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1 Introduction

It is widely believed that economic growth is highly dependent on innovation and, in particular,

on R&D investment. For this reason, governments around the world encourage R&D investment

through tax incentives. As China’s development through industrialization reaches a mature stage,

the country’s leaders have focused their efforts on fostering technology-intensive industries as a source

of future growth. Figure 1 compares the explosive growth of R&D in China to the experience of

other countries and shows that China has now equaled or surpassed developed-country levels of R&D

intensity. This paper analyzes the effects of China’s InnoCom program: a large fiscal incentive for

R&D investment in the form of a corporate income tax cut. We exploit a novel administrative dataset

of corporate tax returns of Chinese firms as well as sharp and changing tax incentives to provide new

estimates of the effects of fiscal incentives on R&D investment and productivity growth.

This paper analyzes quasi-experimental variation in the InnoCom program to answer two questions

that are of both policy and economic interest. First, is R&D investment responsive to fiscal incentives

and, if so, do firms engage in evasion or manipulation of reported R&D in response to the tax incen-

tives? Quantifying these effects is crucial for governments to determine the fiscal cost of the marginal

increase of real R&D investment. Second, what is the effect of fiscal incentives on productivity growth,

and how much do firms value R&D investment in terms of future profits? These questions are central

to the design of government programs to encourage R&D investment.

Answers to these questions are often confounded by the lack of large and plausibly exogenous

variation in tax incentives. Small fiscal incentives are unlikely to have measurable effects on R&D

investment since R&D is often constrained by existing technological opportunities and usually requires

fixed and adjustment costs. A second concern is that comparisons of investment and productivity

across different firms will result in upwardly-biased returns of R&D since firms with better prospects

for innovation are likely to invest more heavily in R&D. Additionally, it is often hard to determine

whether firm responses to tax incentives for R&D investment correspond to real activity or to relabeling

of expenses. If measured R&D is contaminated by relabeling, this might result in an upwardly-biased

estimate of the user-cost elasticity of R&D investment and a downwardly-biased estimate of the R&D

elasticity of TFP.

We overcome these concerns by leveraging an unusual and large fiscal incentive for R&D investment

in China. Before 2008, firms with an R&D intensity (R&D investment over revenue) above 5% could

qualify for a special status as high-tech firms that was accompanied by a lower average tax rate of

15%—a large reduction from the standard rate of 33%. After 2008, the government established three
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thresholds of 3%, 4%, and 6% for firms of different size categories. The use of average, as opposed to

marginal incentives, creates a notch in the corporate income tax that generates very large incentives

for firms to invest in R&D. Our tax data precisely measure a firm’s R&D investment and exposure to

fiscal incentives. In addition, we leverage the detail in our administrative data to analyze firm-level

outcomes of interest, such as productivity, and to explore whether firms respond to the tax incentive

by relabeling non-R&D expenses.

Our main result is that firms are highly responsive to the tax incentives in the InnoCom program,

but that a significant fraction of the response is due to relabeling of non-R&D expenses. Despite

the relabeling response, we find the program led to a significant increase in productivity and that

accounting for relabeling results in larger estimates of the effects of R&D on productivity in our

structural analysis. We use these insights to simulate the effects of alternative policies and show that

the cost-effectiveness of the tax incentive for R&D is driven by firm selection into the program, which

influences the effects of the policy on investment, relabeling, and productivity growth.

Our analysis proceeds in four steps. We first provide descriptive evidence that the R&D notches

have significant effects on firms’ reported R&D intensity and that part of this response may be due

to relabeling of non-R&D expenses. We show that a large number of firms choose to locate at the

notches and that introducing the tax cut led to a large increase in R&D investment. We use a group

of firms unaffected by the incentive prior to 2008 to show that the bunching patterns are driven by

the tax incentive and are not a spurious feature of the data. We then analyze relabeling responses

by exploiting the fact that, under Chinese Accounting Standards, R&D is reported as a subcategory

of administrative expenses. Using our detailed tax data to separate R&D from other administrative

expenses, we provide graphical evidence that firms may relabel non-R&D expenses as R&D in order

to qualify for the tax cut.

Second, we develop a rich model of firm behavior where R&D investment and relabeling decisions

depend on tax incentives, the effect of R&D on productivity, the costs of relabeling, as well as on

heterogeneity in firm productivity and adjustment costs. The model shows that, as long as firm

productivity is smoothly distributed across the population, the InnoCom program leads to excess

bunching at the R&D notch relative to a tax system without a notch. We derive a bunching estimator

that relates the bunching patterns to the percentage increase in R&D following methods similar to

those in Saez (2010) and Kleven and Waseem (2013). Our model also predicts increases in relabeling

and productivity that depend on the returns to R&D. We then show that these predictions can be

quantified empirically by linking our model to new methods developed by Diamond and Persson (2016).

In our third step, we measure the effects of the InnoCom program on reported R&D investment,
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relabeling, and productivity, as well as on other outcomes of policy interest, such as tax revenues.

Using the bunching estimator, we quantify the percentage increase in R&D investment that is due to

the tax notch. We find large increases in R&D investment of 31% for large firms, 21% for medium firms,

and 11% for small firms in 2011. Our bunching estimates are supported by a number of robustness

checks. First, we use a set of firms not affected by the program to show that the bunching pattern

is not due to some spurious feature of the data but is indeed caused by the program. Second, we

use these unaffected firms to inform the bunching estimate of the counterfactual density and we find

very similar results.1 Finally, these estimates are robust to excluding firms with extensive margin

responses, state-owned enterprises, and to different specifications of the bunching estimator or the

exclusion region, in addition to other robustness checks.2

We then estimate the effects of the InnoCom program on relabeling, productivity, and tax revenues.

Even though a significant fraction of the response is consistent with relabeling, we find persistent and

statistically significant effects of the InnoCom program on future productivity. In particular, between

2009 and 2011, the program led to an increase of 1.2% in productivity for the firms exposed to the

fiscal incentive. We then calculate the elasticity of R&D investment to the change in the user cost

that is induced by the InnoCom program, and we find an elasticity of 2 for reported R&D, and, once

we account for relabeled administrative costs, an elasticity of 1.3 for real R&D investment.

Finally, we propose a simulated method of moments approach to estimate the structural parameters

of our model, including costs of relabeling, the effect of real R&D on TFP, and the distributions of fixed

and adjustment costs. Our estimates imply that, on average, 30% of the reported R&D investment

is due to relabeling, and that a 100% increase in real R&D would increase TFP by 9.8%. We then

use these estimates to simulate the effects of counterfactual policies that change the size of the tax

cut and the location of the notch. We find that firm selection into the program plays a crucial role in

determining the economic effects of the program. In particular, policies that lead to greater increases

in aggregate R&D also tend to select firms with lower productivity, higher adjustment costs, and that

have greater motives for relabeling. This lowers the effectiveness of the policy and increases the cost

to the government of incentivizing real R&D. Finally, we compare the effects of the InnoCom program

to those of a simulated linear tax credit. In a setting with high costs of relabeling, the linear tax

1As discussed by Blomquist and Newey (2017) and Bertanha et al. (2018), budget set variation is useful in identifying
bunching estimators from notches. In practice, we obtain very similar estimates of the counterfactual density when using
the unaffected firms in the estimation.

2Specifically, we obtain very similar results when we exclude SOEs, firms that had extensive margin responses during
our sample period, low profitability firms, or low tech firms. We also obtain similar estimates of the counterfactual
distribution when we use a set of firms that were not affected by the InnoCom program, when using different parametric
choices for the density or the exclusion region, or when we estimate the counterfactual density using only data from the
right tail of the distribution.
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credit is more effective at stimulating R&D investment. However, when relabeling costs are low, an

InnoCom-style program with a notch can incentivize real R&D at a lower fiscal cost than a linear tax

credit.

This paper contributes to several literatures. First, this paper is related to a large literature

analyzing the effects of tax incentives for R&D investment. Hall and Van Reenen (2000) and Becker

(2015) survey this literature. Hall and Van Reenen (2000) find a dollar-for-dollar effect of tax credits

on R&D investment. The empirical evidence is concentrated in OECD countries, where micro-level

data on firm innovation and tax records have become increasingly available. While earlier work

relied on matching and panel data methods, there is an emerging literature that explores the effects

of quasi-experimental variation in tax incentives for R&D. Examples include Agrawal et al. (2014),

Dechezlepretre et al. (2016), Einiö (2014), Guceri and Liu (2015), Akcigit et al. (2018), and Rao

(2015). To our knowledge, this is the first paper to analyze R&D tax incentives in a large emerging

economy such as China. It is also one of the first studies to use administrative tax data to study the

link between fiscal incentives, R&D investment, and firm-level productivity.3

Second, a previous literature has long documented “relabeling” as an important challenge to iden-

tifying the real impact of tax incentives for R&D (Eisner et al. (1984), Mansfield and Switzer (1985)).

This is a salient issue for policymakers in developed countries (GAO, 2009) and is likely a more severe

problem in developing economies (Bachas and Soto (2015), Best et al. (2015)). Our paper exploits

unique data on firm expenditures to jointly model and estimate firms’ R&D bunching and relabel-

ing decisions. Our policy simulations also improve our understanding of the effectiveness of different

policies when firms may engage in evasion, as in Best et al. (2015).

Third, although there has been a dramatic increase in innovation activities in China, researchers

and policymakers are concerned that innovation resources could be misallocated in China. Wei et al.

(2017) show that state-owned firms produce significantly fewer patents-per-yuan of investment than

foreign or private domestic firms. In a closely related paper, König et al. (2018) compare the effects

of R&D on productivity growth in Taiwan and mainland China, and find that R&D investments are

significantly less effective in mainland China. They conjecture that misreported R&D in China may

explain this discrepancy. Our paper validates this conjecture by using detailed micro-level data to

examine an important policy that can lead firms to misreport R&D investment.

Finally, our paper is related to a recent literature that uses “bunching” methods to recover estimates

3As noted in the literature, optimal policies for R&D investment rely on estimates of the social returns to R&D
investment (e.g., Bloom et al. (2013)), in addition to the firm-level effects of R&D. Our results characterize the costs to
the government of increasing R&D through fiscal incentives, which can be used to evaluate policies given an estimate of
spillovers from R&D.
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of behavioral responses to taxation by analyzing the effects of sharp economic incentives, such as kinks

or notches in tax schedules.4 As detailed below, the R&D tax incentive creates a jump, or notch, in

the after-tax profit function, generating similar incentives to those in Kleven and Waseem (2013)

and Best et al. (2015). However, in contrast to this literature, the incentive generated by the notch

targets a particular action: increasing R&D investment. We exploit this feature of our setting to

estimate treatment effects of the program on R&D investment, relabeling, tax revenues, and growth

in productivity using an estimator recently developed by Diamond and Persson (2016). Finally, we

develop a simulated method of moments estimation approach that uses reduced-form estimates from

the bunching estimators to recover structural parameters. We use the model to quantify the extent of

misreporting, measure the returns to real R&D, and to simulate the effects of alternative policies.5

The rest of the paper is organized as follows. Section 2 provides a description of the fiscal incentive

for R&D investment and discusses the potential for relabeling of R&D expenses in China. Section 3

discusses the data and provides descriptive evidence of the effects of the tax incentive on R&D invest-

ment and relabeling. Section 4 develops a model of R&D investment that links traditional estimates

of productivity with bunching estimators. Section 5 describes our results on the real and relabel-

ing responses to the InnoCom program. Section 6 culminates with the estimation of the structural

parameters of the model and the simulation of counterfactual policies; Section 7 concludes.

2 Fiscal R&D Incentives and the Chinese Corporate Income Tax

China had a relatively stable Enterprise Income Tax (EIT) system from 2000-2007. During this period,

the EIT ran on a dual-track scheme with a base tax rate of 33% for all domestic-owned enterprises

(DOE) and a preferential rate for foreign-owned enterprises (FOE) ranging from 15% to 24%. The

Chinese government implemented a major corporate tax reform in 2008 in order to eliminate the

dual-track system based on domestic/foreign ownership and established a common rate of 25%.6

This paper analyzes the InnoCom program, which targets qualifying high tech enterprises (HTE)

and awards them a flat 15% income tax rate. Since the average tax rate of the firm can fall from 33%

4These methods, pioneered by Saez (2010), have been used by researchers analyzing a wide range of behaviors.
Kleven (2015) provides a recent survey. Our project is most related to a smaller literature analyzing firm-level responses
(Devereux et al. (2014), Patel et al. (2016), Liu and Lockwood (2015), Almunia and Lopez-Rodriguez (2015), Bachas
and Soto (2015)) as well as to papers analyzing the effect of constraints to optimizing behavior (Kleven and Waseem
(2013), Best and Kleven (2015), Gelber et al. (2014)).

5The model allows us to clarify the interpretation of cross-sectional estimates by addressing issues discussed in Einav
et al. (2015). Lockwood (2018) also notes that reduced-form effects from bunching in notches are not sufficient to analyze
the effects of changes in policy. He shows changes to a notch generate first order effects on welfare, which are captured
by our structural model. Similarly, Blomquist and Newey (2017) and Bertanha et al. (2018) note that cross-sectional
estimators may not identify structural parameters without variation in non-linear incentives. As we discuss in Section 5,
we use data from an unaffected set of firms to overcome this concern.

6We discuss details of other preferential tax policies in Appendix A.
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Table 1: Requirements of the InnoCom Program

Requirement Before 2008 After 2008

R&D Intensity 5%
6% if sales < 50M
4% if sales > 50M & sales < 200M
3% if sales > 200M

Sales of High Tech Products 60% of total sales

Workers with College Degree 30% of workforce

R&D Workers 10% of workforce

Certifying Agency Local Ministry Ministries of Science and Technology,
of Science and Technology Finance and National Tax Bureau

NOTES: Size thresholds in Millions of RMB, where 50 M RMB ≈ 7.75 M USD and 200 M RMB ≈ 30 M USD.

to 15%, the tax incentive of this program is economically very important and may lead firms to invest

in projects with substantial fixed costs. This program is most important for DOEs, including both

state- and privately-owned enterprises, as they are not eligible for many other tax breaks.

Table 1 outlines the requirements of the program and how they changed as part of the 2008 reform.

A crucial requirement of the program is that firms must have an R&D intensity above a given threshold.

The reform changed the threshold from a common R&D intensity of 5%, to a size-dependent threshold

with a lower hurdle for medium and large firms, 4% and 3% respectively, and a larger hurdle of 6%

for small firms. This requirement is a large fiscal incentive to invest above these thresholds, and the

reform generates quasi-experimental variation across firms of different size and ownership categories.

In particular, since the reform eliminated the preferential tax rates for foreign firms, their incentive to

qualify for the InnoCom program became relatively more important after the reform.

In addition to increasing R&D intensity, the InnoCom program requires that at least 30% of the

firm’s employees must have a college degree, and at least 10% of the firm’s total employment should

be devoted to R&D. Finally, in order for firms to qualify for the program, they have to actively apply

and submit to a special audit.7 The reform improved compliance with the program by changing the

certifying agency from the Local Ministry of Science and Technology to a joint effort between the

National Ministry of Science and Technology, the Ministry of Finance, and the National Tax Bureau.8

7Our data does not detail whether firms comply with the non-R&D requirements of the program. To the extent that
these additional requirements are binding, they will limit firms from responding by bunching at the R&D notch. Our
model accounts for these additional certification requirements and application costs by assuming that firms differ by an
unobserved fixed cost of certification (see Section 4.3).

8The original government regulations also require that firms operate in a number of selected state-encouraged indus-
tries. However, due to the breadth and vagueness of these industry definitions, this requirement does not constitute a
substantial hurdle. In addition, after the reform, the state authorities further require that firms meet all these criteria in
the previous three accounting years, or from whenever the firm is registered, in case the firm is less than three years old.
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Potential for Evasion and Relabeling

One concern is that firms’ reported R&D investment is contaminated by evasion or relabeling. In

particular, relabeling of other expenses as R&D is a significant concern for policymakers (GAO, 2009)

and for academics studying the effects of R&D investment (Eisner et al. (1984), Mansfield and Switzer

(1985)). In our setting, the institutional environment limits some forms of evasion and suggests that

the most likely form of relabeling is the mis-categorization of administrative expenses as research

expenses.

The hypothesis that the entirety of the response is due to evasion is likely ruled out by the

requirements of the InnoCom certification in order to obtain the preferential tax rate.9 A second

unlikely form of evasion is the reporting of “phantom expenses” or the manipulation of sales. China

relies on a value-added tax (VAT) system with third-party reporting, and China’s State Administration

of Tax (SAT) keeps records of transaction invoices between a given firm and its third-party business

partners.10

From conversations with the State Administration of Tax as well as corporate executives, we rec-

ognize that the most important source of manipulation is mis-categorization of expenses. Specifically,

in the Chinese Accounting Standard, R&D is categorized under “Administrative Expenses,” which

includes various other expenses that are related to corporate governance.11 This raises the possibility

that firms relabel non-R&D administrative expenditures as R&D in order to over-report their R&D

intensity. These type of expenses are easily shifted, and it may be hard to identify relabeling in any

given audit. In particular, since the threshold of R&D depends on sales, it might be hard for firms

to perfectly forecast their expenses. A firm with unexpectedly high sales, for instance, might choose

to characterize administrative expenses as R&D in order to meet the InnoCom requirement in any

given year.12 Our empirical strategy to detect relabeling leverages these institutional features and

exploits the detailed cost reporting in our administrative tax data, which contains information on the

breakdown of operating expenses and R&D expenses.

9First, the certification process requires firms to maintain the required R&D intensity for a period of three years and
firms often use specialized consulting firms to ensure that they satisfy the standards set by the Ministry of Science and
Technology. Second, part of this certification includes an audit of the firm’s tax and financial standings. In addition, the
Chinese State Administration of Tax, together with the Ministry of Science and Technology, conducts regular auditing
of the InnoCom HTE firms.

10As in other settings (e.g., Kleven et al. (2011)), it is hard for companies to report expenses that are not reported by
third-party vendors. For these reasons, it is very hard for firms to completely make up “phantom” R&D expenses.

11Examples include administrative worker salary, business travel expenses, office equipment, etc. While we interpret
changes in administrative expenses as relabeling, they may also be consistent with reallocating resources from other
expenses towards R&D, or with more precise accounting of previously-undercounted R&D expenses. In Section 6 we
explore how this interpretation affects our estimates.

12In Section 3 we show sales are not manipulated around the R&D thresholds.
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3 Descriptive Evidence of Firms’ Responses to Tax Notches

We now describe our data, provide descriptive evidence suggesting that R&D investment by Chinese

manufacturing firms is responsive to the InnoCom program, and we show that part of this response

may be due to relabeling. Specifically, we document stark bunching patterns precisely above the tax

notches, and we show that the ratio of administrative expenses to sales drops sharply at the notch.

3.1 Data and Summary Statistics

Our main data come from the Chinese State Administration of Tax (SAT). The SAT is the counter-

part to the IRS in China and is in charge of tax collection and auditing. Our data are comprised

of administrative enterprise income tax records for years 2008–2011.13 These panel data include in-

formation on firms’ total production, sales, inputs, and R&D investment. In particular, the detailed

cost breakdowns allow us to measure different subcategories of administrative expenses. We also use

these data to construct residualized measures of firm productivity.14 The SAT’s firm-level records

of tax payments contain information on tax credits, such as the InnoCom program, as well as other

major tax breaks. This allows us to precisely characterize the effective tax rate for individual manu-

facturing firms. We supplement these data with the relatively well-studied Chinese Annual Survey of

Manufacturing (ASM), which extends our sample to years 2006–2007.

Table 2 reports descriptive statistics of the firms in our analysis sample. In panel A, we report

summary statistics of our tax data for all surveyed manufacturing firms from 2008 to 2011. Our data

are comprised of around 1.2 million observations, with about 300, 000 firms in each year. 8% of the

sample reports positive R&D. Among firms with positive R&D, the ratio of R&D to sales ratio, i.e.

R&D intensity, is highly dispersed. The 25th, 50th, and 75th percentiles are 0.3%, 1.5%, and 4.3%,

respectively. The administrative expense to sales ratio, which is a potential margin for relabeling, is

close to 5.8% at the median. While our measure of residualized TFP is normalized by construction, the

distribution of productivity has a reasonable dispersion with an interquartile range of 0.8 log points.

In panel B, we report summary statistics of Chinese manufacturing firms with R&D activity in the

ASM for years 2006–2007. We have a similar sample size of around 300, 000 firms each year. Firms

in the ASM sample are noticeably larger than those in the SAT sample, and the difference is more

pronounced when we look at the lower quartiles (i.e. 25th percentile) of the distribution of sales, fixed

assets, and the number of workers. This is consistent with the fact that the ASM is weighted towards

medium and large firms. The fraction of firms with positive R&D is slightly larger than 10%, and

13We discuss our data sources in detail in Appendix B.
14We discuss the details of this procedure in Appendix C.

8



R&D intensity ranges from 0.1% to 1.7% at the 25th and 75th percentiles of this sample.

3.2 Bunching Response

We first analyze data from the post-2008 period since the multiple tax notches based on firm size

generate rich variation in R&D bunching patterns. Figure 2 plots the empirical distribution of the

R&D intensity of Chinese firms in 2011. We limit our sample to firms with R&D intensity between

0.5% and 15% to focus on firms with non-trivial innovation activities. The first panel in Figure 2

shows the histogram of overall R&D intensity distribution. There are clear bunching patterns at 3%,

4%, and 6% of R&D intensity, which correspond to the three thresholds where the corporate income

tax cut kicks-in. This first panel provides strong prima-facie evidence that fiscal incentives provided

by the InnoCom program play an important role in firms’ R&D investment choices.

To further validate that these R&D bunching patterns are motivated by this specific policy, the

remaining panels of Figure 2 plot the histograms of R&D intensity for the three different size categories

specified by the InnoCom program. For firms with annual sales below 50 million RMB, we find clear

bunching at 6%, and we find no evidence of bunching at other points. Similarly, for firms with annual

sales between 50 million and 200 million RMB, we only find bunching at 4%, while for firms with more

than 200 million RMB in annual sales, we only observe bunching at 3%. These patterns are consistent

with the size-dependent tax incentive in the InnoCom program.15

We now compare bunching patterns before and after the 2008 tax reform. Figure 3 compares the

R&D intensity distribution for large FOEs before and after 2008. Large FOEs have no clear pattern of

bunching before 2008. This is consistent with the fact that FOEs had a very favorable EIT treatment

before the reform, which severely reduced the appeal of the InnoCom program. In contrast, FOEs

start behaving like DOEs after 2008, when the InnoCom program becomes one of the most important

tax breaks for FOEs. Their R&D intensity distribution shows a very distinguishable bunching at 3%

after the reform, which is the exact threshold required for these firms to qualify as HTEs. The figure

illustrates clearly that the change in the EIT system had a large impact on firm behavior.16

15In comparison, Figure A.1 plots the empirical distribution of R&D intensity in the ASM for years 2006–2007. The
tax incentive of the InnoCom was not size-dependent before 2008, and kicked-in uniformly at a 5% R&D intensity. It is
reassuring that we observe the R&D intensity bunching solely at 5%, and no significant spikes at 3%, 4%, and 6%.

16Similarly, Figure A.2 shows the effect on small firms (sales below 50 million RMB) DOEs who saw an increase in
the R&D intensity threshold from 5% to 6%. While there is a stable bunching pattern at 5% for years 2006 and 2007, it
almost completely disappears in 2008 and shifts to 6%.
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3.3 Detecting Relabeling of R&D Investment

We now explore the degree to which the bunching response may be due to expense mis-reporting.

Figure 4 explores how the ratio of non-R&D administrative expenses to sales is related to R&D

intensity. For each size group, this figure groups firms into bins of R&D intensity and plots the

mean non-R&D administrative expense-to-sales ratio for each bin. We report the data along with

an estimated cubic regression of the expense ratio on R&D intensity with heterogeneous coefficients

above and below the notches. The green squares are for large firms, red diamonds for medium firms,

and blue dots for small firms. There is an obvious discontinuous jump downward at the notch for each

size category. This suggests that some firms that report R&D intensity at the notch may not change

their real R&D investment, but may instead mis-categorize non-R&D expenses to comply with the

policy. Once the firms get farther away from the bunching threshold, there is no systemic difference

in the administrative expense-to-sales ratio. This pattern is consistent with the hypothesis that firms

mis-categorize non-R&D expenses into R&D when they get close to the bunching thresholds.17

The structural breaks in Figure 4 are statistically significant for all three groups (see Table A.1).

As we discuss in Section 5.2, however, these estimates do not have a causal interpretation. Nonetheless,

they present strong descriptive evidence that firms may respond to the InnoCom program by relabeling

non-R&D expenses.18

Lack of Sales Manipulation

The stark bunching patterns in these figures raise the concern that firms may also manipulate their

sales. There are two ways firms may do this. First, since the incentives of the InnoCom program are

stated in terms of R&D intensity (R&D/Sales), firms could increase their R&D intensity by under-

reporting sales. Panel A in Figure 5 plots firms’ log sales relative to their R&D intensity. For each

group of firms, we report average log sales for small bins of R&D intensity as well as an estimated

cubic regression that is allowed to vary below and above each threshold. If firms under-reported sales

in order to achieve the target, we might expect a sudden drop in sales to the right of each threshold. In

contrast, this figure shows that both the data and the estimated polynomial regressions are remarkably

stable at each notch.19

17The existence of different thresholds across size groups also allows us to rule out other explanations for these
discontinuities. In particular, we find that when we impose the “wrong” thresholds of the other size groups, there is no
observable discontinuity. In Appendix D, we explore whether firms adjust other costs that are not in the administrative
cost category, and we show firms do not respond to the program by manipulating other expenses.

18We also conduct a similar set of analysis focusing on the ratio of R&D to total administrative expenses. In this case,
expense mis-categorization would result in discontinuous increases in this ratio at the notch. This is confirmed in Table
A.3 and in Figure A.3.

19Table A.2 reports estimates of the structural breaks at these notches, which are statistically insignificant.
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Second, if a firm wants to be categorized as a larger firm, it may over-report sales in order to

qualify for a lower R&D intensity threshold. Panels B and C in Figure 5 show the histogram of firms

around the size thresholds. Since larger firms face lower R&D intensity thresholds, we might expect

firms to bunch on the right of the size threshold. These figures show that firms are not responding to

the incentives by manipulating their size.20 Overall, it does not appear firms mis-report sales in order

to comply with the InnoCom program. One reason for this result is that, in addition to the limits

placed by third-party reporting in the VAT system, firm managers may not want to mis-report sales

as this is seen as a measure of their job performance.

Overall, Figures 2-4 provide strong qualitative evidence that firms actively respond to the incentives

in the InnoCom program by increasing reported R&D investment and by relabeling administrative

costs as R&D. Our quantitative analysis focuses on measuring the size of the change in R&D invest-

ment, analyzing the degree to which the response is due to relabeling, and studying how relabeling

may influence the effect of R&D on productivity.

4 A Model of R&D Investment and Corporate Tax Notches

This section develops a model of R&D investment where firms may respond to notches in the corporate

income tax schedule in China by investing in R&D and by relabeling non-R&D expenses. The objec-

tives of the model are three-fold. First, the model shows that a standard model of firm investment and

relabeling may produce the patterns described in Section 3. Second, the model motivates a bunching

estimator for the increase in R&D investment, as in Saez (2010) and Kleven and Waseem (2013), as

well as an estimator of treatment effects on relabeling and productivity, as in Diamond and Persson

(2016). We present estimates of these effects in Section 5. Finally, the model relates the extent of

bunching and the treatment effects on relabeling and productivity to structural parameters of the

model, which we estimate in Section 6.

4.1 Model Setup

We start with a simple model and develop extensions to allow for relabeling, and for fixed costs of

certification and adjustments costs of R&D investment. Full details of the model are presented in

Appendix E.

Consider a firm i with a unit cost function c(φ1, wt) = c(wt) exp{−φit}, where wt is the price of

20In our estimations, we further restrict our sample to exclude firms that are close to the size threshold and this does
not affect our estimates.
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inputs.21 φit is log-TFP and has the following law of motion:

φi,t = ρφi,t−1 + ε ln(1 +Di,t−1) + uit, (1)

where Di,t−1 ≥ 0 is R&D investment, and ui,t ∼ i.i.d. N(0, σ2). This setup is consistent with the R&D

literature where knowledge capital depreciates over time (captured by ρ) and is influenced by R&D

expenditures (captured by ε).

We assume the firm faces a demand function with a constant elasticity: θ > 1. This implies that

we can write expected profits as follows:

E[πit] = E[πit|Di,t−1 = 0]D
(θ−1)ε
i,t−1 = π̃itD

(θ−1)ε
i,t−1 ,

where π̃it ≡ E[πit|Di,t−1 = 0] ∝ E[exp{(θ − 1)φit}|φi,t−1] measures the expected profitability of the

firm.

R&D Choice Under A Linear Tax

Consider first how firms’ R&D investment decisions would respond to a linear income tax. We analyze

the firm’s inter-temporal problem as a two-period investment decision:22

max
D1

(1− t1)(πi1 −Di1) + β(1− t2)π̃i2D
(θ−1)ε
i1 .

The optimal choice of D∗i1 is given by:23

D∗i1 =

[
β(1− t2)(θ − 1)ε

1− t1
π̃i2

] 1
1−(θ−1)ε

.

The choice of R&D depends on potentially-unobserved, firm-specific factors φi1, as they influence

expected profits, π̃i2. We can recover these factors by inverting the first order condition and writing

π̃i2 as a function of D∗i1:

π̃i2 =
1

(θ − 1)ε

1− t1
β(1− t2)

(D∗i1)1−(θ−1)ε. (2)

We now write the value of the firm, Π(D∗i1|t2), as a fraction of firm sales, θπi1, by substituting Equation

2 into the objective function:

Π(d∗i1|t2)

θπi1
= (1− t1)

[
1

θ
+ d∗i1

(
1

(θ − 1)ε
− 1

)]
. (3)

21Note that any homothetic production function with Hicks-neutral technical change admits this representation.
22Firms commit to a medium-term set of R&D investments in order to participate in the InnoCom program (see

Section 2). For this reason, we view the relevant margin for firms as a medium-term decision that we characterize in a
two-period context.

23As we discuss in Appendix E, we assume (θ − 1)ε < 1 in order to ensure a well-behaved second order condition.
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Equation 3 expresses the firm’s problem in terms of the choice of R&D intensity, d∗i1 =
D∗i1
θπi1

, as in the

InnoCom program.24

A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure, modeled after the incentives

in the InnoCom program:

t2 =

{
tLT2 if di1 < α
tHT2 if di1 ≥ α

,

where tLT2 > tHT2 , and where LT/HT stands for low-tech/high-tech. This tax structure induces a

notch in the profit function at di1 = α, where α is the R&D intensity required to obtain the high-tech

certification. Figure 6 presents two possible scenarios following this incentive. Panel A shows the

example of a firm that finds it optimal to choose a level of R&D intensity below the threshold. At this

choice, the first order condition with a linear tax holds and the optimal value of the firm is given by

Equation 3. From this panel, we can observe that a range of R&D intensity levels below the threshold

are dominated by choosing an R&D intensity that matches the threshold level α. Panel B shows

another firm that is indifferent between the internal solution and “bunching” at the notch. This firm

is characterized both by Equation 2 and by having equal value from R&D intensities of d∗i1 and α.

Let
Π(α|tHT2 )
θπi1

be the value-to-sales ratio of the firm conditional on bunching at the notch. Using

Equation 2, we can write this equation as:

Π(α|tHT2 )

θπi1
= (1− t1)

[
1

θ
+ α

((
d∗i1
α

)1−(θ−1)ε(1− tHT2

1− tLT2

)
1

(θ − 1)ε
− 1

)]
.

Compared to Equation 3, this equation shows a larger R&D intensity (since d∗i1 < α), which increases

the cost of investment. The additional investment results in higher profits because of the productivity

effect from the additional investment in R&D,
(
d∗1i
α

)−(θ−1)ε
> 1, and because of the tax benefit,(

1−tHT2

1−tLT2

)
> 1.

A firm will bunch at the notch if
Π(α|tHT2 )
θπi1

≥ Π(d∗i1|tLT2 )
θπi1

, which occurs when:(
d∗i1
α

)1−(θ−1)ε(1− tHT2

1− tLT2

)
1

(θ − 1)ε
− 1︸ ︷︷ ︸

Relative Profit from Bunching

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
.︸ ︷︷ ︸

Relative Profit from Not Bunching

(4)

For firms that were already close to the notch
(
d∗i1
α ≈ 1

)
, bunching has small costs and productivity

benefits, but the tax cut
(

1−tHT2

1−tLT2

)
> 1 incentivizes firms to bunch. For firms farther from the notch (as

24Firm value is given by Π(D∗i1|t2) = (1− t1)
[
πi1 +D∗i1

(
1

(θ−1)ε
− 1
)]
, where we substitute Equation 2 into the firm’s

objective function.
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d∗i1 decreases from α), the additional investment costs increase faster than the productivity benefits,

which reduces firms’ incentive to bunch.

Let d∗− be the marginal firm such that Equation 4 holds with equality, as in panel B of Figure 6.

In this simple model, firms with d∗i1 ∈ [d∗−, α] would decide to bunch at the notch, since the difference

between the left- and right-hand-sides of Equation 4 is increasing in d∗i1. It can also be shown that

d∗− is decreasing in both (θ−1)ε and
(

1−tHT2

1−tLT2

)
, so that we would observe more bunching if firms have

a higher valuation of R&D, or if the tax incentive is larger.

4.2 Real and Relabeled R&D Investment Under Tax Notch

This section extends the model by allowing for firms to misreport their costs and shift non-R&D

costs to the R&D category. We show that, while the bunching predictions from the previous sections

remain unaffected, the interpretation of the reported bunching response is now a combination of real

and relabeled activity.

Denote a firm’s reported level of R&D spending by D̃i1. The expected cost of misreporting to the

firm is given by h(Di1, D̃i1), which represents the likelihood of being caught, and the punishment from

the tax authority. We assume that the cost of mis-reporting is proportional to the reported R&D and

depends on the percentage of misreported R&D, δi1 = D̃i1−Di1
D̃i1

, so that:25

h(Di1, D̃i1) = D̃i1h̃ (δi1) .

We also assume that h̃ satisfies h̃(0) = 0 and h̃′(·) ≥ 0. Finally, define Π(Di1, D̃i1|t) as the value

function of a firm’s inter-temporal maximization problem when the firm invests Di1 on R&D, declares

investment of D̃i1, and faces tax t in period 2.

Firms qualify for the lower tax whenever D̃1 ≥ αθπ1. Notice first that if a firm decides not to

bunch at the level αθπ1, there is no incentive to misreport R&D spending as it does not affect total

profits or the tax rate. However, a firm might find it optimal to report D̃1 = αθπ1, even if it actually

invested a lower level of R&D.

Consider now the optimal relabeling strategy of a firm conditional on bunching. The first order

condition for relabeling implies the following condition:26

(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
︸ ︷︷ ︸

Productivity Loss from Relabeling

=

(
(1− t1)− h̃′(δ∗i1)

)
α(1− t1)

,︸ ︷︷ ︸
Reduction in Investment Cost and Increase in Relabeling Cost

(5)

25We assume that the mis-reporting cost depends on δ, the percentage of mis-reported R&D rather than the level of
mis-reported R&D based on our specific institutional setting: the InnoCom program is based on R&D intensity rather
than total R&D expenditure.

26We provide a detailed derivation in Appendix E.
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where we use Equation 2 to express the first order condition in terms of the interior optimum R&D

intensity, d∗i1. When deciding how much to relabel, the firm trades-off lower productivity gains and

increased costs of relabeling with the decrease in investment costs.

The firm decides to bunch if the profits from the optimal relabeling strategy are greater than when

the firm is at the optimal interior solution, which occurs when:(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

× (1− δ∗i1)

(θ − 1)ε
×
(

1− tHT2

1− tLT2

)
− (1− δ∗i1)︸ ︷︷ ︸

Relative Profit from Bunching

− h̃(δ∗i1)

α(1− t1)︸ ︷︷ ︸
Relabeling Cost

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
.︸ ︷︷ ︸

Relative Profit from Not Bunching

(6)

Equations 4 and 6 are very similar and are identical in the case when δ∗i1 = 0, such that there is no

relabeling. When δ∗i1 > 0, the cost of investment and the productivity gains are smaller, but the firm

also incurs a cost of relabeling.

Since firms can elect to report truthfully (δ = 0), firms’ profits from bunching in the case with

relabeling are greater than in the case without relabeling. However, since the relative profit from not

bunching has not changed, this implies that misreporting allows more firms to bunch than in the case

without relabeling. Panel C of Figure 6 shows this intuition graphically. It depicts a firm that would

not bunch absent the ability to relabel R&D. With relabeling, the firm reports an R&D intensity of α,

while real R&D intensity is (1−δ∗i1)α ≥ d∗i1. Thus, when relabeling is possible, the marginal firm, such

that Equation 6 holds with equality, will imply a lower threshold d∗−. This implies that we should see

more bunching when firms are able to misreport R&D, and that the observed bunching patterns are a

combination of real increases in R&D as well as increases in reported R&D that are due to relabeling

of other expenses.

4.3 Adjustment Costs of Investment and Fixed Certification Cost

We now enrich the model to allow for firms to have random and heterogeneous adjustment and fixed

costs, since they are a salient feature of the environment and help fit the data patterns described in

Section 3.

First, as is common in studies of R&D investment, the distribution of R&D investment in China has

large variability even conditional on firm TFP. In a world without the InnoCom program, our model

would predict a deterministic relationship between R&D and TFP. In reality, firms face heterogeneous

adjustment frictions of conducting R&D. We follow the investment literature and adopt a quadratic

formulation for adjustment costs that is governed by: b× θπ1i
2

[
Di
θπ1i

]2
. This term represents both fiscal

costs of installing new equipment as well as limits to technological opportunity. Intuitively, the law

of motion for TFP allows for strong returns to scale, as it implies that increasing R&D will have a
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proportional increase in the TFP of all units of production within a firm. Since the adjustment costs

are proportional to firm size, they limit the returns to scale in R&D investment.

Second, while our model predicts that all firms with d ∈ [d∗−, α] would bunch at the notch, we

find some firms do not obtain the InnoCom certification despite being very close to the notch. This

is consistent with the guidelines of the program discussed in Section 2 that show that a greater-than-

notch R&D intensity is not a sufficient condition for participating in the program. Indeed, firms with

high R&D intensity may not participate in the program due to constraints that prevent them from

hiring the sufficient number technical employees, if they do not obtain a significant fraction of their

sales from high-tech products, or due to compliance and registration costs. We model these constraints

by assuming that firms pay a fixed cost of certification: c × αθπ1i. We see this term as representing

the cost to the firm of complying with the additional requirements of the program, such as hiring

additional high-tech workers.

Appendix E shows that a firm’s choice of whether to bunch is determined by a similar condition to

Equation 6. In this case, however, the identity of the marginal firm depends on a given set of values

b and c, which we denote d−b,c
27. As expected, we find that d−b,c is increasing (smaller response) with

both adjustment, b, and fixed, c, costs. As before, for a given set of values b and c, d−b,c is decreasing

(larger response) in the profitability elasticity of R&D ((θ−1)ε), and increasing in the relabeling cost.

We now redefine d∗− = min
b,c

d−b,c as the smallest R&D intensity for which there is a marginal firm.

4.4 Empirical Implications for Bunching on R&D

We now describe how we use the model to quantify the distributional patterns described in Section

3. Figure 7 provides the intuition for this procedure. Panel A provides a counterfactual distribution

of R&D intensity, d∗i1, under a linear tax. Denote this counterfactual density by h0(d). Panel A

demonstrates the effect of the notch on the distribution of R&D intensity in a world of unconstrained

firms. In this case, there is a range of R&D intensity that is dominated by the threshold α, as shown

by the density of R&D intensity with a notch, h1(d). Firms with an internal solution in this range will

opt to bunch at the notch. Define the missing mass in the range [d∗−, α], relative to the counterfactual

distribution, as B.

The prediction in panel A of Figure 7 is quite stark in that no firms are expected to locate in the

dominated interval. The presence of fixed and adjustment costs may constrain firms from responding

to the incentives in the InnoCom program. For given values of (b, c), a firm will be constrained from

27Another potential modeling choice is to allow for heterogeneous returns to R&D ε across the firms. We discuss about
this possibility in Appendix J.
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responding if d < d−b,c, an event that we denote by I[d < d−b,c]. The fraction of constrained firms at a

given value of d in the range (d∗−, α) is given by

Pr(Constrained|d) =

∫
b,c

I[d < d−b,c]h0(d, b, c)d(b, c) = h1(d),

where h0(d, b, c) is the joint density of R&D intensity, and fixed and adjustment costs, and where the

second equality notes that we observe this fraction of firms in the data.

Panel B of Figure 7 describes graphically how allowing for random adjustment and fixed costs

affects the predicted bunching pattern. In particular, the area B can now be computed as follows:

B =

α∫
d∗−

∫
b,c

I[d ≥ d−b,c]h0(d, b, c)d(b, c)dd =

α∫
d∗−

∫
b,c

(1− I[d < d−b,c])h0(d, b, c)d(b, c)dd

=

α∫
d∗−

(h0(d)− Pr(Constrained|d))dd =

α∫
d∗−

(h0(d)− h1(d))dd. (7)

This equation shows that the extent of bunching measured by the area B is determined by the

threshold d∗−, and by the joint distribution of counterfactual R&D intensity. Our model predicts a

larger area B when firms have larger valuations for R&D, (θ − 1)ε, lower relabeling costs, or smaller

fixed and adjustment costs.

As in Kleven and Waseem (2013), we can relate the bunching patterns to the behavior of the

marginal firm. Defining ∆D∗ = α−d∗−
α as the percentage increase in R&D intensity relative to the

notch, we have:28

∆D∗ ≈ B

αh0(α)(1− Pr(Constrained))
. (8)

4.5 Model Implications for Relabeling and Productivity

In addition to the bunching predictions, our model predicts that firms that bunch may engage in

relabeling, and that their future TFP will increase to the extent that the reported R&D investment

constitutes real activity. However, since firms select into the program by manipulating R&D, compar-

ing firms that participate in the program to those that do not will result in a biased estimate of the

effects of the program. Instead, we compare the observed outcomes of the firms that could have par-

ticipated in the program to a counterfactual value of the same outcomes. For this purpose, we define

the manipulated region (d∗−, d∗+) to include all firms that could have responded to the program.29

This is similar to the previous section that compares the observed density of R&D under InnoCom

program with a counterfactual density without the program.

28Appendix F contains details of this approximation.
29In practice, firms bunch in a neighborhood above α, as can be seen in Figure 2.
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Diamond and Persson (2016) develop an estimator that formalizes this comparison by quantifying

the average effect of the program on a given outcome Y :30

ITT Y = E[Y |Notch, d ∈ (d∗−, d∗+)]− E[Y |No Notch, d ∈ (d∗−, d∗+)]. (9)

Note that E[Y |Notch, d ∈ (d∗−, d∗+)] is directly observed in the data. We discuss the econometric

approach to estimating E[Y |No Notch, d ∈ (d∗−, d∗+)] in Section 5.2. Equation 9 compares the average

potential outcome of firms in the region (d∗−, d∗+), which includes firms that do not respond to the

program, as well as firms whose R&D intensity would be above the notch without the program. For

this reason, we interpret this quantity as an intent-to-treat (ITT).31

Our model has intuitive predictions for ITT Y ’s on R&D, relabeling, and TFP. To see this, note that

ITT Y ≈ B(Ȳ − Y ), where Y is the counterfactual average value of Y for compliers with d0 ∈ (d∗−, α)

and Ȳ is the average value of Y for compliers with d1 ∈ (α, d∗+).32 This expression simply states that

the ITT is approximately equal to the average treatment effect among compliers multiplied by the

excess mass from Equation 7. If some of the reported R&D intensity is real activity, our model would

predict ITT TFP > 0. According to our model for the evolution of TFP in Equation 1, we would

find larger values of ITT TFP for larger values of the parameter ε. We expect to find ITTADM < 0

if a fraction of the reported R&D is due to relabeling of administrative costs. Intuitively, if firms

over-report R&D by under-reporting administrative costs, ADM would be artificially low. Our model

predicts small values of ITTADM if firms face large costs of relabeling. Finally, consider the case

where the outcome of interest is reported R&D intensity. In this case, ITT d only depends on the

counterfactual density of R&D intensity and ITT d ≈ B (d∗+−d∗−)
2 . Our model would predict a larger

fraction of compliers B if ε is large or if relabeling costs are low. Section 6 discusses how we link

estimated treatment effects to structural parameters.

5 Effects on Investment, Relabeling, and Productivity

This section presents estimates of the causal effects of the InnoCom program on investment, relabeling,

and productivity. Section 5.1 estimates the investment response from the bunching estimator. Section

5.2 presents estimates of treatment effects on relabeling, productivity, and tax revenues.

30Bachas and Soto (2015) implement a similar approach to analyze the effect of notches on other outcomes.
31Conceptually, we can partition the firms in the region (d∗−, d∗+) into compliers, never-takers, and always-takers. In

our setting, never-taker firms are firms below the notch that are constrained from responding to the policy. Always-taker
firms are firms that are already above the notch without the program. By assuming that there are no defier firms, we
can show that Equation 9 has the interpretation of an intent-to-treat. See Appendix F for a detailed discussion.

32See Appendix F for details of this approximation.
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5.1 Bunching Estimates of Investment Response

We follow the literature (see, e.g., Kleven (2015)) by estimating the counterfactual density of R&D

intensity, h0(·), using a flexible polynomial that ignores the effects of data around the threshold.

Mechanically, we first group the data into bins of R&D intensity and then estimate the following

regression:

cj =

p∑
k=0

βk · (dj)k + γj · 1
[
d∗− ≤ dj ≤ d∗+

]
+ νj ,

where cj is the count of firms in the bin corresponding to R&D intensity dj =
Dj1
θπ1

, and where (d∗−, d∗+)

is the region excluded in the estimation. An estimate for h0 (d) is now given by ĉj =
p∑

k=0

β̂k · (d)k.

Similarly, we obtain counterfactual estimates for h0(α) and B as follows:

ĥ0(α) =

p∑
k=0

β̂k · (α)k and B̂ =
α∑

dj=d∗−

(
p∑

k=0

β̂k · (dj)k − cj

)
.

Intuitively, a larger missing mass B is related to a larger increase in R&D intensity. Indeed, these

quantities provide a first cut of the effect of the program on R&D investment since:33

∆d ≡ E[d|Notch, d ∈ (d∗−, d∗+)]− E[d|No Notch, d ∈ (d∗−, d∗+)]

E[d|No Notch, d ∈ (d∗−, d∗+)]
≈ B

2αh0(α)
. (10)

Finally, we estimate the fraction of constrained firms relative to the counterfactual density at the R&D

intensity α− such that firms would be willing to jump to the notch even if R&D had no effects on

productivity:

a∗(α−) =
̂Pr(Constrained|α−)

ĥ0(α−)
=

cα−
p∑

k=0

β̂k · (α−)k
,

which allows us to implement Equation 8 for the percentage increase of the marginal buncher, ∆D∗.34

Implementing the bunching estimator requires choosing the degree of the polynomial, p, and se-

lecting the excluded region, (d∗−, d∗+). We use a data-based approach to selecting these parameters

by cross-validating the choice of these values such that the missing mass below the notch equals the

excess match above the notch.35 Finally, we obtain standard errors by bootstrapping the residuals

from the original regression, generating 5000 replicates of the data, and re-estimating the parameters.

33We provide a detailed derivation for ∆d in Appendix F.
34The “money-burning” point is easy to compute. Note that the tax benefit is given by Profits× (tHT − tLT ) and the

cost of jumping to the notch is Sales× (α− α−), which implies that α− = α− (tHT − tLT )× Profits
Sales

. Using the average
net profitability ratio in our data of 7%, this implies that firms in the range (α − .07 × (tHT − tLT ), α) are not able to
respond to the incentives of the InnoCom program. For the case of the large firms we have (α−, α) = (2.3%, 3%).

35This procedure ensures that we do not overfit the data with an overly flexible polynomial, and provides an objective
approach to selecting the excluded region. Given the monotonically decreasing shape of the R&D intensity distribution,
we restrict the estimated βk’s to result in a decreasing density. We describe this procedure in detail in Appendix G.

19



Figures 8-9 display the results of the bunching estimator for the three different notches for 2009

and 2011. The red line with diamond markers displays the observed distribution of R&D intensity

h1(·), the vertical dashed lines display the data-driven choices of the omitted region, and the blue line

displays the estimated counterfactual density h0(·). These graphs also report the fraction of firms that

are constrained below the notch point, a∗(α−), the overall percentage increase in R&D intensity in

the excluded region, ∆d, the increase in R&D intensity for the marginal firm in Equation 8, ∆D∗, as

well as the p-value of the test that the missing mass equals the excess mass.

Panel A of Figure 8 shows a percentage increase in R&D over the excluded region of ∆d = 5.6% for

small firms in 2009. This small increase is due to the fact that many firms are not able to respond to

the program, a∗(α−) = 74%. As these are small firms, many firms may be constrained in their ability

to increase investment to a significant degree, to develop a new product, or to increase the fraction

of their workforce with college degrees. In addition, a higher failure rate among small firms implies

that a long process of certification may never pay off in lower taxes. However, the marginal firm sees

a significant increase, since ∆D∗ = 38%. The specification test shows that using the missing mass or

the excess mass results in statistically indistinguishable estimates.

Panels B and C show larger responses for medium and large firms in 2009. These counterfactual

densities imply an increase in R&D intensity of 13.3% for medium firms, and of 14.9% for large

firms. However, marginal firms see larger increases of 78.2% and 69.4% for medium and large firms,

respectively. These graphs show that a significant fraction of firms are constrained from responding

to the program (66% for medium and 57% for large firms). These patterns show that even large and

medium firms may be unable to satisfy some of the requirements of the program. Using the missing

mass and the excess mass results in statistically indistinguishable estimates of the increases in R&D

for both types of firms.

Figure 9 shows similar qualitative patterns for 2011, although we find that the fraction of con-

strained firms is now smaller in all cases. We also find larger increases in R&D of 31% for large firms,

21% for medium firms, and 11% for small firms. These effects are estimated with a high degree of

precision as standard errors are often an order of magnitude smaller than the estimates.

We now explore the robustness of our estimates. First, we show in panel A of Figure 10 that

our estimator is able to recover a null effect in the absence of the policy. This panel estimates the

effect of a non-existent notch on the distribution of R&D intensity of large foreign firms before 2008,

which were not subject to the incentives of the InnoCom program, and finds a small and insignificant

estimate of ∆d. Second, we explore the potential for firms’ extensive margin responses to bias our

estimates. If the bunching we observe is driven by firms who previously did not perform any R&D,
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the missing mass would not equal the excess mass. This would lead us to underestimate both the

excess mass and ∆d. In panel B of Figure 10 we use data for large firms in 2011 and we restrict the

sample to firms that had positive R&D in 2009 and 2010. This panel shows that we obtain a very

similar estimate of ∆d when we rule out extensive margin responses. Finally, we show that our results

are robust to using data from large foreign firms before 2008 who were not subject to the incentives

of the InnoCom program in order to inform the shape of the density in the excluded region. Panel C

of Figure 10 shows that using these data results in very similar estimates of both the counterfactual

density and ∆d.36 Appendix H explores further robustness checks. First, as we show in Figure A.6,

our results are not sensitive to excluding state-owned enterprises, low-tech firms, or low-profitability

firms in the estimation. Additionally, as we show in Figure A.7, our results are not sensitive to the

choice of (p, d∗−, d∗+) and we even obtain similar estimates when we only rely on data above d∗+ to

estimate the counterfactual density.

5.2 ITT Estimates on Productivity, Relabeling, and Tax Revenue

We now use an estimator of treatment effects developed by Diamond and Persson (2016) to estimate

the effects of the InnoCom program on productivity, relabeling, and on fiscal costs. The intuition of

the estimator is to compare the observed aggregate mean outcome for firms in the excluded region to

a suitable counterfactual. For a given outcome Yit, where t ≥ t1, the estimate is:

ÎTT Yt = E[Yt|Notch, dt1 ∈ (d∗−t1 , d
∗+
t1

)]− ̂E[Yt|No Notch, dt1 ∈ (d∗−t1 , d
∗+
t1

)]

=
1

NExcluded

∑
di,t1∈

(
d∗−t1

,d∗+t1

)Yit −
∫ d∗+t1

d∗−t1

ĥ0(dt1) ̂E[Yit|dt1 ,No Notch]ddt1 , (11)

where the excluded region corresponds to year t1, but where the outcome year t may correspond to

t1 or to a later period. As we discuss in Section 4.5, we interpret this estimate as an intent-to-treat

(ITT).37 For example, the ITT on Y = ln d measures the percentage increase in R&D intensity over

the excluded region, ∆d, without imposing the approximation of Equation 10. Finally, we obtain

estimates of the elasticity of R&D investment to the user cost of capital (UCC) by taking the ratio of

the ITT on R&D to the ITT on the UCC.

36As discussed in Blomquist and Newey (2017), variation in non-linear incentives can help in identifying responses
when using bunching approaches. We combine this un-manipulated density with the density in 2011, h1(d), by ensuring
that the combined density is continuous at the boundaries of the excluded region, d∗− and d∗+.

37As detailed in our model, firms self-select into the treatment depending on whether they face fixed or adjustment
costs that prevent them from obtaining the high-tech certification. This selection implies that we cannot use data just
beneath the threshold as a control group for firms above the threshold. Our procedure does not rely on such comparisons
across firms, but instead relies on the assumption that E[Yit|dt1 ,No Notch] is smooth around the notch, and that it may
be approximated with data outside the excluded region that, by definition, is not subject to a selection problem.
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The first quantity in Equation 11 is the observed average value of a given outcome Yit over the

excluded region. The second quantity is a counterfactual average value of Yit. We construct this

counterfactual by combining the density of R&D intensity, ĥ0(·), estimated as part of the bunching

analysis, with an estimated average value of the outcome conditional on a given value of R&D. We

estimate ̂E[Yit|dt1 ,No Notch] as a flexible polynomial regression of Yit on R&D intensity over the same

excluded region used to estimate ĥ0(·):38

Yit =

p∑
k=0

βk · (dit1)k︸ ︷︷ ︸
E[Yt|dt1=d,No Notch]

+γ · 1
[
d−∗ ≤ dit1 ≤ d+∗]+ δYit1 + φs + νit,

where we exclude observations in the manipulated region, and control for industry fixed effects φs and

lagged outcomes Yit1 when t > t1. Armed with an estimate of E[Yit|dt1 ,No Notch], we then compute

the counterfactual average value for firms in the excluded region by integrating E[Yit|dt1 ,No Notch]

relative to the counterfactual density h0(d).

Panel A of Table 3 presents estimates of ITT effects of the InnoCom program on several outcomes.

We focus on large firms since they account for more than 90% of all R&D investment (see Figure A.5)

and we study how the decision to invest in R&D in 2009 affects productivity and tax payments in 2011.

We find that R&D investment for firms in the excluded region increased by 14.6% in 2009, which is

very close to the bunching estimate of ∆d of 14.9%. We also find a decrease in the administrative cost

ratio of 9.6%. When compared with the average value of this ratio, we find that administrative costs

decreased by 0.33% of firm sales. We use this estimate to construct an approximation to the fraction of

R&D investment that was relabeled. Compared to the implied increase in R&D intensity, this would

imply that
(

0.33%
0.89% ≈

)
37% of the increase in R&D intensity was due to relabeling.39 Note that this

approximation is imperfect because it assumes that all firms engage in the same relabeling activity.

As our model in Section 4.2 shows, the fraction of relabeling may vary across firms that are closer

or farther away from the notch. The structural model in Section 6 relaxes this strong assumption.

Nonetheless, this estimate would imply that the real increase in R&D investment was closer to 9%.

The last 2009 outcome that we analyze is the effect of the policy on the user cost of R&D, where we

find a decrease of 7.1%.40

38Note that this regression is not causal. Its role is purely to predict the outcome over the excluded region. We
obtain standard errors for ITT estimates in Equation 11 by bootstrapping this equation as well as the estimates of the
counterfactual density.

39We can approximate the increase in R&D intensity with α(1− a∗(α−))∆D∗ ≈ 0.89% for large firms in 2009.
40To compute the user cost of R&D, we first generate an equivalent-sized tax credit by dividing the tax savings form

the policy by the R&D investment, and then use the standard Hall and Jorgenson (1967) formula as derived by Wilson
(2009).
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Panel A of Table 3 also reports the effects of the policy on outcomes in 2011. We find that between

2009 and 2011, the policy led to an increase in TFP of 1.2%. Finally, we observe an overall decrease

in corporate tax revenues of 12.8%.41

The second panel of Table 3 presents estimates of user cost of capital elasticities along with boot-

strapped confidence intervals. The first row shows that reported R&D increased by 2% for every 1%

decrease in the user cost. When we use the approximation above to obtain an estimate of the real

increase in R&D, we obtain a user cost elasticity closer to 1.3. Notice that the empirical literature

focused on OECD countries (see Hall and Van Reenen (2000) and Becker (2015)) has typically found

an elasticity ranging from 0.4 to 1.8 based on direct R&D tax credit programs. Thus, our estimates

indicate that, once we correct for the re-labeling behavior of the Chinese manufacturing firms, their

user cost elasticity is comparable to those in more developed economies. Finally, as an alternative

metric, we consider how much it costs the government to increase R&D investment in terms of foregone

revenue. For every 1% increase in R&D, we find that there was a 0.88% decrease in tax revenue. This

statistic is a useful ingredient for deciding whether the InnoCom policy is too expensive, or whether

externalities from R&D investment merit further subsidies. However, this statistic does not line up

perfectly with the government’s objective, since part of the response may be due to relabeling, and

since this estimator relies on the average percentage increase, which may differ from the percentage

increase in total R&D. The structural model in the next section bridges this gap by computing the

fiscal cost of raising total real R&D, and by showing how the fiscal cost depends on the design of the

InnoCom program.

6 Structural Estimation and Simulation of Counterfactual Policies

The empirical estimates from the previous sections are crucial to evaluating the effects of the current

program on reported R&D investment, suspected relabeling activities, and firm productivity. However,

the previous analysis does not allow us to quantify the effect of real R&D on firms’ productivity, or

how the fraction of reported R&D investment that is due to relabeling varies across firms. Similarly,

these estimates cannot be used to evaluate the effects of alternative policies, since changes to the

policy will affect firm selection into the program, as well as investment and relabeling activities.

41We explore robustness of these estimates in Table A.5, where we show that the ITT estimates are robust to using
an alternative, second-best parametrization of the counterfactual density of R&D intensity.
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6.1 Structural Estimation

We now propose a method of simulated moments (MSM) framework to estimate the structural param-

eters of the model in Section 4 by matching the estimates from Section 5 to simulated counterparts.

We first discuss how we parametrize the model. We begin by calibrating θ, which we set at θ = 5

based on the survey by Head and Mayer (2014).42 We use the fact that the evolution of productivity

in Equation 1 is an AR(1) process with persistence ρ and a normally distributed shock of variance

σ2. Given a value of θ, the persistence and volatility of log sales of non-R&D performing firms map

directly into ρ and σ2, which yields the following calibrated values of ρ = 0.725 and σ = 0.385. This

process also implies a stationary normal distribution of the underlying productivity φ1 which we use

as model fundamentals.43

We now parametrize the distributions of b and c, which we assume are distributed i.i.d. across

firms. We assume b is log-normally distributed, b ∼ LN (µb, σ
2
b ), and that c has an exponential

distribution, c ∼ EXP(µc).
44 We adopt the following functional form for the costs of relabeling:

exp{ηδ}−1
η , where δ is the fraction due to relabeling. Note that this function may be linear, convex, or

concave depending on the value of η (see, e.g., Notowidigdo (2013)). We use the method of simulated

moments to estimate the set of parameters Ω = {ε, η, µb, σb, µc}, where ε is the productivity effect of

R&D.

To implement the MSM estimator, we form the criterion function:

Q(Ω) =

[
hB(Ω)
hITT (Ω)

]′
W

[
hB(Ω)
hITT (Ω)

]
,

where W is a bootstrapped weighting matrix. hB(Ω) and hITT (Ω) are moment conditions based on

our bunching and ITT estimators, respectively. hB(Ω) is based on our estimates of d∗−, d∗+, and the

distribution of R&D intensity based on these cutoffs. That is, we choose our model parameters so

that our simulated data can rationalize the bunching patterns estimated in Section 5.1. In addition

to this unconditional empirical density, we also require that the model match the joint distribution of

firms’ measured TFP and R&D intensity. As we discuss below, these moments play an important role

in identifying key model parameters.

42This value implies a gross markup of θ
θ−1

= 1.25. We calibrate θ since, without data on physical quantity produced,
we are not able to separately identifying this parameter from the productivity distribution.

43Appendix J investigates the parametric assumption that total factor productivity exp(φ1) follows a log normal
distribution. We find that the distribution of measured TFP closely matches that of a log normal distribution, which
implies that imposing this assumption is consistent with our data.

44In Appendix J we discuss estimates from an alternative model that allows for heterogeneous ε’s and a constant b.
While this model result in similar average values of ε and b, the model does not match the data as well as our benchmark
model since it cannot match the joint distribution of TFP and R&D intensity.
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We use the treatment effects on reported R&D, administrative expense ratio, and TFP from Section

5.2 to form the last set of moments, hITT (Ω). Let ω = {φ1, b, c} denote a firm with random draws of

its fundamentals of productivity, adjustment cost, and fixed cost. We construct moments that match

the empirical and simulated counterparts of the ITT estimates:45

hITT (Ω) =

∫
dNo Notch(ω)∈(d∗−,d∗+)

E[Y (ω; Notch)− Y (ω; No Notch)]dFω − ÎTT Y ,

where ÎTT Y is an estimate from Section 5.2.

Identification

While each of the simulated moments depends on multiple parameters, we give a heuristic description

of the data patterns that identify each parameter. We start with the most central parameter: the

returns to R&D, ε. One interesting observation is that, while the bunching patterns certainly inform

this parameter, the bunching patterns alone are not able to separately identify ε and the unobserved

heterogeneous adjustment and fixed costs. This is intuitive since both the benefit and cost of R&D

enter the optimal choices of innovating firms. Two additional sets of moments help to separately

identify these parameters. First, we rely on the model insight that firms’ R&D decisions are not

distorted below d∗− and above d∗+. Thus, the ranking of firms’ measured productivity across these

regions is determined by ε, and is not affected by the InnoCom program. For this reason, including the

joint distribution of TFP and R&D intensity in hB(Ω) helps to identify ε. Second, the ITT estimates

on reported R&D and measured TFP also help to discipline ε. Note, however, that these estimates

combine three distinctive forces: the returns to R&D, selection into the treatment, and the potential

for relabeling. In practice, we find that the relabeling margin plays an important role in influencing

these ITT moments too. For this reason, the ITT estimate on the administrative expense ratio is also

crucial in order to pin down both η and ε.

Given ε and η, the identification of the distributions of adjustment and fixed costs is quite intu-

itive. First, the parameters of the distribution of adjustment costs, µb and σb, are identified by the

counterfactual distribution of R&D intensity below d∗− and above d∗+. Next, the fraction of firms

that bunch and the ITT on reported R&D inform the parameter of the distribution of fixed costs of

certification: µc. Finally, the location of d∗− is jointly determined by all the parameters.

45Note that we restrict the support of firm fundamentals ω = {φ1, b, c} by requiring the counterfactual R&D to be in
the excluded region.
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Estimates of Structural Parameters

We estimate the model using a Laplace-type estimator that is based on Markov Chain Monte Carlo

(MCMC), following Chernozhukov and Hong (2003). This procedure provides a numerically attractive

way of obtaining point estimates and conducting inference. We construct the weighting matrix W

based on the bootstrapped covariance matrix of our data moments.

Table 4 reports estimates of our structural parameters: (ε, η, µb, σb, µc). Panel A reports the

parameter estimates and the standard errors. All the estimates are statistically significant. Consider

the estimate for ε. The estimate from panel A implies that doubling R&D increases measured TFP

by 9.8%. Hall et al. (2010) surveys the extensive literature on R&D elasticity in similar production

function setups. Our estimate lies within the broad range of previous result between 2% and 17%.

Almost all of these previous studies use micro-data from developed countries, so it is interesting to

see that the returns to R&D of Chinese firms are comparable in magnitude. The estimated relabeling

cost parameter is 5.7, which indicates that, at the margin, the cost of relabeling is highly convex in

terms of δ. In other words, it is easy for firms to overstate their R&D by a small amount, but the cost

rises quickly for firms that are farther away from the required threshold α. Note that firms benefit

from relabeling by lowering investment and adjustment costs, which include technological opportunity

constraints. Thus, firms that face a higher shadow cost of R&D (i.e. higher b) will be more willing

to engage in relabeling. On average, we calculate that firms’ realized relabeling cost is 4.7% of the

implicit R&D savings. Finally, the estimated certification cost is quite modest: for the firms who

decide to bunch and certify as high-tech firms, the fixed certification cost is on average 2% of their

realized profit.

Panel B compares the simulated moments with the data moments and shows that our model

does a very good job of matching the data. The model replicates the distribution of firm-level R&D

intensity and the bunching pattern almost perfectly. It also captures the positive correlation between

R&D intensity and measured productivity very well. The ITT estimates are the moments with the

largest bootstrapped standard deviations. For this reason, they are matched less precisely based on

our optimal weighting matrix. In particular, our model predicts a slightly smaller ITT on TFP.

Finally, we evaluate the sensitivity of our point estimates to each individual moment. We calculate

the local derivative of our estimated parameters with respect to each moment using the methods of

Andrews et al. (2017). The recovered sensitivity matrix is reasonable and conforms to the heuristic

discussion above. We find that the joint distribution of TFP and R&D intensity are important de-

terminants of ε. For instance, with a small change in the average TFP of firms above d∗+, ε would
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increase by around 10 percent from its estimated value. In contrast, we find that ε is not very sensitive

to changes in the ITT of TFP. These methods also allow us to consider the potential that part of the

reduction in administrative expenses is not due to relabeling.46 If half of the decrease in administrative

costs is not related to relabeling, our sensitivity analysis shows that ε would decrease by 0.002, which

is a very modest amount. We report the complete set of sensitivity results for ε and η in Figure A.10.

Overall, the structural model exploits the estimates from our reduced-from analysis for identifi-

cation, is able to replicate these data patterns quite well, and provides a useful micro-foundation for

simulating the effects of counterfactual policies.

Benchmark Model Implications

Given our model estimates, we can simulate our benchmark model to gain a deeper understanding of

how heterogeneous firms respond to the existing policy.

First, we find that firms that comply with the policy are positively selected on several margins.

Complier firms are, on average, 9.64% more productive than firms in the excluded region that do not

comply with the policy. They also have idiosyncratic adjustment costs that are 34.5% lower than non-

compliers, which indicates much better technological opportunities from R&D investment. Finally,

they also have substantially smaller certification costs.

Second, our model shows that 30.3% of the reported R&D investment is due to relabeling, on

average. This fraction is dispersed across firms, with the 10th percentile firm relabeling 6.8%, and the

90th percentile relabeling 51.9%. This dispersion is driven mostly by dispersion in the adjustment costs,

b. Conditional on firm productivity, firms with higher adjustment costs relabel a higher fraction of

their R&D. Intuitively, firms with limited technological opportunities are willing to risk the punishment

from relabeling in order to achieve the program threshold.

Third, we also find heterogeneous increases in real R&D for complying firms. Our models suggests

that the distribution of real R&D investment is such that the 10th percentile firm sees an increase

of 10.2%, the 90th percentile firm increases by 25.0%, and the median firm increases by 15.1%. This

dispersion in investment then results in a dispersed distribution of gains in TFP.

6.2 Simulation of Counterfactual Policies

We now use our model estimates to simulate the effects of alternative R&D tax incentives and we

quantify their implications for reported R&D investment, real R&D investment, tax revenue, and

productivity growth. We first simulate alternative versions of the InnoCom program that vary the tax

46For instance, administrative costs may reduce if the tax incentive causes firms to pay closer attention to their
accounting of R&D expenses, or if firms substitute inputs in response to the policy.
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advantage and the location of the notch. We then compare our results with a counterfactual policy

that follows a more standard investment tax credit.

Alternative Notches and Tax Cuts

We analyze alternative versions of the InnoCom program that vary the tax advantage and the location

of the notch for two reasons. First, even though standard policy recommendations avoid prescribing

discontinuous incentives, notches are present in many settings (Slemrod, 2013) and may be justified

in cases where governments may use them as a way to limit relabeling (Best et al., 2015). Second,

given the explosive growth in R&D in China and that the government has chosen to use this policy,

it is important to understanding the economic and fiscal consequences of this type of policy.

Figure 11 studies the effects of changing the preferential tax rate for three values of the notch:

2%, 3%, and 6%. Each line shows the change in a given outcome from moving the preferential tax

rate between 10% to 22% for a given notch, relative to the current benchmark where α = 0.03 and

tHT2 = 15%.

Panels A and B analyze how changes in the policy parameters affect the characteristics of the

compliers. We find that higher values of the notch lead to a selection of more productive firms, and of

firms with lower adjustment costs, on average. This graph also shows that as we increase the tax break

for high tech firms (lower preferential tax rate), the program selects firms with lower productivity and

higher adjustment costs. The selection effect is more pronounced based on adjustment costs than on

productivity. For instance, when we change the threshold from 3% to 2%, the average adjustment

cost for the compliers almost doubles, while the productivity is only around 2% lower. These results

show that there are decreasing returns from expanding the InnoCom program by increasing the tax

advantage, and that a larger tax break might exacerbate misallocation of R&D by incentivizing R&D

investment in firms with lower productivity and higher adjustment costs.

Panels C and D show how real R&D investment and relabeling respond to changes in the InnoCom

program. Panel C shows that there is more real investment when firms face a lower preferential tax

rate. However, the fraction of R&D due to relabeling also increases in the size of the tax cut. As panel

D illustrates, when we set the notch threshold at 6%, moving the preferential tax rate from 22% to

10% increases the fraction of reported R&D due to relabeling by almost 15 percentage points.

Panel E plots the average growth in productivity induced by the InnoCom program for firms in

the excluded region. This effect is driven by two forces. First, as in panel C, complier firms invest

more with a lower preferential tax rate. Second, the fraction of firms that participate in the program

also increases with a lower preferential tax rate. When α = 3% and the preferential tax is reduced to
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10%, the average firm sees a TFP increases of 1.4%. This is a larger increase than in the benchmark

case where firms see a 0.8% increase in TFP.

Finally, we use our simulations to answer the question: What is the lowest-cost policy for a

government that wants to increase R&D by a given amount? To answer this question, we first estimate

the elasticity of the tax revenue cost to the real increase in R&D investment for different values of α

and tHT . We then plot these ratios in panel F according to the total increase in real R&D. This graph

thus represents cost frontiers for a government that wants to increase real R&D by a given amount.

The current policy of α = 3% and tHT = 15% corresponds to a cost-ratio of about 2.8.47 The black

line shows that a policy defined by α = 6% and tHT = 17% would result in a similar increase in real

R&D investment, but at a lower average cost. Alternatively, a policy defined by α = 6% and a larger

tax advantage tHT = 12% would result in a twice-as-large increase in R&D investment for a similar

tax-to-R&D ratio. This result is driven by the fact that policies with larger α will positively select

more productive firms, and firms with better technological opportunities. Nonetheless, as shown in

panel D, this policy would also be accompanied by more relabeling.

These simulations show that the effectiveness of these type of programs depends strongly on firm

selection. As incentives for R&D increase, this may lead to misallocation of R&D to firms with worse

technological opportunities. Moreover, incentives that encourage R&D investment at the lowest cost

to taxpayers may lead firms to engage in relabeling activities that are likely socially undesirable.

R&D Tax Credit

A more common R&D subsidy policy is the R&D tax credit, which is prevalent in a large number of

European and North American countries. In this section, we use our estimated model fundamentals

to evaluate the possibility of drastically changing the Chinese InnoCom program into a R&D tax

credit system comparable to that of the U.S. While the U.S. R&D tax credit system has numerous

accounting details, we define it by the two most fundamental features: the base amount D̄i and the

tax credit rate τ . The U.S. government provides a credit of τ = 20% to the tax payers’ qualified R&D

47This ratio is greater than the value of 0.88 reported in Table 3 since this number accounts for relabeling of R&D,
and, since the percentage increase in total real R&D is disproportionately determined by the high R&D intensity firms,
which have smaller than average increase in R&D spending. When we calculate the same quantity as in Table 3, we
obtain a comparable value of 0.92.
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expenditure that exceed the base amount D̄i.
48

If firms find it optimal to not misreport (δ∗ = 0), then the R&D tax credit effectively reduces the

marginal cost of real R&D, DK , by (1 − t1)τ . When there is no relabeling, an R&D tax credit is

a relatively cheap way to induce incremental R&D investment. Indeed, the tax-to-R&D elasticity is

equals (1− t1)τ ≈ 0.15, which is significantly more effective than the 2.8 elasticity of the benchmark

InnoCom program. If we impose the estimated cost of relabeling of η = 5.663, as in our benchmark

case, firms find it very costly to misreport and set δ∗ = 0. In this case, the R&D tax credit system is

a superior policy.

However, there are reasons to suspect that the tax enforcement will be more difficult under an

R&D tax credit system since the tax authority will need to audit all the firms. This implies that

individual firms will face lower costs of relabeling. With positive misreporting, the cost-effectiveness

of the R&D credit quickly worsens. To see this, note that the R&D tax credit is calculated as

(1− t1)τ

[
DK∗

1− δ∗
−D∗1

]
= (1− t1)τ

[
(DK∗ −D∗1) +

δ∗

1− δ∗
DK∗

]
If firms relabel δ of reported R&D, then the effective tax cost of inducing per incremental dollar of real

R&D becomes (1 − t1)τ [1 + δ∗

1−δ∗
DK∗

DK∗−D∗1
]. When the incremental real R&D, DK −D∗1, is small, the

misreported R&D dominates the tax to real R&D elasticity. If we set δ∗ = 0.3, as in our benchmark

case, then the tax-to-R&D elasticity is 7.97. In this case, the InnoCom program is a more cost-effective

policy.

This analysis reveals that the choice of subsidy critically depends on the costs of relabeling. Using

our model’s estimates of firm-level R&D adjustment costs and returns to R&D, we searched for the

relabeling cost parameter that makes the policy maker indifferent between an R&D tax credit regime

and our benchmark case. We find that when η = 1.324, which implies a fraction of relabeling of 9.9%

(in contrast to 30.3% in our benchmark), the R&D tax credit policy achieves the same fiscal elasticity

of 2.8. Therefore, a tax credit is a more cost-effective policy if the government can increase the cost of

evasion such that η > 1.324. However, this may come at the cost of devoting additional government

resources to detecting relabeling.

48Since D̄i typically depends on an average of R&D intensity in previous years, it is natural to assume that D̄i = D∗i1,
the interior optimum. We can thus set up the firm’s optimal R&D decision problem as

max
DK ,δ

(1− t1)
[
π1 − g(DK , θπ1)

]
−DK + t1

(
DK

1− δ

)
+ (1− t1)τ

(
DK

1− δ −D
∗
i1

)
− DK

1− δ h(δ) + β(1− t2)E[π2|DK ].

Note that the misreporting decision, δ, is separable from the real R&D choice, DK . Thus, the optimal proportional
evasion δ∗ is determined by the evasion cost, η, the R&D tax credit, τ, and the corporate tax rate, t1. Given the optimal
evasion decision δ∗, firms choose real R&D amount DK .
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7 Conclusions

Governments around the world devote considerable tax resources to incentivizing R&D investment.

However, there is widespread concern that firms respond by relabeling other expenses as R&D ex-

penditures. This paper takes advantage of a large fiscal incentive and detailed administrative tax

data to analyze these margins in the important case of China. We provide striking graphical evidence

consistent with both large reported responses, and significant scope for relabeling. These results sug-

gest misreporting of R&D may contaminate estimates of the effectiveness of R&D investment, and

may lead to misallocation of R&D toward firms with less innovative projects. Despite the relabeling

responses, we find significant effects on firm-level productivity that are consistent with sizable returns

to R&D.

Optimal subsidies for R&D will depend on the fiscal cost for the government and whether R&D

investment has external effects. This paper provides a useful metric that traces the government’s

tradeoff between own-firm productivity growth and tax revenues. If R&D is believed to have positive

externalities on other firms’ productivity, our estimates then provide a bound on the size of the

externality that would justify government intervention.

Finally, while we find evidence consistent with relabeling, the unusual structure of the InnoCom

program may limit the scope of relabeling and evasion through pre-registration and auditing. In

contrast, R&D investment tax credits may be more susceptible to relabeling in developing, and even

developed countries. As this paper demonstrates, accounting for relabeling may have large effects on

the design of R&D subsidy policies, and future research should explore the potential for relabeling in

other contexts.
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Einiö, Elias, “R&D subsidies and company performance: Evidence from geographic variation in gov-

ernment funding based on the ERDF population-density rule,” Review of Economics and Statistics,

2014, 96 (4), 710–728.

Eisner, Robert, Steven H Albert, and Martin A Sullivan, “The new incremental tax credit

for R&D: incentive or disincentive?,” National Tax Journal, 1984, pp. 171–183.

GAO, United States, “The Research Tax Credit’s Design and Administration Can Be Improved,”

Technical Report 2009.

Gelber, Alexander M., Damon Jones, and Daniel W. Sacks, “Earnings Adjustment Frictions:

Evidence from the Social Security Earnings Test,” Technical Report, UC Berkeley 2014.

Guceri, Irem and Li Liu, “Effectiveness of fiscal incentives for R&D: a quasi-experiment,” Technical

Report, Citeseer 2015.

Hall, Bronwyn and John Van Reenen, “How effective are fiscal incentives for R&D? A review of

the evidence,” Research Policy, 2000, 29, 449–469.

Hall, Bronwyn H., Jacques Mairesse, and Pierre Mohnen, “Measuring the Returns to R&D,”

Handbook of the Economics of Innovation, 2010, pp. 1033 – 1082.

Hall, Robert E. and Dale W. Jorgenson, “Tax Policy and Investment Behavior,” American

Economic Review, 1967, 57 (3), 391–414.

Head, K. and T. Mayer, “Gravity Equations: Workhorse, Toolkit, and Cookbook,” Handbook of

International Economics, Vol. 4, 2014.

Head, Keith, Thierry Mayer, and Mathias Thoenig, “Welfare and Trade without Pareto,”

American Economic Review, May 2014, 104 (5), 310–16.

Kleven, Henrik J. and Mazhar Waseem, “Using notches to uncover optimization frictions and

structural elasticities: Theory and evidence from Pakistan,” The Quarterly Journal of Economics,

2013.

Kleven, Henrik Jacobsen, “Bunching,” Technical Report, London School of Economics 2015.

, Martin B. Knudsen, Claus Thustrup Kreiner, Søren Pedersen, and Emmanuel Saez,

“Unwilling or Unable to Cheat? Evidence From a Tax Audit Experiment in Denmark,” Economet-

rica, 2011, 79 (3), 651–692.

33



König, Michael, Kjetil Storesletten, Zheng Song, and Fabrizio Zilibotti, “From Imitation

to Innovation: Where is all that Chinese R&D Going?,” Technical Report 2018.

Kratz, Marie and Sidney I. Resnick, “The qq-estimator and heavy tails,” Communications in

Statistics. Stochastic Models, 1996, 12 (4), 699–724.

Liu, Li and Ben Lockwood, “VAT Notches,” Technical Report, CESifo Working Paper Series No.

5371 2015.

Lockwood, Ben, “Malas Notches,” working paper, 2018.

Mansfield, Edwin and Lorne Switzer, “The effects of R&D tax credits and allowances in Canada,”

Research Policy, 1985, 14 (2), 97–107.

Notowidigdo, Matthew, “The Incidence of Local Labor Demand Shocks,” working paper, 2013.

Patel, Elena, Nathan Seegert, and Matthew Grady Smith, “At a Loss: The Real and Report-

ing Elasticity of Corporate Taxable Income,” Technical Report, SSRN: 2608166 2016.

Rao, Nirupama, “Do Tax Credits Stimulate R&D Spending? The Effect of the R&D Tax Credit in

its First Decade,” Technical Report, Wagner School, New York University 2015.

Saez, Emmanuel, “Do Taxpayers Bunch at Kink Points?,” American Economic Journal: Economic

Policy, 2010.

Slemrod, Joel, “Buenas Notches: Lines and Notches in Tax System Design,” eJournal of Tax Re-

search, Dec. 2013, 11 (3), 259–283.

Wei, Shang-Jin, Zhuan Xie, and Xiaobo Zhang, “From “Made in China” to “Innovated in

China”: Necessity, Prospect, and Challenges,” Journal of Economic Perspectives, 2017, pp. 49–70.

Wilson, Daniel, “Beggar Thy Neighbor? The In-State, Out-of-State, and Aggregate Effects of R&D

Tax Credits,” The Review of Economics and Statistics, 2009, 91 (2), 431–436.

34



Figure 1: Cross-Country Comparison: R&D as Share of GDP
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NOTES: This figure plots the aggregate R&D Intensity, i.e. R&D expenditure as share of GDP, in the private

sector for China, Canada, India, and US. Chinese R&D intensity started at 0.5% in 1996, a similar level to

India. It increased dramatically by more than three-fold to above 1.5% in 2011, on par with Canada. The

R&D intensity of the U.S. remained stable at 2.5% during the same period. Chinese R&D intensity improved

from 1/5 in 1996 to around 2/3 of the U.S level in 2011. The red line marks the year of the tax reform.

Source: World Bank.
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Figure 2: Bunching at Different Thresholds of R&D Intensity (2011)

A. Full Sample B. Small Firms
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NOTES: This figure plots the empirical distribution of R&D intensity for all manufacturing firms that has R&D intensity between 0.5% and 15% in the

Administrative Tax Return Database. Panel A reports the pooled data distribution with all sizes of firms. Panels B, C, and D report the R&D

intensity distribution of the firms that have been classified as “Small”, “Medium”, and “Large” respectively. Note that large fractions of the firms

“bunch” at the thresholds (6% for large, 4% for medium, and 3% for large) that qualify them to apply for the InnoCom certification. Source:

Administrative Tax Return Database. See Section 3.1 for details.
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Figure 3: Effects of the 2008 Tax Reform on the Bunching of Foreign-Owned, Large Companies

A. Bunching Before 2008 Tax Reform
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B. Bunching After 2008 Tax Reform
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NOTES: This figure compares the R&D intensity distribution for large foreign-owned firms before and after

the 2008 tax reform. To make the two samples comparable, the figure only plots firms that we observe in both

the SAT and ASM data. The tax reform eliminated the preferential corporate income tax for foreign-owned

firms and increased their incentives to qualify for the InnoCom program. Compared with panel A, panel B

shows that these firms increase their bunching behavior substantially after 2008. The R&D intensity is

concentrated around the 3% threshold. Source: Administrative Tax Return Database and Annual Survey of

Manufacturers. See Section 3.1 for details.
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Figure 4: Empirical Evidence of Relabeling
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NOTES: This figure plots the non-R&D administrative expense to sales ratio at each level of R&D intensity.

The green dots/line are for the large firms, the red dots/line are for the medium firms, and the blue dots/line

are for the small firms. The threshold of R&D intensity for firms to qualify applying for InnoCom certification

differs across firm size: 6% for small firms, 4% for medium firms, and 3% for large firms. For each size

category, there is a pronounced drop of the administrative expense to sales ratio when the R&D intensity

approaches the required threshold. Source: Administrative Tax Return Database. See Section 3.1 for details

on data sources and Section 4 for details on the estimation.
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Figure 5: Lack of Sales Manipulation

A. Lack of Sales Manipulation Around R&D Intensity Threshold
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NOTES: This figure examines the potential manipulation of sales data. Panel A shows firms do not manipulate sales by under-reporting their sales in

order to reach their respective notch. Panels B and C show firms do not attempt to over-report their sales in order to move into the next size category

and thus reduce the threshold of R&D intensity for qualifying the InnoCom program. Overall, there is little evidence for sales manipulation. Source:

Administrative Tax Return Database and Annual Survey of Manufacturers. See Section 3.1 for details.
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Figure 6: Induced Notch in Profit Functions
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NOTES: This figure provides the intuition of when a firm decides to bunch or not. In panel A, we characterize a firm whose value of performing the

interior optimal level of R&D is larger than bunching at the threshold. In panel B, we characterize another firm whose value of performing interior

optimal level of R&D is exactly equal to bunching at the threshold. The fundamental determinant of this relationship is the unobserved firm

heterogeneity in φ1, which is reflected by the interior optimal R&D. Panel C shows that when firms can relabel non-R&D expenses as R&D expenses,

the marginal firm which is indifferent between bunching or not will have a lower interior optimal R&D level level D∗−. See Section 4 for details.
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Figure 7: Theoretical Predictions of Bunching

A. Predicted Bunching in the Simple Model
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NOTES: This figure describes empirical implications of our model for R&D investment and bunching. Panel A

plots the implied empirical R&D density distribution in our baseline model of R&D investment with

productivity as the only source of heterogeneity at the firm-level. The model predicts that all the firms

between the marginal firm and the notch will bunch, creating a dominated interval in the density. Panel B

plots an enriched model where firms’ R&D decision is subject to heterogeneous adjustment costs and a fixed

cost of certification. These heterogeneities create frictions such that not all the firms in the dominated interval

bunch on the notch. See Section 4 for details. 41



Figure 8: Estimates of Excess Mass from Bunching at Notch (2009)
A. Small Firms B. Medium Firms
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NOTES: This figure reports the results of our bunching estimator for small, medium, and large firms in 2009. In each panel, we plot the empirical density of R&D

intensity in red and the estimated counterfactual R&D intensity in blue. The lower bound d∗− and upper bound d∗+ for the excluded region are indicated by

vertical dashed lines. ∆d is the percentage increase in R&D in the excluded region, ∆D is the increase for the marginal firm, a∗ is the fraction of firms that are

constrained from participating in the program, and we report the p-value of the test that the missing mass equals the excess mass. See Section 5.1 for details.

Source: Administrative Tax Return Database.
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Figure 9: Estimates of Excess Mass from Bunching at Notch (2011)
A. Small Firms B. Medium Firms
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NOTES: This figure reports the results of our bunching estimator for small, medium, and large firms in 2011. In each panel, we plot the empirical

density of R&D intensity in red and the estimated counterfactual R&D intensity in blue. The lower bound d∗− and upper bound d∗+ for the excluded

region are indicated by vertical dashed lines. ∆d is the percentage increase in R&D in the excluded region, ∆D is the increase for the marginal firm, a∗

is the fraction of firms that are constrained from participating in the program, and we report the p-value of the test that the missing mass equals the

excess mass. See Section 5.1 for details. Source: Administrative Tax Return Database.
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Figure 10: Robustness of Bunching Estimates

A. Placebo Test: Large Foreign Firms Before 2008 B. Large Firms in 2011 (No Extensive Margin)
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C. Large Firms in 2011 using Large Foreign Firms to Inform Counterfactual
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NOTES: This figure reports robustness checks of our bunching estimator in panel C of Figure 9. Panel A reports a placebo test where we use the data

from large foreign firms before 2008. Panel B implements our bunching estimator for large firms which already performed R&D in previous years. Panel

C uses large foreign firm’s R&D intensity before 2008 to inform the counterfactual distribution. See Section 5.1 for details.

44



Figure 11: Simulated Effects of Counterfactual Policies
A. Mean φ1 for Compliers B. Mean b for Compliers
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E. Average TFP Increase (Excluded Region) F. Tax Revenue Cost of Increasing R&D
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NOTES: These figures report the effects of different policy parameters on the selection of firms into the

InnoCom program and on aggregate outcomes of interest. Panels A and B show that lower preferential tax

rates select firms with higher adjustment costs and lower productivity. Panels C and D show how real and

relabeled R&D respond to changes in parameters of the policy, and panel E shows how this affects TFP.

Finally, panel F plots the elasticity of the tax cost to the government to the real R&D increase. This figure

represents the fiscal cost curve of incentivizing R&D investment for the government, and shows that notches

that target larger firms have lower fiscal costs. See Section 6.2 for details on the structural model and the

simulation.
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Table 2: Descriptive Statistics

A. State Administration of Tax Data 2008 - 2011

Mean Std p25 p50 p75 Observations

Sales (mil RMB) 118.263 1394.828 2.579 10.608 42.056 1202257
Fixed Asset (mil RMB) 32.912 390.406 0.402 2.089 10.743 1139038
# of Workers 175.402 852.494 17.000 48.000 136.000 1213497
R&D or not (%) 0.081 0.273 0.000 0.000 0.000 1219630
R&D/Sales (%, if>0) 3.560 7.019 0.337 1.544 4.296 98258
Administrative Expense/Sales (%) 9.417 11.886 2.809 5.814 11.103 1171365
TFP 2.058 0.522 1.638 2.007 2.434 1100845

B. Annual Survey of Manufacturing 2006 - 2007

Mean Std p25 p50 p75 Observations

Sales (mil RMB) 110.801 1066.080 10.760 23.750 59.513 638668
Fixed Asset (mil RMB) 42.517 701.282 1.630 4.492 13.370 638668
# of Workers 238.379 1170.327 50.000 95.000 200.000 638668
R&D or not (%) 0.102 0.303 0.000 0.000 0.000 638668
R&D/Sales (%, if>0) 1.631 3.184 0.118 0.461 1.736 65267

NOTES: Various sources, see Section 3.1 for details.

46



Table 3: Estimates of Treatment Effects

A. Estimates of Intent-to-Treat (ITT) Effects

Bootstrap
ITT SE T-Stat 5th Perc. 95th Perc.

2009
Admin Costs -0.096 0.025 -3.822 -0.136 -0.054

Admin Costs (level) -0.003 0.001 -3.686 -0.005 -0.002

R&D 0.146 0.065 2.245 0.037 0.251

R&D (real) 0.090 0.044 2.074 0.022 0.165

User Cost -0.071 0.037 -1.929 -0.130 -0.009

2011
Tax -0.128 0.018 -7.293 -0.159 -0.101

TFP 0.012 0.006 1.953 0.001 0.022

B. Estimates of User-Cost-of-Capital Elasticities

Bootstrap
Estimate 5th Perc. 95th Perc.

Reported R&D to User Cost (2009) -2.052 -7.919 -0.016

Real R&D to User Cost (2009) -1.272 -4.900 -0.010

Tax to Reported R&D (2011) -0.879 -2.730 -0.458

NOTES: This table reports estimates of ITT effects of the notch on various outcomes.
Panel B reports ratios of estimates in panel A. Standard errors computed via boot-
strap. See Section 3.1 for details on data sources and Section 5 for details on the
estimation. Source: Administrative Tax Return Database.

ITT =
1

NExcluded

∑
i∈(D∗−,D∗+)

Yi −
∫ D∗+

D∗−
ĥ0(r) ̂E[Y |rd,No Notch]dr
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Table 4: Structural Estimates

A. Point Estimates
TFP Elasticity Relabeling Distribution of Distribution of

of R&D Cost Adjustment Costs Fixed Costs
ε η µb σb µc

Estimate 0.098 5.663 8.581 1.648 0.629
SE 0.004 0.175 0.216 0.137 0.043

NOTES: This table reports estimates of structural parameters of the model in Section 4. Estimates
based on calibrated values of θ = 5, ρ = 0.725, and σ = 0.385. See Section 6 for estimation details.

B. Simulated vs. Data Moments
Simulated Data

Probability Mass for d < d−∗ 0.284 0.280
Fraction not Bunching 0.676 0.675
Probability Mass for d > d+∗ 0.198 0.189
Bunching Point d−∗ 0.75% 0.88%
ITT reported R&D 0.162 0.146
ITT TFP 0.008 0.012
ITT administrative cost ratio -0.27% -0.33%
Average TFP for d < d−∗ -0.032 -0.032
Average TFP for d between d−∗ and d+∗ 0.003 0.000
Average TFP for d > d+∗ 0.056 0.056

NOTES: This table compares the moments generated by our simulations
with those from the data. The simulation is based on 30, 000 firms. The
table shows our model does a remarkable job of matching 10 moments from
the data using a relatively parsimonious model based on 5 parameters.
See Section 6 for estimation details and discussion of how these moments
inform the structural parameters in our model.

48



Online Appendix: Not For Publication

This appendix contains multiple additional analyses. Appendix A includes additional details of

the Chinese corporate income tax system. Appendix B describes in more detail the data we use in our

analysis. Appendix C discusses the estimation of our measure of log-TFP. Appendix D shows that

firms do not respond to the InnoCom program by manipulating sales expenses. Appendix E provides

a detailed derivation of the model. Appendix F shows that the missing mass in the bunching analysis

can be used to approximate the effects of the notch on R&D investment. Appendix G discusses details

of the implementation of the bunching estimator. Appendix H discusses additional robustness checks

of our bunching estimates. Appendix I describes details of the implementation of the ITT estimator.

Finally, Appendix J explores the robustness of our structural estimation by showing that the actual

distribution of TFP is very close to being log-normal and by discussing estimates of an alternative

structural model with heterogeneous ε.

A Additional Details of the Chinese Corporate Income Tax System

China had a relatively stable Enterprise Income Tax (EIT) system in the early part of our sample

from 2000 - 2007. During that period, the EIT ran on a dual-track tax scheme with the base tax rate

for all domestic-owned enterprises (DOE) at 33% and foreign-owned enterprises (FOE) ranging from

15% to 24%. The preferential treatment of FOEs has a long history dating to the early 1990s, when

the Chinese government started to attract foreign direct investment in the manufacturing sector. The

government offered all new FOEs located in the Special Economic Zone (SEZ) and Economic and

Technology Development Zone (ETDZ) a reduced EIT of 15%. It also offered a reduced EIT of 24%

for all FOEs located in urban centers of cities in the SEZs and ETDZs. The definition of foreign owned

is quite broad: it includes enterprises owned by Hong Kong, Macau, and Taiwan investors. It also

includes all joint-venture firms with a foreign share of equity larger than 25%. The effective tax rates

of FOEs are even lower since most had tax holidays that typically left them untaxed for the first 2

years, and then halved their EIT rate for the subsequent 3 years.

In addition to the special tax treatments of FOEs, the Chinese government started the first round

of the West Development program in 2001. Both DOEs and FOEs that are located in west China and

are part of state-encouraged industries enjoy a preferential tax rate of 15%. West China is defined

as the provinces of Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Ningxia, Qinghai,

Xinjiang, Inner Mongolia and Guangxi. Finally, there is also a small and medium enterprise tax

break, which is common in other countries. However, the revenue threshold is as low as $50, 000, and
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is effectively irrelevant for our sample.

The Chinese government implemented a major corporate tax reform in 2008 in order to eliminate

the dual-track system based on domestic/foreign ownership and established a common rate of 25%.

Some of the existing tax breaks for FOEs were gradually phased-out. For instance, FOEs that previ-

ously paid an EIT of 15% paid a tax rate of 18% in 2008, 20% in 2009, 22% in 2010, and 24% in 2011.

In contrast, the West Development program will remain in effect until 2020.

B Data Sources

We connect three large firm-level databases of Chinese manufacturing firms. The first is the relatively

well-studied Chinese Annual Survey of Manufacturing (ASM), an extensive yearly survey of Chinese

manufacturing firms. The ASM is weighted towards medium and large firms, and includes all Chinese

manufacturing firms with total annual sales of more than 5 million RMB (approximately $800,000),

as well additional state-owned firms with lower sales. This survey provides detailed information on

ownership, location, production, and the balance sheet of manufacturing firms. This dataset allows

us to measure total firm production, sales, inputs, and, for a few years, detailed skill composition of

the labor force. We supplement this data with a separate survey by the Chinese National Bureau of

Statistics that includes firms’ reported R&D. We use these data for years 2006–2007.

The second dataset we use is the administrative enterprise income tax records from Chinese State

Administration of Tax (SAT). The SAT is the counterpart to the IRS in China and is in charge of tax

collection and auditing. In addition, the SAT supervises various tax assistance programs such as the

InnoCom program. The SAT keeps its own firm-level records of tax payments as well other financial

statement information used in tax-related calculations. We have acquired these administrative enter-

prise income tax records from 2008–2011, which allows us to construct detailed tax rate information

for individual manufacturing firms. We also use these data to construct residualized measures of firm

productivity.49 The scope of the SAT data is slightly different from the ASM, but there is a substantial

amount of overlap for the firms which conduct R&D. For instance, the share of total R&D that can

be matched with ASM records is close to 85% in 2008.

The third dataset we use is the list of firms that are enrolled in the InnoCom program from 2008–

2014. For each of these manufacturing firms, we have the exact Chinese name, and the year it was

certified with high-tech status. This list is available from the Ministry of Science and Technology

website, and we have digitized it in order to link it to the SAT and ASM data. We use these data to

49We discuss the details of this procedure in Appendix C.
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cross-validate the high-tech status recorded in the SAT data.

C Estimation of Residual Productivity

This appendix describes how we construct an empirical measure of firm-level productivity φ̂it. First,

we use the structure in our model of constant elasticity demand to write firm revenue (value-added)

as:

ln rit =

(
θ − 1

θ

)
[κ ln kit + (1− κ) ln lit + φit],

where lit is the labor input which we assume may be chosen each period. Second, we obtain the

following relation from the first order condition of cost minimization for the variable input lit:

ln slit ≡ ln

(
wlit
rit

)
= ln

[
(1− κ)

(
θ − 1

θ

)]
+ vit,

where vit ∼ iid, and E[vit] = 0 is measurement error or a transitive shock in factor prices. Third, we

obtain a consistent estimate of (1− κ)( θ−1
θ ) for each 3-digit manufacturing sector. Finally, given our

benchmark value of θ = 5, we construct a residual measure of log TFP as follows:

φ̂it =
θ

θ − 1
ln rit − κ̂ ln kit − (1− κ̂) ln lit.

D Lack of Manipulation of Other Expenses

In Figure 4, we show a significant downward break in the administrative expense-to-sales ratio at

the notches for each firm size category. Given the fact that administrative expenses and R&D are

categorized together under the Chinese Accounting standard, we think that is the natural place to

find suggestive evidence of the relabeling behavior. In this section, we address the question of whether

other types of expenses might also illustrate similar empirical patterns. We plot a similar graph to

Figure 4 in Figure A.4 for the sales expense-to-sales ratio for all three size categories. We find that

there are no detectable discontinuities at the notches for all firms. Note that, while there is a drop

for small firms at the 6% notch, Table A.4 shows that this drop is not statistically significant. This

analysis suggests that the drops we observe in administrative costs are likely not due to substitution

of inputs, and are likely due to relabeling.
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E Detailed Model Derivation

E.1 Model Setup

Consider a firm i with a constant returns to scale production function given by:

qit = exp{φit}F (Kit, · · · , Vit),

where Kit, · · · , Vit are static inputs with prices wit, and where φit is log-TFP which follows the law of

motion given by:

φi,t = ρφi,t−1 + ε ln(1 +Di,t−1) + uit

where Di,t−1 ≥ 0 is R&D investment, and ui,t ∼ i.i.d. N(0, σ2). This setup is consistent with the R&D

literature where knowledge capital depreciates over time (captured by ρ) and is influenced by R&D

expenditure (captured by ε). In a stationary environment, it implies that the elasticity of TFP with

respect to a permanent increase in R&D is ε
1−ρ .

The cost function for this familiar problem is given by:

C(q;φit, wit) = qc(φit, wit) = q
c(wit)

exp{φit}
,

where c(φit, wit) = c(wit)
exp{φit} is the unit cost function.

The firm faces a constant elasticity demand function given by:

pit = q
−1/θ
it ,

where θ > 1. Revenue for the firm is given by q
1−1/θ
it . In a given period, the firm chooses qit to

max
qit

q
1−1/θ
it − qitc(φit, wit).

The profit-maximizing qit is given by:

q∗it =

(
θ − 1

θ

1

c(φit, wit)

)θ
.

Revenue is then given by:

Revenueit =

(
θ

θ − 1

1

c(φit, wit)

)θ−1

=
θ

θ − 1
q∗itc(φit, wit)

That is, revenues equal production costs multiplied by a gross-markup θ
θ−1 . Head and Mayer (2014)

survey estimates of θ from the trade literature. While there is a broad range of estimates, the central

estimate is close to a value of 5, which implies a gross-markup around 1.2. Per-period profits are then

given by:

πit =
1

θ − 1
q∗itc(φit, wit) =

(θ − 1)θ−1

θθ
c(φit, wit)

1−θ.
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Uncertainty and R&D investment enter per-period profits through the realization of log-TFP φit. We

can write expected profits as follows:

E[πit] =
(θ − 1)θ−1

θθ
c(ρφi,t−1 + (θ − 1)σ2/2, wit)

1−θD
(θ−1)ε
i,t−1

= E[πit|Di,t−1 = 0]D
(θ−1)ε
i,t−1 = π̃itD

(θ−1)ε
i,t−1 ,

where π̃it denotes the expected profit without any R&D investment.

We follow the investment literature and model the adjustment cost of R&D Investment with a

quadratic form that is proportional to revenue θπi1 and depends on the parameter b:

g(Dit, θπit) =
bθπit

2

[
Dit

θπit

]2

.

E.2 R&D Choice Under Linear Tax

Before considering how the InnoCom program affects a firm’s R&D investment choice, we first consider

a simpler setup without such a program. In a two-period context with a linear tax, the firm’s inter-

temporal problem is given by:

max
D1

(1− t1) (πi1 −Di1 − g(Di1, θπi1)) + β(1− t2)π̃i2D
(θ−1)ε
i1 ,

where the firm faces and adjustment cost of R&D investment given by g(Di1, θπi1). This problem has

the following first order condition:

FOC : −(1− t1)

(
1 + b

[
Di1

θπi1

])
+ β(1− t2)ε(θ − 1)D

(θ−1)ε−1
i1 π̃i2 = 0. (E.1)

Notice first that if the tax rate is constant across periods, the corporate income tax does not affect

the choice of R&D investment.50 In the special case of no adjustment costs (i.e., b = 0), the optimal

choice of Di1 is given by:

D∗i1 =

[
β(1− t2)(θ − 1)ε

1− t1
π̃i2

] 1
1−(θ−1)ε

. (E.2)

Even in the general case (unrestricted b), we also observe that the choice of R&D depends on

potentially-unobserved, firm-specific factor φi1 that influences π̃i2. A useful insight for the proceeding

analysis is that we can recover these factors from D1i as follows:

π̃i2 =
(1− t1)(D∗i1)1−(θ−1)ε

β(1− t2)ε(θ − 1)

(
1 + b

[
D∗i1
θπi1

])
.

50This simple model eschews issues related to source of funds, as in Auerbach (1984).
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Substituting π̃i2 into the objective function, we can write the value of the firm as

Π(D∗i1|t2) = (1− t1)

[
πi1 +D∗i1

(
1

(θ − 1)ε
− 1

)
+

(
b

(θ − 1)ε
− b

2

)
(D∗i1)2

θπi1

]
.

Rewriting this equation in terms of firm’s optimal R&D intensity d∗i1 =
D∗i1
θπi1

, the value-to-sales ratio is

Π(d∗i1|t2)

θπi1
= (1− t1)

[
1

θ
+ d∗i1

(
1

(θ − 1)ε
− 1

)
+ (d∗i1)2

(
b

(θ − 1)ε
− b

2

)]
. (E.3)

Second Order Condition

This problem may feature multiple solutions. To ensure our model results in sensible solutions, we

confirm the second order condition holds at the estimated values. The SOC is given by:

SOC : −(1− t1)

(
b

[
1

θπi1

])
+ β(1− t2)ε(θ − 1)((θ − 1)ε− 1)(D∗i1)(θ−1)ε−2π̃i2 < 0.

It is sufficient to have (θ−1)ε < 1 in order for the second order condition to hold. We can also use the

implicit function theorem to show that R&D decision D∗i1 is increasing in φi1 if (θ− 1)ε < 1, which is

consistent with numerous empirical studies.

E.3 A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure that mirrors the incentives

in the InnoCom program:

t2 =

{
tLT2 if di1 < α
tHT2 if di1 ≥ α

,

tLT2 > tHT2 and where α is the R&D intensity required to obtain the high-tech certification and LT/HT

stands for low-tech/high-tech. In addition, we introduced a fixed costs of certification c such that firms

need to pay c×αθπi1 to obtain the tax benefit when they pass the R&D intensity threshold. Intuitively,

this tax structure induces a notch in the profit function at d1 = α. Figure 6 presents two possible

scenarios following this incentive. Panel A shows the situation where the firm finds it optimal to

choose a level of R&D intensity below the threshold. At this choice, the first order condition of the

linear tax case holds and the optimal level of R&D is given by Equation E.1. From this panel, we

can observe that a range of R&D intensity levels below the threshold are dominated by choosing an

R&D intensity that matches the threshold level α. Panel B shows a situation where the firm that

is indifferent between the internal solution of panel A and the “bunching” solution of panel B. The

optimal choice of R&D for this firm is characterized both by Equation E.1 and by equating d∗1 = α.

Which of the two scenarios holds depends on determinants of the R&D investment decision that

may vary at the firm level and are summarized by π̃i2, adjustment and fixed costs b, c, as well as on the
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degree to which R&D investment is valued by firms in terms of future profits (i.e. ε(θ− 1)). However,

as long as π̃i2 and (b, c) are smoothly distributed around the threshold α, this incentive will lead a

mass of firms to find d1 = α optimal and thus “bunch” at this level.

We first calculate the optimal profit of the firm conditioning on bunching at the notch, Π(αθπ1|tHT2 ),

by substituting for the unobserved components of the firm-decision, i.e. π̃i2, using Equation E.1 to

obtain:

Π(αθπ1|tHT2 ) = (1− t1)

(
πi1 − αθπi1(1 + c)− bθπi1

2

[
αθπi1
θπi1

]2
)

+ β(1− tHT2 )(αθπi1)(θ−1)επ̃i2

= (1− t1)

[
πi1 − αθπi1(1 + c)− α2bθπi1

2

+
(1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
αθπi1
D∗i1

)(θ−1)ε(
1 + b

[
D∗i1
θπi1

])
D∗i1

]
.

Let
Π(α|tHT2 )
θπi1

be the value-to-sales ratio of the firm conditional on bunching at the notch. We can

write it again in terms of the optimal interior R&D intensity d∗i1 as

Π(α|tHT2 )

θπi1
= (1− t1)

[
1

θ
+ α

((
d∗i1
α

)1−(θ−1)ε

(1 + bd∗i1)
(1− tHT2 )

(1− tLT2 )

1

ε(θ − 1)
− (1 + c)− αb

2

)]
. (E.4)

A firm will bunch at the notch if
Π(α|tHT2 )
θπi1

≥ Π(d∗i1|t2)
θπi1

, which occurs when(
d∗i1
α

)1−(θ−1)ε(
1 + αb

d∗i1
α

)
(1− tHT2 )

(1− tLT2 )

1

ε(θ − 1)
− (1 + c)− αb

2

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
+ α

(
d∗i1
α

)2( b

(θ − 1)ε
− b

2

)
(E.5)

For each specific realization of adjustment and fixed costs (b, c), we define the marginal firm with

interior optimal R&D intensity d∗−b,c such that Equation E.5 holds with equality.

E.4 R&D Choice Under Tax Notch with Relabeling

Assume now that firms may misreport their costs and shift non-R&D costs to the R&D category.

Following conversations with CFOs of large Chinese companies, we model relabeling as a choice to

misreport expenses across R&D and non-R&D categories. Misreporting expenses or revenues overall

is likely not feasible as firms are subject to third party reporting (see, e.g., Kleven et al. (2011)).

Denote a firm’s reported level of R&D spending by D̃i1. The expected cost of misreporting to the

firm is given by h(Di1, D̃i1). We assume that the cost of mis-reporting is proportional to the reported

R&D, D̃i1, and depends on the percentage of mis-reported R&D, δi1 = D̃i1−Di1
D̃i1

, so that:

h(Di1, D̃i1) = D̃i1h̃ (δi1) .
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We also assume that h̃ satisfies h̃(0) = 0 and h̃′(·) ≥ 0.

The effects of the InnoCom program are now as follows:

t2 =

{
tLT2 if D̃1 < αθπ1

tHT2 if D̃1 ≥ αθπ1
,

Notice first that if a firm decides not to bunch at the level αθπ1, there is no incentive to misreport R&D

spending as it does not affect total profits and does not affect the tax rate. However, a firm might find

it optimal to report D̃1 = αθπ1 even if the actual level of R&D is lower. We start by characterizing

the firm’s optimal relabeling strategy δ∗i1 conditional on bunching and its resulting payoff function

Π(αθπ1, D
∗K
1 |tHT2 ). We again substitute for the unobserved components of the firm-decision, i.e. π̃i2

with the interior optimal R&D D∗i1 using Equation E.1:

max
DKi1

(1− t1)

(
πi1 −DK

i1 − αθπi1c−
bθπi1

2

[
DK
i1

θπi1

]2
)
− αθπ1h̃

(
αθπ1 −DK

i1

αθπ1

)

+
(1− t1)(1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
DK
i1

D∗i1

)(θ−1)ε(
1 + b

[
D∗i1
θπi1

])
D∗i1

The first order condition is:(
1 + b

[
D∗Ki1
αθπi1

])
=

(
1− tHT2

1− tLT2

)(
D∗Ki1
D∗i1

)(θ−1)ε−1(
1 + b

[
D∗i1
θπi1

])
+ h̃

′
(
αθπ1 −D∗Ki1

αθπ1

)
1

1− t1
This equation defines the optimal relabeling strategy δ∗i1 as an implicit function of the interior optimal

R&D intensity d∗i1 as the following:(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
(1 + αb

(
d∗i1
α

)
) =

1

α

[
1 + b

(
d∗i1
α

)
− h̃′(δ∗i1)

(1− t1)

]
(E.6)

The firm decides to bunch if the profits from the optimal relabeling strategy Π(αθπi1, D
K
i1 |tHT2 ) are

greater than when the firms is at the optimal interior solution (and truthful reporting) Π(D∗i1, D
∗
i1|tLT2 ).

We write this in terms of value-to-revenue ratio comparison and obtain:(
d∗i1

α(1− δ∗i1)

)1−(θ−1)ε

(1 + bd∗i1)× (1− δ∗i1)

(θ − 1)ε
×
(

1− tHT2

1− tLT2

)
− c− (1− δ∗i1)− αb

2
(1− δ∗i1)2︸ ︷︷ ︸

Relative Profit from Bunching

− h̃(δ∗i1)

α(1− t1)︸ ︷︷ ︸
relabeling Cost

≥ d∗i1
α

(
1

(θ − 1)ε
− 1

)
+ α

(
d∗i1
α

)2( b

(θ − 1)ε
− b

2

)
︸ ︷︷ ︸

Relative Profit Not Bunching

. (E.7)

The marginal firm d∗−b,c in this case is determined by Equation E.6 and Equation E.7 when it holds

with strict equality.
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F Bunching Approximations

This section provides detailed derivations of expressions that approximate changes in the R&D invest-

ment with the estimated density.

F.1 Percentage Increase in R&D Intensity of Marginal Firm

As in Kleven and Waseem (2013), we can approximate the behavior of the marginal firm with the

quantities B and h0(α). We first consider the special case without frictions, and note that

B =

α∫
d∗−

h0 (u) du ≈ h0(α)
(
α− d∗−

)
= h0(α)α

α− d∗−

α︸ ︷︷ ︸
∆D∗

. (F.1)

The first part of Equation F.1 makes the point that the excess mass B will equal the fraction of the

population of firms that would have located in the dominated region. This quantity is defined by

the integral of the counterfactual distribution h0(·) over the dominated interval, which is given by

(d∗−, α) . The second part of Equation F.1 approximates this integral by multiplying the length on

this interval by the value of the density at α. Simplifying this expression and solving for ∆D∗ we

obtain:

∆D∗ ≈ B

h0(α)α
.

Thus, in order to estimate ∆D∗, it suffices to have an estimate of the counterfactual density h0(·),

and to use this to recover the quantities B and h0(α). Note that while ∆D∗ is the percentage increase

relative to the notch, the percentage increase relative to the initial point of the marginal firm is

given by: ∆D∗

1−∆D∗ = α−d∗−
d∗− . Similarly, the increase in R&D intensity for the marginal firm is given by

α∆D∗ = α− d∗−.

In the case of heterogeneous frictions, we may obtain a similar approximation if we assume that

the probability of being constrained from responding to the program does not depend on d. While

this may be a strong assumption, it provides a useful approximation for B. To see this, note that

B =

α∫
d∗−

∫
b,c

I[d ≥ d−b,c]h0(d, b, c)d(b, c)dd

=

α∫
d∗−

∫
b,c

I[d ≥ d−b,c]h0(b, c|d)d(b, c)h0(d)dd

=

α∫
d∗−

(1− Pr(Constrained|d))h0(d)dd,
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where the second line uses the definition of conditional probability, and the third line integrates

over (b, c). Using the assumption that Pr(Constrained|d) does not depend on d and using the same

approximation as in Equation F.1, we obtain:

B = (1− Pr(Constrained))

α∫
d∗−

h0(d)dd

≈ (1− Pr(Constrained))h0(α)α
α− d∗−

α︸ ︷︷ ︸
∆D∗

.

The formula for ∆D∗ now becomes:

∆D∗ ≈ B

h0(α)α(1− Pr(Constrained))
.

F.2 Average Percentage Increase in R&D Intensity

We now derive an approximation for the average percentage increase in R&D due to the notch. We

begin by writing the average R&D intensities in both situations as:

E[d|No Notch, d ∈ (d∗−, d∗+)] =

d∗+∫
d∗−

dh0(d)dd ≈ α+ d∗−

2︸ ︷︷ ︸
d

α∫
d∗−

h0(d)dd+
d∗+ + α

2︸ ︷︷ ︸
d̄

d∗+∫
α

h0(d)dd

E[d|Notch, d ∈ (d∗−, d∗+)] =

d∗+∫
d∗−

dh1(d)dd ≈ α+ d∗−

2︸ ︷︷ ︸
d

α∫
d∗−

h1(d)dd+
d∗+ + α

2︸ ︷︷ ︸
d̄

d∗+∫
α

h1(d)dd

We can then write the change in R&D intensity as:

E[d|Notch, d ∈ (d∗−, d∗+)]− E[d|No Notch, d ∈ (d∗−, d∗+)] ≈ d̄

∫ d∗+

α
(h1(d)− h0(d))dd︸ ︷︷ ︸

B

+ d

∫ α

d∗−
(h1(d)− h0(d))dd︸ ︷︷ ︸

−B

= B(d̄− d), (F.2)

where we use the fact that the excess mass above the notch is equal to the missing mass below the

notch.

Taking the following approximation of E[d|No Notch, d ∈ (d∗−, d∗+)]:

E[d|No Notch, d ∈ (d∗−, d∗+)] =

∫ d∗+

d∗−
dh0(d)dd ≈

∫ d∗+

d∗−
αh0(α)dd

= αh0(α)(d∗+ − d∗−) = 2αh0(α)(d̄− d),
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we obtain:
E[d|Notch, d ∈ (d∗−, d∗+)]− E[d|No Notch, d ∈ (d∗−, d∗+)]

E[d|No Notch, d ∈ (d∗−, d∗+)]
=

B

2αh0(α)
. (F.3)

Note that, while these derivations do not explicitly include the role of heterogeneous frictions, these

expressions are not affected by the presence of heterogeneous frictions.

F.3 Identification of Intent-to-Treat Effect

The ITT estimates are identified by firms that “comply” with the tax incentive. To see this, note:

E[Y |No Notch, d ∈ (d∗−, d∗+)] =

α∫
d∗−

Y h0(d)× Pr(Constrained|d)dd

︸ ︷︷ ︸
Never Takers

+

α∫
d∗−

Y h0(d)× (1− Pr(Constrained|d))dd

︸ ︷︷ ︸
Compliers

+

d∗+∫
α

Y h0(d)dd

︸ ︷︷ ︸
Always Takers

Similarly, we can write

E[Y |Notch, d ∈ (d∗−, d∗+)] =

α∫
d∗−

Y h1(d)dd

︸ ︷︷ ︸
Never Takers

+

d∗+∫
α

Y h1(d)× (1− Pr(Constrained|d))× I[d0 ∈ (d∗−, α)]dd

︸ ︷︷ ︸
Compliers

+

d∗+∫
α

Y h1(d)I[d0 ∈ (α, d∗+)]dd

︸ ︷︷ ︸
Always Takers

,

where we assume that there are no defier firms that would be above the notch without the Inno-

Com program, but would be below the notch with the InnoCom program. Noting that h0(d) ×

Pr(Constrained|d) = h1(d), and that h1(d)× I[d0 ∈ (α, d∗+)] = h0(d), we can write the ITT Y as:

ITT Y =

d∗+∫
α

Y h1(d)(1− Pr(Constrained|d))I[d0 ∈ (d∗−, α)]dd−
α∫

d∗−

Y h0(d)(1− Pr(Constrained|d))dd,

(F.4)

which is just the change in the average of firms in the excluded region that is driven by the compliers.
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Approximation of Intent-to-Treat Effect

Finally, we can obtain more intuition behind the ITT estimates by noting that:

B =

d∗+∫
α

h1(d)(1− Pr(Constrained|d))I[d0 ∈ (d∗−, α)]dd =

α∫
d∗−

h0(d)(1− Pr(Constrained|d))dd.

Using this fact, the following expression is an approximation of Equation F.4:

ITT Y ≈ B(Ȳ − Y ) (F.5)

where Y is the counterfactual average value of Y for compliers with d0 ∈ (d∗−, α) and Ȳ is the

average value of Y for compliers with d1 ∈ (α, d∗+). This equation gives a discrete treatment effect

interpretation to the ITT by showing that the ITT is driven by the amount of switching of compliers

between the “below notch” and “above notch” regions, given by B, and the change in the outcome

associated from being in the “above notch” region. Note that this approximation implies a constant

treatment effect. While we do not rely on this assumption in our analysis, we find it useful in order

to build intuition for the interpretation of the ITT estimates.

G Cross-Validation of p and (d∗−, d∗+) in Bunching Analysis

We follow Diamond and Persson (2016) in using a data-based approach to selecting the excluded region

(i.e., (d∗−, d∗+)), and the degree of the polynomial, p. In particular, we use K-fold cross-validation to

evaluate the fit of a range of values for these three parameters.

Our cross-validation procedure searches over values of p < 7, and all possible discrete values of

d∗− < α and d∗+ > α that determine the excluded region. Given the monotonically decreasing shape

of the R&D intensity distribution, we restrict the estimated βk’s to result in a decreasing density.

For each triple (p, d∗−, d∗+), the procedure estimates the model in K = 5 training subsamples of

the data and computes two measures of model fit on corresponding testing subsamples of the data.

First, we test the hypothesis that the excess mass (above the notch) equals the missing mass (below

the notch). Second, we compute the sum of squared errors across the test subsamples. We select the

combination of parameters that minimizes the sum of squared errors, among the set of parameters

that do not reject the test of equality between the missing and excess mass at the 10% level.

Note that a common practical problem in the literature is the higher frequency in the reporting

of “round numbers.” As Figures 2 and A.1 in Section 3 demonstrate, our data does not display

“round-number” problems that are often present in other applications.
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Finally, we obtain standard errors by bootstrapping the residuals from the series regression, gen-

erating 5000 replicates of the data, and re-estimating the parameters.

H Robustness of Bunching Estimates

This section discusses additional robustness checks of our results in Section 5.1. Figure A.6 estimates

the counterfactual density of R&D intensity when we exclude certain groups of firms from the data.

Panel A analyzes data on large firms from 2011 and shows that excluding state-owned enterprises from

our data does not have a meaningful effect on our estimate of ∆d. Similarly, panels B and C show

that excluding firms with low profitability and firms that are not in designated high-tech industries,

respectively, results in very similar estimates of the effects of the notch on R&D investment.

Figure A.7 shows that our estimates of counterfactual densities are robust to the choice of (p, d∗−, d∗+).

This figure shows that restricting (p, d∗−, d∗+) to the second-best estimate either with p = 3 (panel

A) or p = 4 (panel B) results in very similar estimates. Panel C of this graph further restricts the

estimation to only rely on data such that d > d∗+ to recover the counterfactual density. This panel

shows that even relying only on data beyond the bunching region results in very similar estimates.

I Estimation of E[Y |d] for ITT Analysis

Section 5.2 discusses the estimation of the ITT effects of the notch on our outcomes of interest. The

ITT estimates depend on estimates of the counterfactual distribution, h0(d), as well as the predicted

value of the outcome over the excluded region, E[Y |d,No Notch] . In this section we discuss estimates

of these functions. We focus on large firms since, as shown in Figure A.5, they account for the vast

majority of R&D in the economy. In addition, all analyses report the effects of the notch in 2009 on

outcomes in 2009 and 2011. The counterfactual density of interest is presented in panel C of Figure 8.

We estimate E[Y |d,No Notch] using the following regression:

Yit =

p∑
k=0

βk · (dit1)k︸ ︷︷ ︸
E[Yt|dt1=d,No Notch]

+γ · 1
[
d−∗ ≤ dit1 ≤ d+∗]+ δYit1 + φs + νit,

where we use the same exclusion region as in panel C of Figure 8 (see Appendix G for details), and we

use a quadratic polynomial for each outcome. Figure A.8 shows the average value of our outcomes as

a function of R&D intensity in 2009 (blue circles) along with the fitted values from these regressions

(red lines). The size of the circles indicate the weights based on the number of observations in each

bin.
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Panel A considers the case of log R&D intensity. Since this is a mechanical function of R&D

intensity, we know what E[Y |d,No Notch] should look like. This figure shows that, even though the

polynomials are driven by data outside of the exclusion region, we are able to fit non-linear functions

very well. Other panels show the red lines provide a good fit for data outside of the exclusion region.

As firms self-select into the InnoCom program, we cannot evaluate the fit inside the exclusion region,

since these patterns may be due to selection. Finally, note that we allow for the user-cost to have a

discontinuous jump in panel C, since, in contrast to other outcomes, we would expect participation in

the program to have a mechanical effect on the user cost of R&D.51

J Robustness of Structural Model Assumptions

In this section, we conduct a few additional robustness checks of the parametric and modeling as-

sumptions we have made in our structural estimation analysis.

Parametric Distribution of Firm Productivity

In our benchmark model, we micro-found the cross-sectional TFP distribution from a Normal AR(1)

process. We use the persistence and volatility of the sales for non-R&D firms to calibrate the per-

sistence parameter ρ = 0.725 and variance parameter σ = 0.385. The assumption of this process

restricts the cross-sectional distribution of firm TFP exp(φ1) to be Lognormal. Since we have con-

structed firm-level TFP in our data, it allows us to check this parametric assumption directly with

the TFP data.

We use ideas proposed by Kratz and Resnick (1996) and Head et al. (2014) in this robustness

check. The basic idea is to construct the empirical CDF of our sample firms’ measured TFP as F̂i, i =

1, 2, ...N , with i ranked based on firm TFP and the Nth firm of the highest measured TFP. With the

Log-normal parametric assumption, we know the theoretical CDF is FLN (lnTFP ) = Φ(
lnTFP−µtfp

σtfp
),

with Φ as the standard Normal CDF. Thus, we can write the lnTFP of each quantile i as:

lnTFPi = µtfp + Φ−1(Fi)σtfp.

With our frequency estimate F̂i, we can then predict the “theoretical” ˆlnTFP i using the formula above.

Notice that we have used the parametric Normal assumption in this calculation. This procedure allows

51Diamond and Persson (2016) allow for discontinuities in their estimates of E[Y |d,No Notch] since, in their application,
being manipulated above the notch may have a direct effect on outcomes. In our case, we would not expect a direct
effect of the program on firm-level outcomes apart from the effects related to tax incentives, which would mechanically
affect the user cost of R&D.
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us to evaluate how reasonable the Lognormal parametric assumption is by comparing the empirical

fit of ˆlnTFP and lnTFP .

In Figure A.9, we show that the predicted TFP from imposing the Lognormal CDF tracks the

45 degree linear line, i.e., the data quite well. It thus provides strong evidence that Lognormal is a

reasonable parametric assumption for the TFP distribution.

Heterogeneity in the TFP Elasticity: ε

Our benchmark model assumes firms have heterogeneous technological opportunities of R&D invest-

ment that is driven by heterogeneity in adjustment costs, b. An alternative way of modeling the

heterogeneity in firms’ technological opportunities is to allow for heterogeneity in ε.52 As we show

in this appendix, our average estimates of ε and b do not depend on which can be heterogeneous.

However, models where ε was allowed to be heterogeneous produced worse fits of the data. Specifi-

cally, these models predict that R&D intensity is not increasing in TFP, which is contrary to what we

observe in the real world. For this reason, we believe our benchmark model is superior to models with

heterogeneous values of ε.

To investigate how this alternative setup affects our results, we estimated models where ε follows a

Beta distribution B(αε, βε) between 0 and an upper bound of ε̄. We chose the Beta distribution since

its probability density function is highly flexible in the interval [0, ε̄]. We estimated two versions of the

heterogeneous-ε model. In Model A, we restrict the Beta distribution to be symmetric, i.e. αε = βε,

and jointly estimate αε and ε̄. In Model B, we impose ε̄ = 1/(θ − 1) = 0.25, a value that guarantees

the second order condition of firm’s R&D choice problem. We then estimate αε and βε. The results

are reported in Table A.6.

Several findings are worth highlighting. First, the implied mean ε are 0.113 and 0.114 in Model

A and B, respectively. These values are comparable to our benchmark value of 0.098. Second, the

average adjustment cost parameter is 8.659 and 8.677 for the two cases, again very similar to our

benchmark estimate. However, the set of moments summarizing firm TFP at different R&D intensity

regions had noticeably worse fit than the our benchmark. When ε is heterogeneous, our model predicts

a non-monotonic relationship between TFP and R&D intensity, which is inconsistent with the positive

correlation we observe in the data. This is because despite the fact that firm R&D itself is increasing

in TFP, its R&D Intensity becomes decreasing in TFP when the value of ε is small. Combined, these

findings indicate that despite obtaining similar estimates of key model parameters, our benchmark

model of heterogeneous adjustment cost is a a preferable model for our data.

52Note that our data variation cannot separately identify heterogeneity in both ε and b.
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Appendix Graphs

Figure A.1: Bunching at 5% R&D Intensity (2005-2007)
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NOTE: This figure plots the R&D intensity distribution of manufacturing firms conducting R&D
during the period of 2005 to 2007. We include the firms that had the R&D intensity between 1% and
15%. There is a significant bunching of firms at the 5% threshold. Source: Annual Survey of
Manufacturers. See Section 3.1 for details.
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Figure A.2: Effects of the 2008 Tax Reform on the Bunching of Domestic-Owned, Small Companies
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NOTE: This figure plots the R&D intensity distribution of a balanced panel of domestic-owned small companies. These firms’ qualifying
threshold changed from 5% to 6% due to the 2008 tax reform. These firms gradually adjusted towards the new threshold of 6% from 2008
to 2011. Source: Administrative Tax Return Database and Annual Survey of Manufacturers.
See Section 3.1 for details.
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Figure A.3: Alternative Empirical Evidence of Relabeling
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NOTE: This figure summarizes the ratio of R&D to administrative expense for small, medium, and
large firms in our sample. This figure shows that this ratio jumps discontinuously across the
thresholds of R&D intensity prescribed by the InnoCom program. This suggests firms manipulate
their reported R&D intensity by relabeling non-R&D administrative expenses as R&D. See Table
A.3 for estimates of the structural break.
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Figure A.4: Lack of Manipulation of Sales Expenses
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NOTE: This figure shows the binned plot of sales expense-to-sales ratio for each size categories of
firms. Table A.4 shows that we do not find a detectable drop in this ratio at the notches.

Figure A.5: Aggregate Implications
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NOTE: This figure summarizes the share of total R&D accounted for by the small, medium, and
large firms in our sample. As it illustrates, the large firms account for more 90% of the total R&D
and thus is the most important group for aggregate implications of the policy.
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Figure A.6: Robustness of Bunching Estimates to Dropping Groups of Firms
A. Dropping SOEs B. Dropping Low Profitability Firms
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C. Dropping Low Tech Firms
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NOTE: This figure conducts robustness checks of the benchmark bunching analysis for large firms in 2011. In panel A, we drop the
State-owned enterprises. In panel B, we drop the lowest 20% profitability firms. In panel C, we dropped all the firms that are not classified
in the “High Tech” industries defined by the Chinese government. These graphs shows our benchmark results are robust across these
subsamples.
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Figure A.7: Robustness of Bunching Estimates to Specification of Counterfactual Density
A. Second-Best Choice of Specification (p=3) B. Second-Best Choice of Specification (p=4)
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C. Estimate Using Observations Above d∗+
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NOTE: This figure conducts robustness checks of the benchmark bunching analysis for large firms in 2011. As discussed in Appendix G,
we select (p, d∗−, d∗+) via cross-validation. In panel A, we use the second-best choice for the specification of (p, d∗−, d∗+). As in our
benchmark case, p = 3. In panel B, we further restrict p = 4 and we select (d∗−, d∗+) via cross-validation. In panel C, we use the same
value of d∗+ as in our benchmark case and we only use data above this value when estimating the counterfactual density. These graphs
shows our benchmark results are robust to how we specify (p, d∗−, d∗+).
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Figure A.8: Estimated Values of E[Y |d] for ITT Analysis

A. Log R&D Intensity in 2009 B. Log Administrative Cost to Sales Ratio in 2009
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NOTE: This figure reports the polynomial regression of binned outcome variables on R&D intensity.
The size of each circle indicates the weights based on the number of observations accounted for by
each bin. We leave out all the observations in the manipulated region. Overall, these graphs show a
good fit on the data outside of the exclusion region. The fit in the exclusion region cannot be
evaluated since the data patterns may be due to selection. See Appendix I for more details.
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Figure A.9: Data TFP and Predicted TFP under Log Normal Distribution

NOTE: This figure reports the predicted TFP from imposing Lognormal CDF and the 45 degree
linear line. It shows that the predicted TFP tracks the data TFP quite well. It thus provides strong
evidence that Lognormal is a reasonable parametric assumption for the TFP distribution.
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Figure A.10: Sensitivity Analysis

A. Sensitivity Analysis for ε
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B. Sensitivity Analysis for η

Lambda: Change in Parameter for Change in Moment
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NOTE: This figure reports results of sensitivity analysis based on Andrews et al. (2017). We report
the sensitivity matrix Λ, which captures how a local change in each moment affects the parameter
estimates. To make it comparable across parameters, we scale the Λ to present the magnitude in
terms of percent of each parameter. 72



Appendix Tables

Table A.1: Manipulation of the Administrative Expense to Sales Ratio

(1) (2) (3)
Small Medium Large

Structural Break -0.014∗∗ -0.013∗∗∗ -0.008∗∗∗

(0.007) (0.004) (0.003)

Observations 5,016 8,336 8,794

NOTES: This table reports estimates of the structural break at
the notches in Figure 4. The table shows that the ratio of ad-
ministrative expenses to sales drops across the notches of the In-
noCom program, which suggests firms qualify for the InnoCom
program by relabeling non-R&D expenses as R&D. See Section
3.1 for details on data sources and Section 3.3 for details on the
estimation. Standard errors in parentheses. Source: Administra-
tive Tax Return Database.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table A.2: Lack of Sales Manipulation at R&D Intensity Thresholds

(1) (2) (3)
Small Medium Large

Structural Break 0.108 -0.021 0.055
(0.103) (0.067) (0.114)

Observations 1,096 1,952 1,665

NOTES: This table reports estimates of the structural break at
the notches of panel A in Figure 5. The table shows that firms
do not manipulate their sales to comply with the InnoCom pro-
gram. See Section 3.1 for details on data sources and Section
3.3 for details on the estimation. Standard errors in parentheses.
Source: Administrative Tax Return Database.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A.3: Alternative Estimates of Manipulation of Administrative Expenses

(1) (2) (3)
Small Medium Large

Structural Break 0.053∗∗ 0.056∗∗∗ 0.054∗∗

(0.026) (0.020) (0.022)

Observations 3,544 5,710 5,597

NOTES: This table reports estimates of the structural break at
the notches in Figure A.3. The table shows that the ratio of
administrative expenses to R&D jump across the notches of the
InnoCom program, which suggests firms qualify for the InnoCom
program by relabeling non-R&D expenses as R&D. See Section
3.1 for details on data sources and Section 3.3 for details on the
estimation. Standard errors in parentheses. Source: Administra-
tive Tax Return Database.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table A.4: Lack of Manipulation of Sales Expenses at R&D Intensity Thresholds

(1) (2) (3)
Small Medium Large

Structural Break -0.002 -0.000 -0.001
(0.006) (0.004) (0.004)

Observations 4,774 8,064 8,600

NOTES: This table reports estimates of the structural break at
the notches in Figure A.4. The table shows that firms do not
manipulate sales expenses to comply with the InnoCom program.
See Section 3.1 for details on data sources and Section D for de-
tails on the estimation. Standard errors in parentheses. Source:
Administrative Tax Return Database.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

74



Table A.5: Estimates of Treatment Effects

A. Estimates of Intent-to-Treat (ITT) Effects

Bootstrap
ITT SE T-Stat 5th Perc. 95th Perc.

2009
Admin Costs -0.095 0.025 -3.809 -0.137 -0.054

Admin Costs (levels) -0.004 0.001 -3.700 -0.005 -0.002

R&D 0.146 0.065 2.255 0.037 0.250

R&D (real) 0.087 0.042 2.051 0.021 0.158

User Cost of Capital -0.071 0.037 -1.919 -0.131 -0.009

2011
Tax -0.130 0.018 -7.345 -0.158 -0.101

TFP 0.012 0.006 1.930 0.002 0.022

B. Estimates of User-Cost-of-Capital Elasticities

Bootstrap
Estimate 5th Perc. 95th Perc.

Reported R&D to UCC (2009) -1.914 -7.845 -0.016

Real R&D to UCC (2009) -1.030 -4.823 -0.012

Tax to Reported R&D (2011) -1.153 -2.751 -0.459

NOTES: This table reports robustness of estimates of ITT effects of the notch on vari-
ous outcomes. Relative to Table 3, this table uses an alternative, second-best estimate
of the density of counterfactual R&D distribution. Panel B reports ratios of estimates
in panel A. Standard errors computed via bootstrap. See Section 3.1 for details on
data sources and Section 5 for details on the estimation. Source: Administrative Tax
Return Database.

ITT =
1

NExcluded

∑
i∈(D∗−,D∗+)

Yi −
∫ D∗+

D∗−
ĥ0(r) ̂E[Y |rd,No Notch]dr
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Table A.6: Structural Estimates with Heterogeneous ε

A. Point Estimates
Model A (αε = βε)

Distribution of Relabeling Adjustment Distribution of
TFP Elasticity of R&D Cost Cost Fixed Costs
αε ε̄ η µb µc

Estimate 1.287 0.226 4.838 8.659 1.004
SE 0.192 0.009 0.504 0.044 0.055

Model B (ε̄ = 1/(θ − 1))

Distribution of Relabeling Adjustment Distribution of
TFP Elasticity of R&D Cost Cost Fixed Costs
αε βε η µb µc

Estimate 3.256 3.860 6.265 8.677 1.029
SE 0.091 0.160 0.103 0.063 0.049

NOTES: This table reports estimates of structural parameters of the model in Section J. Estimates
based on calibrated values of θ = 5, ρ = 0.725, and σ = 0.385.

B. Simulated vs. Data Moments
Model A Model B Data

Probability Mass for d < d−∗ 0.324 0.296 0.280
Fraction not Bunching 0.676 0.665 0.675
Probability Mass for d > d+∗ 0.259 0.217 0.189
Bunching Point d−∗ 0.78% 0.90% 0.88%
ITT reported R&D 0.145 0.141 0.146
ITT TFP 0.008 0.009 0.012
ITT administrative cost ratio -0.25% -0.24% -0.33%
Average TFP for d < d−∗ -0.029 -0.029 -0.032
Average TFP for d between d−∗ and d+∗ -0.050 -0.039 0.000
Average TFP for d > d+∗ 0.075 0.135 0.056

NOTES: This table compares the moments generated by our simulations
with those from the data. The simulation is based on 30, 000 firms.
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