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ABSTRACT
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that all four motives predict patenting, but their role differs systematically between the life 
sciences, physical sciences, and engineering. These field differences are consistent with 
differences in the payoffs from commercial activities, as well as with differences in the 
opportunity costs of time spent away from “traditional” research, reflecting the degree of overlap 
between traditional and commercializable research. We discuss implications for future research 
on the scientific enterprise as well as for policy makers, administrators, and managers.
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1 Introduction 

A large literature has examined academics’ engagement in commercially oriented 

research and related commercial activities. An important driver of this work are concerns that 

deepening ties with commerce may lead scientists to neglect academia’s core mission of “pure” 

research or compromise access to research findings. Even though most of the evidence does not 

support these concerns (Agrawal & Henderson, 2002; Breschi et al., 2008; Buenstorf, 2009; 

Fabrizio & Minin, 2008; Goldfarb et al., 2009; Perkmann et al., 2013; Stephan et al., 2007; 

Thursby & Thursby, 2011), they remain salient in both the scholarly literature and the public 

discourse. On the other side of the ledger, there has been a hope, particularly among policy 

makers, that deepening commercial ties may increase the regional and national economic impact 

of academic knowledge. These hopes are reflected in a range of policies designed to encourage 

such interactions, most notably the Bayh-Dole Amendment (Mowery et al., 2001). 

Whether the goal is to stimulate commercial activity on the part of academics or to 

discourage such activity to prevent deflection from other research priorities, it is useful to 

understand why academics engage in commercially applicable research and related activities. 

Accordingly, much of the recent research has studied academics’ underlying motives and 

incentives (Bercovitz & Feldman, 2008; Fini & Lacetera, 2010; Lam, 2011; Owen-Smith & 

Powell, 2001; Thursby et al., 2001). These efforts have resulted in important insights, yet two 

important gaps remain. 

First, efforts to understand academics’ commercial activities often rely on generalized 

notions of the institution of science and of an archetypical, representative scientist (Dasgupta & 

David, 1994; Merton, 1973). Relatedly, prior empirical work has examined large cross-field 

samples or studied activity in single fields (Ding et al., 2006; Lam, 2011; Murray & Stern, 2007; 

Owen-Smith & Powell, 2003). Yet, the benefits and costs of commercial activities, and thus 

academics’ motives to engage in such activities, are likely to differ across fields. Studying such 

differences is important given that there are significant field differences in the levels of 

academics’ commercial engagement (Breschi et al., 2008; Cohen et al., 2002; D’Este & 

Perkmann, 2011; Lim, 2004), and given field differences in the nature of research as well as in 

norms and reward systems (Fleming & Sorenson, 2004; Layton, 1976; Nelson, 2016; Sauermann 

& Stephan, 2013). If the drivers of academics’ commercial activities differ across fields, policies 
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and managerial practices that recognize and address such differences may be more effective than 

policies that use the same tools across very different contexts. 

Second, much of the work on academics’ motivations is grounded in the Mertonian 

paradigm that views peer recognition and career advancement as the scientists’ primary goal 

(Merton, 1973). Although it has been recognized that scientists may also be driven by intrinsic 

motives and economic incentives (Dasgupta & David, 1994; Lam, 2011; Stephan & Levin, 

1992), virtually absent from the typical image of the academic is the motive of social impact. 

This is surprising, not only because this motive is salient in historical and qualitative accounts 

(Shapin, 2008; Stokes, 1997), but also because expected social benefits are a key justification for 

the public funding of academic research as well as for efforts to increase academic 

entrepreneurship and technology transfer (Bush, 1945; Lane & Bertuzzi, 2011; Salter & Martin, 

2001). Moreover, employees’ social motives have been shown to have important impacts in 

other organizational settings (Bode & Singh, 2016; Fehr & Fischbacher, 2002; Grant, 2007). To 

the extent that the motive to benefit society is an important driver of individual scientists’ 

commercial activities, we may need to reconsider our interpretation of their efforts and examine 

the degree to which institutional and national policies facilitate or hinder scientists’ efforts to 

advance social welfare. 

We address both gaps. We first develop a simple model of the role of motives and 

incentives in researchers’ decisions to expend effort on traditional academic versus commercially 

applicable research and related activities (henceforth referred to as simply commercial activity). 

Key features of our model are that: (1.) efforts directed towards academic and commercial 

activity do not have to be mutually exclusive but can overlap depending on the distance between 

the two types of activity in a given field; and (2.) the incentives tied to commercial activity can 

vary across fields. As a result, the opportunity costs, as reflected in diminished academic career 

prospects, as well as the payoffs from engaging in commercial activity can vary across fields, 

leading to field differences in the levels of commercial effort as well as in the individual motives 

that are most strongly associated with such effort. We then provide empirical insights using 

micro-data on a sample of over 2,000 life scientists, physical scientists, and engineers working in 

over 100 U.S. academic institutions. Towards this end, we complement two waves of survey data 

from the National Science Foundation’s Survey of Doctorate Recipients (SDR) with information 

on universities’ policies regarding the sharing of licensing income as well as other data sources. 
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Although the data do not allow us to estimate the causal impact of academics’ motives on 

commercial activities, they do allow us to explore these relationships empirically, with the model 

informing our expectations and providing a useful basis for interpreting the results. 

In brief, we find that the four featured motives – career advancement, intellectual 

challenge, money and social impact – have significant relationships with our measure of 

commercial activity, patent applications, but these relationships differ across fields. These 

differences are consistent with our model, which incorporates differences in the incentives and 

the opportunity costs tied to commercial activity across fields. In the physical sciences, we find 

that patenting activity is lower than in other broadly defined fields, and those physical scientists 

who patent are characterized by particularly strong financial motives and are less concerned with 

advancing their academic careers. This observation is consistent with the notion that physical 

scientists face a sharper trade-off between traditional academic and commercial activity due to a 

smaller overlap between these activities. On the other hand, patenting is more common among 

academic engineers, and especially those with strong motives related to challenge and career 

advancement. The latter result likely reflects a greater overlap between academic and 

commercially relevant research in engineering, and that commercial activities and patenting are 

more generally accepted and rewarded in a field where the focus is on “doing” rather than 

“knowing” (Allen, 1977; Dym et al., 2005; Layton, 1976). Finally, patenting in the life sciences 

is strongly associated with the motive to have an impact on society, suggesting that those life 

scientists who apply for patents see commercial activities and patenting as an important vehicle 

for having an impact with their work. 

Our results have broader implications for studies of science, innovation, and academic 

entrepreneurship. First, while much of the prior work relies on stylized notions of the institution 

of science, we argue that there are important field differences with respect to factors such as the 

nature of research and the researchers’ costs and benefits from commercial activities. Our 

analysis suggests that it may be fruitful for scholars to consider more deeply the nature and 

consequences of such differences, and how our models of academic science – and its interactions 

with industry – can be enriched by incorporating differences across fields. Second, efforts to 

understand scientists’ activities and choices may benefit from the consideration of a wider range 

of motives than those typically considered, especially the motive to impact social welfare. 

Finally, the data and results show considerable heterogeneity in scientists’ motives even within 
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given fields and add to a growing body of work suggesting that individual-level differences in 

motives may have important implications for scientists’ activities and performance (Agarwal & 

Ohyama, 2013; Sauermann & Cohen, 2010; Stern, 2004). 

For policy makers and administrators, our results suggest that policies and practices 

intended to encourage commercially relevant academic research need to be cognizant of a range 

of motives among academics. Moreover, even though financial returns from commercial 

activities are salient to outside observers (see also Heath, 1999), nonfinancial motives may play a 

more important role, at least in the life sciences and engineering. At the same time, a deeper 

understanding of the motives and incentives related to commercial activities may be required to 

illuminate the social welfare tradeoffs that are involved. For example, the impact of patenting on 

subsequent knowledge flows may be quite different depending on whether a scientist patents to 

appropriate financial returns, advance her academic career, or ensure that her invention has a 

broad social impact. 

2 Conceptual Framework 

The purpose of our theoretical model is to examine the relationship between academic 

researchers’ motives (i.e., preferences for different goals or incentives) and their allocation of 

effort toward commercial activity. Accordingly, we model academics’ decisions to dedicate 

effort to commercial activity as a function of their motives, while incorporating potential field 

differences in the payoffs (i.e., incentives) tied to commercial activity as well as in the overlap of 

academic and commercial activity that drives academics’ opportunity costs of commercial work. 

In addition to offering empirical implications, the model serves to structure the subsequent 

empirical analysis and inform the interpretation of results. 

2.1 Model 

For simplicity, we assume that an academic researcher’s effort can yield two different 

payoffs: peer recognition and the associated career advancement in academia, A, and some 

“other,” – nonacademic – payoff, O. While our theoretical model is agnostic as to the concrete 

nature of this “other” payoff, we characterize important possibilities in section 2.2 below. 

The researcher can obtain A and O by expending effort on traditional academic research, 

er, and on commercial activity, ec. The latter may broadly encompass activities such as R&D 
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with commercial applicability as well as working with a university’s technology transfer office 

(TTO), licensing partners, or a startup. Our model allows for the possibility that each type of 

effort can yield both academic advancement and the “other” nonacademic payoff, though at 

different rates (αr, αc, γr, and γc). Accordingly,  

A = αrer + αcec and      (1) 

O = γrer + γcec.       (2)  

These rates, αr, αc, γr, and γc, may reflect incentives embedded in the broader professional 

community, the market environment, or incentive systems designed by particular employers 

(e.g., university tenure guidelines or university policies around inventors’ share of licensing 

income). To structure the analysis, we assume that αr > αc, implying that the academic career 

payoff from academic research is greater than the academic payoff from commercial work. 

Similarly, we assume γc > γr, implying that the nonacademic payoff from commercial work is 

greater than the nonacademic payoff from academic research. 

An important feature of our model is that effort dedicated to academic and commercial 

activity can overlap; as such, effort allocated to commercialization does not necessarily imply a 

reduction of effort towards academic research by the same amount. The intuition is that – 

depending on the field – the very same effort that advances commercial objectives may also 

advance a scientist’s academic career. For example, research identifying a cellular target 

implicated in colon cancer may have considerable commercial value but may also contribute to 

fundamental understanding and be recognized as an important scholarly contribution.1 To make 

this overlap more explicit, we define a fixed nominal effort budget, B, and assume that 

er = B - φec,       (3) 

where φ indicates how different the effort expended on commercial activity is from effort 

dedicated to academic research (with 0 < φ ≤ 1 and 0 ≤ er, ec ≤ B). Thus, φ can be thought of as 

the distance between the outputs of academic research and those required for commercialization, 

with a smaller distance (i.e., lower φ) implying a larger overlap between research and 

commercialization. If φ=1, the two activities are completely distinct, and effort on one activity 

does not advance the other. As φ approaches zero, academic and commercial activity 

                                                
1 In contrast to some prior work, we do not model the researcher’s choice between “basic” and “applied” research, but that 
between “traditional” academic research in a particular field and commercial activity. 
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increasingly overlap such that the effort spent towards commercial activity also counts as effort 

advancing academic research objectives. In other words, φ indicates the degree to which 

commercial activity detracts from traditional academic research, with a higher φ implying a 

higher opportunity cost of engaging in commercial activity. In our model, having greater overlap 

between academic and commercial research (i.e., φ approaching zero) allows the total effective 

effort spent on both activities to exceed the nominal budget (B ≤ er + ec ≤ 2B). 

We suggest that φ differs systematically across fields, leading to differences in the 

opportunity costs that academic researchers face when engaging in commercial activity. 

Consider, for example, the basic physical sciences, where “traditional” research advances 

understanding of natural phenomena, but the results are typically far removed from 

commercially applicable outcomes. As such, effort spent on commercial research will tend to 

detract from academic research and its associated rewards, implying a strong trade-off between 

effort devoted to one versus the other (Toole & Czarnitzki, 2010). In engineering and the applied 

sciences, in contrast, a good deal of traditional academic research focuses on the solution of 

concrete problems and the creation of useful artifacts (Allen, 1977; Dym et al., 2005; Layton, 

1976; Vincenti, 1990) such that effort dedicated to academic research is more likely to also yield 

commercializable outcomes (Crespi et al., 2011; Goldfarb et al., 2009). Consistent with this 

notion, Cohen et al.’s (2002) survey results show that firms report academic research in 

engineering and applied science fields to be useful across a much broader range of industries 

than is the case for research in the physical and biological sciences.2 Similarly, the share of 

academically trained PhDs taking jobs in industry is considerably larger in engineering than in 

the physical sciences, possibly reflecting – among other factors – easier applicability of the 

knowledge acquired during academic training to the private sector (National Science Foundation, 

2006).  

We assume that, in addition to yielding different types of payoffs, effort also imposes a 

cost in the form of disutility, and that the disutility of commercial activity increases at a greater 

rate than that tied to traditional research. The rationale for this assumption is that academics have 

self-selected into academia rather than industry due to their strong “taste for science” (Agarwal 

                                                
2 In Cohen et al. (2002), the percentage of R&D managers reporting academic research to be at least “moderately useful” exceeds 
60% in four industries for computer science, seven industries for materials science, and seven industries for electrical 
engineering. The corresponding figures are one industry (semiconductors) for physics, two industries for chemistry, and one 
industry (drugs) for biology.  
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& Ohyama, 2013; Roach & Sauermann, 2010; Stern, 2004). Reflecting both types of payoffs as 

well as the costs of effort, the researcher’s utility function can be written as:  

U=β1A + β2O – ec
2 – er,      (4) 

where β1 is the researcher’s individual preference for academic advancement, A, and β2 the 

researcher’s preference for the other, nonacademic payoff, O. Following prior work (e.g., Stern, 

2004), we conceptualize preferences as parameters in the utility function such that a stronger 

preference for a particular payoff increases the utility derived from a unit of that payoff. 

Given equations (1), (2), and (4), normalizing B to equal unity, and substituting for er, the 

utility function can be rewritten as: 

U = β1[αr(1 - φec) + αcec] + β2[γr(1 - φec) + γcec] – ec
2 – 1 + φec. (5) 

For simplicity of exposition, we omit subscripts indicating levels of analysis. Effort levels (ec, 

er), motives (β1, β2), as well as utility (U) and realized payoffs (A, O) are at the level of the 

individual researcher. Incentives (αr, αc, γr, γr) reflect policies and norms at the level of 

universities but also the broader professional community or market environment specific to 

fields. Regarding the distance between traditional research and commercial activity (φ), we focus 

on systematic differences across fields and abstract from potential heterogeneity within fields. 
The marginal utility from effort dedicated to commercial activity is: 

∂U/∂ec = β1(αc - φαr) + β2(γc - φγr) - 2ec + φ.    (6) 

Utility is maximized for 

ec
*= [β1 (αc - φαr) + β2(γc - φγr) + φ]/2.    (7) 

Equation (7) shows how optimal commercial effort depends on individuals’ preferences 

for academic (β1) and nonacademic payoffs (β2), the structure of incentives (αr, αc, γr, and γc), 

and the distance between commercial and academic effort, φ. In the following, we highlight three 

relationships that are central to our empirical analysis, which focuses on the association between 

academics’ commercial activities and their preferences for different types of payoffs (i.e., 

“motives”). First, 

∂ec
*/ ∂β1 = (αc - φαr)/2.       (8)  
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Thus, the impact of preferences for career advancement (β1) on commercial effort depends on the 

relative size of academic advancement payoffs from academic and commercial activities (αr vs. 

αc), as well as the degree to which commercial effort detracts from traditional research (φ). 

Given that αr > αc and 0 < φ ≤ 1, the sign of the derivative is ambiguous. If the academic payoff 

from commercial research (αc) is sufficiently low and the distance between academic and 

commercial activity (φ) is sufficiently high, equation (8) implies that those researchers with 

stronger preferences for academic advancement will allocate less effort to commercial activity 

than those with weaker advancement motives. In contrast, researchers with stronger 

advancement motives will allocate more effort to commercial activity if career benefits from 

commercial activity (αc) are sufficiently high (e.g., patents receive significant weight in 

promotion decisions) and if the distance between traditional research and commercialization is 

small, implying low opportunity costs of commercial effort. The important role of opportunity 

costs is reflected in the negative cross partial derivative, ∂2ec
*/ ∂β1∂φ = -αr/2, which suggests that 

the effect of advancement motives on commercial activity becomes less positive (or more 

negative) as the distance between the two activities, φ, increases. 

The impact of preferences for the other, nonacademic payoff on commercial effort is 

∂ec
*/ ∂β2 = (γc - φγr)/2,       (9) 

which is unambiguously positive given that γc  > γr and φ ≤ 1.  Thus, unsurprisingly, preferences 

for the other payoff will have a positive relationship with commercial effort. However, the 

negative cross partial with respect to φ, ∂2ec
*/ ∂β2∂φ= -γr/2, indicates that this positive 

relationship is attenuated as the distance between academic and commercial work, φ, increases, 

increasing the opportunity costs to engaging in commercial activity. Conversely, the positive 

effect of preferences for the other payoff intensifies as the opportunity costs of commercial 

activity decrease. 

Finally,  

∂ec
*/ ∂γc = β2/2,       (10) 

which indicates that commercial effort increases with the degree to which it yields a greater 

nonacademic payoff. Moreover, this relationship should be stronger for researchers with strong 

preferences for the other, nonacademic payoff (∂2ec
*/ ∂γc∂β2 = ½ > 0). 
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2.2 Specific payoffs across fields 

We will now discuss field differences in the payoffs tied to commercial work more 

concretely, examining potential differences in payoffs across the broadly defined fields of the life 

sciences, physical sciences, and engineering. Our model implied – and we argue below – that 

differences in the strength of these payoffs across fields will lead to differences in the individual 

motives that are most strongly associated with commercial activity. Our model considered, 

however, only two payoffs to academics’ decisions to pursue traditional academic versus 

commercial activity – academic career advancement (A) and an unspecified “other” payoff (O). 

We propose that two potentially important payoffs - income and social impact - correspond to 

this other payoff, “O,” in our model, and will consider how these payoffs may differ across 

fields. We will then consider a fourth payoff, intellectual challenge. This intrinsic payoff does 

not fit neatly with our distinction between A and O since it may be tied strongly to either 

academic or commercial activity. Given the salient role of challenge in prior work on the drivers 

of scientists’ activities, it may be, however, an important complement to the other three motives 

considered (Lam, 2011; Sauermann & Cohen, 2010; Stephan, 2012). Taken together, the four 

payoffs and associated motives considered in this paper are those that have been discussed most 

prominently in the economics and sociology of science, although – as noted in the introduction – 

social impact has been considered primarily at the level of the overall system rather than 

individual scientists. 

Career advancement. For academic scientists and engineers, research is the primary 

way to gain peer recognition and advance one’s career (Kuhn, 1962; Merton, 1973; Stephan, 

2012). However, reputational rewards may also result from commercial activities. In particular, 

research suggests that commercial achievements, including patents, can increase scientists’ 

reputation among peers (Audretsch et al., 2010; Haeussler & Colyvas, 2011) and commercial 

activities are sometimes considered positively in tenure and promotion decisions (Azoulay et al., 

2007; Butkus, 2007; Lipka, 2006).3 At the same time, we expect significant field differences in 

                                                
3 We searched the promotion and tenure guidelines of universities with NRC-ranked science and engineering departments for 
evidence of the role of patents and commercial activities in tenure and promotion decisions. We found approximately 15 
institutions that include such criteria, including institutions such as North Carolina State University, Cornell, and Purdue. 
However, it is likely that many other institutions also consider such activities on an informal basis, as reflected in a quote from 
Alan Paau, vice provost for technology transfer and economic development at Cornell University, who suggested that the concept 
of considering participation in tech commercialization in tenure and promotion decisions is not new – it just hasn’t been officially 
codified before to avoid potential “patent counting” (as quoted in Butkus (2007)). 
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the degree to which commercial activities are recognized as a legitimate form of academic work, 

reflecting differences in fields’ goals and norms. Science is concerned primarily with “knowing”, 

i.e., understanding the natural world. Engineering (and some of the applied sciences), on the 

other hand, emphasize “doing” and manipulating the natural world to achieve certain objectives 

(Layton, 1976). Commercial outputs – which require usefulness but not necessarily an 

understanding of the underlying mechanisms – are arguably a better measure of achievement in a 

community that values “doing” than in a community that values “knowing,” and are thus more 

likely to be recognized in engineering than in the sciences. Consistent with this conjecture, 

academic engineers believe that patenting has a greater influence on their reputation among peers 

than do basic scientists (Haeussler & Colyvas, 2011). To the extent that commercial activity 

indeed promises greater payoffs in terms of career advancement in engineering than in the 

sciences, equation 8 above would suggest that motives to advance one’s academic career have a 

stronger positive (or weaker negative) relationship with commercial activity in engineering than 

in the sciences; this effect may be reinforced by the lower opportunity costs of doing commercial 

work tied to the greater proximity of engineering research to commercial applications. 

Income. A desire for financial gain is often assumed to be the main driver of academics’ 

commercialization activities (Jensen & Pham, 2011; Lach & Schankerman, 2008; Thursby et al., 

2007). Such payoffs may take a variety of forms, including income from consulting and licensing 

income from patents (Stephan, 2012). Regarding licensing, university policies in the U.S. 

typically require that inventions are disclosed to the university’s Technology Transfer Office 

(TTO) and that resulting patents are assigned to the university, which then receives any royalty 

income from licensing (Goldfarb & Henrekson, 2003). The Bayh Dole Amendment of 1980 

stipulates that the net income must be shared with the inventor. While some academic patents 

have generated very large payoffs,4 large payoffs are rare and the expected income is low (Lach 

& Schankerman, 2008). The share of royalty income going to the inventors is typically the same 

for all researchers at a given institution, but the expected amount of income may be higher in 

some fields than in others. Although we lack clear priors regarding such field differences in 

financial payoffs, equations 9 and 10 of our model suggest that scientists with stronger income 

                                                
4 For example, three Emory researchers shared more than $200 million from the sale of the HIV drug Emtriva. The academic 
inventor of the drug Taxol received an estimated $140 million in royalty income (Stephan, 2012). In 2016, Carnegie Mellon 
University (CMU) settled a patent dispute with Marvell Technology, and the two inventors are entitled to a “substantial share” of 
the $750 million received by CMU. 
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motives and those realizing more income from commercial activity –  including larger shares of 

royalty income – should be more active in commercial activities. 

Impact on society. Societal benefits from scientific research are a key justification for 

the public funding of academic science (Bush, 1945; Stokes, 1997). This goal, however, is 

typically ascribed to the institution of science as a whole, not to individual scientists.5 At the 

same time, the motive to have a positive social impact is salient in historical accounts such as 

descriptions of Pasteur’s efforts to understand basic disease mechanisms and even of physicists’ 

decisions to join the Manhattan Project during World War II (Shapin, 2008; Stokes, 1997). 

Social impact also emerges in qualitative accounts of academics’ decisions to engage in 

commercial activities such as patenting (Lam, 2011; Mowery & Sampat, 2001; Murray, 2010). 

While both fundamental research and commercial activities can benefit society, the social 

impact of the latter may be more direct and more salient to researchers since commercialization 

brings technologies closer to the market and potential users. Although benefits to society from 

commercialization can take different forms in different fields, they are especially prominent in 

the life sciences, where commercialized inventions such as drugs or medical devices can lead to 

tangible improvements in people’s lives. Similarly, patents play a more important role in 

facilitating downstream development in the life sciences than in other fields (Cohen et al., 2000). 

As such, and consistent with equation 9, we expect that the motive to have an impact on society 

has a stronger positive relationship with commercial activities in the life sciences than in other 

fields. 

Intellectual challenge. In addition to extrinsic benefits, researchers also care about 

intrinsic rewards resulting from work on interesting and intellectually challenging problems 

(Kuhn, 1962; Sauermann & Cohen, 2010; Stephan & Levin, 1992). It is often assumed that 

academics consider traditional research activities to be more intrinsically motivating than 

commercially applicable research (Levin & Stephan, 1991; Thursby et al., 2007). However, even 

though researchers in the basic sciences may indeed find downstream work and patenting less 

intellectually engaging, applied scientists and engineers may derive considerable intrinsic 

rewards from building things and bringing them to market (Shapin, 2008). In other words, the 

                                                
5 The individual-level motive to have an impact on society is different from Merton’s norm of “communism”. The latter states 
that knowledge belongs to the community: “The scientists’ claim to “his” intellectual “property” is limited to that of recognition 
and esteem which […] is roughly commensurate with the significance of the increments brought to the common fund of 
knowledge” (Merton 1973, p. 273). Communism does not, however, imply that scientists’ want to give up ownership to their 
knowledge or that they – as individuals – care about the impact their findings have on society. 
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intrinsic benefits from commercially applicable work are likely higher for engineers than for 

scientists, both in an absolute sense but also relative to the intrinsic benefits from traditional 

research (i.e., γc vs. γr). As such, challenge motives are likely to have a stronger positive (or 

weaker negative) relationship with commercial work in engineering than in the sciences.  

Moreover, as implied by equation 9, this effect is likely reinforced by the lower opportunity costs 

of doing commercial work in engineering.  

 

To summarize our discussion of the different payoffs and motives bearing on the 

commercial work of academics, academics who allocate effort to commercial activity are likely 

to incur opportunity costs due to the loss of time dedicated to traditional academic research and 

the loss of associated career benefits. This loss can be offset by other payoffs from commercial 

activity, including income, social impact and even the intellectual challenge tied to commercially 

applicable work. As such, we expect academics to allocate effort towards commercial activities 

based on their preferences for career advancement and these other types of payoffs. Moreover, 

the opportunity costs and operative payoffs from commercial activities are likely to differ across 

fields, partly reflecting the distance between commercial work and traditional academic research. 

Thus, we expect important field differences in the levels of academics’ commercial activity and 

in the individual motives associated with commercial engagement. 

3 Data and Measures 

3.1 Data sources 

Our empirical analysis is based on two waves of the Survey of Doctorate Recipients 

(SDR), obtained from the National Science Foundation under a restricted-use license. The SDR 

is a longitudinal survey and its sampling population includes individuals who have obtained a 

doctoral degree in a science, engineering or health field from a U.S. institution and lived in the 

U.S. at the time of the surveys. In 2001 and 2003, the SDR achieved response rates of 

approximately 80%.6 In this paper, we focus on those PhDs who are full-time employees in 

academia (defined as educational institutions by NSF) and for whom research is either the most 

important or second most important work activity. To address potential endogeneity concerns – 

addressed in more detail below – our dependent variables are taken from the 2003 survey, while 

                                                
6 More details about the SDR are available at http://www.nsf.gov/statistics/srvydoctoratework/. 
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most of our independent variables are taken from the 2001 survey. Our final sample includes 

2,094 scientists and engineers at 160 institutions. 

We augment the SDR data with data from additional sources. First, we obtained data on 

universities’ policies regarding the share of licensing income going to the inventor from Saul 

Lach and Mark Schankerman (2008) as well as from university websites and inquiries with 

administrators. Second, we obtained data on the year in which academic institutions started a 

formal licensing / technology transfer office from Association of University Technology 

Managers (AUTM) surveys as well as from websites and through inquiries to administrators.7 

Finally, we use evaluations of PhD program quality from the National Research Council 

(Goldberger et al., 1995) as proxies for the quality of the PhD programs from which respondents 

graduated and of the departments in which they were employed. 

3.2 Variables 

This section discusses our key dependent and independent variables; additional variables 

are described in Table 1. Descriptive statistics by field are shown in Table 2. 

Commercial activity: We proxy for academics’ commercial activities using patent 

application counts. Each respondent reports in 2003 the number of U.S. patent applications in 

which he or she was named as an inventor over the 5 years prior to the survey (PATS).8  This 

patent measure captures all patent applications on which the respondent is listed as an inventor, 

not only those going through university TTO’s, thus allowing us to examine academics’ 

patenting activity more broadly. For supplementary analyses, we also created a dummy variable 

indicating if a respondent had any patent applications in the 5-year period (ANYPATS). Table 2 

shows significant differences in patenting across fields. Engineers have by far the highest 

average count of patent applications (1.08) as well as the largest share of individuals with at least 

one patent application (28%), followed by life scientists and physical scientists. These field 

differences in levels of commercial activity are consistent with differences in the opportunity 

costs of engaging in commercial activity noted above, though they may also reflect differences in 

the associated incentives. 

                                                
7 For more information on the AUTM surveys, please see www.autm.net. 
8 Unfortunately, the SDR data are anonymized and cannot be matched to other data sources such as patent records. 
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Motives: In 2001, respondents were asked “When thinking about a job, how important is 

each of the following factors to you . . .” Respondents rated the importance of each factor on a 4-

point scale anchored by 1 (very important) and 4 (not important at all); for ease of interpretation, 

we reverse coded these items such that higher scores indicate higher importance. The four factors 

and their associated motives are: Salary, intellectual challenge, contribution to society, and 

opportunities for advancement. Note that these measures are intended to capture respondents’ 

general preferences for different kinds of work related payoffs (see also Agarwal & Ohyama, 

2013; Sauermann & Cohen, 2010). As such, we will examine the relationships between motives 

and patenting through regression analyses rather than by asking respondents directly why they 

engage in commercial activities. This indirect approach is consistent with our theoretical model 

and mitigates concerns about social desirability and common methods bias (see below). 

Table 2 shows that the average importance ratings for all four job attributes are quite 

high, reflecting that they are generally evaluated positively. The correlations between measures 

of motives range from -0.06 (salary and challenge in engineering) to 0.36 (advancement and 

salary in the physical sciences) (Table A1). These relatively low correlations suggest that the 

measures capture distinct constructs, mitigating concerns about common methods bias. It is 

notable that the means of motives are very similar across fields. Only the desire to contribute to 

society is somewhat higher in engineering and the life sciences than in the physical sciences. 

Financial incentives: Although we have no measure of financial incentives for all 

commercially relevant research and related activities, we do have information on the share of 

patent royalty income going to the inventor from two sources.9 First, Saul Lach and Mark 

Schankerman graciously provided us with royalty shares for 111 institutions from their 2008 

study. These data reflect royalty shares as of 2001. We collected information on the remaining 

institutions from their websites and by contacting administrators in 2009. Policies for the 

distribution of royalty income differ significantly across institutions. Of our 160 institutions, 109 

use a linear schedule, i.e., the share going to the inventor remains the same for all levels of net 

income. Another 49 institutions have a regressive schedule, and two institutions have more 

complex schedules. Because most disclosed inventions generate little income and the average 

                                                
9 It is likely that licensing income is related to other sources of income from the commercial sphere, e.g., because firms that 
license university patents often use consulting relationships with the inventors to access uncodified knowledge (Goldfarb & 
Henrekson, 2003; Jensen & Thursby, 2001). Consistent with this notion, the Carnegie Mellon Survey data show that licensing is 
significantly correlated with consulting as sources of information from universities that are used by firms conducting R&D (r = 
0.33) (for details on this survey, see Cohen et al. (2002)). 
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licensing revenue lies in the $25,000-$50,000 range (Jensen et al., 2007), we focus on the share 

of the first $50,000 of net income generated by a license (Share50). 

Academic field: We distinguish broadly between respondents who received their PhD in 

the life sciences (N=1037), physical sciences (N=585), and engineering and the applied sciences 

(N=472). For economy of exposition, we will refer below to engineering and the applied sciences 

as simply engineering. In the regression analyses, we control for fields at a more detailed level 

(biochemistry, cell and molecular biology, microbiology, food sciences, environmental and 

health sciences, other biological sciences; physics, chemistry, earth sciences, mathematics; 

computer science, chemical engineering, electrical engineering, mechanical engineering, civil 

and industrial engineering and other engineering, including materials engineering).  
 

--- Tables 1 and 2 about here --- 

3.3 Potential for social desirability bias and common methods bias 

A concern with survey data is the possibility of social desirability bias. In particular, 

individuals might inflate ratings of motives that they think are socially desirable (e.g., 

contribution to society) and give artificially low scores to motives that may seem less socially 

desirable (Moorman & Podsakoff, 1992). Any descriptive data on motives should be interpreted 

in light of the possibility of such a bias. More importantly, we do not expect that any social 

desirability bias will affect the correlations between the measures of motives and of commercial 

activities. In contrast to other surveys that directly ask individuals why they engage in 

commercial activities (e.g., D’Este & Perkmann, 2011; Giuri et al., 2007; Lam, 2011), the survey 

questions regarding motives were asked in a more general context and separately from the 

questions on patents; it is thus unlikely that respondents altered their responses to the question of 

motives to justify or rationalize responses to the question on patenting. A further concern is that 

certain groups of individuals, in particular, life scientists, may be socialized into thinking they 

should care about others and thus report stronger motives to contribute to society. As reported 

earlier, the average rating of contribution to society is somewhat higher for life scientists than for 

physical scientists, but very similar to the average rating for engineers. More importantly, we run 

our regressions within field and social desirability bias that is common to all individuals in a 

particular field will not affect our results. 
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A second important concern is that relationships between variables may be inflated 

because variables are measured using a common method. Common methods bias may result 

from the use of similar scales for dependent and independent variables, implicit theories 

respondents hold regarding the relationships between variables, or from priming effects of 

collocated questions (Podsakoff et al., 2003). While common methods bias may increase the 

correlations among our measures of motives, it should be less of an issue with respect to 

relationships between motives and other variables since variables were measured using a number 

of different types of scales. Moreover, our key dependent and independent variables were 

measured on different pages of the survey and in different years; such proximal and temporal 

separation should further reduce common methods bias (Podsakoff et al., 2003). The royalty 

share measures as well as some control variables originate from different data sources, further 

reducing concerns regarding common methods bias. 

4 Empirical specification 

Our goal is to understand the relationships between academic scientists’ motives and their 

commercial activity. Our featured dependent variable is the number of respondents’ patent 

applications in the prior five years. To address the count nature of this variable and the 

significant degree of overdispersion, we estimate negative binomial regression models. The 

following is our benchmark specification: 
 

PATSi = f (εi; β0 + β1MOTIVESi + β2SHARE50j+ β3IMPINCi*SHARE50j+ β4CONTROLS),     (11) 
 

where PATSi is respondent i’s patent application count over the 1998-2003 time period 

(as reported in 2003) and MOTIVESi is a vector of motives measured in 2001, reflecting 

preferences for career advancement, income, social impact and intellectual challenge. We also 

include a measure of financial incentives, SHARE50j, which is the royalty share set by the 2001 

employer j, as well as the interaction between the income motive, IMPINCi, and the royalty 

share (both variables are centered before computing the interaction). CONTROLS is a vector of 

control variables taken from the 2001 survey and from other data sources, and εi is a random 

error term.10 All patenting regressions are adjusted for exposure time because patents are 

                                                
10 The interpretation of interaction terms in nonlinear models is not straightforward. We also estimated interaction terms using the 
methods suggested by Chungrong and Norton (2003) and obtained qualitatively similar results. We also estimated linear 
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observed over 5 years but some respondents have only 3 or 4 years of work experience (Long & 

Freese, 2005). Since our theoretical model suggests different effects of motives on academics’ 

commercial effort across fields, we estimate our regressions separately for researchers in the life 

sciences, physical sciences, and engineering, and compare the resulting coefficients. Standard 

errors are clustered at the level of the university.  

Although our data include rich measures of individuals’ motives, measures of incentives 

(αr, αc, γr, and γc in the model) are limited. We measure financial incentives for patenting at the 

university level using the royalty share. Other institution-level incentives may be partly captured 

through controls such as the NRC rating or the age of the TTO. To further address institution-

level factors, we perform robustness checks using fixed effects regressions, exploiting only 

variation observed within universities. 

5 Results 

5.1 Main analysis 

Consistent with our expectations, Table 3 shows significant relationships between 

academics’ motives and their patenting activities. More importantly, these relationships differ 

across fields. We begin by briefly reporting the basic results and then interpret the results – 

particularly the cross-field differences – through the lens provided by our model. 

5.1.1 Basic results  

In the life sciences (models 1-3), we find a significant positive relationship between 

patent application counts and the desire for social impact. Researchers with a one standard 

deviation higher motive to contribute to society have a 46% higher expected patent count (model 

3). Income, challenge, and advancement motives have no relationship with patenting. 

In the physical sciences (models 5-7), we also find a significant positive relationship 

between the motive to contribute to society and patenting; a one-SD higher motive is associated 

with a 32% higher expected patent count. In addition, the income motive has a significant, 

positive coefficient – a one SD higher income motive is associated with a 35% higher predicted 

patent count. The advancement motive has, however, a significant negative relationship with 

                                                
probability models predicting whether a respondent has a patent at all and the estimated interaction terms are consistent with our 
results from the logit regressions reported in section 5.2. 
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patenting in the physical sciences; a one-SD higher score is associated with a 39% lower patent 

count. 

Among engineers (models 9-11), we find a strong positive coefficient on the challenge 

motive as well as a marginally significant positive coefficient on the advancement motive 

(p<0.10). One-SD higher scores on the two motives are associated with 91% and 25% higher 

expected patent counts, respectively. Motives related to income or social impact have no 

significant coefficients. 

5.1.2 Interpreting the results 

Consistent with our argument that the motives underlying academics’ decisions to 

allocate effort to commercial activity differ across the three broadly defined fields of life 

sciences, physical sciences, and engineering, formal tests confirm that the observed differences 

in the coefficients of motives across fields are statistically significant.11 Our model suggests that 

these different relationships may reflect differences across fields in in the incentives to do 

commercial work and in the opportunity costs tied to commercially applicable research. We now 

discuss these possibilities in more detail. 

A notable result in Table 3 is the significant, negative relationship between advancement 

motives and patenting in the physical sciences, suggesting that those physical scientists who care 

strongly about their academic careers allocate less effort to commercial activity. This contrasts 

most sharply with engineering, where the coefficient of advancement motives is marginally 

positive. Equation 8 of our model suggests two complementary explanations for this difference. 

First, it may reflect that career advancement incentives are more closely tied to commercial 

activity in engineering than in the physical sciences. As noted in section 2.2., for example, it has 

been argued that patents can serve as a legitimate measure of performance in engineering fields 

but less so in the physical sciences where commercial activities do not “count” as much toward 

academic advancement.12 Second, and closely related to the first explanation, the coefficient of 

advancement motives may be less negative in engineering than in the physical sciences because 

                                                
11 Tests using Stata’s suest routine reject the equality of coefficients of motives in the life sciences and physical sciences 
(Chi2(4)=9.50, p<0.05), the life sciences and engineering (Chi2(4)=20.06, p<0.001), and the physical sciences and engineering 
(Chi2(4)=27.50, p<0.001). 
12 In one of our interviews (see section 5.1.3. below), an accomplished physicist likened patenting to “writing a textbook” in the 
sense that both may result in extra income but do little to further one’s career. He noted, however, that “this is different in 
engineering… those guys like patents”. 
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the distance between commercial activity and traditional academic research is smaller in 

engineering. As a consequence, engineers who allocate time to commercial activity have to make 

less of a sacrifice in terms of lost time for research and the associated career benefits. For both of 

these reasons, the opportunity cost of commercial activity is less in the engineering fields. 

Conversely, physical scientists who are particularly concerned with career advancement may 

allocate less time to commercialization both because advancement payoffs from such activities 

are smaller than from research (αc < αr) and because the distance between research and 

commercialization (φ) is large, implying a higher opportunity cost of commercial activity. It is 

interesting to note that there is no significant relationship between career advancement motives 

and patenting in the life sciences. This result may reflect that the life sciences occupy an 

intermediate position between the physical sciences and engineering with respect to incentives 

for commercial activity as well as the distance between traditional academic and commercial 

work. Although biomedical sciences account for the bulk of academic patenting (Mowery et al., 

2001), our results suggest that they do so for reasons other than the contribution of patenting to 

the advancement of biomedical scientists’ academic careers. 

The observation that career advancement motives do not predict commercial activity in 

the life sciences, and even have a negative coefficient in the physical sciences, raises the 

question what other motives may lead scientists towards more active involvement in commercial 

activity. While we had no priors about which of the other benefits would be more important, 

common discussions of academic entrepreneurship highlight income as a potential candidate. 

Table 3 indeed shows a strong positive relationship between financial motives and patenting in 

the physical sciences. However, we observe no such relationship in the life sciences or 

engineering, suggesting that it is primarily in the physical sciences where pecuniary motives 

apply. This result, along with the negative, significant coefficient for career advancement, does 

not necessarily imply that physical scientists will give up on their academic goals if sufficiently 

compensated by income. Rather, these results suggest that those academics in the physical 

sciences who have stronger preferences for income, and weaker preferences for career 

advancement, devote more effort to commercially related work, at least as reflected by their 

patenting behavior.13 

                                                
13 Note that, per equation 9, the result that financial motives appear to motivate patenting does not necessarily imply that financial 
payoffs to patenting are higher in the physical sciences than in other fields, but only that the financial payoff is high relative to 
that from traditional research in the physical sciences. 
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Perhaps the most interesting finding in Table 3 is the significant relationship between 

commercial activity and the motive to have a social impact in the life sciences (and to a lesser 

degree in the physical sciences). As implied by equation 9, this relationship suggests that life 

scientists who engage in commercial activity expect significant social benefit from doing so (i.e., 

γc is high). Our model indicates this relationship may be reinforced if the distance between 

academic research and commercial work (i.e., φ) is small, reducing the opportunity costs of 

pursuing social goals through commercial engagement. The former interpretation is consistent 

with the notion that, in the life sciences, the social benefits from commercial activity are 

especially salient.14 The latter is consistent with the notion that life scientists often work in 

Pasteur’s quadrant, where research can yield fundamental insights while also yielding 

considerable social dividends  (Stokes, 1997). And obviously both mechanisms may be 

operative. 

Although we interpret the link between patenting and the desire for social impact as 

reflecting scientists’ motives to engage in commercial activity in general, there is an additional 

reason why the motive of social impact may be tied to our particular measure of commercial 

activity, namely patenting. Life scientists are likely cognizant of the fact that downstream 

development costs in the life sciences are high and that securing patents is essential for providing 

companies the incentive to make the considerable downstream investments required to bring a 

drug or another therapy to market and, in turn, to provide the health benefits from new 

discoveries (Cohen et al., 2000; Sampat et al., 2003). In the words of the late Susan Lindquist, 

who was a member at the Whitehead Institute and a pioneer in the study of protein folding: 

“Patenting activity is necessary for my life’s work to make a difference… In the early 1980’s, 

scientists did not realize that. Now they do.”15 

Although motives related to money and social impact appear to be important predictors 

of commercial activity in the physical and life sciences, respectively, neither of these motives is 

related to patenting in engineering. Engineers who patent are not distinguished by stronger 

financial or social impact motives. Engineers who allocate more time to commercial activity are, 

however, characterized by a stronger desire for career advancement (p<0.1), consistent with our 

                                                
14 We find the strong positive relationship between the importance of contributing to society and patenting within the sample of 
life scientists; this relationship is thus unlikely to reflect that life scientists generally have a stronger desire to contribute to 
society and also happen to patent more. 
15 Quoted by Marie Thursby, 2010 DRUID debate on academic entrepreneurship. http://www.druid.dk/index.php?id=20  
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discussion above suggesting that patenting may count toward promotion in engineering in some 

settings. Engineers who patent more also report a stronger desire for intellectual challenge. We 

had no priors as to whether intrinsic benefits such as challenge are more strongly tied to 

traditional academic work or to commercial activity (see section 2.2). It appears, however, that 

engineers – in contrast to their colleagues in the sciences – perceive considerable intrinsic 

benefits from doing commercially relevant work. Moreover, to the extent that the distance 

between commercial activity and traditional engineering research is small, engineers who pursue 

commercial work for its intellectual challenge face low opportunity costs in terms of time lost for 

traditional research or, as discussed at the beginning of this section, in terms of career 

advancement. Thus, it is not surprising that engineers have the highest rates of commercial 

activity and patenting (Table 2), consistent with our conceptual discussion. 

5.1.3 Other variables 

Contrary to our expectations, our only measure of incentives, the share of licensing 

income going to inventors (Share50), as well as its interaction with the income motive, has no 

significant relationship with the number of patent applications in any of the three fields.16 

Including this measure of financial incentives leads to no appreciable changes in the coefficients 

of the four motives. 

 To probe why variation in institutionally provided licensing incentives does not seem to 

influence academics’ patenting, we conducted structured interviews by phone with a small 

random sample of 25 scientists and engineers at universities included in our main sample. When 

asked about royalty shares at their universities, all respondents were aware of the existence of 

income sharing policies, but only 5 out of 25 respondents knew the royalty share at their 

institution. Five respondents guessed but all of them underestimated the true royalty share. 

Fifteen respondents simply did not know what share of licensing income inventors received at 

                                                
16 This result is not inconsistent with research by Lach and Schankerman (2008), who show that a positive relationship between 
royalty shares and university licensing income is driven primarily by the quality of licenses rather than the number of licenses. 
Unfortunately, the data do not allow us to examine the quality of licenses, or the licensing income per patent. More generally, 
however, research on the relationship between licensing incentives and commercial activities provides mixed results (Perkmann 
et al., 2013). Markman et al. (2004) observed that royalty shares set by universities were negatively related to the number of 
equity licenses. Finally, Markman et al. (2008) compared across universities the share of academic patents that “bypassed” 
Technology Transfer Offices and found no effect of the share of licensing income going to inventors. These ambiguous findings 
may reflect that studies examined different outcomes that may relate in distinct ways to licensing incentives. In addition, prior 
work tends to examine aggregate outcomes at the level of academic institutions while our analysis focuses on the level of 
individual researchers. 
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their institution. The latter group included some individuals who indicated that their research had 

no commercial potential but also several who did see commercial potential. While small in 

number, these interviews suggest that variation in the royalty share across institutions may not 

show a relationship with scientists’ patenting because the exact shares are not salient to most 

academics.17 It may well be, however, that these shares become more salient once a license is 

taken out or royalty income is generated, possibly leading researchers to invest more time by 

working with licensees to increase the value of a license (Jensen & Thursby, 2001; Lach & 

Schankerman, 2008).18 

To examine whether the relationships between motives and patenting may reflect 

underlying differences in researchers’ productivity (e.g., due to ability or different levels of total 

effort) or differences in the nature of research, we include individuals’ number of publications 

and a proxy for the basic versus applied nature of research in the regressions (Table 3, models 4, 

8, 12). Applied research predicts higher patent counts in the physical sciences and in 

engineering. The number of publications has a strong positive relationship with patent counts in 

all three fields, consistent with prior work. Most importantly in our context, including these 

measures has little impact on the coefficients of motives, except that the motive to have an 

impact on society becomes insignificant in the physical sciences. 

Finally, there are noticeable differences across fields in the coefficient of the National 

Research Council’s (NRC) rating of respondents’ academic department. In particular, for the 

physical sciences, the more highly rated the department, the fewer the patents applied for on the 

part of its faculty (p < .05). In the life sciences, we observe a positive relationship (p < .01). In 

light of our earlier observation that career advancement motives have a negative relationship 

with patenting in physics but an (insignificant) positive relationship in the life sciences, these 

results may suggest that patentable work may detract from academic standing in physics but not 

in the life sciences. In Stokes’ (1997) terms, one might infer that the most highly ranked physics 

departments live squarely in Bohr’s quadrant where research towards commercial applications 

detracts from contributions to fundamental understanding and garners less respect. In contrast, 

                                                
17 This interpretation is consistent with recent survey evidence showing that many faculty members are not familiar with their 
institution’s TTO (Huyghe et al., 2016). 
18 When we inquired more generally about reasons not to patent potentially valuable results, opportunity costs emerged as a 
common theme. Some respondents simply felt too busy with their primary job of running a lab. Others saw the process as very 
cumbersome and costly in terms of time, partly due to insufficient support from the TTO. 
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work in Pasteur’s quadrant – seeking both basic insight and potential application – is more 

common and respected in the life sciences, and may even distinguish the best departments. 

Interestingly, the NRC score has no relationship with patenting in engineering – perhaps because 

considerations of use are central to engineering generally (Layton, 1976), and do not distinguish 

more from less esteemed departments. 
 

--- Table 3 about here --- 

5.2 Any patents 

Complementing our analysis of patent counts, we estimate regressions of ANYPATS, 

indicating whether a respondent patents at all (Table 4). These regressions are estimated using 

random-effects logit to account for potential non-independence within institutions. 

The results are broadly consistent with those reported earlier and we focus here on 

differences compared to the regressions of patent counts. First, we see that in the sample of 

physical scientists, the positive relationship between financial motives and patenting remains, but 

the coefficients of advancement motives and of the desire to impact society become insignificant. 

The advancement motive now has a significant positive coefficient at conventional levels in the 

sample of engineers, consistent with our conjecture that patenting is beneficial for career 

advancement in fields that focus on “doing” and on creating useful artifacts (Layton, 1976). 

Finally, the interaction between Share50 and the importance of salary is positive and significant 

in the sample of engineers, suggesting that financial incentives may play a role in leading 

engineers with a strong interest in money to consider patenting their work. Again, however, the 

estimated coefficients remain effectively unchanged with the inclusion of the licensing share 

variable.  
 

--- Table 4 about here --- 

5.3 Robustness checks 

We take additional steps to account for unobserved heterogeneity. First, we include a 

proxy for researchers’ lab size (the log of the number of employees supervised). This measure 

should control for the possibility that some researchers may be named on patents that result 

largely from the work of other lab members, although this problem should be less pronounced 
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than in the case of publications (Haeussler & Sauermann, 2013; Lissoni et al., 2013). Lab size 

may also capture otherwise unobserved research productivity. Lab size has a strong positive 

coefficient in the life sciences and physical sciences but the coefficients of motives and 

incentives are robust (Tables A2-A4, model 1).  

Second, we drop individuals working at Research II and Doctoral granting institutions 

from the sample and focus exclusively on individuals working at Research I institutions and 

medical schools (model 2). Our rationale is that lower rated institutions may be less focused on 

research and may have a less developed technology transfer infrastructure than Research I 

institutions and medical schools. While we observe no qualitative changes in the coefficients of 

Share50, we find that the coefficient of the advancement motive becomes more negative in the 

sample of physical scientists (change from -0.492 to -0.702, p<0.05). As per equation 8 of our 

model, one possible interpretation is that career advancement is tied more strongly to research 

performance in top tier institutions. 

Third, we include university fixed effects to account for unobserved university 

characteristics, such as tenure policies, norms regarding engagement in commercialization, or 

differences in the cost of living tied to location. Due to the relatively small sample size, we 

estimate these models using ANYPATS and linear probability models (model 3). The only 

noticeable difference compared to the baseline models (Table 4) is that the coefficient of the 

importance of contribution to society is now statistically significant at conventional level also in 

the sample of physical scientists.  

Finally, it is conceivable that PhD programs systematically socialize their students with 

respect to motives as well as research and patenting activities, resulting in spurious correlations 

between these measures. In order to address this concern, we estimated key regressions with 

fixed effects for respondents’ PhD granting institutions (Tables A2-A4, model 4). Our qualitative 

findings remain robust. 

Economists typically assume that individuals’ motives and preferences are exogenous 

and stable, and many social psychologists also consider preferences for work attributes to be 

“trait-like”, i.e., relatively stable over time and across contexts (cf. Amabile et al., 1994; Cable & 

Edwards, 2004). It is conceivable, however, that individuals’ reported preferences change in 

response to past decisions or outcomes. Our main strategy to address this issue is to use motives 

as reported in 2001 as predictors of patenting reported in 2003. To further mitigate this concern, 
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we explicitly examined changes in motives by comparing individuals’ responses to the 2001 and 

the 2003 survey. We regressed the observed changes in motives on PATS as well as ANYPATS 

as measured in 2001 (detailed results available upon request). Out of 24 coefficients, only two 

are significant – ANYPATS is associated with a small but significant decrease in the importance 

of challenge and of contribution to society in the life sciences (p<0.05) – contrary to the direction 

of change we would expect due to endogeneity. These results therefore suggest that reverse 

causality is unlikely to be the driver of our featured results. We also re-estimated regressions 

using only those cases who reported no change in any of the motives (Tables A2-A4, model 5); 

the key results are robust.19 

The potential for reverse causality has to be considered also with respect to the royalty 

share measure. While academic institutions arguably do not set royalty shares in response to any 

particular individual’s preferences or performance, it is conceivable that institutions with 

historically low commercial activity among their faculty seek to encourage more activity by 

setting high royalty shares. In order to partly address this issue, we included controls for the 

quality of the institution and for the age of the technology transfer office in our featured 

regressions. It is also possible, however, that researchers engaged in commercial work or with 

stronger financial motives self-select into institutions with higher royalty shares. If these 

individual-level characteristics are unobserved, estimates of the effects of the royalty share on 

patenting activity may be inflated (Lach & Schankerman, 2008). These concerns are mitigated 

due to the fact that we explicitly include measures of motives, ability, and the nature of research 

into our regressions. Moreover, such a selection bias would imply a positive bias in the royalty 

share -patenting relationship, yet we observe no significant relationship. We nevertheless 

explored whether academics systematically move to universities offering higher royalty shares. 

Using data from those scientists and engineers who changed employers between 2001 and 2003 

(N=210), we find no evidence of systematic self-selection into universities with higher royalty 

shares based on individuals’ motives, the basic versus applied nature of research, or patenting 

activities. 

Finally, for researchers at universities with nonlinear royalty sharing schedules, the 

expected royalty share depends on the expected licensing income. For universities with nonlinear 

                                                
19 One notable difference to our baseline models is that the importance of challenge now has a negative coefficient in the life 
sciences sample.  
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schedules, we thus replace our measure of the royalty share for the first $50,000 of licensing 

income (Share50) with the expected royalty share given the average income per license in a 

given university, using the expected shares computed by Lach & Schankerman (2008). Model 6 

in Tables A2-A4 shows that the expected royalty share has no significant coefficient, consistent 

with our main results. 

6 Discussion 

Research seeking to understand academics’ commercial activities often draws on general 

notions of the institution of science. Few scholars have considered how academics’ incentives to 

engage in commercial activities, as well as the associated opportunity costs, may differ across 

scientific fields. Similarly, efforts to understand academics’ commercial activities have focused 

on an archetypical, representative scientist who seeks to satisfy self-interested motives, 

neglecting the potential role of academics’ desire to have a positive impact on others. Using two 

waves of survey data on over 2,000 academic scientists and engineers at 160 U.S. institutions, 

we relate academics’ patenting activities to their academic and nonacademic motives. We find 

that the motives most strongly related to commercial activities differ across the broadly defined 

fields of life sciences, physical sciences, and engineering. In the life sciences, it is the researchers 

with stronger motives to contribute to society who most actively engage in commercial activities. 

In the physical sciences, patenting is predicted by financial motives, and, less robustly, by the 

desire to contribute to society, while career advancement motives have a negative relationship 

with patenting. In engineering, patenting relates to the motives of challenge and advancement. 

These differences are largely consistent with our model that incorporates differences across 

individuals in their motives, as well as differences across fields in the incentives and opportunity 

costs tied to commercial activity. 

Our results are subject to important limitations. First, while we consider a broader set of 

motives than typically considered in the economics and sociology of science, there may be 

additional motives for commercial engagement that are not captured by our measures, including, 

for example, patenting as a way to ensure freedom to work on certain problems or commercial 

activities as a means to acquire resources for research (Murray, 2010; Owen-Smith & Powell, 

2001; Perkmann et al., 2013). Second, we focus on patenting as one of several possible facets of 

commercial activity; future work using different data sources could fruitfully explore other 
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activities such as consulting or the founding of new ventures (Buenstorf, 2009; Perkmann et al., 

2013; Toole & Czarnitzki, 2010). Third, we have measures of financial incentives in the form of 

royalty shares but lack direct measures for other types of incentives. To the extent that motives 

and incentives are correlated or interact (as per the cross partials discussed in section 2.1), the 

estimated coefficients of motives may partly reflect the influence of unobserved incentives. In 

this regard, it is comforting to note that our estimated coefficients on motives are entirely robust 

to the inclusion of both the royalty share variable and university fixed effects that may 

correspond to other unobserved incentives.20 While a cleaner separation of the effects of motives 

versus incentives would be desirable, our results provide strong evidence of the role of different 

types of motivational factors (motives as well as incentives), and of differences in such factors 

across fields. Fourth, while response biases are unlikely to have a major influence on our 

regression results, they remain a potential weakness of survey-based measures. However, survey 

measures provide a unique opportunity to gain insights into motivational factors that are difficult 

to capture using other data sources. Finally, despite our efforts to mitigate endogeneity concerns 

by using two waves of survey data and including a wide range of control variables, we can still 

make no claims regarding causality. As such, future research is needed to more clearly identify 

the causal nature of the relationships observed in our data. 

Despite these limitations, we see several implications for policy makers and managers. A 

major objective of the Bayh-Dole legislation was to generate social benefits by increasing the use 

and exploitation of knowledge developed in academia (Sampat et al., 2003). To the extent that 

academic scientists and engineers care not only about their careers, intellectual challenge, or 

money, but also about making a difference in society, their objectives may be more aligned with 

policy objectives than previously thought. Moreover, to the extent that this is true, Bayh-Dole 

may have influenced commercial activities less by strengthening financial incentives than by 

providing a support function for scientists to advance the commercialization of their research 

without having to make prohibitive sacrifices in their academic work (Goldfarb & Henrekson, 

2003). Similarly, TTO’s may be able to increase faculty participation by highlighting not only 

                                                
20 Although there is considerable variation in universities’ policies regarding the sharing of licensing income, our results show no 
relationship between financial incentives in the specific form of royalty shares and individuals’ patenting. This result does not 
imply, however, that money plays no role in scientists’ decisions to engage in commercial activities. Money may play a 
significant role, for example, in academics’ decisions to start their own companies or to take stakes in startups based on their 
inventions. Similarly, financial incentives – including royalty shares – may affect the amount of effort that faculty are willing to 
commit to working with a licensing firm on the further development of an invention (Jensen & Thursby, 2001).  
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the potential for royalty income, but also the opportunities technology transfer provides for 

having a broader social impact. An interesting tension may arise between TTO’s and faculty, 

however, when the primary goal of a university’s TTO is to generate licensing revenues while 

that of the faculty is to increase social welfare. 

This last point highlights the utility of a deeper understanding of scientists’ private 

motives to engage in commercial activities and their relationship with societal costs and benefits. 

In particular, observers have been concerned about possible detrimental effects of commercial 

activities – patenting in particular – on the sharing and diffusion of academic knowledge (Murray 

& Stern, 2007; Perkmann et al., 2013). We suggest that intellectual property rights can be used in 

different ways, and their effects on knowledge flows likely depend on the motives of the 

inventors and patent holders. A scientist who patents in order to gain peer recognition or to 

protect the public commons, for example, may share knowledge more freely than a scientist who 

patents in order to appropriate financial returns. As such, non-financial motives may explain why 

many scientists continue to publish actively even when they engage in commercial activities 

(Azoulay et al., 2007; Fabrizio & Minin, 2008), or why they disclose knowledge with potential 

commercial value in both patents and publications (Gans et al., 2017). Given our finding that the 

motives associated with commercial activities differ systematically across fields, however, future 

work should examine carefully whether and how the societal impacts of commercial activities 

also differ across fields. Similarly, there has been a concern that commercial activities may 

undermine effort directed towards traditional academic research. Our discussion suggests that the 

magnitude of such effects should differ across fields, depending on the “distance” between 

commercial and conventional academic work. As such, there may be little reason for concern in 

fields where academic and commercial work are closely aligned (Crespi et al., 2011; Fabrizio & 

Minin, 2008). Commercial outputs may require a greater re-allocation of effort, however, in 

fields where commercial work is more distant from traditional academic research. 

Insights into academics’ motives to engage with the commercial sector should also be of 

interest to firms who seek to build linkages with academia in order to improve innovative 

capabilities (Cockburn & Henderson, 1998; Fleming & Sorenson, 2004; Gittelman & Kogut, 

2003; Zucker et al., 2002). While scientists will expect financial compensation for their efforts, 

they may also consider the degree to which collaborations with firms can help them achieve 

other goals such as making a difference in people’s lives. Prior work has shown that scientists 
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are willing to give up pay in order to publish research results and gain peer recognition 

(Sauermann & Roach, 2014; Stern, 2004) and future research could study whether scientists 

make similar trade-offs between pay and the opportunity to have a broader societal impact (see 

Bode & Singh, 2016). 

Our study also has implications for the broader literature on science and innovation. First, 

as noted above, much of the existing conceptual and empirical work studies the institution of 

science using a rather abstract perspective, often building on the seminal work of Robert Merton 

(1973). Such work has allowed us to understand the distinctive features of science, yet future 

research may benefit from considering more explicitly how the institution of science varies 

across fields or organizational contexts (Crespi et al., 2011; Sauermann & Stephan, 2013). 

Attention to such differences may provide novel insights into many important questions such as 

the interactions between “science” and “technology” (Dasgupta & David, 1994), the societal 

impact of publicly funded research, or scientists’ collaborations and mobility. Second, much of 

the literature views scientists’ decisions as reflecting motives related to career advancement, 

intellectual challenge, or money (Dasgupta & David, 1994; Gans et al., 2017; Stephan, 2012). 

Our results suggest that future work should consider a broader range of motives, notably the 

desire to have an impact on society. We suspect that this motive may play an important role not 

just in scientists’ decisions to engage in commercial activities but also in other decisions such as 

which career path to take, which employer to work for, or what research problems to tackle (see 

Besley & Ghatak, 2005; D’Este et al., 2018; Francois, 2007; Salter et al., 2017). More generally, 

a broader view of scientists’ motives and the consideration of differences in the functioning of 

the scientific enterprise across fields may enrich the study of science and may allow us to 

provide more robust advice to managers, policy makers, university administrators and other 

stakeholders. 
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Table 1: Additional Measures 
Variable Name Measure Description 
Applied research  Respondents indicated on a list of work activities the first and second 

most important activities for them in terms of time spent. Among those 
activities is “basic research”, defined on the survey instrument as “study 
directed toward gaining scientific knowledge primarily for its own sake” 
and “applied research”, defined as “study directed toward scientific 
knowledge to meet a recognized need”. We created a variable APPLIED 
that is coded as 1 if the respondent indicated that he was only engaged in 
basic research, 2 if the respondent was engaged in both basic and applied 
research, and 3 if the respondent was engaged only in applied research.21 
This measure is independent of the disclosure mechanism and thus 
complements existing work using patent- or publication based proxies of 
the nature of research. 

Publications Each respondent reported the number of (co)authored articles that have 
been accepted for publication in a refereed professional journal over the 
last 5 years. We interpret this measure as a proxy for research 
productivity and the amount of knowledge that is potentially patentable 
(cf. Azoulay et al., 2007). Given the skewed nature of this measure, we 
use the natural logarithm in our regression analyses. 

Type of academic 
institution 

Dummy variables indicating whether academic employer is a Carnegie I 
(omitted), Carnegie II, Doctorate granting institution, or medical school. 

Private/public status of 
academic institution 

Dummy = 1 if academic institution is private. 

Quality of PhD program 
(PhD NRC score) 

We matched the names of the PhD-granting institution and the field of the 
PhD to the National Research Council’s 1993 evaluation of PhD program 
quality (Goldberger et al., 1995). The particular quality measure we use is 
a survey rating of “program effectiveness in educating research scholars 
and scientists”, ranging from 0 (“not effective”) to 5 (“extremely 
effective”). This measure formally captures the quality of an individuals’ 
graduate education, but should also reflect innate ability to the extent that 
high-ability individuals self-select or are selected into high-quality PhD 
programs. 

Quality of employer 
department 
(Employer NRC score) 

As a proxy for the quality of the employer, we use the 1993 NRC ratings 
of faculty quality in the respondents’ field at the respondents’ current 
employer (e.g., the ratings for the quality of the physics faculty for an 
individual with a PhD in physics).  

Tenure status 
 

Dummy variables indicating whether a respondent was not on the tenure 
track, on the tenure track but not tenured (omitted category), or tenured.  

Age of TTO 
 

Years since the employing institution started a formal technology transfer 
office. Used as a proxy for institutional support for commercial activities 
as well as for past commercial activities at the level of the institution. 

Gender Dummy = 1 if respondent is male 
Race  Dummies for Asian, white, and other 
Citizenship status Dummy = 1 for U.S. citizens 

 

                                                
21 Other activities that are frequently mentioned in this question include teaching and managing or supervising. 
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Table 2: Descriptive Statistics 

  
  

Variable	type Mean SD Mean SD Mean SD
Patent	applications count 0.62 3.43 0.55 2.69 1.08 3.19
Any	patent	applications dummy 0.21 0.16 0.28
Imp.	Salary 4-point 3.36 0.55 3.29 0.59 3.38 0.53
Imp.	Challenge 4-point 3.87 0.35 3.91 0.29 3.89 0.32
Imp.	Advancement 4-point 3.48 0.61 3.40 0.65 3.44 0.64
Imp.	Contr.	Society 4-point 3.57 0.57 3.44 0.62 3.59 0.57
Share	50 continuous 0.42 0.10 0.42 0.11 0.41 0.10
Applied	research 3-point 1.62 0.83 1.46 0.77 2.20 0.92
Publications count 13.71 13.96 15.62 16.73 11.50 11.73
Ln_publications continuous 2.35 0.86 2.41 0.95 2.19 0.86
Carnegie	I dummy 0.44 0.70 0.66
Carnegie	II dummy 0.09 0.09 0.14
Doctorate	granting dummy 0.04 0.13 0.12
Medical	school dummy 0.44 0.08 0.08
Private	university dummy 0.27 0.28 0.26
Male dummy 0.69 0.84 0.84
Age continuous 47.99 9.09 48.56 10.47 46.06 9.45
Not	tenure	track dummy 0.35 0.28 0.12
Tenure	track	not	tenured dummy 0.19 0.14 0.31
Tenured dummy 0.45 0.58 0.57
Employer	NRC	score continuous 3.25 0.81 3.24 0.90 3.05 0.85
PhD	NRC	score continuous 3.50 0.66 3.72 0.74 3.53 0.76
TTO	age continuous 20.02 11.98 19.19 13.04 19.75 14.29
White dummy 0.75 0.78 0.63
Asian dummy 0.16 0.13 0.21
Other dummy 0.09 0.09 0.15
US	citizen dummy 0.93 0.90 0.89
Changed	employer dummy 0.12 0.10 0.07
Employees	supervised count 4.56 7.67 3.59 5.82 4.38 5.44

Life	Sciences Physical	Sciences Engineering
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Table 3: Patent Counts 
 

 
 
Note: Negative binomial regression, clustered standard errors. Omitted categories are Carnegie I 
institution, Tenure track but not tenured. *=significant at 5%; **=significant at 1%. 

 
  

1 2 3 4 5 6 7 8 9 10 11 12
nbreg nbreg nbreg nbreg nbreg nbreg nbreg nbreg nbreg nbreg nbreg nbreg
PATS PATS PATS PATS PATS PATS PATS PATS PATS PATS PATS PATS

Imp.	Salary 0.021 0.024 0.022 0.028 0.439* 0.473* 0.505* 0.523* -0.131 -0.125 -0.112 -0.125
[0.160] [0.161] [0.162] [0.177] [0.220] [0.224] [0.222] [0.226] [0.186] [0.190] [0.193] [0.197]

Imp.	Challenge 0.04 0.033 0.027 -0.163 -0.103 -0.077 -0.058 -0.092 2.047** 2.060** 2.037** 1.839**
[0.309] [0.309] [0.310] [0.321] [0.422] [0.417] [0.421] [0.435] [0.568] [0.563] [0.566] [0.558]

Imp.	Advancement 0.226 0.227 0.239 0.165 -0.467* -0.488* -0.492* -0.605** 0.342 0.347 0.346 0.319
[0.172] [0.172] [0.176] [0.183] [0.217] [0.220] [0.218] [0.222] [0.178] [0.179] [0.178] [0.164]

Imp.	Contr.	Society 0.663** 0.665** 0.664** 0.720** 0.494* 0.449* 0.451* 0.305 -0.098 -0.1 -0.099 -0.215
[0.172] [0.171] [0.171] [0.156] [0.224] [0.222] [0.222] [0.228] [0.202] [0.203] [0.207] [0.195]

Share50 -0.313 -0.286 -0.642 -1.797 -1.735 -1.398 -0.282 -0.632 -0.467
[1.007] [1.009] [1.002] [1.385] [1.391] [1.386] [1.082] [1.321] [1.264]

Imp.	Salary	X	Share50 0.931 0.704 0.791 0.133 1.755 2.457
[1.345] [1.255] [1.794] [1.612] [2.046] [1.993]

Applied	research 0.071 0.373* 0.263*
[0.117] [0.175] [0.105]

Ln_Publications 0.664** 0.467** 0.461**
[0.126] [0.136] [0.135]

Carnegie	II 0.63 0.637 0.625 0.504 -0.66 -0.742 -0.701 -0.455 -0.29 -0.302 -0.315 -0.098
[0.335] [0.330] [0.331] [0.355] [0.396] [0.403] [0.398] [0.418] [0.346] [0.354] [0.355] [0.354]

Doct.	Granting 0.181 0.204 0.193 0.144 -0.735 -0.687 -0.693 -0.617 -0.33 -0.325 -0.348 -0.305
[0.444] [0.444] [0.437] [0.493] [0.501] [0.509] [0.502] [0.446] [0.426] [0.427] [0.438] [0.439]

Medical	school 0.763** 0.776** 0.781** 0.656** 1.229* 1.095* 1.122* 0.993 0.644 0.638 0.649 0.74
[0.207] [0.197] [0.197] [0.193] [0.497] [0.518] [0.531] [0.513] [0.417] [0.421] [0.423] [0.391]

Private	university -0.327 -0.33 -0.334 -0.505* 0.069 0.192 0.19 0.16 -0.027 -0.006 0.011 0.035
[0.231] [0.235] [0.234] [0.227] [0.315] [0.349] [0.350] [0.324] [0.220] [0.240] [0.244] [0.252]

TTO	age 0.01 0.009 0.009 0.01 -0.003 -0.008 -0.008 -0.004 -0.007 -0.008 -0.01 -0.008
[0.005] [0.006] [0.007] [0.007] [0.008] [0.009] [0.009] [0.009] [0.007] [0.008] [0.009] [0.008]

Employer	NRC	score 0.573** 0.576** 0.577** 0.487** -0.448* -0.474* -0.472* -0.512* 0.201 0.203 0.199 0.119
[0.159] [0.160] [0.161] [0.161] [0.213] [0.216] [0.216] [0.217] [0.194] [0.194] [0.195] [0.192]

Not	tenure	track -0.164 -0.164 -0.163 -0.306 0.374 0.443 0.485 0.596 0.185 0.185 0.199 0.573
[0.229] [0.229] [0.231] [0.264] [0.526] [0.523] [0.484] [0.488] [0.408] [0.409] [0.410] [0.449]

Tenured 0.689** 0.689** 0.695** 0.174 -0.208 -0.221 -0.183 -0.335 0.840* 0.831* 0.858* 0.823*
[0.234] [0.233] [0.234] [0.252] [0.476] [0.473] [0.447] [0.473] [0.347] [0.351] [0.349] [0.364]

PhD	NRC	score -0.02 -0.02 -0.016 0.084 0.153 0.15 0.152 0.267 0.244 0.24 0.246 0.307
[0.147] [0.147] [0.147] [0.159] [0.191] [0.192] [0.193] [0.191] [0.167] [0.166] [0.168] [0.171]

Subfield incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.
Male 0.346 0.351 0.36 0.302 -0.077 -0.032 -0.031 -0.063 0.567 0.586 0.59 0.457

[0.201] [0.199] [0.199] [0.188] [0.378] [0.361] [0.365] [0.341] [0.311] [0.314] [0.317] [0.303]
Age 0.153 0.154 0.157 0.14 0.169 0.187 0.179 0.113 -0.144 -0.141 -0.149 -0.232*

[0.108] [0.107] [0.108] [0.098] [0.131] [0.131] [0.135] [0.134] [0.097] [0.097] [0.097] [0.103]
Age	squared -0.001 -0.001 -0.002 -0.001 -0.002 -0.002 -0.002 -0.001 0.001 0.001 0.001 0.002*

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]
Race incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.

US	citizen 0.588 0.588 0.599 0.466 0.271 0.262 0.259 0.168 0.685* 0.690* 0.697* 0.626
[0.342] [0.343] [0.341] [0.411] [0.475] [0.462] [0.460] [0.457] [0.334] [0.337] [0.338] [0.372]

Constant -12.808** -12.700** -12.824** -12.818** -6.384 -5.962 -6.032 -5.736 -9.494** -9.526** -9.188** -7.253*
[2.777] [2.865] [2.916] [2.781] [3.861] [3.842] [3.831] [3.971] [3.319] [3.315] [3.305] [3.229]

Observations 1037 1037 1037 1037 585 585 585 585 472 472 472 472
alphaest 4.61 4.612 4.614 4.018 5.25 5.152 5.127 4.701 3.751 3.747 3.725 3.4

Chi-Square 133.182 139.877 139.903 173.883 153.124 157.883 156.674 212.57 111.036 110.6 106.305 134.002
df 24 25 26 28 22 23 24 26 24 25 26 28

Life	Sciences Physical	Sciences Engineering
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Table 4: Any Patents 
 

 
 
Note: Random effects logit. Omitted categories are Carnegie I institution, Tenure track but not 
tenured. *=significant at 5%; **=significant at 1%. 

1 2 3 4 5 6 7 8 9 10 11 12
xtlogit xtlogit xtlogit xtlogit xtlogit xtlogit xtlogit xtlogit xtlogit xtlogit xtlogit xtlogit

ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS ANYPATS
Imp.	Salary 0.042 0.048 0.055 0.056 0.567* 0.566* 0.552* 0.537* 0.079 0.09 0.143 0.121

[0.156] [0.155] [0.156] [0.163] [0.256] [0.256] [0.260] [0.261] [0.237] [0.238] [0.241] [0.244]
Imp.	Challenge 0.071 0.078 0.074 -0.038 -0.076 -0.081 -0.089 -0.08 1.828** 1.865** 1.944** 1.954**

[0.286] [0.286] [0.286] [0.295] [0.544] [0.542] [0.543] [0.539] [0.647] [0.649] [0.655] [0.663]
Imp.	Advancement 0.074 0.071 0.076 0.018 -0.178 -0.178 -0.171 -0.252 0.451* 0.461* 0.460* 0.435*

[0.151] [0.151] [0.151] [0.157] [0.255] [0.255] [0.256] [0.261] [0.214] [0.215] [0.216] [0.220]
Imp.	Contr.	Society 0.601** 0.607** 0.607** 0.655** 0.494 0.494 0.492 0.423 -0.075 -0.091 -0.083 -0.129

[0.172] [0.172] [0.172] [0.176] [0.267] [0.267] [0.268] [0.269] [0.216] [0.216] [0.218] [0.220]
Share50 -1.663 -1.604 -1.665 -0.564 -0.552 -0.375 -1.143 -1.63 -1.53

[1.018] [1.030] [1.060] [1.575] [1.580] [1.577] [1.260] [1.325] [1.356]
Imp.	Salary	X	Share50 1.182 1.205 -0.73 -0.714 5.693* 6.454**

[1.516] [1.544] [2.195] [2.219] [2.339] [2.406]
Applied	research 0.029 0.348 0.289*

[0.118] [0.188] [0.135]
Ln_Publications 0.687** 0.301 0.278

[0.115] [0.168] [0.151]
Carnegie	II 0.608 0.627 0.625 0.622 0.205 0.186 0.172 0.264 -0.316 -0.364 -0.356 -0.344

[0.332] [0.330] [0.330] [0.339] [0.546] [0.548] [0.552] [0.552] [0.400] [0.404] [0.406] [0.410]
Doct.	Granting 0.14 0.178 0.178 0.145 0.35 0.363 0.356 0.336 -0.157 -0.148 -0.227 -0.221

[0.547] [0.546] [0.547] [0.570] [0.556] [0.556] [0.558] [0.556] [0.435] [0.434] [0.441] [0.448]
Medical	school 0.512** 0.539** 0.538** 0.471* 0.171 0.166 0.159 0.031 0.3 0.302 0.377 0.356

[0.194] [0.194] [0.194] [0.199] [0.485] [0.485] [0.485] [0.487] [0.421] [0.422] [0.430] [0.439]
Private	university -0.202 -0.174 -0.175 -0.274 0.13 0.152 0.151 0.081 0.127 0.176 0.197 0.17

[0.220] [0.217] [0.217] [0.224] [0.375] [0.378] [0.380] [0.376] [0.270] [0.275] [0.278] [0.280]
TTO	age 0.01 0.005 0.006 0.007 -0.004 -0.006 -0.006 -0.005 -0.006 -0.01 -0.012 -0.013

[0.008] [0.008] [0.008] [0.009] [0.013] [0.014] [0.014] [0.014] [0.009] [0.010] [0.010] [0.010]
Employer	NRC	score 0.300* 0.285* 0.288* 0.253 0.06 0.052 0.052 0.023 0.259 0.261 0.273 0.285

[0.144] [0.142] [0.142] [0.146] [0.244] [0.244] [0.245] [0.245] [0.191] [0.192] [0.193] [0.195]
Not	tenure	track -0.542* -0.539* -0.532* -0.443 0.083 0.099 0.094 0.119 -0.083 -0.079 -0.017 0.063

[0.251] [0.251] [0.251] [0.259] [0.489] [0.490] [0.491] [0.496] [0.424] [0.424] [0.428] [0.442]
Tenured 0.149 0.159 0.155 -0.086 -0.221 -0.227 -0.232 -0.273 0.636 0.641 0.718* 0.715*

[0.257] [0.257] [0.257] [0.265] [0.488] [0.488] [0.489] [0.490] [0.346] [0.348] [0.352] [0.357]
PhD	NRC	score -0.02 -0.023 -0.019 -0.05 0.036 0.04 0.037 0.091 0.05 0.04 0.045 0.078

[0.132] [0.132] [0.132] [0.137] [0.219] [0.219] [0.220] [0.222] [0.180] [0.180] [0.181] [0.184]
Subfield incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.

Male 0.146 0.148 0.152 0.049 -0.101 -0.101 -0.1 -0.105 0.495 0.536 0.514 0.426
[0.186] [0.186] [0.186] [0.192] [0.397] [0.397] [0.398] [0.395] [0.341] [0.344] [0.348] [0.352]

Age 0.06 0.064 0.067 0.05 0.23 0.234 0.237 0.203 -0.156 -0.159 -0.194 -0.213
[0.091] [0.090] [0.091] [0.091] [0.145] [0.145] [0.146] [0.146] [0.124] [0.124] [0.125] [0.127]

Age	squared -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 0.001 0.001 0.002 0.002
[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

Race incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl. incl.
US	citizen 0.339 0.331 0.336 0.352 -0.272 -0.28 -0.279 -0.275 1.026* 1.066* 1.103* 1.110*

[0.379] [0.379] [0.379] [0.392] [0.509] [0.509] [0.510] [0.506] [0.467] [0.470] [0.475] [0.479]
Constant -8.337** -7.625** -7.815** -8.241** -10.577* -10.384* -10.384* -10.539* -9.370* -8.972* -8.525* -9.010*

[2.642] [2.672] [2.681] [2.707] [4.298] [4.325] [4.332] [4.288] [4.071] [4.089] [4.095] [4.148]
Observations 1037 1037 1037 1037 585 585 585 585 472 472 472 472
Chi-Square 72.828 75.381 75.791 102.087 59.052 59.1 59.031 62.272 54.463 54.556 57.722 62.826

df 24 25 26 28 22 23 24 26 24 25 26 28

Life	Sciences Physical	Sciences Engineering
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APPENDIX 
 

Table A1: Correlations Between Motives by Field 

 
Note: *=significant at 5% 

 
  

1 2 3
Full	Sample 1 Imp.	Salary 1

2 Imp.	Challenge -0.0254 1
3 Imp.	Advancement 0.2984* 0.2179* 1
4 Imp.	Contr.	Society 0.02 0.2703* 0.1970*

Life	Sciences 1 Imp.	Salary 1
2 Imp.	Challenge -0.02 1
3 Imp.	Advancement 0.2541* 0.2416* 1
4 Imp.	Contr.	Society 0.0028 0.2996* 0.2123*

Physical	Sciences 1 Imp.	Salary 1
2 Imp.	Challenge -0.0008 1
3 Imp.	Advancement 0.3585* 0.2088* 1
4 Imp.	Contr.	Society 0.0574 0.2086* 0.1422*

Engineering 1 Imp.	Salary 1
2 Imp.	Challenge -0.0582 1
3 Imp.	Advancement 0.3046* 0.1939* 1
4 Imp.	Contr.	Society -0.0297 0.3157* 0.2248*
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Table A2: Supplementary Analyses – Life Sciences 

 
 

Note: Omitted categories are Carnegie I institution, Tenure track but not tenured. *=significant at 
5%; **=significant at 1%. 

lnsupdir top&med fe	xtlogit phd	FE changefacs lsexpected

Full Top&Med Full Full No	change L&S2008

1 2 3 4 5 6

nbreg nbreg xtlogit xtlogit nbreg nbreg

PATS PATS ANYPATS ANYPATS PATS PATS
Imp.	Salary -0.006 0.022 0.128 0.015 0.47 -0.065

[0.166] [0.178] [0.167] [0.167] [0.381] [0.180]

Imp.	Challenge -0.118 -0.043 0.167 0.075 -2.587** 0.124

[0.302] [0.347] [0.308] [0.323] [0.692] [0.319]

Imp.	Advancement 0.181 0.299 0.011 0.06 0.257 0.185

[0.179] [0.183] [0.160] [0.158] [0.359] [0.188]

Imp.	Contr.	Society 0.630** 0.621** 0.482** 0.735** 1.876** 0.629**

[0.158] [0.189] [0.181] [0.186] [0.416] [0.176]

Share50 -0.802 -0.42 -1.276 -0.859

[1.015] [1.126] [1.095] [2.199]

Imp.	Salary	X	Share50 1.033 -0.122 0.781 -0.079 -2.802

[1.280] [1.515] [1.748] [1.503] [2.758]

ShareExp. 0.635

[0.589]

Imp.	Salary	X	ShareExp. -0.133

[0.955]

Ln_Employees	superv. 0.878**

[0.133]

Employer	FE incl.

PhD	FE incl.

Carnegie	II 0.487 0.618 0.84 0.747

[0.341] [0.340] [0.509] [0.469]

Doct.	Granting 0.006 -0.316 -15.507** -0.359

[0.367] [0.627] [0.794] [0.492]

Medical	school 0.678** 0.825** 0.597** 1.736** 0.864**

[0.172] [0.195] [0.208] [0.410] [0.218]

Private	university -0.438 -0.280 0.044 -1.575** -0.241

[0.224] [0.247] [0.225] [0.457] [0.274]

TTO	age 0.007 0.012 0.003 0.006 0.016*

[0.007] [0.007] [0.009] [0.013] [0.007]

Employer	NRC	score 0.475** 0.519** 0.406 0.212 1.152** 0.423*

[0.149] [0.168] [0.424] [0.149] [0.330] [0.197]

Not	tenure	track -0.02 -0.138 -0.525* -0.477 -0.483 -0.39

[0.264] [0.239] [0.263] [0.270] [0.449] [0.248]

Tenured 0.383 0.743** 0.084 0.031 1.012** 0.495

[0.245] [0.244] [0.271] [0.276] [0.326] [0.261]

PhD	NRC	score -0.114 0.011 0.013 -0.189 -0.019 -0.071

[0.145] [0.158] [0.144] [0.546] [0.230] [0.167]

Subfield incl. incl. incl. incl. incl. incl.

Male 0.279 0.304 0.054 0.244 0.275 0.204

[0.199] [0.211] [0.196] [0.203] [0.343] [0.226]

Age 0.023 0.208 0.048 0.096 0.093 0.249*

[0.112] [0.118] [0.096] [0.099] [0.136] [0.108]

Age	squared 0.000 -0.002 -0.001 -0.001 -0.001 -0.002*

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

Race incl. incl. incl. incl. incl. incl.

US	citizen 0.22 0.675 0.509 0.464 0.484 0.566

[0.395] [0.379] [0.387] [0.440] [1.054] [0.385]

Constant -8.342** -13.967** -8.477 -14.499**

Observations 1037 908 889 837 332 832

df 27 24 20 26 26 26
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Table A3: Supplementary Analyses – Physical Sciences 

 
Note: Omitted categories are Carnegie I institution, Tenure track but not tenured. *=significant at 
5%; **=significant at 1%.  

lnsupdir top&med fe	xtlogit phd	FE changefacs lsexpected

Full Top&Med Full Full No	change L&S2008

1 2 3 4 5 6

nbreg nbreg xtlogit xtlogit nbreg nbreg

PATS PATS ANYPATS ANYPATS PATS PATS
Imp.	Salary 0.584* 0.486 0.59 0.552* 1.320** 0.843**

[0.240] [0.259] [0.331] [0.277] [0.412] [0.245]

Imp.	Challenge 0.045 0.477 -0.627 -0.258 0.585 0.024

[0.420] [0.437] [0.703] [0.639] [0.825] [0.424]

Imp.	Advancement -0.540* -0.702** -0.28 -0.427 -1.121** -0.449*

[0.230] [0.246] [0.279] [0.278] [0.403] [0.223]

Imp.	Contr.	Society 0.331 0.536* 0.714* 0.552 0.326 0.275

[0.218] [0.257] [0.356] [0.305] [0.442] [0.257]

Share50 -1.376 -2.015 -0.094 -0.12

[1.307] [1.499] [1.673] [2.442]

Imp.	Salary	X	Share50 0.916 0.322 -0.816 1.052 -2.416

[1.743] [1.790] [2.743] [2.422] [3.961]

ShareExp. -0.837

[1.118]

Imp.	Salary	X	ShareExp. 1.503

[1.755]

Ln_Employees	superv. 0.388**

[0.141]

Employer	FE incl.

PhD	FE incl.

Carnegie	II -0.506 -0.296 -0.583 -0.195

[0.382] [0.695] [0.618] [0.536]

Doct.	Granting -0.534 -0.171 0.025 -0.569

[0.499] [0.611] [0.790] [0.516]

Medical	school 1.126* 0.965 0.279 0.142 1.238*

[0.533] [0.556] [0.583] [0.602] [0.585]

Private	university 0.257 0.406 0.24 -0.166 0.473

[0.331] [0.395] [0.377] [0.463] [0.363]

TTO	age -0.005 -0.019* -0.017 0.000 -0.008

[0.009] [0.009] [0.016] [0.020] [0.008]

Employer	NRC	score -0.485* -0.533* 0.357 0.03 -0.221 -0.642**

[0.216] [0.235] [0.543] [0.267] [0.401] [0.234]

Not	tenure	track 0.635 0.352 0.59 0.366 1.071 1.113*

[0.470] [0.549] [0.586] [0.628] [0.741] [0.567]

Tenured -0.263 -0.528 -0.005 0.276 1.381* 0.425

[0.444] [0.555] [0.595] [0.628] [0.680] [0.507]

PhD	NRC	score 0.181 0.228 0.439 1.151 0.308 0.188

[0.192] [0.236] [0.309] [0.904] [0.302] [0.211]

Subfield incl. incl. incl. incl. incl. incl.

Male -0.057 0.280 -0.137 0.389 -0.137 0.091

[0.360] [0.426] [0.532] [0.521] [0.540] [0.420]

Age 0.143 0.292 0.211 0.327 0.646** 0.196

[0.129] [0.155] [0.163] [0.180] [0.237] [0.136]

Age	squared -0.001 -0.003 -0.002 -0.003 -0.006** -0.002

[0.001] [0.001] [0.002] [0.002] [0.002] [0.001]

Race incl. incl. incl. incl. incl. incl.

US	citizen 0.205 -0.028 -0.243 -0.835 -0.299 -0.121

[0.444] [0.500] [0.613] [0.582] [0.660] [0.500]

Constant -5.93 -9.975* -22.544** -7.740*

Observations 585 459 298 428 175 474

df 25 22 18 24 24 24



 

42 

Table A4: Supplementary Analyses – Engineering 

 
Note: Omitted categories are Carnegie I institution, Tenure track but not tenured. *=significant at 
5%; **=significant at 1%. 

lnsupdir top&med fe	xtlogit phd	FE changefacs lsexpected

Full Top&Med Full Full No	change L&S2008

1 2 3 4 5 6

nbreg nbreg xtlogit xtlogit nbreg nbreg

PATS PATS ANYPATS ANYPATS PATS PATS
Imp.	Salary -0.087 0.251 0.263 0.141 -0.376 -0.088

[0.197] [0.204] [0.284] [0.275] [0.371] [0.192]

Imp.	Challenge 2.027** 1.862** 1.944** 1.490* 14.832** 1.389*

[0.570] [0.588] [0.713] [0.667] [0.820] [0.628]

Imp.	Advancement 0.344 0.118 0.342 0.521* 0.663 0.378*

[0.177] [0.230] [0.257] [0.258] [0.386] [0.187]

Imp.	Contr.	Society -0.11 -0.217 -0.182 0.048 0.452 -0.059

[0.212] [0.270] [0.287] [0.257] [0.453] [0.290]

Share50 -0.622 -1.693 -1.936 1.949

[1.327] [1.436] [1.697] [2.791]

Imp.	Salary	X	Share50 1.748 2.973 6.672* 5.56 -1.13

[2.044] [2.156] [3.013] [2.866] [4.146]

ShareExp. 0.647

[0.897]

Imp.	Salary	X	ShareExp. 1.408

[1.360]

Ln_Employees	superv. 0.05

[0.119]

Employer	FE incl.

PhD	FE incl.

Carnegie	II -0.334 -0.573 1.199* 0.112

[0.344] [0.576] [0.517] [0.467]

Doct.	Granting -0.343 -0.394 0.112 -0.577

[0.442] [0.537] [0.852] [0.678]

Medical	school 0.668 0.539 0.077 1.113* 0.317

[0.421] [0.442] [0.539] [0.510] [0.407]

Private	university 0.017 0.327 0.437 -0.713 0.192

[0.245] [0.290] [0.339] [0.372] [0.297]

TTO	age -0.01 -0.016 -0.015 0.015 -0.003

[0.009] [0.009] [0.012] [0.015] [0.009]

Employer	NRC	score 0.194 0.252 -0.278 0.279 0.479 0.399

[0.194] [0.214] [0.444] [0.221] [0.311] [0.217]

Not	tenure	track 0.211 0.084 -0.012 0.217 1.287 -0.151

[0.409] [0.447] [0.487] [0.488] [0.667] [0.483]

Tenured 0.870* 0.909* 0.700 0.641 0.838 1.027*

[0.352] [0.372] [0.434] [0.402] [0.458] [0.422]

PhD	NRC	score 0.242 0.194 -0.252 0.311 0.369 -0.045

[0.169] [0.199] [0.239] [0.498] [0.271] [0.186]

Subfield incl. incl. incl. incl. incl. incl.

Male 0.585 0.642* 0.574 0.516 0.78 0.769*

[0.321] [0.324] [0.423] [0.391] [0.456] [0.341]

Age -0.151 -0.252* -0.184 -0.234 -0.281 -0.051

[0.099] [0.105] [0.150] [0.151] [0.158] [0.105]

Age	squared 0.001 0.002* 0.001 0.002 0.003 0.000

[0.001] [0.001] [0.001] [0.001] [0.002] [0.001]

Race incl. incl. incl. incl. incl. incl.

US	citizen 0.693* 0.472 0.843 1.110* 2.471** 0.306

[0.334] [0.376] [0.523] [0.557] [0.668] [0.471]

Constant -9.115** -5.112 -64.541** -9.768**

Observations 472 351 348 388 165 352

df 27 24 20 26 26 26




