patient in the next pair until the
cycle is closed. All transplants are carried out simultaneously to reduce the risk that a pair
donates a kidney without also receiving one. Cycles are usually limited to at most three
pairs due to logistical constraints. The second type, called a chain, is initiated when an
altruistic donor donates to a patient in an incompatible pair. The donor from this pair can
then continue the chain by donating to the next pair and so on until the chain terminates
with an unpaired patient. Chains can be very long in principle because transplants do not
have to be performed simultaneously. However, our data from the National Kidney Registry
(NKR), the largest kidney exchange platform, show that most chains involve four to �ve
transplants. Initially, cycles were the most common type of transaction, but chains became
more important over time and now account for about 90% of the transplants.

There are two types of biological compatibility constraints on kidney transplants: blood-
type and tissue-type compatibility (Danovitch, 2009). A donor is blood-type incompatible
with a patient if the donor has a blood antigen that the patient lacks. There are two blood
antigens, known as A and B. Blood type is A or B if the blood has only the A or the B
antigen, respectively, AB if it has both, and O if it has neither. A donor is tissue-type

3Most of the value comes from gains in quantity and quality of life. The cost savings on dialysis are also
signi�cant. In 2014, Medicare paid $87,638 per year per dialysis patient but only $32,586 in post-transplant
costs per year per patient (USRDS, United States Renal Data System, 2016, Chapters 7 and 11).

4Statistics taken from https://optn.transplant.hrsa.gov/data/view-data-reports/

national-data/ (accessed December 21, 2017).

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
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incompatible with a patient if the donor has certain human leukocyte antigens to which the
patient has an immune response.5 The most common measure of sensitization, that is,
how likely a patient is to reject a transplant due to tissue-type incompatibility, is the Panel
Reactive Antibody (PRA) score. A patient's PRA is between 0 and 100 and denotes
the percentage of a representative population of donors with whom a patient is tissue-type
incompatible. Because this measure depends on the choice of representative population, the
NKR's algorithm uses an alternative measurement tailored to its pool called match power.
It measures, for a given recipient (donor), the fraction of donors (recipients) on the platform
that are blood-type and tissue-type compatible.

2.2 Key Institutional Features and the Economics of Kidney Ex-

change

There are three institutional features that are crucial for the economics of kidney exchange.
First, kidney exchange takes place both in large, national platforms and within individual
hospitals. There are three major national platforms currently operating in the United States:
the National Kidney Registry (NKR), which is the largest; the Alliance for Paired Kidney
Donation (APD); and the United Network for Organ Sharing (UNOS) KPD Pilot Program.
These large platforms match patients using optimization software that maximizes a weighted
number of transplants. They di�er in terms of exact algorithms and operational details.6 Be-
sides these major platforms, there are small regional platforms and individual hospitals that
also organize kidney exchanges. Most hospitals that participate in large national platforms
also match patients outside those platforms.

Hospitals are not forced to participate in platforms.7 Platforms e�ectively reward hospitals
with transplants in order to receive submissions, as hospitals perform the transplants on pa-
tients they submit to a platform. Rewards can also be explicit. For example, most platforms
reward hospitals that submit altruistic donors by matching one of their unpaired patients.

Second, there is substantial variation in the social value of di�erent submissions due to
biological compatibility. One reason for this variation is blood-type compatibility. To simplify

5The immune system recognizes foreign cells based on certain cell-surface proteins, known as antigens.
The organism has antibodies that bind to these antigens, tagging foreign cells which are then attacked. Hence,
if we put a cell with an antigen in the body of a person who has antibodies for that antigen, the immune
system will attack it. The primary antigens that lead to kidney transplant rejection are located at the A,
B, and DR loci of the human leukocyte antigen (HLA). Each donor has up to 2 possible HLA antigens at
each of these loci, out of a list of hundreds. Similarly, a recipient has a list of antibodies to some, possibly
large, subset of the HLA antigens. If the recipient has an antibody to one of the donor kidney's antigens, the
recipient's immune system will attack the kidney, leading to rejection. A recipient is tissue-type compatible
with a donor's kidney if she has no antibodies corresponding the antigens of the donor's kidney (Danovitch,
2009). Note that a transplant between certain incompatible patients and donors has become possible due to
development of desensitization technologies (Orandi et al., 2014).

6See Abraham et al. (2007); Ashlagi et al. (2016); Anderson et al. (2014); Dickerson et al. (2012).
7Roth et al. (2005) and Ashlagi and Roth (2014) argue that hospitals are the key decision-makers and have

incentives to perform potentially ine�cient within hospital transplants. Ashlagi and Roth (2014) analyze the
related mechanism design problem using a static model with stylized hospital behavior.
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exposition, assume that there are only two blood types, O and A. These two types together
are a signi�cant majority of patients and donors in the U.S. Denote a pair with patient blood
type X and donor blood type Y as X-Y, and let qX-Y be the number of such pairs in a pool.
Assume that qA-O < qO-A, which is the empirically relevant case.8 For this simpli�ed case,
Roth et al. (2007) showed that the number of transplants that can be performed, f(q), is
approximately

f(q) = 2 · qA-O + 1 · (qA-A + qO-O) + 0 · qO-A. (1)

This result follows because A-A and O-O pairs can be matched with pairs of the same type.
Roth et al. (2007) call these pairs self-demanded. Self-demanded pairs have a marginal
product of 1, in the sense that they generate 1 additional transplant when they join the pool.
However, an O-A pair can only be transplanted using a cycle with one of the valuable A-O
pairs. Thus, there will be many leftover O-A pairs, and they can only be transplanted if
more A-O pairs join the pool. A-O pairs are called over-demanded and have a marginal
product of 2. O-A pairs are called under-demanded and have a marginal product of 0. An
under-demanded pair competes with another under-demanded pair and adds no value to the
pool. Roth et al. (2007) showed that this qualitative pattern holds even in a model with all
possible blood types.

Current platform rules largely ignore this variation in the social value of submissions, inducing
hospitals to perform socially ine�cient matches. Consider a hospital with two over-demanded
pairs. The hospital could perform a pairwise exchange to conduct two transplants. However,
if the hospital submits the pairs to the platform, then in expectation, the hospital receives
a number of transplants equal to twice the probability that a pair is matched. According to
our data, this probability is 0.8, so the hospital expects only 1.6 transplants from submitting
these two pairs to the platform. This expectation pushes the hospital to match its patients
outside the platform. However, each pair the hospital submits to the platform generates its
marginal product, which the Roth et al. (2007) model puts at 2. This suggests that the
platform could generate 4 transplants if the hospital would submit both its pairs. Using a
more realistic empirical model, we estimate only three additional transplants (Section 5).
Either way, matching these two pairs within the hospital is socially ine�cient despite the
hospital's desire act in the best interest of their patients.

An important corollary of Roth et al. (2007)'s results is that transplants are a natural nu-
meraire in a kidney exchange platform. Because hospitals have a large number of under-
demanded pairs, it is easy for a platform to transfer transplants from one hospital to another
without compromising e�ciency, simply by choosing which under-demanded pairs to match.

Third, hospitals do not necessarily maximize a utilitarian measure of the welfare of the
patients and third-party payers who they represent. We refer to such behavior as a broadly
de�ned agency problem, since hospitals incur most of the costs of kidney exchange. The
social value from one transplant is more than $1,000,000, mostly accruing to gains in quality-
adjusted life years to patients and savings in health-care costs. But hospital revenues are
between $100,000 to $160,000 per transplant.9 Variable pro�ts are likely much smaller.

8This fact is con�rmed for patients and donors registered in the NKR. See Table 2 below.
9See Held et al. (2016); USRDS, United States Renal Data System (2013). The revenues include payments
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Thus, even socially insigni�cant costs of performing kidney exchange through a platform can
be important for hospitals. Conversations with hospital sta� indicate that participation in
kidney exchange platforms involves logistical and administrative hassle in addition to direct
costs arising from biological testing and platform fees.10 Previous surveys and interviews have
found that these logistical and �nancial costs are commonly cited barriers to participation
(Ellison, 2014; American Society of Transplant Surgeons, 2016). Besides costs, hospitals may
have behavioral reasons for not perfectly maximizing patient welfare. For example, there is
considerable heterogeneity regarding hospital sophistication: some hospitals use optimization
software to match patients while others manually search for matches.

2.3 Data

We assembled two datasets for this paper. The �rst, the transplant dataset, records all kidney
exchange transplants in the United States. We use this dataset to document fragmentation,
ine�ciency and participation in the market for kidney exchange. The second, the NKR
dataset, records all patients and donors that registered with the largest kidney exchange
platform, the NKR. We use this dataset to estimate a transplant production function.

The transplant dataset consists of anonymized records of every kidney transplant conducted
in the US between January 1, 2008 and December 4, 2014. We obtained this dataset from
the Organ Procurement and Transplantation Network (OPTN), a contractor for the U.S.
Department of Health and Human Services.11 The OPTN dataset includes each transplant's
date and location; whether it is part of a kidney exchange; the age, sex, weight, height,
body mass index (BMI), blood-type, and HLA antigens of the donor and recipient; and the
unacceptable antigens and number of days on dialysis of the recipient. See Appendix B for
details.

Although a comprehensive source for data on transplants conducted, the only �eld in the
OPTN dataset that speci�cally pertains to kidney exchange is an indicator for which trans-
plants were part of such an exchange. Therefore, the OPTN dataset does not identify which,
if any, multi-hospital kidney exchange platform organized a given transplant.

To address this limitation, we separately obtained anonymized records of all transplants
organized by each of the three largest platforms for multi-hospital kidney exchange platforms
in the US: NKR, APD, and UNOS. These platform data include many of the �elds as the

for surgery teams, drugs, equipment, and capital.
10Platforms require extensive biological testing, which is particularly complicated because donors and

patients are in di�erent hospitals. Platforms also charge fees, which are paid by hospitals. NKR charges
annual fees of about $10,000 plus about $4,000 per transplant. See National Kidney Registry (2016) for
NKR's fees, and Rees et al. (2012) and Wall et al. (2017) for a broader discussion kidney exchange costs
borne by hospitals.

11This study uses data from the Organ Procurement and Transplantation Network (OPTN). The OPTN
data system includes data on all donor, wait-listed candidates, and transplant recipients in the US, submitted
by members of the Organ Procurement and Transplantation Network (OPTN). The Health Resources and
Services Administration (HRSA), US Department of Health and Human Services provides oversight to the
activities of the OPTN contractor.
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OPTN dataset. By merging the data from these platforms with the OPTN data, we identi�ed
which transplants were organized through NKR, APD, UNOS, or through other avenues. This
merge is not straightforward because all of our datasets are anonymized. Fortunately, the
rich biological data allows us to match transplants across datasets on the blood type, sex, and
HLA antigens of the recipient and donor, as well as the date and location of the transplant.
More details on the merge procedure are provided in Appendix B. We were able to match
approximately 94% of transplants at these platforms to the corresponding OPTN data with
a high degree of certainty.12

The transplant dataset contains information on transplants that were performed, but not on
the pool of patients and donors that were available for kidney exchange. This information is
needed to estimate a platform's transplant production function. Therefore, we assembled the
NKR dataset. It records all patients and donors that registered with the NKR between April
2, 2012 to December 4, 2014. These data are sourced from the administrative records the
NKR uses to organize transplants. It includes the registration date, blood type, age, sex, HLA
antigens for both patients and donors. It also records whether the patient or donor left NKR's
system, and the date and reason for departure (transplantation or otherwise). In addition,
it includes information on which donor is paired with which patient (if any), unacceptable
antigens, and all the restrictions a patient places on which organs are acceptable. These data
allow us to determine the set of transplants the NKR considers acceptable and medically
feasible. We also have detailed data on how the transplants were organized, including the
donors and patients involved, and the chain or cycle con�guration. Appendix B provides
details on how we assembled the NKR dataset.

3 Descriptive Evidence

We now document three key facts: the kidney exchange market is highly fragmented, this
fragmentation leads to ine�ciency, and there is evidence of agency problems between hospitals
and patients.

3.1 Fragmentation

We �rst document that the market is highly fragmented. Most kidney exchange transactions
are matched internally by individual hospitals, as opposed to by large, national kidney ex-
change platforms. A kidney exchange transplant is de�ned as within hospital if the donor's
operation took place in the same hospital as the patient's, and across hospitals if the donor's
and patient's operations took place in di�erent hospitals.13 We also classify transplants based
on which platform coordinated the exchange: NKR, APD, or UNOS. Transplants that were

1290% of the matches were within 1 day on the transplant date, within 5 years on donor and recipient age,
and agreed on the hospital where the transplant was conducted as well as the blood type, sex, and all six
major HLA alleles (2 alleles each at the HLA-A, B and DR loci) of both the donor and recipient.

13The common practice is to transport the organ after recovery instead of transporting the donor and
recovering the organ elsewhere. A primary motivation for this practice is to safeguard the donor's interests and
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not organized by one of these platforms are classi�ed as being performed by other platforms,
including single-hospital kidney exchange programs and by small regional platforms.
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Figure 1: Market fragmentation and trends in kidney exchange
Notes: The �gure displays the number of kidney exchange transplants in di�erent categories. The category "Other" represents

transplants that were not facilitated by NKR, APD, or UNOS. Single-hospital platforms fall under this category. Within hospital

and across hospital classify a transplant into whether the donor's hospital was the same as the patient's hospital.

Figure 1 shows that the market is highly fragmented. The three largest multi-hospital plat-
forms together only account for a minority share of the kidney exchange market. 62% of
kidney exchange transplants are within hospital transplants that are not facilitated by the
NKR, APD or UNOS. Moreover, over 100 hospitals performed kidney exchanges outside these
three platforms during this period.

Unlike the dominance of within hospital exchanges in the overall market, a large majority of
the transplants facilitated by multi-hospital platforms are across hospitals. This contrast be-
tween the overall market and the platforms is striking because the platforms do not prioritize
across hospital exchanges as a rule. Rather, the predominance of across hospital exchanges in
the national platforms is a by-product of maximizing the total number of transplants. This
suggests that coordinating across hospitals has potential gains.

Figure 1 also shows that the total number of kidney exchange transplants grew from about
400 transplants in 2008 to about 800 in 2014.14 However, overall market growth seems to

because, by the time of the transplant, the donor has built a relationship with his or her hospital and surgeon.
The surgery performed on the donor requires extensive pre-planning and follow-up care. Conversations with
surgeons suggest that these factors severely limit willingness to transport the donor and conduct surgery in
another hospital.

14Our data for the NKR extend until December 4, 2014. This censoring may account for the slight drop
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have slowed in recent years. The total number in 2017 remains at around 800,15 well below
some estimates of the potential size of the kidney exchange market (Bingaman et al., 2012;
Massie et al., 2013).

The growth in kidney exchange between 2010 and 2014 is concurrent with the NKR becoming
the dominant kidney exchange platform. It accounted for 33.1% of all kidney exchange
transplants in 2014, and facilitated more than 5 times as many transplants as the APD and
UNOS combined.16 The importance of the NKR during our sample period motivates our
focus on the platform in the subsequent sections.

3.2 Evidence of Ine�ciency

Market fragmentation creates ine�ciency if there are increasing returns to scale in matching
patients and donors, and hospitals are operating below e�cient scale. We now present direct
evidence of hospitals conducting exchanges that are ine�cient from a social perspective.

One easily detectable ine�ciency is a transplant between an O blood type donor and a non-O
blood type patient. As explained in Roth et al. (2007) and in Section 2, O donors are scarce
while O patients are abundant. If all transplants are of equal social value, optimal matches in
a large market should only transplant organs from O donors to O patients because O patients
cannot accept other blood types.17 The exception to this rule is for a highly sensitized patient,
that is, one with a very high PRA. The platform may want to use an O donor to transplant
such a patient if it is the only way to get the patient transplanted.

Figure 2 displays the fraction of O donors that are used to transplant non-O patients, cate-
gorized into NKR transplants, APD/UNOS transplants, across hospital transplants at other
platforms, and within hospital transplants at other platforms. Among NKR transplants,
only 6.5% of O donors are used for non-O patients. In contrast, among within hospital trans-
plants outside the three platforms, this percentage is 22.8%. This di�erence is statistically
signi�cant (p < 0.01) and constitutes strong evidence that hospitals often perform ine�cient
matches outside the platform. Transplants at APD, UNOS and across-hospital transplants
at other platforms are in between these two categories but are much closer to the NKR.

An alternative explanation for ine�cient matching is that within hospital transplants use
O donors to help highly sensitized patients who would otherwise remain untransplanted.
However, Figure 2 shows that almost none of the potentially ine�cient transplants in the
Other (within hospital) category involve highly sensitized patients. In contrast, about half
of the potentially ine�cient NKR transplants involve highly sensitized patients.

in transplants in the last year of this �gure.
15Source: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/ (accessed

December 21, 2017).
16The APD has grown in recent years and has signi�cantly closed the gap.
17Strictly speaking, e�ciency as discussed here means maximizing the total number of transplants. How-

ever, transplanting an O donor to a non-O patient is also likely to be Pareto ine�cient. To see this, consider
a pairwise exchange between two overdemanded A-O pairs. This exchange results in two transplants. It
would be more e�cient to transplant each of the A-O pairs to an underdemanded O-A pair, which otherwise
would be left unmatched.

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
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Table 1: Summary Statistics for Kidney Exchange Transplants

NKR APD / UNOS Other platforms

Across Hospital Within Hospital

N 1118 198 341 2719

Patient Blood Type

A 34.7% 36.4% 37.2% 37.1%

B 19.0% 21.2% 17.6% 17.0%

AB 5.7% 3.5% 7.0% 5.7%

O 40.6% 38.9% 38.1% 40.2%

Donor Blood Type

A 36.8% 35.4% 37.5% 33.4%

B 18.2% 20.2% 14.7% 13.8%

AB 3.9% 1.5% 6.7% 2.9%

O 41.1% 42.9% 41.1% 49.9%

Panel Reactive Antibody (PRA) (Sensitization)

Mean 35.0 43.0 30.4 17.6

Standard deviation 39.7 40.8 37.5 30.8

Percent >90 16.4% 20.6% 12.0% 5.1%

Transplant Ourcomes and Quality Measures

Donor Age

Mean 44.1 44.6 44.1 43.2

Standard deviation 11.8 11.1 11.3 11.8

Donor Body Mass Index (BMI)

Mean 26.5 27.0 26.6 26.5

Standard deviation 4.0 4.0 4.1 4.2

Donor Height (cm)

Mean 169.4 168.0 169.6 169.3

Standard deviation 9.8 9.6 10.3 9.8

Donor Weight (kg)

Mean 76.3 76.3 76.9 76.3

Standard deviation 15.1 13.9 15.4 15.1

Tissue Type Mismatch (0-6)

Mean 4.2 4.2 4.2 4.4

Standard deviation 1.3 1.4 1.2 1.2

Mean Days on Dialysis

Mean 1026.6 1048.4 1063.1 969.1

Standard deviation 1088.1 848.1 1269.5 990.9

Notes: Sample of all Kidney Exchange Transplants between January 1, 2008 and December 4, 2014.
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Figure 2: Evidence of hospitals performing ine�cient matches
Notes: The bars display the percentage of transplanted O donors whose kidneys were transplanted into non-O patients for

di�erent categories of transplants. Other indicates a transplant not organized by NKR, APD, or UNOS. This category includes

transplants organized by single-hospital platforms. Within hospital and across hospital classify a transplant into whether the

donor hospital was the same as the patient hospital. The colors decompose this total into highly sensitized patients (PRA >90)

and non-highly sensitized patients. The error bars depict 95% con�dence intervals for the totals.

This exercise is based on the assumption that the value of a kidney exchange transplant
does not depend on how it was organized. Section 2.1 argues that that logistical costs of
conducting transplants through a platform are negligible relative to the value of transplants
lost by using organs from O donors to transplant non-O patients. However, there may be
dimensions on which within hospital transplants are superior to transplants organized by
national platforms. For example, a transplant through a national platform could involve a
longer wait on dialysis or a lower-quality donor. However, Table 1 shows that patients who
receive a transplant through a platform typically spend only two more months on dialysis
than patients who receive a within hospital transplant outside these three platforms. Given
that the average patient wait is about 32 months, this di�erence represents an 8% longer
waiting time. The longer waiting time at the platforms should be expected because, as we
discuss below, patients transplanted through the platform are, on average, harder to match.
Further, there do not seem to be di�erences in how desirable donors might be to patients.
Donor quality indicators such as age, weight, height, and BMI are similar across platforms.
One reason why patients considering a multi-hospital platform need not worry about donor
quality is that the platforms typically allow patients and doctors to specify donor acceptability
criteria. They also allow patients to refuse proposed transplants if the donor is unsuitable.

If each of these ine�cient transplants from O donors to non-O patients comes at the cost of
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one other transplant, as in the Roth et al. (2007) model, then achieving the level of e�ciency
obtained by the NKR would have resulted in about 250 additional transplants between 2008
and 2014.18 The advantage of considering only the clearly ine�cient transplants is that the
results provide transparent evidence of ine�ciency. The total ine�ciency, of course, can be
much larger.

3.3 Hospital Participation Behavior and Evidence of Agency Prob-

lems

The results on market fragmentation and ine�ciency lead us to ask why hospitals do not
participate more in national platforms. We start by documenting key facts about hospital
behavior and argue that hospitals do not purely maximize the number of transplanted pa-
tients. Instead, hospitals seem to maximize complex and heterogeneous objectives, including,
but not limited to, pro�ts and patient welfare.

3.3.1 Descriptive Evidence

We focus on participation behavior at the NKR because it is the primary multi-hospital
kidney exchange platform during our sample period (Table 1). Figure 3 depicts the extensive
margin of participation among hospitals conducting kidney exchange transplants. A hospital
is considered an NKR participant if it has ever submitted a patient or donor to the NKR.
The �gure is a binned scatterplot of the fraction of hospitals that participate in the NKR
versus hospital size in terms of the total number of kidney transplants performed (living and
deceased).19 Figure 4 depicts the intensive margin of participation. The vertical axis in this
scatterplot is the fraction of kidney exchange transplants that a hospital performs through
the NKR. The results are qualitatively similar if we consider participation at any of the three
largest kidney exchange platforms.

The �gures reveal four key facts about participation. First, both the extensive and intensive
margins are important drivers of market fragmentation. Only 46.3% of hospitals participate
in the NKR. Within those participating hospitals, only 52.9% of transplants are conducted
through the NKR. Second, larger hospitals are considerably more likely to participate in the
NKR. The probability of participating at all is about 80% for a hospital that performs approx-
imately 250 transplants per year but only about 35% for a hospital that performs about 50
transplants per year (Figure 3). Third, conditional on participating, large hospitals conduct
more of their matches outside the platform (Figure 4). Although size positively correlates

18Table 1 shows that there is a larger gap between the fraction of donors and patients that are blood type
O for within hospital platforms as compared to the NKR. The di�erence in this gap multiplied by the number
of transplants arranged within hospital is a measure of transplants lost due to ine�cient use of O donors in
within hospital transplants.

19This broad measure of size limits the endogenous e�ect of participation in the NKR on hospital size
because deceased donor and direct living donor transplants form the bulk of kidney transplants conducted by
hospitals. Moreover, during our sample period, the total number of kidney transplants has remained stable
relative to the growth in kidney exchange.
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with the fraction of kidney exchange transplants performed in the NKR, the relationship is
negative if we focus exclusively on hospitals that participate at all (Figure 4). Fourth, there
is a high degree of heterogeneity in intensive margin participation. Even among hospitals
with similar size, participation varies considerably (Figure 4). For example, among the �ve
transplant hospitals that perform more than 300 transplants per year, one does not partic-
ipate at all (Jackson Memorial), one participates close to zero percent (UC Davis Medical
Center), two participate in the 50-60% range (UCSF Medical Center and the University of
Wisconsin Hospital), and one participates more than 80% (UCLA Medical Center).

In addition to revealing the decision to participate, the data provide information on the char-
acteristics of patients submitted to the NKR and the characteristics of patients transplanted
by each hospital categorized by how the transplant was facilitated. Tables 1 and 2 reveal
three main facts.

First, the NKR receives submissions that are very hard to match compared to the general
population (Table 2). The blood types of both altruistic and paired donors skew away
from O donors and toward A donors relative to the US population. The deceased donor
population has about 45% O donors and 40% A donors. In contrast, patients in pairs are
disproportionately likely to have blood type O (58.6%), and their related donors are unlikely
to have blood type O (31.9%). Only a small fraction of pairs (13.8%) are overdemanded.
Interestingly, unpaired patients are much more likely to have an easy-to-match blood type,
with the majority having blood type A. The average PRA for patients registered with the
NKR is high. At a mean PRA of 48.8%, the average patient in the NKR is tissue-type
incompatible with approximately half the reference donor population.

Second, the NKR transplants patients who are considerably harder to match than patients
transplanted by single hospitals (Table 1). Approximately 40% of the patients and 41% of
donors transplanted through the NKR are blood type O. The PRA of the patients trans-
planted through the NKR is approximately 35%, and about one in six patients have a PRA
above 90%. These statistics are similar for across hospital kidney exchanges not facilitated
by the NKR and transplants facilitated by APD or UNOS. In contrast, among within hos-
pital kidney exchanges not conducted by a large platform, almost 50% of the donors are
blood type O, but only 40% of the patients are blood type O. The average PRA of patients
transplanted through within hospital exchanges is only 18%. This is almost half the mean
PRA for patients transplanted through one of the three national platforms.

Third, transplants on all platforms look similar in donor quality measures that do not a�ect
compatibility, such as weight, body mass index, and age (Table 1). This supports our equal
treatment of all transplants for welfare calculations irrespective of whether they are facilitated
though a national platform.

3.3.2 Implications for Hospital Behavior

The facts above have implications for di�erent hypotheses about hospital behavior. In the
discussion that follows, we approximate total patient welfare with the total number of trans-
plants. As we argued in Section 2, kidney exchange costs are small relative to the bene�ts
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of transplantation.

The �rst hypothesis is that that hospitals maximize the total welfare of all patients in the
system, regardless of which hospital a patient belongs to. This hypothesis is strongly rejected
by several features of the data. Most clearly, this hypothesis is inconsistent with the evidence
of socially ine�cient matches (Figure 2).

A second hypothesis is that hospitals only maximize the welfare of their own patients. This
hypothesis was investigated theoretically by Ashlagi and Roth (2014) who argue that hos-
pitals will try to match as many of their patients internally as possible and only submit
the remaining patients to a multi-hospital kidney exchange platform. This hypothesis �ts
some qualitative patterns in the data, but not others. For example, it explains why larger
hospitals in the NKR perform fewer transplants through the platform. These hospitals have
more opportunities to match patients outside the platform (Figure 4). However, it does not
explain why many hospitals do not participate in a national platform at all, even though all
hospitals likely have patients who cannot be matched.20 Moreover, many small hospitals do
not participate in the NKR, even though these hospitals, due to their size, are precisely the
ones least likely to �nd matches outside the platform. The patterns suggest that hospitals
respond to �xed costs of participating in kidney exchange platforms, even though these costs
are small relative to bene�ts to patients and cost savings from dialysis to health insurers.

A third hypothesis is that hospitals are pro�t maximizers. This hypothesis is consistent with
the fact that small hospitals are less likely to participate in the NKR (Figure 3) because
the �xed costs of participation may not compensate for the gains in pro�ts from additional
transplants. However, this theory alone cannot fully explain the large variation in the degree
of participation, especially among large hospitals. For example, Cornell Medical Center is a
large hospital with a high rate of participation in the NKR. Interviews with transplant coordi-
nators at Cornell, reported in Ellison (2014), suggest that a primary reason for participating
is the view that contributing to a national kidney exchange platform is important.

Taken together, the evidence on hospital participation suggests that hospitals maximize com-
plex and heterogeneous objectives. This �nding is consistent with the anecdotal evidence on
kidney exchange reviewed in Section 2, as well as the standard view in healthcare economics
(Arrow, 1963), and typical �ndings about the behavior of healthcare providers (Arrow, 1963;
Kolstad, 2013; Clemens and Gottlieb, 2014).

The facts about selection into which patients and donors are submitted to the NKR also
indicate that these two theories, maximizing pro�ts and maximizing their own patients'
welfare, can explain many hospitals' behavior. These theories' shared implication is that
pairs submitted to national platforms are negatively selected, in the sense of being hard to
match. In both cases, a hospital only submits a pair to a platform if an internal match is not
possible. Unfortunately, we cannot directly test this prediction because we do not have data
on the entire pool of patients available to individual hospitals. But, it is reassuring that the
results on selection do not falsify the two theories that best �t the participation behavior.

20Recall that overdemanded pairs are typically scarce. We will see in Section 5 that even the NKR is able
to match only approximately 50% of its donors.
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To summarize, these �ndings have two important implications. First, there is clear evidence
of agency problems, as we de�ned broadly in Section 2. The data disprove the hypothesis
that hospitals purely and rationally maximize their own patients' welfare. Second, none of
the simple models describes the behavior of all hospitals.

4 Theory

The evidence above shows that kidney exchange markets are fragmented and that this frag-
mentation leads to real e�ciency loss. We now build a model of the kidney exchange market
that is fundamentally similar to a traditional market in which the platform procures submis-
sions (donors and patients) from hospitals and rewards these hospitals with transplants.21

Thus, we can use standard economic theory to explain how ine�ciency arises, quantify it,
and develop responses.

4.1 Model

A kidney exchange platform procures submissions from hospitals and rewards hospitals with
transplants. The platform's ability to produce transplants is described by a production
function f . We consider types of submissions i = 1, . . . , I. A vector of quantities
q = (qi)i=1,...,I in RI

+ speci�es a quantity qi of each submission type available to the platform,
where R+ is the set of non-negative real numbers. Given a vector of quantities q, the platform
can produce f(q) transplants. The model can be interpreted as either static or as a steady-
state from a dynamic model. We will use the steady-state interpretation in the empirical
analysis. All variables are measured in �ows, such as transplants per year.

The production function f (q) summarizes what matches are possible. Roth et al. (2007)
calculated the production function using a simple model that we described in Section 2. Since
that paper assumed that all submissions are pairs and that only blood type compatibility
matters, its model has I = 16 types. Our analysis applies both to such theoretically tractable
production functions as well as to more complex production functions. Section 5 uses an
empirical production function that allows submissions to di�er by whether they are patient-
donor pairs, altruistic donors, or unpaired patients, and by a host of variables including blood
types, antigens, and antibodies. Thus, the number of types I is potentially large.

We say that the production function f has constant returns to scale at q if its elasticity

with respect to scale at q is equal to one, that is, if α
f(αq)

· ∂f(αq)
∂α

∣∣∣
α=1

= 1. Mathematically,

this property is equivalent to ∇f (q) · q = f (q). The Roth et al. (2007) model considers
a large platform with a linear production function, implying constant returns to scale. Our
empirical production function in Section 5 will measure the elasticity with respect to scale.

21Our setting is also closely related to the platforms literature, wherein platforms maximize a private or
social goal by setting incentives for participants (Rochet and Tirole, 2003; Weyl, 2010).
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The platform produces transplants using submissions provided by hospitals indexed by
h = 1, . . . , H. Hospitals are rewarded for these submissions with transplants. We assume
these rewards are linear in submissions and anonymous. That is, there exists a vector
of rewards p = (pi)

I
i=1 in RI where the ith component denotes the (expected) number of

transplants awarded to the hospital per submission of type i. The units of pi are transplants
per submission. A hospital that submits a �ow qh in RI

+ of submissions receives a �ow p · qh
of transplants. Since all transplants that are performed must be allocated to some hospital,
a platform must satisfy the constraint that f

(∑
h q

h
)
=
∑

h p · qh.
This linear reward schedule is a good approximation of current platforms' rules because their
matching algorithms maximize a weighted sum of the number of matches without considering
the entire pool of patients and donors submitted by each hospital (Sönmez and Ünver, 2013b;
Anderson et al., 2015). When a hospital submits an additional pair, the probability that
the platform matches a di�erent pair from the same hospital does not signi�cantly change.
Therefore, the current reward for submitting a type i pair is equal to the probability pi that
the pair is matched.

We assume that hospital preferences are equal to the number of transplants they receive from
the platform minus the private cost of their submissions, Ch

(
qh
)
, measured in transplant

units. For instance, if the hospital maximizes the number of its own patients that are trans-
planted, then Ch(qh) is the number of within-hospital transplants that the hospital must
forgo in order to submit qh.

Welfare is de�ned over an allocation (qh)h=1,...,H that speci�es the quantity of pairs supplied
by each hospital. We will use two welfare notions. Both welfare notions use transplants
as a numeraire because platforms can e�ectively transfer transplants between hospitals by
choosing which underdemanded submissions to match (see Section 2).

The �rst notion is hospital welfare WH(q1, . . . , qH), which is the total welfare measured
from the point of view of hospitals. Hospital welfare equals the total number of transplants
produced (which is the same number of transplants that hospitals receive) minus the private
costs. That is,

WH(q1, . . . , qH) = f

(∑
h

qh

)
−

H∑
h=1

Ch(qh). (2)

This is a compelling notion of welfare if the goal is to help key market participants (hospitals,
in this case) achieve their objectives.

Hospital welfare is not compelling if there are agency problems, that is, if hospitals do not
purely maximize patient and insurer welfare. As discussed in Sections 2.1 and 3, there is
anecdotal and empirical evidence of agency problems. For this reason, we also consider a
utilitarian welfare measure, which we term social welfare.

De�ne SC h(qh) as the social cost for hospital h to supply a vector qh submissions. If
there are agency problems, then social and private costs are di�erent, and there is an agency
externality from hospital h's submissions because

Ch(qh) 6= SC h(qh).
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For example, Ch(qh) is larger than SC h(qh) if hospital h acts as though the �nancial and
logistical costs of participating in kidney exchange platforms are signi�cant relative to their
private value of a transplant. The externality represents the bene�ts to stakeholders other
than the hospital itself. In the particular case where there are no agency problems, we have
Ch(qh) = SC h(qh). for all h. De�ne social welfare to be

SW (q1, . . . , qH) = f(q)−
H∑
h=1

SC h(qh).

De�ne �rst-best hospital welfare as the supremum of WH and �rst-best social welfare as the
supremum of SW .

Given these primitives, for a vector of rewards p the hospital supply of hospital h is given by

Sh (p) = arg max
qh∈RI

+

p · qh − Ch(qh).

De�ne the aggregate cost, C (q), to be the minimum sum of hospital private costs nec-
essary to ensure that hospitals supply q ≡

∑
h q

h in aggregate. Let the aggregate supply
correspondence be

S(p) = arg max
q∈RI

+

p · q − C(q).

We assume that the production function, social and private costs, and aggregate cost func-
tions are de�ned over all non-negative real vectors and are smooth. The maximum of each
hospital's objective is attained for some quantity for every vector of rewards. Quantities are
column vectors, and vectors of rewards and gradients are row vectors. Further, assume that
aggregate cost is strictly convex.

Appendix A shows that aggregating individual hospital supplies yields S(p). Denote the
aggregate inverse supply with P S (q) =

{
p ∈ RI | q ∈ S (p)

}
. Further, Appendix A

shows that, for strictly positive q, the aggregate inverse supply is single-valued and P S (q) =
∇C (q) . This result is similar to how �rms supply at price equal to marginal cost in a
competitive market.

4.2 Illustrative examples

4.2.1 Agency and the wedge between private and social costs

Our model of the kidney exchange market is framed in terms of transplants as a numeraire,
and captures agency problems as a wedge between private and social costs. We now present
a particular example of our general model to clarify de�nitions and these two features of the
model. The speci�c assumptions in this section are not necessary for our results.

Let Kh(qh) be the monetary costs borne by hospital h of sending qh submissions to a kidney
exchange platform. This cost can include platform fees, costs of rearranging the hospital's
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schedule around the platform, and funds for hiring additional transplant coordinators (see
Section 2.1). Let T h(qh) be the �ow of kidney exchange transplants that hospital h forgoes
when submitting qh to the platform because the hospital cannot match these patients and
donors internally. The function T h can depend on the patients and donors that are available
to hospital h.

To combine the monetary costs and the transplant costs of submitting, we need a rate of
exchange between the two. Let hospitals value each transplant at v dollars, which includes
pro�ts and the value that hospitals place on transplanting their patients. Gross revenues
from a transplant are approximately $150,000 (USRDS, United States Renal Data System,
2013; Held et al., 2016). For illustrative purposes, take v to be $50,000, which represents a
generous 50% mark-up on costs. In transplant units, hospital h's cost function is

Ch(qh) = T h(qh) +
Kh(qh)

v
.

The private value of a transplant just discussed does not account for any bene�ts that fall
to non-hospital stakeholders. Such bene�ts include the value a patient has for a transplant
beyond the value the hospital places on it and the savings in healthcare costs to insurers.
Hospitals contract with these agents, but may not take all of their bene�ts into account
because they are not incentivized to do so. For this reason, the social value of a transplant
may di�er from the private value to a hospital, creating agency problems.

Let society value transplants at V > v dollars. Following the cost-bene�t analysis in Held et
al. (2016), we take V as $1.1 million.22 This �ts our model with social costs

SC h(qh) = T h(qh) +
Kh(qh)

V
.

Hence, the wedge between private and social costs equals

Ch(qh)− SC h(qh) =

(
1

v
− 1

V

)
·K(qh).

The di�erence is how much more hospitals care about the costs of participating in a kidney
exchange platform than society does measured in transplant units.

To develop intuition for this wedge's magnitude, assume that the monetary cost is linear in
the number of submissions, i.e. Kh(qh) = k

∑
i q
h
i . Then, the wedge is

Ch(qh)− SC h(qh) =

(
k

v
− k

V

)
·
∑
i

qhi ≈
k

v
·
∑
i

qhi ,

where the approximation holds because the social value of a transplant V is much larger than
the monetary cost k. The wedge is large because it depends on the platform participation
costs borne by the hospitals as a fraction of a transplant's private value, not its social value.

22Some patients who receive a kidney exchange transplant would otherwise receive a kidney from a deceased
donor. But, in each of those cases, a transplant through kidney enables another patient on the waitlist to
receive a kidney. Therefore, the social bene�t of each kidney exchange transplant should still be the same as
the gain from a single transplant.
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For example, if k is $10,000 and v is $50,000, then the wedge is k/v = 0.20 transplants per
submission. Hospitals compare this wedge to the rewards vector p, which is equal to the
probability of matching various submissions in the current mechanism. In e�ect, the wedge
creates an incentive for the hospital to not submit a patient or donor to a national platform.
The calculation above suggests that, because of agency problems, rewards have to be 20
percentage points higher in order to induce a given submission. Therefore, it is likely that
agency problems are an important part of the kidney exchange market.

4.2.2 Two sources of market failure

Figure 5 presents a graphical illustration to clarify the two sources of market failure: agency
problems and ine�cient platform incentives. The horizontal axis plots aggregate supply q.
The vertical axis plots marginal products, social costs, and social bene�ts. The current vector
of rewards, which is equal to the probability of matching each pair, is denoted by p0. The
current quantity supplied given these rewards is q0. The curve ∇SC (q) is the marginal
aggregate social cost if hospitals choose privately optimal quantities given rewards P S (q).23

The �gure shows that the current allocation is ine�cient from both the hospital and social
perspectives. The hospital-optimal quantity q∗ equates ∇f with marginal aggregate private
costs, as required by the �rst-order conditions of the hospital welfare maximization problem.
Thus, the �rst ine�ciency is that the platform gives ine�cient incentives, p 6= ∇f . The
second ine�ciency is that there are agency problems because hospitals do not choose socially
optimal quantities, or equivalently Ch 6= SCh. The aggregate quantity q∗∗ maximizes social
welfare subject to hospitals optimizing given a rewards vector. It attains the �rst-best social
and hospital welfare if we also solve agency problems so that Ch = SCh and the two welfare
notions coincide. In the example above, agency problems can be solved by reimbursing
hospitals for the costs of kidney exchange through the platform Kh

(
qh
)
.

This intuitive explanation glossed over two subtleties, as will be made clear by the formal re-
sults. First, e�cient platform incentives are only approximately equal to marginal products.
A platform cannot set incentives equal to the marginal product because there are increas-
ing returns to scale, and therefore, marginal products exceed average products. However,
estimates in Section 5 will show that this adjustment is negligible for the NKR.

Second, it is not possible to reach the �rst-best social welfare by only improving the mecha-
nism if there are agency problems. If agency problems are more severe in some hospitals than
in others, then it is not possible to achieve �rst-best welfare with rewards that are the same
for all hospitals. Moreover, even achieving the welfare level corresponding to q∗∗ requires
setting rewards equal to the marginal products plus the di�erence between marginal private
and social costs. But, even with constant returns to scale, the number of transplants equals
the sum of marginal products of submissions. Therefore, there are not enough transplants to

23Formally, SC (q) =
H∑

h=1

SCh
(
Sh (P S (q))

)
is the reward-moderated social cost. The �gure assumes that

individual supply is uniquely de�ned and that SC is di�erentiable.
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Figure 5: The Two Sources of Market Failure

Notes: The horizontal axis represents aggregate quantity of submissions into the kidney exchange platform.

The curves represent the marginal product of submissions ∇f(q), the marginal private cost of submissions

from hospital's perspective,∇C(q) (which is equal to P S (q), the inverse aggregate supply), and the marginal

social cost of submissions∇SC(q). Both axes represent I-dimensional vectors. The �gure depicts the current

quantity q0, with agency problems and a suboptimal mechanism, the quantity q∗ from a hospital-optimal

mechanism but with agency problems, and the �rst-best quantity q∗∗ with an e�cient mechanism, and no

agency problems.

also reward hospitals to correct for agency problems (Proposition 2). These arguments sug-
gest a two-pronged approach: design optimal mechanisms that help hospitals achieve their
collective goals, and simultaneously implement policies to solve the agency problems.

4.3 Optimal Incentives

We now describe optimal reward vectors. The following theorem collects the main insights.

Theorem 1 (Optimal Rewards). Consider a vector of rewards p and an allocation (qh)Hh=1

with strictly positive aggregate quantity q that maximizes hospital welfare subject to all hos-
pitals choosing qh ∈ Sh (p) and subject to the total rewards allocated being the same as the
number of transplants produced, that is, f (q) = p · q. Then:

1. The platform rewards each type of submission with its marginal product minus an ad-
justment term,

p = ∇f(q)−A (q) ,

where

A (q) =

(∇f (q) · q − f (q)
q′ ·DP S (q) · q

)
q′ ·DP S (q)

and DP S (q) is the Jacobian matrix of the inverse supply.
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2. If the production function has constant returns to scale at q, then the reward for each
type of submission is equal to its marginal product, p = ∇f(q). Moreover, the alloca-
tion (qh)Hh=1 attains �rst-best hospital welfare.

3. If, in addition, social cost is equal to private cost (Ch
(
qh
)
= SCh

(
qh
)
for all h), then

this allocation attains �rst-best social welfare.

The theorem characterizes rewards in a mechanism that maximizes hospital welfare. The �rst
part shows that the reward for each submission in an optimal mechanism is approximately
equal to its marginal product. The intuition is simple if we ignore the constraint that the
platform cannot allocate more transplants than it produces. The platform is similar to a �rm
that produces a consumption good (transplants) using intermediate goods (submissions). The
supply of intermediate goods is e�cient when prices p are equal to marginal products ∇f .
The proof is identical for kidney exchange platforms, even though there are no monetary
prices paid to acquire submissions. The �rst order condition for the �rst-best aggregate
supply is ∇C = ∇f . The marginal cost curve, which governs hospital incentives, equals the
supply curve; therefore, optimal rewards are p = ∇f .

The only complication is the constraint that a platform must allocate total rewards that equal
the number of transplants produced. This constraint a�ects the optimal rewards vector if f
does not exhibit constant returns to scale. If this is the case, the optimal rewards deviate
from marginal products. The optimal level of shading for each type of submission is given by
the adjustment term A (q), which says that the platform should shade more aggressively on
submissions with less elastic supply. To see why, consider the case when the cross-elasticities
of supply are zero so that DP S is a diagonal matrix. Then, for each type i, the reward is
marked down from marginal product according to

∂f
∂qi

(q)− pi
pi

=
λ

εi
,

where εi is the own-price supply elasticity and λ is the Lagrange multiplier on the constraint
that all transplants produced must be given out as rewards, that is, f (q) = p ·q. Our general
formula is an inverse-elasticity rule, as in Ramsey (1927)'s work on commodity taxation,
Boiteux (1956)'s work on regulation of monopolies, and Lerner (1934)'s work on optimal
pricing with market power.

The theorem shows that current platform rules are ine�cient. Instead of rewarding submis-
sions with their marginal products, current rules reward submissions with the probability of
being transplanted. Therefore, there is a wedge between the social and private bene�ts of
submissions. Under current rules, a hospital chooses between serving their own patients or
providing a service to the system as a whole. A clear example of this dilemma, described
in Section 2.2, is of a hospital with two overdemanded pairs. This hospital could match the
pairs internally instead of submitting them to a platform, but doing so would cause the type
of ine�ciency documented in Section 3.

The second part of the theorem shows that, when returns to scale are constant, the optimal
mechanism rewards submissions exactly according to marginal products. The adjustment
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term in this case equals zero, and optimal rewards achieve �rst-best hospital welfare. As we
will show in Section 5, this case is empirically relevant because the NKR is well within the
region of approximately constant returns to scale. Therefore, optimal mechanisms can be
calculated in practice by estimating marginal products.

Moreover, there is no need to consider non-linear rewards because we can achieve �rst-best
hospital welfare by rewarding hospitals linearly. One approach for using these results in prac-
tice is to introduce a simple dynamic points mechanism. For example, for each submission,
a platform can credit a hospital points equal to the marginal product. Then a point can
be subtracted whenever a hospital conducts a transplant. The platform performs optimal
matches with a constraint that no balance falls below a certain level. Naturally, there are
important theoretical issues related to implementing incentives in this kind of mechanism
without compromising e�ciency. We return to these issues in Section 6.

The third part of the theorem states that if the production function exhibits constant returns
to scale and there are no agency problems, then the optimal mechanism achieves �rst-best
social welfare. This result clari�es that there are two possible sources of ine�ciency: ine�-
cient platform incentives and agency problems. Platform incentives are ine�cient if rewards
deviate from marginal products, p 6= ∇f . In the platforms literature, this problem is usually
attributed to wedges between the platform's goals and society's (Rochet and Tirole, 2003;
Armstrong, 2006; Weyl, 2010). Agency problems exist if hospitals do not fully internalize the
welfare of the parties they represent, i.e. social cost is not equal to private cost. The market
functions e�ciently if platform incentives are optimal (p = ∇f) and there are no agency
problems (social cost equals private cost).

Figure 5 depicts these two market failures under some regularity conditions. The current
aggregate supply is q0, which is determined by rewards that equal matching probabilities.
If a platform switches to an e�cient mechanism, aggregate supply moves to q∗. If agency
problems are also solved, the market moves to the �rst-best aggregate supply. This quantity
is denoted by q∗∗ if C (q) = SC (q). The deadweight loss at any of these points is given
by a (multi-dimensional) Harberger triangle between the marginal product and the marginal
social cost curves.

The upshot of this analysis is that, much like in more traditional markets, many key questions
about kidney exchange depend on the production function, which we turn to next.

5 Production Function Estimates and Results

We now estimate the production function using data from the largest kidney exchange plat-
form, the NKR. We focus on the NKR because it is the dominant kidney exchange platform
during our sample period (Table 1). We use these estimates to measure the total ine�ciency
due to market fragmentation, calculate the rewards in an optimal mechanism, and to measure
the e�ciency gain from moving to an optimal mechanism.
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5.1 Estimation

Production functions are commonly estimated using data on inputs and outputs from several
�rms. The key econometric challenges in this literature are endogeneity in the chosen inputs
and selection in the set of operating �rms (see Marschak and Andrews, 1944; Olley and Pakes,
1996). Unfortunately, this approach is not appropriate in our setting for three reasons. First,
the standard methods are best suited for low-dimensional production functions that only
depend on a few inputs, such as capital and labor. These methods su�er from a curse of
dimensionality if there are many input types. In our case, the vector of inputs is high-
dimensional because submissions can vary in many ways. Second, commonly used functional
forms such as Cobb-Douglas restrict all inputs to be substitutes, a property that is not
appropriate for a matching context. Third, the standard methods depend on a panel dataset
with inputs and outputs of multiple �rms and exogenous variation of inputs. However, we
only have data from a single large platform.

We circumvent these econometric issues by using an engineering approach based on detailed
institutional knowledge and administrative data on the processes involved in organizing kid-
ney exchange. We have detailed institutional knowledge of the operational procedures and
algorithms used by kidney exchange platforms. One of us (Ashlagi) has developed the match-
ing software for several platforms, and has worked with the NKR. Moreover, we have detailed
data on NKR operations and the composition and biological compatibility of its patient pool.
We use this experience and knowledge to develop a detailed simulation model of a kidney
exchange platform.

We simulate the various steps involved in organizing kidney exchange to evaluate the number
of transplants, f (q; θ), that can be produced with a �ow of inputs q and parameters θ. The
simulation is dynamic, with each period representing one day. There are four steps that take
place: submissions to the platform, transplant proposal, �nal review and transplantation, and
departure from the platform. Each step is described in detail below, and is governed by a set
of parameters. The parameters governing the �rst and last steps are directly estimated from
the NKR data; the parameters involved in the second step are known; and the parameters
from the third step are calibrated to �t observed transplantation probabilities for various
patient and donors types, and the average length of chains. Our estimation and calibration
methods are described below, with details provided in Appendix C.

These steps and their associated parameters are as follows:

1. Submissions, q: Hospitals submit patients and donors, either individually or in pairs,
to the platform. These submissions are added to the current pool of patients and donors
already registered with the exchange. Patients and doctors, at this time, can submit
minimal acceptance criteria for a donor.

Submissions arrive according to a Poisson process. The baseline arrival rates at the
NKR are represented by a vector q0, with dimension equal to the number of submission
types I. We estimate the daily arrival rate of each submission type i as average number
of arrivals per year. An identical arrival process with Poisson arrival rates q allows us
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to calculate the production function at other arrival rates q 6= q0.

Our exercises will start by treating each submission as a separate type (I =1930).
We will then aggregate types to best predict probability of matching and marginal
products using biological characteristics that are relevant for kidney exchange (e.g.
blood-type and patient PRA).

2. Transplant Proposal: Each day, the NKR identi�es an optimal weighted set of po-
tential exchanges within the stock of patients and donors registered with the platform.
This algorithm incorporates four constraints. First, none of the proposed transplants
should be (known to be) biologically incompatible or ruled out by pre-set acceptance
criteria. These constraints are directly observed in the data. Second, no donor or re-
cipient can be involved in more than one transplant. Third, a donor who is part of
a pair is only asked to donate an organ if the intended recipient has been proposed a
transplant. Finally, kidney exchange platforms limit the cycle size because of logistical
di�culties in organizing many simultaneous surgeries.24

The parameters of this algorithm are the weights wjk used by the NKR for a trans-
plant involving donor k and patient j and the maximum cycle size. Consistent with
NKR policy and observed data, we prohibit all cycles of length four or greater. The
weights are known to one of the authors (Ashlagi) and are detailed in Appendix C.
They prioritize unlikely matches in an attempt to utilize hard-to-match donors and
transplant hard-to-match patients whenever possible. The weights typically only break
ties between two matches with the same number of transplants in favor of retaining
patients and donors who are likely to match in the future.

3. Final Review and Transplantation: Each proposed transplant is reviewed by doc-
tors, patients, and donors, and approved before it is performed. Both approval and
biological testing can take several days. Moreover, patients and donors in proposed
transplants that are under review on a given day are excluded from the maximal match-
ing algorithm on that day. This step also involves a �nal set of blood-tests to ensure
biological compatibility.25 Cycles in which any patient refuses or is found to be in-
compatible with the proposed donor are abandoned. NKR usually abandons chains in
which the second patient cannot be transplanted. For other chains, all proposals until

24Formally, the NKR maximizes
∑

jk cjkwjkxjk by picking xjk ∈ {0, 1}, where xjk = 1 denotes a proposed
transplant from donor k to patient j; wjk is the weight accorded to each such transplant by the NKR; and
cjk = 1 if a transplant from k to j is feasible (biologically compatible and acceptable) and 0 otherwise. This
problem is subject to three additional constraints. First, no donor or patient is involved in more than one
transplant, i.e.

∑
j xjk ≤ 1 and

∑
k xjk ≤ 1. Second, if donor k and patient j belong to a pair, then xj′k = 1

for some j′ only if xjk′ = 1 for some donor k′. To write the third constraint, note that a cycle of length n is
an ordered tuple, (j1, j2, . . . , jn) where xjkjk+1

= 1 for k < n and xjnj1 = 1. We impose the constraint n ≤ 3.
Because there are a very large number of cycle length constraints, we �rst solve a relaxed problem without
this last constraint and iteratively add the constraints to prohibit large cycles. Appendix C provides further
details on the algorithm.

25These failures are recorded by setting cjk = 0 for future iterations if the donor k was refused by patient
j.
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the �rst failure are consummated. The donor belonging to the �nal patient-donor pair
in such a chain may initiate new chains in the future, much like an altruistic donor.
This donor is often referred to as the �bridge� donor. Consistent with NKR policy, un-
paired patients are prioritized according to the net di�erence between altruistic donors
and unpaired patients previously transplanted by the patient's hospital.

This step results in frictions within the system that reduce transplantation rates (Agar-
wal et al., 2018). The parameters that govern these frictions are the time required for
each of the two approval steps, the probability that a proposed transplant is abandoned
in each step, and the duration for which a bridge donor is retained in the pool before
donating her kidney to a patient on the deceased donor list.

Unfortunately, we do not have detailed data on which transplants were refused, how
often transplants were aborted due to biological testing, or how long each review phase
takes. Additionally, the NKR does not seem to have clear-cut algorithmic policies on
how to use bridge donors. Chains would be inde�nitely long if bridge donors were
allowed to initiate new chains forever but too short if bridge donors were not used.
Although cases of donors reneging are rare (Cowan et al., 2017), platforms try to trans-
plant bridge-donors quickly, to an unpaired patient if necessary, to avoid these cases.

We calibrate these parameters by simulating our model to �nd values that most closely
replicate the match probabilities, durations, pool size and chain lengths observed in
our data. We match average values of each of these variables, except for chain length,
by the following submission types: altruistic donor, patient-donor pairs, and unpaired
patients.26

Our simulations suggest that a two-week period for both the acceptance and the bio-
logical testing phases; and a one-�fth failure rate for each phase best �t these moments.
Reducing the failure rates in simulations primarily increases chain length and transplan-
tation rates, while reducing the duration of either phase increases the transplantation
rates without having a large e�ect on chain length. For the bridge donor policy, we
�nd that a hold-period of 30 days best �ts the data.

Details on the �t of our calibrated parameters are provided in Appendix C.5.1. Fur-
ther, Appendix D repeats all of our analyses under alternative parameters to examine
robustness of our results.

4. Departure: Patients and donors often depart the NKR without a transplant. A pa-
tient and his/her associated donor may leave the platform because the patient dies,
becomes too sick to transplant, or receives a kidney transplant elsewhere. Therefore,
we need to estimate the probability that a patient or a donor leaves the NKR without

26In principle, we could have estimated these parameters using simulated minimum distance. However, a
simulation for each parameter value can take weeks, making optimization over the parameter set infeasible.
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a transplant.27

We estimate a model of departures using the registration and transplantation dates
(if transplanted) for each patient and donor. Additionally, we use regular data snap-
shots of the patients and donors registered at the NKR to determine how long the
patient or donor was registered in the NKR without a transplant. We estimate an
exponential hazards model for the departure process using maximum likelihood.28 The
departure rates in the model depend on the fraction of donors (patients) ever registered
with the NKR who are compatible with a patient (donor), blood-type dummies for the
donor and the patient, and the patient and donor ages at registration. Appendix C.2.2
presents the estimates for the model.

This procedure allows us to evaluate a transplant production function for any vector of
inputs q by simulating each of these events for each calendar day. Given any initial pool of
patients and donors in the NKR, these simulations generate a Markov chain with a sequence
of registrations, transplants, and departures. We initialize the NKR pool with the set of
patients and donors registered on April 1, 2012, and burn-in 2,000 simulation days in each
run. The dependence on the initial pool eventually fades away. We compute the time average
of the total number of transplants to estimate f :

f̂ (q) =
1

T

T∑
t=1

yt,

where T is the total number of days simulated and yt is the total number of transplants in
period t of our simulation. In what follows, we report estimates based on an average of 100
simulations. Standard errors are calculated using the non-overlapping batch means estimator
described in Appendix C.4.

27Our approach will treat all donor departures as a lost opportunity for a transplant if a better design
can use that donor for a transplant. To validate this assumption, we tried to determine the outcome of
patients that were paired with a donor that leave the NKR without a transplant by matching them to the
OPTN data on all living and deceased donor transplants. Our ability to follow these patients is not perfect,
but approximately three-quarters of patients could be perfectly matched on the HLA-A, B, and DR loci;
gender; and blood type. A majority of patients either remained untransplanted or received a deceased donor,
e�ectively crowding out a kidney from another patient. Of those that received a living donor transplant, most
received direct donations and the vast majority did not utilize a multi-hospital kidney exchange platform.
These facts support our treatment of departures as an appropriate approximation.

28Speci�cally, the departure rate for registration j is given by λgj exp (zjβ) , where gj denotes whether j is
an altruistic donor, a patient-donor pair, or an unpaired patient; λgj is a group-speci�c constant departure
risk; zj denotes a vector of characteristics for j; and β is a conformable vector of coe�cients. We use
maximum likelihood using the (censored) observations of departure times for each registration in the NKR.
Censoring in our dataset can occur because we only observe a lower bound for the departure time if j was
transplanted or remained in the NKR pool at the end of our sample period.
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5.2 Returns to scale and misallocation

5.2.1 Returns to scale

We �rst document the estimated returns to scale in the transplant production function, that
is, how the average product changes with platform size. We evaluate the production function
for pools of submissions q with the same composition as the NKR but with di�erent scales
as measured by the total �ow of donors submitted per year, which we denote as x(q). Figure
6 depicts average products, equal to f(q)/x(q), as a function of the total �ow of submitted
donors x(q). We choose the total �ow of donors x(q) for the denominator because it is the
�ow of transplants that a platform could perform if all donors were used in an exchange.

Figure 6: Production E�ciency versus Scale

Notes: The line plot represents the average product of a kidney exchange platform versus its scale. The

histogram is based on the estimated scale of various hospitals. The left vertical axis represents average

products, de�ned as the share of pairs and altruists who are transplanted. The right vertical axis is the

scale for the histogram. The horizontal axis represents scale, measured as the yearly arrival rate of pairs and

altruists. The error bars on the estimated production function show a 95% con�dence interval. The plot uses

the baseline parameters and the pool composition from the NKR.

The �gure shows that there are increasing returns to scale, but that productivity eventually
plateaus. With a scale of 534 donor arrivals per year, the NKR is well within the region of
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approximately constant returns to scale. The NKR has an average product of 0.54, which
varies only slightly once the scale is su�ciently large. A platform that is half the size of
NKR has an average product of 0.51, while a platform that is double the size has an average
product of 0.57. Therefore, the market can operate at a high level of e�ciency even if there
are a handful of competing platforms. These estimates suggest that mergers of su�ciently
large platforms would have small e�ects on e�ciency.

Next, we use these estimates to calculate whether individual hospital platforms operate
at an e�cient scale. Recall that within hospital transplants collectively account for the
majority of kidney exchanges. A challenge with this exercise is that we observe neither
the number nor the composition of patients and donors available to a hospital. We only
observe the kidney exchange transplants conducted by a hospital both through the NKR and
outside. To make progress, assume, for the moment, that hospitals have the same production
technology and composition as the NKR. Further, assume that hospitals conducting within-
hospital transplants do not participate in the NKR. Under these assumptions, one can use
the observed rate of kidney exchange transplants at individual hospitals to infer the scale for
each hospital. Speci�cally, let yh be the �ow of within hospital kidney exchange transplants
conducted at hospital h. We estimate the �ow xh of donors available to hospital h as the
�ow necessary to produce yh with the same composition and technology as the NKR. That

is, xh solves yh = f̂
(
xh · q0

x(q0)

)
, where q0 is the �ow of submissions received by the NKR.

This exercise suggests that almost all individual hospitals operate far below the e�cient scale.
The histogram in Figure 6 shows the estimated distribution of hospital scale. The median
hospital has a scale of 9 donor arrivals per year. The 90th percentile is 26 donor arrivals per
year. The largest, Methodist Hospital in San Antonio, has a scale of 104 donor arrivals per
year. The average product at these e�cient scales is 0.16, 0.30 and 0.44 transplants per donor,
respectively. Thus, at our estimated production function, even the largest single-hospital
platform does not operate at an e�cient scale. UNOS and APD have estimated average
products of 0.41 and 0.42 respectively. Hence, the implied e�ciency losses are considerable
even for the largest platform other than the NKR. These results are consistent with the
evidence presented in Section 3.2 that hospitals often perform matches that are socially
ine�cient, and that UNOS and APD are also somewhat less e�cient than the NKR.

5.2.2 Misallocation: ine�ciency due to small production scale

We start by using the baseline approach in the previous section to estimate ine�ciency due
to market fragmentation. That is, we estimate how many additional transplants would be
performed if the entire kidney exchange market functioned at NKR's e�ciency. We use a
hospital's estimated scale to calculate the di�erence in average product between the hospital
and NKR. Because NKR operates at constant returns to scale, this di�erence multiplied
by the hospital scale is the total number of transplants that are lost due to the hospital
conducting kidney exchange at an ine�ciently small scale. The aggregate lost transplants
equal the total deadweight loss because our social welfare function is the total number of
transplants nationwide. The estimated deadweight loss presented in Table 3 shows that
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447.7 transplants are lost per year due to market fragmentation (panel A, column (1)). This
number is large relative to the 800 transplants conducted through kidney exchange each year.
The economic value of the lost transplants approach $500 million per year based on the Held
et al. (2016) estimates of a value of a transplant. The cost savings alone are on the order of
$140 million per year.

This baseline approach is simple but su�ers from four potential biases. First, the composition
of submissions in hospitals may di�er from that in the NKR. We assess robustness to this
assumption by estimating ine�ciency using patient and donor compositions based on sub-
missions from three di�erent groups of hospitals: all hospitals, hospitals in the top quartile
of intensive margin participation rate, and hospitals in the bottom quartile.29 Hospitals in
the top quartile of participation should submit a less selected pool because they conduct a
larger fraction of kidney exchanges through the NKR. Estimates from a production function
using patients and donors from only these hospitals allows us to assess robustness to poten-
tial compositional di�erences between single hospital platforms and the NKR. Columns (2)
and (3) present estimates under alternative assumptions on the composition of patients and
donors available to a hospital. Comparing estimates suggests that overall ine�ciency exceeds
380 transplants per year under alternative assumptions on composition di�erences.

Second, our baseline approach assumes that all within hospital transplants are produced by
hospitals in isolation of the rest of the market. The bias due to hospitals that also participate
in national platforms does not have a clear direction. We address this issue by disaggregating
the e�ciency losses by whether a hospital participates in the NKR, APD and UNOS and
by the fraction of the hospital's paired kidney exchanges that are conducted through the
NKR. If we restrict attention only to the 96 hospitals that do not participate in NKR, the
e�ciency loss in column (1) is 212.9 transplants per year (panel C, excluding the NKR row).
Some of these hospitals participate in UNOS or APD and may be producing transplants
at a more e�cient scale. Even if we assume that each of these hospitals that particpate
in UNOS or APD produce transplants at the estimated scales for the two platforms, we
estimate that the deadweight loss in column (1) would be 127.0.30 However, this extremely
conservative calculation is likely at slack for two reasons. First, even among the non-NKR
hospitals that participate in either UNOS or APD, two-thirds of kidney exchange transplants
are performed within hospital (panel C). The deadweight loss lower bound of 127.0 assumes
that all transplants are produced at the APD/UNOS scale. Second, it ignores deadweight loss
from hospitals that participate in NKR. Among the set of NKR participants, the 17 hospitals
that are in the lowest quartile of fraction of transplants performed in NKR alone contribute
to an e�ciency loss of 94.7 transplants per year (panel D). In summary, despite potential bias
due to some hospitals participating in large platforms, this decomposition suggests that a loss
of 200 transplants per year is a conservative estimate for the costs of market fragmentation.

29We measure participation rate as the number of donors submitted to the NKR as a fraction of donors
submitted to the NKR or transplanted in a within hospital kidney exchange.

30The deadweight loss from hospitals that do not participate in any of the three national platforms alone
is 106.9. In addition, we estimate that the deadweight loss for hospitals that participate only in UNOS or
APD is 20.1, assuming that all kidney exchange transplants from these hospitals are produced at a scale
corresponding to the platform in which they participate.
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Table 3: Total E�ciency Loss

Efficiency Loss

 Additional Kidney Exchange Transplants

(1) (2) (3)

Panel A: All Hospitals
All Hospitals 164 800.5 465.4 447.7 386.1 539.7

Panel B: By hospital size (number of PKEs per year)
Top Quartile 42 598.8 358.3 237.5 186.2 285.2
2nd Quartile 48 143.2 73.4 132.7 111.4 148.1
3rd Quartile 40 45.7 27.7 57.9 64.6 81.6
Bottom Quartile 34 12.7 6.0 19.7 23.9 24.8

Panel C: By Platform Membership
NKR 68 580.5 297.2 234.8 191.9 280.8
Only UNOS or APD 45 133.0 90.7 106.0 92.7 126.9
None 51 86.9 77.6 106.9 101.5 132.1

Panel D: By NKR Participation Rate (Fraction of PKEs facilitated through the NKR)
Top Quartile 17 65.2 8.2 14.5 13.9 17.9
2nd Quartile 17 102.3 27.0 44.2 38.8 51.3
3rd Quartile 17 196.7 98.2 81.5 66.6 97.4
Bottom Quartile 17 216.2 163.8 94.7 72.7 114.1

Number of
Hospitals

 Kidney Exchange
Transplants Per Year

Within Hospital Kidney
Exchange Transplants

Per Year

Notes: Column (1) assumes that the typical transplant hospital has a composition of patient-donor pairs

and altruistic donors given by the average registration in the NKR. Column (2) assumes the composition in

transplant hospitals using only the hospitals with the top quartile of participation rates in the NKR. Column

(3) assumes a composition based on hospitals with the lowest quartile of participation rates. Transplants per

year is calculated using data between April 1, 2012 and December 4, 2014.

Third, hospitals may use a di�erent matching technology than the NKR. For example, Binga-
man et al. (2012) report that Methodist Hospital in San Antonio, which is now perhaps the
most sophisticated single-hospital program, initially used a Microsoft Access Database and
that their algorithm was �strati�ed by ABO compatibility and then by HLA compatibility.�
Such algorithms are less e�cient than the linear-programming algorithms used by the NKR.31

On the other hand, single-hospital programs face simpler logistical constraints, which may
increase their productivity vis-à-vis our estimates. The direction of this bias is not signed in
general, but it is more likely that single-hospital platforms are less e�cient than our estimated
production function.32

Fourth, these exercises keep the patients and donors interested in kidney exchange �xed.
However, this �ow is endogenous and a�ects the magnitude of the deadweight loss. Although

31In 2013, Methodist Hospital in San Antonio adopted software written by one of us (Ashlagi).
32See Agarwal et al. (2018) for an analysis of how various logistics in�uence the productivity of a kidney

exchange platform. NKR's practices are optimized to maximize the number of transplants given the available
patients and donors.
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the direction of this bias is ambiguous, our baseline approach likely yields a conservative
estimate of overall market ine�ciency. The most likely bias is due to hospitals valuing
transplants at less than the social value and, due to administrative costs, being likely to
expend ine�ciently low e�ort in recruiting patients and donors. If incentives were optimal,
hospitals may try to recruit more � and more valuable � donors into kidney exchange. Our
approach does not account for this margin because we do not observe recruitment e�orts and
we are therefore likely to underestimate overall market ine�ciency.

Table 3 also points to which types of hospitals concentrate most of the ine�ciency. Consider
column (1) and, for the purposes of this decomposition, ignore the biases discussed above.
Even though they perform internal exchanges more e�ciently, large hospitals account for
most of the ine�ciency because their market share is higher (panel B). Indeed, 53.0% of
the losses come from hospitals in the top quartile of kidney exchange transplant numbers.
Moreover, both the intensive and extensive margins of participation are important. A little
less than half of the e�ciency losses are due to hospitals that do not participate in the NKR
at all, and a quarter from hospitals that do not participate in any of the national platforms
(panel C). Among hospitals that do participate in the NKR, a large share of the e�ciency
loss is due to the hospitals with low participation (panel D).

To summarize, although the baseline estimate of 447.7 lost transplants is potentially biased,
a battery of robustness exercises suggest the deadweight loss from market fragmentation is
large. These losses arise from all types of hospitals. The most conservative estimates place
this loss at over 200 transplants a year. Additionally, these estimates do not appear to be
driven by potential compositional di�erences in the kidney exchange pool. Table D6 in Ap-
pendix D further evaluates these results' robustness to alternative choices for the production
function parameters that were calibrated. Across various speci�cations, we continue to �nd
that an estimated 200 lost transplants is conservative. These results are consistent with our
descriptive �nding that hospitals often perform ine�cient matches.

5.3 Optimal rewards

5.3.1 Ine�ciency of current mechanisms

Theorem 1 shows that optimal rewards are approximately equal to marginal products. That
is, p∗ = ∇f(q∗) −A (q∗), where q∗ and p∗ are the aggregate quantities and rewards that
maximize hospital welfare. We will test this equality at the aggregate supply q0 and rewards
p0 in our data.

Current rewards, p0, equal the probabilities of matching each kind of submission. These
probabilities can be easily estimated from our simulations, and the estimated probabilities
closely match the probabilities in the data (see Appendix C.5.1). Marginal products ∇f(q0)
can be estimated by numerically di�erentiating the production function. In principle, calcu-
lating the adjustment term requires estimates of the supply elasticity matrix, which is not
feasible with our data. But the adjustment term is small because returns to scale are ap-
proximately constant for NKR's size. Therefore, optimal rewards are approximately equal to
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marginal products. Formally, Theorem 1 implies that the quantity-weighted average of the
adjustment term is

A (q) · q
‖q‖1

=
∇f (q) · q − f (q)

‖q‖1
.

That is, the average level of shading is the di�erence between the average marginal product
and the average product. Evaluating this formula using using the estimated production
function and numerical derivatives for each of the 1930 submission types yields an average
shading of only 2.16 × 10−4. In what follows, we simply approximate optimal rewards with
marginal products.

Figure 7a plots current rewards (the probabilities of matching p0) versus optimal rewards
(marginal products ∇f(q0)). Some of the 1930 types have negative estimated marginal
products because the matching algorithms are myopic, which can result in crowding out
of future transplants. However, negative point estimates can also result from noise due to
simulation error. Figure 7b aggregates these estimates with categories constructed by using
the classi�cation into under-demanded, over-demanded and self-demanded types based on
Roth et al. (2007), split by the immune sensitization levels of the patient. These aggregated
marginal products and match probabilities are estimated more precisely.

The marginal products are qualitatively similar to the Roth et al. (2007) theoretical predic-
tions discussed in Section 2. The marginal product of an underdemanded pair is 0, both in
our estimates and in the Roth et al. (2007) model. The estimates di�er for other types. For
example, the marginal product of an overdemanded pair with low sensitization is 2 in the
Roth et al. (2007) model, but 1.64 in our estimates. One reason for this di�erence is that,
in our data, these pairs are only matched with probability 0.82. Our empirical model also
re�nes the predictions from the theoretical models by showing how marginal products vary
with sensitization. For example, the marginal products of overdemanded and self-demanded
pairs are considerably lower if these pairs are sensitized. These �ner results can be important
when designing practical mechanisms.

Both �gures show a large wedge between current and optimal rewards. If current rewards
were optimal, all points on these two �gures would be on the 45◦ line. Altruistic donors and
over-demanded pairs with low PRA are far below this line. Over-demanded pairs with low
sensitization have marginal products of 1.64, but the probability of matching them is only
0.82. Even more extreme, altruistic O donors have a marginal product of 1.86, but their prob-
ability of matching is only 0.94. Therefore, hospitals are not rewarded enough for submitting
these types, and it may explain why we see relatively few of these types are submitted to
the NKR. Other submission types are drastically over-priced. Under-demanded pairs with
low sensitization have marginal products of approximately 0.13 but have a probability of
being matched of around 0.38. Similarly, unpaired patients have low marginal products but
a signi�cant probability of being matched. These di�erences suggest the platform can do
considerably better by increasing rewards to the productive and undervalued submissions
while reducing rewards to the unproductive submissions.
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Figure 7: Private versus Socially Optimal Rewards for Submission Types

Notes: The vertical axis is the probability of a submission being matched, which are the private rewards

that hospitals receive according to current exchange rules. The horizontal axis plots the marginal product

of a submission, which equals the social contribution of the submission in terms of transplants. Each point

corresponds to a submission in the data. Matching probabilities and marginal products are calculated in the

baseline simulation. Marginal products are measured with substantial noise at the individual level because,

due to computational reasons, each individual derivative uses a small number of simulation days. In the

aggregated version di�erent dots of the same color correspond to the di�erent PRA levels. Figure 7a shrinks

the estimated marginal products and match probabilities towards to the group means following the procedure

recommended by Morris (1983).
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5.3.2 Approximately e�cient point mechanisms

Theorem 1 and the small adjustment term A suggest that platforms should set rewards
close to marginal products. We will now show that marginal products are highly predictable
using a small number of patient and donor categories. Then, we discuss how to design point
mechanisms that are both approximately e�cient and simple enough for practical application.

We use a regression tree to construct categories that best predict marginal products. We
allowed the tree to depend on the patient's PRA, submission type (altruistic, patient-donor
pair, unpaired patient), and ABO blood type. Figure 8 shows the categories found by a
standard algorithm for �nding the best cross-validated predictor for the marginal products.
These categories are intuitive as they split submissions based primarily on submission type,
whether or not the patient/donor is blood type O, and on immune sensitivity. The procedure
chose a tree with few leaves. The within-category mean marginal products ∇f and proba-
bilities of matching p0 are dispersed relative to the (appropriately shrunk) within-category
standard deviation. This suggests that marginal products and probabilities of matching are
approximated with a small number of categories.

A mechanism that assigns points based on these categories can be explained to participants
with this tree or a simple table (for example, Table C5). Points could be awarded when
the hospital submits a patient and/or donor to the NKR, or at the time of transplantation.
A point should then be subtracted whenever the hospital conducts a transplant for one
of its patient because it is the numeraire in our model. Rewards at submission raise the
possibility that hospitals will make shill submissions. This reasoning suggests that points
should be awarded at the time of transplantation. In this case, the marginal products should
be divided by the probability of matching p0 in order to implement identical expected rewards.
As before, a point is deducted for each transplant the hospital conducts. The optimal points
awarded at the time of transplantation is denoted as r∗ in Figure 8. We postpone the
discussion of implementation details to Section 6.

5.3.3 Welfare gains from optimal point mechanisms

We now estimate the gain in welfare from moving to the point mechanism described above.
This gain is equal to the deadweight loss that can be avoided by rewarding hospitals optimally
as in Theorem 1. We begin by considering the gain in hospital welfare and later consider the
gain in social welfare.

The deadweight loss is given by a multidimensional version of the standard Harberger triangle
from linear commodity taxation. Figure 9 depicts the current aggregate supply q0, the
current rewards p0, the current marginal products ∇f 0, and the optimal aggregate supply
q∗. The hospital deadweight lossWH(q∗)−WH(q0) equals the area between marginal product
curve ∇f and marginal cost/supply curve ∇C = P S between q0 and q∗. Therefore, this
deadweight loss is the integral of ∇f(q)− P S(q) as q goes from q0 to q∗. This calculation
is the multidimensional version of the Harberger triangle formula, that is, the area between
the marginal bene�t and marginal cost curves.
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Figure 9: Hospital-Welfare Deadweight Loss from the Current Mechanism
Notes: The horizontal axis represents aggregate quantity and the vertical axis represents rewards vectors,

marginal costs and marginal products, so both axes represent I-dimensional vectors. The deadweight loss from

the current mechanism is the shaded area between marginal products and the supply curve (mathematically,

the area is a path integral going from current rewards p0 to optimal rewards p∗). Current rewards are

p0, equal to the probability of matching each type of submission, while optimal rewards p∗ equal marginal

products. Current quantities q0 and rewards p0 are observed. Marginal products ∇f , including the current

value ∇f (q0), can be calculated from the production function. In contrast, the supply curve P S = ∇C and

optimal rewards p∗ and quantities q∗ are not observed and depend on the elasticity of supply.

Proposition 1. Consider an aggregate supply of pairs, q0, that results when hospitals choose
supply optimally given rewards, p0. Further, consider strictly positive aggregate supply, q∗,
and rewards, p∗, that maximize hospital welfare as in Theorem 1. Assume that the matrix
DP S(q0)−D2f(q0) is �nite and non-singular and that the production function has constant
returns to scale at q∗. Then, the deadweight loss in hospital welfare at q0 can be approximated
by either

1

2
[∇f (q0)− p0] · (q∗ − q0) .

or
1

2
[∇f (q0)− p0] ·

[
DP S(q0)−D2f(q0)

] −1 [∇f (q0)− p0]
′ . (3)

The error in both approximations is o(‖q∗ − q0‖2).

These formulas are a multidimensional version of the Harberger triangle formulas in one-
dimensional linear commodity taxation. The �rst formula is the multidimensional version
of the one half base times height formula. The second formula is the equivalent of the one
half of the tax wedge squared times the inverse of the di�erence between the derivative of
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inverse supply and the derivative of inverse demand. The second formula shows that the
deadweight loss is one half of a quadratic expression in the wedge ∇f 0 − p0. The term
DP S(q0) accounts for the fact that a more elastic supply leads to larger deadweight losses.
The term D2f accounts for the change in marginal products in response to a change in q.
For example, the deadweight loss is lower if increasing the supply of overdemanded pairs
results in these pairs becoming less useful.

The proposition shows that estimating the deadweight loss requires estimates of ∇f 0 − p0

and either q∗ − q0 or DP S(q0) −D2f(q0). We can estimate ∇f 0, p0, and q0 using the
estimated production function. Unfortunately, because we do not have a good estimate of
the hospital supply curve, we cannot directly estimate q∗ or DP S(q0). Nevertheless, the
large wedge between the current private and social incentives suggests the deadweight loss is
signi�cant unless the supply elasticity is extremely small.

Equation (3) can be used to formalize this point by quantifying the deadweight losses for a
range of supply elasticities. We restrict attention to mechanisms that set reward vectors for
the categories in the regression tree analysis above (Figure 9). The wedge ∇f 0−p0 and the
curvature matrix D2f for these categories are estimated using our production function. To
use equation (3), we need to specify supply elasticities through the matrix DP S(q0). One
challenge in directly specifying this quantity is that di�erent submission types may respond
di�erently to rewards. For example, the submission of hard-to-match types to the system
may not substantially decrease when rewards are lowered because there are few other avenues
for matching them. Our approach is to calculate the maximum deadweight loss under varying
bounds on the maximum elasticity of any type of submission. This method allows us to be
agnostic about the supply elasticities of di�erent submission types. The deadweight loss
is zero when we assume that the maximum elasticity is zero because the submissions will
not respond to the rewards system, resulting in q∗ = q0. As we increase the bound on the
elasticity, submissions respond and the maximum implied deadweight loss increases. Further,
we repeat this exercise for varying assumptions on cross-elasticities.33

Figure 10a plots the maximum hospital deadweight loss for bounds on the own-price elastic-
ities ranging from 0 to 6. The curve in the middle describes the results for zero cross-price
elasticities, and the other two curves present results for non-zero cross-price elasticities. The
hospital deadweight loss is zero if supply is perfectly inelastic and is increasing in elasticity.
The deadweight loss is signi�cant for most of this range and above 40 transplants per year
if the maximum elasticity is at least 2. For very high elasticities, the deadweight loss in-

33Speci�cally, we solved the problem

max
DPS(q0)

1
2 (∇f0 − p0)[DP S(q0)−D2f(q0)]

−1(∇f0 − p0)
′

s.t.

(
∂PS,j

∂qj

)−1
p0,j
q0,j

∈ [0, ε] , for all j ∈ 1 . . . I,

(
∂PS,k

∂qj

)−1
p0,k
q0,j

= ρ

(
∂PS,j

∂qj

)−1
p0,j
q0,j

+

(
∂PS,k

∂qk

)−1
p0,k
q0,k

2
, for all j, k ∈ 1 . . . I with k 6= j.

for each value of the bound on elasticities, ε.
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(b) Transplants Lost in the Platform

Figure 10: Losses Due to the Current Mechanism
Notes: Estimated losses from the current mechanism, using the approximation from Proposition 1, as a func-

tion of the elasticity matrix of supply. Maximum own-elasticities are in the horizontal axis. The parameter

ρ governs the cross-price elasticity of supply as formally described in footnote 33.

creases at a slower rate because of production function curvature. The deadweight loss at an
elasticity of 6 is only between 75 and 105 because the marginal products of the productive
types that the optimal mechanism attracts decrease with supply. Although the results for
large elasticities are subject to greater approximation error, it is unlikely that the deadweight
losses come close to the e�ciency loss relative to the �rst-best allocation, even for elasticities
of about 6.

The hospital deadweight losses will understate the loss in social welfare if hospitals under-
value transplants. Figure 10b shows the total increase in transplants facilitated by the NKR
if it adopts the optimal points system. To do this, we added the area under P S = ∇C to
the hospital deadweight loss numbers calculated above (see Figure 9). Because a transplant
increase at the NKR will come at the cost of fewer transplants at hospitals, this calculation
overstates the loss in total welfare from the current mechanism. Not surprisingly, the esti-
mated losses are higher than the previous �gure. A little over 40 transplants are lost if the
maximum elasticity is 1. This number is between 95 and 120 for an elasticity of 6. Therefore,
social deadweight loss is higher than hospital deadweight loss, but the two are qualitatively
similar.

Taken together, these results imply that addressing the ine�cient platform incentives has a
large positive impact unless the elasticity of supply is extremely low. While we do not have
quasi-experimental evidence on the magnitude of elasticities, the evidence in Section 3 is
typical of markets with elastic supply. Most hospitals only register a subset of their patients
with the NKR, and many other hospitals do not participate. These observations are consistent
with many hospitals being on the margin, suggesting that hospitals respond to incentives and
that supply is at least moderately elastic. Therefore, optimal point mechanisms are not only
low-dimensional but also likely to have a substantial e�ect on the total number of transplants.
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5.4 Importance of agency problems and ine�cient platform incen-

tives

We now discuss the quantitative importance of the two market failures identi�ed above.
While we cannot decompose the e�ects of each market failure, the results give us useful
information on whether these market failures are important.

First, the misallocation analysis yields a conservative lower bound for the deadweight loss of
about 200 transplants per year. The true deadweight loss is potentially much larger as most
speci�cations yield numbers approximately twice as large. Therefore, it must be the case
that at least one market failure is quantitatively important.

Second, the Harberger triangle analysis shows that ine�cient platform incentives signi�cantly
reduce hospital welfare if supply is not inelastic. Moreover, if there are agency problems, the
gains in social welfare from an optimal mechanism will be even higher because hospitals
undervalue transplants. Speci�cally, hospital welfare deducts the transplant-denominated
private cost incurred when hospitals provide more submissions to the platform. When there
are agency problems, these private costs are signi�cantly in�ated relative to social costs.

Our results imply that agency problems are important unless elasticities are extremely high.
Under the hypothesis that there are no agency problems, hospital welfare equals social wel-
fare, and the optimal mechanism reaches �rst-best welfare (Theorem 1). Thus, the total dead-
weight loss in the misallocation analysis must be completely accounted for by the deadweight
loss in the Harberger triangle analysis. Yet, even for a high elasticity of 6, the Harberger
triangle yields a deadweight loss of at most 120 transplants, still below our lower bound
result of 200 transplants from the misallocation analysis. The only way these estimates can
overlap is if we have high elasticities and the approximation in Proposition 1 is signi�cantly
downward biased. The bias in the approximation depends on the deviation of the production
function minus the aggregate cost function from the quadratic Taylor approximation, so that
the bias is high if ∇f −∇C is extremely convex. Thus, attributing all the deadweight loss
to ine�cient platform incentives requires that elasticities are high, ∇f −∇C is su�ciently
convex, and the downward bias in the estimated lower bound on ine�ciency is small.

The upshot is that a policy that addresses either market failure is likely to be valuable
and generate gains in the order of hundreds of transplants per year. Except under extreme
assumptions about the supply function, there are signi�cant gains both from implementing
more e�cient mechanisms and from solving agency problems.

6 Theoretical Extensions and Discussion

6.1 Maximizing social welfare

Theorem 1 describes mechanisms that maximize hospital welfare. A natural alternative would
be to use mechanisms that directly maximize social welfare. However, since hospitals consider
private rather than social cost in response to a rewards vector, they won't necessarily choose
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submissions vectors that minimize the aggregate social cost. To account for this subtlety,
de�ne the reward-moderated social cost by

SC (q) =
H∑
h=1

SCh
(
Sh (P S (q))

)
.

We assume that each hospital's supply is single-valued to ensure that this function is well-
de�ned.

The reward-moderated social cost represents the aggregate social cost of inducing an aggre-
gate supply q by using a linear and anonymous rewards scheme. Our next result describes
the rewards in mechanisms that maximize social welfare.

Proposition 2 (Optimal Rewards for Maximizing Social Welfare). Consider a vector of
rewards p and an allocation

(
qh
)
H
h=1 with strictly positive aggregate quantity q =

∑
h q

h that

maximize social welfare subject to all hospitals choosing qh ∈ Sh (p) and subject to the total
rewards allocated being the same as the number of transplants produced, that is, f (q) = p ·q.
Assume the production function has constant returns to scale at the optimal q, and SC (q)
is di�erentiable. Then:

1. The platform rewards each type of submission with its marginal product plus an adjust-
ment term.

p = ∇f(q) +ASW (q) ,

where

ASW (q) =
1

1 + λSW
[∇C (q)−∇SC(q)]− λSW

1 + λSW
q′DP S(q).

and

λSW =
[∇C (q)−∇SC(q)] · q

q′DP (q) · q
.

2. The adjustment term ASW (q) can be non-zero even with constant returns to scale at
q.

3. The allocation (qh)Hh=1 maximizes f (q)−SC (q) if and only if, at the optimum, the aver-
age wedge between marginal cost and marginal reward-moderated social cost, [∇C (q)−∇SC(q)]·
q, is zero.

Part 1 shows the optimal mechanism rewards submissions by their marginal products plus an
adjustment term. The adjustment equals an externality term, which is greater for submissions
whose marginal social costs are less than their marginal private costs, minus a shading term
that depends on elasticities. At the optimum, hospitals are rewarded for their marginal
contributions to the platform as well as to compensate them for any components of marginal
private cost that aren't a part of marginal social cost. However, if there are not enough
transplants to pay for these di�erences, the planner has to shade rewards. As in optimal
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linear commodity taxation, it is also better to shade rewards for submissions with more
inelastic supply.

Part 2 shows that the key di�erence in this case, relative to Theorem 1, is that the adjustment
term is not zero, even for constant returns to scale. Therefore, the optimal rewards depend
on more information. To set optimal rewards, one must know, for each type of submission,
the wedge between marginal private and social costs. Such knowledge requires identifying the
submission types for which hospital objectives deviate most from social objectives. Moreover,
one needs to know the elasticity matrix in order to measure how much shading must be done
for each submission type. Elasticities matter so long as the average wedge between marginal
private and social cost is non-zero because it results in the multiplier λSW being non-zero
and an adjustment term that depends on elasticities. Finally, part 3 shows that the optimal
reward vector does not attain �rst-best social welfare. Therefore, allocations that achieve
�rst-best social welfare require non-linear and complex incentives for hospitals.

Taken together, using only the kidney exchange mechanism to maximize social welfare, as op-
posed to hospital welfare, runs into important challenges. Optimal rewards are more complex,
depend on more information, and are sensitive to changes in the incentives facing hospitals
that can a�ect overall externalities. These results suggest that solving agency problems is an
important complement to improving the design of the kidney exchange mechanism.

6.2 Competing platforms

Two natural policy responses to the fragmentation are to mandate participation in a single
platform or to merge platforms. These recommendations raise questions about the optimal
strategy for competing platforms and the e�ciency costs of imperfect competition. We now
consider a platform that maximizes the number of transplants it facilitates.

Proposition 3 (Oligopolistic Platforms). Consider a platform facing a smooth inverse resid-
ual supply curve of submissions PRS(·). Consider a vector of rewards p and a strictly posi-
tive aggregate quantity q that maximize the number of transplants in the platform subject to
p = PRS (q) and subject to allocating the same number of transplants that are produced, that
is, p ·q = f (q). Assume the production function has constant returns to scale at the optimal
q. Then:

1. The platform rewards each type of submission with its marginal product, plus an ad-
justment term,

p = ∇f(q) +AC (q) ,

where

AC (q) =

(
q′DPRS(q) · q

f(q)

)
∇f(q)− q′DPRS(q).

2. The adjustment term AC (q) can be non-zero, even with constant returns to scale at q.
In particular, rewards are di�erent from the rewards in Theorem 1.
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3. If residual supply is perfectly elastic, so that the matrix DPRS is zero, then rewards
equal marginal products, as in Theorem 1.

The proposition shows that a platform that maximizes the number of facilitated transplants
does not set socially e�cient rewards. Instead of setting rewards equal to marginal products,
the platform subsidizes submissions that have elastic supply and are very productive. To see
this, consider the simplest case, where DPRS is a diagonal matrix (i.e. all cross-elasticities
of residual supply are zero). Then, for each type i, the reward is marked down from marginal
product according to an analogue of the Lerner index formula,

∂f
∂qi

(q)− pi
pi

=
1

εRSi
− 1

λ
·
∂f
∂qi

(q)

pi
,

where εRSi is the own-price residual supply elasticity and λ is the Lagrange multiplier on the
constraint f (q) = PRS (q) ·q. The expression shows the platform has incentives to skew the
rewards: optimal markdowns are larger for submissions with low elasticities and submission
categories that are less productive on the margin.

The proposition implies that competing, empire-building platforms exploit their market
power and set rewards ine�ciently. Additionally, the proposition implies that platforms
set e�cient rewards if the market is very competitive. Optimal rewards are close to marginal
products if residual supply is very elastic, i.e. if εRSi is close to in�nity or, more generally,
DPRS is close to zero.

6.3 Implementing a point mechanism

Our steady-state model shows that a mechanism that rewards hospitals with marginal prod-
ucts is e�cient. Moreover, our empirical results suggest that a low-dimensional point mecha-
nism would likely achieve sizable e�ciency gains. Unfortunately, our simpli�ed steady-state
model does not specify an extensive form game. Therefore, our model cannot be used to fully
specify optimal mechanisms or game forms, or to evaluate them. This raises practical and
theoretical questions about how to design and implement a dynamic points mechanism, a
task that requires detailed speci�cation of rules and an analysis of resulting incentives. While
resolving all these details is beyond the scope of our paper, we discuss some key theoretical
and practical issues.

In both theory and practice, a natural mechanism for solving this problem is the point system
described in Section 5.3.2. A motivation for this kind of mechanism comes from the dynamic
mechanism design literature. Möbius (2001), Hauser and Hopenhayn (2008), Friedman et
al. (2006), and Guo and Hörner (2015) call this kind of mechanism a chips, scrips, or token
mechanism. Möbius (2001), Hauser and Hopenhayn (2008), and Abdulkadiro§lu and Bagwell
(2013) consider dynamic favor exchange, and Guo and Hörner (2015) presents provision of
goods to a consumer with stochastic valuations. The general �nding of this literature is that
token mechanisms, as proposed in Möbius (2001), do better than autarky but not as well as
an optimal dynamic mechanism. In fact, token mechanisms are close to �rst-best if players
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are patient and there are many time periods. Results in Jackson and Sonnenschein (2007)
imply that token mechanisms' ine�ciency declines as square root of the number of periods
(see Guo and Hörner, 2015). Thus, the theoretical literature suggests that point systems,
while not exactly optimal, are simple and achieve a high level of e�ciency.34

Another motivation for using a point mechanism is practicality. The simplicity of the mech-
anism and similarity to �at money makes it promising. Similar mechanisms have been previ-
ously used in market design applications. For example, Prendergast (2017) describes how a
similar mechanism was used to increase the e�ciency of food distribution across food banks.

An important issue with applying point systems is that they require several �plumbing� de-
cisions (Du�o, 2017). Should the matching algorithm impose a strict bound on negative
balances? If so, what is the optimal minimum balance constraint? A tight constraint pro-
vides stronger incentives to hospitals but may reduce e�ciency. Should points be credited
when patients and donors are submitted, or should points be credited when transplants are
conducted? How often should marginal products be recalculated as the composition of pa-
tients and donors in the platform changes? Recalculating them often is complex and reduces
transparency, but recalculating infrequently can reduce e�ciency.

7 Conclusion

Kidney exchange improves a patient's quality of life and extends life expectancy while reduc-
ing costs. We demonstrate that fragmentation in the US kidney exchange market results in
an e�ciency loss of between 25 to 55 percent of the about 800 kidney exchange transplants
performed per year, implying a waste of hundreds of transplants per year.

The ine�ciency arises due to two standard market failures. First, platforms use ine�cient
mechanisms that do not reward hospitals according to marginal products of their contribu-
tions. This induces hospitals to perform ine�cient within hospital matches, even if hospitals
solely maximize the welfare of their own patients. Second, there are agency problems that
make hospitals too sensitive to the costs of participating in kidney exchange platforms.35 Our
analysis shows that both market failures are likely important and that platforms could use
simple alternative mechanisms to substantially increase e�ciency.

These �ndings have both short-term policy implications and broader implications for the
design of kidney exchange markets. There are two clear short-term policy implications. First,
there could be returns to existing platforms experimenting with point systems. Such systems
can be implemented by individual platforms and it is will likely help them expand. Second,

34This message is consistent with the literature on monetary economics. Although optimal dynamic mech-
anisms can often improve on money (Kocherlakota, 1998), models in the tradition of Kiyotaki and Wright
(1989) show that money can achieve high levels of e�ciency even with simple institutions.

35This decomposition of market failure sources is consistent with long-standing concerns of surgeons, in-
surers, platforms, and researchers, and with recent policy changes. Roth et al. (2005) and Ashlagi and Roth
(2014) recognized that hospitals may have incentives to match patients internally in static models. Surgeons
and insurers have noted that it may be in the interest of insurers to subsidize exchanges, and have proposed
that they do so (Rees et al., 2012).
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third-party payers should consider subsidizing kidney exchange at platforms. We argued
that hospitals are likely responsive to costs of participating in kidney exchange platforms, a
behavior that leads to signi�cant welfare losses. Subsidies by Medicare and private payers
could alleviate this problem. Moreover, our analysis suggests that this two-pronged approach,
which addresses the two market failures separately, is likely to be more robust and to have
lower data requirements than mechanisms that address both market failures simultaneously.

Consistent with these results, there are initiatives moving in the direction of these policy
changes. The NKR recently started experimenting with a points system through their �Center
Liquidity Contribution Program.� Some private insurers have started covering the costs of
participating in kidney exchange platforms. Our results indicate that there could be large
gains from continuing to move in this direction. Further, all platforms could use data-driven
rewards system. Future research can contribute to the design and evaluation of these policies.

More broadly, our results raise the question of whether or not to use heavy-handed regulation,
such as mandating participation in a single platform. For example, the U.K., Netherlands,
and Canada (De Klerk et al., 2005; Johnson et al., 2008; Malik and Cole, 2014) mandate
participation at a single national program. At a �rst glance, this approach seems reasonable
because of the increasing returns to scale in kidney exchange. However, mandated single-
platform participation can reduce competitive incentives for platforms that have arguably
contributed to various innovations in kidney exchange.36 Moreover, our estimates of returns
to scale suggest that it would not be ine�cient to have a few large platforms in the US
because most of the potential e�ciency gain comes from moving the market from individual
hospitals to national platforms.
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