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ABSTRACT

Advocates of market mechanisms for addressing greenhouse gases and other pollutants typically 
argue that it is a necessary step in pricing polluting goods at their social marginal cost (SMC). 
Retail electricity prices, however, deviate from social marginal cost for many reasons.  Some 
cause prices to be too low–such as pollution externalities–while others cause prices to be too 
high–such as recovery of fixed costs. Furthermore, because electricity is not storable, marginal 
cost can fluctuate widely within even a day, while nearly all residential retail prices are static over 
weeks or months. We study the relationship between residential electricity prices and social 
marginal cost, both on average and over time.  We find that while the difference between the 
standard residential electricity rate and the utility's average (over hours) social marginal cost is 
relatively small on average in the US, there is large regional variation, with price well above 
average SMC in some areas and price well below average SMC in other areas.  Furthermore, we 
find that for most utilities the largest source of difference between price and SMC is the failure of 
price to reflect variation in SMC over time. In a standard demand framework, total deadweight 
loss over a time period is proportional to the sum of squared differences between a constant price 
and SMC, which can be decomposed into the component due to price deviating from average 
SMC and the component due to the variation in SMC.  Our estimates imply if demand elasticity 
were the same in response to hourly price variation as to changes in average price, then for most 
utilities the majority of deadweight loss would be attributable to the failure to adopt time-varying 
pricing. Nonetheless, the majority of deadweight loss nationally would be attributable to a few 
areas–led by California–where price greatly exceeds average SMC.
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The efficient functioning of markets relies on prices accurately reflecting the
short-run social marginal cost of supply to both producers and consumers. How-
ever, in utility industries that have traditionally been viewed as natural monop-
olies, the theoretical ideal of marginal cost pricing has been elusive in practice.
One stream of research dating back to Ramsey (1927) has examined how price
discrimination and non-linear tariffs can be used to mitigate or even eliminate
deadweight loss while still allowing a utility with declining average cost to re-
cover its total costs. Another research literature, growing out of Pigou’s (1920)
seminal work, has shown that environmental externalities lead firms to charge
prices below social marginal cost. A third and somewhat more recent literature
– starting with Boiteaux (1960) and Steiner (1957) – has emphasized that the
highly time-varying costs of delivering electricity, due to its high cost of storage,
suggests the need for dynamic pricing in order to reflect the constantly changing
cost.

In this paper, we examine the relationship between marginal retail prices and
the social marginal cost of supply in the electricity industry. We focus on the
most common residential electricity tariffs. In the $174 billion residential market,
the efficiency implications of a gap between the marginal cost of service and the
marginal price paid by consumers are growing more serious with the availability of
substitute technologies such as rooftop solar photovoltaics and small-scale battery
storage. These technologies make the demand of end-use consumers more price
elastic, and therefore can magnify the deadweight loss from mis-pricing. Utilities
around the world have expressed concern about the prospect of a “death-spiral,”
in which reduced consumption leads to higher regulated prices which in turn leads
to more customer departures (Costello and Hemphill 2014).

Retail pricing in electricity market suffers from at least three distortions: (a)
because neither buyers nor sellers bear the pollution costs of electricity generation,
prices will tend to be below their optimal level, (b) because there are significant
economies of scale in electricity distribution, and possibly other parts of the value
chain, a linear price likely will need to exceed private marginal cost of the utility
in order to recover its total costs, and (c) because electricity is not storable and
demand fluctuates continuously, the private marginal cost changes continuously,
yet retail prices do not reflect those fluctuations. Notably, these distortions do
not all work in the same direction and can at times potentially offset one another.
Research on the electricity industry and the policies that impact it, however, has
tended to focus on each of these distortions in isolation. Since at least Buchanan
(1969) it has been well understood in economics that markets with multiple dis-
tortions may not be improved by addressing one of the distortions in isolation.

In this paper, we take a step towards a holistic view by attempting to measure,
with high frequency, the departure of residential electricity prices from the eco-
nomic ideal of short-run social marginal cost (SRSMC). We then decompose the
departure from SRSMC into the component caused by charging a price that dif-
fers from the average SRSMC and the component caused by charging a constant
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price that does not vary over short time periods as SRSMC does. The analysis
is primarily an exercise in measurement of various aspects of SRSMC and the
marginal price faced by the customer. Some of these measures are available in
public data, some we take from previous research on the electricity industry, and
some we need to estimate, because direct measures are not available.

We break the construction of price versus social marginal cost into three compo-
nents: retail price, private marginal cost, and external marginal cost. Section II
presents the residential electricity price data and our calculation of marginal elec-
tricity price. Section III discusses private marginal cost, for which we begin with
wholesale electricity price data, but then make adjustments to incorporate time-
varying costs associated with local distribution. Section IV brings in externalities,
relying heavily on recent work by Holland, Mansur, Mueller, and Yates (2016).
In section V, we bring the three measures together to analyze the deviation of
price from SRSMC, then calculate and decompose the associated deadweight loss.
In section VI we discuss several potential policy applications for our calculation.
We conclude in section VII with a discussion of the broader implications of our
findings.

I. Related Literature

This paper relates to three strands of literature that have examined electricity
pricing from different perspectives. The first concerns itself with the central chal-
lenge of natural monopoly pricing: minimizing deadweight loss while ensuring the
recovery of average costs (Brown and Sibley 1986, Kahn 1988, Braeutigam 1989,
Borenstein 2016). Here the main concern has been the inclusion of fixed and sunk
costs in volumetric prices, potentially driving prices above marginal cost. Various
solutions have been proposed and at least partially implemented, including price
discrimination with linear tarrifs (Ramsey 1927, Boiteux 1960, Boiteux 1971),
two-part pricing (Feldstein 1972, Littlechild 1975), and more sophisticated non-
linear pricing (Wilson 1997, Laffont, Rey and Tirole 1998). Yet, despite a plethora
of complex rate structures in use, there is a general perception that utility rates
do not closely approximate (private) marginal costs (Friedman 1991, Puller and
West 2013). In closely related papers, Davis and Muehleggar (2010) estimate
marginal tariff rates for natural gas utilities and find that they do not adjust fully
to fluctuations in wholesale gas supply costs, while Borenstein and Davis (2012)
examine the equity effects of these departures from marginal cost pricing of nat-
ural gas. We are not aware of any comprehensive effort to measure the departure
from marginal cost of retail electricity prices.

A second literature on electricity pricing is concerned with the variation of costs
over time, particularly those driven by scarcity or capacity constraints. Early the-
ory focused on forms of peak-load, or capacity, pricing that could at least partially
capture scarcity effects in otherwise static tariff structures(Boiteux 1960, Steiner
1957, Joskow 1976, Oren, Smith and Wilson 1985, Crew and Kleindorfer 1976).
The advent of advanced metering technology made feasible the prospect of dy-
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namic electricity pricing (Borenstein 2005, Joskow and Wolfram 2012) that could
capture scarcity costs through frequently varying linear prices. However, de-
spite a growing literature on its practical effectiveness (Jessoe and Rapson 2014),
dynamic pricing is still quite rare. As we describe below, only 4% of residen-
tial US customers are on a time-varying price, and the bulk of those customers
are on static time-of-use prices. The lack of dynamic retail pricing has been
widely cited as a source of inefficiency in the electricity industry (Borenstein and
Holland 2005, Borenstein 2005, Joskow and Wolfram 2012, Puller and West 2013).

The most recently active strand of literature on the efficiency of electricity
prices concerns their relationship with the external costs of electricity production
and consumption (Cullen 2013, Graff Zivin, Kotchen and Mansur 2014, Novan
2015, Callaway, Fowlie and McCormick 2018). The environmental impacts of
electricity supply, particularly with respect to climate change, are significant and
have been the focus of policy activity for at least two decades. Environmental
economists have generally advocated for the pricing of external costs, through
either Pigouvian taxation or cap-and-trade systems, in this and other industries.
However, alternative approaches, such as subsidies for clean energy through ei-
ther tax credits or performance standards, and non-market interventions relating
to energy efficiency have been more common in practice than the pricing of ex-
ternalities.1 These latter programs have been criticized by economists on several
grounds.

Several papers have addressed the optimality of environmental policies with
respect to consumer incentives. These studies have raised concerns about policies
that limit the pass-through of externality costs. For example, the impact of
intensity standards for limiting carbon emissions (Bushnell et al. 2017), the use
of output-based allocation of allowances in cap-and-trade systems (Fischer and
Fox 2012), and energy efficiency interventions (Allcott and Greenstone 2017). A
common theme is that many “green” policies tend to promote over-consumption
as they fail to properly reflect marginal environmental damages in electricity
costs (Borenstein 2012). However, these papers address the design of optimal
externality policies from an underlying assumption that retail prices accurately
reflect private (but not social) marginal cost. To the extent that pre-existing
distortions to retail prices, due to natural monopoly pricing for example, have
already distorted retail prices, the optimal environmental policy can look very
different from the one applied in a system with prices reflecting private marginal
costs.

II. Residential Electricity Pricing

The challenge in constructing data on residential electricity pricing is to accu-
rately characterize the marginal price that a customer faces. While data on aggre-

1For example, the Obama-era EPA regulatory initiative known as the Clean Power Plan offered
States several options for compliance, including an intensity standard or direct subsidies of zero-carbon
generation sources, as alternatives to carbon pricing (Fowlie et al. 2014).
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gate revenues and quantity sales to residential customers by utility are available,
those data alone only allow inference about the average price paid by residential
customers. In theory, however, customers should respond to the marginal price
of electricity, not the average price. Thus, we must adjust the analysis in order
to get a more accurate measure of marginal price.

Our primary source of utility sales data is the Energy Information Adminis-
tration’s Form EIA-861 survey (Energy Information Administration 2015a). The
EIA-861 is an annual survey of electric utilities that covers many aspects of their
commercial activities.2 The EIA-861 data include for every utility annual total
revenues from residential customers, total number of customers, and total kWh
sold. Dividing total revenues by total kWh yields an average price.

However, many utilities have monthly fixed charges. In order to calculate the
marginal price, we remove the fixed charges. The utility fixed charges for residen-
tial customers come from the National Renewable Energy Laboratory’s Utility
Rate Database (URDB) (National Renewable Energy Laboratory 2017b). The
URDB is described in more detail in the appendix. It includes many residential
rates for each utility. For each utility we chose what appeared to be the primary or
basic rate (the process of determining this rate is described in the appendix) and
took the fixed charge from that rate. We used this fixed charge to approximate
fixed revenues – total customers multiplied by fixed charge – and subtracted that
amount from the total residential revenues. We divided the remainder by kWh
sold to get the average variable rate, which we take as our measure of marginal
price.

In some parts of the country, the electricity sector has been restructured such
that customers can choose their retail providers. For about 15% of residential
consumers in the US – those who have chosen retail providers that are not
vertically integrated with the firm that owns the distribution lines – data on
sales and revenues for these customers are reported slightly differently in the
EIA-861. This is particularly true for Texas, where these data are submitted
by retail providers rather than the distribution utilities. To incorporate such
areas, we reformatted the EIA-861 data on sales and revenues and incorporated
additional information from the Texas Public Utilities Commission (Public Utility
Commission of Texas 2017b, Public Utility Commission of Texas 2017a). Rates
for these retail providers are also not available from the URDB. We therefore
identified the largest retail providers in these markets and manually collected
additional rate information on fixed charges directly from provider websites. Full
details can be found in the appendix.

Removing the fixed component of customers’ bills still does not fully capture
marginal rates if those rates vary with the level of consumption, such as from
increasing-block or decreasing-block pricing – under which marginal price rises

2A smaller number of major utilities are surveyed monthly, covering about 70% of the household
customers in the annual survey (Energy Information Administration 2015b). We are in the process of
carrying out similar analysis using these data to account for seasonal changes in retail rates.
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or falls in steps as a household’s consumption increases. Thus, some customers
of a given utility are likely to have a higher marginal rate, and others a lower
marginal rate, than the one we use. Based on the 1743 retail electricity providers
with rates in the URDB, about 58% of residential customers are served by a retail
provider for which it appears that the marginal price in the primary residential
tariff varies with consumption, of which about 37% face increasing-block pricing
and about 21% face decreasing block pricing.3

Similarly, we do not capture variations in rates across customers of a utility.
This occurs for most utilities because some customers are on rates targeted to
low income households. But it could also occur if a utility charges rates that
vary by geographic region. It is worth noting, however, that the failure to reflect
variations in marginal rates across customers that are not based on marginal cost
is very likely to lead to understated estimates of the deadweight loss associated
with residential rates. This is because deadweight loss more than proportionally
with the difference between price and marginal cost. Thus, for linear pricing, if
all customers have the same demand elasticity, deadweight loss is minimized by
charging all customers the same linear price.

In all cases, we also have assumed that the primary residential rate had no time-
varying component, including no time-of-use variation, no critical peak pricing,
no demand charges, and no real-time pricing. The prevalance of these kinds of
tariffs is very low among residential customers. In 2015, about 4% of customers
were on some form of time-varying pricing, and about 5% of customers were part
of some form of demand response rebate program.4

Our final dataset on residential electricity pricing covers 128.2 million residential
customers in 2015, with 1.382 trillion kWhs of sales and revenues of $174.4 billion.
After incorporating our estimates of fixed charges we were able to calculate the
average variable per-kWh price faced by just over 94% of residential customers
and kWh sales.

A. Is marginal price the correct measure?

A number of papers, most recently Ito (2014), have challenged the belief that
electricity consumers respond strictly to marginal price.5 Ito finds that in the
context of steeply increasing-block electricity pricing at two large utilities in Cali-
fornia, consumers are more accurately characterized as responding to the average
price they face, rather than the marginal price. None of the analyses we are aware

3The share of quantity sold on non-linear pricing is somewhat smaller, as the retail providers utilizing
increasing-block pricing serve smaller average residential demand per customer. Overall, providers serving
larger numbers of customers are more likely to use increasing-block pricing. Of the 1743 retail electricity
providers in our URDB sample, about 39% utilize non-linear marginal pricing, with about 15% using
increasing-block pricing and about 24% using decreasing block pricing in their primary residential rates.

4The EIA-861 data that are the source of these figures do not allow one to calculate the overlap
between these two sets of customers, but presumably it is probably significant. Furthermore, a very large
share of the customers on time-varying pricing are on simple peak/off-peak rates with fixed time periods
and fairly small differentials between peak and off-peak.

5See also Shin (1985) and Borenstein (2009).
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of, however, addresses the extent to which consumers are able to separate recur-
ring fixed charges from volume-based charges.6 Understanding and distinguishing
a monthly fixed charge from volumetric pricing seems likely to be less difficult
than diagnosing which step of an increasing-block marginal price schedule the
household is likely to end up on at the end of the month.

Luckily, for our analysis, the three large utilities in California that have steep
increasing-block electricity price schedules, where the steps differ by more than
4 cents per kWh, are outliers in the US as a whole. Using data from the URDB
we find that among 673 utilities with non-constant marginal price, the median
absolute difference between the lowest and highest tier across all US utilities was
1.9 cents per kWh, with 75% of the rates featuring a difference of less than 3.7
cents per kWh. Furthermore, even in California the variation in marginal price
across the steps has shrunk significantly in the last decade from a ratio of more
than 3 to 1, to a ratio of less than 1.4 to 1 in 2017.7 Nonetheless, the existence of
marginal pricing that changes with consumption quantity should be recognized
in interpreting our results.

B. Residential Electricity Pricing Results

We present many results graphically through maps of the contiguous United
States with measures primarily at the ZIP Code level. Of course, nearly all
utilities serve multiple ZIP Codes, so these are not independent observations.
Rather, we use ZIP Codes to approximate the shapes of each utility’s service
territory as accurately as possible. Our primary source for this is information in
the URDB on the ZIP Codes served by each utility (National Renewable Energy
Laboratory 2017a). For utilities not included in the URDB ZIP Code lookups, we
use county information from the EIA-861 and the US Census Bureau (US Census
2017a, US Census 2017b, US Census 2017c). The error created by imperfect
matching to ZIP Codes affects only the visual presentation in the maps. The
other empirical analysis is by utility, so is not affected.8

Figure 1 presents the average price per kilowatt hour by ZIP code. (Here, and
in all of the maps, areas with no data are represented by a dark gray shade, such

6The customers in Ito’s sample faced increasing-block pricing, but no fixed charge.
7This is true for the vast majority of households. There remains a “superuser” rate that applies for

usage over 400% of the baseline quantity, but that is relevant for just a few percent of households.
8The URDB ZIP Code assignments are based on service territory spatial data taken directly from

individual utilities. However, it also appears to be the case that for many smaller utilities no such spatial
data were available and so the lookups are based on the same county information taken from the EIA861
survey. Here all ZIP Codes within a county are designated as part of the utility’s service territory. We
have not searched the database to find all such county-level data. We also adopt the same approach of
using the county-level information to fill in any remaining utilities that were not in the URDB lookups,
although this is a fairly small number. In total there are 40,552 ZIP Codes in the contiguous United
States as of 2016. Excluding those that have no associated area, such as large volume single site ZIP
Codes (e.g. government, building, or organization addresses) we present results for 30,105 ZIP Codes,
only three of which had no residential population (Environmental Systems Research Institute 2017). Of
those, 40% are assigned to a single utility based on the matching described in the previous paragraph.
For the remaining 60% we use the median value in any map plots.
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Figure 1: Average Price per kWh

as in northern Maine.) It shows, for instance, that California has among the
highest average prices per kilowatt hour for residential customers, but that the
very highest prices are in the Northeast. The lowest prices can be found in much
of the Northwest and the South. It also shows that even in fairly high-priced
states like California, New York, and Massachusetts, there are some areas with
substantially lower prices.

Figure 2 presents monthly fixed charges as discussed above. Much of California
has zero or slightly negative fixed charges – which occurs because of a semi-annual
“climate rebate” that each residential customer gets as part of the State’s cap and
trade program – while some utilities in the center of the country have fixed charges
of $30 per month or higher.

Figure 3 shows the results from adjusting the average price for the monthly
fixed charges to get an average variable price. We would expect this to be a
fairly accurate indicator of the marginal price that consumers face if the utility
uses a simple two-part tariff. For those utilities that utilize increasing-block or
decreasing-block pricing, as discussed earlier, this captures the average variable
price across customers.9 The average variable prices shown in this figure are used

9How closely this reflects the average of the marginal prices faced by customers depends on the
distribution of customers across the tiers of the block pricing. See Borenstein (2009) and Ito (2014) for
further discussion.

8



Figure 2: Fixed Monthly Charge

in our calculation of the gap between marginal price and social marginal cost.
The top panel of table 1 presents unweighted summary statistics on average

price, fixed charge and average variable charge across the 2,090 utilities in the
entire sample.10 The bottom panel presents the same statistics weighted by utility
sales.

III. Private Marginal Costs

Provided that wholesale electricity markets are competitive, the primary com-
ponent of the private marginal cost of supplying electricity is captured in the
wholesale price. We collected wholesale prices from regions that are part of
Independent System Operator (ISO) control areas. ISOs calculate and report
locational marginal prices (LMPs), which reflect the marginal cost of electricity
generation plus high-voltage transmission congestion and losses.

Some parts of the country, particularly the Southeast, have large areas that are
not covered by ISOs. In those areas, we collected data that grid operators are

10In reality, our sample contains 2,090 retail provider/state combinations. Utilities report their oper-
ations separately by state to the EIA. In states with retail competition, data are reported separately by
both the retail provider and the local distribution company, except in Texas where only retail provider
reports. See the appendix for further details.
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Figure 3: Marginal Price per kWh

required to file as part of FERC’s Form-714 survey (Federal Energy Regulatory
Commission 2017). This survey includes a requirement to report the “system
lambda”, which is the engineering calculation of the shadow cost of changing
production by one unit. Thus, ideally, it would correspond with the marginal
cost, as reflected by competitive market price, in the ISOs. For three reasons,
however, we suspect that the system lambdas will be less than the ISO prices.11

First, the ISO prices likely incorporate market power in some hours, although
analysis by oversight divisions suggests very modest if any market power averaged
over all periods (Bushnell et al. 2017). Second, the system lambdas likely do
not fully incorporate scarcity rents in constrained hours. It is very difficult to
know, however, how big these effects are. Third, system lambda incorporations
of marginal transmission losses and congestion costs are likely to be incomplete.

We calculate private marginal cost based on LMP prices or system lambda
values that are closest to the ZIP Codes served by a given utility, which should
allow those costs to include transmission losses and transmission congestion costs.
Full details of this calculation can be found in the appendix.

11In areas with ISOs, they typically report the market price for the system lambda.
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Mean StDv Min P10 P90 Max
Retail Fixed Charge ($/month) 13.56 8.83 -16.83 4.25 25.00 74.50
Retail Variable Price (c|/kWh) 10.92 3.06 2.35 7.91 14.28 38.63
Retail Average Price (c|/kWh) 12.39 3.28 2.95 9.21 16.04 43.50

Retail Fixed Charge ($/month) 10.57 7.45 -16.83 2.43 19.25 74.50
Retail Variable Price (c|/kWh) 11.45 3.05 2.35 8.77 16.09 38.63
Retail Average Price (c|/kWh) 12.55 3.00 2.95 9.75 16.51 43.50
N=2090 utilities. Top panel is unweighted and bottom panel is weighted by sales

Table 1: Summary Statistics of Residential Rates

A. Distribution Losses

The private marginal costs calculated based on wholesale prices do not include
the losses from lower-voltage distribution lines downstream from the transmission
grid. Losses from low-voltage distribution lines fall into two categories: a smaller
share is attributed to “no-load” losses that occur in transformers, and a larger
component is “resistive” losses that are a function of the flow on the line. No
load losses are fairly constant for a utility and vary across utilities as a function
of the size of their systems. Resistive losses change constantly scaling with the
square of the flow on a line.12 On average, around 25% of distribution losses are
no-load with the remainder attributed to resistive losses.

A range of factors affect the magnitude of losses, including the distance electric-
ity must be carried (approximately, the inverse of geographic demand density),
the density of load on circuits, the use of equipment to optimize voltage, and
the volatility of demand. Demand volatility increases losses for a given average
demand level due to the quadratic relationship between flow and losses. Many
of these factors are likely to differ between residential customers and commercial
or industrial customers. Importantly, many industrial and some commercial cus-
tomers take power from the distribution system at higher voltages than residential
customers, which can greatly reduce the level of line losses.

Unfortunately, the only systematic data available on distribution line losses are
reported on an annual basis by utility in the EIA-861, with no breakdown by
class of customers, or by hour. We attempt to approximate hourly losses by first
estimating an equation for annual average losses and then converting that average
hourly rate to a time-varying hourly loss rate recognizing that losses increase with
the square of energy delivered. The equation for annual losses of a utility could
be written as

12Lazar and Baldwin (1997) have a very accessible discussion of distribution line losses.
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Li = α0Qtoti + α1Qresi + α2Qcomi + α3QtotiDensityi(1)

+ α4QtotiV oltOpti + α5Qtoti(Qpeak/Qavgi)

+ α6QtotiCV salesi + α7QtotiTransmissioni

+
U∑
u=1

γuUtilityTypeuiQtoti +
S∑
s=1

βsStatesiQtoti + εi

where the Qs are total, residential, and commercial electricity delivered, Density
is Qtot/area, V oltOpt is the share of circuits with voltage optimization equip-
ment, and Transmissioni is an indicator that the utility also owns transmission
lines (and reported losses include from transmission). Qpeak/Qavgi is the ratio
of the utility’s peak to average load, and CV salesi is the utility’s coefficient of
variation of hourly sales over the year. Both of these measures are intended to
capture the volatility of demand that the utility faces, which one would expect to
have a positive effect on losses due to the quadratic relationship of losses to flow.
However, they are each imperfect measures and come from different data sources,
as explained in the appendix, so we include both. The equation includes fixed
effects for type of utility (investor-owned, municipal, cooperative, etc.) and state.
The coefficient α0 alone would represent the losses associated with an additional
unit of electricity delivered to an industrial customer. The derivative of equation
(1) with respect to Qres (recognizing that dQtot/dQres = 1) would then give the
change in annual losses from delivering one additional unit of electricity.

dLi/dQresi = α0 + α1 + α3Densityi(2)

+ α4V oltOpti + α5(Qpeak/Qavgi)

+ α6CV salesi + α7Transmissioni

+
U∑
u=1

γuUtilityTypeui +
S∑
s=1

βsStatesi + εi

Equation (1), however, would be highly heteroskedastic in the form shown, so
we normalize (1) by total quantity and estimate

Lavgi = α0 + α1Qresi/Qtoti + α2Qcomi/Qtoti + α3Densityi(3)

+ α4V oltOpti + α5(Qpeak/Qavgi)

+ α6CV salesi + α7QtotiTransmissioni

+

U∑
u=1

γuUtilityTypeui +

S∑
s=1

βsStatesi + εi

where the interpretation of the coefficients is the same as in (1) and (2).
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We estimate (3) on 2015 annual observations for the cross-section of 1669 dis-
tribution utilities for which these data are available. The results are presented
in table 2. From this regression, we then impute average distribution losses for
residential customers of all utilities in the dataset by calculating the predicted
value of Lavgi with Qresi/Qtoti = 1 and Qcomi/Qtoti = 0.13 Clearly, this is an
imperfect approximation to average distribution losses for residential customers.
It assumes implicitly that the relative losses of residential versus commercial and
industrial customers are the same for all utilities. Furthermore, we have no infor-
mation on the extent to which voltage optimization or variation in hourly sales
relates to residential circuits. Without making very strong assumptions about
the correlates of residential losses, it is unclear how to improve on this estimate.

Li/Qtoti
Share of Sales (Residential) 0.0270∗∗∗

(0.0065)
Share of Sales (Commercial) 0.0071

(0.0042)
Log(Sales per sq. km) −0.0066∗∗∗

(0.0008)
Share of Circuits w. Volt. Optim. −0.0032∗∗

(0.0011)
Ratio of Peak to Average Load 0.0079∗∗

(0.0023)
Coef. of Variation for Load −0.0184

(0.0422)
Transmission −0.0000

(0.0019)
R2 0.3265

N=1669 utilities

Dependent Variable: Avg. Proportion Total Losses

Fixed Effects: State and Utility Type

Cluster Variable: State

Table 2: Estimates of Average Distribution Losses

Using the standard engineering approximation that losses increase with the
square of flow, we then calculate marginal losses in each hour for each utility
assuming that 25% of losses are invariant to load and 75% are proportional to the
square of load. The details are presented in the appendix. To do this, however, we

13Summary statistics of the variables are presented in the appendix. We predict losses for all utilities
in the data set. For those for which some of the right-hand side variables are not available, we use the
average value of the variable from the 1669 utilities in the regression.
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need data on the pattern of hourly consumption by residential customers, which
don’t exist for most utilities. FERC form 714 provides hourly consumption of all
customers of a utility. We use that load profile, scaled by the share of total demand
that comes from residential customers, to approximate the residential demand in
each hour. This is not ideal. The alternative, however, is to use an engineering
model of residential energy use patterns, which also is highly imperfect.

(a) Average annual residential distribution

losses

(b) Marginal hourly residential distribution

losses

Figure 4: Estimates of residential distribution losses

Distribution losses turn out to be significant in the overall analysis. Figure
4a presents the spread of average annual distribution losses from residential cus-
tomers for the utilities in our analysis. Table 3 shows that on a sales-weighted
basis the estimated average distribution loss rate is 6.1%. Furthermore, because
the externalities associated with electricity consumption take place upstream from
the distribution losses, the loss rate scales up both the private marginal cost and
the external marginal cost. After assuming that 25% of losses are non-marginal
and the other 75% vary with the square of load, figure 4b presents the spread
of marginal hourly distribution losses from residential service that we estimate.
These average about 9% but vary greatly hourly with load.

B. Other private cost considerations

The energy costs captured by the LMP and system lambda data used in this
analysis constitute the vast majority of the average wholesale electricity costs
that must be covered by customers over the year. The remainder is made up
of capacity costs, ancillary services costs and other uplift payments. Across the
seven ISOs energy costs comprised between 74% and 98% of the total wholesale
cost of electricity in 2015, as shown in table 4. More detail on the source and
interpretation of these costs is in the appendix.

We do not include long-run reserve costs, sometimes called capacity costs, in
our calculation of short-run private marginal cost. In energy-only markets, such
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Mean StDv Min P10 P90 Max
Avg. Total Losses (%) 5.02 1.53 0.42 3.10 7.09 10.02
Avg. Res. Dist. Losses (%) 6.44 1.45 2.56 4.74 8.41 12.23
Marg. Res. Dist. Losses (%) 9.27 2.11 3.61 6.82 12.04 17.93

Avg. Total Losses (%) 4.82 1.40 0.42 3.28 6.64 10.02
Avg. Res. Dist. Losses (%) 6.14 1.34 2.56 4.63 7.82 12.23
Marg. Res. Dist. Losses (%) 8.78 1.94 3.61 6.65 11.26 17.93
N=2090 utilities. Top panel is unweighted and bottom panel is weighted by sales

Table 3: Summary Statistics of Distribution Losses

Energy Capacity Ancillary Uplift
CAISO 89% 9% 1% 1%
PJM 74% 23% 2% 1%
ISO-NE 81% 15% 3% 1%
NYISO 74% 22% 3% 1%
ERCOT 92% - 4% 4%
SPP 98% - 1% 1%
MISO 95% 4% 0% 1%

Note: Percentages may not sum to 100 due to rounding

Table 4: Estimates of the composition of total wholesale costs by ISO

as ERCOT or SPP, there are no explicit capacity costs. In other markets that
do have capacity requirements, capacity requirements have to be adjusted in
the medium or long run in response to variation in demand. These costs can
sometimes be substantial. In 2015 capacity costs comprised between 4% and
22% of the total wholesale cost of electricity at the five ISOs that make these
payments. The link between incremental consumption in a given hour and the
capacity requirement is complex. However, conditioned upon the capacity at any
point in time, the wholesale energy market price should reflect the true marginal
resource cost of delivering one more kWh. Thus, from a strict economic efficiency
vantage, longer-run investments triggered by current demand would not be a
short-run marginal cost.14

We also do not incorporate short-run operating reserve, or “ancillary service”,

14One complication to this interpretation of short-run marginal cost arises when there is scarcity of
supply. When electricity systems experience short-term violations of operating constraints, such as unit
ramping or transmission flow constraints, prices include penalty values to reflect the cost of the scarcity
of appropriate supply. To the extent these values do not reflect the true underlying value of electricity to
end-users, they are rough approximations of the short-run marginal costs in these periods. There were
relatively few such periods during 2015.

15



costs into our marginal cost calculation. Fortunately these costs are relatively
small, even in aggregate. In 2015 ancillary service costs at the seven ISOs com-
prised between less than 1% and 4% of the total wholesale cost of electricity.
Furthermore, it is likely the case that many of these costs should not be included
in our calculation of marginal costs. The primary marginal impact of reserves is
reflected in the energy prices or system lambda values used to reflect cost. This
is because most reserves operate as stand-by resources and do not incur marginal
cost unless a contingency event occurs. The main cost impact of an expansion
of reserves arises when lower cost units are held back to provide reserves, while
more expensive units are deployed to supply energy in their place. However this
effect is captured in the marginal energy price when the more expensive units set
those prices.

Finally, some non-convex incremental costs, such as “start-up” costs that are
incurred to supply energy are at times not captured in the energy price and are
instead paid as “uplift” payments to specific units. We do not currently adjust
our costs for these considerations. Again though, these costs are very small. In
2015 “uplift” payments amounted to between less than 1% and 4% of the total
wholesale cost of electricity.

Including all of the non-energy wholesale electricity costs would have a mod-
est effect on the average wholesale price of electricity, and therefore on the gap
between the marginal retail price and the average social marginal cost. It could,
however, have a significant effect on the SMC during peak hours if reserve costs
were considered marginal and were attributed entirely to the highest-demand
hours. In that case, SMC would be more volatile than our analysis suggests and
the deadweight loss of static pricing would be greater.

C. Private Marginal Cost Results

Figure 5 presents the private marginal cost calculations. It is worth noting how
low these numbers are, many below levels generally considered sufficient to cover
long-run average cost of a modern combine-cycle natural gas power plant, even
at today’s very low gas prices. In part, that reflects the fact that much of the
country had excess capacity in 2015, and still does today, due to a combination
of mistakes or bad luck in planning and policies of carrying large quantities of
excess capacity. Consistent with such policies, this also reflects the fact that in
most deregulated markets, power plant owners receive revenues from capacity
payments as well as energy payments. Summary statistics on private marginal
cost are presented in table 5 in the next section along with external marginal
costs and total social marginal cost.

Wholesale prices (and implied private marginal costs) well below levels neces-
sary to cover long-run average cost are certainly a concern for generators and
policymakers, but if measured accurately, such a shortfall does not have direct
bearing on our analysis of the efficiency of residential retail price and their de-
viation from SRSMC. Economic theory dictates that if short-run marginal costs
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Figure 5: Average Private Marginal Cost per kWh

are indeed quite low, then efficient pricing should reflect that, even if such prices
are not sufficient to cover average cost.15 Furthermore, even if policymakers
believe that additional revenue must be raised in order to cover the past invest-
ments of suppliers, such revenues need not come from marginal energy prices.
Fixed charges, subscription charges (e.g., based on the customer’s circuit breaker
capacity) and demand charges are among the alternatives that can be used to
increase revenue collection without raising marginal price.

IV. External Marginal Costs and Total Social Marginal Costs

For external marginal cost, we rely on Holland, Mansur, Muller, and Yates
(2016). As explained in detail in their paper, the data are imperfect, but they rep-
resent the most sophisticated calculation of the environmental costs of marginal
power supply to date. For each of the nine U.S. regions of the North American
Electricity Reliability Corporation (NERC), they calculate an externality cost per
marginal MWh of demand based on the resulting change in generation from each
plant in the region and the county and emissions rate of the plant. The result

15And, conversely, if the marginal generation costs are quite high, yielding very high profits for pro-
ducers (but without exercise of any market power), then efficient retail prices should reflect those high
short-run marginal costs.
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is a marginal externality cost for each NERC region for a representative 24-hour
day. So, we are able to distinguish externalities by hour of the day, but not by
month, weather conditions, or system demand. Also, the estimates are based on
marginal cost of each pollutant independent of the time at which that pollutant
is emitted. That is not a problem for GHGs, but it is likely create some error for
some local pollutants, such as NOx. In future versions, we hope to use improved
estimates that incorporate additional cost factors.16

We do make one adjustment to these estimates to account for line losses. In
their regressions of pollution on system load, Holland, Mansur, Muller, and Yates
uses for system load data from FERC Form 714, which include transmission
and distribution losses. They do not, however, adjust the marginal generation
required to deliver one MWh to the end-user for these losses. Thus, we scale up
the calculations of pollution associated with a marginal end-use MWh to account
for transmission and distribution losses.

The HMMY analysis is based on generation and emissions data from 2010 to
2012, so the match to our analysis for 2015 is not exact. Over the 3 to 5 intervening
years, some coal plants have closed, which could lead to lower marginal externality
estimates. On the other hand, natural gas prices have declined relative to coal
causing coal to be on the margin more frequently, which could lead to higher
marginal externality estimates. In future versions, we will incorporate marginal
externality analysis based on more recent years.

A. External Marginal Cost Results

In figure 6, we show the average externality cost per kWh. The figure shows the
dollar-value externality cost associated with a marginal kWh of demand change
in each location. The figure illustrates some coarseness in these data, because the
analysis assumes that the same plants are marginal for any incremental demand
within a NERC region for a given hour of the day regardless of the location of the
incremental demand in the region. Still, the figure demonstrates that externality
costs vary widely and are particularly large in the areas where coal-fired power
plants are most prevalent. Comparing the scales of figure 5 and figure 6 also
indicates that the majority of the social marginal cost in our calculations in
most locations is due to externalities, rather than the private marginal cost of
generation.

B. Total Social Marginal Cost Results

Figure 7 then aggregates the data in figures 5 and 6 to present the social
marginal cost. Though California has among the higher private marginal cost,

16In addition, these estimates are based only on weekday data. Weekends are excluded. Because
demand is typically higher on weekdays, the bias in our estimates from using weekday-only externality
estimates depends on whether marginal supply creates larger externalities in high-demand versus low-
demand periods. The sign of this bias likely differs in different regions of the country.
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Figure 6: Average External Marginal Cost per kWh

the external marginal cost associated with that generation is much lower than
in most of the U.S. causing it to have among the lowest SMCs. In contrast, the
Northeast has fairly high PMC and EMC, leading to a high SMC, while the upper
Midwest has low PMC, but such high EMC that it also exhibits a very high SMC.
Table 5 shows the average quantity-weighted social marginal cost is 9.3 cents per
kWh, about two-thirds of which is due to external marginal costs.

V. Mispricing and Deadweight Loss Decomposition

Figure 8 presents the marginal price minus average social marginal cost map.
The bluer areas are pricing above average SMC, while the redder areas are pricing
below average SMC. Much of the country has fairly light colors, indicating that
the static marginal price that residential customers pay is fairly close to average
SMC. California and parts of New England are notable for price being well above
SMC, while parts of North Dakota and West Virginia exhibit the largest price
deviations below SMC.

Figure 8, however, captures only part of the story, because it does not include
variation in SMC over time. The static price might reflect the average SMC well,
but still create significant inefficiency because the SMC varies substantially hour-
to-hour. Figure 9 shows histograms by state of the hourly price minus SMC,
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Figure 7: Average Social Marginal Cost per kWh

Mean StDv Min P10 P90 Max
Private Marginal Cost (c|/kWh) 3.19 0.67 2.17 2.46 4.22 5.32
External Marginal Cost (c|/kWh) 6.67 2.25 1.52 2.44 8.98 9.66
Social Marginal Cost (c|/kWh) 9.86 2.41 4.90 5.63 12.81 14.52
Retail Variable Price - SMC (c|/kWh) 1.06 3.27 -7.10 -2.24 5.15 26.82

Private Marginal Cost (c|/kWh) 3.28 0.67 2.17 2.57 4.35 5.32
External Marginal Cost (c|/kWh) 6.00 2.38 1.52 2.38 8.94 9.66
Social Marginal Cost (c|/kWh) 9.27 2.61 4.90 5.43 12.86 14.52
Retail Variable Price - SMC (c|/kWh) 2.18 3.95 -7.10 -1.67 7.38 26.82
N=2090 utilities. Top panel is unweighted and bottom panel is weighted by sales

Table 5: Summary Statistics of Marginal Costs

illustrating that SMC varies quite widely in some states, while it is much less
volatile in others.
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Figure 8: Marginal Price minus Average Social Marginal Cost per kWh

A. Analyzing and Decomposing Deadweight Loss

In order to incorporate the mispricing both from price deviating from average
social marginal cost and from charging a static price while the social marginal
cost varies temporally, we move to analyzing deadweight loss directly. In the
residential electricity market we model here, the seller charges the same price
(P̄ ) at all times, but SMC changes hour to hour. In the simplest model of this
market, illustrated in figure 10, demand is the same in all hours and is (or can be
approximated as) linear. For any hour h,

DWLh =
1

2
(P̄ − SMC) ∗ (P̄ − SMC)

s
=

1

2s
(P̄ − SMC)2(4)

where s is the slope of the inverse demand function, dP
dQ . So, the total DWL

associated with charging a price, P̄ , is
∑

h
1
2s(P̄ − SMCh)2, that is, DWL is

proportional to the second uncentered moment of the distribution of (P̄ −SMC).
The result is the same if demand shifts hour to hour, but always has the same
slope.

We can rewrite DWL as
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Figure 9: Marginal Price minus Hourly Social Marginal Cost by State

DWL =
∑
h

1

2s
(P̄ − SMCh)2(5)

=
1

2s
[H · (P̄ − SMC)2 +

∑
h

(SMC − SMCh)2]

where H is the total number of hours covered by the DWL calculation. Under the
assumption that s is the same for all hours, and would be the same for response
to hourly price changes as to a longer-run change in the static price, equation (5)
allows us to decompose DWL into the component resulting from price deviating
from SMC and the component resulting from price failing to vary hour to hour
as SMC changes.

Of course, a constant demand slope is not a benign, or even particularly rea-
sonable, assumption, as it implies that the quantity response to a price change
is the same regardless of the pre-change quantity. Instead, we adopt the more
neutral assumption that all demands exhibits the same elasticity at P̄ , implying
that the slope of inverse demand for hour h and utility i is shi = ŝi

Q(P̄i)
. That is, ŝi
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Figure 10: Illustration of Deadweight Loss in Hours with Varying SMC

is a constant for each utility across all hours that is the slope of inverse demand
per unit of quantity demanded at the utility’s P̄ . Across utilities, this implies
that a utility with twice as many customers would exhibit twice as much quantity
response to a given change in price. Across hours, this implies that high-demand
hours yield a larger quantity response to a given price change. Thus,

DWLtotal =
∑
h

Qh(P̄ )

2ŝ
(P̄ − SMCh)2(6)

=
1

2ŝ
[
∑
h

Qh · (P̄ − SMCw)2 +
∑
h

Qh · (SMCw − SMCh)2]

where SMCw is the quantity-weighted average of SMC,

SMCw =

∑
hQh · SMCh∑

hQh
(7)

We use equation (6) both to compare DWL of pricing across utilities, and to
decompose the DWL into the share attributable to setting a constant price at the
suboptimal level (given the constraint of charging a constant price) versus the
share attributable to failing to adopt dynamic pricing.17

17Borenstein and Holland (2005) show that the efficient constant price is equal to the quantity-weighted
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To evaluate the two components of mispricing – the deviation of average SMC
from the static price and the residual volatility of SMC compared to the average
SMC – we return to equation (6) and separate these two sources of deadweight
loss.

DWLavg =
1

2ŝ
[
∑
h

Qh · (P̄ − SMCw)2](8)

DWLresid =
1

2ŝ
[
∑
h

Qh · (SMCw − SMCh)2],(9)

where ŝ has been defined so that the deadweight loss quantities are per unit of
quantity demanded at the utility’s P̄ , specifically assuming a linear demand curve
with elasticity -0.2 at the utility’s P̄ .18

Importantly, we are assuming, for now, the same price responsiveness to hour-
to-hour price variation as to an overall shift in a static price.19 As of 2018, it
seems likely that actual price responsiveness is greater for a change in the static
price than in response to hourly price changes. As technology evolves, however,
it is quite possible that the ability to automate load shifting between hours could
make the elasticity greater for response to hourly price variation.

Figure 11 presents a map of DWLavg. California is clearly the outlier. Though
we saw that much of the Northeast has prices as high as California, the Northeast
also has much higher SMC than California. While we have also seen that price
is below SMC in much of the center of the country, the gaps to SMC are much
smaller than we find in California.

Figure 12 presents DWLresid, the deadweight loss caused by charging a static
price when SMC varies. The deadweight loss from SMC variation is most preva-
lent in the center of the country in the Northeast. Figure 13 presents a county
map of the ratio DWLavg to DWLtotal.

Table 6 presents summary statistics of the components and total deadweight
loss per unit demand for the 2,090 utilities in the sample. It also presents the
summary statistics for the ratio of DWLavg to DWLtotal. Whether weighted
by sales or unweighted, the mean (and also the median, though it isn’t shown)
suggests that for most utilities, the largest deadweight loss is due to the failure
to implement dynamic pricing, at least under the assumption of equal elasticities

average marginal cost under the condition that demand elasticity is the same in all hours.
18ε = −P/Q ∗ dQ/dP = −P/Qs ⇐⇒ s = −P/Qε. We are calculating s for a unit of quantity

demanded (Q = 1) at P̄ assuming ε = −0.2, so ŝ = −P̄ /0.2.
19We are also assuming that all other goods in the economy are priced at their social marginal cost

including, importantly, substitutes for electricity. That may not be a bad approximation for petroleum
products, but natural gas is priced well above social marginal cost to residential customers (Davis and
Muehlegger 2010, Borenstein and Davis 2012). Similarly, the welfare change from load shifting is a
function of the difference in SMC at the two times and the consumer’s difference in willingness to pay
for the usage at the two times.
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Figure 11: DWL Per Unit Demand Due to Price Differing from Average SMC

Mean StDv Min P10 P90 Max
DWLtotal (c|/kWh) 0.22 0.19 0.02 0.08 0.39 2.41
DWLavg (c|/kWh) 0.09 0.17 0.00 0.00 0.25 1.86
DWLresid (c|/kWh) 0.13 0.08 0.01 0.06 0.21 0.81
DWLavg/DWLtotal (%) 27.29 27.08 0.00 0.52 71.83 97.75

DWLtotal (c|/kWh) 0.24 0.23 0.02 0.07 0.51 2.41
DWLavg (c|/kWh) 0.14 0.23 0.00 0.00 0.37 1.86
DWLresid (c|/kWh) 0.11 0.06 0.01 0.03 0.19 0.81
DWLavg/DWLtotal (%) 37.66 32.71 0.00 0.77 88.05 97.75
N=2090 utilities. Top panel is unweighted and bottom panel is weighted by sales

Table 6: Summary Statistics of Deadweight Loss Estimates Per Unit Demand

for all price variation. Still, the utilities whose residential retail pricing generates
the largest deadweight loss do so by setting a static price very far above average
SMC. Across all 2,090 utilities in the sample, the quantity-weighted mean share
of deadweight loss attributable to price differing from average SMC is 38% and
the median is 32%. However, 56% of all deadweight loss in the sample results
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Figure 12: DWL Per Unit Demand Due to Time-Varying SMC and Static Price

from the deviation of price from average SMC, with the remaining 44% due to
price not fluctuating with hourly changes in SMC.20

VI. Applications and Implications

Having calculated estimates of both the marginal prices and marginal social
costs of electricity, we now consider some policy areas where such information
ideally would be considered, and the implications of our calculation for the cur-
rent desirability of such policies. One area where our calculation has potential
relevance, but has received limited policy attention in the US, is the application
of carbon pricing to the electricity sector. As discussed above, policy debates
over the design of carbon pricing policies periodically invoke the Pigouvian ideal
of capturing the marginal externality costs of greenhouse gasses in consumer en-
ergy prices. Mechanisms such as output-based updating of allowance allocation,
and the application of intensity standards, have been criticized on the grounds
that they dilute the externality cost faced by consumers ((Holland, Hughes and
Knittel 2009, Fowlie 2011)).

However, if marginal prices are already well above social marginal cost, the

20The 56% figure is based on aggregation of all deadweight loss across utilities, while the 38% figure
is an average share across utilities weighted by the quantity of electricity sold.
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Figure 13: Share of Total DWL Due to Price Differing from Average SMC

additional externality signal only pushes prices further away from first best. It is
worth noting that in the United States, carbon pricing - in the form of cap-and-
trade - is currently applied to electricity only in California and the northeastern
states comprising the Regional Greenhouse Gas Initiative. However, these are
the collection of states where we have found average retail prices to be well above
social marginal cost.

Still, it is important to recognize that our analysis focuses only on the dis-
torted consumption incentives when residential retail price deviates from social
marginal cost. We have not studied commercial and industrial rates, which are
more complex, with greater use of time varying pricing and “demand charges”
that determine (and distort) customer incentives. More importantly, our analysis
does not consider the effect of market mechanisms for greenhouse gases and other
pollution externalities on the mix of generation, between coal-fired generation,
gas-fired generation, nuclear power, renewable generation and other sources. The
efficiency value of pricing emissions at the wholesale level seems likely to be quite
significant. Our findings, however, suggest that the argument for passing through
those costs to residential rates is much weaker in some parts of the country.

Our findings also have direct implications for two other areas that have received
considerable attention in the energy and economics literature: energy efficiency
and distributed energy resource policy. We explore each of these in turn. We do
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not attempt here to perform a detailed calculation of the welfare implications of
these policies, but rather present suggestive evidence that efforts in both areas
may be significantly geographically misaligned with the benefits they can provide.

A. Energy Efficiency

The subject of energy efficiency in general, and its role in the electricity industry
in particular, has been a topic of debate among economists and technologists for
decades. Much of the debate has focused on whether these programs deliver the
“negawatts” claimed by the utilities that implement them (Joskow and Marron
1992, Auffhammer, Blumstein and Fowlie 2008). Economists have also examined
the specific behavioral, regulatory, and market channels that could justify energy
efficiency policies (Allcott and Greenstone 2012, Gillingham and Palmer 2014).
However, much of the literature on the “efficiency gap” has focused on what
Gerarden, Newell and Stavins (2017) call the “private energy-efficiency gap” -
the question of whether customers are making individually rational economic
choices. They note that the more policy-relevant question of the social energy-
efficiency gap hinges on many factors, including the relationship of energy prices
to social marginal cost, a question they identify as a “relatively high priority”
for further research. Indeed, well-informed consumers who face retail prices that
are significantly above social marginal cost are already being given too much
incentive to adopt energy efficiency measures. If consumers are able to make
privately optimal energy-efficiency decisions, government programs to promote
improved energy efficiency would be best aimed at areas where price is below
social marginal cost.

Several recent papers have attempted to address aspects of the relationship
between energy efficiency programs and the social benefits they provide. Both
Novan and Smith (2016) and Boomhower and Davis (2017) examine the impact
of energy efficiency programs on the hourly profile of energy use, and compare
those impacts to wholesale power costs and environmental impacts.

Using state-level data from the Consortium for Energy Efficiency,21 we examine
per-customer reported expenditures on residential energy efficiency programs.22

This includes both energy efficiency programs run through utilities and those run
through non-utility organizations, which play a significant role in New York, Ore-
gon, Vermont, and parts of California, for instance. Other efficiency measures,
such as appliance and building standards, impose costs on firms and consumers
that are also not captured in these data. Still the data presented here are strongly
reflective of the relative emphasis that different jurisdictions place upon energy
efficiency measures. Figure 14 illustrates the regional expenditures per customer
of electric utilities on energy efficiency programs. The largest expenditures are
focused on the coasts, with particular intensity in California and the northeast.

21https://www.cee1.org/annual-industry-reports
22Our thanks to Hunt Allcott for suggesting this comparison.
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Figure 14: Electric Utility Expenditures on Energy Efficiency Programs

According to our calculations, these are the regions where marginal energy effi-
ciency expenditures provide the least, possible even negative, social value. Clearly,
the distribution of spending on energy efficiency within the US is suboptimal at
best.

B. Distributed Energy Resources

Another area of energy policy that is directly impacted by the relationship be-
tween retail prices and marginal cost is the deployment of small-scale distributed
energy resources. Small scale generation resources, currently overwhelming com-
prised of rooftop solar photovoltaic (PV) installations, are deployed “behind the
meter” and generally eligible for “net metering.” When a customer’s production
exceeds consumption, the excess production in one hour is allowed for billing pur-
poses to offset excess demand in other hours. In this way, residential customers
with distributed generation can offset the full retail price of electricity, rather
than the marginal replacement cost of the energy that is produced. Where retail
variable prices substantially exceed the marginal cost, residential solar is consid-
erably more attractive for consumers. In California, Borenstein (2017) calculates
that the gap between retail and wholesale marginal electricity prices provides
about as large an incentive for residential solar as the 30% federal investment tax
credit.
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Drawing again from the EIA form 861, we aggregate the capacity of distributed
resources that is subject to net metering by utility reporting area. Figure 15
illustrates the capacity of distributed generation (in kW) per customer for the
utility systems that report this statistic to the EIA. California, with over 40% of
the residential solar capacity in the nation, again dominates this calculation.

Figure 15: Installed Distributed Generation Capacity Subject to Net Metering

The map reflects the union of at least three sets of attributes: significant solar
incentives (e.g., New Jersey), solar potential (desert southwest), and high retail
prices. Comparing figure 15 to figure 9, the strong relationship between high
retail prices and solar deployment again stands out. A full calculation of the
welfare implications of retail tariffs on DG would require a decomposition of rate
effects from other incentives, as well as estimates of the relative efficiency of solar
deployment in different locations. However, figure 15 does suggest that expendi-
tures on distributed solar are strongly associated with retail price incentives that
greatly exceed the social value of distributed generation.

The deployment of distributed energy resources, and the resulting reduction
in metered consumption, or “load defection” is a growing threat to the finances
of distribution utilities who have been recovering capital cost though volumetric
rates. Critics of small-scale DG have pointed to net-metering policies as a target
for changes to rectify the situation, but net-metering policies lose their relevance if
the marginal retail rate reflect social marginal cost. Recognizing this fact, utilities
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are increasingly seeking to adjust their rate structures to increase monthly fixed
charges and reduce their volumetric prices. While not a panacea (Borenstein 2016)
a shift toward larger fixed fees, particularly in states like California where they are
modest to non-existent, would partially insulate utilities from the loss of customer
load and reduce the marginal private reward of solar deployment for customers.

Consideration of distributed generation also raises questions of their potential
impact on distribution losses and other costs associated with distribution net-
works, such as voltage support. As discussed above, marginal distribution losses
can be significant, reaching over 20% at times, which DG could mitigate or ex-
acerbate depending on location and timing of production. More generally, the
degree to which optimized location and control of distributed resources could
change the cost of distribution remains an important area of research. Collection
of distribution-level data with higher temporal and locational resolution could
help address these questions.

VII. Conclusion

Most policy recommendations from economists for responding to the challenge
of climate change revolve around “getting the prices right.” But in electricity,
the prices are wrong for many reasons beyond greenhouse gas emissions. In this
paper, we have sought to present a first analysis of the direction and degree of
mispricing in residential electricity.

We find that with the current generation capacity and remuneration mecha-
nisms for generation, the short-run private marginal cost was quite low in 2015,
averaging around 3 cents per kWh, which is below most estimates of the long-run
average cost that generation must cover to support new investment. Estimates
of the average externalities associated with generation are approximately twice
the level of private marginal costs. We show that distribution-level marginal line
losses significantly increase both of these costs, by more than 9% on average. Ac-
counting for private and external marginal costs, and adjusting for distribution
line losses, we find large variation in full societal marginal cost from a (sales-
weighted) 10th percentile of 5.4 cents per kWh to a 90th percentile of 12.9 cents
per kWh.

Somewhat surprisingly, we find that across the country about 36% of residential
sales at a time-invariant marginal electricity price are below the utility’s average
social marginal cost of providing electricity. But we find wide variation, with
prices well above average SMC in California and the Northeast, and below in
much of the Midwest and the South.

That comparison, however, captures only part of the inefficiency, because social
marginal cost varies hour to hour while price does not for nearly all residential cus-
tomers. We show that the full inefficiency can be decomposed into a component
due to the gap between price and average social marginal cost and a component
due to static pricing when SMC varies. Under the strong assumption that the
elasticity of residential demand is the same for these two types of price variation,
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we show that for most utilities more of the deadweight loss is due to failure to
capture volatile SMC. Nonetheless, the largest DWL results from a small number
of utilities, mostly in California, setting prices well above average SMC.

Our findings have implications not just for standard deadweight loss analysis of
consumption, but also for common related policies on residential energy efficiency
and distributed generation. Many states have aggressive programs to encourage
such investments, but if prices already exceed social marginal cost, the value of
additional investments beyond those that well-informed individuals would already
choose to make is open to question. It is perhaps not politically surprising, but
nonetheless economically concerning, that we find these programs are most preva-
lent in areas where retail prices are already substantially above social marginal
cost.
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VIII. Appendix

IX. Appendix

The data used in this analysis come from a diverse range of sources. The con-
struction of the data necessary for this analysis can be divided into the following
categories:

• The annual sales of electricity to residential customers

• The marginal retail price paid by residential customers

• The location of residential customers as determined by utility service terri-
tories

• The private marginal costs of serving electricity demand

• The external marginal costs of serving electricity demand

• The hourly load shapes to distribute annual residential demand throughout
the year

• The losses associated with distributing electricity from the transmission grid
to residential customers

Each of these categories is covered by a section below.

A. Residential Electricity Sales

The starting point for this analysis was the Form EIA-861 survey published by
the US Energy Information Administration (EIA) (Energy Information Administration
2015a). This survey collects a range of valuable annual data on every electric
utility in the US. Of primary interest for this work was the dataset on “Sales to
Ultimate Customers” which contains annual data on kilowatt-hour sales of elec-
tricity, numbers of customers and retail revenues. These data are broken down
by state, so there can be multiple entries for a single utility if it has customers
in multiple states. These data are also broken down by customer class, such that
the sales, revenues and customer numbers are reported separately for residen-
tial, commercial and industrial customer types.23 There is also some other key
information available through the EIA-861 including data on the ownership struc-
ture of a utility (e.g., Investor Owned, Municipal, Cooperative, etc.); the various
regulatory regimes each utility belongs to (e.g., reliability regions or balancing
authorities); the counties that are part of a given utility’s service territory; and
operational data such as the peak load in each utility’s service territory, numbers
of distribution circuits and line losses.

23Strictly speaking a Transportation customer class is also included, although during our analysis
period this represents a negligible volume and so is largely ignored.
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The analysis here is focused on residential customers, so all information on
industrial and commercial customers was dropped. Only utility-state pairs serving
at least some residential customers were retained. The analysis here also focuses
on the continental 48 states and the District of Columbia because the necessary
private and external marginal cost data are not available for Hawaii, Alaska or
the US territories. We also opted to drop the very small number of utilities that
were classed as “Behind the Meter” as we are interested in comparing residential
customers recieving a standard electricity service throughout the US.

Finally, the data were reformatted to appropriately deal with the different ways
that residential customers receive their electricity. Roughly 85% of customers
still receive their electricity through a vertically integrated utility that provides
“bundled” service. This means the utility that is procuring the electricity that
customers consume is also the company that owns and operates the distribution
network that delivers the electricity to customers homes. However, in some states
the electricity sector has been restructured such that customers can choose their
electricity provider. In this case the service has been “unbundled” such that one
company provides the electricity procurement service (i.e., the “energy” service)
and another company distributes the electricity to the customer (i.e., the “deliv-
ery” service). The utility providing the energy service is subject to competition
from other providers, and will be referred to here as the “retail choice provider”.
The utility providing the delivery service continues to be a public or regulated
monopoly and will be referred to hear as the “local distribution company”. Var-
ious states take different approaches to handling which of these two entities is
in charge of the other aspects of electricity service, such as billing and customer
service. Roughly 15% of customers recieve their electricity this way, and a large
number of these customers are concentrated in a few states such as Texas, Ohio,
Pennsylvannia and New Jersey. To ensure these customers can be correctly in-
corporated into the analysis, the data were reformatted such that each entry had
a “delivery” utility and an “energy” utility. For vertically integrated utilities
providing “bundled” service these two entries were the same. For customers re-
cieving “unbundled” electricity service these two entries would necessarily differ.
Unfortunately, the EIA-861 data do not include information on how a given re-
tail choice provider’s customers and sales are divided among the various local
distribution companies that are providing delivery-only service in a given state.
As such, new entries were created for all possible state-by-state combinations of
retail choice providers and local distribution companies. The sales and customer
numbers were then allocated proportionally. In the limited cases where we had
prior knowledge about the operations of a retail provider this was included be-
fore any proportional allocation.24 Where there were discrepencies between the

24For example, Marin Clean Energy is effectively a retail choice provider in California and there are
three local distribution companies that provide delivery service in the state: Southern California Edison,
San Diego Gas & Electric and Pacific Gas & Electric. However, Marin Clean Energy’s operations are
limited to Marin County and nearby counties and so delivery service is only provided to its customers
by Pacific Gas & Electric.
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state totals for energy-only and delivery-only customer numbers and sales the
convention was adopted that the energy service totals were correct and the de-
livery service totals were re-scaled accordingly. In general any discrepencies were
relatively small and likely due to errors in reporting.

One final wrinkle in completing this reformatting was the approach taken to
reporting in the EIA-861 by utilities in Texas. Unfortunately, the Texas utilties do
not break out their reporting between “energy” and “delivery” service. Instead,
the retail choice provider reports the sales, customer numbers and revenues as
if they were providing a complete “bundled” service. This also means that the
six local distribution companies that offer delivery services to the retail choice
providers in Texas do not report any information in this part of the survey.25 To
remedy this and make the data for Texas consistent with the other retail choice
states, additional data were collected from the Texas Public Utilities Commission
on the residential customer numbers, sales and revenues for these six missing local
distribution utilities (Public Utility Commission of Texas 2017b). These data
were then matched with the retail choice providers using the same proportional
allocation process used for the other retail choice states.

B. Residential Marginal Retail Prices

Once the EIA-861 data had been collected and reformatted, it was then straight-
forward to calculate the annual average retail price paid by every residential cus-
tomer. To do this, total revenues were divided by total kWh sales to get the
average cents per kWh price. However, this is almost certainly not a good reflec-
tion of the marginal retail price faced by each customer for three reasons. First,
electricity tariffs are usually designed as two part tariffs, with a fixed monthly
charge and a variable per-kWh charge. Because fixed charges are so prevalent
and can comprise a substantial portion of customers’ bills, simply using the av-
erage price would overstate the marginal rate customers actually face. Second,
for many utilities, there is variation in the variable per-kWh price customers pay
even after accounting for fixed charges. To name some of the most common in-
stances, the per-kWh price a customer pays can vary depending on the amount
that a customer consumes (i.e. tiered rates where prices increase or decrease in
discrete blocks of cumulative consumption), the time of day (i.e., “time-of-use”
or “dynamic” pricing), or the time of year (i.e., seasonal pricing where winter and
summer rates differ). Third, the structure of retail tariffs themselves are also not
static over time and are updated as utilities’ new regulatory cases are approved,
as changes in certain costs are automatically passed through to customers or as
retail choice providers alter their tariffs in an effort to win new customers.

To deal with fixed charges, we have collected information on the retail tariffs
actually offered by utilities and extracted the monthly fixed charges. Our main

25These six utilities are Oncor Electric Delivery Company LLC, CenterPoint Energy, AEP Texas
Central Company, AEP Texas North Company, Texas-New Mexico Power Company and Sharyland
Utilities LP.
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source for this information is the National Renewable Energy Laboratory’s Utility
Rate Database (URDB) (National Renewable Energy Laboratory 2017b). This is
an open-access repository for rate structure information for utilities operating in
the US. The fixed charges for residential tariffs active during our analysis period
were extracted, and the utility names were cleared up so that their corresponding
identifiers and states matched those in the EIA-861 data. At the time of writing,
the URDB only contained tariffs for utilities providing “bundled” service. This
presented us with a similar challenge to the EIA-861 data in dealing with the
roughly 15% of customers subject to retail choice. To resolve this, we manually
collected additional fixed charge information for the largest retail choice providers
in the states with substantial numbers of retail choice customers (Public Utility
Commission of Texas 2017a).26 Once we had finished collecting all the necessary
data on fixed charges we found that it was almost always the case that a given
utility operating in a given state had many different tariffs. The average fixed
charge paid by a given utility’s customers must therefore be some weighted average
of the fixed charges in each of these tariffs, with the weights determined by the
number of customers on each tariff. Unfortunately we know of no comprehensive
data source that could give us this breakdown of customers by tariff. As such we
summarized the fixed charges in these tariffs by identifying the standard tariffs
that were most likely to have many customers on them, as compared to the more
niche non-standard tariffs that few customers were likely to be on. We did this by
searching for keywords in the names of the tariffs. Tariffs containing words like
“vehicle”, “solar”, “medical” or “three-phase” were identified as non-standard.
This tended to leave us with a set of more standard tariffs with names containing
words like “default”, “residential” and “general”. Full details of the keywords used
can be found in the accompanying code. Once these standard tariffs had been
identified, we took the median, giving us a single estimate of the residential fixed
charge for each utility-state pair. We considered other approaches to combining
these (e.g. mean or mode), but this did not significantly affect our results. It
was also often the case that utilities had similar or identical fixed charges on
many or all of their tariffs. Once this exercise was complete, these rates were
matched with the utility-state pairs in our reformatted version of the EIA-861
data. At this point it was now possible to estimate the second part of the two
part tariff - namely the average variable per kWh price. To do this the fixed
charge was multiplied by the number of customers to get fixed revenues, these
were subtracted from total revenues to get variable revenues, and these were then
divided by total kWh sales to get the average variable cents per kWh price.

The second issue in identifying the marginal retail price was dealing with the
fact that utility tariffs often do not contain just a single flat per-kWh variable
price. This could mean that the average variable per kWh price calculated using

26In collecting these data we sought to capture whether the fixed charges offered by a given retail choice
provider varied depending on the local distribution company whose service territory their customer was
located in. In general though we found very little evidence of utilities having much variation in their
fixed charges for this reason.
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the fixed charge information described above does not reflect the actual marginal
price paid by customers. The URDB does in fact contain some information on
the structure of the per kWh prices in each tariff (e.g. tier sizes and prices
for increasing- or decreasing-block rates, or peak vs off-peak rates and timings
for time-of-use pricing). However, these data are necessarily complex, and they
are less complete than the fixed charge information we had already extracted. As
already noted, these data also don’t cover retail choice providers and so significant
additional manual collection would be required to make these data complete.
Furthermore, to properly use this information we would need to know both how
many customers are on each tariff and the consumption patterns of the customers
on each tariff. As was noted before, we know of no comprehensive source of these
data, and to the extent that these data are held by individual utilities it is almost
certainly confidential.

Thus, we have opted here to conduct the analysis assuming utilities charge a
single flat variable per kWh price. While this is obviously not strictly true, we
believe it is not an unreasonable assumption for the purposes of our analysis. To
investigate this, we conducted the following robustness checks. First, we com-
pared our derived estimates of average variable per-kWh prices with the $/kWh
energy charges recorded in the URDB. Where rates had multiple energy charges
(e.g. for tiered or time-varying rates) we conducted our comparison against the
median. Figure 16a indicates that our estimates do broadly match up with the
rates recorded in the URDB. Second, to look at the issue of variation in prices
due to seasonal factors or tiered rate structures we calculated monthly estimates
of the variable per kWh rate. To do this we used the EIA-861M survey which is
a monthly version of the annual EIA-861 survey that covers a sample of the com-
plete population of utilities (Energy Information Administration 2015b).27 Figure
16b indicates that the vast majority of customers rates do not vary substantially
month-to-month. Third, to look at the issue of hourly variation in prices during
the day we examined evidence from the “Demand Response” and “Dynamic Pric-
ing” sections of the EIA-861 survey. These sections provide data on the numbers
of customers participating in demand response programs or subject to some form
of dynamic pricing tariff. We find that 4.2% of residential customers in the US
are on tariffs with time-varying prices. This includes time-of-use, real time, vari-
able peak and critical peak tariffs. Demand response programs are also limited
in scope with 5.4% of customers enrolled in a demand response program in 2015.
There is also likely substantial overlap in the customers exposed to these two
forms of price variability. Roughly three quarters of the customers on tariffs with
time-varying prices or in demand response programs are served by the same set
of 96 utilities.

A closely related issue for many utilities is that a share of customers are on
low-income rates, which in many cases are lower marginal rates than the stan-

27In 2015 the EIA-861M contained information on utilities accounting for 67% of residential customers
and sales.
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dard tariff. Our analysis captures the average variable payment (assuming that
we have correctly characterized the fixed charges), but it is possible that some
customers pay a higher marginal rate and others pay a lower marginal rate. We
are not able to capture such variation in marginal rates across customers. It is
straightforward, however, to show that if that is the this case our analysis under-
states the deadweight loss associated with marginal rates deviating from average
SRSMC.

(a) Correspondence between estimated variable
prices and median URDB energy charges

(b) Variability in monthly variable per kWh re-
tail prices relative to the annual average

Figure 16: Robustness of use of flat variable charge

The third and final issue in identifying the marginal retail price was dealing with
the fact that utility tariffs can change and be updated over time. This is probably
the least concerning of the three issues, in large part because the cost drivers and
regulatory arrangements in the electricity sector mean that changes to residential
retail tariffs tend to occur in a slow and incremental manner. Nonetheless, we
are collecting data for multiple years in order to examine the robustness of our
findings over time.

C. Utility Service Territories

To match up our data on retail rates with information on social marginal costs,
we had to represent the spatial distribution of residential customers. For this
we used information on the service territories of the local distribution companies
that distribute electricity to end consumers.

Our main source for this was a lookup file provided as part of the URDB
(National Renewable Energy Laboratory 2017a). This provides a list of ZIP
Codes served by each local distribution company. These lookups were created
using a proprietary set of shapefiles detailing the actual service territories of
major electric utilities, which were converted to a list of ZIP Codes falling within
those service territories. Unfortunately the ZIP Code lookups did not cover all
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the utilities in our dataset. To fill in any gaps we relied on the “Service Territory”
section in the EIA-861 survey. This provides a list of counties served by each local
distribution company. For consistency these were converted to ZIP Code lookups
by assuming any local distribution company serving a given county also served all
the ZIP Codes in that county. Our spatial data on US ZIP Codes was downloaded
from Environmental Systems Research Institute and included polygons for 30,105
ZIP Code areas, and central coordinates for the full universe of 40,552 ZIP Codes
(Environmental Systems Research Institute 2017).28 These data were used as
they were more comprehensive than the Zip Code Tabulation Area data available
from the US Census Bureau.

To increase the accuracy of our geographic allocation of residential customers
within a given service territory we also collected data on population counts by
ZIP Code. The vast majority of these data were from the ESRI spatial data
we downloaded, as this also included estimates of population for each ZIP Code
based on ESRI’s analysis of US Census Bureau data. However, there were a few
ZIP Codes where the population data were missing but where we were confident
that people lived. To remedy this, county-level population data were downloaded
from the US Census Bureau, along with spatial data on US counties and a set
of lookups from counties to ZIP Codes (US Census 2017a, US Census 2017b, US
Census 2017c). The ZIP Codes with missing data were then assumed to have a
population density equivalent to the county they belonged to. Missing ZIP Code
population counts were then calculated as the county-level population density
multiplied by the ZIP Code area.

It is important to emphasize that the matching of utility service territories
to ZIP Codes, or counties, affects only the construction of the maps shown in
the results. It does not affect any of the summary statistics by utility, or the
calculations of deadweight loss and its decomposition.

D. Private Marginal Costs

The primary source of the data for calculating private marginal costs was the
price information provided by the seven major US Independent System Opera-
tors (ISOs).29 These are Electric Reliability Corporation Texas (ERCOT), the
New England ISO (ISO-NE), the New York ISO (NYISO), the California ISO
(CAISO), the Southwestern Power Pool (SPP), the Midcontinent ISO (MISO)
and the PJM Interconnection (PJM). Each of these manages the operation of
the electricity transmission grid over a large geographic area, most encompass-
ing multiple states. These organizations calculate wholesale locational marginal
prices (LMPs) for major locations in their covered territories, reflecting the value

28The latter is larger because it includes ZIP Codes that have no associated area such as post office
box ZIP Codes and single site ZIP Codes (e.g. government, building, or large volume customer).

29Strictly speaking some of these, such as PJM, are classed as Regional Transmission Organizations
(RTOs) but for the purpose of this paper the distinction is largely immaterial and so we refer to all as
ISOs.
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of electricity supplied at different points in the power grid. Each ISO has LMPs
for thousands of pricing nodes within their system, such that across all seven ISOs
there are in excess of 30,000 nodes with hourly price data available.30 We did not
consider it necessary to utilize data from all these nodes in our analysis. This
was in part because prices at nodes located very close to one another are usually
very highly correlated, and so selecting a smaller number should still allow us to
create a sufficiently robust picture of the main spatial and temporal variation.
In light of this we selected a total of 157 key LMPs. All of these were aggre-
gated “zonal” LMPs that represent averages of many individual nodal prices. In
selecting these we were also mindful that different nodes can refer to a range of
important locations in the power grid, such as power stations, load substations
or major interconnection points with neighboring systems. Wherever possible
our selection focused on zones that were aggregates of load nodes or were used
by regulators in their determinations of utilities’ wholesale costs for supplying
their customers. This clearly fits with our interest in finding the marginal cost
of serving residential customer demand. These data were downloaded from SNL
Financial (SNL Financial 2017b). This is a proprietary source of financial data
and market intelligence and includes a convenient centralised database of LMP
data from all seven ISOs.31 All data were converted to Eastern Standard Time
(EST) for consistency.

These seven ISOs cover large parts of the US. However, their coverage is not
complete and they are most notably absent from the most of the Southeastern U.S.
To remedy this and provide a secondary source of corroborating data we also used
data from the Federal Energy Regulatory Commission’s Form-714 survey (Federal
Energy Regulatory Commission 2017). This survey collects data from electric
utility balancing authorities (or control areas) in the United States. The seven
ISOs are also classed as balancing authorities and so their aggregate system-wide
data appear in the FERC-714 data. Importantly though, balancing authorities
also include approximately 200 additional utilities and regulatory entities that
undertake a similar electricity system operation role. This includes major utilities
in the Southeastern U.S. The FERC-714 data used are the hourly system lambda
data. Here respondents are supposed to report hourly values of the incremental
cost of energy in their system. In principal this seems ideal. In practice, a
check of the data reported by the ISOs shows that ISOs simply report LMPs as
the system lambdas at various locations. Unfortunately, visual inspection of the
system lambda data provided by the other balancing authorities reveals a range
of suspect data, including respondents providing no data, respondents providing
all zeros, respondents providing data that remain unchanged over long periods,
and respondents providing data that differ substantially from LMPs at nodes in
nearby ISOs. To deal with these weaknesses in the system lambda data, each

30Often pricing data are available at even finer temporal resolutions (e.g., 15 minute) but for this
analysis we have used hourly data as they are consistently available across all seven ISOs.

31It should be noted that these data are freely available directly from each ISO. We have opted to
utilize SNL Financial’s database purely due to ease of accessing and compiling the data.
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series was individually inspected to determine if it was sufficiently robust to be
included. This left just 19 balancing authorities (besides the seven ISOs) with
reliable system lambda data. Fortunately this still included a number of balancing
authorities in Southeastern states such as Florida and Alabama. As with the ISO
data, all series were converted to EST for consistency. Unfortunately the quality
of the reporting of time zones was also not perfect such that it is not always
clear whether data are reported in standard time or daylight savings time. In
some cases respondents even left the time zone section blank. Where possible we
sought to identify the reporting time zone by visual inspection. Beyond that, we
assumed that respondents reported their time zone in a manner consistent with
the requirements set out in the survey instructions.32 Lastly, the system lambda
data do not account for transmission losses, while LMP data implicitly do. To
remedy this all system lambda prices were increased by an assumed transmission
loss rate of 2%.

Figure 17: Locations of ISO zonal price points and Balancing Authority area
system lambdas in 2015

Once the ISO and balancing authority data had been collected, we next sought
to use these data to calculate hourly ZIP Code level estimates of the marginal
private costs of supplying electricity. We chose to do this at the ZIP Code level
because our intention is to combine these outputs with the EIA-861 data described

32“The hourly lambda data calculations for each day is based on the respondent observing standard
time for its respective time zone for the entire year even though it may have observed daylight savings
time for part of the year. Respondents must denote in column (b) the actual time zone observed for each
day (e.g., EST, EDT, CST, CDT, etc.).”
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earlier, and as mentioned in the previous section, our representation of utility
service territories is based on ZIP Codes. To begin this process of creating ZIP
Code-level prices we first had to determine where each ISO zone or balancing
authority area was located. Unfortunately, we were unable to get access to the
necessary spatial polygon data files detailing the areas covered by the ISO zones.
Instead SNL Financial were able to provide us with a list of coordinates they
use to represent the location of each ISO node, including the zonal nodes we had
chosen for this analysis (SNL Financial 2017a). Strictly speaking, the ISO zonal
nodes are themselves representing many individual nodes, but for our purposes
the central coordinates of these zones are likely sufficient. For consistency we
also represented the locations of the FERC-714 balancing authorities using the
central coordinates of their respective network areas. These coordinates were
calculated using the polygon centroid from spatial data on electricity balancing
authorities downloaded from the Homeland Infrastructure Foundation-Level Data
website, which is part of the US Department of Homeland Security (Department
of Homeland Security 2017a). These spatial coordinates can be seen in Figure
17.33 Once these had been collected we calculated the distance to each ZIP Code
centroid using the geodesic on a WGS84 ellipsoid. The price for each ZIP Code
was then calculated as the inverse distance-weighted average of the prices at the
three closest price nodes.

Average wholesale electricity costs are made up of energy costs, capacity costs,
ancillary services costs and other uplift payments. Our use of LMP and system
lambda data captures the energy cost component. Table 4 shows the relative
contributions of each of these four categories across the seven ISOs (Electric Reli-
ability Council of Texas 2015, California Independent System Operator 2016, In-
dependent System Operator New England 2016, Midwest Independent System
Operator 2015, New York Independent System Operator 2016, PJM Interconnection
2016, Southwest Power Pool 2016).34

The end product of the private marginal cost data collection process was a
dataset of hourly estimates for each US ZIP Code. These data were then merged
with the reformatted retail rates data using the information on the ZIP Codes
served by each local distribution company. Where a utility served multiple ZIP
Codes in a given state, the hourly price assigned to that utility was an average of
each of the ZIP Code prices, weighted by the total population of each ZIP Code.

33The figure depicts selected price points for ISO-NE (orange), NYISO (purple), PJM (red), MISO
(blue), SPP (brown), ERCOT (green), CAISO (pink) and FERC planning areas (grey).

34These values are taken from the annual reports of each ISO. The one exception to this is capacity
costs in the CAISO. Capacity payments in California are primarily agreed through bilateral contracts
overseen by the CPUC’s Resource Adequacy program, and so do not show up as capacity costs levied
by the ISO. To account for this we have calculated capacity costs using data from the CPUC’s Resource
Adequacy Report (California Public Utilities Commission 2015). This yields an additional capacity cost
of approximately $4/MWh, or approximately 9% of total wholesale costs.
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E. External Marginal Costs

The data on external marginal costs are from Holland, Mansur, Muller, and
Yates (2016). They contain the environmental externality costs in $/MWh from
four pollutants associated with the generation and supply of electricity: partic-
ulate matter (PM), nitrogen oxides (NOx), sulphur dioxide (SO2) and carbon
dioxide (CO2). The data provide estimates for each hour of the day, for week-
days. Weekends are excluded. Unfortunately, there is no temporal variation in
these data capturing how these costs might vary across different seasons, months,
days of the year or load. These data also don’t indicate how external costs may
vary in response to other factors, such as weather, time or day of week. The spa-
tial resolution of these data are also relatively coarse. Observations are available
for nine different regions of the US. These correspond to the eight reliability re-
gions of the North American Electric Reliability Coorporation (NERC), with the
exception of the Western Interconnection region which they split into a California
region and a non-California region. These data were merged with the reformatted
retail rates data using information in the EIA-861 survey on the NERC region
that each local distribution utility belongs to.35

Lastly, we make a small set of adjustments to the (Holland et al. 2016) data
to avoid double counting. This can arise where the private marginal costs data
already incorporates some portion of external marginal costs due to environmen-
tal policies that put a price on externalities. The two main instances of this
that are relevant here are California’s Cap and Trade Program and the Regional
Greenhouse Gas Initiative (RGGI) that covers nine states in the north-eastern
US. The (Holland et al. 2016) estimates were created using a social cost of carbon
of $40/ton of CO2. The California and RGGI carbon prices in 2015 averaged
$12.70/ton and $6.00/ton respectively. We therefore multiply the $/kWh exter-
nal damages by ($40 − $12.70)/$40 = 68% for the state of California and by
($40− $6.00)/$40 = 85% for the states that participate in the RGGI.36

F. Hourly Load Shapes

Residential customer demand for electricity is not constant, nor is the devia-
tion between residential retail price and the social marginal costs of supplying
electricity. In fact, it is likely the case that these will sometimes be strongly
correlated (e.g., periods of peak wholesale electricity prices tend to coincide with
peak residential electricity demand). It is therefore important to be able to deter-
mine how annual residential sales are distributed across the hours in our analysis
period. The ideal dataset for this would likely be some form of hourly metered
consumption data for the universe of residential households in the US. Clearly

35The exception here was the California and non-California regions that the Western Interconnection
was divided into. Here the data were matched by the combination of both NERC region and state
identifiers.

36These are Conneticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York,
Rhode Island and Vermont.
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such a dataset does not exist - customers’ meter data are confidential and held
by their individual utility, and many residential households still do not even have
meters that can record this information at an hourly frequency. To tackle this
challenge our preferred approach involved using hourly load data from a selection
of ISO zonal nodes and planning areas. These data were used to represent the
shape of hourly residential load profiles at the ZIP Code level up to a scale factor,
and then once again we used our dataset of ZIP Code service territory lookups
to match these up to utilities.

To do this, we again used the ISO zonal data from SNL Financial (SNL Financial
2017b). Unlike pricing nodes, load is only available for a limited number of zonal
nodes, and is not available for the many thousands of individual load nodes where
LMPs are calculated. Fortunately many of these are the same nodes that we al-
ready chose to use in our selection of LMPs. In total this gave us load data for 66
ISO zonal nodes. The FERC-714 survey was then used to supplement this with
additional hourly load data for planning areas. These planning areas have a reg-
ulatory responsibility to ensure resources are available to meet customer load and
there is often considerable overlap with the balancing authorities used earlier for
the system lambda data. The coverage and quality of the planning area load data
is much better than for the balancing authority system lambda data, resulting in
122 planning areas with usable load data. For both sets of data the same time
zone conversions were applied so that all data was in EST. All series were then
normalized to hourly shares of annual load by dividing each hour by the annual
total for that ISO zone or planning area.37 On average this would mean the load
share in a single hour should be 1/8760, or 0.0114%. Above average hours (e.g.,
6pm on weekdays) should be above this and below average hours (e.g., 3am on
weekends) should be below this. Normalizing the data in this way helped account
for the fact that ISOs and planning areas differ massively in size (as measured by
total load) and is also consistent with our intended use of these data to apportion
annual kWh sales across each hour of the year. As with the private marginal cost
data, these shares of annual load needed to be assigned to the utility-state entries
in our reformatted retail rates dataset. We employ the same approach as for the
private marginal costs analysis. This involves assigning each ISO zone or planning
area series to a central coordinate (SNL Financial 2017a, Department of Home-
land Security 2017b). These spatial coordinates can be seen in Figure 18.38 We
then calculated load shares for each ZIP Code using the inverse distance-weighted
averages of the three nearest load points.

The end product of the residential load profile data collection process was a

37There were some series with data missing for some hours of the year. If an ISO zone or FERC
balancing authority had more than 10% of the hours in a year missing, shares were not calculated and
that series was dropped. The concern here was that shares calculated using a subset of the hours in
the year may not produce accurate shares if the hours for which there were missing data were not
representative of all hours. This only led to data for 3 planning areas being dropped.

38The figure depicts selected price points for ISO-NE (orange), NYISO (purple), PJM (red), MISO
(blue), SPP (brown), ERCOT (green), CAISO (pink) and FERC planning areas (grey)
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Figure 18: Locations of ISO load zones and load Planning Areas in 2015

dataset of estimates of hourly shares of annual residential electricity demand for
each US ZIP Code. These data were then merged with the reformatted retail rates
data using the information on the ZIP Codes served by each local distribution
company. Where a utility served multiple ZIP Codes in a given state, we again
weighted the ZIP Code values for the load shares by the total population of each
ZIP Code. A final adjustment was made to ensure that each of the newly created
series correctly summed to one over the year.

It is important to note that our preferred approach of using system load profiles
as a proxy for residential load profiles has a clear drawback in that it likely
underestimates the peakiness of residential load. This is because system load is
made up of all demand for electricity from residential, commercial and industrial
customers. Differences in the load profiles of residential versus commercial and
industrial customers mean that the combination of these three customer classes
tends to lead to a smoother total system load profile. It is true that residential
customers make up the largest customer class, accounting for over 37% of all kWh
sales in 2015, and so are an important driver of total system load. Even so, where
commercial and industrial customers have significantly different load profiles to
residential customers and where they make up a significant portion of total load,
our hourly allocation of residential load will almost certainly be biased towards
less volatility.

To test the robustness of using these system load profiles as a proxy for res-
idential load profiles, we conducted a sensitivity analysis using an alternative
source of residential load profile data. For this, we collected modelled residential
load profiles produced by NREL (National Renewable Energy Laboratory 2013).
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This dataset uses an engineering model to estimate hourly residential electric-
ity demand profiles for a set of representative residential households at different
locations throughout the US. To construct the dataset NREL classified the US
into five climate zones and made assumptions about building characteristics that
varied by climate zone (e.g., source of space heating, presence of air condition-
ing, square footage, construction materials etc.). NREL also made additional
assumptions about operational conditions, such as occupancy rates and weather.
An hourly weather profile was used based on NREL’s “typical meteorological
year” (TMY3) dataset. This provides hourly averages for a range of weather vari-
ables (e.g., temperature, humidity, precipitation etc.) based on up to 30 years of
historical data from 1976 to 2005. The engineering model then takes these as-
sumptions and weather data and estimates a residential electricity demand profile
at over 1,400 TMY3 locations throughout the US (National Renewable Energy
Laboratory 2008). The clear advantage of the NREL dataset is that it is a more
explicit measure of fluctuations in residential load, rather than system load. The
main disadvantages are twofold. First, the dataset is comprised of estimates of
residential load based on a 2008 engineering model that necessarily makes strong
assumptions about building performance, customer behavior and the nature of
the housing stock. As such this may be a poor proxy for the performance of the
actual housing stock in our analysis period. Second, the dataset is produced using
averaged weather data from well before our chosen period of analysis. As such
the weather profile used may differ substantially from the actual weather that
prevailed during our analysis period.

To conduct our sensitivity analysis we carried out the same processing steps
described earlier to get a second set of estimates of residential load profiles for
each US ZIP Code, in this case based on the NREL simulation data. To assess the
actual performance of the load profiles based on the NREL dataset relative to our
load profiles based on observed system load we compared both approaches against
the very few datasets of actual metered residential load we were able to find. In
general we found that the load profiles based on system load understated the
peakiness of residential load and the load profiles based on the NREL modelling
data overstated the peakiness of residential load. We also found some limited
evidence that the profiles based on system load were more strongly correlated
with the actual residential load data. Finally, we conducted the entire analysis
using both approaches to estimating the residential load profile to see how this
would move the results. We found that the choice of residential load profile had a
very small impact on the final results (e.g., on the extent of estimated deadweight
loss) and so throughout we have opted to use the approach based on system load.

G. Distribution Losses

Our estimation of private and external marginal costs gives the marginal cost
of electricity delivered in the high-voltage transmission system. However, our
analysis is concerned with the marginal costs of serving residential customers.
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It is therefore important that we account for losses incurred as power is carried
through the low-voltage distribution system to residential households. We es-
timate average annual residential distribution losses for each local distribution
company using data in the EIA-861 survey. Unfortunately, the only data on
losses that are available report total losses for a given utility across all types of
customers (i.e., residential, commercial and industrial). This is problematic be-
cause losses to residential customers are likely higher than for any other customer
type. This is because residential customers are located at the furthest ends of
the distribution network at the lowest voltage levels. Industrial customers, on the
other hand, likely have the lowest losses because they are connected to more cen-
tralized portions of the distribution network at higher voltage levels. Sometimes
industrial customers are even connected directly to the transmission network and
so incur zero distribution losses. A second issue with these data on total losses
is that they are not exclusively distribution system losses; some utilities own and
operate both transmission and distribution system infrastructure, and so their
reported losses cover both these parts of the power grid.

(a) Losses by residential share
of sales

(b) Losses by density of load
(kWh per sq km of service ter-

ritory)

(c) Losses by ratio of peak to
average load

Figure 19: Key Predictors of Losses

To address these shortcomings, we estimate average annual residential distri-
bution losses. We compile data on the following variables for each local distri-
bution company, i: total losses in kWh, Li; total sales in kWh, Qi, sales for
residential customers in kWh, Qresi, commercial customers, Qcomi, and indus-
trial customers, Qindi; the density of customer load, Di, as measured by the log
of total kWh sales divided by the service territory area in square kilometers; the
share of distribution circuits with voltage optimization, V oltOpti; the coefficient
of variation for the hourly load profile, CV salesi; and another measure of volatil-
ity, the ratio of peak load to average load, Pi.

39 We also created dummies for
each state, Statesi, utility type, UtilityTypeui, and a dummy variable represent-
ing whether the utility is involved in electricity transmission, Transmissioni.

40

39The log of the density of kWh sales was used as it provided a much better fit.
40All utilities in our sample were involved in distribution. We also chose to aggregate the State,
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Table 7 presents summary statistics on these variables.

Mean StDv Min Max N
Avg. Proportion Total Losses 0.05 0.03 0.00 0.20 1697
Share of Sales (Residential) 0.46 0.21 0.00 1.00 1933
Share of Sales (Commercial) 0.30 0.17 0.00 1.00 1933
Share of Sales (Industrial) 0.24 0.23 0.00 1.00 1933
Log(Sales per sq. km) -2.29 2.02 -12.66 3.43 1932
Share of Circuits w. Volt. Optim. 0.23 0.39 0.00 1.00 1921
Ratio of Peak to Average Load 1.98 0.51 1.00 5.90 1732
Coef. of Variation for Load 0.20 0.04 0.12 0.35 1931
Transmission 0.13 0.34 0.00 1.00 1758

1669 out of 1933 utilies with complete information

Table 7: Summary Statistics of Variables in the Distribution Losses Regression

Using this data we estimated the following regression. We clustered standard
errors by state:

Lavgi = α0 + α1Qresi/Qtoti + α2Qcomi/Qtoti + α3Densityi

+ α4V oltOpti + α5(Qpeak/Qavgi)

+ α6CV salesi + α7QtotiTransmissioni

+

U∑
u=1

γuUtilityTypeui +

S∑
s=1

βsStatesi + εi

We then generated predicted values from this regression. However, in order for
these predictions to be for annual distribution losses for residential customers,
we generate our predicted values after altering the underlying dataset such that
each utility’s load is 100% residential and that each utility is only engaged in
distribution. This meant setting the commercial and industrial shares to zero and
the transmission dummy to zero. The result was a set of predictions of average
annual distribution losses for residential customers for each local distribution
company. The vast majority of our estimates fall between 4% and 8%, as can be
seen in the histogram below.

Once we had estimates for average annual distribution losses for residential
customers, the final step was to convert these to marginal losses and account

Federal and Political Subdivision utility types into a single “Other Public” category as some of these
classifications only contained a very small number of observations. The Retail Power Marketer utility
type was also not relevant for this analysis because we are focused on local distribution companies. This
left us with four utility type categories for our distribution losses analysis: Investor Owned, Cooperative,
Municipal, Other Public.
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Figure 20: Histogram of Predicted Average Residential Distribution Losses

for how losses vary throughout the year. As explained in the paper, we use the
common characterization that 25% of losses are independent of flow on the line –
and therefore not associated with any marginal losses from increased consumption
– and the engineering result that the other 75% resistive losses increase with the
square of flow on the line.41

We adapt the approach taken in Borenstein (2008) and assume that utility i’s
losses in each hour are:

(10) Lit = αi1 + αi2Q
2
it

We have already estimated average annual losses for each local distribution
company, which we call γi. Because the α terms are constant across all hours we
can convert the equation to annual sums and substiute for Lit. If we also assume
that the static no-load losses, as represented by the αi1 term, constitute a quarter
of a utility’s total losses, we can then solve for α2 for each local distribution
company.

(11)

T∑
t=1

Lit = γi

T∑
t=1

Qit = αi1 + αi2

T∑
t=1

Q2
it ⇐⇒ αi2 = (1− 0.25)γi

∑T
t=1Qit∑T
t=1Q

2
it

41See Lazar and Baldwin (1997) and Southern California Edison’s methodology for calculating Distri-
bution Loss Factors, as set out in filings to the California Public Utilities Commission (California Public
Utilities Commission 1997).
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Finally, our interest is in marginal losses so we take the derivative of our original
losses expression such that:

(12)
dLit
dQit

= 2αi2Qit

Thus, equation (12) produces our estimate of marginal line losses as a fraction
of energy that enters the distribution system of utility i in hour t. For each
hour, private and external marginal costs were then scaled up by 1

1−dLit/dQit
to

give our complete estimate of the social marginal cost of residential electricity
consumption.
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