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Gravity and Comparative Advantage: Estimation of Trade Elasticities for the 

Agricultural Sector 

 

1. Introduction 

The gravity model is a workhorse of applied international trade analysis.  However, standard 

gravity models derived from a structural relationship in the most common trade models 

impose a restrictive pattern on the elasticity of bilateral trade flows with respect to changes 

in trade costs, which Heerman, Arita and Gopinath (2015) refer to as the Independence of 

Irrelevant Exporters (IIE) property.  In models that feature the IIE property, the magnitude 

of the response of a country’s export flows to a competitor’s trade costs depends only on its 

absolute advantage in agriculture, irrespective of whether the competitor is likely to 

specialize in similar agricultural products.  This is a particularly strong assumption in 

agriculture, where fundamental characteristics of climate and geography have a strong 

influence on the specific set of products in which a country has comparative advantage and 

thus the set of countries against which it competes most intensely.   

We present a structural gravity model, the systematic heterogeneity (SH) gravity model, 

which features intra-sector heterogeneity in productivity linked to land and climate 

characteristics.  The model predicts that countries with similar land and climate 

characteristics will systematically tend to specialize in the same products.  Trade flow 

elasticities then depend on comparative advantage, with larger-magnitude predicted trade 

flow responses among countries more likely to specialize in similar products and thus 

compete head-to-head in foreign markets.   
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A no-less advantageous additional benefit of the SH gravity model is that it can accommodate 

product-specific trade costs.  Transportation, marketing and other costs vary tremendously 

and systematically across agricultural products due to differences in perishability and policy 

treatment, among others.  As such, the extent to which trade costs obscure comparative 

advantage varies within the sector.   

More practically, there is great demand for applied analysis of the production and trade 

implications of changes in agricultural policy.  Although the agricultural sector represents a 

small share of the global economy, it is often pivotal in international trade relations.  In the 

context of international negotiations, agricultural policy issues are typically considered at 

the product level.  The SH gravity model’s ability to capture changes in the distribution of 

trade costs across products is thus a substantial asset. 

The SH gravity model specifies the relationship between trade flows and trade costs as a 

random coefficients logit model (Berry, 1994 and Berry, Levinsohn and Pakes, 1995).  

Therefore, our empirical approach is similar to the “mixed CES” model introduced in Adao, 

Costinot and Donaldson (2017).  This is more complex than the linear methods used to 

estimate the standard gravity model.  However, it requires little additional data.   

In the next section we elaborate on the features of the standard structural gravity model that 

impose restrictions on trade elasticities and the implications of those restrictions.  Next we 

present the SH gravity model, describe our data and estimation technique, and carry out a 

test that finds that the IIE property does not hold in agricultural trade data.  Finally, we 

present the results of our model and demonstrate its ability to overcome the restrictions of 

the standard gravity model. 
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2. Background 

Until recently, the conventional view in international economics was that the gravity 

equation lacked microeconomic foundations (Head and Mayer, 2014).   However, it is now 

considered general enough to be applied beyond a sub-set of countries or sectors (Eaton and 

Kortum, 2002; Anderson and Wincoop, 2003; Arkolakis, Costinot, and Rodríguez-Clare, 

2012), and that importer and exporter fixed effects can be used to account for the 

multilateral trade resistance terms derived from different theoretical models (Feenstra, 

2004).  In addition, evaluating a standard gravity equation on the basis of exports (imports) 

to (by) country n, at the firm/industry/sector-level as opposed to the economy-wide level 

using bilateral trade, has a clear analytical justification, drawing on a range of trade theories, 

e.g., Melitz (2003); Anderson and Wincoop (2004); Chaney (2008); Anderson and Yotov 

(2010a; 2010b; 2012); Costinot, Donaldson, and Komunjer (2012); and Costinot and 

Rodríguez-Clare (2014).  As a result, robust estimation of firm/industry/sector-level gravity 

equations using export (import) data is now common in the agricultural economics 

literature, some recent applications including: Reimer and Li (2010) (crop trade); 

Jayasinghe, Beghin, and Moschini (2010) (US corn seed exports); Cardamone (2011) (fruit 

exports); Chevassus-Lozza and Latouche (2012) (French firms’ agri-food exports); Xu 

(2015) (agricultural trade); and Dal Bianco et al. (2016) (wine exports). 

An important characteristic of the range of structural gravity models is that the quantitative 

implications that can be drawn from them are very dependent upon a key parameter: the 

elasticity of trade with respect to trade frictions such as tariffs (Simonovska and Waugh, 

2014).   Arkolakis et al. (2012) argue that the elasticity of trade, denoted as , is one of two 
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sufficient statistics necessary for calculating the welfare effects of trade, the other being the 

share of expenditure within a specific country on domestically produced goods denoted as

 . They show that the change in a country’s real income, ˆ W W W= / , resulting from say a 

reduction in trade costs can be calculated as ˆˆ εW λ1/= , where ˆ /   is the change in the 

share of domestic expenditure on imports.  Importantly, changes in welfare are independent 

of the class of trade model, i.e., the source of the gains from trade depends on the type of 

trade model being estimated, but the aggregate gains from trade do not.  Arkolakis et al. 

(2012) show that the welfare formula can be derived from three different structures:  an 

Armington model (see Anderson and Wincoop, 2003), a Ricardian model (see Eaton and 

Kortum, 2002), and a heterogeneous firms model (see Melitz, 2003), where the margin of 

adjustment occurs respectively through consumption, reallocation of labor across sectors, 

and reallocation across firms within sectors. 

For this equivalence result to hold, Arkolakis et al. (2012) impose a key restriction on the 

partial elasticities: the import demand system is CES.  Given the elasticities capture the 

percentage change in relative imports by country n from country i given a change in trade 

costs niτ , the CES assumption implies that: there is a symmetric impact on relative demand 

𝑋𝑛𝑖/𝑋𝑛𝑛 for imports by n for all exporters i n ; and, any change in a third country’s trade 

costs 
niτ  has the same proportional impact on niX and nnX .  In other words, changes in 

relative demand depend only on changes in trade costs niτ .  Given this result, Arkolakis et al. 

(2012) show that these effects can be recovered from a simple logarithmic gravity equation, 

the estimated parameter for changes in trade costs being treated as an estimate of the trade 
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elasticity , and the change in real income of country n due to the trade shock being 

estimated as, ˆˆ ε
n nW = λ1/ , irrespective of the margin of adjustment. 

Turning to trade in agricultural products, we argue that the CES assumption is overly 

restrictive, i.e., the elasticity of each exporter i’s trade flows with respect to a given 

competitor’s, i , trade flows is constant and directly proportional to the exporter’s market 

share in n, irrespective of whether or not i competes with i .  As noted earlier, Heerman et 

al. (2015), refer to this restriction as the IIE property, i.e., changes in a third country’s trade 

costs 
niτ are “irrelevant” to the ratio of any two competitors’ market share in a given import 

market n.  The results of Arkolakis et al. (2012) indicate that IIE is implicitly imposed in trade 

models such as Eaton and Kortum (2002), Melitz (2003) and Anderson and Wincoop (2003).   

Heerman et al. (2015) argue that the IIE property is very unlikely to hold in the case of 

agricultural trade due to characteristics of natural endowments (land, soil, and climate) and 

production requirements being non-random drivers of comparative advantage within the 

agricultural sector. Consequently, econometric results assuming IIE will likely be imprecise, 

and any predictions about the effect of changes in trade costs on bilateral agricultural trade 

and production patterns, along with any estimated welfare effects, may be quite misleading.  

Likewise, Adao et al. (2017) weaken the IIE restriction in order to allow exporters that are 

similar in terms of defined characteristics such as GDP per capita, to be closer substitutes in 

international trade. 

For example, suppose we consider the fact that the United States has recently chosen not to 

ratify the Trans-Pacific Partnership (TPP) free trade agreement (FTA), but that the 

remaining 11 countries have chosen to proceed with the FTA.  An expected benefit of TPP 
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for U.S. agricultural sector would have been increased access to the Japanese market 

(Burfisher et al., 2014), but as a result of its withdrawal, Japanese tariff reductions will only 

be offered to remaining member countries such as Australia, Canada and Malaysia.  If the IIE 

property holds, the reduction in agricultural tariffs under TPP would imply that Japanese 

buyers substitute to Australian, Canadian and Malaysian products and away from its non-

TPP trading partners such as the United States in a constant and direct proportion to their 

initial market shares.  However, this makes little sense if we consider that Australia, Canada 

and the United States have similar land endowments and climate characteristics, and 

therefore systematically specialize in a similar set of agricultural products, which contrasts 

with Malaysia which has little available land and has a tropical climate.  Consequently, one 

would expect that exclusion from TPP will result in the United States losing a proportionately 

larger market share in Japan relative to Australia and Canada than it will lose relative to 

Malaysia. 

In the context of this paper, the focus is on an extension of Eaton and Kortum (2002).  The 

latter assumes that comparative advantage within manufacturing is a function of a random 

productivity variable that is independently distributed across products in the sector. 

Specifically, no two countries are more likely to compete against each other exporting the 

same products than any other country, i.e., the IIE property is assumed to hold.  Extensions 

of Eaton and Kortum (2002) to multisector analysis by, inter alia, Burstein and Vogel (2010), 

Chor (2010), Costinot et al. (2012), Shikher (2011, 2012), Caliendo and Parro (2015), Tombe 

(2015), and Kerr (2017)   implicitly recognize the limitation of this assumption, allowing 

average productivity, and in some cases the dispersion of productivity to vary across sectors, 

generating non-random patterns of trade specialization across sectors and sub-sectors.   
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However, these models still maintain the assumption of random heterogeneity within each 

sector or sub-sector, the IIE property holding at that level.  In addition, there are practical 

limitations to a multi sub-sector approach within agriculture (Heerman, 2013).  First, the 

researcher has to be able to define sub-sectors of like products such that specialization of a 

country within that sub-sector can be assumed to be randomly determined ex ante.  For 

example, Reimer and Li (2010) focused on trade in crop agriculture, a well-defined sub-

sector, but this still ignores the fact that agricultural product-specific farm and trade policies 

may be enough to distort any underlying forces of comparative advantage for crops that are 

substitutes in production.  Second, disaggregation requires a dependent variable 

constructed from matching bilateral trade and production data for each subsector, and in the 

case of agriculture, where many products are thinly traded, zero trade flows can easily 

dominate available observations.             

The key departure in this paper is the introduction of systematic heterogeneity into the 

agricultural sector. Specifically, the likelihood a country has a comparative advantage in a set 

of products depends not only on a randomly drawn technological productivity-augmenting 

parameter, but also a set of country and product-specific characteristics including land and 

climate.  For example, agricultural R&D in the United States might generate a disease-

resistant variety of bananas, but the land and climate requirements for growing bananas 

means the United States is unlikely to be a competitive exporter, and would therefore not be 

affected by any changes in the banana-importing regime of the European Union (EU).  

Alternatively, the United States has a technological advantage in producing genetically-

modified corn for which it also has the appropriate land and climate requirements, and it 

could face increased competition in the Mexican export market from close competitors like 
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Brazil if market access for U.S. agriculture were to become more-costly as a result of the 

North American Free Trade Agreement (NAFTA) renegotiations.  Fally and Sayre (2018) 

likewise allow heterogeneous natural resource productivity in commodities to influence 

comparative advantage.  In contrast to our approach, which explicitly links a product’s 

productivity in a common factor, viz., land, to country and product characteristics, in their 

model each commodity is produced with a specific natural resource.   

Allowing for systematic heterogeneity also means that trade costs may vary across products 

and countries within sectors.  This matters in agriculture where trade costs can differ 

significantly due to the intrinsic characteristics of products and/or the types of trade and 

other policies applied to those products.  For example, compared to Brazil, the United States 

has very low trade costs of exporting corn and soybeans to Mexico, partly due to 

geographical proximity, but also because it has a very efficient storage and transportation 

system that minimizes the cost of spillage etc.  So any increase in trade barriers to Mexican 

imports from the United States would be partially mitigated by the higher costs of importing 

more corn and soybeans from Brazil.  Likewise, the costs of the United States exporting 

processed pork products to Mexico will have higher handling costs than corn due to the risks 

of perishability and the need for refrigerated transportation.  Importantly, the relative 

difference between these advantages are not likely to be constant. 

Trade policies also vary significantly across countries, with average MFN applied tariff rates 

in agriculture ranging from 1.2 percent in Australia, through 33.5 percent in India, to 66.7 

percent in Egypt (Bagwell, Bown and Staiger, 2016). These average differences in tariffs can 

be captured in standard gravity models, but hide significant differences across products.  
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Applied agricultural tariffs exhibit a good deal of heterogeneity across both products and 

countries.  For example, Jales et al. (2005) report that developed countries typically have a 

number of very high agricultural tariffs and a large number of low tariffs, implying low mean 

tariffs with a high degree of tariff dispersion.  By contrast, developing countries tend to have 

higher mean agricultural tariffs, and less tariff dispersion.  In the case of tariff-rate quotas 

(TRQs), 1,400 have been introduced since 1995, with over-and in-quota tariffs averaging 123 

and 63 percent respectively (Jales et al., 2005).  

3. The Model 

The SH gravity model environment is comprised of 𝐼 countries engaged in bilateral trade. 

Importers are indexed by 𝑛 and exporters by 𝑖. The agricultural sector consists of a 

continuum of products indexed by 𝑗 ∈  [0,1]. To produce quantity 𝑞𝑖( 𝑗) of product 𝑗 requires 

labor (𝑁𝑖), land (𝐿𝑖), and intermediate inputs 𝑄𝑖 combined according to the function:  

Equation 1  

𝑞𝑖(𝑗) = 𝑧𝑖(𝑗)(𝑁𝑖
𝛽(𝑎𝑖(𝑗)𝐿𝑖)

1−𝛽)
𝛼

𝑄𝑖
1−𝛼 

 

where 𝑧𝑖( 𝑗) represents product 𝑗-specific technological productivity and 𝑎𝑖( 𝑗) represents 

product 𝑗-specific land productivity. Technological productivity is modeled as an 

independently distributed Fréchet random variable with mean parameter 𝑇𝑖 and dispersion 

parameter 𝜃 as in Eaton and Kortum (2002). Exporters with high values of 𝑇𝑖 have a greater 

probability of a high realization of 𝑧𝑖( 𝑗) for any given agricultural product.   
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Product-specific land productivity, 𝑎𝑖( 𝑗), reflects the suitability of exporter 𝑖’s environment 

for product 𝑗. We assume 𝑎𝑖( 𝑗) follows a parametric density that is a deterministic function 

of exporter 𝑖’s agro-ecological characteristics and product 𝑗’s production requirements.  For 

example, countries with a climate like Ecuador will systematically tend to have higher values 

of 𝑎𝑖( 𝑗) for 𝑗=bananas.  

Markets are perfectly competitive. The price offered by exporter 𝑖 for product 𝑗 in market 𝑛 

is therefore equal to the unit cost of producing in country 𝑖 and marketing in country 𝑛. 

Exporters face additional costs, 𝜏𝑛𝑖( 𝑗)  >  1 to sell product 𝑗 in import market 𝑛.  Trade costs 

are assumed to take the iceberg form, with 𝜏𝑛𝑛( 𝑗)  =  1 and 𝜏𝑛𝑖( 𝑗) ≥ 𝜏𝑛𝑙( 𝑗)𝜏𝑙𝑖( 𝑗).  We 

assume 𝜏𝑛𝑖( 𝑗) follows a parametric density across products that is a deterministic function 

of product-specific policies and other marketing requirements. Productivity and trade cost 

distributions are assumed independent of each other. 

Trade occurs as buyers in each import market seek out the lowest price offer for each 

product. Heerman (2013) shows that for an individual product, the probability exporter 𝑖 

offers the lowest price in market 𝑛 is: 

Equation 2  

𝜋𝑛𝑖(𝑗) =  
𝑇𝑖(�̃�𝑖(𝑗)𝑐𝑖𝜏𝑛𝑖(𝑗))

−𝜃

∑ 𝑇𝑙(�̃�𝑙(𝑗)𝑐𝑙𝜏𝑛𝑙(𝑗))−𝜃
𝐼
𝑙=1

 

Exporter 𝑖’s total share of importer market 𝑛 agricultural expenditure is the unconditional 

probability it offers the lowest price for an agricultural product: 
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Equation 3  

Pr(𝑝𝑛𝑖(𝑗) = 𝑝𝑛(𝑗)) ≡ 𝜋𝑛𝑖 = ∫
𝑇𝑖(�̃�𝑖𝑐𝑖𝜏𝑛𝑖)

−𝜃

∑ 𝑇𝑙(�̃�𝑙𝑐𝑙𝜏𝑛𝑙)−𝜃
𝐼
𝑙=1

𝑑𝐹𝑎𝑛(�̃�)𝑑𝐹𝜏𝑛(𝝉) 

where �̃�𝑖(𝑗) =  𝑎𝑖(𝑗)
−𝛼𝐴(1−𝛽𝐴), 𝑐𝑖 is the cost of an input bundle, and 𝑑𝐹𝑎𝑛(�̃�)𝑑𝐹𝜏𝑛

𝐴(𝝉) is the 

joint density of �̃�  =  [�̃�𝟏, … , �̃�𝑰] and 𝝉𝑨  =  [𝝉𝒏𝟏
𝑨 , … , 𝝉𝑰(𝑰−𝟏)

𝑨 ] over agricultural products 

consumed in import market 𝑛.  Equation 3 is a gravity-like relationship between market 

share on the one hand and exporter characteristics and bilateral trade costs on the other. It 

is a weighted sum of 𝜋𝑛𝑖( 𝑗), where the weights reflect the importance of each product in 

market 𝑛 consumption.   

An expression equivalent to Equation 3 can also be derived from a demand-side model, as in 

the structural gravity equation outlined in Anderson and van Wincoop (2003) and others.  In 

that case 𝑇𝑖 is a share parameter that is an outcome of the Armington assumption and −𝜃 =

1 − 𝜎, where 𝜎 is the elasticity of substitution (Anderson and Yotov, 2010a).  In a demand 

side setting, the parameter 𝑎𝑖(𝑗) could be used to represent product-specific preferences 

linked to characteristics of product 𝑗 produced in country 𝑖.  We leave the details of this 

extension for future work. 

Trade Elasticity  

Heerman et al. (2015) shows that in the SH gravity model, elasticity of market share with 

respect to a change in bilateral trade costs between exporter 𝑖 and the importing country 𝑛 

can be written: 
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Equation 4  

𝜕𝜋𝑛𝑖
𝜕𝜏𝑛𝑙

𝜏𝑛𝑙
𝜋𝑛𝑖

=

{
 
 

 
 −𝜃 ((1 − 𝜋𝑛𝑖) −

1

𝜋𝑛𝑖
𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗))) 𝑙 = 𝑖

𝜃

𝜋𝑛𝑖
(𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)) + 𝜋𝑛𝑖 × 𝜋𝑛𝑙)  𝑙 ≠ 𝑖

  

Elasticities depend on cross-product differences in 𝜋𝑛𝑖(𝑗), with 𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗)) and 

𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)) functions of the distributions of 𝑎𝑖(𝑗) and 𝜏𝑛𝑖(𝑗).  The direct effect of lower 

bilateral trade costs is decreasing in 𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗)).  This implies that market share is less 

elastic for exporters that specialize in products for which competition is less intense, or for 

which trade costs remain high.  The indirect effect of a change in a competitor’s bilateral 

trade costs is increasing in 𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)).  The indirect elasticity will therefore be larger 

among competitors with similar distributions of 𝑎𝑖(𝑗), and further augmented when 𝜏𝑛𝑖(𝑗) is 

also similar.   

In a standard gravity model 𝜋𝑛𝑖(𝑗) = 𝜋𝑛𝑖: The probability of comparative advantage in an 

individual product does not depend on product or exporter characteristics.  Every exporter 

is thus equally likely to offer the lowest price in every agricultural product and 𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗)) =

𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)) = 0.  Therefore, trade elasticities are a constant proportion of market 

share.    

Equation 5  

𝜕𝜋𝑛𝑖
𝜕𝜏𝑛𝑙

𝜏𝑛𝑙
𝜋𝑛𝑖

= {
−𝜃(1 − 𝜋𝑛;) 𝑙 = 𝑖

𝜃𝜋𝑛𝑙  𝑙 ≠ 𝑖
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These elasticities are a representation of the IIE property, which is imposed in every 

structural gravity model derived from a trade model that assumes a CES import demand 

system.   

4. Specification and Data  

We estimate parameters of the productivity and trade cost distributions for agriculture as in 

Heerman et al. (2015) by specifying Equation 3 as a random coefficients logit model. We 

begin as in Eaton and Kortum (2002) by defining 𝑆𝑖 = ln(𝑇𝑖) − 𝜃 ln(𝑐𝑖).  This is exporter 𝑖’s 

average technological productivity adjusted for unit production costs.  

Land Productivity Distribution 

We specify 𝑎𝑖( 𝑗) as a parametric function of exporter land and climate characteristics and 

product land and climate requirements: 

Equation 6  

𝑙𝑛(𝑎𝑖( 𝑗))  =  𝑿𝑖𝜹( 𝑗)  =  𝑿𝑖𝜹 + 𝑿𝑖  (𝑬( 𝑗)𝚲)
′ +𝑿𝑖(𝜈𝐸( 𝑗)𝚺𝐸)

′ 

where 𝑿𝑖  is a 1 × 𝑘 vector of variables describing country 𝑖’s characteristics; 𝜹 is a 𝑘 × 1 

vector of coefficients; 𝑬( 𝑗) is a 1 × 𝑚 vector of product 𝑗-specific production requirements 

that can be observed and quantified; 𝚲 is an 𝑚 × 𝑘 matrix of coefficients that describes how 

the relationship between elements of 𝑿𝑖  and land productivity varies across products with 

𝑬( 𝑗); and 𝝂𝐸( 𝑗) is a 1 × 𝑘 vector that captures the effect of unobservable product 𝑗-specific 

requirements with matrix 𝚺𝑬.   

We specify three types of exporter characteristics, climate, elevation and agricultural land:  
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𝑿𝑖 = [𝑎𝑙𝑖 𝑒𝑙𝑣𝑖 𝑡𝑟𝑝𝑖 𝑡𝑚𝑝𝑖 𝑏𝑜𝑟𝑖] 

where 𝑎𝑙𝑖 is the log of arable land per capita, 𝑒𝑙𝑣𝑖  is the share of rural land between 800 and 

3000 meters above sea level, and the remaining elements are the shares of total land area in 

tropical, temperate, and boreal climate zones. The vector 𝑗 = [𝑬( 𝑗) 𝝂𝑬( 𝑗)] defines 

products in terms of their suitability for production under the conditions defined by 𝑿𝑖 .   

We define:  

𝑬( 𝑗) = [𝑎𝑙𝑤( 𝑗) 𝑒𝑙𝑣( 𝑗) 𝑡𝑟𝑝( 𝑗) 𝑡𝑚𝑝( 𝑗) 𝑏𝑜𝑟( 𝑗)] 

where 𝑎𝑙𝑤( 𝑗) describes product- 𝑗 land requirements, 𝑒𝑙𝑣( 𝑗) captures its elevation 

requirements, and 𝑡𝑟𝑝( 𝑗), 𝑡𝑚𝑝( 𝑗), and 𝑏𝑜𝑟( 𝑗) describe climate requirements.  These 

variables relate exporter 𝑖’s characteristics to absolute advantage in agriculture through 𝑿𝑖𝜹, 

and describe how they systematically influence the set of products within the agricultural 

sector in which it has comparative advantage through 𝑿𝑖  (𝑬( 𝑗)𝚲)
′.  

Note that we define the land intensity of product 𝑗 production using data on land per 

agricultural worker, whereas we use agricultural land per capita in 𝑿𝑖 . Elements of 𝑿𝑖  

represent the factors that influence exporter 𝑖’s potential comparative advantage, whereas 

elements of 𝑬( 𝑗) represent the ideal conditions under which product 𝑗 is produced.  

Trade Cost Distribution 

We specify product- 𝑗 trade costs as: 

Equation 7 

𝑙𝑛(𝜏𝑛𝑖( 𝑗))  =  𝒕𝑛𝑖𝜷( 𝑗)  =  𝒕𝑛𝑖𝜷 + 𝑒𝑥𝑖 + 𝒕𝑛𝑖 (𝝂𝑡𝑛( 𝑗)𝚺𝑡)′ + 𝜉𝑛𝑖 
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where 𝒕𝑛𝑖 is a 1 × 𝑚 vector describing the relationship between exporter 𝑖 and import 

market 𝑛, 𝜷 is an 𝑚 × 1 vector of parameters; 𝑒𝑥𝑖 is an exporter-specific trade cost captured 

by a fixed effect as in Waugh (2010); 𝝂𝑡𝑛( 𝑗) is a 1 × 𝑚 vector that captures the effect of 

unobservable product 𝑗-specific trade costs with scaling matrix 𝚺𝒕, and 𝜉𝑛𝑖 captures 

unobservable or unquantifiable bilateral trade costs that are common across products and 

orthogonal to the regressors.  

We define:  

𝒕𝑛𝑖  = [𝑏𝑛𝑖 𝑙𝑛𝑖 𝑟𝑡𝑎𝑛𝑖 𝒅𝑛𝑖]  

where 𝑏𝑛𝑖, 𝑙𝑛𝑖 and 𝑟𝑡𝑎𝑛𝑖 equal one if the two countries share a common border or language 

or are members of a common regional free trade agreement. The 1 × 6 vector 𝒅𝑛𝑖  assigns 

each country pair to one of six distance categories as defined in Eaton and Kortum (Table 1).   

Table 1: Definition of distance variables 

Variable Distance, miles 
Distance 1 [0,375) 
Distance 2 [375,750) 
Distance 3 [750,1500) 
Distance 4 [1500,3000) 
Distance 5 [3000,6000) 
Distance 6 [6000, maximum] 

 

Estimating Productivity and Trade Cost Distribution Parameters  

Using our definitions of 𝑎𝑖( 𝑗) and 𝜏𝑛𝑖( 𝑗) in Equation 3, we obtain a random coefficients logit 

model of agricultural market share: 
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Equation 8  

 𝜋𝑛𝑖  = ∫
exp{𝑆𝑖 + 𝜃𝛼𝑖(1 − 𝛽𝑖)𝑿𝑖𝜹(𝑗) − 𝜃𝒕𝑛𝑖𝜷(𝑗)}

∑ {𝑆𝑖 + 𝜃𝛼𝑙(1 − 𝛽𝑙)𝑿𝑙𝜹(𝑗) − 𝜃𝒕𝑛𝑙𝜷(𝑗)}
𝐼
𝑙=1

𝑑�̂�𝐸𝑛(𝑬)𝑑�̂�𝝂𝑛(𝝂) 

where 𝑑�̂�𝐸𝑛(𝑬)𝑑�̂�𝝂𝑛(𝝂) is the empirical density of products imported by market 𝑛 defined 

jointly by their land and climate characteristics, unobserved agro-ecological requirements 

and trade costs. We estimate Equation 8 using a simulated method of moments approach 

similar to that in Berry et al., (1995), which is detailed in Nevo (2000) and Train (2009). To 

evaluate the integral, we use the “smooth simulator” suggested by Nevo (2000): 

Equation 9  

   �̂�𝑛𝑖  =
1

𝑛𝑠
∑

exp{�̃�𝑖 + 𝜃𝛼𝑖(1 − 𝛽𝑖)𝑿𝑖𝜹(𝑗) − 𝜃𝒕𝑛𝑖𝜷(𝑗)}

∑ {�̃�𝑖 + 𝜃𝛼𝑙(1 − 𝛽𝑙)𝑿𝑙𝜹(𝑗) − 𝜃𝒕𝑛𝑙𝜷(𝑗)}
𝐼
𝑙=1

ns

j=1

 

where �̃�𝑖  =  𝑆𝑖  + 𝜃𝛼𝑖 (1 − 𝛽𝑖)𝑿𝒊𝜹 is a country fixed effect. We use the minimum distance 

procedure suggested by Nevo (2000) to obtain �̂�𝑖 and 𝜹 from �̂̃�𝑖.  

Data 

Parameters of the productivity and trade cost distributions are estimated using production 

and trade data from 2006.  Bilateral market shares (𝜋𝑛𝑖) are calculated by dividing bilateral 

import value by total domestic expenditure, calculated as the sum of production value and 

net exports.  Domestic market share is calculated as 𝜋𝑛𝑛 = 1 − ∑ 𝜋𝑛𝑖𝑖≠𝑛 .  Our data consists 

of a sample of 63 countries and 134 agricultural items for which data on both bilateral trade 

and the gross value of production in U.S. dollars are available (FAO, 2013).  These are mostly 

primary agricultural products.  Elements of 𝒕𝑛𝑖 are obtained from the CEPII gravity data set 



17 
 

(Head, Mayer and Ries, 2009).  While land and climate requirements for each product are 

not directly observable to the economist, we do observe conditions of their production 

around the world.   

We therefore use observable characteristics of exporting countries to construct “observable” 

product requirements matrix 𝑬( 𝑗) for each of the 𝐽 =  134 items for which the FAO 

publishes both production and trade data.  This approach is valid under two assumptions: 

First, 𝑬( 𝑗) is distributed across products following the empirical distribution of 

requirements for agricultural products defined at the “item” level by the FAO. Second, 

exporting is positively correlated with high values of 𝑎𝑖(𝑗).  We measure 𝑒𝑙𝑣( 𝑗) and 𝑎𝑙𝑤( 𝑗) 

as in Heerman et al. (2015) as the export-weighted average of exporters’ share of land at 

high elevation (𝑒𝑙𝑣𝑖) and arable land per agricultural worker (𝑎𝑙𝑤𝑖) using data on arable land 

per agricultural worker from World Bank (2012) and elevation data from CIESIN (2010), 

respectively.  

A drawback of defining product requirements as export-weighted averages of country 

characteristics is that it is not very precise. Many important agricultural exporters have 

varied terrain and climate within their borders. For example, roughly 20 percent of global 

wheat exports originated in Canada in 2006. However, while a large share of total Canadian 

land area is in the boreal climate zone, its wheat production is concentrated in temperate 

regions. A trade-weighted average of climate distributions thus misrepresents wheat’s 

climate requirements.   

We are able to improve on the measurement of product-specific climate requirements used 

in Heerman et al. (2015), taking advantage of information on product-specific production 
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across climate zones within countries provided by the GTAP land use database (Lee et al., 

2005).  As part of an effort to model the impact of climate change on the agricultural sector, 

the database provides estimates of land rent for ten product categories in 18 agro-ecological 

zones (AEZs) within in each of several countries. 

An AEZ is a defined zone based on soil, landform and climactic characteristics.  A country’s 

estimated land rent in AEZ 𝑥 for crop 𝑦 is calculated by by apportioning the crop’s total land 

rent across AEZ’s in proportion to its share in the value of crop 𝑦 production. To calculate 

product climate requirements, we assign each of the crops in our data set to one of the ten 

GTAP aggregates. We then calculate the share of land rent in each zone and aggregate these 

shares into a distribution of land rent across tropical, temperate and boreal climate zones 

for each product, country pair. Finally, we define product 𝑗 climate requirements as the 

export-weighted average of these land rent distributions. The GTAP land use database does 

not calculate a distribution of land rent across climate zones for animal products. We use 

export-weighted averages of country climate distributions, as we did for land and elevation 

intensity, to calculate [𝑡𝑟𝑝( 𝑗)  𝑡𝑚𝑝( 𝑗) 𝑏𝑜𝑟( 𝑗)] for these products. 

The 𝑛𝑠 = 900 products used to evaluate Equation 9 for each importer and its trading 

partners are drawn from 𝑑�̂�𝐸𝑛(𝑬)𝑑�̂�𝝂𝑛(𝝂). We construct this density as in Heerman et al. 

(2015), first using FAO item level import data to estimate 𝑑�̂�𝐸𝑛(𝑬), the empirical distribution 

of 𝑬( 𝑗) across products imported by each market by compiling a list of 1000 imported items 

defined by the vector 𝑬( 𝑗) for each market 𝑛. Unique values of 𝑬( 𝑗) are represented in 

𝑑�̂�𝐸𝑛(𝑬) in proportion to the associated FAO item’s share in total imports. That is, if 15% of 

importer 𝑛’s total agricultural imports are of the FAO item “wheat”, then 𝐸(𝑤ℎ𝑒𝑎𝑡) makes 
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up 150 entries on 𝑑�̂�𝐸𝑛(𝑬). Next we draw values of 𝑬( 𝑗) using uniform draws from each 

country’s distribution. The distribution is completed by associating each item on the list 

with 𝜈𝑛( 𝑗) = [𝝂𝑬(𝑗) 𝝂𝒕𝒏(𝑗)] drawn from a standard multivariate normal distribution, 

effectively generating a “data set” of 900 unique products imported by each market.  

5. A Test for the IIE Property 

If the IIE property holds in the data, the standard gravity model adequately captures trade 

elasticities and welfare can be calculated following the simple approach described in 

Arkolakis et al. (2012).  That is, when all heterogeneity can be assumed independent, 

Equation 3 becomes: 

Equation 10 

Pr(𝑝𝑛𝑖(𝑗) = 𝑝𝑛(𝑗)) ≡ 𝜋𝑛𝑖 =
𝑇𝑖(𝑐𝑖𝜏𝑛𝑖)

−𝜃

∑ 𝑇𝑙(𝑐𝑙𝜏𝑛𝑙)−𝜃
𝐼
𝑙=1

 

The ratio 𝜋𝑛𝑖/𝜋𝑛𝑛 can then be log-linearized, delivering a standard gravity model.  Using the 

trade cost specification described above, this is: 

Equation 11  

ln (
𝜋𝑛𝑖
𝜋𝑛𝑛

) = 𝑆𝑖 − 𝑆𝑛 −𝜃𝛼𝑖(1 − 𝛽𝑖)𝑿𝑖𝜹 − 𝜃𝒕𝑛𝑖𝜷 

A test of whether the IIE property holds in the data is suggested by those developed for its 

demand-side parallel, the independence of irrelevant alternatives (IIA) (Greene 2003).  

McFadden and Train (2000) describe a test that can be used to evaluate whether IIE holds in 

our agricultural trade data. The idea behind this test is that if all heterogeneity in price offers 
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is independently distributed, market shares should be uncorrelated across exporters and 

deviations from average trade costs will not have a statistically significant impact on bilateral 

market share. The formal hypothesis is that market share can be represented by Equation 

10 against the alternative that comparative advantage is not independently distributed 

across products. 

To conduct the test, parameter estimates from Equation 11 are used to calculate estimated 

market shares �̂�𝑛𝑖 .  These estimates are then used to construct artificial variables, which take 

the form: 

𝑧𝑛𝑖 =
1

2
(𝑡𝑛𝑖 − 𝑡𝑛)

2 

where 𝑡𝑛 = ∑ 𝑡𝑛𝑙�̂�𝑛𝑙
𝐼
𝑙=1  and 𝑡𝑛𝑖 is an element of 𝒕𝑛𝑖.  McFadden and Train (2000) show that if 

the coefficients on these artificial variables are jointly insignificant, the null hypothesis that 

heterogeneity is independently distributed across products cannot be rejected.  We calculate 

artificial variables for border, language, distance and RTA and then estimate: 

Equation 12  

ln (
𝜋𝑛𝑖
𝜋𝑛𝑛

) = 𝑆𝑖 − 𝑆𝑛 −𝜃𝛼𝑖(1 − 𝛽𝑖)𝑿𝑖𝜹 − 𝜃𝒕𝑛𝑖𝜷 +∑(𝑧𝑛𝑖𝑑 − 𝑧𝑛𝑛𝑑)𝛽𝑑

10

𝑑=1

 

where 𝑿𝒊 and 𝒕𝒏𝒊 are defined as above and 𝑧𝑛𝑖𝑑  is the artificial variable constructed from the 

𝑑𝑡ℎ element of the vector of trade cost variables for exporter 𝑖 in market 𝑛 and 𝛽𝑑 is the 

corresponding coefficient.  A test of the null hypothesis that the artificial variables are jointly 

equal to zero is firmly rejected at any reasonable level of significance with an 𝐹-statistic 

equal to 8.62. 
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6. Econometric Results 

Land Productivity Distribution 

Table 2 presents estimates for the land productivity distribution parameters 𝜹, 𝚲, and 𝚺𝑬. 

The total effect of each exporter characteristic in 𝑿𝑖  on 𝜋𝑛𝑖( 𝑗) is the sum of the mean effect 

in the first column and the product-specific effects in the columns that follow. 

Table 2: Land Productivity Distribution Parameter Estimates 

Exporter 
Characteristics (𝑿𝑖) 

Mean 
Effects 
(𝜹) 

Unobser
ved Reqs 
(𝚺𝐄) 

Agro-Ecological Requirements (𝚲) 
𝒆𝒍𝒗(𝒋) 𝒂𝒍𝒘(𝒋) 𝒕𝒓𝒑(𝒋) 𝒕𝒎𝒑(𝒋) 𝒃𝒐𝒓(𝒋) 

ln Arable Land per Ag 
Worker 0.17*** -0.01  -4.51*** 0.42*** 1.81*** 0.33*** -2.14 
High Elevation 1.14*** -0.21  47.96*** 0.44*** 1.31*** -12.32*** 11.01 
Tropical Climate Share 0.7*** -0.16** -3.96*** 0.73*** 6.86*** 0.19  -7.04 
Temp. Climate Share 0.19*** -0.03  1.46*** -0.53*** -2.8*** 0.7*** 2.1 
Boreal Climate Share -0.88*** 0.19** 2.5*** -0.2*** -4.06*** -0.89*** 4.94 

***significant at the 1% level, ** significant at the 5% level, *significant at the 10% level. 

Note: Values in this table are inclusive of the term 𝜃𝛼𝑖(1 − 𝛽𝑖) 

Coefficients on all climate variables are normalized to sum to zero. As such, coefficients on 

exporter climate characteristics are interpreted with respect to the average climate, and the 

effects of product-specific climate requirements are interpreted with respect to the average 

production requirement.  For example, the positive mean effect on tropical land share 

(𝛿𝑡𝑟𝑝  =  0.7) implies that having a larger than average share of land in a tropical climate 

increases agricultural market share on average. The positive and larger coefficient on 𝑡𝑟𝑝( 𝑗) 

(𝜆𝑡𝑟𝑝,𝑡𝑟𝑝 =  6.86) implies this effect is increasing for products that are more intensively 

tropical than average.  A negative coefficient implies the advantage of tropical land is 

decreasing for more intensively boreal products (𝜆𝑡𝑟𝑝,𝑏𝑜𝑟 = −7.4). 
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Figure 1 illustrates the distribution of the total effect of high elevation land across the 

products in our constructed data set.  High elevation land decreases the probability of having 

the lowest price for some products, but raises it for most.  The positive mean effect on 

elevation (𝛿𝑒𝑙𝑒𝑣  =  1.14) implies that having more land at high elevation increases 

agricultural market share on average.  This advantage is greatly magnified for products 

intensively produced at high elevations (𝑒𝑙𝑣(𝑗) = 47.96) and products that are more 

intensely boreal than the average product (𝜆𝑒𝑙𝑒𝑣,𝑏𝑜𝑟 = 11.01). It is diminished for products 

more intensively produced in temperate climates than the average product (𝜆𝑒𝑙𝑒𝑣,𝑡𝑚𝑝 =

−12.32).  The statistically and economically insignificant value of the estimated coefficient 

on unobservable differences in the effect of high elevation (𝜎𝑒𝑙𝑒𝑣  =  −0.21), implies that 

variation in the effect is sufficiently explained by the product requirements in 𝑬( 𝑗).  

Figure 1. Frequency plot - High elevation land effect 

 

Estimates for �̂̃�𝑖 are listed in Table 7 in the Appendix.  These values are normalized to sum to 

zero and are thus interpreted as average sector-level productivity relative to the average 
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country, and in the average product. Recall that �̂̃�𝑖 is increasing in average technological and 

land productivity, but decreasing in costs of production 𝑐𝑖. A country with high average 

productivity may nevertheless have a small �̂�𝑖 if it has, e.g., very high wages or land rental 

rates. 

Trade Costs 

Table 3 contains estimates for the trade cost distribution parameters 𝜷 and 𝚺𝒕. Positive 

coefficient values in 𝜷 imply higher trade costs, but lower expected market share. Elements 

of 𝚺𝒕 capture heterogeneity in the effect of each element of 𝒕𝑛𝑖 across agricultural products 

and can be interpreted like a standard error around the mean effect.  

exporters.    

Table 3: Trade Cost Distribution Parameters 

Country Pair 
Characteristics 

Mean 
Effect (𝜷𝑨) 

Unobserved 
Heterogeneity (𝚺𝒕) 

Common Border  -1.76*** 3.13*** 
Common Language    1.24*** 0.95*** 
Common RTA    0.19** -0.11  
Distance 1  -5.28*** 2.36*** 
Distance 2  -7.67*** 2.33*** 
Distance 3  -7.43*** -0.16  
Distance 4  -9.95*** 1.37*** 
Distance 5 -11.56*** -0.04  
Distance 6 -12.94*** 0.64*** 

*** significant at 1%, ** significant at 5%, *significant at 10%. 

                              Note: Values in this table are inclusive of the term 𝜃. 

In the agricultural sector, positive mean effects imply that sharing a common language and 

participating in an RTA increase market share on average, while negative coefficients imply 
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distance tends to decrease it. The negative mean effect of sharing a border (𝛽𝑏  =  −1.76) is 

counterintuitive. However, the relatively larger magnitude of the estimated standard error 

(𝜎𝑏  =  3.13) implies sharing a border increases market share for some products and 

decreases it for others. Sharing a border may reduce trade in individual products for a 

number of reasons.  For example, domestic agricultural policies often systematically 

advantage domestic producers relative to their close competitors.   

Values of 𝑒�̂�𝑖 are reported in Table 7 in the Appendix. The values are normalized to sum to 

zero, so positive (negative) values imply that exporter 𝑖 is a lower (higher)-than-average-

cost exporter.  Our results suggest that Belgium, Canada and the United States are the lowest-

cost exporters in our data set. 

Total Bilateral Trade Cost Distribution 

As in a standard gravity model, bilateral trade costs vary across exporters depending upon 

the characteristics in Table 3.  In the SH gravity model, heterogeneity in the effect of these 

characteristics captures additional variation across products. In Figure 2 we illustrate the 

distribution of trade costs faced by two high income countries in the U.S. market. The figure 

confirms that on average, Japanese products face higher costs to enter the U.S. market than 

Canadian products.  In addition to a difference in the location of the distribution, which can 

be captured in a standard gravity model, higher moments of the distribution appear 

markedly different.  For Canada, trade costs are low on most products, but a few face very 

high costs to enter the U.S. market.  In contrast, trade costs facing Japanese imports are 

distributed tightly around the median.  This can be traced to the relatively large values for 

the standard deviation around common border (𝜎𝑏 = 3.13) and the closest distance 
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categories (𝜎1 = 2.36, 𝜎2 = 2.33).  Differences in the distribution across products are 

explained in part by differences in options for modes of transport from near versus far, but 

also on regulatory and other policies that affect bilateral trade asymmetrically across 

products and countries.   

Figure 2. Frequency plot of trade costs faced in U.S. market 

 

Elasticities 

Parameter estimates in Table 2 and Table 3 allow us to calculate predicted market share 

(Equation 9) and elasticities using the formulas underlying Equation 4.1  To see how the SH 

gravity model overcomes the limitations of imposing the IIE property highlighted in 

Arkolakis et al. (2012), we first show that the predicted elasticities are not a constant 

proportion of market share, as the standard model predicts (Equation 5 ).   

We calculate the ratio of the elasticity to Mexican trade costs to market share in Canada, that 

is 
𝜕𝜋𝑛𝑖

𝜕𝜏𝑛𝑙

𝜏𝑛𝑙

𝜋𝑛𝑖
/𝜋𝑛𝑙 , where 𝑙 =Mexico, 𝑖 ≠ Mexico and 𝑛=Canada.  Since the relevant elasticity is a 

                                                           

1 
𝜕𝜋𝑛𝑖

𝜕𝜏𝑛𝑙

𝜏𝑛𝑙

𝜋𝑛𝑖
= {

−
𝜃

𝜋𝑛𝑖
∫𝜋𝑛𝑖(𝑗)(1 − 𝜋𝑛𝑖(𝑗))𝑑𝐹�̃�(�̃�)𝑑𝐹𝜏𝑛(𝝉) 𝑖𝑓 𝑙 = 𝑖

𝜃

𝜋𝑛𝑖
∫𝜋𝑛𝑖(𝑗)𝜋𝑛𝑙(𝑗)𝑑𝐹�̃�(�̃�)𝑑𝐹𝜏𝑛(𝝉) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Integrals are simulated as in Equation 9. 
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direct elasticity for 𝑖=Mexico, we divide Mexico’s own elasticity by (1 − 𝜋𝐶𝑎𝑛𝑀𝑒𝑥). This ratio 

would be the same (equal to 𝜃) for every country in the standard model.   In the SH model 

the ratio varies dramatically depending on characteristics of the exporter and the products 

they export to Canada.  Table 4 reports this ratio for the countries with the largest share of 

Canadian expenditure on the products in our data set.  The SH gravity model predicts that 

Colombia, Chile and Indonesia would gain disproportionately from higher Mexican trade 

costs, whereas gains in Canadian and U.S. market share will be proportionately smaller.   

Table 4. Trade elasticities are 
not constant 

Source 
country  

𝝏𝝅𝒏𝒊
𝝏𝝉𝒏𝒍

𝝉𝒏𝒍
𝝅𝒏𝒊

/𝝅𝒏𝒍 ∗ 

Canada  3.47 
USA  2.22 
Mexico** -3.70 
Chile  5.56 
Indonesia  6.30 
Colombia  7.03 

∗ 𝑛 = Canada, 𝑙 = Mexico, 𝑖 = Source country 

**The elasticity of Mexico with respect to Mexican trade costs is divided by  
    (1 − �̂�𝑐𝑎,𝑚𝑒𝑥) 

 

As discussed earlier in this paper, Arkolakis et al. (2012) highlight two consequences of these 

restrictive elasticities implied by the IIE property.  First, an increase in 𝜏𝑛𝑖 has a symmetric 

effect on relative expenditure (𝑋𝑛𝑖/𝑋𝑛𝑛 ) for all countries regardless of the characteristics of 

markets for the agricultural products they export.  To illustrate how the SH gravity model 

overcomes this restriction, we calculate the elasticity of 𝜋𝑛𝑖  with respect to 𝜏𝑛𝑖 for each 

country 𝑖 and  𝑛 = Canada, and use it to calculate new values for relative market share, 

𝜋𝑛𝑖
′ /𝜋𝑛𝑛′.  Although relative expenditure and relative market share are equivalent by 

definition, we present our results in terms of market share since it is the object we calculate.   
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Table 5 presents the ratio 
𝜋𝑛𝑖
′

𝜋𝑛𝑛
′

𝜋𝑛𝑖

𝜋𝑛𝑛
⁄  for the foreign countries with the largest share of 

Canadian expenditure in our data set.  Again, whereas this value would be identical for every 

country in the standard model, the SH model allows the response of relative demand to 

changes in countries’ own trade costs to vary.  Interestingly, the SH model finds that relative 

market share generally declines less for countries with a larger initial share of the Canadian 

market than for the median exporter.  However, the value of the ratio does not decline 

monotonically with market share.  For example, a larger ratio (0.963 versus 0.960) suggests 

that Indonesian exports face less head-to-head competition in the Canadian market than do 

those of Chile, which represent a larger share of Canadian expenditure in the base model.  A 

particularly small decline suggests that U.S. exporters generally face less intense price 

competition in the Canadian market.  This is a substantial advantage, likely due to 

geographical and cultural proximity as well as trade preferences.   

Table 5. Changing trade costs do not have 
symmetric effects on relative demand 

 

Country 

𝝅𝒏𝒊
′

𝝅𝒏𝒏′
𝝅𝒏𝒊 ∗

𝝅𝒏𝒏   
⁄  

USA 0.980 
Mexico 0.963 
Chile 0.960 
Indonesia 0.963 
Colombia 0.961 
Costa Rica 0.963 

Median 0.959 
∗ 𝑛 = 𝐶𝑎𝑛𝑎𝑑𝑎, 𝑖 = 𝑆𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 

 

The second consequence discussed in Arkolakis et al. (2012) is that relative market share is 

unaffected by a change in a third country’s trade costs.  This is essentially a statement of the 
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IIE assumption and a straightforward parallel to the “red bus-blue bus problem” referenced 

extensively in the literature on discrete choice demand systems.2  The standard gravity 

model predicts that higher trade costs will drive Canadian buyers to substitute away from 

Mexican products and toward all other sources proportionately such that 
𝜋𝑛𝑖

𝜋𝑛𝑛
 (𝑖 ≠ 𝑀𝑒𝑥𝑖𝑐𝑜) 

is unchanged, regardless of whether country 𝑖 is likely to specialize in products that are 

substitutable for those Mexico exports to Canada.  To explore the extent to which the SH 

model overcomes this restriction we use the elasticities with respect to Mexican trade costs 

in the Canadian market from Table 4 to calculate predicted new values for relative market 

share: 𝜋𝑛𝑖
′′ 𝜋𝑛𝑛

′′⁄ .  Table 6 presents the ratio 
𝜋𝑛𝑖
′′

𝜋𝑛𝑛
′′

𝜋𝑛𝑖

𝜋𝑛𝑛
⁄  for the countries with the largest and 

smallest values.   

Table 6.  Changing third country trade costs do not have  
a proportional impact on relative market share 

 

Source 
Country  

𝝅𝒏𝒊
′′

𝝅𝒏𝒏′′
𝝅𝒏𝒊

𝝅𝒏𝒏
⁄  * 

Costa Rica 1.0043 
Honduras 1.0041 
Venezuela 1.0041 
Australia 1.0000 
Kazakhstan 0.9999 

USA 0.9997 
Median 1.0000 

∗ 𝑛 = 𝐶𝑎𝑛𝑎𝑑𝑎, 𝑖 = 𝑆𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 

Whereas the value of this ratio would be exactly equal to one for every country in the 

standard gravity model, the SH model picks up variation, albeit small – the relative market 

                                                           
2 Train (2009) describes this famous problem of modeling consumer choice between traveling to work by blue 
bus or by car.  In a model that assumes the IIA, the introduction of a new red bus that is otherwise equivalent 
to the blue bus will predict that consumers substitute toward the red bus in proportion to their use of the blue 
bus and car. 
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share of the most responsive country increases by only 0.4 percent more than the least 

responsive.3  However, the variation in elasticities is in the direction we expect: The SH 

model predicts that Mexico’s neighbors with similar climates – Costa Rica and Honduras – 

gain proportionately more from Mexico’s lost access.   Larger changes in trade costs and 

changes in the dispersion of trade costs can translate into more substantial differences in 

predicted trade flows.   

7. Conclusions 

In this paper we have detailed two disadvantages of the standard gravity model for applied 

analysis of agricultural trade and presented a tractable alternative, the SH gravity model.  We 

have shown that the SH gravity model can overcome the limitations on bilateral trade 

elasticities embodied by the IIE property.  We discuss the work of Arkolakis et al. (2012), 

who explain that it is the assumption of a CES import demand system that delivers a gravity-

like structural relationship in the most common trade models, but also imposes the IIE 

property.  The SH gravity model loosens the CES import demand system assumption while 

maintaining a gravity-like structural relationship.  The model is specified as a random-

coefficients logit model (Berry et al., 1995).  Using interactions between exporter land and 

climate characteristics and product land and climate production requirements, it identifies 

countries likely to have comparative advantage in similar products.  These countries’ trade 

flows are then more elastic to each other’s trade costs.   

                                                           
3 Values less than one imply that domestic (Canadian) producers gain proportionately more market share than 
the United States and Kazakhstan. 
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We have also shown how the SH gravity model can accommodate product-specific trade 

costs. This allows the model to analyze changes in the dispersion of trade costs across 

products.  Such analysis cannot be carried out in a standard gravity model, in which trade 

costs are assumed constant.  Our results confirm economically and statistically significant 

heterogeneity in the effects of the variables that typically proxy for trade costs in gravity 

models.  

In our ongoing work developing the SH gravity model, we seek to improve the model and its 

general equilibrium extension on several fronts, with an explicit objective of enhancing its 

usefulness for applied analysis of agricultural trade policy.  First, in addition to updating the 

trade and production data, we are exploring alternative approaches to constructing the 

distribution of products consumed.  Currently, we assume that the distribution of products 

consumed is adequately represented by the distribution of imported products.  However, if 

high product-specific tariffs sufficiently limit imports of a given product, it will be under-

represented and the estimates of gains from reducing those tariffs will be under-estimated.   

Second, we are gathering data and adapting the estimation methodology in order to 

introduce observable sources of trade cost heterogeneity arising from policy differences like 

tariffs and non-tariff measures, as well as from intrinsic characteristics like perishability.  

Finally, we are pursuing methodological changes to improve product and sub-sector level 

analysis within the model, allowing for a better understanding of the distributional 

consequences of changes in trade costs. 
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Appendix 

Table 7: Average Productivity and Exporter Cost Estimates 

Country �̂̃�𝒊 𝒆�̂�𝒊/𝜽 

Argentina 0.86*** 1.17*** 
Australia 0.85*** 0.3*** 
Austria -1.06*** -0.03  
Belgium -8.3*** 2.96*** 
Bolivia 0.34  -1.54*** 
Brazil 0.7*** 0.69*** 
Bulgaria 0.08*** -0.11*** 

Canada -5.75*** 2.79*** 
Chile 1.66*** 1.21*** 
China 2.61*** 1.16  
Colombia 1.42*** 0*** 
Costa Rica 1.15*** -0.81*** 
Cote d'Ivoire 0.56  -0.75*** 
Czech Republic 0** -0.48  
Denmark 0.44*** 0.04*** 
Ecuador 1.21*** -0.32*** 
Estonia 2.77  -2.56*** 
Ethiopia -0.37*** -0.96*** 

Finland 1.72*** -1.58*** 
France -2.96*** 1.76*** 
Germany -4.87  2.41*** 
Ghana -0.35*** -1.06  
Greece 1  0.1*** 
Honduras -0.24*** -1.35*** 

Hungary 2.1  -0.67*** 
Iceland -0.14*** -2.2*** 
India 1.13** 0.57*** 
Indonesia 0.55*** 0.78*** 
Ireland 2.14*** -1.3  
Israel 1.58*** 0.06*** 

Italy -3.31*** 2*** 
Japan -1.68*** 0.75*** 
Kazakhstan 0.78** -1.76*** 
Kenya -0.51*** -0.7*** 
Lithuania 2.64*** -2.13*** 
Malaysia -2.76** 1.51*** 
Mexico 0.65*** 0.5*** 
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Country �̂̃�𝒊 𝒆�̂�𝒊/𝜽 

Morocco 1.41*** -0.88*** 
Netherlands -3.12*** 2.16*** 
New Zealand 2.8*** 0.35*** 
Norway 2.41*** -2.41*** 
Paraguay 1.48*** -0.67  
Peru 1  0.12  
Poland -0.2*** 0.03** 
Portugal -1.55*** 0.17*** 
Russia -2.49*** 0.16*** 
Slovakia 3.07*** -2.15*** 
Slovenia 1.63  -2.05*** 

South Africa -0.07*** 0.41** 
South Korea 1.85*** -0.21*** 
Spain -3.82*** 2.12  
Sri Lanka 1.36*** 0.11*** 
Sweden -0.64*** -0.25*** 
Switzerland -2.46  0.31*** 
Thailand -0.27*** 0.28*** 
Tunisia 3.04*** -1.13*** 
Turkey 1.32*** 0.56*** 
Ukraine 1.31*** -0.5*** 
UK -4.05*** 2.13  

Uruguay 2.68** -0.12*** 
Venezuela 0.62* -2.36*** 
Vietnam 0.4*** 0.35*** 
USA -4.36*** 3.04*** 

***significant at the 1% level, ** significant at the 5% level, *significant at the 10% level. 




