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1 Introduction

The belief that innovation is crucial for economic growth inspires governments around the world to

encourage R&D investment through tax incentives. While these incentives are meant to stimulate

real R&D expenditures, firms can also respond by relabeling other expenses as R&D. Relabeling

raises important questions for how tax incentives affect productivity growth. To what extent is

reported R&D real or relabeled? How does relabeling affect estimates of the productivity effects

of R&D? How should governments incentivize R&D taking relabeling behavior into account?

We answer these questions using a novel administrative dataset of corporate tax returns of

Chinese firms as well as sharp and changing tax incentives. The tax incentive we study—China’s

InnoCom program—provides substantial corporate income tax cuts to firms that report R&D

investment over a given threshold, or “notch.” Before 2008, firms with an R&D intensity (R&D

investment over revenue) above 5% could qualify for a special status as high-tech firms that was

accompanied by a lower average tax rate of 15%—a large reduction from the statutory rate of

33%. After 2008, the government established three thresholds at 3%, 4%, and 6% for firms of

different size categories. By changing average tax rates—as opposed to marginal incentives—the

program generates very large incentives for firms to increase reported R&D.

Our empirical analysis starts by using tax data and a bunching estimator to document a sig-

nificant increase in reported R&D in response to the policy. We then use two complementary

empirical strategies to detect relabeling and to quantify the real component of reported R&D. We

first use a reduced-form approach that leverages the detailed cost breakdown in our administra-

tive data to quantify the effects of the policy on relabeling. As a second empirical strategy, we

specify and estimate a model of R&D investment and relabeling. The model matches the joint of

distribution of R&D and firm productivity as well as the bunching response to the notch. We find

consistent results using both approaches: one third of the reported R&D increase is relabeled.

We then show that accounting for relabeling is important when estimating the productivity

effects of R&D. Because relabeled expenses do not impact firm productivity, relabeling behavior

lowers the measured effect of reported R&D on productivity. By accounting for relabeling, the

model finds that real R&D raises the productivity of Chinese firms and estimates a productivity

elasticity of real R&D of 9.8%.

Lastly, we study how governments can best incentivize R&D in the presence of relabeling.

We show that the effectiveness of the policy at stimulating R&D depends on relabeling and how

firms select into the program. Targeting the program to larger, more productive firms, and to

those with weaker incentives for relabeling increases the effectiveness of the program. We also

compare the InnoCom program to a more standard R&D tax credit. We find that governments

may prefer to deviate from standard incentives in the presence of relabeling (e.g., Best et al.,

2015). Specifically, an InnoCom-style program can focus monitoring efforts on fewer firms, limit
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relabeling, and stimulate R&D at a lower fiscal cost.

Overall, this paper shows that relabeling affects the measurement of actual R&D expenses, the

contribution of R&D to TFP growth, and how tax incentives translate fiscal costs to economic

growth. The decision to invest in R&D or relabel also depends on firms’ underlying productivity

as well as on limits to their technological opportunities. Accounting for the relabeling behavior of

heterogeneous firms is crucial when designing tax incentives for R&D.

China is the perfect laboratory to study fiscal incentives for R&D. Figure 1 shows that China

has experienced an explosive growth in R&D investment even relative to its rapid GDP expan-

sion. As China’s development through industrialization reaches a mature stage, the government

is fostering technology-intensive industries as a source of future economic growth. One concern

is that these R&D investments will not translate into improved firm performance if the private

return to R&D is low. Our results show that the seemingly low return to reported R&D is an

artifact of relabeling (König et al., 2018). Finally, tax incentives for R&D may be particularly

costly in emerging economies where the corporate tax is imperfectly enforced (Cai et al., 2018).

We begin our analysis by showing graphically that tax notches have significant effects on the

distribution of reported R&D intensity and that part of this response may be due to relabeling.

We show that a large number of firms choose to locate at tax notches and that introducing the tax

cut led to a large increase in R&D investment. Using a group of firms that was unaffected prior to

2008, we show that the bunching patterns are driven by the tax incentive and are not a spurious

feature of the data. We then analyze relabeling responses by exploiting the fact that, under

Chinese Accounting Standards, R&D is reported as a subcategory of administrative expenses.

Using our detailed tax data to separate R&D from other administrative expenses, we provide

graphical evidence that firms may relabel non-R&D expenses as R&D in order to qualify for the

tax cut. We also study other forms of manipulation—including relabeling of other expenses as

well as re-timing of sales—and we do not find evidence of manipulation along these margins.

We then develop a model of R&D investment and relabeling. Firms’ decisions to invest or

relabel depend on tax incentives, the effect of R&D on productivity, the costs of relabeling, as

well as on heterogeneous productivity and adjustment costs. The model shows that, as long as

firm productivity and adjustment costs are smoothly distributed, the InnoCom program leads to

excess bunching at the R&D notch relative to a tax system without a notch (e.g., Saez, 2010;

Kleven and Waseem, 2013). The main parameters of the model—the productivity elasticity of

R&D and the cost of relabeling—are informed by the bunching response in reported R&D and the

joint distribution of R&D and productivity. These parameters are also related to the effects of the

notch on relabeling and future productivity. Our empirical analysis combines these complementary

predictions to estimate the productivity effects of real R&D investment as well relabeling costs.

Using the bunching estimator, we quantify the percentage increase in R&D investment that

is due to the tax notch. We find large increases in R&D investment of 31% for large firms, 21%
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for medium firms, and 11% for small firms in 2011. Our bunching estimates are supported by

a number of robustness checks. We use a set of firms that were not affected by the program to

inform the estimate of the counterfactual density and we find very similar results. In addition, these

estimates are robust to excluding firms with extensive margin responses, state-owned enterprises,

and to different specifications of the bunching estimator or the exclusion region, in addition to

other robustness checks.1 The striking graphical evidence and the robustness of the bunching

estimates provide strong evidence that firms responded to the InnoCom program by reporting

higher levels of R&D.

We follow two complementary approaches to deciphering whether the estimated bunching

response corresponds to real behavior, or whether the bunching is driven by relabeling. We

first estimate the effects of the InnoCom program on relabeling and productivity using methods

developed by Diamond and Persson (2016). This estimator recovers the average effect of the

program for the set of firms that could have responded to the notch. The identifying assumption

is that we can use data on firms that were not affected by the program to extrapolate how

average outcomes would vary with R&D over the excluded region. Combined with the estimated

counterfactual density from the bunching analysis, we obtain a counterfactual average outcome

for firms in the excluded region, and therefore the treatment effect of the policy. The benefit of

this approach is that it does not place any restrictions on the distributions of productivity and

adjustment frictions. Using this estimator, we find that about 37% of the reported R&D increase is

due to the relabeling of administrative expenses. Even though a significant fraction of the response

is consistent with relabeling, we find statistically significant effects of the InnoCom program on

future productivity. Between 2009 and 2011, the program increased the average productivity of

the firms exposed to the incentive by 1.2%. These results show that firms respond to the notch

by increasing both real R&D and by relabeling.

As a complement to these estimates, we propose a simulated method of moments approach to

estimate the structural parameters of our model. The structural model recovers the productivity-

elasticity-of-real-R&D and the extent of relabeling by combining information from the bunching

estimation and the joint distribution of R&D intensity and firm productivity. By specifying the

distributions of fixed and adjustment costs, the model also characterizes how firms select into

the program, which allows us to study the effects of alternative policies. The estimates from our

structural model are very consistent with the reduced-form estimates, which is a valuable cross-

validation of both approaches. We further combine the structural and treatment effects approaches

by incorporating the treatment effects into the structural estimation. Using all available moments,

1Specifically, we obtain very similar results when we exclude SOEs, firms that had extensive margin responses
during our sample period, low profitability firms, or low tech firms. We also obtain similar estimates of the
counterfactual distribution when we use a set of firms that were not affected by the InnoCom program, when using
different parametric choices for the density or the exclusion region, or when we estimate the counterfactual density
using only data from the right tail of the distribution.
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we estimate that, on average, 30% of the reported R&D investment is due to relabeling, and that

a 100% increase in real R&D would increase TFP by 9.8%. These results show that accounting for

relabeling is necessary to obtain an unbiased estimate of the returns to R&D. Finally, because our

model is consistent with the reduced-form estimates of the policy, it provides a solid foundation

for investigating the effects of alternative policies.

The final step of our analysis uses the estimated model to study the fiscal effectiveness of

alternative policies. We first study the effects of changing the size of the tax cut and the location

of the notch. Policies with a larger tax cut and those with a notch at a lower R&D intensity select

firms with lower productivity, higher adjustment costs, and with greater motives for relabeling.

Firm selection into the program plays a crucial role in determining the economic effects of the

program and the fiscal cost of incentivizing real R&D. Finally, we compare the fiscal effectiveness

of the InnoCom program to those of a linear tax credit. In a setting where firms have low incentives

to relabel, a linear tax credit is more effective at stimulating R&D. However, a notch may be more

effective than a linear tax credit when firms can relabel. The key intuition is that, under a linear

tax credit, the government’s monitoring efforts are spread across many firms, which lowers firms’

relabeling costs. By focusing monitoring efforts on fewer firms, an InnoCom-style program can

raise the cost of relabeling and incentivize real R&D at a lower fiscal cost.

This paper contributes to several literatures. First, this paper is related to a large literature

analyzing the effects of tax incentives for R&D investment. Hall and Van Reenen (2000) and

Becker (2015) survey this literature. Hall and Van Reenen (2000) find a dollar-for-dollar effect of

tax credits on R&D investment. The empirical evidence is concentrated in OECD countries, where

micro-level data on firm innovation and tax records have become increasingly available. While

earlier work relied on matching and panel data methods, there is an emerging literature that

explores the effects of quasi-experimental variation in tax incentives for R&D. Examples include

Agrawal et al. (2019), Dechezlepretre et al. (2016), Einiö (2014), Guceri and Liu (2015), Akcigit et

al. (2018), and Rao (2016). To our knowledge, this is the first paper to analyze R&D tax incentives

in a large emerging economy such as China. It is also one of the first studies to use administrative

tax data to study the link between fiscal incentives, R&D investment, and firm-level productivity.2

Second, a previous literature has long documented relabeling as an important challenge to

identifying the real impact of tax incentives for R&D (Eisner et al., 1984; Mansfield and Switzer,

1985). This is a salient issue for policymakers in developed countries (GAO, 2009; Bloom et

al., 2019) and is likely a more severe problem in developing economies (Bachas and Soto, 2019;

Best et al., 2015). Our paper exploits unique data on firm expenditures to jointly model and

estimate firms’ R&D bunching and relabeling decisions. Our policy simulations also improve our

2As noted in the literature, optimal policies for R&D investment rely on estimates of the social returns to R&D
investment (e.g., Bloom et al., 2013), in addition to the firm-level effects of R&D. Our results characterize the costs
to the government of increasing R&D through fiscal incentives, which can be used to evaluate policies given an
estimate of spillovers from R&D.
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understanding of the effectiveness of different policies when firms may engage in evasion, as in

Best et al. (2015).

Third, although there has been a dramatic increase in innovation activities in China, researchers

and policymakers are concerned that innovation resources could be misallocated. Wei et al. (2017)

show that state-owned firms produce significantly fewer patents-per-yuan of investment than for-

eign or private domestic firms. In a closely related paper, König et al. (2018) compare the effects

of R&D on productivity growth in Taiwan and mainland China, and find that R&D investments

are significantly less effective in mainland China. They conjecture that misreported R&D in China

may explain this discrepancy. Our paper validates this conjecture by using detailed micro-level

data to examine an important policy that can lead firms to misreport R&D investment.

Finally, our paper is related to a recent literature that uses bunching methods to recover es-

timates of behavioral responses to taxation by analyzing the effects of sharp economic incentives,

such as kinks or notches in tax schedules.3 While most of the literature studies kinks or notches

in taxable income, the notch in the InnoCom program targets a particular action: R&D invest-

ment. We exploit this feature to estimate treatment effects of the program on R&D investment,

relabeling, and productivity, as in Diamond and Persson (2016). Finally, we develop a simulated

method of moments estimation approach that uses estimates from the bunching estimators to

recover structural parameters. The model clarifies the interpretation of reduced-form estimates as

suggested by Einav et al. (2017).4 Our model quantifies the extent of misreporting, measures the

returns to real R&D, and simulates the effects of alternative policies. The model also also clarifies

how selection and relabeling determine the effectiveness of a notch-based policy.5

The rest of the paper is organized as follows. Section 2 describes the fiscal incentive for R&D

investment and discusses the potential for relabeling of R&D expenses in China. Section 3 discusses

the data and provides descriptive evidence of the effects of the tax incentive on R&D investment

and relabeling. Section 4 develops a model of R&D investment that links traditional estimates of

productivity with bunching estimators. Section 5 describes our results on the real and relabeling

responses to the InnoCom program. Section 6 culminates by estimating the structural model and

by simulating counterfactual policies; Section 7 concludes.

3These methods, pioneered by Saez (2010), have been used by researchers analyzing a wide range of behaviors.
Kleven (2016) provides a recent survey. Our project is most related to a smaller literature analyzing firm-level
responses (Devereux et al., 2014; Patel et al., 2016; Liu et al., 2019; Almunia and Lopez-Rodriguez, 2018; Bachas
and Soto, 2019) as well as to papers analyzing the effect of constraints to optimizing behavior (Kleven and Waseem,
2013; Best and Kleven, 2017; Gelber et al., 2019). Blomquist and Newey (2017) and Bertanha et al. (2018) show
that variation in incentives helps identify bunching estimators from notches. We use changes in the location of
the notch and a set of unaffected firms to confirm that our bunching patterns are due to the policy. In robustness
checks, we obtain similar estimates when we use unaffected firms to estimate the counterfactual density.

4Lockwood (2018) also notes that reduced-form effects from bunching in notches are not sufficient to analyze
the effects of changes in policy. This result motivates the use of a structural model for policy analysis.

5Blinder and Rosen (1985) discuss selection patterns under which notches can be desirable and Slemrod (2013)
discusses administrative costs as a motivation for notches. Gordon and Li (2009) discuss broader motivations for
why tax policies in developing countries may differ from standard optimal tax models when firms can evade taxes.
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2 Fiscal R&D Incentives and the Chinese Corporate

Income Tax

China had a relatively stable Enterprise Income Tax (EIT) system from 2000-2007. During this

period, the EIT ran on a dual-track scheme with a base tax rate of 33% for all domestic-owned

enterprises (DOE) and a preferential rate for foreign-owned enterprises (FOE) ranging from 15%

to 24%. The government implemented a major corporate tax reform in 2008 that eliminated the

dual-track system based on domestic/foreign ownership and established a common rate of 25%.6

This paper analyzes the InnoCom program, which targets qualifying high tech enterprises

(HTE) and awards them a flat 15% income tax rate. Since a firm’s average tax rate can fall from

33% to 15%, this tax incentive is economically very important and may lead firms to invest in

projects with substantial fixed costs. This program is most important for DOEs, including both

state- and privately-owned enterprises, as they are not eligible for many other tax breaks.

Table 1 outlines the requirements of the program and how they changed as part of the 2008

reform. A crucial requirement of the program is that firms must have an R&D intensity above a

given threshold. The reform changed the threshold from a common R&D intensity of 5%, to a

size-dependent threshold with a lower hurdle for medium and large firms, 4% and 3% respectively,

and a larger hurdle of 6% for small firms. This requirement is a large fiscal incentive to invest above

these thresholds, and the reform generates quasi-experimental variation across firms of different

size and ownership categories. Specifically, because the reform eliminated preferential tax rates

for foreign firms, their incentive to qualify for the InnoCom program grew after the reform.

In addition to increasing R&D intensity, the InnoCom program requires firms to employ college-

educated workers and to sell “high tech” products. Unlike the R&D intensity requirement, these

guidelines—such as which products are classified as “high tech”—are easily influenced. It is

also hard for tax authorities to verify the employment composition of a given firm. While these

requirements are not sharp incentives, they increase the cost of participating in the program.

Importantly, these costs may even prevent some firms from bunching at the notch despite having an

R&D intensity immediately below the notch. To capture this cost of participating in the program,

our model in Section 4.3 assumes that firms differ by an unobserved fixed cost of certification.

As a final program requirement, firms have to actively apply for the program and undergo a

special audit. The reform improved enforcement of the program by changing the certifying agency

from the Local Ministry of Science and Technology to a joint effort between the National Ministry

of Science and Technology, the Ministry of Finance, and the National Tax Bureau. By focusing

enforcement efforts on fewer firms, the InnoCom program increased the cost of relabeling R&D

relative to a more standard setting where all firms are able to claim an R&D tax credit.7

6We discuss details of other preferential tax policies in Appendix A.
7The original government regulations also require that firms operate in a number of selected state-encouraged
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Table 1: Requirements of the InnoCom Program

Requirement Before 2008 After 2008

R&D Intensity 5%
6% if sales < 50M
4% if sales > 50M & sales < 200M
3% if sales > 200M

Sales of High Tech Products 60% of total sales
Workers with College Degree 30% of workforce
R&D Workers 10% of workforce
Certifying Agency Local Ministry of Ministries of Science & Technology,

Science & Technology Finance and National Tax Bureau

NOTES: Size thresholds in Millions of RMB, where 50 M RMB ≈ 7.75 M USD and 200 M RMB ≈ 30 M USD.

Potential for Evasion and Relabeling

One concern is that firms’ reported R&D investment is contaminated by evasion or relabeling.

Relabeling of other expenses as R&D is a significant concern for policymakers (GAO, 2009) and

for academics studying the effects of R&D investment (Eisner et al., 1984; Mansfield and Switzer,

1985). In our setting, the institutional environment limits some forms of evasion and suggests that

the most likely form of relabeling is the mis-categorization of administrative expenses as R&D.

The hypothesis that the entirety of the response is due to evasion is likely ruled out by the

requirements of the InnoCom certification.8 A second hypothesis is that firms manipulate their

reported R&D intensity by reporting “phantom expenses” or by manipulating sales. China relies

on a value-added tax (VAT) system with third-party reporting, and China’s State Administration

of Tax (SAT) keeps records of transaction invoices between a given firm and its third-party business

partners. As in other settings (e.g., Kleven et al., 2011), this type of third-party reporting limits

the degree to which firms can completely make up “phantom” R&D expenses.

From conversations with the State Administration of Tax as well as with corporate executives,

we recognize that the most likely source of manipulation is the mis-categorization of expenses.

This is a natural channel for relabeling since, in the Chinese Accounting Standard, R&D is cate-

gorized under “Administrative Expenses,” which includes various other expenses related to general

management.9 Thus, firms may relabel non-R&D administrative expenditures as R&D in order

industries. Due to the breadth and vagueness of these industry definitions, this requirement does not constitute
a substantial hurdle. In addition, after the reform, the state authorities further require that firms meet all these
criteria in the previous three accounting years, or from whenever the firm is registered, in case the firm is less than
three years old.

8Part of this certification includes an audit of the firm’s tax and financial standings. In addition, the Chinese
State Administration of Tax, together with the Ministry of Science and Technology, conducts regular auditing of
the InnoCom HTE firms.

9Examples include administrative worker salary, business travel expenses, office equipment, etc. While we
interpret changes in administrative expenses as relabeling, they may also be consistent with reallocating resources
from other expenses towards R&D, or with more precise accounting of previously-undercounted R&D expenses. In
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to over-report their R&D intensity. These types of expenses are easily shifted, and it may be

hard to identify relabeling in any given audit. Relabeling may also be a way for firms to reach

the R&D intensity threshold when it is hard for them to perfectly forecast their sales. A firm

with unexpectedly high sales, for instance, might choose to characterize administrative expenses

as R&D in order to meet the InnoCom requirement for a given year.10 Our empirical strategy to

detect relabeling leverages these institutional features and exploits the detailed cost reporting in

our administrative tax data, which contains information on the breakdown of operating expenses

and R&D expenses.

3 Descriptive Evidence of Firms’ Responses to Tax Notches

We now describe our data and provide evidence that the R&D investment of Chinese manufactur-

ing firms responds to the InnoCom program. We then show that part of this response may be due

to relabeling. Specifically, we document stark bunching patterns precisely above the tax notches,

and we show that the ratio of administrative expenses to sales drops sharply at the notch.

3.1 Data and Summary Statistics

Our main data come from the Chinese State Administration of Tax (SAT). The SAT is the coun-

terpart to the IRS in China and is in charge of tax collection and auditing. Our data are comprised

of administrative enterprise income tax records for years 2008–2011 (Appendix B discusses our

data sources). These panel data include information on firms’ total production, sales, inputs, and

R&D investment. The detailed cost breakdowns allow us to measure different subcategories of ad-

ministrative expenses. We use these data to construct residualized measures of firm productivity

(see Appendix C for details). The SAT’s firm-level records of tax payments contain information

on tax credits, such as the InnoCom program, as well as other major tax breaks. This allows us

to precisely characterize the effective tax rate for individual manufacturing firms. We supplement

these data with the relatively well-studied Chinese Annual Survey of Manufacturing (ASM), which

extends our sample to years 2006–2007.

Table 2 reports descriptive statistics of the firms in our analysis sample. In panel A, we report

summary statistics of our tax data for all surveyed manufacturing firms from 2008 to 2011. Our

data are comprised of around 1.2 million observations, with about 300, 000 firms in each year. 8%

of the sample reports positive R&D. Among firms with positive R&D, the ratio of R&D to sales

ratio, i.e. R&D intensity, is highly dispersed. The 25th, 50th, and 75th percentiles are 0.3%, 1.5%,

Section 6 we explore how this interpretation affects our estimates.
10While we recognize that it is possible for firms to relabel R&D intensity through other means, we do not

find systematic evidence for this hypothesis. In Section 3 we show sales are not manipulated around the R&D
thresholds. Similarly, we do not find evidence of manipulation of other expenses.
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and 4.3%, respectively. The administrative expense to sales ratio, which is a potential margin for

relabeling, is close to 5.8% at the median. While our measure of residualized TFP is normalized

by construction, the distribution of productivity has a reasonable dispersion with an interquartile

range of 0.8 log points.

Panel B of Table 2 reports summary statistics of Chinese manufacturing firms with R&D

activity in the ASM for years 2006–2007. We have a similar sample size of around 300, 000 firms

per year. Firms in the ASM sample are noticeably larger than those in the SAT sample, and

the difference is more pronounced when we look at lower quartiles (i.e. 25th percentile) of the

distribution of sales, fixed assets, and the number of workers. This is consistent with the fact that

the ASM is weighted toward medium and large firms. The fraction of firms with positive R&D

is slightly larger than 10%, and R&D intensity ranges from 0.1% to 1.7% at the 25th and 75th

percentiles of this sample.

3.2 Bunching Response

We first analyze data from the post-2008 period since the multiple tax notches based on firm size

generate rich variation in R&D bunching patterns. Figure 2 plots the empirical distribution of the

R&D intensity of Chinese firms in 2011. We limit our sample to firms with R&D intensity between

0.5% and 15% to focus on firms with non-trivial innovation activities. The first panel in Figure

2 shows the histogram of overall R&D intensity distribution. There are clear bunching patterns

at 3%, 4%, and 6% of R&D intensity, which correspond to the three program thresholds. This

first panel provides strong prima-facie evidence that fiscal incentives provided by the InnoCom

program play an important role in firms’ R&D investment choices.

To further validate that these R&D bunching patterns are motivated by this specific policy,

the remaining panels of Figure 2 plot the histograms of R&D intensity for the three different size

categories. For firms with annual sales below 50 million RMB, we find clear bunching at 6%, and

we find no evidence of bunching at other points. Similarly, for firms with annual sales between 50

million and 200 million RMB, we only find bunching at 4%, while for firms with more than 200

million RMB in annual sales, we only observe bunching at 3%. These patterns are consistent with

the size-dependent tax incentive in the InnoCom program.11

We now compare bunching patterns before and after the 2008 tax reform. Figure 3 compares

the R&D intensity distribution for large FOEs before and after 2008. Large FOEs have no clear

pattern of bunching before 2008. This is consistent with the fact that FOEs had a very favorable

EIT treatment before the reform, which severely reduced the appeal of the InnoCom program. In

11In comparison, Figure A.1 plots the empirical distribution of R&D intensity in the ASM for years 2006–2007.
The tax incentive of the InnoCom was not size-dependent before 2008, and kicked-in uniformly at a 5% R&D
intensity. It is reassuring that we observe the R&D intensity bunching solely at 5%, and no significant spikes at
3%, 4%, and 6%.

9



contrast, FOEs start behaving like DOEs after 2008, when the InnoCom program becomes one of

the most important tax breaks for FOEs. Their R&D intensity distribution shows a clear bunching

pattern at 3% after the reform, which is the exact threshold required for these firms to qualify as

HTEs. The figure demonstrates that the change in the EIT system had a large impact on firm

behavior.12

3.3 Detecting Relabeling of R&D Investment

We now explore the degree to which the bunching response may be due to expense mis-reporting.

Figure 4 explores how the ratio of non-R&D administrative expenses to sales is related to R&D

intensity. For each size group, this figure groups firms into bins of R&D intensity and plots the

mean non-R&D administrative expense-to-sales ratio for each bin. We report the data along

with an estimated cubic regression of the expense ratio on R&D intensity with heterogeneous

coefficients above and below the notches. The green squares are for large firms, red diamonds for

medium firms, and blue dots for small firms. There is an obvious discontinuous jump downward

at the notch for each size category. This suggests that some firms that report R&D intensity at

the notch may partly relabel non-R&D expenses as R&D to comply with the policy. Once firms

get farther away from the bunching threshold, there is no systemic difference in the administrative

expense-to-sales ratio. This pattern is consistent with the hypothesis that firms mis-categorize

non-R&D expenses into R&D when they get close to the bunching thresholds.13

The structural breaks in Figure 4 are statistically significant for all three groups (see Table

A.1). As we discuss in Section 5.2, however, these estimates do not have a causal interpretation.

Nonetheless, they present strong descriptive evidence that firms may respond to the InnoCom

program by relabeling non-R&D expenses.14

Lack of Sales Manipulation

The stark bunching patterns in Figure 2–3 raise the concern that firms may also manipulate their

sales. There are two ways firms may do this. First, since the incentives of the InnoCom program

are stated in terms of R&D intensity (R&D/Sales), firms could increase their R&D intensity by

under-reporting sales. Panel A in Figure 5 plots firms’ log sales relative to their R&D intensity.

12Consistent with the intent of the program, firms’ bunching patterns are persistent over time. Specifically, 76%
of firms that report an R&D intensity greater than the notch in 2011 also bunched in 2010. For this reason, our
model considers the choice of R&D as a medium-term investment plan.

13The existence of different thresholds across size groups also allows us to rule out other explanations for these
discontinuities. In particular, we find that when we impose the “wrong” thresholds of the other size groups,
there is no observable discontinuity. In Appendix D, we explore whether firms adjust other costs that are not in
the administrative cost category, and we show that firms do not respond to the program by manipulating other
expenses.

14We also conduct a similar set of analysis focusing on the ratio of R&D to total administrative expenses. In
this case, expense mis-categorization would result in discontinuous increases in this ratio at the notch. This is
confirmed in Table A.3 and in Figure A.2.
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For each group of firms, we report average log sales for small bins of R&D intensity as well as

an estimated cubic regression that is allowed to vary below and above each threshold. If firms

under-reported sales in order to achieve the target, we might expect a sudden drop in sales to

the right of each threshold. In contrast, this figure shows that both the data and the estimated

polynomial regressions are remarkably stable at each notch.15

Second, if a firm wants to be categorized as a larger firm, it may over-report sales in order

to qualify for a lower R&D intensity threshold. Panels B and C in Figure 5 show the histogram

of firms around the size thresholds. Since larger firms face lower R&D intensity thresholds, we

might expect firms to bunch on the right of the size threshold. These figures show that firms are

not responding to the incentives by manipulating their size.16 Overall, it does not appear firms

mis-report sales in order to comply with the InnoCom program. One reason for this result is that,

in addition to the limits placed by third-party reporting in the VAT system, firm managers may

not want to mis-report sales as this is seen as a measure of their job performance.

Figures 2-4 provide strong visual evidence that firms actively respond to the incentives in the

InnoCom program by increasing reported R&D investment and by relabeling administrative costs

as R&D. Our quantitative analysis focuses on measuring the size of the change in R&D investment,

analyzing the degree to which the response is due to relabeling, and studying how relabeling may

influence the effect of R&D on productivity.

4 A Model of R&D Investment and Corporate Tax Notches

This section develops a model of R&D investment where firms may respond to notches in the

corporate income tax schedule in China by investing in R&D and by relabeling non-R&D expenses.

The model has three objectives. First, the model shows that a standard model of firm investment

and relabeling may produce the patterns described in Section 3. Second, the model motivates a

bunching estimator for the increase in R&D investment, as in Saez (2010) and Kleven and Waseem

(2013), as well as an treatment effects estimator for relabeling and productivity, as in Diamond

and Persson (2016). Finally, the model shows how to relate bunching estimates to structural

parameters, which we use to study the effectiveness of alternative tax incentives.

4.1 Model Setup

We start with a simple model. We then develop extensions that account for relabeling, fixed costs

of certification, and adjustments costs. Appendix E discusses the model in detail.

15Table A.2 reports estimates of the structural breaks at these notches, which are statistically insignificant.
16In our estimations, we further restrict our sample to exclude firms that are close to the size threshold and this

does not affect our estimates.
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Consider a firm i with a unit cost function c(φit, wt) = c(wt) exp{−φit}, where wt is the price

of inputs.17 φit is log-TFP and has the following law of motion:

φi,t = ρφi,t−1 + ε ln(Di,t−1) + uit, (1)

where Di,t−1 is R&D investment and ui,t ∼ i.i.d. N(0, σ2). Because our empirical analysis focuses

on firms with non-trivial R&D, this law of motion applies to firms with Di,t−1 > 0.18 This setup

is consistent with the R&D literature where knowledge capital depreciates over time (captured by

ρ) and is influenced by R&D expenditures (captured by ε).

We assume the firm faces a demand function with a constant elasticity: θ > 1. This setup

implies that we can write expected profits as follows:

E[πit] = π̃itD
(θ−1)ε
i,t−1 ,

where π̃it ∝ E[exp{(θ − 1)φit}|φi,t−1] measures the non-R&D expected profitability of the firm.

R&D Choice Under A Linear Tax

Consider first how firms’ R&D investment decisions would respond to a linear income tax. We

analyze the firm’s inter-temporal problem as a two-period investment decision:19

max
D1

(1− t1)(πi1 −Di1) + β(1− t2)π̃i2D
(θ−1)ε
i1 .

The optimal choice of D∗i1 is given by:20

D∗i1 =

[
β(1− t2)(θ − 1)ε

1− t1
π̃i2

] 1
1−(θ−1)ε

.

The choice of R&D depends on potentially-unobserved, firm-specific factors φi1, as they influ-

ence expected profits, π̃i2. We can recover these factors by inverting the first order condition and

writing π̃i2 as a function of D∗i1:

π̃i2 =
1

(θ − 1)ε

1− t1
β(1− t2)

(D∗i1)1−(θ−1)ε. (2)

We now write the value of the firm, Π(D∗i1|t2), as a fraction of firm sales, θπi1, by substituting

Equation 2 into the objective function:

Π(d∗i1|t2)

θπi1
= (1− t1)

[
1

θ
+ d∗i1

(
1

(θ − 1)ε
− 1

)]
. (3)

17Note that any homothetic production function with Hicks-neutral productivity admits this representation.
18If firms do not engage in R&D, we assume that their productivity process is φit = ρφi,t−1 + uit.
19Firms commit to a medium-term set of R&D investments in order to participate in the InnoCom program (see

Section 2). For this reason, we view the relevant margin for firms as a medium-term decision that we characterize
in a two-period context.

20As we discuss in Appendix E, we assume (θ−1)ε < 1 in order to ensure a well-behaved second order condition.
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Equation 3 expresses the firm’s problem in terms of the choice of R&D intensity, d∗i1 =
D∗i1
θπi1

, as in

the InnoCom program.21

A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure, modeled after the

incentives in the InnoCom program:

t2 =

{
tLT2 if di1 < α
tHT2 if di1 ≥ α

,

where tLT2 > tHT2 , and where LT/HT stands for low-tech/high-tech. This tax structure induces

a notch in the profit function at di1 = α, where α is the R&D intensity required to obtain the

high-tech certification. Figure 6 presents two possible scenarios following this incentive. Panel A

shows the example of a firm that finds it optimal to choose a level of R&D intensity below the

threshold. At this choice, the first order condition with a linear tax holds and the optimal value

of the firm is given by Equation 3. In this panel, a range of R&D intensity below the threshold is

dominated by the threshold α. Panel B shows another firm that is indifferent between the internal

solution and “bunching” at the notch. This firm is the marginal buncher and is characterized both

by Equation 2 and by having an equal firm value at R&D intensities d∗i1 and α.

Let
Π(α|tHT2 )

θπi1
be the value-to-sales ratio of the firm conditional on bunching at the notch. Using

Equation 2, we can write this equation as:

Π(α|tHT2 )

θπi1
= (1− t1)

[
1

θ
+ α

((
d∗i1
α

)1−(θ−1)ε(
1− tHT2

1− tLT2

)
1

(θ − 1)ε
− 1

)]
.

Compared to Equation 3, this equation shows a larger R&D intensity (since d∗i1 < α), which

increases the cost of investment. The additional investment results in higher profits because of

the productivity effect from the additional investment in R&D,
(
d∗1i
α

)−(θ−1)ε

> 1, and because of

the tax benefit,
(

1−tHT2

1−tLT2

)
> 1.

A firm will bunch at the notch if
Π(α|tHT2 )

θπi1
≥ Π(d∗i1|tLT2 )

θπi1
, which occurs when:(

d∗i1
α

)1−(θ−1)ε(
1− tHT2

1− tLT2

)
1

(θ − 1)ε
− 1︸ ︷︷ ︸

Relative Profit from Bunching

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
.︸ ︷︷ ︸

Relative Profit from Not Bunching

(4)

For firms that were already close to the notch
(
d∗i1
α
≈ 1
)

, bunching has small costs and productivity

benefits, but the tax cut
(

1−tHT2

1−tLT2

)
> 1 incentivizes firms to bunch. For firms farther from the notch

21Firm value is given by Π(D∗
i1|t2) = (1− t1)

[
πi1 +D∗

i1

(
1

(θ−1)ε − 1
)]
, where we substitute Equation 2 into the

firm’s objective function.
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(as d∗i1 decreases from α), the additional investment costs increase faster than the productivity

benefits, which reduces firms’ incentive to bunch.

Let d∗− be the marginal firm such that Equation 4 holds with equality, as in panel B of Figure

6. In this simple model, firms with d∗i1 ∈ (d∗−, α) would decide to bunch at the notch, since the

difference between the left- and right-hand-sides of Equation 4 is increasing in d∗i1. It can also

be shown that d∗− is decreasing in both (θ − 1)ε and
(

1−tHT2

1−tLT2

)
, so that we would observe more

bunching if firms have a higher valuation of R&D, or if the tax incentive is larger.

4.2 Real and Relabeled R&D Investment Under Tax Notch

This section extends the model by allowing for firms to misreport their costs and shift non-R&D

costs to the R&D category. We show that the interpretation of the reported bunching response is

now a combination of real and relabeled activity.

Denote a firm’s reported level of R&D spending by D̃i1. The expected cost of misreporting to

the firm is given by h(Di1, D̃i1), which represents the likelihood of being caught and the punishment

from the tax authority. We assume that the cost of mis-reporting is proportional to the reported

R&D and depends on the percentage of misreported R&D, δi1 = D̃i1−Di1
D̃i1

, so that:

h(Di1, D̃i1) = D̃i1h̃ (δi1) .

We also assume that h̃ satisfies h̃(0) = 0 and h̃′(·) ≥ 0.22 Finally, define Π(Di1, D̃i1|t) as the value

function of a firm’s inter-temporal maximization problem when the firm invests Di1 on R&D,

declares investment of D̃i1, and faces tax t in period 2.

Firms qualify for the lower tax whenever D̃1 ≥ αθπ1. Notice first that if a firm decides not

to bunch at the level αθπ1, there is no incentive to misreport R&D spending as it does not affect

total profits or the tax rate. However, a firm might find it optimal to report D̃1 = αθπ1, even if

it actually invested a lower level of R&D.

Consider now the optimal relabeling strategy of a firm conditional on bunching. The first order

condition for relabeling implies the following condition:

(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
︸ ︷︷ ︸

Productivity Loss from Relabeling

=

(
(1− t1)− h̃′(δ∗i1)

)
α(1− t1)

,︸ ︷︷ ︸
Reduction in Investment Cost and Increase in Relabeling Cost

(5)

where we use Equation 2 to express the first order condition in terms of the interior optimum R&D

intensity, d∗i1. When deciding how much to relabel, the firm trades-off lower productivity gains

and increased costs of relabeling with the decrease in investment costs. This equation features the

22Our formulation of h̃(·) is consistent with general features of evasion cost functions in the literature (Slemrod,
2001). We assume that the mis-reporting cost depends on δ (the percentage of mis-reported R&D) because the
InnoCom program is based on R&D intensity rather than total R&D expenditures.
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“avoidance-facilitating” effect whereby real R&D lowers the marginal cost of relabeling (Slemrod

and Gillitzer, 2013).

The firm decides to bunch if the profits from the optimal relabeling strategy are greater than

when the firm is at the optimal interior solution, which occurs when:(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

× (1− δ∗i1)

(θ − 1)ε
×
(

1− tHT2

1− tLT2

)
− (1− δ∗i1)︸ ︷︷ ︸

Relative Profit from Bunching

− h̃(δ∗i1)

α(1− t1)︸ ︷︷ ︸
Relabeling Cost

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
.︸ ︷︷ ︸

Relative Profit from Not Bunching

(6)

Equations 4 and 6 are very similar and are identical in the case when δ∗i1 = 0—i.e., when there is

no relabeling. When δ∗i1 > 0, the cost of investment and the productivity gains are smaller, but

the firm also incurs a cost of relabeling.

Since firms can elect to report truthfully (δ = 0), firms’ profits from bunching in the case with

relabeling are greater than in the case without relabeling. However, since the relative profit from

not bunching has not changed, this implies that misreporting allows more firms to bunch than

in the case without relabeling. Panel C of Figure 6 shows this intuition graphically. It depicts a

firm that would not bunch absent the ability to relabel R&D. With relabeling, the firm reports

an R&D intensity of α, while real R&D intensity is (1 − δ∗i1)α ≥ d∗i1. Thus, when relabeling is

possible, the marginal firm (such that Equation 6 holds with equality) will have a lower threshold

d∗−. This implies that we should see more bunching when firms can misreport R&D, and that the

observed bunching patterns combine real increases in R&D with increases in relabeling.

4.3 Adjustment Costs of Investment and Fixed Certification Cost

We now enrich the model to allow for adjustment costs of R&D and fixed certification costs.

Consider first the role of adjustment costs of R&D investment. In a world without the InnoCom

program, our model would predict a deterministic relationship between R&D and TFP. In reality,

the distribution of R&D investment in China has large variability even conditional on firm TFP.

This variability reflects the fact that firms face different costs of installing new equipment and

also have different opportunities to improve their technology. We incorporate these real-world

features by assuming that firms face heterogeneous adjustment frictions of conducting R&D. We

follow the investment literature and adopt a quadratic formulation for adjustment costs that is

governed by: b × θπ1i
2

[
Di
θπ1i

]2

. Intuitively, the law of motion for TFP allows for strong returns to

scale, as it implies that increasing R&D will have a proportional increase in the TFP of all units

of production within a firm. Since the adjustment costs are proportional to firm size, they limit

the returns to scale in R&D investment.

Now consider the costs of obtaining the InnCom certification. Our initial model predicts that

all firms with d ∈ (d∗−, α) would bunch at the notch. However, firms with high R&D intensity

may not participate in the program due to constraints that prevent them from hiring the sufficient
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number technical employees, if they do not obtain a significant fraction of their sales from high-tech

products, or due to compliance and registration costs. We model these constraints by assuming

that firms pay a fixed cost of certification: c× αθπ1i. These costs imply that some firms will not

be able to bunch despite being very close to the notch—i.e., the region immediately below the

notch will not be empty.

With fixed costs and adjustment costs, the decision to bunch is similar to that described by

Equation 6. In this case, however, the identity of the marginal firm depends on a given set of

values b and c. We denote the marginal firm as d−b,c. As expected, we find that d−b,c is increasing

(smaller bunching response) with both adjustment, b, and fixed, c, costs. As before, for a given

set of values b and c, d−b,c is decreasing (larger bunching response) in the profitability elasticity of

R&D, (θ − 1)ε, and increasing in the relabeling cost. Finally, we now redefine d∗− = min
b,c

d−b,c as

the smallest R&D intensity for which there is a marginal firm.23

4.4 Empirical Implications for Bunching on R&D

We now describe how we use the model to quantify the distributional patterns described in Section

3. Figure 7 provides the intuition for this procedure. Panel A plots h0(d): the counterfactual

distribution of R&D intensity under a linear tax. Panel A demonstrates the effect of the notch

on the distribution of R&D intensity in a world of unconstrained firms. In this case, the range

(d∗−, α) is dominated by the threshold α, as shown by the density of R&D intensity with a notch,

h1(d). Denote B as the missing mass relative to the counterfactual distribution over this range.

To see how the model relates to the extent of bunching, note that a larger value of ε or a lower

relabeling cost will result in a larger missing mass B and a lower value of d∗−—i.e., the marginal

bunching firm has a lower R&D intensity.

The prediction in panel A of Figure 7 is quite stark in that no firms are expected to locate in

the dominated interval. The presence of fixed and adjustment costs constrains some firms from

responding to the incentives in the InnoCom program. For given values of (b, c), a firm will be

constrained from responding if d < d−b,c, an event that we denote by I[d < d−b,c]. The fraction of

constrained firms at a given value of r in the range (d∗−, α) is given by

Pr(Constrained|r) =

∫
b,c

I[r < d−b,c]h0(r, b, c)d(b, c) = h1(r),

where h0(r, b, c) is the joint density of R&D intensity, fixed costs, and adjustment costs, and where

the second equality notes that we observe this fraction of firms in the data. It follows from this

expression that measures of Pr(Constrained|r) are informative of the distributions of b and c.

23Appendix J discusses alternative models that allow for heterogeneous returns to R&D, ε, across firms.
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Panel B of Figure 7 describes graphically how random adjustment and fixed costs affect the

predicted bunching pattern. In particular, the area B can now be computed as follows:

B =

α∫
d∗−

∫
b,c

I[r ≥ d−b,c]h0(r, b, c)d(b, c)dr =

α∫
d∗−

∫
b,c

(1− I[r < d−b,c])h0(r, b, c)d(b, c)dr

=

α∫
d∗−

(h0(r)− Pr(Constrained|r))dr =

α∫
d∗−

(h0(r)− h1(r))dr. (7)

The first line shows that B depends on the distribution of fixed and adjustment costs. The

second line shows that frictions result in a smaller bunching mass B by subtracting the fraction

of constrained firms. The observed degree of bunching B is therefore a function of ε, relabeling

costs, adjustment costs, and certification costs.

This discussion highlights how bunching estimates inform the parameters of the model. Specif-

ically, the model predicts that lower fixed and adjustment costs will result in larger values of B,

lower values of d∗−, and lower values of Pr(Constrained|d). To separate the role of fixed and

adjustment costs, we use the fact that firms below d∗− and significantly above α are not affected

by the program. For this reason, the observed density h1(d) away from the notch is independent

of the distribution of c but is informative of the distribution of b. Conditional on fixed and ad-

justment costs, lower relabeling costs and a higher values of ε also predict larger values of B and

lower values of d∗−. In order to disentangle how ε and relabeling costs affect bunching, we use

the fact that, since firms have no incentive to misreport R&D outside of the bunching region,

the joint distribution of d∗i1 and φ1 informs the value of ε separately from the role of relabeling

costs. The structural estimation leverages these insights to recover structural parameters. These

estimates quantify the fraction of reported R&D that is due to relabeling, how relabeling affects

the measured effects of reported R&D on TFP, and how firms respond to alternative tax policies.

4.5 Model Implications for Relabeling and Productivity

We now discuss an alternative and complementary approach to quantifying the effects of the In-

noCom program on relabeling and productivity. Our model predicts that firms that bunch may

relabel R&D and that their future TFP will increase to the extent that reported R&D constitutes

real investment. Because firms select into the program by manipulating R&D, comparing firms

that participate in the program to those that do not can result in biased estimates of the effects

of the program. To obtain unbiased estimates, we follow a treatment effects approach that com-

pares the (observed) average outcome of firms that could have participated in the program to a

counterfactual average without the InnoCom program.
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Diamond and Persson (2016) develop an estimator that formalizes this comparison and quan-

tifies the average effect of the program on a given outcome Y :24

ITT Y = E[Y |Notch, d ∈ (d∗−, d∗+)]− E[Y |No Notch, d ∈ (d∗−, d∗+)], (8)

where we define the manipulated region (d∗−, d∗+) to include all firms that could have responded

to the program. While d∗+ = α in theory, in practice firms bunch in a neighborhood above α,

as can be seen in Figure 2.25 Equation 8 compares the average potential outcome of firms in the

region (d∗−, d∗+), which includes firms that do not respond to the program, as well as firms whose

R&D intensity would be above the notch without the program. For this reason, we interpret this

quantity as an intent-to-treat (ITT).26

Our model has intuitive predictions for the intent-to-treat effects on R&D, relabeling through

administrative costs (ADM), and TFP. If some of the reported R&D intensity is real activity,

our model would predict that ITT TFP ≥ 0. According to our model for the evolution of TFP in

Equation 1, we would find larger values of ITT TFP for larger values of the parameter ε. We expect

to find ITTADM < 0 if a fraction of the reported R&D is due to relabeling of administrative costs.

Intuitively, if firms over-report R&D by under-reporting administrative costs, the average ADM

over the excluded region would be artificially low. Our model predicts small values of ITTADM

if firms face large costs of relabeling. Finally, consider the case where the outcome of interest is

reported R&D intensity. In this case, ITT d only depends on the counterfactual density h0(d).

Our model predicts a larger fraction of compliers if ε is large or if relabeling costs are low.

This discussion shows that this treatment effects approach can also quantify the extent of

relabeling and the effects of the InnoCom program on productivity. In addition, estimates of

Equation 8 complement the model-based approach by providing additional moments that can

inform the parameters of the model.

5 Effects on Investment, Relabeling, and Productivity

The model shows that the effects of the program on the distribution of R&D intensity and on

firm-level relabeling and TFP can improve our understanding of the effectiveness of tax incentives

for R&D. In Section 5.1, we use a bunching estimator to quantify the increase in reported R&D in

response to the program. We present estimates of treatment effects of the program on relabeling

24Bachas and Soto (2019) implement a similar approach to analyze the effects of notches on other outcomes.
25Section 5.2 discusses the econometric approach to estimating E[Y |No Notch, d ∈ (d∗−, d∗+)], including d∗− and

d∗+. Note that E[Y |Notch, d ∈ (d∗−, d∗+)] is directly observed in the data.
26Conceptually, we can partition the firms in the region (d∗−, d∗+) into compliers, never-takers, and always-

takers. In our setting, never-taker firms are firms below the notch that are constrained from responding to the
policy. Always-taker firms are firms that are already above the notch without the program. By assuming that
there are no defier firms, we can show that Equation 8 has the interpretation of an intent-to-treat. See Appendix
F for a detailed discussion.
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and productivity in Section 5.2. Section 6 uses these estimates to recover the key elements of the

model.

5.1 Bunching Estimates of Investment Response

We follow the literature (e.g., Kleven, 2016) by using a flexible polynomial to estimate the coun-

terfactual density of R&D intensity, h0(·). We first group the data into bins of R&D intensity and

then estimate the following regression:

cj =

p∑
k=0

βk · (dj)k + γj · 1
[
d∗− ≤ dj ≤ d∗+

]
+ νj,

where cj is the count of firms in the bin corresponding to R&D intensity dj =
Dj1
θπ1

, and where

(d∗−, d∗+) is the region excluded in the estimation.27 An estimate for h0 (d) is now given by

ĉj =
p∑

k=0

β̂k · (d)k. We obtain counterfactual estimates for h0(α) and B as follows:

ĥ0(α) =

p∑
k=0

β̂k · (α)k and B̂ =
α∑

dj=d∗−

(
p∑

k=0

β̂k · (dj)k − cj

)
.

Intuitively, a larger missing mass B is related to a larger increase in R&D intensity. Indeed,

we can quantify the effect of the program on R&D investment as follows:

∆d ≡ E[d|Notch, d ∈ (d∗−, d∗+)]− E[d|No Notch, d ∈ (d∗−, d∗+)]

E[d|No Notch, d ∈ (d∗−, d∗+)]
≈ B

2αh0(α)
. (9)

∆d is a reduced-form estimate of the percentage increase in R&D over the region (d∗−, d∗+).

Because it measures the effect for all firms that could have participated in the program, we

interpret ∆d as an estimate of the intent-to-treat relative to the counterfactual.

To present estimates that are comparable to the literature (e.g., Kleven and Waseem, 2013),

we report two additional quantities. First, we report the percentage increase in R&D intensity for

the marginal buncher relative to the notch:

∆D∗ ≈ B

αh0(α)(1− Pr(Constrained))
. (10)

In practice, we estimate the fraction of constrained firms at an R&D intensity α− such that firms

would be willing to jump to the notch even if R&D had no effects on productivity.28 In addition,

27Our setting avoids two common issues that arise when estimating counterfactual densities. First, we do not
observe bunching at round numbers since our running variable is a ratio. Second, the density above the notch can
potentially reflect intensive margin responses, which could shift the density to the right. Because the density is
very flat in this region, adjusting for this shift does not affect our estimates.

28Appendix F contains details of these approximations. The “money-burning” point is easy to compute. Note
that the tax benefit is given by Profits × (tHT − tLT ) and the cost of jumping to the notch is Sales × (α − α−),
which implies that α− = α− (tHT − tLT )× Profits

Sales . Using the average net profitability ratio in our data of 7%, this
implies that firms in the range (α− .07× (tHT − tLT ), α) are not able to respond to the incentives of the InnoCom
program. For the case of the large firms we have (α−, α) = (2.3%, 3%).
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we also estimate the fraction of constrained firms at α− relative to the counterfactual density:

a∗(α−) =
̂Pr(Constrained|α−)

ĥ0(α−)
=

cα−
p∑

k=0

β̂k · (α−)k
.

To implement the bunching estimator, we need to choose the polynomial degree, p, and the

bounds of the excluded region, (d∗−, d∗+). We use a data-based approach to selecting these pa-

rameters by cross-validating the choice of these values such that the missing mass below the notch

equals the excess match above the notch.29 Finally, we obtain standard errors by bootstrapping

the residuals from the original regression, generating 5000 replicates of the data, and re-estimating

the parameters.

Figures 8-9 display the results of the bunching estimator for the three different notches for 2009

and 2011. The red line with diamond markers displays the observed distribution of R&D intensity

h1(·), the vertical dashed lines display the data-driven choices of the omitted region, and the blue

line displays the estimated counterfactual density h0(·). These graphs also report the fraction of

firms that are constrained below the notch point, a∗(α−), the overall percentage increase in R&D

intensity in the excluded region, ∆d, the increase in R&D intensity for the marginal firm, ∆D∗,

as well as the p-value of the test that the missing mass equals the excess mass.

Panel A of Figure 8 shows a percentage increase in R&D over the excluded region of ∆d = 5.6%

for small firms in 2009. This small increase is due to the fact that many firms are not able to

respond to the program, a∗(α−) = 74%. As these are small firms, many firms may be constrained

in their ability to increase investment to a significant degree or to develop a new product. In

addition, a higher failure rate among small firms implies that a long process of certification may

never pay off in lower taxes. However, the marginal firm sees a significant increase in reported

R&D, since ∆D∗ = 38%. The specification test shows that using the missing mass or the excess

mass results in statistically indistinguishable estimates.

Panels B and C show larger responses for medium and large firms in 2009. These counterfactual

densities imply an increase in R&D intensity of 13.3% for medium firms and of 14.9% for large

firms. However, marginal firms see larger increases of 78.2% and 69.4% for medium and large

firms, respectively. These graphs show that a significant fraction of firms are constrained from

responding to the program (66% for medium and 57% for large firms). These patterns show that

even large and medium firms may be unable to satisfy some of the requirements of the program.

Using the missing mass and the excess mass results in statistically indistinguishable estimates of

the increases in R&D for both types of firms.

29This procedure ensures that we do not overfit the data with an overly flexible polynomial and provides an
objective approach to selecting the excluded region. Given the monotonically decreasing shape of the R&D intensity
distribution, we restrict the estimated βk’s to result in a decreasing density. We describe this procedure in detail
in Appendix G.
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Figure 9 shows similar patterns for 2011. We find larger increases in R&D of 31% for large

firms, 21% for medium firms, and 11% for small firms. The increase in R&D is partly driven by

a smaller fraction of constrained firms in all cases. These effects are estimated with a high degree

of precision as standard errors are often an order of magnitude smaller than the estimates.

We now explore the robustness of our estimates. First, we show in panel A of Figure 10 that

our estimator is able to recover a null effect in the absence of the policy. This panel estimates the

effect of a non-existent notch on the distribution of R&D intensity of large foreign firms before

2008, which were not subject to the incentives of the InnoCom program, and finds a small and

insignificant estimate of ∆d. Second, we explore the potential for firms’ extensive margin responses

to bias our estimates. If the bunching we observe is driven by firms who previously did not perform

any R&D, the missing mass would not equal the excess mass. This would lead us to underestimate

both the excess mass and ∆d. In panel B of Figure 10 we use data for large firms in 2011 and

we restrict the sample to firms that had positive R&D in 2009 and 2010. This panel shows that

we obtain a very similar estimate of ∆d when we rule out extensive margin responses. Finally,

we show that our results are robust to using data from large foreign firms before 2008 who were

not subject to the incentives of the InnoCom program in order to inform the shape of the density

in the excluded region. Panel C of Figure 10 shows that using these data results in very similar

estimates of both the counterfactual density and ∆d.30 Appendix H explores further robustness

checks. First, as we show in Figure A.5, our results are not sensitive to excluding state-owned

enterprises, low-tech firms, or low-profitability firms in the estimation. Across these different

robustness checks, the estimates of (d∗−, d∗+) are very precise, which shows that our results are

not sensitive to the estimated excluded region. Additionally, as we show in Figure A.6, we obtain

similar estimates when we vary the choices of (p, d∗−, d∗+) and we even obtain similar estimates

when we only rely on data above d∗+ to estimate the counterfactual density.

Overall, estimates from the bunching analysis consistently show that firms respond to the

InnoCom program by increasing their reported R&D intensity. In Section 6, we use estimates

of ∆d, d∗−, d∗+, and the counterfactual density h0(d) to construct moments that inform the key

parameters of the model.

5.2 ITT Estimates on Productivity, Relabeling, and Tax Revenue

We now use an estimator of treatment effects developed by Diamond and Persson (2016) to

estimate the effects of the InnoCom program on productivity, relabeling, and on fiscal costs. The

intuition of the estimator is to compare the observed aggregate mean outcome for firms in the

excluded region to a suitable counterfactual. For a given outcome Yit, such as TFP, R&D or

30As discussed in Blomquist and Newey (2017), variation in non-linear incentives can help in identifying responses
when using bunching approaches. We combine this un-manipulated density with the density in 2011, h1(d), by
ensuring that the combined density is continuous at the boundaries of the excluded region, d∗− and d∗+.
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administrative costs, the estimate is given by:

ÎTT Yt = E[Yt|Notch, dt1 ∈ (d∗−t1 , d
∗+
t1

)]− ̂E[Yt|No Notch, dt1 ∈ (d∗−t1 , d
∗+
t1 )]

=

 1

NExc.

∑
di,t1∈(d

∗−
t1
,d∗+t1 )

Yit

− [∫ d∗+t1

d∗−t1

ĥ0(r) ̂E[Yit|dt1 = r,No Notch]dr

]
. (11)

When Yt is R&D or administrative costs, we estimate contemporaneous effects, so that t = t1. For

the case when Yt is TFP, we study the effect of the program in time t1 on future TFP (t > t1). As

we discuss in Section 4.5, we interpret this estimate as an intent-to-treat (ITT).31 For example,

the ITT on Y = ln d measures the percentage increase in R&D intensity over the excluded region,

∆d, without imposing the approximation of Equation 9.

The first quantity in Equation 11 is the observed average value of a given outcome Yit over the

excluded region. The second quantity is a counterfactual average value of Yit. We construct this

counterfactual by combining the counterfactual density of R&D intensity we estimated as part

of the bunching analysis (ĥ0(·)) with an estimated average value of the outcome conditional on a

given value of R&D. We estimate ̂E[Yit|dt1 ,No Notch] using a flexible polynomial regression of Yit

on R&D intensity over the same excluded region used to estimate ĥ0(·):32

Yit =

p∑
k=0

βk · (dit1)
k

︸ ︷︷ ︸
E[Yt|dt1=d,No Notch]

+γ · 1
[
d−∗ ≤ dit1 ≤ d+∗]+ δYit1 + φs + νit,

where we exclude observations in the manipulated region, and control for industry fixed effects

φs and lagged outcomes Yit1 when t > t1. Armed with an estimate of E[Yit|dt1 ,No Notch], we

then compute the counterfactual average value for firms in the excluded region by integrating

E[Yit|dt1 ,No Notch] relative to the counterfactual density h0(d).

The interpretation of Equation 11 as a treatment effect relies on two assumptions. First,

that we can consistently estimate the counterfactual density h0(d), as in the previous section.

Second, that the InnoCom program does not change the relationship between R&D intensity

and a given outcome outside the excluded region. This assumption allows us to uncover the

relationship between an outcome and the running variable. We can then use this relationship to

approximate E[Yit|dt1 ,No Notch] inside the excluded region. Given a consistent estimate of h0(d),

31As detailed in our model, firms self-select into the treatment depending on whether they face fixed or adjustment
costs that prevent them from obtaining the high-tech certification. This selection implies that we cannot use data
just beneath the threshold as a control group for firms above the threshold. Our procedure does not rely on such
comparisons across firms, but instead relies on the assumption that E[Yit|dt1 ,No Notch] is smooth around the
notch, and that it may be approximated with data outside the excluded region that, by definition, is not subject
to a selection problem.

32Note that this regression is not causal. Its role is purely to predict the outcome over the excluded region. We
obtain standard errors for ITT estimates in Equation 11 by bootstrapping this equation as well as the estimates of
the counterfactual density.
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this assumption holds trivially for the case where Y = ln d. When we estimate the effect on TFP

growth, this assumption implies that the only effect of the program on TFP growth is through

real R&D investment. This assumption is consistent with the model in the previous section. A

similar argument applies to the case of relabeling through administrative costs. Finally, note

that this approach has the advantage that it places no restrictions on the distributions of fixed

costs, adjustments costs, and productivity, and does not rely on functional form assumptions for

relabeling costs and the effects of R&D on firm-level productivity.

Panel A of Table 3 presents estimates of ITT effects of the InnoCom program on several

outcomes. We focus on large firms since they account for more than 90% of all R&D investment

(see Figure A.4). We find that R&D investment for firms in the excluded region increased by 14.6%

in 2009, which is very close to the bunching estimate of ∆d of 14.9%. We also find a decrease in

the administrative cost ratio of 9.6%. When compared with the average value of this ratio, we find

that administrative costs decreased by 0.33% of firm sales. We use this estimate to construct an

approximation to the fraction of R&D investment that was relabeled. Compared to the implied

increase in R&D intensity, this would imply that
(

0.33%
0.89%

≈
)

37% of the increase in R&D intensity

was due to relabeling.33 Note that this approximation is imperfect because it assumes that all

firms engage in the same relabeling activity. As our model in Section 4.2 shows, the fraction of

relabeling may vary across firms depending on their distance from the notch. The structural model

in Section 6 relaxes this strong assumption. Nonetheless, this estimate would imply that the real

increase in R&D investment was closer to 9%. Finally, we study how the decision to invest in

R&D in 2009 affects productivity in 2011. We find that between 2009 and 2011, the policy led to

an increase in TFP of 1.2%. These results shows that, while the policy induces relabeling, it also

leads to real R&D investment and productivity gains.34

To relate our estimates to the existing literature, we obtain estimates of the elasticity of R&D

investment to the user cost of capital (UCC). Panel A of Table 3 shows that the policy lowered

the UCC in 2009 by 7.1%.35 The second panel of Table 3 presents estimates of user cost of

capital elasticities by taking the ratio of the ITT on R&D to the ITT on the UCC, along with

bootstrapped confidence intervals. The first row shows that reported R&D increased by 2% for

every 1% decrease in the user cost. When we use the approximation above to obtain an estimate

of the real increase in R&D, we obtain a user cost elasticity closer to 1.3. Notice that the empirical

literature focused on OECD countries (see Hall and Van Reenen, 2000; Becker, 2015) has typically

found an elasticity ranging from 0.4 to 1.8 based on direct R&D tax credit programs. Thus, our

estimates indicate that, once we correct for the re-labeling behavior of Chinese manufacturing

33We can approximate the increase in R&D intensity with α(1− a∗(α−))∆D∗ ≈ 0.89% for large firms in 2009.
34We explore robustness of these estimates in Table A.5, where we show that the ITT estimates are robust to

using an alternative, second-best parametrization of the counterfactual density of R&D intensity.
35We compute the user cost of R&D by generating an equivalent-sized tax credit. This credit is the ratio of tax

savings to R&D investment. We then use the standard Hall and Jorgenson (1967) formula as in Wilson (2009).
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firms, their user cost elasticity is comparable to those in more developed economies.

As an alternative metric, we consider how much it costs the government to increase R&D

investment in terms of foregone revenue. Panel A of Table 3 shows that the policy reduced

corporate tax revenues by 12.8%. Thus, for every 1% increase in R&D, we find that there was

a 0.88% decrease in tax revenue. This statistic is a useful ingredient for deciding whether the

InnoCom policy is too expensive, or whether externalities from R&D investment merit further

subsidies. However, this statistic does not line up perfectly with the government’s objective, since

part of the response may be due to relabeling, and since this estimator relies on the average

percentage increase, which may differ from the percentage increase in total R&D. The structural

model in the next section bridges this gap by computing the fiscal cost of raising real R&D, and

by showing how the fiscal cost depends on the design of the InnoCom program.

6 Structural Estimation and Simulation of Counterfactual

Policies

The empirical estimates from the previous sections evaluate the average effects of the current pro-

gram on reported R&D investment, suspected relabeling activities, and firm productivity. How-

ever, the previous analysis does not allow us to understand how relabeling and the selection of

heterogeneous firms that vary by productivity and adjustment costs affect the fiscal cost of the

InnoCom program. Similarly, these estimates cannot be used to evaluate how heterogeneous firms

respond to alternative policies. This section proposes a method of simulated moments (MSM)

framework to estimate the structural parameters of the model in Section 4.

6.1 Structural Estimation

We first discuss how we parametrize the model. We begin by calibrating θ, which we set at

θ = 5 based on the survey by Head and Mayer (2014).36 We use the fact that the evolution of

productivity in Equation 1 is an AR(1) process with persistence ρ and a normally distributed

shock with variance σ2. Given a value of θ, the persistence and volatility of log sales of non-

R&D performing firms map directly into ρ and σ2, which yields the following calibrated values of

ρ = 0.725 and σ = 0.385. This process implies a stationary normal distribution for the underlying

productivity φ1.
37

We now parametrize the distributions of b and c, which we assume are distributed i.i.d. across

firms. We assume b is log-normally distributed, b ∼ LN (µb, σ
2
b ), and that c has an exponential

36This value implies a gross markup of θ
θ−1 = 1.25. We calibrate θ since, without data on physical quantity

produced, we are not able to separately identifying this parameter from the productivity distribution.
37Appendix J investigates the parametric assumption that total factor productivity exp(φ1) follows a log normal

distribution. We find that the distribution of measured empirical TFP closely matches that of a log normal
distribution, which implies that this assumption is consistent with our data.
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distribution, c ∼ EXP(µc). We adopt the following functional form for the costs of relabeling:
exp{ηδ}−1

η
, where δ is the fraction due to relabeling. While it is necessary to specify a functional

form, this specification is quite flexible as the function can be linear, convex, or concave depending

on the value of η (e.g., Notowidigdo, 2019).

We use the method of simulated moments to estimate the parameters Ω = {ε, η, µb, σb, µc}. To

implement the MSM estimator, we form the criterion function:

Q(Ω) =

[
hB(Ω)
hITT (Ω)

]′
W

[
hB(Ω)
hITT (Ω)

]
,

where W is a bootstrapped weighting matrix. hB(Ω) and hITT (Ω) are moment conditions based

on our bunching and ITT estimators, respectively. hB(Ω) includes (1) the fraction of firms below

d∗−; (2) the fraction of firms in the excluded region that do not bunch; (3) the fraction of firms

above d∗+; (4) the minimum bunching point d∗−; and (5) the percentage increase in R&D intensity

over the excluded region ∆d. That is, we choose our model parameters so that our simulated data

can rationalize the bunching patterns estimated in Section 5.1. In addition to this unconditional

empirical density, we also require that the model match the joint distribution of TFP and R&D

intensity. Specifically, we use the (observed) average TFP for firms below d∗−, in the excluded

region, and above d∗+. As we discuss below, these moments play an important role in identify-

ing key model parameters. We first estimate the model parameters relying on the moments in

hB(Ω) and excluding hITT (Ω). This allows us to measure the fraction of R&D that is relabeled

independently of the ITT estimates in the previous section.

We then estimate a second model that matches all moments in hB(Ω) and hITT (Ω). The

hITT (Ω) moments include the treatment effects on the administrative expense ratio and on TFP

growth that we estimated in Section 5.2. Let ω = {φ1, b, c} denote a firm with random draws of

its fundamentals—i.e., productivity, adjustment cost, and fixed cost. We construct moments that

match the empirical and simulated counterparts of the ITT estimates:38

hITT (Ω) =

∫
dNo Notch(ω)∈(d∗−,d∗+)

E[Y (ω; Notch)− Y (ω; No Notch)]dFω(Ω)− ÎTT Y ,

where ÎTT Y is an estimate from Section 5.2.

Identification

While each of the simulated moments depends on multiple moments, we follow the discussion in

Sections 4.4–4.5 to give a heuristic description of the data patterns that identify each parameter.

Consider first the model that only relies on bunching estimates. We start by discussing the

identification of the distribution of fixed and adjustment costs. First, the parameters of the

38Note that the simulated ITT restricts the support of ω = {φ1, b, c} to firms in the excluded region.
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distribution of adjustment costs, µb and σb, are identified by the counterfactual distribution of

R&D intensity below d∗− and above d∗+. Next, the fraction of firms that do not bunch informs

the parameter of the distribution of fixed costs of certification: µc.

Given estimates of fixed and adjustment costs, we would obtain higher values of the returns to

R&D, ε, and lower costs of relabeling (lower η) if there is a larger increase in reported R&D, ∆d,

or if the marginal buncher has a lower value of d∗−. This is intuitive since both the benefit and cost

of R&D enter the optimal choices of innovating firms. To separately identify these parameters, we

rely on the model’s insight that firms’ R&D decisions are not distorted below d∗− or above d∗+.

Thus, the ranking of firms’ measured productivity across these regions is determined by ε, and is

not affected by the InnoCom program. For this reason, including the joint distribution of TFP

and R&D intensity in hB(Ω) helps to separately identify the returns from R&D, ε, from relabeling

costs, η.

Consider now the role of the hITT (Ω) moments. The ITT estimate on measured TFP growth

also helps to discipline ε. Note, however, that this estimate combines three mechanisms: the

returns to R&D, selection into the treatment, and the potential for relabeling. In practice, we find

that the relabeling margin plays an important role in influencing these ITT moments. For this

reason, the ITT estimate on the administrative expense ratio is informative of both η and ε.

The hITT (Ω) moments serve a dual role in practice. First, they are an out-of-sample robustness

check when they are not used for estimation. This is useful since the benefit of the ITT estimates

is that they do not depend on a particular structure. Second, they are helpful over-identifying

moments that can help pin down the estimates of the full model. To the extent that the model

is consistent with both sets of moments, including the hITT (Ω) moments in the estimation can

increase the precision of the estimates.

Estimates of Structural Parameters

We estimate the model using a Laplace-type estimator that is based on Markov Chain Monte

Carlo (MCMC), following Chernozhukov and Hong (2003). This procedure provides a numerically

attractive way of obtaining point estimates and conducting inference. We construct the weighting

matrix W based on the bootstrapped covariance matrix of our data moments.

Table 4 reports estimates of our structural parameters: (ε, η, µb, σb, µc). Panel A reports the

parameter estimates and the standard errors for our two models. All the estimates are statistically

significant in both models. Overall, we estimate remarkably similar parameters when we rely on

the bunching moments hB(Ω) or when we also include the ITT moments hITT (Ω) in the estimation.

Thus, while the ITT moments provide independent information, our model’s quantification of the

forces that generate the R&D bunching patterns in Section 5.1 are consistent with the treatment

effects estimated in Section 5.2.

Consider the estimate of the returns to R&D, ε. The estimate from the full model in Table 4
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panel A implies that doubling R&D increases measured TFP by 9.8%. Hall et al. (2010) survey

the extensive literature on R&D elasticity in similar production function setups. Our estimate

lies within the broad range of previous result between 2% and 17%. Almost all of these previous

studies use micro-data from developed countries, so it is interesting to see that the returns to R&D

of Chinese firms are comparable in magnitude.

Consider now the relabeling cost parameter, η. The estimate from both models is close to 5.7,

which indicates that, at the margin, the cost of relabeling is highly convex in terms of δ. In other

words, it is easy for firms to overstate their R&D by a small amount, but the cost rises quickly for

firms that are farther away from the required threshold α. To understand this result, note that

the marginal benefit of relabeling includes reductions in investment costs and in adjustment costs,

which include technological opportunity constraints. Thus, firms that face a higher shadow cost

of R&D (i.e., a higher b) will be more willing to engage in relabeling. On average, we calculate

that firms’ realized relabeling cost is 4.7% of the implicit R&D savings. Finally, the estimated

certification cost is quite modest: for the firms who decide to bunch and certify as high-tech firms,

the fixed certification cost is on average 2% of their realized profit.

Panel B of Table 4 compares the simulated moments with the data moments and shows that

our models do a very good job of matching the data. The first model (excluding ITT moments)

replicates the distribution of firm-level R&D intensity and the bunching pattern almost perfectly.

It also captures the positive correlation between R&D intensity and measured productivity very

well. We also report the predicted values of the (untargeted) ITT moments and we find that they

match the data moments quite closely. The last column of panel B reports the simulated moments

for the full model. As would be expected, this model trades-off a slightly better fit of the ITT

moments for slight deviations from the bunching moments. However, these trade-offs are very

minor: both models do a remarkable job of fitting the data.39 Because the model is consistent

with both sets of moments, one of the benefits of adding hITT (Ω) in the full model is an increase in

the precision of the estimated parameters. While the full model features smaller standard errors

for all the parameters, the biggest difference is in the standard error of η, which drops from 1.17

to 0.12. This drop makes sense from the perspective that one source of uncertainty in the model

is how to separate the roles of ε and η in determining the bunching response and the extent of

relabeling. The addition of the ITT moments reduces this uncertainty along with the estimated

standard error for η.

Finally, we evaluate the sensitivity of our point estimates to each individual moment. We

calculate the local derivative of our estimated parameters in the full model with respect to each

moment using the methods of Andrews et al. (2017). The recovered sensitivity matrix is reasonable

39In Appendix J we discuss estimates from alternative models that allow for heterogeneous ε’s and a constant b.
While these models result in similar average values of ε and b, these models do not match the data as well as our
benchmark model. Specifically, these models cannot match the joint distribution of TFP and R&D intensity.
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and conforms to the heuristic discussion above. We find that the joint distribution of TFP and

R&D intensity are important determinants of ε. For instance, with a small change in the average

TFP of firms above d∗+, ε would increase by around 10 percent from its estimated value. In

contrast, we find that ε is not very sensitive to changes in the ITT of TFP. These methods also

allow us to consider the potential that part of the reduction in administrative expenses is not

due to relabeling.40 If half of the decrease in administrative costs is not related to relabeling, our

sensitivity analysis shows that ε would decrease by 0.002, which is a very modest amount. We

report the complete set of sensitivity results for ε and η in Figure A.9.

Overall, the structural model exploits the estimates from our reduced-from analysis for identi-

fication and is able to replicate these data patterns quite well. Our estimates leverage the relative

benefits of estimating treatment effects and structural models. While the structural model com-

bines information from multiple moments and leverages functional form assumptions to increase

the precision of the estimates, the benefit of the treatment effects approach is that it places no

restrictions on the parameters of the model. By estimating a model that is consistent with both

approaches, we are assured that functional form assumptions are not constraining the estimated

parameters in ways that would bias the treatment effects of the InnoCom program. At the same

time, our model parameters are not sensitive to identification assumptions related to the estimated

treatment effects. For these reasons, the model provides a robust micro-foundation for simulating

the effects of counterfactual policies.

Benchmark Model Implications

Given our model estimates, we can simulate our benchmark model to gain a deeper understanding

of how heterogeneous firms respond to the existing policy.

First, we find that firms that comply with the policy are positively selected on several margins.

Complier firms are, on average, 9.64% more productive than firms in the excluded region that

do not comply with the policy. They also have idiosyncratic adjustment costs that are 34.5%

lower than non-compliers, which indicates much better technological opportunities from R&D

investment. Finally, they also have substantially smaller certification costs.

Second, our model shows that 30.3% of the reported R&D investment is due to relabeling,

on average. This fraction is dispersed across firms, with the 10th percentile firm relabeling 6.8%,

and the 90th percentile relabeling 51.9%. This dispersion is driven mostly by dispersion in the

adjustment costs, b. Conditional on firm productivity, firms with higher adjustment costs relabel a

higher fraction of their R&D. Intuitively, firms with limited technological opportunities are willing

to risk the punishment from relabeling in order to achieve the program threshold.

Lastly, we also find heterogeneous increases in real R&D for complying firms. Our model

40For instance, administrative costs may reduce if the tax incentive causes firms to pay closer attention to their
accounting of R&D expenses, or if firms substitute inputs in response to the policy.
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suggests that the distribution of real R&D investment is such that the 10th percentile firm sees

an increase of 10.2%, the 90th percentile firm increases by 25.0%, and the median firm increases

by 15.1%. This dispersion in investment then results in a dispersed distribution of gains in TFP.

6.2 Simulation of Counterfactual Policies

We now use our model estimates to simulate the effects of alternative R&D tax incentives and we

quantify their implications for reported R&D investment, real R&D investment, tax revenue, and

productivity growth. We first simulate alternative versions of the InnoCom program that vary the

tax advantage and the location of the notch. We then compare our results with a counterfactual

policy that follows a more standard investment tax credit.

Alternative Notches and Tax Cuts

We analyze alternative versions of the InnoCom program that vary the tax advantage and the

location of the notch for two reasons. First, even though standard policy recommendations avoid

prescribing discontinuous incentives, notches are present in many settings (Slemrod, 2013) and

may be justified in cases where governments may use them as a way to limit relabeling (Best et

al., 2015). Second, given the explosive growth in R&D in China and that the government has

chosen to use this policy, it is important to understanding the economic and fiscal consequences

of this type of policy.

Figures 11-12 study the effects of changing the preferential tax rate for three values of the notch:

2%, 3%, and 6%. Each line shows the change in a given outcome from moving the preferential

tax rate between 10% to 22% for a given notch, relative to the current benchmark where α = 0.03

and tHT2 = 15%.

Panels A and B of Figure 11 analyze how changes in the policy parameters affect the char-

acteristics of the compliers. We find that higher values of the notch lead to a selection of more

productive firms, and of firms with lower adjustment costs, on average. This graph also shows that,

as we increase the tax break for high tech firms (lower preferential tax rate), the program selects

firms with lower productivity and higher adjustment costs. The selection effect is more pronounced

along adjustment costs than on productivity. For instance, when we change the threshold from

3% to 2%, the average adjustment cost for the compliers almost doubles, while the productivity

is only around 2% lower. These results show that there are decreasing returns from expanding

the InnoCom program by increasing the tax advantage, and that a larger tax break might exacer-

bate misallocation of R&D by incentivizing R&D investment in firms with lower productivity and

higher adjustment costs.

Panels C and D of Figure 11 show how real R&D investment and relabeling respond to changes

in the InnoCom program. Panel C shows that there is more real investment when firms face a
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lower preferential tax rate. However, the fraction of R&D due to relabeling also increases in the

size of the tax cut. As panel D illustrates, when we set the notch threshold at 6%, moving the

preferential tax rate from 22% to 10% increases the fraction of reported R&D due to relabeling

by almost 15 percentage points.

Panel A of Figure 12 plots the average growth in productivity induced by the InnoCom program

for firms in the excluded region. This effect is driven by two forces. First, as in panel C of Figure

11, complier firms invest more with a lower preferential tax rate. Second, the fraction of firms

that participate in the program also increases with a lower preferential tax rate. When α = 3%

and the preferential tax is reduced to 10%, the average firm sees a TFP increases of 1.4%. This is

a larger increase than in the benchmark case where firms see a 0.8% increase in TFP.

Finally, we use our simulations to answer the question: What is the lowest-cost policy for

a government that wants to increase R&D by a given amount? To answer this question, we

first estimate the elasticity of the tax revenue cost to the real increase in R&D investment for

different values of α and tHT . We then plot these ratios in panel B of Figure 12 according to

the total increase in real R&D. This graph thus represents cost frontiers for a government that

wants to increase real R&D by a given amount. The current policy of α = 3% and tHT = 15%

corresponds to a cost-ratio of about 2.8.41 The black line shows that a policy defined by α = 6%

and tHT = 17% would result in a similar increase in real R&D investment, but at a lower average

cost. Alternatively, a policy defined by α = 6% and a larger tax advantage tHT = 12% would

result in a twice-as-large increase in R&D investment for a similar tax-to-R&D ratio. This result

is driven by the fact that policies with larger α will positively select more productive firms as well

as firms with better technological opportunities. Nonetheless, as shown in panel D of Figure 11,

this policy would also be accompanied by more relabeling.

These simulations show that the effectiveness of notch-based programs depends strongly on

firm selection. As incentives for R&D increase, this may lead to misallocation of R&D to firms

with worse technological opportunities. Moreover, incentives that encourage R&D investment at

the lowest cost to taxpayers may lead firms to engage in relabeling activities that are likely socially

undesirable.

R&D Tax Credit

A more common R&D subsidy policy is the R&D tax credit, which is prevalent in a large number of

European and North American countries. We now use our estimated model to evaluate the effects

of drastically changing the Chinese InnoCom program into an R&D tax credit system comparable

41This ratio is greater than the value of 0.88 reported in Table 3 for two reasons. First, this number accounts for
relabeling of R&D. Second, the percentage increase in total real R&D is disproportionately determined by the high
R&D intensity firms, which have smaller than average increase in R&D spending. When we calculate the same
quantity as in Table 3, we obtain a comparable value of 0.92.
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to that of the U.S. While the U.S. system has numerous accounting details, we define it by the two

most fundamental features: the base amount D̄i and the tax credit rate τ . The U.S. government

provides a credit of τ = 20% on qualified R&D expenditures that exceed the base amount D̄i.
42

If firms find it optimal to not misreport (δ∗ = 0), then the R&D tax credit effectively reduces

the marginal cost of real R&D, DK , by (1 − t1)τ . When there is no relabeling, an R&D tax

credit is a relatively cheap way to induce incremental R&D investment. Indeed, the tax-to-R&D

elasticity equals (1− t1)τ ≈ 0.15, which is significantly more effective than the 2.8 elasticity of the

benchmark InnoCom program. If we impose the estimated cost of relabeling of η = 5.7, as in our

benchmark case, firms find it very costly to misreport and set δ∗ = 0. In this case, the R&D tax

credit system is a superior policy.

However, there are reasons to suspect that tax enforcement will be more difficult under an R&D

tax credit system since the tax authority will need to audit all firms. This implies that individual

firms will face lower costs of relabeling. With positive misreporting, the cost-effectiveness of the

R&D credit quickly worsens. To see this, note that the R&D tax credit is calculated as

(1− t1)τ

[
DK∗

1− δ∗
−D∗1

]
≡ (1− t1)τ

[
(DK∗ −D∗1) +

δ∗

1− δ∗
DK∗

]
.

If firms relabel δ∗ > 0 of reported R&D, then the effective tax cost of inducing the marginal dollar

of real R&D becomes (1 − t1)τ [1 + δ∗

1−δ∗
DK∗

DK∗−D∗1
]. When the incremental real R&D, DK −D∗1, is

small, the misreported R&D dominates the tax to real R&D elasticity. When we set the relabeling

cost to match our benchmark relabeling of δ∗ = 0.3, our simulated model implies a tax-to-R&D

elasticity of 7.97. This high fiscal cost is largely driven by relabeling. Intuitively, firms were already

at their interior optimum. The tax credit therefore induces mostly a relabeling responses, with a

very small increase in real R&D. In this case, the large relabeling response yields the surprising

result that an InnoCom-style program is more effective at stimulating real R&D than a linear tax

credit.

This analysis reveals that the choice of subsidy critically depends on the costs of relabeling.

Using our model’s estimates of firm-level R&D adjustment costs and returns to R&D, we searched

for the relabeling cost parameter that equalizes the fiscal cost of an R&D tax credit regime with

the InnoCom program. We find that when η = 1.324, which implies a lower fraction of relabeling of

9.9% (in contrast to 30.3% in our benchmark), the R&D tax credit policy achieves the same fiscal

42Since D̄i typically depends on an average of R&D intensity in previous years, it is natural to assume that
D̄i = D∗

i1, the interior optimum. We can thus set up the firm’s optimal R&D decision problem as

max
DK ,δ

(1− t1)
[
π1 − g(DK , θπ1)

]
−DK + t1

(
DK

1− δ

)
+ (1− t1)τ

(
DK

1− δ
−D∗

i1

)
− DK

1− δ
h(δ) + β(1− t2)E[π2|DK ].

Note that the misreporting decision, δ, is separable from the real R&D choice, DK . Thus, the optimal proportional
evasion δ∗ is determined by the evasion cost, η, the R&D tax credit, τ, and the corporate tax rate, t1. Given the
optimal evasion decision δ∗, firms choose real R&D amount DK .
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elasticity of 2.8. Therefore, a tax credit would be a more cost-effective policy if the government

can significantly increase the cost of relabeling. However, this may come at the cost of devoting

additional government resources to detect relabeling.

7 Conclusions

Governments around the world devote considerable tax resources to incentivizing R&D investment.

However, there is widespread concern that firms respond by relabeling other expenses as R&D

expenditures. This paper takes advantage of a large fiscal incentive and detailed administrative

tax data to analyze these margins in the important case of China. We provide striking graphical

evidence consistent with both large reported responses and significant scope for relabeling. These

results suggest misreporting of R&D may contaminate estimates of the effectiveness of R&D

investment and may lead to misallocation of R&D toward firms with less innovative projects.

Despite the relabeling responses, we find significant effects on firm-level productivity that are

consistent with sizable returns to R&D.

Optimal subsidies for R&D depend on the fiscal cost for the government and whether R&D

investment has external effects. This paper provides a useful metric that traces the government’s

tradeoff between own-firm productivity growth and tax revenues. If R&D is believed to have

positive externalities on other firms’ productivity, our estimates then provide a bound on the size

of the externality that would justify government intervention.

Finally, while we find evidence consistent with relabeling, the unusual structure of the InnoCom

program may limit the scope of relabeling and evasion through pre-registration and auditing. In

contrast, R&D investment tax credits may be more susceptible to relabeling in developing, and

even developed countries. As this paper demonstrates, accounting for relabeling has important

implications for the design of R&D subsidies. Future research should explore the potential for

relabeling in other contexts.
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Figure 1: Cross-Country Comparison: R&D as Share of GDP
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NOTES: This figure plots the aggregate R&D Intensity, i.e. R&D expenditure as share of GDP, in the

private sector for China, Canada, India, and US. Chinese R&D intensity started at 0.5% in 1996, a

similar level to India. It increased dramatically by more than three-fold to above 1.5% in 2011, on par

with Canada. The R&D intensity of the U.S. remained stable at 2.5% during the same period. Chinese

R&D intensity improved from 1/5 in 1996 to around 2/3 of the U.S level in 2011. The red line marks

the year of the tax reform. Source: World Bank.
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Figure 2: Bunching at Different Thresholds of R&D Intensity (2011)

A. Full Sample B. Small Firms
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NOTES: This figure plots the empirical distribution of R&D intensity for all manufacturing firms with R&D intensity between 0.5% and 15%

in the Administrative Tax Return Database. Panel A reports the pooled data distribution with all sizes of firms. Panels B, C, and D report

the R&D intensity distribution of “Small”, “Medium”, and “Large” firms respectively. Note that large fractions of the firms “bunch” at the

thresholds (6% for large, 4% for medium, and 3% for large) that qualify them to apply for the InnoCom certification. Source: Administrative

Tax Return Database. See Section 3.1 for details.
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Figure 3: Effects of the 2008 Tax Reform on the Bunching of Foreign-Owned, Large
Companies

A. Bunching Before 2008 Tax Reform
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B. Bunching After 2008 Tax Reform
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NOTES: This figure compares the R&D intensity distribution for large foreign-owned firms before and

after the 2008 tax reform. To make the two samples comparable, the figure only plots firms that we

observe in both the SAT and ASM data. The tax reform eliminated the preferential corporate income

tax for foreign-owned firms and increased their incentives to qualify for the InnoCom program.

Compared with panel A, panel B shows that these firms increase their bunching behavior substantially

after 2008. The R&D intensity is concentrated around the 3% threshold. Source: Administrative Tax

Return Database and Annual Survey of Manufacturers. See Section 3.1 for details.
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Figure 4: Empirical Evidence of Relabeling
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NOTES: This figure plots the non-R&D administrative expense to sales ratio at each level of R&D

intensity. The green dots/line are for the large firms, the red dots/line are for the medium firms, and

the blue dots/line are for the small firms. The threshold of R&D intensity for firms to qualify applying

for InnoCom certification differs across firm size: 6% for small firms, 4% for medium firms, and 3% for

large firms. For each size category, there is a pronounced drop of the administrative expense to sales

ratio when the R&D intensity approaches the required threshold. Source: Administrative Tax Return

Database. See Section 3.1 for details on data sources and Section 4 for details on the estimation.
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Figure 5: Lack of Sales Manipulation

A. Lack of Sales Manipulation Around R&D Intensity Threshold
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NOTES: This figure examines the potential manipulation of sales data. Panel A shows firms do not manipulate sales by under-reporting their

sales in order to reach their respective notch. Panels B and C show firms do not attempt to over-report their sales in order to move into the

next size category and thus reduce the threshold of R&D intensity needed to qualify for the InnoCom program. Overall, there is little evidence

of sales manipulation. Source: Administrative Tax Return Database and Annual Survey of Manufacturers. See Section 3.1 for details.
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Figure 6: Induced Notch in Profit Functions
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NOTES: This figure provides intuition for when a firm decides to bunch or not. In panel A, we characterize a firm whose value of performing

the interior optimal level of R&D is larger than bunching at the threshold. In panel B, we characterize another firm whose value of

performing the interior optimal level of R&D is exactly equal to bunching at the threshold. The fundamental determinant of this relationship

is the unobserved firm heterogeneity, φ1, which is reflected by the interior optimal R&D. Panel C shows that when firms can relabel non-R&D

expenses as R&D expenses, the marginal firm will have a lower interior optimal R&D level level D∗−. See Section 4 for details.
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Figure 7: Theoretical Bunching Predictions

A. Predicted Bunching in the Simple Model
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NOTES: This figure describes empirical implications of our model for R&D investment and bunching.

Panel A plots the implied empirical R&D density distribution in our baseline model of R&D investment

with productivity as the only source of heterogeneity at the firm-level. The model predicts that all the

firms between the marginal firm and the notch will bunch, creating a dominated interval in the density.

Panel B plots an enriched model where firms’ R&D decision is subject to heterogeneous adjustment

costs and a fixed cost of certification. These heterogeneities create frictions such that not all the firms

in the dominated interval bunch on the notch. See Section 4 for details.
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Figure 8: Estimates of Excess Mass from Bunching at Notch (2009)
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NOTES: This figure reports the results of our bunching estimator for small, medium, and large firms in 2009. In each panel, we plot the empirical density

of R&D intensity in red and the estimated counterfactual R&D intensity in blue. The lower bound d∗− and upper bound d∗+ for the excluded region are

indicated by vertical dashed lines. ∆d is the percentage increase in R&D in the excluded region, ∆D is the increase for the marginal firm, a∗ is the fraction

of firms that are constrained from participating in the program, and we report the p-value of the test that the missing mass equals the excess mass. See

Section 5.1 for details. Source: Administrative Tax Return Database.
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Figure 9: Estimates of Excess Mass from Bunching at Notch (2011)

A. Small Firms B. Medium Firms
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C. Large Firms
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NOTES: This figure reports the results of our bunching estimator for small, medium, and large firms in 2011. In each panel, we plot the

empirical density of R&D intensity in red and the estimated counterfactual R&D intensity in blue. The lower bound d∗− and upper bound

d∗+ for the excluded region are indicated by vertical dashed lines. ∆d is the percentage increase in R&D in the excluded region, ∆D is the

increase for the marginal firm, a∗ is the fraction of firms that are constrained from participating in the program, and we report the p-value of

the test that the missing mass equals the excess mass. See Section 5.1 for details. Source: Administrative Tax Return Database.
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Figure 10: Robustness of Bunching Estimates

A. Placebo Test: Large Foreign Firms Before 2008 B. Large Firms in 2011 (No Extensive Margin)
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P-value (M=B) = 0.8877

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
D

en
si

ty

.01 .02 .03 .04 .05 .06 .07 .08 .09
R&D Intensity: D

h0(D): Density With Linear Tax h1(D): Density With Notch

Δd = 0.318***(0.021)
ΔD = 0.887***(0.049)
P-value (M=B) = 0.8686
Frictions: a* = 0.284***(0.008)

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
D

en
si

ty

.01 .02 .03 .04 .05 .06 .07 .08 .09
R&D Intensity: D

h0(D): Density With Linear Tax h1(D): Density With Notch

C. Large Firms in 2011 using Large Foreign Firms to Inform Counterfactual

Δd = 0.264***(0.006)
ΔD = 0.855***(0.018)
P-value (M=B) = 0.7198
Frictions: a* = 0.382***(0.010)
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NOTES: This figure reports robustness checks of our bunching estimator in panel C of Figure 9. Panel A reports a placebo test where we use

the data from large foreign firms before 2008. Panel B implements our bunching estimator for large firms which already performed R&D in

previous years. Panel C uses large foreign firm’s R&D intensity before 2008 to inform the counterfactual distribution. See Section 5.1 for

details.
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Figure 11: Simulated Counterfactual Policies: Selection and Relabeling

A. Mean φ1 for Compliers B. Mean b for Compliers
Relative to Benchmark Relative to Benchmark
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C. Real R&D Increase for Compliers D. Fraction due to Relabeling for Compliers
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NOTES: These figures report the effects of different policy parameters on the selection of firms into the

InnoCom program and on aggregate outcomes of interest. Panels A and B show that lower preferential

tax rates select firms with higher adjustment costs and lower productivity. Panels C and D show how

real and relabeled R&D respond to changes in parameters of the policy. See Section 6.2 for details on

the structural model and the simulation.
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Figure 12: Simulated Counterfactual Policies: Productivity and Fiscal Cost of
Stimulus

A. Average TFP Increase (Excluded Region)
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B. Tax Revenue Cost of Stimulating Real R&D
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NOTES: These figures report the effects of different policy parameters on aggregate outcomes of

interest. Panel A shows how different reforms affects TFP. Panel B plots the elasticity of the tax cost to

the government to the real R&D increase. This figure represents the fiscal cost curve of incentivizing

R&D investment for the government, and shows that notches that target larger firms have lower fiscal

costs. See Section 6.2 for details on the structural model and the simulation.
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Table 2: Descriptive Statistics

A. State Administration of Tax Data 2008 - 2011

Mean Std p25 p50 p75 Observations

Sales (mil RMB) 118.263 1394.828 2.579 10.608 42.056 1202257
Fixed Asset (mil RMB) 32.912 390.406 0.402 2.089 10.743 1139038
# of Workers 175.402 852.494 17.000 48.000 136.000 1213497
R&D or not (%) 0.081 0.273 0.000 0.000 0.000 1219630
R&D/Sales (%, if>0) 3.560 7.019 0.337 1.544 4.296 98258
Administrative Expense/Sales (%) 9.417 11.886 2.809 5.814 11.103 1171365
TFP 2.058 0.522 1.638 2.007 2.434 1100845

B. Annual Survey of Manufacturing 2006 - 2007

Mean Std p25 p50 p75 Observations

Sales (mil RMB) 110.801 1066.080 10.760 23.750 59.513 638668
Fixed Asset (mil RMB) 42.517 701.282 1.630 4.492 13.370 638668
# of Workers 238.379 1170.327 50.000 95.000 200.000 638668
R&D or not (%) 0.102 0.303 0.000 0.000 0.000 638668
R&D/Sales (%, if>0) 1.631 3.184 0.118 0.461 1.736 65267

NOTES: Various sources, see Section 3.1 for details.
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Table 3: Estimates of Treatment Effects

A. Estimates of Intent-to-Treat (ITT) Effects

Bootstrap
ITT SE T-Stat 5th Perc. 95th Perc.

2009
Admin Costs -0.096 0.025 -3.822 -0.136 -0.054

Admin Costs (level) -0.003 0.001 -3.686 -0.005 -0.002

R&D 0.146 0.065 2.245 0.037 0.251

R&D (real) 0.090 0.044 2.074 0.022 0.165

User Cost -0.071 0.037 -1.929 -0.130 -0.009

2011
Tax -0.128 0.018 -7.293 -0.159 -0.101

TFP 0.012 0.006 1.953 0.001 0.022

B. Estimates of User-Cost-of-Capital Elasticities

Bootstrap
Estimate 5th Perc. 95th Perc.

Reported R&D to User Cost (2009) -2.052 -7.919 -0.016

Real R&D to User Cost (2009) -1.272 -4.900 -0.010

Tax to Reported R&D (2011) -0.879 -2.730 -0.458

NOTES: This table reports estimates of ITT effects of the notch on various outcomes.
Panel B reports ratios of estimates in panel A. Standard errors computed via bootstrap.
See Section 3.1 for details on data sources and Section 5 for details on the estimation.
Source: Administrative Tax Return Database.

ITT =
1

NExcluded

∑
i∈(D∗−,D∗+)

Yi −
∫ D∗+

D∗−
ĥ0(r) ̂E[Y |rd,No Notch]dr
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Table 4: Structural Estimates

A. Point Estimates

TFP Elasticity Relabeling Distribution of Distribution of
of R&D Cost Adjustment Costs Fixed Costs

ε η µb σb µc

Model 1: Excluding ITT Moments
Estimate 0.093 5.657 8.311 1.465 0.586
Standard Error (0.011) (1.171) (0.674) (0.416) (0.104)

Model 2: All Moments
Estimate 0.098 5.663 8.581 1.648 0.629
Standard Error (0.008) (0.121) (0.363) (0.216) (0.077)

NOTES: This table reports estimates of structural parameters of the model in Section 4. Estimates based on
calibrated values of θ = 5, ρ = 0.725, and σ = 0.385. Model 1 estimates the structural parameters using all
moments except the ITT estimates on administrative costs and TFP. Model 2 uses all the available moments to
estimate the structural parameters. See Section 6 for estimation details.

B. Simulated vs. Data Moments

Data Simulated
Excluding ITT All

Bunching Moments: hB(Ω) Probability Mass for d < d−∗ 0.280 0.279 0.284
Fraction not Bunching 0.675 0.677 0.676
Probability Mass for d > d+∗ 0.189 0.189 0.198
Bunching Point d−∗ 0.88% 0.80% 0.75%
Increase in Reported R&D: ∆d 0.146 0.156 0.162
Average TFP for d < d−∗ -0.032 -0.033 -0.032
Average TFP for d ∈ (d−∗, d+∗) 0.000 0.002 0.003
Average TFP for d > d+∗ 0.056 0.054 0.056

ITT Moments: hITT (Ω) ITT TFP 0.012 (0.008) 0.008
ITT administrative cost ratio -0.33% (-0.25%) -0.27%

NOTES: This table compares the moments generated by our simulations with those from the data. The simulation
is based on 30, 000 firms. The table shows our model does a remarkable job of matching 10 moments from the data
using a relatively parsimonious model based on 5 parameters. Model 1 estimates the structural parameters using all
moments except the ITT estimates on administrative costs and TFP, which are shown in italics and in parentheses.
Model 2 uses all the available moments to estimate the structural parameters. See Section 6 for estimation details and
discussion of how these moments inform the structural parameters in our model.
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Online Appendix: Not For Publication

This appendix contains multiple additional analyses. Appendix A includes additional details

of the Chinese corporate income tax system. Appendix B describes in more detail the data we

use in our analysis. Appendix C discusses the estimation of our measure of log-TFP. Appendix

D shows that firms do not respond to the InnoCom program by manipulating sales expenses.

Appendix E provides a detailed derivation of the model. Appendix F shows that the missing mass

in the bunching analysis can be used to approximate the effects of the notch on R&D investment.

Appendix G discusses details of the implementation of the bunching estimator. Appendix H

discusses additional robustness checks of our bunching estimates. Appendix I describes details

of the implementation of the ITT estimator. Finally, Appendix J explores the robustness of

our structural estimation by showing that the actual distribution of TFP is very close to being

log-normal and by discussing estimates of an alternative structural model with heterogeneous ε.

A Additional Details of the Chinese Corporate Income

Tax System

China had a relatively stable Enterprise Income Tax (EIT) system in the early part of our sample

from 2000 - 2007. During that period, the EIT ran on a dual-track tax scheme with the base

tax rate for all domestic-owned enterprises (DOE) at 33% and foreign-owned enterprises (FOE)

ranging from 15% to 24%. The preferential treatment of FOEs has a long history dating to the

early 1990s, when the Chinese government started to attract foreign direct investment in the

manufacturing sector. The government offered all new FOEs located in the Special Economic

Zone (SEZ) and Economic and Technology Development Zone (ETDZ) a reduced EIT of 15%. It

also offered a reduced EIT of 24% for all FOEs located in urban centers of cities in the SEZs and

ETDZs. The definition of foreign owned is quite broad: it includes enterprises owned by Hong

Kong, Macau, and Taiwan investors. It also includes all joint-venture firms with a foreign share

of equity larger than 25%. The effective tax rates of FOEs are even lower since most had tax

holidays that typically left them untaxed for the first 2 years, and then halved their EIT rate for

the subsequent 3 years.

In addition to the special tax treatments of FOEs, the Chinese government started the first

round of the West Development program in 2001. Both DOEs and FOEs that are located in

west China and are part of state-encouraged industries enjoy a preferential tax rate of 15%.

West China is defined as the provinces of Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi,

Gansu, Ningxia, Qinghai, Xinjiang, Inner Mongolia and Guangxi. Finally, there is also a small

and medium enterprise tax break, which is common in other countries. However, the revenue

threshold is as low as $50, 000, and is effectively irrelevant for our sample.
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The Chinese government implemented a major corporate tax reform in 2008 in order to elimi-

nate the dual-track system based on domestic/foreign ownership and established a common rate

of 25%. Some of the existing tax breaks for FOEs were gradually phased-out. For instance, FOEs

that previously paid an EIT of 15% paid a tax rate of 18% in 2008, 20% in 2009, 22% in 2010,

and 24% in 2011. In contrast, the West Development program will remain in effect until 2020.

B Data Sources

We connect three large firm-level databases of Chinese manufacturing firms. The first is the rel-

atively well-studied Chinese Annual Survey of Manufacturing (ASM), an extensive yearly survey

of Chinese manufacturing firms. The ASM is weighted towards medium and large firms, and

includes all Chinese manufacturing firms with total annual sales of more than 5 million RMB (ap-

proximately $800,000), as well additional state-owned firms with lower sales. This survey provides

detailed information on ownership, location, production, and the balance sheet of manufacturing

firms. This dataset allows us to measure total firm production, sales, inputs, and, for a few years,

detailed skill composition of the labor force. We supplement this data with a separate survey by

the Chinese National Bureau of Statistics that includes firms’ reported R&D. We use these data

for years 2006–2007.

The second dataset we use is the administrative enterprise income tax records from Chinese

State Administration of Tax (SAT). The SAT is the counterpart to the IRS in China and is

in charge of tax collection and auditing. In addition, the SAT supervises various tax assistance

programs such as the InnoCom program. The SAT keeps its own firm-level records of tax payments

as well other financial statement information used in tax-related calculations. We have acquired

these administrative enterprise income tax records from 2008–2011, which allows us to construct

detailed tax rate information for individual manufacturing firms. We also use these data to

construct residualized measures of firm productivity.43 The scope of the SAT data is slightly

different from the ASM, but there is a substantial amount of overlap for the firms which conduct

R&D. For instance, the share of total R&D that can be matched with ASM records is close to

85% in 2008.

The third dataset we use is the list of firms that are enrolled in the InnoCom program from

2008–2014. For each of these manufacturing firms, we have the exact Chinese name, and the

year it was certified with high-tech status. This list is available from the Ministry of Science and

Technology website, and we have digitized it in order to link it to the SAT and ASM data. We

use these data to cross-validate the high-tech status recorded in the SAT data.

43We discuss the details of this procedure in Appendix C.
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C Estimation of Residual Productivity

This appendix describes how we construct an empirical measure of firm-level productivity φ̂it.

First, we use the structure in our model of constant elasticity demand to write firm revenue

(value-added) as:

ln rit =

(
θ − 1

θ

)
[κ ln kit + (1− κ) ln lit + φit],

where lit is the labor input which we assume may be chosen each period. Second, we obtain the

following relation from the first order condition of cost minimization for the variable input lit:

ln slit ≡ ln

(
wlit
rit

)
= ln

[
(1− κ)

(
θ − 1

θ

)]
+ vit,

where vit ∼ iid, and E[vit] = 0 is measurement error or a transitive shock in factor prices. Third,

we obtain a consistent estimate of (1 − κ)( θ−1
θ

) for each 3-digit manufacturing sector. Finally,

given our benchmark value of θ = 5, we construct a residual measure of log TFP as follows:

φ̂it =
θ

θ − 1
ln rit − κ̂ ln kit − (1− κ̂) ln lit.

D Lack of Manipulation of Other Expenses

In Figure 4, we show a significant downward break in the administrative expense-to-sales ratio at

the notches for each firm size category. Given the fact that administrative expenses and R&D are

categorized together under the Chinese Accounting standard, we think that is the natural place

to find suggestive evidence of the relabeling behavior. In this section, we address the question of

whether other types of expenses might also illustrate similar empirical patterns. We plot a similar

graph to Figure 4 in Figure A.3 for the sales expense-to-sales ratio for all three size categories.

We find that there are no detectable discontinuities at the notches for all firms. Note that, while

there is a drop for small firms at the 6% notch, Table A.4 shows that this drop is not statistically

significant. This analysis suggests that the drops we observe in administrative costs are likely not

due to substitution of inputs, and are likely due to relabeling.

E Detailed Model Derivation

E.1 Model Setup

Consider a firm i with a constant returns to scale production function given by:

qit = exp{φit}F (Kit, · · · , Vit),
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where Kit, · · · , Vit are static inputs with prices wit, and where φit is log-TFP which follows the

law of motion given by:

φi,t = ρφi,t−1 + ε ln(Di,t−1) + uit

where Di,t−1 is R&D investment, and ui,t ∼ i.i.d. N(0, σ2). We assume Di,t−1 > 0, which matches

our empirical analysis on firms with non-trivial R&D. This setup is consistent with the R&D

literature where knowledge capital depreciates over time (captured by ρ) and is influenced by

R&D expenditure (captured by ε). In a stationary environment, it implies that the elasticity of

TFP with respect to a permanent increase in R&D is ε
1−ρ .

The cost function for this familiar problem is given by:

C(q;φit, wit) = qc(φit, wit) = q
c(wit)

exp{φit}
,

where c(φit, wit) = c(wit)
exp{φit} is the unit cost function.

The firm faces a constant elasticity demand function given by:

pit = q
−1/θ
it ,

where θ > 1. Revenue for the firm is given by q
1−1/θ
it . In a given period, the firm chooses qit to

max
qit

q
1−1/θ
it − qitc(φit, wit).

The profit-maximizing qit is given by:

q∗it =

(
θ − 1

θ

1

c(φit, wit)

)θ
.

Revenue is then given by:

Revenueit =

(
θ

θ − 1

1

c(φit, wit)

)θ−1

=
θ

θ − 1
q∗itc(φit, wit)

That is, revenues equal production costs multiplied by a gross-markup θ
θ−1

. Head and Mayer

(2014) survey estimates of θ from the trade literature. While there is a broad range of estimates,

the central estimate is close to a value of 5, which implies a gross-markup around 1.2. Per-period

profits are then given by:

πit =
1

θ − 1
q∗itc(φit, wit) =

(θ − 1)θ−1

θθ
c(φit, wit)

1−θ.

Uncertainty and R&D investment enter per-period profits through the realization of log-TFP φit.

We can write expected profits as follows:

E[πit] =
(θ − 1)θ−1

θθ
c(ρφi,t−1 + (θ − 1)σ2/2, wit)

1−θD
(θ−1)ε
i,t−1

= π̃itD
(θ−1)ε
i,t−1 ,
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where π̃it denotes the expected profit without any R&D investment.

We follow the investment literature and model the adjustment cost of R&D Investment with

a quadratic form that is proportional to revenue θπi1 and depends on the parameter b:

g(Dit, θπit) =
bθπit

2

[
Dit

θπit

]2

.

E.2 R&D Choice Under Linear Tax

Before considering how the InnoCom program affects a firm’s R&D investment choice, we first

consider a simpler setup without such a program. In a two-period context with a linear tax, the

firm’s inter-temporal problem is given by:

max
D1

(1− t1) (πi1 −Di1 − g(Di1, θπi1)) + β(1− t2)π̃i2D
(θ−1)ε
i1 ,

where the firm faces and adjustment cost of R&D investment given by g(Di1, θπi1). This problem

has the following first order condition:

FOC : −(1− t1)

(
1 + b

[
Di1

θπi1

])
+ β(1− t2)ε(θ − 1)D

(θ−1)ε−1
i1 π̃i2 = 0. (E.1)

Notice first that if the tax rate is constant across periods, the corporate income tax does not

affect the choice of R&D investment.44 In the special case of no adjustment costs (i.e., b = 0), the

optimal choice of Di1 is given by:

D∗i1 =

[
β(1− t2)(θ − 1)ε

1− t1
π̃i2

] 1
1−(θ−1)ε

. (E.2)

Even in the general case (unrestricted b), we also observe that the choice of R&D depends

on potentially-unobserved, firm-specific factor φi1 that influences π̃i2. A useful insight for the

proceeding analysis is that we can recover these factors from D1i as follows:

π̃i2 =
(1− t1)(D∗i1)1−(θ−1)ε

β(1− t2)ε(θ − 1)

(
1 + b

[
D∗i1
θπi1

])
.

Substituting π̃i2 into the objective function, we can write the value of the firm as

Π(D∗i1|t2) = (1− t1)

[
πi1 +D∗i1

(
1

(θ − 1)ε
− 1

)
+

(
b

(θ − 1)ε
− b

2

)
(D∗i1)2

θπi1

]
.

Rewriting this equation in terms of firm’s optimal R&D intensity d∗i1 =
D∗i1
θπi1

, the value-to-sales

ratio is

Π(d∗i1|t2)

θπi1
= (1− t1)

[
1

θ
+ d∗i1

(
1

(θ − 1)ε
− 1

)
+ (d∗i1)2

(
b

(θ − 1)ε
− b

2

)]
. (E.3)

44This simple model eschews issues related to source of funds, as in Auerbach (1984).
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Second Order Condition

This problem may feature multiple solutions. To ensure our model results in sensible solutions,

we confirm the second order condition holds at the estimated values. The SOC is given by:

SOC : −(1− t1)

(
b

[
1

θπi1

])
+ β(1− t2)ε(θ − 1)((θ − 1)ε− 1)(D∗i1)(θ−1)ε−2π̃i2 < 0.

It is sufficient to have (θ−1)ε < 1 in order for the second order condition to hold. We can also use

the implicit function theorem to show that R&D decision D∗i1 is increasing in φi1 if (θ − 1)ε < 1,

which is consistent with numerous empirical studies.

E.3 A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure that mirrors the incen-

tives in the InnoCom program:

t2 =

{
tLT2 if di1 < α
tHT2 if di1 ≥ α

,

tLT2 > tHT2 and where α is the R&D intensity required to obtain the high-tech certification and

LT/HT stands for low-tech/high-tech. In addition, we introduced a fixed costs of certification c

such that firms need to pay c×αθπi1 to obtain the tax benefit when they pass the R&D intensity

threshold. Intuitively, this tax structure induces a notch in the profit function at d1 = α. Figure

6 presents two possible scenarios following this incentive. Panel A shows the situation where the

firm finds it optimal to choose a level of R&D intensity below the threshold. At this choice, the

first order condition of the linear tax case holds and the optimal level of R&D is given by Equation

E.1. From this panel, we can observe that a range of R&D intensity levels below the threshold

are dominated by choosing an R&D intensity that matches the threshold level α. Panel B shows

a situation where the firm that is indifferent between the internal solution of panel A and the

“bunching” solution of panel B. The optimal choice of R&D for this firm is characterized both by

Equation E.1 and by equating d∗1 = α.

Which of the two scenarios holds depends on determinants of the R&D investment decision

that may vary at the firm level and are summarized by π̃i2, adjustment and fixed costs b, c, as

well as on the degree to which R&D investment is valued by firms in terms of future profits (i.e.

ε(θ− 1)). However, as long as π̃i2 and (b, c) are smoothly distributed around the threshold α, this

incentive will lead a mass of firms to find d1 = α optimal and thus “bunch” at this level.

We first calculate the optimal profit of the firm conditioning on bunching at the notch,

Π(αθπ1|tHT2 ), by substituting for the unobserved components of the firm-decision, i.e. π̃i2, us-
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ing Equation E.1 to obtain:

Π(αθπ1|tHT2 ) = (1− t1)

(
πi1 − αθπi1(1 + c)− bθπi1

2

[
αθπi1
θπi1

]2
)

+ β(1− tHT2 )(αθπi1)(θ−1)επ̃i2

= (1− t1)

[
πi1 − αθπi1(1 + c)− α2bθπi1

2

+
(1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
αθπi1
D∗i1

)(θ−1)ε(
1 + b

[
D∗i1
θπi1

])
D∗i1

]
.

Let
Π(α|tHT2 )

θπi1
be the value-to-sales ratio of the firm conditional on bunching at the notch. We

can write it again in terms of the optimal interior R&D intensity d∗i1 as

Π(α|tHT2 )

θπi1
= (1− t1)

[
1

θ
+ α

((
d∗i1
α

)1−(θ−1)ε

(1 + bd∗i1)
(1− tHT2 )

(1− tLT2 )

1

ε(θ − 1)
− (1 + c)− αb

2

)]
.(E.4)

A firm will bunch at the notch if
Π(α|tHT2 )

θπi1
≥ Π(d∗i1|t2)

θπi1
, which occurs when(

d∗i1
α

)1−(θ−1)ε(
1 + αb

d∗i1
α

)
(1− tHT2 )

(1− tLT2 )

1

ε(θ − 1)
− (1 + c)− αb

2

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
+ α

(
d∗i1
α

)2(
b

(θ − 1)ε
− b

2

)
(E.5)

For each specific realization of adjustment and fixed costs (b, c), we define the marginal firm with

interior optimal R&D intensity d∗−b,c such that Equation E.5 holds with equality.

E.4 R&D Choice Under Tax Notch with Relabeling

Assume now that firms may misreport their costs and shift non-R&D costs to the R&D category.

Following conversations with CFOs of large Chinese companies, we model relabeling as a choice

to misreport expenses across R&D and non-R&D categories. Misreporting expenses or revenues

overall is likely not feasible as firms are subject to third party reporting (see, e.g., Kleven et al.

(2011)).

Denote a firm’s reported level of R&D spending by D̃i1. The expected cost of misreporting to

the firm is given by h(Di1, D̃i1). We assume that the cost of mis-reporting is proportional to the

reported R&D, D̃i1, and depends on the percentage of mis-reported R&D, δi1 = D̃i1−Di1
D̃i1

, so that:

h(Di1, D̃i1) = D̃i1h̃ (δi1) .

We also assume that h̃ satisfies h̃(0) = 0 and h̃′(·) ≥ 0.

The effects of the InnoCom program are now as follows:

t2 =

{
tLT2 if D̃1 < αθπ1

tHT2 if D̃1 ≥ αθπ1
,
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Notice first that if a firm decides not to bunch at the level αθπ1, there is no incentive to misreport

R&D spending as it does not affect total profits and does not affect the tax rate. However, a firm

might find it optimal to report D̃1 = αθπ1 even if the actual level of R&D is lower. We start by

characterizing the firm’s optimal relabeling strategy δ∗i1 conditional on bunching and its resulting

payoff function Π(αθπ1, D
∗K
1 |tHT2 ). We again substitute for the unobserved components of the

firm-decision, i.e. π̃i2 with the interior optimal R&D D∗i1 using Equation E.1:

max
DKi1

(1− t1)

(
πi1 −DK

i1 − αθπi1c−
bθπi1

2

[
DK
i1

θπi1

]2
)
− αθπ1h̃

(
αθπ1 −DK

i1

αθπ1

)

+
(1− t1)(1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
DK
i1

D∗i1

)(θ−1)ε(
1 + b

[
D∗i1
θπi1

])
D∗i1

The first order condition is:(
1 + b

[
D∗Ki1
αθπi1

])
=

(
1− tHT2

1− tLT2

)(
D∗Ki1
D∗i1

)(θ−1)ε−1(
1 + b

[
D∗i1
θπi1

])
+ h̃

′
(
αθπ1 −D∗Ki1

αθπ1

)
1

1− t1
This equation defines the optimal relabeling strategy δ∗i1 as an implicit function of the interior

optimal R&D intensity d∗i1 as the following:(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
(1 + αb

(
d∗i1
α

)
) =

1

α

[
1 + b

(
d∗i1
α

)
− h̃′(δ∗i1)

(1− t1)

]
(E.6)

The firm decides to bunch if the profits from the optimal relabeling strategy Π(αθπi1, D
K
i1 |tHT2 )

are greater than when the firms is at the optimal interior solution (and truthful reporting)

Π(D∗i1, D
∗
i1|tLT2 ). We write this in terms of value-to-revenue ratio comparison and obtain:(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

(1 + bd∗i1)× (1− δ∗i1)

(θ − 1)ε
×
(

1− tHT2

1− tLT2

)
− c− (1− δ∗i1)− αb

2
(1− δ∗i1)2︸ ︷︷ ︸

Relative Profit from Bunching

− h̃(δ∗i1)

α(1− t1)︸ ︷︷ ︸
relabeling Cost

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
+ α

(
d∗i1
α

)2(
b

(θ − 1)ε
− b

2

)
︸ ︷︷ ︸

Relative Profit Not Bunching

. (E.7)

The marginal firm d∗−b,c in this case is determined by Equation E.6 and Equation E.7 when it holds

with strict equality.

F Bunching Approximations

This section provides detailed derivations of expressions that approximate changes in the R&D

investment with the estimated density.
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F.1 Percentage Increase in R&D Intensity of Marginal Firm

As in Kleven and Waseem (2013), we can approximate the behavior of the marginal firm with the

quantities B and h0(α). We first consider the special case without frictions, and note that

B =

α∫
d∗−

h0 (u) du ≈ h0(α)
(
α− d∗−

)
= h0(α)α

α− d∗−

α︸ ︷︷ ︸
∆D∗

. (F.1)

The first part of Equation F.1 makes the point that the excess mass B will equal the fraction of

the population of firms that would have located in the dominated region. This quantity is defined

by the integral of the counterfactual distribution h0(·) over the dominated interval, which is given

by (d∗−, α) . The second part of Equation F.1 approximates this integral by multiplying the length

on this interval by the value of the density at α. Simplifying this expression and solving for ∆D∗

we obtain:

∆D∗ ≈ B

h0(α)α
.

Thus, in order to estimate ∆D∗, it suffices to have an estimate of the counterfactual density h0(·),
and to use this to recover the quantities B and h0(α). Note that while ∆D∗ is the percentage

increase relative to the notch, the percentage increase relative to the initial point of the marginal

firm is given by: ∆D∗

1−∆D∗
= α−d∗−

d∗−
. Similarly, the increase in R&D intensity for the marginal firm is

given by α∆D∗ = α− d∗−.
In the case of heterogeneous frictions, we may obtain a similar approximation if we assume

that the probability of being constrained from responding to the program does not depend on d.

While this may be a strong assumption, it provides a useful approximation for B. To see this,

note that

B =

α∫
d∗−

∫
b,c

I[d ≥ d−b,c]h0(d, b, c)d(b, c)dd

=

α∫
d∗−

∫
b,c

I[d ≥ d−b,c]h0(b, c|d)d(b, c)h0(d)dd

=

α∫
d∗−

(1− Pr(Constrained|d))h0(d)dd,

where the second line uses the definition of conditional probability, and the third line integrates

over (b, c). Using the assumption that Pr(Constrained|d) does not depend on d and using the
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same approximation as in Equation F.1, we obtain:

B = (1− Pr(Constrained))

α∫
d∗−

h0(d)dd

≈ (1− Pr(Constrained))h0(α)α
α− d∗−

α︸ ︷︷ ︸
∆D∗

.

The formula for ∆D∗ now becomes:

∆D∗ ≈ B

h0(α)α(1− Pr(Constrained))
.

F.2 Average Percentage Increase in R&D Intensity

We now derive an approximation for the average percentage increase in R&D due to the notch.

We begin by writing the average R&D intensities in both situations as:

E[d|No Notch, d ∈ (d∗−, d∗+)] =

d∗+∫
d∗−

dh0(d)dd ≈ α + d∗−

2︸ ︷︷ ︸
d

α∫
d∗−

h0(d)dd+
d∗+ + α

2︸ ︷︷ ︸
d̄

d∗+∫
α

h0(d)dd

E[d|Notch, d ∈ (d∗−, d∗+)] =

d∗+∫
d∗−

dh1(d)dd ≈ α + d∗−

2︸ ︷︷ ︸
d

α∫
d∗−

h1(d)dd+
d∗+ + α

2︸ ︷︷ ︸
d̄

d∗+∫
α

h1(d)dd

We can then write the change in R&D intensity as:

E[d|Notch, d ∈ (d∗−, d∗+)]− E[d|No Notch, d ∈ (d∗−, d∗+)] ≈ d̄

∫ d∗+

α

(h1(d)− h0(d))dd︸ ︷︷ ︸
B

+ d

∫ α

d∗−
(h1(d)− h0(d))dd︸ ︷︷ ︸

−B

= B(d̄− d), (F.2)

where we use the fact that the excess mass above the notch is equal to the missing mass below

the notch.

Taking the following approximation of E[d|No Notch, d ∈ (d∗−, d∗+)]:

E[d|No Notch, d ∈ (d∗−, d∗+)] =

∫ d∗+

d∗−
dh0(d)dd ≈

∫ d∗+

d∗−
αh0(α)dd

= αh0(α)(d∗+ − d∗−) = 2αh0(α)(d̄− d),

we obtain:

E[d|Notch, d ∈ (d∗−, d∗+)]− E[d|No Notch, d ∈ (d∗−, d∗+)]

E[d|No Notch, d ∈ (d∗−, d∗+)]
=

B

2αh0(α)
. (F.3)
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Note that, while these derivations do not explicitly include the role of heterogeneous frictions,

these expressions are not affected by the presence of heterogeneous frictions.

F.3 Identification of Intent-to-Treat Effect

The ITT estimates are identified by firms that “comply” with the tax incentive. To see this, note:

E[Y |No Notch, d ∈ (d∗−, d∗+)] =

α∫
d∗−

Y h0(d)× Pr(Constrained|d)dd

︸ ︷︷ ︸
Never Takers

+

α∫
d∗−

Y h0(d)× (1− Pr(Constrained|d))dd

︸ ︷︷ ︸
Compliers

+

d∗+∫
α

Y h0(d)dd

︸ ︷︷ ︸
Always Takers

Similarly, we can write

E[Y |Notch, d ∈ (d∗−, d∗+)] =

α∫
d∗−

Y h1(d)dd

︸ ︷︷ ︸
Never Takers

+

d∗+∫
α

Y h1(d)× (1− Pr(Constrained|d))× I[d0 ∈ (d∗−, α)]dd

︸ ︷︷ ︸
Compliers

+

d∗+∫
α

Y h1(d)I[d0 ∈ (α, d∗+)]dd

︸ ︷︷ ︸
Always Takers

,

where we assume that there are no defier firms that would be above the notch without the

InnoCom program, but would be below the notch with the InnoCom program. Noting that

h0(d) × Pr(Constrained|d) = h1(d), and that h1(d) × I[d0 ∈ (α, d∗+)] = h0(d), we can write the

ITT Y as:

ITT Y =

d∗+∫
α

Y h1(d)(1−Pr(Constrained|d))I[d0 ∈ (d∗−, α)]dd−
α∫

d∗−

Y h0(d)(1−Pr(Constrained|d))dd,

(F.4)

which is just the change in the average of firms in the excluded region that is driven by the

compliers.
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Approximation of Intent-to-Treat Effect

Finally, we can obtain more intuition behind the ITT estimates by noting that:

B =

d∗+∫
α

h1(d)(1− Pr(Constrained|d))I[d0 ∈ (d∗−, α)]dd =

α∫
d∗−

h0(d)(1− Pr(Constrained|d))dd.

Using this fact, the following expression is an approximation of Equation F.4:

ITT Y ≈ B(Ȳ − Y ) (F.5)

where Y is the counterfactual average value of Y for compliers with d0 ∈ (d∗−, α) and Ȳ is the

average value of Y for compliers with d1 ∈ (α, d∗+). This equation gives a discrete treatment

effect interpretation to the ITT by showing that the ITT is driven by the amount of switching

of compliers between the “below notch” and “above notch” regions, given by B, and the change

in the outcome associated from being in the “above notch” region. Note that this approximation

implies a constant treatment effect. While we do not rely on this assumption in our analysis, we

find it useful in order to build intuition for the interpretation of the ITT estimates.

G Cross-Validation of p and (d∗−, d∗+) in Bunching Analysis

We follow Diamond and Persson (2016) in using a data-based approach to selecting the excluded

region (i.e., (d∗−, d∗+)), and the degree of the polynomial, p. In particular, we use K-fold cross-

validation to evaluate the fit of a range of values for these three parameters.

Our cross-validation procedure searches over values of p < 7, and all possible discrete values

of d∗− < α and d∗+ > α that determine the excluded region. Given the monotonically decreasing

shape of the R&D intensity distribution, we restrict the estimated βk’s to result in a decreasing

density.

For each triple (p, d∗−, d∗+), the procedure estimates the model in K = 5 training subsamples

of the data and computes two measures of model fit on corresponding testing subsamples of the

data. First, we test the hypothesis that the excess mass (above the notch) equals the missing mass

(below the notch). Second, we compute the sum of squared errors across the test subsamples. We

select the combination of parameters that minimizes the sum of squared errors, among the set of

parameters that do not reject the test of equality between the missing and excess mass at the 10%

level.

Note that a common practical problem in the literature is the higher frequency in the reporting

of “round numbers.” As Figures 2 and A.1 in Section 3 demonstrate, our data does not display

“round-number” problems that are often present in other applications.

Finally, we obtain standard errors by bootstrapping the residuals from the series regression,

generating 5000 replicates of the data, and re-estimating the parameters.

62



H Robustness of Bunching Estimates

This section discusses additional robustness checks of our results in Section 5.1. Figure A.5

estimates the counterfactual density of R&D intensity when we exclude certain groups of firms

from the data. Panel A analyzes data on large firms from 2011 and shows that excluding state-

owned enterprises from our data does not have a meaningful effect on our estimate of ∆d. Similarly,

panels B and C show that excluding firms with low profitability and firms that are not in designated

high-tech industries, respectively, results in very similar estimates of the effects of the notch on

R&D investment.

Figure A.6 shows that our estimates of counterfactual densities are robust to the choice of

(p, d∗−, d∗+). This figure shows that restricting (p, d∗−, d∗+) to the second-best estimate either

with p = 3 (panel A) or p = 4 (panel B) results in very similar estimates. Panel C of this graph

further restricts the estimation to only rely on data such that d > d∗+ to recover the counterfactual

density. This panel shows that even relying only on data beyond the bunching region results in

very similar estimates.

I Estimation of E[Y |d] for ITT Analysis

Section 5.2 discusses the estimation of the ITT effects of the notch on our outcomes of interest.

The ITT estimates depend on estimates of the counterfactual distribution, h0(d), as well as the

predicted value of the outcome over the excluded region, E[Y |d,No Notch] . In this section we

discuss estimates of these functions. We focus on large firms since, as shown in Figure A.4, they

account for the vast majority of R&D in the economy. In addition, all analyses report the effects

of the notch in 2009 on outcomes in 2009 and 2011. The counterfactual density of interest is

presented in panel C of Figure 8.

We estimate E[Y |d,No Notch] using the following regression:

Yit =

p∑
k=0

βk · (dit1)
k

︸ ︷︷ ︸
E[Yt|dt1=d,No Notch]

+γ · 1
[
d−∗ ≤ dit1 ≤ d+∗]+ δYit1 + φs + νit,

where we use the same exclusion region as in panel C of Figure 8 (see Appendix G for details),

and we use a quadratic polynomial for each outcome. Figure A.7 shows the average value of our

outcomes as a function of R&D intensity in 2009 (blue circles) along with the fitted values from

these regressions (red lines). The size of the circles indicate the weights based on the number of

observations in each bin.

Panel A considers the case of log R&D intensity. Since this is a mechanical function of R&D

intensity, we know what E[Y |d,No Notch] should look like. This figure shows that, even though
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the polynomials are driven by data outside of the exclusion region, we are able to fit non-linear

functions very well. Other panels show the red lines provide a good fit for data outside of the

exclusion region. As firms self-select into the InnoCom program, we cannot evaluate the fit inside

the exclusion region, since these patterns may be due to selection. Finally, note that we allow for

the user-cost to have a discontinuous jump in panel C, since, in contrast to other outcomes, we

would expect participation in the program to have a mechanical effect on the user cost of R&D.45

J Robustness of Structural Model Assumptions

In this section, we conduct a few additional robustness checks of the parametric and modeling

assumptions we have made in our structural estimation analysis.

Parametric Distribution of Firm Productivity

In our benchmark model, we micro-found the cross-sectional TFP distribution from a Normal

AR(1) process. We use the persistence and volatility of the sales for non-R&D firms to calibrate

the persistence parameter ρ = 0.725 and variance parameter σ = 0.385. The assumption of this

process restricts the cross-sectional distribution of firm TFP exp(φ1) to be Lognormal. Since we

have constructed firm-level TFP in our data, it allows us to check this parametric assumption

directly with the TFP data.

We use ideas proposed by Kratz and Resnick (1996) and Head et al. (2014) in this robustness

check. The basic idea is to construct the empirical CDF of our sample firms’ measured TFP as

F̂i, i = 1, 2, ...N , with i ranked based on firm TFP and the Nth firm of the highest measured TFP.

With the Log-normal parametric assumption, we know the theoretical CDF is FLN(lnTFP ) =

Φ(
lnTFP−µtfp

σtfp
), with Φ as the standard Normal CDF. Thus, we can write the lnTFP of each

quantile i as:

lnTFPi = µtfp + Φ−1(Fi)σtfp.

With our frequency estimate F̂i, we can then predict the “theoretical” ˆlnTFP i using the for-

mula above. Notice that we have used the parametric Normal assumption in this calculation.

This procedure allows us to evaluate how reasonable the Lognormal parametric assumption is by

comparing the empirical fit of ˆlnTFP and lnTFP .

In Figure A.8, we show that the predicted TFP from imposing the Lognormal CDF tracks the

45 degree linear line, i.e., the data quite well. It thus provides strong evidence that Lognormal is

a reasonable parametric assumption for the TFP distribution.

45Diamond and Persson (2016) allow for discontinuities in their estimates of E[Y |d,No Notch] since, in their
application, being manipulated above the notch may have a direct effect on outcomes. In our case, we would not
expect a direct effect of the program on firm-level outcomes apart from the effects related to tax incentives, which
would mechanically affect the user cost of R&D.
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Heterogeneity in the TFP Elasticity: ε

Our benchmark model assumes firms have heterogeneous technological opportunities of R&D

investment that is driven by heterogeneity in adjustment costs, b. An alternative way of modeling

the heterogeneity in firms’ technological opportunities is to allow for heterogeneity in ε.46 As

we show in this appendix, our average estimates of ε and b do not depend on which can be

heterogeneous. However, models where ε was allowed to be heterogeneous produced worse fits of

the data. Specifically, these models predict that R&D intensity is not increasing in TFP, which is

contrary to what we observe in the real world. For this reason, we believe our benchmark model

is superior to models with heterogeneous values of ε.

To investigate how this alternative setup affects our results, we estimated models where ε

follows a Beta distribution B(αε, βε) between 0 and an upper bound of ε̄. We chose the Beta dis-

tribution since its probability density function is highly flexible in the interval [0, ε̄]. We estimated

two versions of the heterogeneous-ε model. In Model A, we restrict the Beta distribution to be sym-

metric, i.e. αε = βε, and jointly estimate αε and ε̄. In Model B, we impose ε̄ = 1/(θ−1) = 0.25, a

value that guarantees the second order condition of firm’s R&D choice problem. We then estimate

αε and βε. The results are reported in Table A.6.

Several findings are worth highlighting. First, the implied mean ε are 0.113 and 0.114 in

Model A and B, respectively. These values are comparable to our benchmark value of 0.098.

Second, the average adjustment cost parameter is 8.659 and 8.677 for the two cases, again very

similar to our benchmark estimate. However, the set of moments summarizing firm TFP at

different R&D intensity regions had noticeably worse fit than the our benchmark. When ε is

heterogeneous, our model predicts a non-monotonic relationship between TFP and R&D intensity,

which is inconsistent with the positive correlation we observe in the data. This is because despite

the fact that firm R&D itself is increasing in TFP, its R&D Intensity becomes decreasing in TFP

when the value of ε is small. Combined, these findings indicate that despite obtaining similar

estimates of key model parameters, our benchmark model of heterogeneous adjustment cost is a

a preferable model for our data.

46Note that our data variation cannot separately identify heterogeneity in both ε and b.
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Appendix Graphs

Figure A.1: Bunching at 5% R&D Intensity (2005-2007)
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NOTE: This figure plots the R&D intensity distribution of manufacturing firms conducting R&D
during the period of 2005 to 2007. We include the firms that had the R&D intensity between 1%
and 15%. There is a significant bunching of firms at the 5% threshold. Source: Annual Survey of
Manufacturers. See Section 3.1 for details.
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Figure A.2: Alternative Empirical Evidence of Relabeling
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NOTE: This figure summarizes the ratio of R&D to administrative expense for small, medium,
and large firms in our sample. This figure shows that this ratio jumps discontinuously across the
thresholds of R&D intensity prescribed by the InnoCom program. This suggests firms
manipulate their reported R&D intensity by relabeling non-R&D administrative expenses as
R&D. See Table A.3 for estimates of the structural break.

Figure A.3: Lack of Manipulation of Sales Expenses
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NOTE: This figure shows the binned plot of sales expense-to-sales ratio for each size categories
of firms. Table A.4 shows that we do not find a detectable drop in this ratio at the notches.
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Figure A.4: Aggregate Implications
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NOTE: This figure summarizes the share of total R&D accounted for by the small, medium, and
large firms in our sample. As it illustrates, the large firms account for more 90% of the total
R&D and thus is the most important group for aggregate implications of the policy.
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Figure A.5: Robustness of Bunching Estimates to Dropping Groups of Firms

A. Dropping SOEs B. Dropping Low Profitability Firms
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C. Dropping Low Tech Firms
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NOTE: This figure conducts robustness checks of the benchmark bunching analysis for large firms in 2011. In panel A, we drop the
State-owned enterprises. In panel B, we drop the lowest 20% profitability firms. In panel C, we dropped all the firms that are not
classified in the “High Tech” industries defined by the Chinese government. These graphs shows our benchmark results are robust
across these subsamples.
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Figure A.6: Robustness of Bunching Estimates to Specification of Counterfactual Density

A. Second-Best Choice of Specification (p=3) B. Second-Best Choice of Specification (p=4)
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C. Estimate Using Observations Above d∗+
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NOTE: This figure conducts robustness checks of the benchmark bunching analysis for large firms in 2011. As discussed in
Appendix G, we select (p, d∗−, d∗+) via cross-validation. In panel A, we use the second-best choice for the specification of
(p, d∗−, d∗+). As in our benchmark case, p = 3. In panel B, we further restrict p = 4 and we select (d∗−, d∗+) via cross-validation. In
panel C, we use the same value of d∗+ as in our benchmark case and we only use data above this value when estimating the
counterfactual density. These graphs shows our benchmark results are robust to how we specify (p, d∗−, d∗+).
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Figure A.7: Estimated Values of E[Y |d] for ITT Analysis

A. Log R&D Intensity in 2009 B. Log Administrative Cost to Sales Ratio in 2009
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NOTE: This figure reports the polynomial regression of binned outcome variables on R&D
intensity. The size of each circle indicates the weights based on the number of observations
accounted for by each bin. We leave out all the observations in the manipulated region. Overall,
these graphs show a good fit on the data outside of the exclusion region. The fit in the exclusion
region cannot be evaluated since the data patterns may be due to selection. See Appendix I for
more details.
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Figure A.8: Data TFP and Predicted TFP under Log Normal Distribution

NOTE: This figure reports the predicted TFP from imposing Lognormal CDF and the 45 degree
linear line. It shows that the predicted TFP tracks the data TFP quite well. It thus provides
strong evidence that Lognormal is a reasonable parametric assumption for the TFP distribution.
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Figure A.9: Sensitivity Analysis

A. Sensitivity Analysis for ε

Lambda: Change in Parameter for Change in Moment
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

TFP >D+

TFP D- to D+

TFP < D-

Pr Mass > D+

% not Bunch

Pr Mass < D-

D-

ITT Adm/Sales

ITT TFP

ITT RD
Sensitivity of �

B. Sensitivity Analysis for η
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NOTE: This figure reports results of sensitivity analysis based on Andrews et al. (2017). We
report the sensitivity matrix Λ, which captures how a local change in each moment affects the
parameter estimates. To make it comparable across parameters, we scale the Λ to present the
magnitude in terms of percent of each parameter.
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Appendix Tables

Table A.1: Manipulation of the Administrative Expense to Sales Ratio

(1) (2) (3)
Small Medium Large

Structural Break -0.014∗∗ -0.013∗∗∗ -0.008∗∗∗

(0.007) (0.004) (0.003)
Observations 5,016 8,336 8,794

NOTES: This table reports estimates of the structural break at
the notches in Figure 4. The table shows that the ratio of adminis-
trative expenses to sales drops across the notches of the InnoCom
program, which suggests firms qualify for the InnoCom program
by relabeling non-R&D expenses as R&D. See Section 3.1 for de-
tails on data sources and Section 3.3 for details on the estimation.
Standard errors in parentheses. Source: Administrative Tax Re-
turn Database.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table A.2: Lack of Sales Manipulation at R&D Intensity Thresholds

(1) (2) (3)
Small Medium Large

Structural Break 0.108 -0.021 0.055
(0.103) (0.067) (0.114)

Observations 1,096 1,952 1,665

NOTES: This table reports estimates of the structural break at
the notches of panel A in Figure 5. The table shows that firms do
not manipulate their sales to comply with the InnoCom program.
See Section 3.1 for details on data sources and Section 3.3 for
details on the estimation. Standard errors in parentheses. Source:
Administrative Tax Return Database.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.3: Alternative Estimates of Manipulation of Administrative Expenses

(1) (2) (3)
Small Medium Large

Structural Break 0.053∗∗ 0.056∗∗∗ 0.054∗∗

(0.026) (0.020) (0.022)
Observations 3,544 5,710 5,597

NOTES: This table reports estimates of the structural break at
the notches in Figure A.2. The table shows that the ratio of
administrative expenses to R&D jump across the notches of the
InnoCom program, which suggests firms qualify for the InnoCom
program by relabeling non-R&D expenses as R&D. See Section
3.1 for details on data sources and Section 3.3 for details on the
estimation. Standard errors in parentheses. Source: Administra-
tive Tax Return Database.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table A.4: Lack of Manipulation of Sales Expenses at R&D Intensity Thresholds

(1) (2) (3)
Small Medium Large

Structural Break -0.002 -0.000 -0.001
(0.006) (0.004) (0.004)

Observations 4,774 8,064 8,600

NOTES: This table reports estimates of the structural break at
the notches in Figure A.3. The table shows that firms do not
manipulate sales expenses to comply with the InnoCom program.
See Section 3.1 for details on data sources and Section D for de-
tails on the estimation. Standard errors in parentheses. Source:
Administrative Tax Return Database.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.5: Robustness of Estimates of Treatment Effects

A. Estimates of Intent-to-Treat (ITT) Effects

Bootstrap
ITT SE T-Stat 5th Perc. 95th Perc.

2009
Admin Costs -0.095 0.025 -3.809 -0.137 -0.054

Admin Costs (levels) -0.004 0.001 -3.700 -0.005 -0.002

R&D 0.146 0.065 2.255 0.037 0.250

R&D (real) 0.087 0.042 2.051 0.021 0.158

User Cost of Capital -0.071 0.037 -1.919 -0.131 -0.009

2011
Tax -0.130 0.018 -7.345 -0.158 -0.101

TFP 0.012 0.006 1.930 0.002 0.022

B. Estimates of User-Cost-of-Capital Elasticities

Bootstrap
Estimate 5th Perc. 95th Perc.

Reported R&D to UCC (2009) -1.914 -7.845 -0.016

Real R&D to UCC (2009) -1.030 -4.823 -0.012

Tax to Reported R&D (2011) -1.153 -2.751 -0.459

NOTES: This table reports robustness of estimates of ITT effects of the notch on various
outcomes. Relative to Table 3, this table uses an alternative, second-best estimate of
the density of counterfactual R&D distribution. Panel B reports ratios of estimates in
panel A. Standard errors computed via bootstrap. See Section 3.1 for details on data
sources and Section 5 for details on the estimation. Source: Administrative Tax Return
Database.

ITT =
1

NExcluded

∑
i∈(D∗−,D∗+)

Yi −
∫ D∗+

D∗−
ĥ0(r) ̂E[Y |rd,No Notch]dr
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Table A.6: Structural Estimates with Heterogeneous ε

A. Point Estimates

Model A (αε = βε)
Distribution of Relabeling Adjustment Distribution of

TFP Elasticity of R&D Cost Cost Fixed Costs
αε ε̄ η µb µc

Estimate 1.287 0.226 4.838 8.659 1.004
SE 0.192 0.009 0.504 0.044 0.055

Model B (ε̄ = 1/(θ − 1))
Distribution of Relabeling Adjustment Distribution of

TFP Elasticity of R&D Cost Cost Fixed Costs
αε βε η µb µc

Estimate 3.256 3.860 6.265 8.677 1.029
SE 0.091 0.160 0.103 0.063 0.049

NOTES: This table reports estimates of structural parameters of the model in Section J. Estimates
based on calibrated values of θ = 5, ρ = 0.725, and σ = 0.385.

B. Simulated vs. Data Moments

Model A Model B Data

Probability Mass for d < d−∗ 0.324 0.296 0.280
Fraction not Bunching 0.676 0.665 0.675
Probability Mass for d > d+∗ 0.259 0.217 0.189
Bunching Point d−∗ 0.78% 0.90% 0.88%
Increase in Reported R&D: ∆d 0.145 0.141 0.146
ITT TFP 0.008 0.009 0.012
ITT administrative cost ratio -0.25% -0.24% -0.33%
Average TFP for d < d−∗ -0.029 -0.029 -0.032
Average TFP for d between d−∗ and d+∗ -0.050 -0.039 0.000
Average TFP for d > d+∗ 0.075 0.135 0.056

NOTES: This table compares the moments generated by our simulations
with those from the data. The simulation is based on 30, 000 firms.
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