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1 Introduction

Many speculate that in the near future, movie studios will find that predictive analytics

may play just as large of a role as either the producer, director, and/or stars of the film

when determining if it will be a success. Currently, predictive analytics that incorporate

social media data are being predominately used for demand forecasting exercises in the

film industry. Improved forecasts are valuable since they could increase capital invest-

ments by reducing investor uncertainty of the box office consequences and also help mar-

keting teams tailor effective advertising campaigns. However, there remains skepticism

as to whether social media data truly adds value to forecasting exercises.

While prior work by Bollen, Mao, and Zheng (2011), Goh, Heng, and Lin (2013) and

Lehrer and Xie (2017), among others, present evidence of the value of social media in

different contexts, the authors did not consider traditional off the shelf machine learning

approaches such as regression trees, random forest, boosting, and support vector regres-

sion. These statistical learning algorithms do not specify a structure for the model to

forecast the mean and often achieve predictive gains by allowing for nonlinear predictor

interactions that are missed by conventional econometric approaches. Despite this bene-

fit in modeling, the algorithms used to either construct hyperplanes or build tree based

structures via recursive partitioning implicitly assumes homogeneous variance across the

entire explanatory-variable space.1

Heteroskedasticity of data which may arise from neglected parameter heterogeneity

can impact the predictive ability of many forecasting strategies. For example, the pres-

ence of heteroskedasticity can change the location of support vectors and how the data is

partitioned, thereby influencing the structure of regression trees.2 In this paper, we intro-

1More generally, each of OLS, regression trees, and Lasso methods rely on the unweighted sum of
squares criterion (SSR), which implicitly assumes homoskedastic errors. It is well known that when this
condition is violated and heteroskedasticity is present, the standard errors are biased influencing statistical
inference procedures. Further, the objective function ensures that areas of high variability will contribute
more to minimizing the unweighted SSR, and will therefore play a larger role when making predictions at
the mean. As such, predictions for low-variance areas are expected to be less accurate relative to high vari-
ance areas. Therefore, heteroskedasticity might affect predictions at the mean, since the implicit weights
to the data are determined by the local variance. Recent developments continue to use the SSR as a loss
function but can generally accommodate richer forms of heterogeneity relative to parametric econometric
models by accounting for limited forms of parameter heterogeneity.

2After all, the symmetrical loss function of support vector regression equally penalizes high and low
misestimates and which observations constitute as being a support vector of the best fitting hyperplane are
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duce new strategies for predictive analytics that are contrasted with existing tools from

both the econometrics and machine learning literature to provide guidance on how to im-

prove forecast accuracy in applications within the film industry. Thus, we contribute to a

burgeoning literature in the emerging fields of data science and analytics that focuses on

developing methods to improve empirical practice including forecast accuracy. For ex-

ample, among other developments, Vasilios, Theophilos, and Periklis (2015) examine the

accuracy of machine learning techniques when forecasting daily and monthly exchange

rates, Wager and Athey (2018) propose variants of random forests to estimate causal ef-

fects, and Ban, Karoui, and Lim (2018) adopt machine learning methods for portfolio

optimization.

Motivating our new hybrid strategies is that heteroskedasticity would be anticipated

in many forecasting exercises that involve social media data for at least two reasons. First,

the attributes of individuals attracted to different films will differ sharply, leading the data

to appear as if coming from different distributions. Second, online respondents may have

greater unobserved variability in their opinions of different films.3

Our proposed hybrid strategy considers heterogeneity that arises from heteroskedas-

tic data with both least squares support vector regression and recursive partitioning meth-

ods. To illustrate, forecasts from regression trees traditionally use a local constant model

that assumes homogeneity in outcomes within individual terminal leaves. Our hybrid

approach allows for model uncertainty and undertakes model averaging within each ter-

minal leaf subgroup. Thus, within each leaf subgroup the possibility of a heterogeneous

relationship between the explanatory variables and the outcome being forecasted is con-

sidered. Recently, Pratola, Chipman, George, and McCulloch (2020) consider incorporat-

ing heteroskedasticity in the machine learning literature within a Bayesian framework.

With support vector regression we also allow for model uncertainty and modify the cri-

terion function to be based on a heteroskedastic error term. Using Monte Carlo exer-

influenced by heteroskedasticity since the data would indicate that the prediction errors differ for different
ranges of the predicted value.

3In other words, if this unobserved variability in opinions is not modeled, heteroskedasticity may arise
from neglected parameter heterogeneity; which is a form of an omitted variables problem. This link be-
tween neglected parameter heterogeneity and heteroskedasticity is not well known among practitioners
but can be explained with the following example. If regression coefficients vary across films (perhaps the
role of Twitter volume on box office revenue differs for a blockbuster action film relative to an art house
drama), then the variance of the error term varies too for a fixed-coefficient model.
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cises and an empirical application that focuses on measures of predictive accuracy, we

provide researchers guidance on when to use this hybrid strategy with either recursive

partitioning strategies or least squares support vector regression relative to the approach

developed in Pratola, Chipman, George, and McCulloch (2020).

Our empirical examination of the predictive accuracy of alternative empirical strate-

gies that forecast revenue for the film industry does not impose any sampling criteria

and considers every movie released either in theatres or the retail environment over a

three-year period. This data exhibits strong heteroskedasticity,4 which likely arises since

different films appeal to populations drawn from different distributions.

Our results first provide new insights on the trade-offs researchers face when choosing

a forecasting method. With smaller sample sizes, we find improved performance benefits

from using least squares support vector regression relative to other machine learning ap-

proaches. Recursive partitioning strategies including regression trees, bagging and ran-

dom forests yield on average 30-40% gains in forecast accuracy relative to econometric

approaches that either use a model selection criteria or model averaging approach. These

large gains from statistical learning methods even relative to econometric estimators and

penalization methods that implicitly account for heteroskedastic data, demonstrate the

restrictiveness of linear parametric econometric models. These models remain popular in

econometrics since as Manski (2004) writes “statisticians studying estimation have long

made progress by restricting attention to tractable classes of estimators; for example, lin-

ear unbiased or asymptotic normal ones”.

Second, our analysis uncovers additional gains of roughly 10% in forecast accuracy

from our proposed strategy that allows for model uncertainty. These gains are exhibited

across a variety of machine learning algorithms with i) alternative kernel functions for

support vector regression and ii) both alternative hyperparameters and local objective

functions to partition the data within a tree structure including random forest, bagging,

M5’, and least squares support vector regression. Monte Carlo experiments clarify why

4Results from Breusch-Pagan test are presented in appendix F.1 and sampling restrictions such as those
in Lehrer and Xie (2017) may sidestep heteroskedasticity by reducing the heterogeneity in the data by only
including films with similar budgets. Subsection F.13 in the appendix illustrates the improved forecasting
accuracy of the new hybrid estimators proposed as well as random forest and bagging strategies relative to
the estimators contrasted in Lehrer and Xie (2017).
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these gains arise in our empirical application. We find that hybrid strategies are quite use-

ful in settings where heteroskedasticity arises due to significant parameter heterogeneity,

perhaps due to jumps or threshold effects, or simply neglected parameter heterogeneity

in the underlying behavioral relationships. In this setting, hybrid strategies can explain a

portion of the significant amount of heterogeneity in outcomes within each tree leaf.

Third, we find that there is tremendous value from incorporating social media data

in forecasting exercises. Econometric tests find that including social media data leads to

large gains in forecast accuracy. Variable importance calculations from machine learning

methods show that measures of social media message volume account for up to 7 of the

10 most influential variables when forecasting either box office or retail movie unit sales

revenue.

This paper is organized as follows. In the next section, we briefly review traditional

econometric and machine learning strategies to conduct forecasting. We then introduce

two computationally efficient strategies to aid managerial decision making by accom-

modating more general forms of heterogeneity than traditional methods. A discussion

of Monte Carlo experiments in section 3 elucidates why an understanding of the source

of heteroskedasticity is useful when selecting forecasting methods. The data used and

design of the simulation experiments that compares forecasting methods is presented in

section 4. Section 5 presents and discusses our findings that show the value of social me-

dia data and combining machine learning with econometrics when undertaking forecasts.

We conclude in the final section.

2 Empirical Tools for Forecasting

Forecasting involves a choice of a method to identify the underlying factors that might

influence the variable (y) being predicted. Econometric approaches begin by considering

a linear parametric form for the data generating process (DGP) of this variable as

yi = µi + ei, µi =
∞

∑
j=1

β jxij, E(ei|xi) = 0 (1)
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for i = 1, ..., n and µi can be considered as the conditional mean µi = µ(xi) = E(yi|xi)

that is converging in mean square.5 The error term can be heteroskedastic, where σ2
i =

E(e2
i |xi) denote the conditional variance that depends on xi. Since the DGP in equation

(1) is unknown, econometricians often approximate it with a set of M candidate models:

yi =
k(m)

∑
j=1

β
(m)
j x(m)

ij + e(m)
i , (2)

for m = 1, ..., M, where x(m)
ij for j = 1, ..., k(m) denotes the regressors, β

(m)
j denotes the

coefficients. The error e(m)
i now contains both the original error term (ei) and a modeling

bias term denoted as b(m)
i ≡ µi −∑k(m)

j=1 β
(m)
j x(m)

ij .

In practice, researchers have a set of plausible models, and do not know with certainty

which model is correct, or the best approximation for the task at hand. The traditional so-

lution is empirical model selection, which provides an evidence-based rule (e.g. Akaike

information criterion) for selecting one model from a set of feasible models. Rather than

selecting one model among a set of M linear candidate models, empirical model aver-

aging approaches allow the researcher to remain uncertain about the appropriate model

specification and take a weighted average of results across the set of plausible models to

approximate the DGP in equation (1).6

In the context of model averaging, the critical question is how to select the weights

for each candidate model. Formally, assume that the M candidate models that approx-

imate the DGP are given by y = µ + e, where y = [y1, ..., yn]>, µ = [µ1, ..., µn ]
> and

e = [e1, ..., en ]
>. We define the variable w = [w1, w2, ..., wM]> as a weight vector in the unit

simplex in RM,

H ≡
{

wm ∈ [0, 1]M :
M

∑
m=1

wm = 1

}
. (3)

Numerous optimization routines have been developed by econometricians to estimate

these weights and each routine aims to strike a balance between model performance and

5Convergence in mean square implies that E(µi −∑k
j=1 β jxij)

2 → 0 as k→ ∞.
6That is, define the estimator of the mth candidate model as µ̂(m) = X(m)

(
X(m)>X(m)

)−1X(m)>y =

P(m)y, where X(m) is a full rank n× k(m) matrix of independent variables with (i, j)th element being x(m)
ij

and P(m) = X(m)(X(m)>X(m))−1X(m)>. Similarly, the residual is ê(m) = y− µ̂(m) = (In − P(m))y for all m.
See Steel (2019) for a recent survey of the model averaging literature.
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complexity of the individual models. Once the optimal weights (wm) are obtained, the

forecast from the model averaging estimator of µ is

µ̂(w) =
M

∑
m=1

wmµ̂(m) =
M

∑
m=1

wmP(m)y = P(w)y. (4)

This forecast is a weighted average of the forecasts of the individual candidate models,

which is why model averaging can equivalently be described as forecast combination.

Data mining techniques developed within the machine learning literature can also be

used for forecasting. Unlike many econometric approaches that begin by assuming a lin-

ear parametric form to explain the DGP, supervised learning algorithms do not ex-ante

specify a structure for the model to forecast the mean and build a statistical model to

make forecasts by selecting which explanatory variables to include. For example, deci-

sion trees create a form of a top-down, flowchart-like model that recursively partitions

a heterogeneous data set into relatively homogeneous subgroups in order to make more

accurate predictions on future observations. Each partition of the data is called a “node”,

with the top node called the “root” and the terminal nodes called “leaves”.

There are many algorithms to build decision trees but one of the oldest for contin-

uous outcome variables is known as the regression tree (RT) approach developed by

Breiman, Friedman, and Stone (1984). RT uses a fast divide and conquer greedy algo-

rithm to recursively partition the data. Formally, at node τ containing nτ observations

with mean outcome ȳ(τ) of the tree can only be split by one selected explanatory vari-

able into two leaves, denoted as τL and τR. The split is made at the variable where

∆ ≡ SSR(τ)−SSR(τL)−SSR(τR), reaches its global maximum;7 where the within-node

sum of squares is SSR(τ) = ∑nτ
i (yi − ȳτ)2. This splitting process continues at each new

node until the ȳ(τ) at nodes can no longer be split since it will not add any additional

value to the prediction. Forecasts at each final leaf l are the fitted value from a local con-

7Intuitively, this procedure may appear to operate like forward stepwise regression where at each step,
the procedure adds an independent variable based on the reduction in the sum of squares error caused
by the action in the full sample until a stopping criterion is met. However, variables are added in a more
flexible manner with regression trees. For continuous covariates, an equally-spaced grid covering the range
of possible values is usually considered, thereby allowing for highly nonlinear models with potentially
complex interactions within the subsamples by node following each split. Implicitly it is assumed that
there are no unobservables relevant to the estimation.
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stant regression model

yi = a + e∗i , i ∈ l, (5)

where e∗i is the error term and a stands for a constant term. The least square estimate of

â = ȳi∈l. In other words, after partitioning the dataset into numerous final leaf nodes,

this approach approximates the DGP with a series of discontinuous flat surfaces forming

an overall rough shape. Further, the forecast assumes any heterogeneity in outcomes

within each subgroup is random, which can appear unsatisfying from the perspective of

the econometrician.

The statistical learning literature has noted both this drawback in how forecasts are

made,8 along with drawbacks in how splits within the tree are made, leading to further

refinements. Hastie, Tibshirani, and Friedman (2009) discuss enhancements including en-

semble methods that combine estimates from multiple models or trees to reduce the vari-

ance of predictions from individual regression trees. For example, bootstrap aggregating

decision trees (a.k.a. bagging) proposed in Breiman (1996) and random forest developed

in Breiman (2001) are randomization-based ensemble methods that draw a parallel to

model averaging.9 In bagging, trees are built on random bootstrap copies of the original

data, producing multiple different trees. Bagging differs from random forest only in the

set of explanatory factors being considered in each tree. To determine the best split at

each node of the tree, random forests only consider a random subset of the predictor vari-

ables rather than the full set used with bagging. With both strategies, the final forecast is

obtained as an equal weight average of the individual tree forecasts.

Studies within the statistical learning literature (see e.g. Loh and Shih, 1997; Kim and

Loh, 2003; Hothorn, Hornik, and Zeileis, 2006) have concluded that the split selection

process is biased towards selecting variables with many split points. This critique appears

imprecise and we argue that any split to minimize ∆ with heteroskedastic data will be

8For example, algorithms e.g. Chaudhuri, Huang, Loh, and Yao (1994) use weighted polynomial
smoothing techniques to smooth forecasts between leaf nodes.

9Since individual trees are constructed sequentially, very small perturbations in the sample can lead to
a different tree structure used for forecasting. The main idea of ensemble methods is to introduce random
perturbations into the learning procedure by growing multiple different decision trees from a single learn-
ing set and then an aggregation technique is used to combine the predictions from all these trees. These
perturbations help remedy the fact that a single tree may suffer from high variance and display poor fore-
cast accuracy. See appendix A for more details.
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biased to regions of variables with high heteroskedasticity, since they will contain more

split points relative to regions of low heteroskedasticity. Thus, heteroskedastic data may

lead to not choosing the “correct” first split of the root node and could subsequently lead

the tree to follow a suboptimal path.10

To summarize, forecasts from recursive partitioning and model averaging methods

are computationally expensive but differ in three important way. First, how the DGP in

equation (1) is approximated differs and both bagging and random forest do not make

any assumptions about the probabilistic structure of the data. Second. optimal weights

across models are calculated using equation (3) from predictions using the full sample in

model averaging strategies. The weight of each leaf in the tree forecast is simply deter-

mined by the sample proportion in each leaf. Third, final predictions from a regression

tree rule out heterogeneity and any model uncertainty in each final leaf ȳ(τ) of the tree.

This lack of heterogeneity and computational considerations motivate our two pro-

posed extensions for forecasting with social media data. The next subsection proposes an

improved method to select candidate models for model averaging estimators. The sub-

section that follows proposes a hybrid strategy that combines model averaging with both

a recursive partitioning algorithm and least squares support vector regression. With the

former hybrid approach, heterogeneity is considered when making predictions in each

tree leaf.

The presence of heteroskedasticity cannot be combated by taking a log-transformation

on the outcome variable. Silva and Tenreyro (2006) point out that such a nonlinear trans-

formation of the dependent variable will generate biased and inconsistent OLS estimates

since the transformation changes the properties of the heteroskedastic error term cre-

ating correlation with the covariates. Similarly, this transformation will also influence

where splits occur with recursive partitioning algorithms, thereby generating different

subgroups. Initial splits would continue to be biased in regions of high heteroskedasticity,

10In the statistical learning literature, the critique that minimizing ∆ to determine splits by the greedy
approach of Breiman, Friedman, and Stone (1984) leads to choosing locations of local, rather than global
optimality with each split is disscussed in Murthy, Kasif, and Salzberg (1994); Brodley and Utgoff (1995);
Fan and Gray (2005); and Gray and Fan (2008). Subsequent work to build trees involve new algorithms that
search for the best combination of splits one to two more levels deeper before selecting a split rule. These
more global algorithms involve larger computational costs since they need to look several steps ahead in
the tree.
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which is likely regions containing more low revenue films due to the log transformation.

Last, not all algorithms developed in the statistical learning literature that approxi-

mate the DGP involve the construction of tree structures. As discussed in appendix sec-

tion B.5, support vector regression (SVR) solves a convex quadratic programming prob-

lem to obtain a best fitting hyperplane that minimizes the distance between the actual

and predicted outcome variable within a predefined or threshold error value. The vector

points closest to the hyperplane are known as the support vector points and are the only

observations that contribute to the forecast from the algorithm. Since SVR is computation-

ally challenging, Suykens and Vandewalle (1999) proposed least squares support vector

regression (SVRLS) that modifies the optimization problem to find the hyperplace within

the threshold error values by solving a set of linear equations under a squared loss func-

tion. A portion of the objective function of SVRLS contains the SSR where homoskedas-

ticity is assumed and as such is both subject to the critique motivating the study.

Applications of SVR and SVRLS are common in the engineering and computer science

communities since they show high degrees of forecast accuracy, particularly in settings

with a low ratio of sample size to covariates. Despite their strong performance in set-

tings common to many business applications, these algorithms are intermittently used in

practice since the output from these algorithms is difficult to interpret, thereby presenting

challenges when communicating results to a layperson audience. This challenge arises in

part since the SVR and SVRLS algorithms involve converting the original mapping of the

data into a higher dimensional Hilbert space.

2.1 A New Strategy for Model Screening

The empirical performance of any model averaging estimator crucially depends on the

candidate model set. Yet, a potential drawback of constructing a candidate model set by

considering the full permutation of all regressors is that the total number of candidate

models increases exponentially with the number of regressors. To narrow down the list

of candidate models, a screening step can be undertaken. As shown in Wan, Zhang, and

Zou (2010), Xie (2015), Zhang, Zou, and Carroll (2015), among others, by either keep-

ing the total number of candidate models small or letting the total number of candidate

10



models converge to infinity slow enough, provides a necessary condition to maintain the

asymptotic optimality of model averaging estimators.11 We follow the insights in Zhang,

Yu, Zou, and Liang (2016) who established the asymptotic optimality of Kullback-Leibler

(KL) loss based model averaging estimators with screened candidate models. We de-

fineM and M̃ to respectively be the candidate model set prior to, and following model

screening; in which M̃ ⊆ M. The weight vector space solved via an optimization routine

under M̃ can be written as

H̃ =

{
w ∈ [0, 1]M : ∑

m∈M̃
wm = 1 and ∑

m/∈M̃
wm = 0

}
. (6)

Note that the resultant weight vector, denoted as w̃, under M̃ is still M × 1, however,

models that do not belong in M̃ are assigned zero weight.

We define the average squared loss as L(w) = (µ̂(w)− µ)>(µ̂(w)− µ) where µ̂(w) is

defined in equation (A10). We present the following set of assumptions

Assumption 1 We assume that there exists a non-negative series of vn and a weight series of
wn ∈ H such that

(i) vn ≡ L(wn)− infw∈H L(w),

(ii) ξ−1
n vn → 0,

(iii) Pr(wn ∈ H̃)→ 1 as n→ ∞,

where H̃ is defined in (6) and ξn is the (lowest) modified model risk defined in equation (A28).

Assumption 1(i) defines vn to be the distance between a model risk given by wn and

the lowest possible model risk. Assumption 1(ii) is a convergence condition. It requires

that ξn goes to infinity faster than vn. The final item of assumption 1 implies the validity

of our selected model screening techniques. When the sample size goes to infinity, the

chance that the model screening technique accidentally omits at least one useful model

11Moreover, Hansen (2014) and Zhang, Ullah, and Zhao (2016) point out that to satisfy the conditions
on the global dominance of averaging estimators over the unrestricted least-squares estimator, the number
of candidate models should be limited by screening. Screening ensures that not every possible model is
estimated.
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goes to 0. This condition is easily satisfied by imposing mild screening conditions, while

keeping the candidate models in M̃ to be as many as allowed.

The following theorem establishes the asymptotic optimality of Mallows-type model

averaging estimators under a screened model set.

Theorem 1 Let Assumption 1 be satisfied, then under the conditions that sustain the asymptotic
optimality of Mallows-type model averaging estimators under given (unscreened) candidate model
set, as n→ ∞, we have

L(w̃)

infw∈H L(w)

p→ 1, (7)

The proof appears in appendix D.7. Theorem 1 states that using screened model set

M̃, the model averaging estimator w̃ is asymptotically optimal in the sense of achieving

the lowest possible mean squared error (model risk); even compared to a model averaging

estimator that used all potential candidate models in its set.

2.2 New Hybrid Approaches: Model Averaging Learning Methods

In an influential paper, Belloni and Chernozhukov (2013) suggest applying the OLS es-

timator after variable selection by the Lasso, thereby introducing a two-step hybrid ma-

chine learning and econometrics estimator.12 In this paper, we propose using recursive

partitioning algorithms in the first step to build RT structures and then apply econometric

estimators that allow for model uncertainty in place of equation (5) when forecasting. We

denote this procedure as model averaging regression tree (MART), which is the building

block of many of the proposed hybrid approaches. MART generalizes linear regression

trees that have been shown to yield improvements over the local constant model in equa-

tion (5), by allowing multiple regression models to explain outcomes within each leaf.

Formally, following the recursive partitioning procedure, at each tree leaf there may

be a sequence of m = 1, ..., M linear candidate models, in which regressors of each model

12Penalization methods such as the Lasso have objective functions designed to reduce the dimensionality
of explanatory variables. The post Lasso strategy can be viewed as a model screening method since it
limits the number of explanatory variables and hence dimensionality of the candidate models. Lehrer
and Xie (2017) extend this idea and proposed using model averaging in place of the OLS estimator in the
second step. The set of candidate models considered in that step are restricted to those constructed with
variables selected by the first step Lasso. See appendix D.6 for further details on these strategies and all
Lasso estimators considered.
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m is a subset of the regressors belonging to that tree leaf. The regressors X(m)
i∈l for each

candidate model within each tree leaf is constructed such that the number of regressors

k(m)
l � nl for all m. Using these candidate models, model averaging obtains

β̂l(w)
(K×1)

=
M

∑
m=1

w(m) β̃
(m)
l

(K×1)
, (8)

which is a weighted averaged of the “stretched” estimated coefficient β̃
(m)
l for each candi-

date model m. Note that the K× 1 sparse coefficient β̃
(m)
l is constructed from the k(m)

l × 1

least squares coefficient β̂
(m)
l by filling the extra K− k(m)

l elements with 0s.

To implement this strategy, the predicting observations X p
t with t = 1, 2, ..., T are

dropped down the regression tree. For each X p
t , after several steps of recursive parti-

tioning, we end up with one particular tree leaf l. We denote the predicting observations

in tree leaf l as X p
t∈l. The forecast for all observations can then be obtained as

ŷt∈l = X p
t∈l β̂l(w). (9)

This strategy preserves the original recursive partitioning process and within each leaf

allows observations that differ in characteristics to generate different forecasts ŷt∈l.

Model averaging bagging (MAB) applies this process to each of the B samples used

to construct a bagging tree. The final MAB forecast remains the equal weight average of

the B model averaged tree forecasts. Model averaging random forest (MARF) operates

similarly with the exception that only k predictors out of the total K predictors are con-

sidered for the split at each node. The candidate model set for each leaf is constructed

with the k regressors used to split the nodes that generated this leaf l, whereas each of

the K regressors are considered with MAB.13 This restriction on the number of predictors

also affects how β̂l(w) is calculated since it is averaged only over those leafs in the forest

where it was randomly selected. The intuition of this hybrid strategy can be applied to

almost any machine learning algorithm including ones with a different objective function

13If the full sample contains n observations, the tree leaf l contains a subset nl < n of the full sample of y,
denoted as yi with i ∈ l. Also, the sum of all nl for each tree leaf equals n. The mean of yi∈l is calculated,
denoted as ȳi∈l . The value ȳi∈l is the forecast of X p

t∈l . It is possible that different predicting observations
X p

t and X p
s with t 6= s will end up with the same tree leaf, therefore, generating identical forecasts.

13



to determine splits within a tree such as M5.

A hybrid strategy that mimics the model averaging estimator described earlier is also

possible with statistical learning strategies that generate hyperplanes such as SVRLS. This

hybrid approach estimates each candidate model by SVRLS. Next, inspired by Ullah and

Wang (2013), we define a criteria function for a model averaging SVRLS (MASVRLS) strat-

egy that estimates the model averaging weights

Cn(w) =
n

∑
i=1

ê2
i (w) + 2

n

∑
i=1

(ê2
i (w))2pii(w). (10)

An important feature of this criteria function is that it directly considers heteroskedastic-

ity since êi(w) is the averaged SVRLS residual and pii(w) is the ith diagonal element of

the averaged projection matrix that is similar to how P(w) was defined in equation (4).

Further details of this approach are provided in appendix B.7, which also introduces a

criteria function for MASVRLS with a homoskedastic error term that would offer compu-

tational benefits relative to equation (10). That said, both criteria functions for MASVRLS

face the same limitations as SVRLS in regards to both interpretation of the output and

performance in terms of computational speed in a setting with many observations.

2.3 A Simple Illustration

To illustrate the benefits of allowing for heterogeneity due to model uncertainty via the

proposed MART and MASVRLS hybrid procedures, we simulate data drawn from a non-

linear process. Panels (a) and (b) of figure 1 respectively present the scatter plot and

surface plot of training data generated by

yi = sin(X1i) + cos(X2i) + ei,

where X1i ∈ [1, 10], X2i ∈ [1, 10], and ei is a Gaussian noise with mean 0 and variance 0.01.

Forecasts of y calculated from RT, MART, SVRLS and MASVRLS with the training data

are presented in panels (c) to (f) of figure 1, respectively. Since RT forecasts assume ho-

mogeneity within leaves, the surface plot in panel (c) appears similar to a step-function.

14
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In contrast, by allowing for heterogeneity in the forecasts within each leaf, the surface

plot from MART in panel (d) more closely mimics the variation in the joint distribution

in the underlying data. The SVRLS forecast shape in panel (e) looks similar to the MART

forecast with what appears to be sharper folds, whereas the MASVRLS forecast in panel

(f) appears to have the smoothest surface plot of the forecasted outcome.

Panels (g) through (j) of figure 1 respectively plot the forecast errors from RT to MASVRLS

against both X1 and X2. Comparing the height of these figures shows that the absolute

biases from MART and MASVRLS are respectively less than half of the biases obtained

from RT and SVRLS. The reduced height occurs throughout the space spanned by X1 and

X2 demonstrating that gains are achieved by allowing for richer relationships to capture

parameter heterogeneity either in each tree leaf or support vector. In the next section, a

Monte Carlo study provides further insights on when the hybrid procedures that allow

for model uncertainty improve forecasts relative to traditional strategies developed in the

statistical learning literature.

3 Monte Carlo Study

Similar to Liu and Okui (2013), we consider the following DGP

yi = µi + ei =
∞

∑
j=1

(β j + r · σi)xji + ei (11)

for t = 1, ..., n. The coefficients are generated by β j = cj−1, where c is a parameter that we

control, such that R2 = c2/(1 + c2) that varies in {0.1, ..., 0.9}. The parameter σt is drawn

from a N(0, 1) and the scale variable r introduces potential heterogeneity to the model.

We set x1i = 1 and the other xjis follow N(0, 1). Since the infinite series of xji is infeasible

in practice, we truncate the process at jmax = 10, 000 without violating our assumption on

the model set-up.14 We assume that the full set of 10,000 xjis is not entirely feasible. Two

scenarios that represent random heteroskedasticity and heteroskedasticity that arises due

14That is, variables with close-to-0 coefficients (i.e. xji with j > jmax) can be ignored since they barely
influence the dependent variable. This simulation design aims to mimic a big data environment, where the
number of covariates is large. Last, all results are robust to alternative values of the scale variable r.
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to neglected parameter heterogeneity are considered. Formally,

A. Random Heteroskedasticity: we set the parameter r = 0, eliminating heterogeneity

and pure random heteroskedasticity is created by drawing ei ∼ N(0, x2
2i).

B. Parameter Heterogeneity: heterogeneity in β for each observation is created by setting

r = 1/5 and drawing ei ∼ N(0, 1).

With this DGP, we compare the performance of conventional learning methods and

model averaging learning methods using their risks.15 Panels A and B of figure 2 respec-

tively present results for the random heteroskedasticity and the parameter heterogeneity

scenario. In each figure, the number of observations is presented on the horizontal axis,

the relative risk is displayed on the vertical axis and dash-dotted (solid) lines respectively

represent the machine learning strategy and (the hybrid extension). The results indicate

that: i) the model averaging learning method performs better than their respective con-

ventional learning method in all values of n; ii) as sample sizes increase, all methods tend

to yield smaller risks; and iii) MASVRLS has the best relative performance in all cases,

particularly when sample sizes are small. Overall, we observe smaller relative risks in the

parameter heterogeneity scenario.

Since the results in figure 2 panel A are relative to OLS estimates of a generalized unre-

stricted model (henceforth GUM) that utilizes all the independent variables, the panels of

figure 3 present the absolute risks for each model averaging learning methods along with

the risks of the GUM under random heteroskedasticity and parameter heterogeneity. In

each figure, MAB, MARF, MASVRLS and GUM are presented by circle-, star-, diamond-,

and solid lines, respectively. The ranking of the methods is identical and GUM yields

significantly higher risks in the parameter heterogeneity scenario. This suggests that con-

ventional regressions suffer from efficiency loss in the presence of effect heterogeneity. Yet

15Specifically, Riski ≡ 1
n ∑n

i=1
(
µ̂L

i − µi
)2, where µi is the true fitted value (feasible in simulation) and µ̂L

i
is the fitted value obtained by a specific learning method for for L = Regression Tree, Bagging, MAB, Ran-
dom Forest, MARF, SVRLS and MASVRLS. For each sample size, we compute the risk for all methods and
average across 100,000 simulation draws. For bagging and random forest, we set the total number of boot-
straps as B = 20. For random forest, we randomly draw 2 regressors out of 5 to split each node. The same
settings apply to the model averaging learning methods. For all model averaging learning methods, the
candidate model set for each leaf contains all feasible combinations of the regressors. To ease interpretation,
we normalize all risks by the risk from OLS estimates of the generalized unrestricted model.
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Figure 2: Relative Performance of Conventional and Model Averaging Learning
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Figure 3: Risk Comparison under Different Scenarios
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the statistical learning methods are more resistant to this form of neglected heterogeneity,

since model uncertainty was acknowledged and treated by the hybrid algorithm.

In summary, the results from the Monte Carlo experiments suggest that there are

benefits from the hybrid strategies when there exists significant parameter heterogene-

ity, perhaps due to jumps or threshold effects. Econometric strategies that use the mean

or average marginal effects simply do not allow for good forecasts when there is large

heterogeneity in effects both within and across subgroups. Intuitively, this additional het-

erogeneity shifts to the residual, creating new outliers that change the effective weighting

on different observations.16 In contrast, recursive partitioning methods rule out hetero-

geneity by assigning an equal weight to each observation within a subgroup.

4 Empirical Exercise

4.1 Data

We collected data on the universe of movies released in North America between October

1, 2010 and June 30, 2013. As detailed in appendix E, with the assistance of the IHS film

consulting unit, the characteristics of each film were characterized by a series of indicator

variables describing the film’s genre,17 the rating of a film’s content provided by the Mo-

tion Picture Association of America’s system (G, PG, PG13 and R), film budget excluding

advertising and both the pre-determined number of weeks and screens the film studio

forecasted the specific film will be in theatres measured approximately six weeks prior

to opening. In our analysis, we focus on initial demand with both opening weekend box

office (n = 178) and total sales of both DVD and Blu-Rays (n = 143) upon initial release.

16Appendix C.2 presents Monte Carlo evidence which shows that splits in trees occur at different lo-
cations and that there is more variation in outcomes in the final leaves with heteroskedastic data relative
to homoskedastic data. Related, appendix F.4 presents evidence that the performance of model screening
approaches and model averaging or Lasso methods that directly consider heteroskedasticity is invariant
to the source of heteroskedasticity. In practice, we find minimal gains from modifying model screening,
model averaging and Lasso approaches to allow for heteroskedasticity. This finding may appear surprising
at first, but recall that the theoretical benefits of most model screening methods relate to efficiency.

17In total, we have 14 genres: Action, Adventure, Animation, Biography, Comedy, Crime, Drama, Family,
Fantasy, Horror, Mystery, Romance, Sci-Fi, and Thriller.
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To measure purchasing intentions from the universe of Twitter messages (on average,

approximately 350 million tweets per day) we consider two measures. First, the sentiment

specific to a particular film is calculated using an algorithm based on Hannak et al. (2012)

that involves textual analysis of movie titles and movie key words. In each Twitter mes-

sage that mentions a specific film title or key word, sentiment is calculated by examining

the emotion words and icons that are captured within.18 The sentiment index for a film is

the average of the sentiment of the scored words in all of the messages associated with a

specific film. Second, we calculate the total unweighted volume of Twitter messages for

each specific film. We consider volume separate from sentiment in our analyses since the

latter may capture perceptions of quality, whereas volume may proxy for interest.19

Across all the films in our sample, there is a total of 4,155,688 messages to be assessed.

There is a large amount of time-varying fluctuations in both the number of, and sentiment

within the Twitter messages regarding each film. Some of this variation reflects responses

to the release of different marketing campaigns designed to both build awareness and

increase anticipation of each film. Thus, in our application we define measures from

social media data over different time periods. That is, suppose the movie release date is

T, we separately calculate sentiment in ranges of days within the window corresponding

to 4 weeks prior to and subsequent the release date.20

Summary statistics are presented in table 1. The mean budget of films is respectively

approximately 61 and 63 million for the open box office and retail unit sales outcome. On

average, these films were released in theatres for 14 weeks and played on roughly 3000

screens. Not surprisingly, given trends in advertising, the volume of Tweets increases

18In total, each of 75,065 unique emotion words and icons that appeared in at least 20 tweets between
January 1st, 2009 to September 1st, 2009 is given a specific value that is determined using emotional valence.
Note that Twitter messages were capped at 140 characters throughout this period. These messages often
contain acronyms and Twitter specific syntax such as hashtags that may present challenges to traditional
sentiment inference algorithms. The algorithm we use was developed by Janys Analytics for IHS-Markit
was also used for the initial reported measures of the Wall Street Journal-IHS U.S. Sentiment Index

19Prior work by Liu (2006) and Chintagunta, Gopinath, and Venkataraman (2010) suggest that sentiment
in reviews affect subsequent box office revenue. Similarly, Xiong and Bharadwaj (2014) finds that pre-
launch blog volume reflects the enthusiasts’ interest, excitement and expectations about the new product.

20For a typical range, T–a/–b, it stands for a days before date T (release date) to b days before date T. We
use the sentiment data before the release date in equations that forecast the opening weekend box office.
After all, reverse causality issues would exist if we include sentiment data after the release date. Similarly,
T+c/+d means c days to d days after date T, which are additionally used for forecasting the retail unit sales.
Similarly, to reduce concerns related to reverse causality, we ensure that we do not include any Twitter data
post release of the Blu-Ray.
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Table 1: Summary Statistics

Variable Open Box Office Retail Unit Sales
(n = 178) (n = 143)

Mean Std. Dev. Mean Std. Dev.
Genre
Action 0.3202 0.4679 0.3357 0.4739
Adventure 0.2416 0.4292 0.2378 0.4272
Animation 0.0843 0.2786 0.0909 0.2885
Biography 0.0393 0.1949 0.0420 0.2012
Comedy 0.3652 0.4828 0.3776 0.4865
Crime 0.1966 0.3986 0.1818 0.3871
Drama 0.3483 0.4778 0.3706 0.4847
Family 0.0562 0.2309 0.0629 0.2437
Fantasy 0.1011 0.3023 0.0909 0.2885
Horror 0.1180 0.3235 0.1049 0.3075
Mystery 0.0899 0.2868 0.0909 0.2885
Romance 0.1124 0.3167 0.0979 0.2982
Sci-Fi 0.1124 0.3167 0.1119 0.3163
Thriller 0.2416 0.4292 0.2517 0.4355
Rating
PG 0.1461 0.3542 0.1608 0.3687
PG13 0.4213 0.4952 0.4126 0.4940
R 0.4270 0.4960 0.4196 0.4952
Core Parameters
Budget (in million) 60.9152 56.9417 63.1287 56.5959
Weeks 13.9446 5.4486 14.4056 5.7522
Screens (in thousand) 2.9143 0.8344 2.9124 0.8498
Sentiment
T-21/-27 73.5896 3.2758 73.4497 3.5597
T-14/-20 73.6999 3.0847 73.7530 3.0907
T-7/-13 73.8865 2.6937 73.9411 2.6163
T-4/-6 73.9027 2.7239 73.8931 2.8637
T-1/-3 73.8678 2.8676 73.7937 3.0508
T+0 73.8662 3.0887
T+1/+7 73.8241 3.1037
T+8/+14 73.4367 3.8272
T+15/+21 73.7001 3.3454
T+22/+28 74.0090 2.7392
Volume
T-21/-27 0.1336 0.6790 0.1499 0.7564
T-14/-20 0.1599 0.6649 0.1781 0.7404
T-7/-13 0.1918 0.6647 0.2071 0.7377
T-4/-6 0.2324 0.8400 0.2494 0.9304
T-1/-3 0.4553 0.9592 0.4952 1.0538
T+0 1.5233 3.2849
T+1/+7 0.6586 1.1838
T+8/+14 0.3059 0.8290
T+15/+21 0.2180 0.7314
T+22/+28 0.1660 0.7204

sharply close to the release date and peaks that day. Following a film’s release we find a

steady decline in the amount of social web activity corresponding to a film.

4.2 Simulation Experiment Design

To examine the importance of incorporating data from the social web either using tradi-

tional estimators or an approach from the machine learning literature, we follow Hansen

and Racine (2012) and conduct the following experiment to assess the relative prediction
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efficiency of different estimators with different sets of covariates. The estimation strate-

gies that we contrast can be grouped into the following categories i) traditional economet-

ric approaches, ii) model screening approaches, iii) and iv) machine learning approaches,

and v) newly proposed hybrid methods that combine econometrics with machine learn-

ing algorithms to capture richer patterns of heterogeneity. Table 2 lists each estimator

analyzed in the exercise. Online Appendices A, B, and D provide further details on each

econometric estimator and machine learning strategy considered.

The experiment shuffles the original data with sample n, into a training set of nT and

an evaluation set of size nE = n − nT. Using the training set, we obtain parameter es-

timates from each strategy that are then used to forecast outcomes for the evaluation

set. With these forecasts, we evaluate each of the forecasting strategies by calculating the

mean squared forecast error (MSFE) and the mean absolute forecast error (MAFE):

MSFE =
1

nE
(yE − xE β̂T)

>(yE − xE β̂T),

MAFE =
1

nE

∣∣yE − xE β̂T
∣∣> ιE,

where (yE, xE) is the evaluation set, nE is the number of observations of the evaluation

set, β̂T is the estimated coefficients by a particular model based on the training set, and

ιE is a nE × 1 vector of ones. In total, this exercise is carried out 10,001 times for different

sizes of the evaluation set, nE = 10, 20, 30, 40.

In total, there are 223 = 8, 388, 608 and 229 = 536, 870, 912 potential candidate mod-

els for open box office and movie unit sales respectively. This presents computational

challenges for the HRCp and other model averaging estimators. Thus, we conducted the

following model screening procedure based on the GETS method to reduce the set of

potential candidate models for model selection and model averaging methods. Based

on the OLS results presented in table A4, we restrict each potential model to contain a

constant term and 7 (11) relatively significant parameters for open box office (movie unit

sales). Next, to control the total number of potential models, a simplified version of the

automatic general-to-specific approach of Campos, Hendry, and Krolzig (2003) is used for

model screening.21 While this restriction may appear severe by ruling out many poten-
21This approach explores through the whole set of potential models and examine each model using the
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tial candidate model, numerous applications including Lehrer and Xie (2017), find that

only a handful of models account for more than 95% of the total weight of the model

averaging estimate.22 Last, by altering the covariate set, one could additionally use this

experiment to examine the importance of incorporating data from the social web on any

of the econometric or machine learning strategies.

To facilitate replication we use default values of hyperparameters from standard and

well-established software packages listed in appendix table A1 for each machine learn-

ing method. The tuning parameter for Lasso strategies is chosen to fix the number of

explanatory variables selected (i.e. OLS10 indicates OLS with 10 variables selected by the

Lasso). In appendices F6, F18, F19 and F20, we demonstrate the robustness of our find-

ings presented in section 5 to using alternative hyperparameter values that deviate from

the defaults.

5 Empirical Results

The results of the prediction errors exercise outlined in the preceding section are illus-

trated in figures 4 and 5 for open box office and movie unit sales respectively. The top

panel of each figure presents the median MSFE and the bottom panel displays results for

the median MAFE. In each panel, there are four lines that correspond to different sizes

of the evaluation set and each point on the line presents the result for the listed estima-

tor along the x-axis for that evaluation set size. The estimators are generally listed in

order based on improvements in forecast accuracy, with the sole exception of the newly

proposed hybrid methods being placed adjacent to their conventional machine learning

approach. This reordering facilitates an examination of the marginal benefits of allowing

for model uncertainty via each hybrid approach. Note that the values after RF and MARF

refer to the number of randomly chosen explanatory variables used to determine a split

following rule: we first estimate the p-values for testing each parameter in the model to 0. If the maximum
of these p-values exceeds our benchmark value, we exclude the corresponding model. In this way, we are
deleting models with weak parameters from our model set. We set the benchmark value to equal to 0.3
and 0.35 for open box office and movie unit sales respectively, which is a very mild restriction. These pre-
selection restrictions lead us to retain 105 and 115 potential models for open box office and retail movie unit
sales respectively. Note, we did investigate the robustness of our results to alternative benchmark values
and in each case the results presented in the next section are quite similar.

22See appendix F.5 for further discussion including the top 5 models in our experiment.
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at each node. The raw data that generated each figure is presented in online appendix

tables F.27 to F.29, which provides direct comparison of each forecasting strategy relative

to the benchmark HRCp estimator. As such, the benchmark HRCp estimator is presented

at the far left of each figure.

Our proposed MASVRLS is presented at the far right of each figure since it demon-

strates the best performance when evaluated by either MSFE or MAFE for both outcomes.

Immediate to the left is the traditional SVRLS approach that offers the second-best per-

formance. Adding model averaging tends to lead to gains of 10% between SVRLS and

MASVRLS. Results from the SPA test of Hansen (2005) in appendix F.9, present signifi-

cant evidence of the superior predictive ability of the MASVRLS method over each of the

other ML tree based algorithms considered.

That said, for both outcomes when nE is small, any of the machine learning meth-

ods considered in the exercise have dominating performance over the HRCp as well as

econometric estimators and penalization methods. Popular approaches from the statisti-

cal learning literature such as bagging and random forest greatly outperform the bench-

mark. In addition, we find gains of approximately 10% by adding model averaging to

bagging that are of a similar order to incorporating model uncertainty with SVRLS.

Comparing the results between figures 4 and 5, we find larger gains from the hybrid

strategy involving support vector regression instead of tree-based strategies with open

box revenue relative to retail movie unit sales. However, the percentage gain in forecast

accuracy is higher for retail movie unit sales due to the smaller sample size. We find the

relative performance of HBART to the tree-based procedures improves with the larger

sample used to predict DVD and Blu-Ray sales. Random forest methods, both conven-

tional and model averaging, have moderate performance in all cases. Note that as nE

increases, all statistical learning methods observe decreases in performance.

The far-left hand side of the x-axis in each figure is populated by the traditional econo-

metric estimators listed in table 2. These estimators perform poorly relative to the other

forecasting strategies. We observe that the three model averaging approaches and the

model selected by AIC perform nearly as well as the benchmark HRCp. Similarly, we

observe small gains in forecast accuracy from the suite of model screening approaches
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Figure 4: Results of Prediction Efficiency on Open Box Office
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Figure 5: Results of Prediction Efficiency on DVD and Blu-Rays Sales
B

en
ch

m
ar

k
G

U
M

M
T

V
G

E
T

S
A

IC
P

M
A

H
P

M
A

JM
A

O
LS

10
O

LS
12

O
LS

15
 H

R
C

p 10
H

R
C

p 12
H

R
C

p 15
G

E
T

S
H

(0
.3

0)
G

E
T

S
H

(0
.3

4)
G

E
T

S
H

(0
.3

8)
G

E
T

S
(0

.3
0)

G
E

T
S

(0
.3

4)
G

E
T

S
(0

.3
8)

A
R

M
S

H
(1

00
)

A
R

M
S

H
(5

0)
A

R
M

S
H

(2
5)

A
R

M
S

(1
00

)
A

R
M

S
(5

0)
A

R
M

S
(2

5)
H

R
M

S
H

E
M

S
B

A
R

T
-B

M
A

B
A

R
T

H
B

A
R

T
B

O
O

S
T

R
T

B
A

G
M

A
B

R
F

15
M

A
R

F
15

R
F

20
M

A
R

F
20

S
V

R
LS

M
A

S
V

R
LS

Method

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
is

k

(a) Mean Squared Forecast Error Results

n = 10
n = 20
n = 30
n = 40
Best Method

B
en

ch
m

ar
k

G
U

M
M

T
V

G
E

T
S

A
IC

P
M

A
H

P
M

A
JM

A
O

LS
10

O
LS

12
O

LS
15

 H
R

C
p 10

H
R

C
p 12

H
R

C
p 15

G
E

T
S

H
(0

.3
0)

G
E

T
S

H
(0

.3
4)

G
E

T
S

H
(0

.3
8)

G
E

T
S

(0
.3

0)
G

E
T

S
(0

.3
4)

G
E

T
S

(0
.3

8)
A

R
M

S
H

(1
00

)
A

R
M

S
H

(5
0)

A
R

M
S

H
(2

5)
A

R
M

S
(1

00
)

A
R

M
S

(5
0)

A
R

M
S

(2
5)

H
R

M
S

H
E

M
S

B
A

R
T

-B
M

A
B

A
R

T
H

B
A

R
T

B
O

O
S

T
R

T
B

A
G

M
A

B
R

F
15

M
A

R
F

15
R

F
20

M
A

R
F

20
S

V
R

LS
M

A
S

V
R

LS

Method

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
is

k

(b) Mean Absolute Forecast Error Results

n = 10
n = 20
n = 30
n = 40
Best Method

Note: Descriptions of each estimator presented in the horizontal axis of each figure are provided in table 2.
The risks on the y-axises in the top and bottom panels represent the median of 10,001 MSFEs and MAFEs,
respectively.

27



undertaken relative to the benchmark HRCp. We find that there are very small gains

from using HPMA in place of PMA. We also observe slightly better results from using

a hetero-robust model screening method relative to the homo-efficient methods for fore-

casts of box office opening. In contrast, when forecasting retail movie unit sales, the

homo-efficient ARMS demonstrates better results than the other screening methods.23

Taking these findings together, we conclude that there are small gains in our exercise

from using econometric approaches that accommodate heteroskedasticity.24 This finding

differs with machine learning methods as we consistently find improved performance by

allowing for heteroskedasticity with HBART relative to BART.

In each figure, we find that forecasts from a linear model that excludes social me-

dia data (MTV) exhibit the worst performance. This result is the first evidence that we

present, which stresses the importance of social media data for forecast accuracy in the

film industry. Additional experiments discussed in appendices F.3, F4.1, and F.6 make

clear that to bolster forecast accuracy, both social media measures are needed. However,

in contrast to Lehrer and Xie (2017) we find that the post-Lasso methods listed in table

2, including the double-Lasso method, OLS post Lasso and model averaging post Lasso

perform poorly relative to HRCp in this application. This likely arise since all movies re-

leased are considered rather than only those with budgets ranging from 20 to 100 million

dollars, thereby increasing the presence of heteroskedasticity in the data.

Taking the evidence in figures 4 and 5 together with the Monte Carlo results presented

in figure 3(a) and figure 3(b), leads us to conclude that the improved performance of

SVRLS in our empirical exercises arises due to the small sample size. Intuitively, tree-

based strategies that perform a computationally greedy search over the covariates are

restricted to making fewer splits in the tree structure given the sample size. In contrast,

the optimization algorithm of SVRLS is better able to learn the nonlinear decision sur-

face. Despite the above advantage, there remain other trade-offs across machine learning

algorithms that may include computational considerations.25 With small samples, we il-

23Interestingly as presented in appendix F.7, the ARMS and ARMSH approaches select nearly identical
weights and models.

24In appendix F.4, we use the Monte Carlo design introduced in section 3 to additionally evaluate whether
the source of heteroskedasticity can explain some of these surprising results.

25In appendix F.16, we compare the computational efficiency of HBART and MARF in a sensitivity test
that varies the relative gains as the number of bootstrap samples increase.
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lustrate in appendix F.17 there are large gains from using either SVRLS and MASVRLS that

arise from their ability to capture nonlinearities relative to other approaches even in the

absence of Twitter data. Further, the optimization algorithm of SVR ensures that it makes

a local forecast that is specific to the statistic under investigation (i.e. conditional mean of

Y). In contrast, both the econometric estimators considered including OLS and tree based

algorithms are able to make a prediction across all covariate values in sample.

While the small sample size may explain why SVRLS approaches perform well, we

next evaluate a potential explanation for the improved performance of statistical learning

tree based approaches relative to all of the econometric strategies. That is, the full suite

of predictors is considered when building each tree, whereas model screening reduced

the number of predictors to offer a computational advantage by limiting the number of

candidate models for model averaging estimators. In appendix F.8, we repeat the pre-

diction errors exercise above, where we additionally restrict the set of predictors to be

identical for both the support vector and recursive partitioning strategies as the model

screening and model averaging approaches. We continue to find large gains in forecast

accuracy from random forest and bagging relative to the econometric approaches as well

as dominant performance from SVRLS.

Briefly, among the alternative machine learning strategies, we believe the improved

performance of the hybrid tree-based strategies relative to HBART and boosting in each

figure arises since the latter strategies build short trees and substantial heterogeneity re-

mains in the terminal nodes. The hybrid approach nests the conventional local constant

model and allows for more candidate models (and thereby) heterogeneity in terminal

leaves with more observations. Similarly, the regression function used in each terminal

leaf of popular linear regression tree algorithms is nested and contained among the mul-

tiple multivariate functions used to conduct forecasts in each terminal leaf in the hybrid

approach. Further, with some linear regression tree algorithms, the fixed multivariate

function in the terminal leaf may involve more covariates than observations available in

the terminal leaf. Model averaging allows the researcher to consider all possible candi-

date models that involve at least as many covariates as one plus the number of observa-

tions in the respective terminal leaf.
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As noted in section 4, we demonstrate the robustness of our findings to the choice

of alternative hyperparameters. Specifically, appendix F.6 and F.18 respectively consider

different parameters for Lasso and MARF. In general, we find no major differences in

performance with either strategy, with the exception of few covariates are selected either

because q is small or a large penalty is imposed with Lasso. This result and the small dif-

ference between Lasso and econometric model selection stresses that gains from machine

learning in this application are not primarily due to regularization. Further, the results

complement those presented in appendices B.2 and F.20 that explore changes in hyperpa-

rameters for numerous machine learning algorithms and illustrate small gains if hyper-

parameters are selected by cross-validation methods versus slight changes in the default

values. Allowing for heteroskedasticity always leads to improved performance between

BART and HBART and with the criteria function used for MASVRLS. In addition, the

small differences between SVR and SVRLS suggest that the change in loss function also

explain a small amount of gains relative to allowing for nonlinearities with the machine

learning strategies. Last, in appendix F.19, we find small differences in forecast accuracy

with using different kernel functions with SVR methods, although there are gains when

we allow for nonlinearities by using a polynomial kernel in place of a linear kernel.

5.1 Relative Importance of the Explanatory Variables

Recursive partitioning and SVR algorithms were developed to make predictions and not

understand the underlying process of how predictors correlate with outcomes. Empirical

strategies have since been developed to identify which predictor variables are the most

important in making forecasts.26 The most important variables are the ones leading to

the greatest losses in accuracy. For example, with bagging and random forests, each tree

is grown with its respective randomly drawn bootstrap sample and the excluded data

from the Out-Of-Bag sample (OOB) for that tree. The OOB sample is used to evaluate the

tree or support vectors without the risk of overfitting since the observations did not build

the tree. To determine importance, a given predictor is randomly permuted in the OOB

26Variable importance is often computed by applied researchers but the theoretical properties and statis-
tical mechanisms of these algorithms are not well studied. To the best of our knowledge, Ishwaran (2007)
presents the sole theoretical study of tree-based variable importance measures.
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sample and the prediction error of the tree on the modified OOB sample is compared with

the prediction error of the tree in the untouched OOB sample. This process is repeated for

both each tree and each predictor variable. The average of this gap in prediction errors

across all OOB samples provides an estimate of the overall decrease in accuracy that the

permutation of removing a specific predictor induced.

We calculate variable importance scores using the MAB, MARF and MASVRLS strate-

gies.27 The first three columns of table 3 include the social media variables as predictors

for each hybrid approach. We find that these predictors account for between 3 to 7 of the

top 10 most important predictors for open box office and movie unit sales in panels A and

B, respectively. These results complement the comparison of forecast accuracy between

the GUM and MTV models and reinforce the importance of including social media data

to improve forecast accuracy irrespective of the estimation strategy. With MASVRLS we

find that social media measures are particularly important for forecasting retail movie

unit sales, where four different volume measures are considered among the six most im-

portant predictors. With MAB and MARF, volume related variables are found to have a

greater association with revenue outcomes than sentiment measures. These results sug-

gest that the amount of social media buzz is more important than the emotional content

when forecasting revenue outcomes.28 Last, we observe that different forecasting strate-

gies yield different rankings of the importance of each predictor both when social media

measures are included as well as excluded from the specification as shown in the last 3

columns of table 3.

We next examine if there is heterogeneity in the variable importance measures across

the film budget distribution. Motivating this exercise is the conjecture that sentiment

may play a larger role for small budget films since they may benefit more from word of

27We consider both MAB and MARF since Strobl et al. (2008) showed that using mean decreased accuracy
in variable importance with random forests is biased and could overestimate the importance of correlated
variables. This bias exists if random forest did not select the correct covariate, but rather chose a highly
correlated counterpart in a bootstrapped sample. This bias should not exist with bagging strategies that use
all available predictors. Since Genuer, Poggi, and Tuleau-Malot (2010) could not replicate Strobl, Boulesteix,
Kneib, Augustin, and Zeileis (2008)’s finding, we report both MAB and MARF.

28While the Lasso can be used to select variables to include in a regression model it does not rank them. In
table A18, we report the numbers of Twitter sentiment and volume variables selected by Lasso in various
samples. The results show that the Lasso also favors the inclusion of sentiment variables in almost all
subsamples. This difference in the importance of social media variables selected may explain the uneven
prediction performance of Lasso-related estimators in the appendix table F.27.
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mouth or critical reviews. Table 4 presents estimates of the variable importance scores

for films located in different budget quartile. Notice that constructed buzz measures are

highly important for large budget films, but the volume of messages is key for many films

in lower budget quartiles. The evidence in this study suggests that each social media

measure captures a different dimension of purchasing intentions. Social media measures

account for a smaller fraction of the most important predictors of box office opening for

films in the second quartile of budget.

The striking difference in the ranking of the importance of social media variables

across the budget distribution suggests model uncertainty arises due to parameter het-

erogeneity. This finding extends prior work that contrasts forecasting strategies with data

from the film industry that is summarized in appendix E1.4 by considering a wider va-

riety of algorithms and illustrating the robustness to choice of hyperparameters. The

improved forecast accuracy of tree based and SVR methods show that the nonlineari-

ties these methods generate are responsible for the significant improvements relative to

econometric approaches. Further, the hybrid procedures yield further gains since this

parameter heterogeneity is neglected with traditional strategies.

Although the variable importance measure differs from an estimate of a marginal ef-

fects of each predictor on revenue outcomes, our findings contribute to a large interdis-

ciplinary literature surveyed in appendix E.1 that provides an understanding of whether

online word-of-mouth explains box office openings and retail movie unit sales. The evi-

dence in this study is consistent with i) Gopinath, Chintagunta, and Venkataraman (2013)

who find considerable heterogeneity in the effects of online content, and ii) both Bandari,

Asur, and Huberman (2012) and Xiong and Bharadwaj (2014) who stress the importance

of measuring the dynamics in online buzz for forecasting film revenue.

Machine learning strategies can also inform researchers on which nonlinearities to in-

clude in the specification of an empirical model. Appendix F.21 provides an illustration of

this idea by using a RT structure to suggest which interactions and nonlinear terms should

be included in the specification of a linear model to explain film revenue. Estimates of the

more flexible specification yield additional new findings that show there are threshold

effects of social media measures on box office opening revenue. This result adds further
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Table 4: Heterogeneity in the Relative Importance of Predictors by Film Budget

Ranking MAB MARF MASVRLS MAB MARF MASVRLS

Panel A: Open Box Office
1st Quartile 2nd Quartile

1 Screens Genre: Drama Volume: T-7/-13 Screens Sentiment: T-1/-3 Screens
2 Weeks Weeks Volume: T-1/-3 Sentiment: T-1/-3 Volume: T-14/-20 Genre: Thriller
3 Genre: Drama Rating: PG13 Genre: Drama Budget Weeks Weeks
4 Genre: Comedy Genre: Comedy Volume: T-4/-6 Volume: T-21/-27 Screens Volume: T-7/-13
5 Genre: Horror Rating: R Screens Weeks Genre: Romance Rating: PG
6 Rating: R Volume: T-4/-6 Volume: T-21/-27 Genre: Sci-Fi Rating: PG Rating: PG13
7 Rating: PG Screens Weeks Genre: Romance Genre: Sci-Fi Genre: Sci-Fi
8 Genre: Adventure Genre: Crime Volume: T-14/-20 Rating: PG Genre: Biography Budget
9 Genre: Animation Volume: T-1/-3 Sentiment: T-21/-27 Genre: Crime Genre: Fantasy Genre: Adventure
10 Genre: Family Genre: Romance Genre: Horror Genre: Biography Genre: Mystery Genre: Romance

3rd Quartile 4th Quartile
1 Budget Budget Budget Volume: T-4/-6 Volume: T-4/-6 Volume: T-4/-6
2 Volume: T-21/-27 Sentiment: T-1/-3 Volume: T-14/-20 Screens Volume: T-1/-3 Screens
3 Sentiment: T-1/-3 Genre: Comedy Genre: Sci-Fi Budget Budget Volume: T-7/-13
4 Screens Volume: T-14/-20 Sentiment: T-1/-3 Volume: T-1/-3 Genre: Fantasy Volume: T-1/-3
5 Genre: Comedy Genre: Action Volume: T-21/-27 Volume: T-7/-13 Sentiment: T-14/-20 Budget
6 Volume: T-14/-20 Rating: R Sentiment: T-4/-6 Volume: T-21/-27 Volume: T-14/-20 Sentiment: T-21/-27
7 Genre: Action Rating: PG13 Genre: Thriller Genre: Fantasy Weeks Genre: Fantasy
8 Rating: PG13 Sentiment: T-4/-6 Sentiment: T-7/-13 Genre: Drama Genre: Family Volume: T-14/-20
9 Sentiment: T-7/-13 Volume: T-21/-27 Screens Genre: Family Genre: Drama Sentiment: T-4/-6
10 Genre: Animation Genre: Drama Genre: Family Genre: Action Screens Sentiment: T-14/-20

Panel B: Movie Unit Sales
1st Quartile 2nd Quartile

1 Screens Volume: T-4/-6 Volume: T-21/-27 Screens Genre: Horror Screens
2 Weeks Sentiment: T+15/+21 Volume: T+8/+14 Weeks Sentiment: T-7/-13 Weeks
3 Genre: Romance Sentiment: T+22/+28 Screens Genre: Horror Genre: Drama Genre: Horror
4 Sentiment: T+22/+28 Sentiment: T+0 Volume: T-4/-6 Rating: PG Genre: Adventure Volume: T-21/-27
5 Sentiment: T+15/+21 Volume: T+0 Volume: T+15/+21 Genre: Sci-Fi Rating: R Volume: T+0
6 Genre: Animation Genre: Drama Volume: T-14/-20 Genre: Adventure Rating: PG Volume: T+8/+14
7 Genre: Family Genre: Thriller Volume: T-1/-3 Genre: Crime Volume: T-7/-13 Sentiment: T-14/-20
8 Genre: Fantasy Genre: Romance Volume: T-7/-13 Genre: Biography Genre: Romance Genre: Comedy
9 Rating: PG Rating: PG Sentiment: T-1/-3 Genre: Fantasy Genre: Biography Volume: T-4/-6
10 Rating: PG13 Genre: Animation Weeks Sentiment: T-1/-3 Genre: Comedy Volume: T-14/-20

3rd Quartile 4th Quartile
1 Budget Sentiment: T+15/+21 Budget Screens Volume: T-4/-6 Screens
2 Screens Genre: Fantasy Screens Volume: T+0 Volume: T-14/-20 Volume: T-21/-27
3 Weeks Genre: Adventure Weeks Volume: T+8/+14 Genre: Adventure Volume: T+0
4 Genre: Fantasy Sentiment: T-7/-13 Genre: Horror Genre: Animation Genre: Fantasy Volume: T+8/+14
5 Rating: R Volume: T-7/-13 Rating: R Volume: T-21/-27 Volume: T+0 Sentiment: T+15/+21
6 Genre: Horror Rating: R Sentiment: T-7/-13 Genre: Comedy Genre: Animation Sentiment: T-7/-13
7 Genre: Sci-Fi Genre: Comedy Genre: Drama Volume: T-14/-20 Volume: T+15/+21 Genre: Fantasy
8 Rating: PG13 Genre: Romance Genre: Sci-Fi Volume: T-4/-6 Sentiment: T+22/+28 Volume: T-4/-6
9 Genre: Mystery Budget Volume: T-1/-3 Weeks Sentiment: T-7/-13 Genre: Drama
10 Genre: Biography Weeks Sentiment: T+8/+14 Genre: Action Sentiment: T+0 Volume: T-14/-20

Note: This table presents the rank order of the importance of the predictors for film revenue by the respective machine learning
in each budget subsample.
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emphasis of the need for researchers to flexibly consider multiple metrics collected from

social media data, since they may proxy for alternative dimensions of consumer demand.

6 Conclusion

The film industry is characterized by substantial uncertainty and De Vany and Walls

(2004) report that just 22% of films among 2,000 movies exhibited between 1984 and 1996,

either made a profit or broke-even. Since social media can be used to gauge interest in

movies before they are released as well as provide measures of potential audience re-

sponse to marketing campaigns, there is excitement in this industry about using this new

data source in forecasting exercises. Not only can a new data source potentially improve

forecasts, so too can adopting either recursive partitioning or SVR algorithms developed

for data mining applications. Using data from the film industry we find significant gains

in forecast accuracy from using these algorithms in place of either dimension reduction

or traditional econometrics approaches.

Despite the clear practical benefits from using machine learning, we suggest that het-

eroskedastic data may hinder the performance of many algorithms. We propose a new

hybrid strategy that applies model averaging to observations in either each support vec-

tor or within each leaf subgroup created by a statistical learning algorithm. Our empirical

investigation demonstrates that irrespective of the machine learning algorithm, there are

significant gains in forecast accuracy from the proposed hybrid strategy. We find larger

gains from the hybrid strategy involving least squares support vector regression instead

of tree based strategies with open box revenue relative to retail movie unit sales. How-

ever, the percentage gain in forecast accuracy is higher for retail movie unit sales due

to the smaller sample size. Further, our analysis casts doubt that there are gains from

modifying traditional econometric approaches, penalization methods or model screening

methods to account for heteroskedasticity.

Monte Carlo experiments shed further light on why these additional gains are achieved.

Evidence from these simulations show that gains from combining model averaging with

either recursive partitioning or support vectors are obtained when heteroskedasticity
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arises due to neglected parameter heterogeneity. Last, we find benefits from incorpo-

rating social media in forecasting exercises for the film industry, in part since up to 7 of

the 10 most influential variables when using statistical learning algorithms originate from

this new data source.

A challenge facing researchers in machine learning is known as the no free lunch the-

orem of optimization due to Wolpert and Macready (1997). This is an impossibility theo-

rem that rules out the possibility that a general-purpose universal optimization strategy

exists. The optimal strategy depends not just on the sample size and what is being fore-

casted, but also the structure of the specific problem under consideration that is generally

unknown ex-ante to the analyst. Yet, we argue that since heteroskedastic data is the norm

in the real world, our proposed hybrid strategy with either tree based structures or least

squares support vector regression may both add significant value and can complement

the HBART strategy developed in Pratola, Chipman, George, and McCulloch (2020).

To subsequently advance the literature on how social media influences film industry

revenue, a potential direction would consider less aggregated Twitter volume and sen-

timent score measures as explanatory variables. For example, one could measure mood

from subset(s) of tweets based on subgroups characterized by either number of follow-

ers or demographic characteristics or even whether the Twitter message has a positive

or negative orientation. By unpacking the social media sentiment into its components,

one could understand what type of emotions conveyed in individual tweets is associated

with purchasing decisions. Future work is also needed to understand the statistical prop-

erties of hybrid strategies as well as developing formal tests that can detect the source of

heteroskedasticity in settings with many covariates, to help guide practitioners choice of

strategy. In addition, developing diagnostics that can evaluate forecasting strategies on

the basis of not just the bias and efficiency of the estimator, but also the forecasting strat-

egy’s computational complexity should prove fruitful to aid in business decision making.
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