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I Introduction

In the quest for viable policies to improve public school outcomes, considerable attention has fo-

cused on teacher performance, informed by the ever-wider availability of detailed administrative

data sets that link students to their teachers. Leveraging such data, sophisticated teacher value-

added measures have been developed in an influential recent literature, intended to capture the

overall performance impact of a given teacher – see, for example, Kane and Staiger (2008) and

Chetty, Friedman and Rockoff (2014a,b).1 In turn, estimates of these value-added measures are

now the cornerstone of policy interventions that include, somewhat controversially, dismissing

low value-added teachers.

Teacher value-added (‘VA’) is not a primitive of the education production technology.2

Instead, it is natural to attribute teacher performance to a teacher’s ‘type’ (or ability) and

actions (or work effort), with effort likely to depend on the incentive environment.3 Yet teacher

ability and effort are typically not observed, and partly as a consequence, we do not have

estimates of the two education inputs or their longer-term impacts on a common footing. This

in turn inhibits policy design, making it difficult to compare the cost effectiveness of reforms

that target teacher effort versus teacher ability in any systematic way.

Motivated by these estimation and policy issues, our paper has two goals. On the estimation

front, we seek to develop an approach that allows both incentive-varying teacher effort and

incentive-invariant teacher ability to be identified along with their persistent effects for the first

time in the literature.4 The resulting estimates can provide insight into the respective short-

and longer-term productivities of these education inputs, filling a gap in our knowledge of the

education process. They also have a bearing on the policy debate, as different reforms are likely

to be suitable for bringing forth different inputs. On that policy theme, our second goal is to set

out a quantitative means for comparing incentive reforms with relevant alternative education

policies, including policies that target teacher ability, drawing on the new estimates; we will do

1The value-added literature builds on well-known studies – notably Rockoff (2004) and Rivkin, Hanushek and
Kain (2005) – using fixed effects methods to show convincingly that ‘teacher quality’ matters.

2Consistent with this claim, recent empirical research shows clearly how teacher performance varies with
workplace characteristics – see Jackson and Bruegemann (2009) and Jackson (2013), for example. (Appendix A
provides a fuller review of this and other related literatures.)

3This accords with evidence that accountability reforms in education have improved student achievement in
many settings – see Figlio and Loeb (2011) for a comprehensive survey.

4We take ‘effort’ to be any incentive-related action that raises scores – for instance, exerting more effort in the
classroom or devoting more time to lesson planning. We will define ability as the component of teacher VA that
does not change over time, conditional on teacher experience.
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so in terms of their performance benefits and financial costs. This formal policy comparison is

novel, and should help to sharpen policy makers’ assessment of viable education reform options.

Central to addressing the first goal is an estimable framework built around an education

production function, which we use to express teacher VA in terms of teacher ability and effort.

As the form of the production technology is unknown, we assume a linear approximation to

the true function and let inputs have persistent impacts over time – appropriate given that

knowledge accumulates in an education context. From this specification of the technology, we

derive estimating equations that guide our empirical approach.

To bring the framework to the data, we take advantage of a rich administrative data set

covering all North Carolina public school teachers and students over time, and exogenous in-

centive variation arising from the introduction of the federal “No Child Left Behind” (NCLB)

accountability system. As is well-appreciated in the literature – see Reback (2008) and Neal and

Schanzenbach (2010), for instance – proficiency schemes such as NCLB make students matter

differentially depending on how marginal they are. In line with this idea, we show as motivation

for the main analysis that teacher VA increases in an intuitive measure of incentive strength, a

finding robust to using across- and within-teacher variation, with the evidence also pointing to

a teacher effort response to the reform’s introduction.5

Our proposed estimation procedure leverages this accountability policy variation. Specif-

ically, we assume that educators respond to incentives under proficiency systems by directing

relatively more effort to students predicted to score near the proficiency threshold (as the evi-

dence in our application indicates) and in a similar way across years. We estimate the contem-

poraneous ability of teachers observed before and after the reform using standard VA estimation

methods and pre-reform data. We then identify contemporaneous effort from the correlation of

post-reform VA with incentive strength (as captured by the proportion of marginal students in

the classroom), conditioning on the estimated pre-reform ability measure and experience. The

estimates indicate that a one standard deviation increase in ability raises scores by 0.18 SD,

compared to 0.05 SD for a one standard deviation increase in effort.

Next, we investigate the extent to which these contemporaneous teacher ability and effort

measures persist in determining an individual student’s test scores in future. To estimate the

persistence of teacher ability, we use data from the pre-reform period and adapt a well-established

5The reform did not cause school principals to engage in within-school teacher reassignments nor to alter class
sizes – leading alternative explanations.
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method from the previous literature, finding that approximately 40 percent of the initial impact

of teacher ability persists after one year, and 20 percent after four years.

To identify the persistence of effort, the ideal experiment would involve a single one-time

incentive reform that resulted in an immediate effort response, with no correlated responses in

future, allowing us to use a strategy similar to the approach for estimating ability persistence.

As there are several departures from that ideal in our observational setting,6 we develop a

maximum likelihood estimation procedure based on the technology that allows us to account for

three distinct sources of teacher effort explicitly, including the persistent effects of effort from

the previous year (see Section V for a detailed description). The resulting estimates indicate

that 10 percent of the initial effort effect persists one year ahead, which amounts to 25 percent of

the one-year persistence of teacher ability. The faster decay we find for effort relative to ability

is in line with teachers ‘teaching to the test’ to some degree – a phenomenon rarely identified

empirically. Further, we show that not accounting for the test score effects of contemporaneous

effort decisions would result in a significant overestimate of effort persistence.

The combined estimation approach for recovering teacher ability, effort, and their persistent

effects – the first main contribution of our study – is applicable in other contexts where rich

administrative data and clear policy variation are available. Of note, the new estimates we

obtain show that teacher effort is both a productive input and one that responds systematically

to incentive variation, with longer-term benefits for students: in essence, teacher actions matter

alongside teacher type. Our analysis thus underscores the agency of the teaching force as an

important feature of the education production process and one that can be influenced by the

incentive environment, itself partly under the control of the policy maker.

As our second main contribution, we explore the quantitative implications of this economic

agency for the education policy debate. Our estimates suggest a natural question: For resource-

constrained decision makers, are policies that alter the mix of teachers based on value-added

preferable to policies that take the existing teacher stock as given and alter effort incentives

instead? In particular, how would the widely discussed policy of replacing the bottom five

percent of the teacher value-added distribution compare with a policy that targeted teacher

effort incentives? Our framework and estimates allow us to provide the first quantitative evidence

6These include the correlation of NCLB effort incentives over time, the dependence of contemporaneous effort
on the persistence parameter we wish to estimate, and induced changes to a concurrent state-level accountability
program – the ABCs of Public Education – following the introduction of NCLB.
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addressing this relevant question.

For the costs and benefits of the ability-based policy, we appeal to prior research – see

Hanushek (2009, 2011), Chetty et al. (2014b) and Rothstein (2015) – for plausible estimates of

the likely impacts in our setting. The literature suggests that a policy removing the bottom

five percent of the teacher VA distribution would cost around $700 per teacher, not least by

increasing employment risk. At the same time, the policy would be likely to increase long

run test scores by 0.0034 SD (averaging across all teachers), drawing on our estimates of the

persistence of ability.

The viable incentive policy we consider is based on the state’s pre-existing ABCs account-

ability system. This provides incentives to improve student performance throughout the distri-

bution, setting individualized targets for all students according to their prior performance and

thus making all students marginal. To calculate the benefits and costs of a directly compara-

ble incentive policy, we need to recover the underlying mapping between output and incentive

expenditures. Here, we use the introduction of NCLB and the exogenous variation it produced

in both (i) the incentive cost of increased effort7 and (ii) the response of output to effort (due

to the heightened incentives induced under the new ABCs targets the following year). We show

how to combine the two to recover the desired output-expenditure mapping (see Section VI).

This in hand, we can adjust the rewards under the incentive scheme to equate costs with the

ability reform, and then compare the resulting output.

We find that the incentive reform produces 88 percent higher output for the same cost as

the ability-based reform, using our preferred estimates. Further, we show that the advantage

enjoyed by the incentive reform is likely to arise in a range of plausible circumstances – a robust

advantage stemming from the fact that incentives can be applied throughout the teacher VA

distribution whereas ability-based reforms focus on part of the distribution. Not only does the

policy analysis indicate that incentive reforms are competitive with policies targeting teacher

ability. It shows, more generally, how incentive reforms can be compared with alternatives in a

systematic way that draws on underlying technology estimates, providing policy makers with a

new means to choose among the menu of viable education policy options.

The remainder of the paper is organized as follows: Section II sets out the education produc-

7The effort response to NCLB, which we have documented, raised the targets that schools faced in the following
year, given the way ABCs targets are set. More demanding targets in turn lowered the probability of achieving
the ABCs bonus. We can monetize the cost of extra effort from this change in probability.
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tion technology central to the analysis. Section III describes the accountability programs and

the North Carolina administrative data we use for estimation, along with motivating descriptive

evidence. In Section IV, we present our strategy for recovering ability and effort contemporane-

ously, followed by the results from that exercise, and in Section V, we describe our approach for

estimating the persistent effects of ability and effort along with the associated findings. Section

VI presents the cost-effectiveness analysis, and Section VII concludes.

II Framework

This section sets out the conceptual framework at the heart of our study. We use it to state the

specific goals of our econometric analysis and to derive the equations that guide the estimation

approach we develop.

The framework is based on an education production technology that relates inputs to mea-

sured education output y. Estimating the parameters of this technology presents important

challenges, given its underlying specification is unknown and many inputs are unobserved, even

in the most comprehensive administrative datasets. Our approach to these empirical challenges

is to impose some minimal structure (which we do in this section), then leverage plausible sources

of policy variation and rich longitudinal data, described in Section III, to identify key inputs.

We make two main assumptions about the technology’s form:

Assumption 1: The education production technology is linear in its inputs, with an additive

error.

This serves as an approximation to the true underlying function.

Assumption 2: Inputs have a cumulative effect on output.

This second assumption is natural in the case of education, where education investments serve

to increase the stock of knowledge over time. We will treat time discretely, corresponding to

our yearly data. Specifically, the current academic year is denoted by t, and a student’s grade is

indexed by g ∈ {0, 1, 2, ...}, where the first year of formal schooling, kindergarten, is represented

by g = 0.

We focus on two inputs, teacher ability and teacher effort, and their contemporaneous

and persistent effects in terms of measured output given by test scores. Reflecting the two
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assumptions above, the following representation of the technology makes explicit (suppressing

other inputs for clarity) how each of the two inputs affects student learning, both in the current

year t and in all prior academic years:

yijgst =
∑

0≤τ≤g

(
γaτ aj(i,t−τ) + γeτej(i,t−τ)

)
+ νijgst . (1)

Equation (1) describes the test score of student i, who is assigned (exogenously) to teacher j in

grade g at school s in year t.8 That score is allowed to be a function of the full history of relevant

school inputs, extending back to the first year the student was in school (in period t−g), where τ

is a ‘lag’ index that takes on integer values from 0 up to g. Input aj(i,t−τ) is the ability of student

i’s teacher in year t − τ , ej(i,t−τ) is the effort of the teacher in that year given the prevailing

incentives, and is allowed to be student-specific (as with NCLB), and νijgst is an additive error

term. While teacher ability and teacher effort are measured in the same (developmental scale)

units, the parameterization of the input productivities in (1) allows teacher ability to have a

different impact on scores than teacher effort – something we test. We also impose the following

Normalization: The contemporaneous effects of a one-unit change in teacher ability and a

one-unit change in teacher effort are normalized to be equal, with γa0 = γe0 = 1.

We make this normalization because the unobserved contemporaneous inputs and parameters

cannot be separately identified, although potential differences in the persistent effects of ability

and effort are still allowed – that is, γaτ 6= γeτ for τ > 0.

In an ideal setting where equation (1) could be estimated directly, it would be possible

to identify teacher ability and effort, aj(i,t−τ) and ej(i,t−τ), separately for each teacher j, both

in the current year and in prior years, and also estimate the persistent effects of past ability

and effort on test scores, captured by the full set of parameters {γaτ , γeτ}τ>0. In practice, two

main data limitations need confronting, reflected in our subsequent empirical analysis: First,

it is almost never possible to observe the full sequence of the relevant ability and effort inputs

that students have received since the start of their formal schooling. As a consequence, our

approach will be to summarize inputs from the more distant past using the lagged test score of a

given student, an approach used widely in the literature – see Rivkin et al. (2005), for example.

8We take teacher and student assignments to classrooms as given here, noting that the empirics below will
address non-random sorting.
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Second, and related, identifying the full sequence of persistence parameters is not feasible, so

we will concentrate on identifying a subset.

Our proposed estimation strategies will be built around a re-writing of the test score tech-

nology in terms of once-lagged test scores. After some straightforward algebra,9 the resulting

expression for current test scores is then

yijgst = γyi,j′,g−1,s′,t−1 + aj(i,t) + ej(i,t) + εijgst . (3)

where the error term εijgst contains the entire history of past inputs as well as the two most

recent random shocks to performance.10

The first empirical goal of the paper is to separate out the contemporaneous teacher ability

and effort inputs. Equation (3) will guide our approach (presented in Section IV) for estimating

contemporaneous ability and effort at the teacher level, using estimates of teacher VA as a

starting point. Appealing to the additive structure, teacher VA in a given year is captured by a

teacher-year fixed effect qjt, written qjt = aj + ējt + ε̄jt, consisting of incentive-invariant teacher

ability (aj), incentive-varying teacher effort averaged across students in the class (ējt), and a

common classroom shock that includes mean test score noise (ε̄jt).

Our second estimation goal, having recovered contemporaneous teacher ability and effort,

relates to the persistence of the two input sequences. To isolate the persistence parameters that

9First, multiply the prior score by γ, which represents the rate at which the stock of knowledge accumulated
up to period t − 1 persists to affect current test scores (see Todd and Wolpin 2003) – a composite measure of
the persistent effects of teacher ability, teacher effort, and random shocks to performance. Second, subtract the
result from both sides of the test score equation, allowing the teacher j′ and school s′ in the previous year to be
different and imposing the above normalization. Doing so yields

yijgst − γyi,j′,g−1,s′,t−1 = aj(i,t) + ej(i,t)

+
∑

1≤τ≤g

[
(γaτ − γγaτ−1)aj(i,t−τ) + (γeτ − γγeτ−1)ej(i,t−τ)

]
+ (νijgst − γνi,j′,g−1,s′,t−1) . (2)

Then move the lagged score back to the RHS and relabel.
10From (2), the error εijgst is given by

∑
0≤τ≤g−1

[
(γaτ − γγaτ−1)aj(i,t−τ) + (γeτ − γγeτ−1)ej(i,t−τ)

]
+ (νijgst −

γνi,j′,g−1,s′,t−1). When teacher ability and effort both decay at a common rate, γ, the error term consists only of
random performance shocks, given by νijgst − γνi,j′,g−1,s′,t−1.
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can be credibly identified, we re-write equation (3),11 and express the production technology as

yijgst = γ(yi,j′,g−1,s′,t−1 − aj(i,t−1) − ej(i,t−1))

+ aj(i,t) + ej(i,t) + γa1aj(i,t−1) + γe1ej(i,t−1) + ηijgst . (4)

The second goal with reference to equation (4) is then to identify the persistent effects of teacher

ability and effort one year ahead, given by γa1 and γe1. This specification will serve as the basis

for the estimation approach we implement in Section V.

III Institutional Background and Data

Our broad estimation approach requires exogenous incentive variation and rich data on individ-

ual students and teachers. Given those needs, we focus on North Carolina, a state that offers

useful variation in performance incentives across teachers and schools, as well as administrative

data covering all public schools and their teachers and students, followed over time.

III.A Accountability Incentives

Incentive variation in the state arises from two separate accountability regimes. NCLB was

implemented in North Carolina for the 2002-03 school year following the passage of the federal No

Child Left Behind Act in 2001. NCLB emphasized student proficiency, establishing performance

targets based on end-of-grade mathematics and reading tests. When a smaller-than-required

fraction of students reached proficiency status on those tests, schools failed to satisfy NCLB

requirements and were subject to sanctions that became more severe over time in the event of

repeated failure. As is well appreciated – see Reback (2008), for example – such proficiency-count

systems create incentives for teachers to direct relatively more effort toward students likely to

score close to the test score proficiency target.

NCLB was introduced on top of a pre-existing state-level accountability program, the ABCs

of Public Education, implemented in North Carolina in the 1996-97 school year for all schools

serving students in kindergarten through eighth grade. Under the ABCs, each school was as-

signed an average growth target, depending on prior student performance and a constant level of

11Specifically, bring the once-lagged ability and effort terms – that is, (γa1 − γγa0 )aj(i,t−1) + (γe1 − γγe0)ej(i,t−1)

– out of the error term εijgst, denote the new error term ηijgst, and use the normalization γa0 = γe0 = 1.
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expected growth. If average student test scores at the school exceeded the target, the ABCs paid

a monetary bonus to all teachers and the principal – a feature we use in the cost-effectiveness

analysis below.12

It is worth emphasizing the marked shift in incentives facing schools and teachers in North

Carolina that followed the introduction of NCLB in the 2002-03 academic year. The ABCs’

emphasis on average performance meant that teachers were not previously incentivized to direct

effort across individual students in a differential way. Yet because of NCLB’s sole focus on

proficiency, it is reasonable to expect that students likely to score near the test score proficiency

threshold in 2002-03 would realize greater test score gains than in past years, given the new

incentives. We provide evidence of this pattern below, and use it to motivate our strategy for

separately identifying teacher effort and ability.13

At the same time, in terms of possible confounding changes, the introduction of NCLB

was not associated with the creation of new end-of-grade tests or student proficiency thresholds

based on those tests – we discuss this in more detail in Section IV. Rather, the state already

had evaluations and performance metrics in place as part of the ABCs.

III.B Data and Descriptive Statistics

The rich longitudinal data used in our analysis cover the entire state, available through the North

Carolina Education Research Data Center (NCERDC). These data contain yearly standardized

test scores for all third through eighth grade public school students, encrypted identifiers for

students and teachers, and unencrypted school identifiers. Thus students can be tracked over

time, and linked to a teacher and school in any given year.

We provide an overview of the data here, with more information in Appendix B. The main

sample runs from the 1996-97 to the 2004-05 academic year and covers over 2.5 million student-

year observations. Table 1 presents summary statistics. In terms of performance measures, we

focus on end-of-grade test scores for students in third through fifth grade: the teacher recorded as

the test proctor in these grades is typically the teacher who taught the students throughout the

year. The scores are measured on a developmental scale, designed so that each additional point

represents the same amount of knowledge gained, irrespective of the baseline score and school

12See Macartney (2016) for additional detail about the ABCs program.
13Given the complexity of the NCLB legislation, other plausible sources of variation are available to researchers –

for instance, relating to subgroups. We focus on student-level variation associated with a straightforward measure
of incentive strength (introduced in Section III.C), showing this to be first-order.
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grade (see Appendix B for further discussion). Both the mathematics and reading scores in the

table show a monotonic increase across grades, consistent with knowledge being accumulated in

those subjects over time.

We work directly with test scores measured on the state-provided developmental scale rather

than standardizing test scores at the grade-year level (as in much of the literature) because of

our focus on the incentive effects associated with NCLB. This dictates that we preserve as much

of incentive-related variation in the data as possible – in particular, the aggregate effects of

NCLB incentives in the 2002-03 academic year,14 and also consider the same test score metric

teachers are likely using to make effort decisions.15 As with many education studies that use

test scores, our analysis will draw on the careful psychometric design of such tests (in North

Carolina and elsewhere).16 In this regard, compelling prior papers have already demonstrated

the strong ‘signal’ value contained in test scores, apparent in terms of their correlation with

important long-run outcomes (see, for example, CFR 2014b).

The longitudinal nature of the data set enables us to construct growth score measures for

both mathematics and reading, based on within-student gains. Student gain scores are (as noted

above) the focus of the ABCs program. As the table shows, mathematics and reading growth is

positive on average across grades, with the largest gains in both subjects occurring in the earlier

grades.17

The data set also includes demographic characteristics shown in the table that serve as useful

control variables. In the aggregate, about 40 percent of students are minorities (non-white), 6

percent are learning-disabled, only 3 percent are limited English-proficient, and 44 percent are

eligible for free or reduced-price lunches. Around 25 percent of students have college-educated

parents, and very small fractions of students repeat a grade.

14De-meaning test scores is typically carried out precisely in order to remove the effects of year-specific influences
on performance.

15North Carolina embedded test score proficiency cutoffs into the developmental scale directly, which makes
it natural to assume that schools and teachers used the same scale when forecasting which students were likely
to score near the test score proficiency threshold. This consideration will become especially important when we
present our strategy for estimating the persistence of teacher effort in Section V.

16We note that studies that standardize test scores rely – at least implicitly – on the integrity of the underlying
developmental scales used to measure student performance, given they are order-preserving linear transformations
of developmental scale test scores that are not invariant to the original scale.

17The table also reports ‘future’ mathematics and reading scores – the scores we observe for our sample of third
through fifth grade students when they are in sixth, seventh, and eighth grades, which are used when measuring
the persistent effects of teacher ability and effort below.
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III.C Descriptive Evidence

We now motivate the subsequent empirical analysis with correlations that suggest teacher value-

added is responsive to incentives.

Proficiency-count systems like NCLB (as noted) provide educators with strong incentives

to focus on students at the margin of passing relative to the scheme’s fixed proficiency target.

Building on that notion, we show that teacher-year fixed effects,18 which are commonly used

to measure teacher effectiveness, covary with a simple proxy for NCLB incentive strength in

2002-03. Teacher-year VA should be an increasing function of classroom average student NCLB

incentive strength, since teacher-year VA represents average residual student test score gains

within a classroom. Thus we define a student as ‘marginal’ if she is predicted to score within

four developmental scale points on either side of the proficiency cutoff, and calculate the fraction

of students in each classroom who are marginal in that sense – the results are robust to various

alternative choices (see Section IV).

Figure 1 shows that teacher-year fixed effects are positively correlated with the proportion

of marginal students within a classroom. The relationships in Figure 1 are significant (at the

one percent level) and positive in each grade in 2002-03, with a one standard deviation increase

in the classroom proportion of marginal students being associated with 7, 17, and 11 percent

standard deviation increases in teacher-year VA in third, fourth, and fifth grade, respectively.

These raw data patterns suggest that NCLB may have caused teachers to exert more effort due

to the prevailing incentives. In contrast, we would expect there to be no relationship between

the proportion of marginal students in a classroom and teacher VA in the pre-NCLB period: we

will document such a pattern in the next section.19

IV Separating Contemporaneous Ability and Effort

Building on the descriptive evidence, we now set out our estimation approach for separating a

teacher’s contribution to student test scores (measured by VA) into current ability and effort,

before presenting the estimates.

18Appendix C describes how teacher-year fixed effects are estimated, following standard methods.
19There, we also argue that more than simple correlational plots are required to account for a confounding

negative correlation between marginal student presence and teacher ability that arises from the sorting of students
to teachers based on ability. The estimates we present in the next section will account for sorting.
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IV.A Estimation Approach

Our estimation approach consists of three steps.

Step 1 - Estimating Teacher-Year Fixed Effects: We use standard methods to com-

pute teacher-year fixed effects based on student mathematics scores for each ‘teacher j and

academic year t’ combination.20 We start by aggregating the individual production technology

given by equation (3) up to the teacher level. In line with our framework, this allows us to

write the estimated teacher fixed effect (q̂jt) as the sum of incentive-invariant teacher ability

(aj), incentive-varying teacher effort averaged across students in the class (ējt), and a common

classroom shock that includes mean test score noise (ε̄jt):

q̂jt = aj + 1(t ≥ 2002-03)ējt + ε̄jt. (5)

We will identify the ability and effort components in equation (5) separately in the next two

steps.

Teacher ‘ability’ in this analysis should be thought of as capturing both (true) ability and

average ABCs-related effort exerted by the teacher across all of her years of teaching under

the ABCs program, given that it operated in North Carolina prior to NCLB (see Appendix

C.III for further discussion): the two cannot be separately identified. Understanding ‘ability’ in

this sense, the equation makes the timing of the effort impact of NCLB explicit: the indicator

variable multiplying average effort turns on when the academic year is 2002-03 or later.

Step 2 - Estimating Incentive-Invariant Ability: Next, we identify teacher ability during

a period when NCLB did not operate, based on pre-reform data; this ensures that our estimates

of teacher ability are independent of performance variation due to NCLB incentives. We use the

Empirical Bayes (EB) estimator of teacher VA (see Kane and Staiger 2008, and Chetty, Friedman

and Rockoff 2011), assuming incentive-invariant ability is fixed over time, conditional on teacher

experience.21 Specifically, we run the following pooled regression across all grades and years

20The approach as well as the students and teachers in the VA estimation sample are described in Appendix C.
21We opt not to use an estimator that allows teacher ability to drift over time (see CFR (2014a), Rothstein

(2014) and Bacher-Hicks et al. (2014)), given that predicting teacher ability in 2002-03 with the drift estimator
requires performance data from that year when constructing optimal weights, and could confound teacher ability
estimates with incentive variation in that year. Also, the main advantage of the drift estimator is that it assigns
greater weight to more recent years in order to better predict teacher performance in a given year. While CFR
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from 1996-97 to 2001-02, in which test scores are regressed on grade-specific cubic polynomials

of prior scores, written fg(yi,j′,g−1,s′,t), indicators for student ethnicity, gender, limited-English

proficiency, disability status, parental education, grade repetition, grade and year fixed effects,

and controls for teacher experience:22

yijgst = fg(yi,j′,g−1,s′,t) + x′ijgstβ + h(expjt) + aj + θjt + εijgst, (6)

where aj represents teacher ability. The EB estimator uses several years of data for each teacher

to construct an optimally-weighted average of classroom-level residual test scores in order to

separate teacher ability, aj , from classroom-specific shocks, θjt, and student-level noise, εijgst.
23

Step 3 - Estimating NCLB-Induced Effort Response: In the third step, we estimate

NCLB-induced teacher effort using the estimated teacher fixed effects from 2002-03 from Step

1, along with estimates of teacher ability from Step 2 and the fraction of students in a teacher’s

classroom deemed ‘marginal’ with respect to the NCLB target.24

We define a student as ‘marginal’ if she was predicted to score within four developmental

scale points of the test score proficiency cutoff on either side (as in the descriptive analysis in

Section III.C). For each classroom, the incentive strength measure, mjt, is defined as the fraction

of students in the classroom who are marginal in this sense. We then identify the component

of teacher-year quality that is attributable to NCLB effort incentives by regressing teacher-year

fixed effects q̂jt on mjt, while controlling for incentive-invariant teacher ability (âj) and teacher

experience (expjt):

q̂jt = ψmjt + λâj + w(expjt) + ξjt. (7)

The error term ξjt captures potentially confounding classroom shocks.

(2014a) show this improves teacher VA prediction in their large urban school district, the correlation in North
Carolina between teacher effect measures over time is higher than in the CFR data (see Rothstein 2014), implying
a smaller benefit to using the drift estimator in our setting.

22The experience function h(·) is parameterized by including indicators for each level of experience from zero to
five years, the omitted category being teachers with six or more years of experience; we choose this specification
to be consistent with CFR (2014a).

23While the EB estimator is our preferred method for measuring teacher ability, our estimates of the effects
of NCLB incentives on teacher-year VA are robust to accounting for teacher incentive-invariant ability in a non-
parametric way using either first-difference or teacher fixed-effects models (see Appendix D).

24This draws on the intuitive notion (already rehearsed) that teachers have the strongest incentives to direct
additional effort to students predicted to score close to the proficiency threshold.
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Once NCLB is introduced, teachers are hypothesized to exert additional effort according

to the amount of incentive pressure they face. We thus test whether there is a systematic

relationship between q̂jt and mjt in 2002-03 but no relationship prior. Given the linearity as-

sumption, we use equation (7) to predict the portion of teacher performance given by effort,

writing e(mj,02−03) ≡ ψ̂mj,02−03.25 This predicted value represents the response to the new in-

centive scheme, capturing the relationship between teacher-year performance and the classroom

fraction of marginal students in 2002-03 conditional on ability and experience.

The key assumption underpinning our strategy for identifying teacher effort responses to

NCLB incentives is that, conditional on teacher ability and experience, no other factors influ-

encing teacher-year VA are correlated with mjt in 2002-03 – an assumption whose validity we

assess below – see Section IV.B.1.

IV.B Estimates of Ability and Effort

We now present the estimates from applying the approach.

Ability: In terms of our estimates of contemporaneous teacher ability, Table 2 reports sum-

mary statistics, including estimated standard deviations of 2.16, 1.63 and 1.63 developmental

scale points across third, fourth, and fifth grade, respectively – see columns (1)-(3). Averaged

across grades, the standard deviation is 1.79 scale points, or equivalently 0.18 student-level stan-

dard deviations. Figure 2 presents the incentive-invariant teacher ability distributions, where

incentive-invariant ability is defined as the EB estimate from equation (6). The figure shows

that there is significant variation in ability across teachers, all centered roughly around zero

(due to a normalization in the EB procedure).

Effort: For effort, we start by presenting the estimated relationships between teacher value-

added and incentives. The panels of Figure 3 show the grade-specific partial relationships

between the teacher-year fixed effects q̂jt and incentive strength mjt, where the latter is resid-

ualized with respect to teacher ability and experience. For each grade, we present plots for

2002-03, indicating a clear increasing relationship between the part of the teacher-year effect

25By omitting an intercept, this parameterization assumes that NCLB-related teacher effort is zero when a
teacher has no marginal students in her classroom. This is supported by the motivating visual evidence – see the
binned scatter plots of Figure 1 and in Figures 3 and D.2 below. Our main results below focus on the variance of
predicted effort and marginal changes in effort, both of which are determined solely by the slope parameter, ψ̂.
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unexplained by ability and experience and the proportion of marginal students in the classroom.

Alongside, we plot the corresponding pooled relationship for all pre-NCLB years that also in-

cludes year fixed effects. The pre-NCLB variation plots show no discernible link between teacher

performance and our measure of NCLB incentives, results that are robust to alternative cutoff

points for defining a student as marginal under NCLB (see Appendix D).

Table 3 shows regression estimates indicating how teacher-year effects change with an in-

crease in the fraction of marginal students in the classroom (the underlying estimates of ψ from

equation (7)). They imply that, conditional on teacher ability and experience, a one standard

deviation increase in the proportion of marginal students is associated with 9 percent, 22 percent,

and 16 percent standard deviation increases in teacher-year VA in third, fourth, and fifth grades,

respectively. As expected, conditioning on teacher ability and experience, there is virtually no

relationship between teacher-year effects and the classroom proportion of marginal students in

the pre-NCLB years.26

The panels of Figure 4 present the full distributions of predicted effort in each grade in

2002-03, where effort is constructed as the fitted value e(mj02−03) = ψ̂mj02−03: columns (7) to

(9) of Table 2 present the corresponding estimates for each grade. Mean teacher effort averaged

across all grades is 0.61 points. Although the dispersion in teacher effort is not as high as the

dispersion in teacher ability, we find quantitatively significant variation in effort across teachers:

the variance of effort across all grades is 0.48 scale points, which equates to 0.05 student-level

standard deviations of the test score.

IV.B.1 Robustness Checks: Assessing Rival Hypotheses

The evidence just presented is consistent with teachers increasing effort in response to the

incentives introduced under NCLB. Given that we do not observe effort directly, it is important to

consider alternative potential explanations. We consider several hypotheses that are alternatives

to teacher effort setting, summarizing our findings here – see Appendix D for the results in full.

First, our results are not explained by other institutional changes coinciding with NCLB’s

introduction. The state did not change either its curriculum or the content appearing on the end-

26Here, one may worry about a mechanical correlation between teacher-year fixed effects and teacher ability, as
the latter is estimated using pre-NCLB variation – the same variation as used to estimate pre-reform fixed effects.
We address this problem by using jack-knife EB estimates of teacher ability in the pre-NCLB period, which use
information from all other years excepting the one in question (Chetty, Friedman and Rockoff 2011).
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of-grade tests we use as our dependent variable,27 nor did NCLB’s introduction in North Carolina

provide any new information to families about student performance, thus making parental or

student effort responses unlikely. Second, we rule out several other school-level adjustments to

NCLB as drivers of our results, showing that marginal students were not sorted differentially

to classrooms based on teacher ability. Further, accounting for changes in class size and several

other classroom-level student characteristics does not affect our main estimates.

V Estimating the Persistence of Teacher Ability and Effort

Having identified teacher ability and effort separately, we now assess whether these two inputs

persist at different rates. The issue is key to understanding whether the separate effort effect

we have identified is likely to be consequential for economic outcomes in the longer run, and

also important for the policy analysis that follows. Unlike the previous section, the analysis is

conducted at the student (rather than the teacher) level, thereby exploiting more variation in

the data and following prior work that estimates the persistence of teacher effects as a whole.

V.A Estimating the Persistence of Ability

We estimate the persistence of ability in a reduced-form way, following the previous literature –

see CFR 2014b, for example. Specifically, we regress student test scores in academic year t+ n

(where the time index n ranges from −2 to 4) on the full control vector from the Empirical

Bayes regression (equation (6)) and the ability of teacher j who taught the student in period t:

yi,j,g,s,t+n = fg(yi,j′,g−1,s′,t) + x′ijgstβ + h(expjt) + φnâj + εijgst. (8)

Here, ability is measured with a jack-knife EB estimator, which uses information from all years

except the current year to form the teacher ability estimate.28 The coefficient φn represents

the degree to which the effect of teacher ability from year t influences test scores in year t+ n.

Looking one period ahead, φ1 is our empirical estimate of the persistence rate of teacher ability

that is given by γa1 in equation (4), while setting n = 4 lets us investigate the persistent effect

27The mathematics test was last changed in 2000-01.
28Doing so avoids a mechanical correlation between measurement error in test scores and teacher ability from

confounding the results (see CFR 2014b for further discussion).
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of teacher ability on test scores four periods ahead.29

Figure 5 presents the estimated φn coefficients from regressions based on test scores exclu-

sively from the pre-NCLB period. It shows that teachers do not affect their students’ test scores

in the years before they are matched with these students, as shown by the estimate at t − 2.

(Since we control for once-lagged test scores when estimating teacher ability, the coefficient at

t − 1 is identically zero.) The estimates indicate that a one developmental scale point better-

than-average teacher in year t improves student test scores by almost exactly one developmental

scale point, on average.30 The contemporaneous effect of teacher ability then fades away over

time, as we estimate that 41 percent of the initial effect persists in period t + 1, and only 20

percent remains by period t + 4. (For reference, in their analysis of the persistence of teacher

value-added, CFR (2014b) find that approximately half of the initial effect persists one period

ahead and 20 percent remains four periods ahead.)

V.B Estimating the Persistence of Effort

Identifying effort persistence requires that we account for three confounding effort effects. First,

incentives to exert effort under NCLB are strongly correlated over time – that is, students who

are marginal in one year tend to be marginal the next and so would be expected to receive higher

effort in both years as a result; thus it is important to control for the effects of contemporaneous

effort on scores to avoid overstating the persistence of lagged effort. Second, contemporaneous

effort will depend on the persistence parameter we wish to estimate, given that educators make

effort decisions based on expected student performance, and predicted scores will be determined

in part by any effort persistence from the previous year; a strategy for disentangling the two

is therefore needed. Third, the introduction of NCLB induced changes in incentives under the

pre-existing ABCs program.31 The resulting effort responses need to be controlled for to avoid

confounding student-level effort persistence with school-level ABCs-related improvements.

The approach we devise involves estimating effort at the student level, focusing on effort

29Our structural parameter of interest, γa1 , reflects the direct effect of the prior-year teacher on current-year
test scores. In contrast, the reduced-form estimate φ1 represents the total effect of the prior-year teacher, which
includes the direct effect and any potential effects that come from being tracked to better teachers in future years
as a result of having a better teacher in the prior year. CFR (2014b) propose a strategy for estimating the direct
(or net) effect of the prior-year teacher on students’ adult earnings and show there are only modest differences
between the net and reduced-form effects.

30The point estimate is 0.998 with a 95-percent confidence interval of (0.983, 1.015).
31Specifically, given the value-added nature of the ABCs system, higher performance in one year engenders

higher targets the next, which will lead to stronger incentives to exert higher effort as a result.
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persistence one year ahead, and using the production technology in a maximum likelihood proce-

dure to account for the three effects just described. We now set out these elements (see Appendix

E for a detailed description) before presenting the estimates.

V.B.1 Estimating Student-Level Effort

Under the proficiency-count design of NCLB, effort incentives can vary across students within

a given classroom, with some students being more marginal than others: such within-classroom

variation is entirely first order in our setting.32 Thus we start by constructing a student-level

measure of effort, rather than one that is common to all students taught by a given teacher.

Our effort measure is derived from the non-parametric patterns in Figure 6. This figure

shows that the introduction of NCLB had pronounced non-linear effects on test scores, consistent

with strong teacher effort responses to the scheme. Two notions are relevant for understanding

the figure. First, we construct the predicted student score in 2002-03 in a way that excludes

the NCLB-induced effort response,33 as if NCLB had never been implemented in that year.

The resulting difference between the realized and predicted scores for a given student then

provides a (noisy) measure of the 2002-03 effort response by her teacher (where effort is taken

to be the incentive-related boost to scores), used to construct the points on the vertical axis

described below. Second, the incentive strength for each student is given by the distance between

the predicted score and the fixed NCLB proficiency target. This incentive measure is used to

form the horizontal axis in Figure 6, which groups students into two-scale-point width bins

of incentive strength in 2002-03 (denoted πi,02−03 for student i). We then plot the average

difference between the realized and predicted score within each incentive strength bin on the

vertical axis, eliminating idiosyncratic test score noise to recover average teacher effort as a

function of incentive strength.

The pattern for 2002-03 shows that students who are predicted to score near the proficiency

threshold – those for whom effort incentives are strongest – receive the largest boost to their

scores. We conduct the same exercise for the 1999-2000 pre-reform period (when no NCLB effort

response can occur) to ensure that we do not systematically under- or over-predict test scores

at different parts of the distribution. Doing so makes clear that our predicted score tracks the

32In 2002-03, for example, fully 75 percent of the variance in the incentive strength measure we devise (see
below) occurred within-classroom.

33Formally, ŷi,j,g,s,02−03 ≡ γyi,j′,g−1,s′,01−02 + aj(i,02−03) – see Definition D.1 in Appendix E.II.
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realized score well throughout, given by the approximately flat line. In turn, this lends credence

to the view that the 2002-03 pattern reflects student-specific NCLB effort.

The profiles for the two years in Figure 6 are then used to estimate an effort function that

takes incentive strength as its argument. Specifically, we difference the binned 2002-03 and

1999-00 profiles, then fit an eighth-order polynomial to the differenced data using a weighted

regression, with the weights capturing the total number of students in each bin (across both

2002-03 and 1999-00) – see Appendix E.III. The resulting effort function, denoted by eN (·), is

plotted in Figure 7.

We use this function to assign effort levels to individual students directly. Taking the

student-specific values of πi,02−03 and the function eN (·), the effort dedicated to each student i

by teacher j in 2002-03 is given by ej(i,02−03) = eN (πi,02−03), reading off the appropriate effort

level from the function.34 (As explained below, we also use the function to assign a level of effort

to each student in 2003-04, subject to further scaling.)

V.B.2 The Estimating Equation

Next, we specify an equation that can be taken to the data in order to estimate the rate at which

effort persists along with other policy-relevant parameters. Here, we draw on the technology in

equation (4) to obtain an expression for test scores in 2003-04 as a function of inputs in that

year and inputs from the previous year whose effects persist:

yi,j,g,s,03−04 = γ(yi,j′,g−1,s,02−03 − aj(i,02−03) − ej(i,02−03))

+ γa1aj(i,02−03) + aj(i,03−04)

+ γe1ej(i,02−03) + ej(i,03−04) + ηi,j,g,s,03−04. (9)

The RHS of this equation captures, on the first line, the persistent effect of once-lagged scores

from 2002-03 excluding teacher ability or effort, written yi,j′,g−1,02−03 − aj(i,02−03) − ej(i,02−03),

where the j-subscripts coincide – that is, j′ = j(i, 02− 03). Given the technology, we interpret

this component as the persistent effect of non-ability and non-effort inputs. The second line

captures the persistent effects of teacher ability from 2002-03 and teacher ability in the current

34Note that the values of the effort function are negative for the left and right extremes of incentive strength.
This should be interpreted as follows: the effort function reflects student test score gains relative to the pre-NCLB
status quo; thus, the extremes of incentive strength are not associated with negative levels of absolute effort but
with lower test score gains than in the pre-NCLB period for a subset of non-marginal students.
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year 2003-04; and the third line includes the persistent effects of teacher effort from 2002-03 and

in the current year 2003-04, along with a random shock to current test scores.

To derive the main estimating equation, we wish to isolate the effort components in 2003-

04 that are relevant from an estimation perspective. Collect terms by defining yCi,j,g,s,03−04 ≡

γ(yi,j′,g−1,s′,02−03−aj(i,02−03)−ej(i,02−03))+aj(i,03−04) +γa1aj(i,02−03), and deduct this from both

sides of (4), removing all non-effort inputs from the RHS. This yields our estimating equation,

written:

yi,j,g,s,03−04 − yCi,j,g,s,03−04 = γe1e
N (πi,02−03) + θeN (πi,03−04) + ρēNs,02−03︸ ︷︷ ︸

ei,j,g,s,03−04

+νi,j,g,s,03−04. (10)

We discuss each of the three effort components on the RHS in turn, explaining where the

corresponding effort incentives come from and the specific timing of each effect.35

The first term captures the effect of effort in the previous year, 2002-03, due to the introduc-

tion of NCLB incentives. We assume this effort component is known, determined by incentive

strength (πi,02−03) according to the semi-parametric effort function eN (·). The parameter γe1

measures the rate at which effort in 2002-03 persists one year ahead to affect test scores in

2003-04.

Next, the underbrace on the RHS of (10) serves to emphasize that in our formulation, the

second and third terms are subcomponents of contemporaneous effort, ei,j,g,s,03−04. Given the

prevailing incentives in 2003-04, we hypothesize that contemporaneous effort comes from two

sources. Taking these in turn, the second term (given by θeN (πi,03−04)) consists of NCLB-

induced effort in 2003-04. While it is unknown to the econometrician, we make the following

‘shape’ assumption:

Assumption 3: The effort devoted to student i in 2003-04 is given by θeN (·) evaluated at

πi,03−04, where θ > 0.

Thus, teachers use the same empirically-determined effort function eN (·) as in 2002-03 to set

effort, the function taking πi,03−04 as its argument in 2003-04, and the parameter θ either

diminishing (when θ < 1) or amplifying (when θ > 1) all effort levels in a proportional way.

This formulation is reasonable given that the rules of NCLB operated in 2002-03 and 2003-04: it

35The reasoning is set out in full in Appendix E.III; for reference, a complete listing of all the formal notation
used is given in Appendix Table E.1.
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is plausible to think that teachers would direct effort to students in a similar fashion across the

two years, with marginal students receiving relatively more effort than non-marginal students

in each year, though possibly to a lesser or greater extent across years (scaled by θ).

The third term accounts for the test score effects of induced changes in effort incentives under

the ABCs in 2003-04 (captured by the parameter ρ). ABCs incentives vary at the school level,

not across students within a given school.36 Because school ABCs targets are functions of student

average prior-year test scores, they also depend on average prior-year effort (see Appendix E.III).

Thus, changes in average school-level effort from 2002-03 lead indirectly to changes in schools’

ABCs effort decisions in 2003-04 through the effect of prior effort on subsequent ABCs targets.

The fourth term on the RHS consists of random factors affecting individual scores in 2003-04.

V.C Estimation Procedure

Our goal is to recover the parameters of equation (10). These govern effort persistence (γe1), the

scale factor multiplying contemporaneous effort (θ), and the indirect effect of ABCs incentives

on student test scores (ρ). One estimation challenge is that the input to the 2003-04 effort

function depends on the (unknown) persistence rate, yet in order to estimate the persistence

rate, we need to account for the correlation of effort across time.

Our strategy involves estimating effort received by students in 2003-04 simultaneously with

the parameters of interest. To that end, we use a maximum likelihood approach, making the

following distributional assumption about the error in equation (10):

Assumption 4 – Normality: ηi,j,g,s,03−04 ∼ N(µ, σ2).

Equation (10) and the normality assumption allow us to derive the individual likelihood for any

student i, given by

Li(Ω) =f(ηi,j,g,s,03−04|γe, θ, ρ, µ, σ)

=
1√

2πσ2
exp
{ −1

2σ2
· (yi,j,g,s,03−04 − yCi,j,g,s,03−04 − γe1eN (πi,02−03)

− θeN (πi,03−04)− ρēNs,02−03)2 − µ
}
. (11)

Taking the natural log and summing over all students in the state results in the following log-

36This follows from the exclusive use of school-level growth targets under the ABCs, without corresponding
student-level targets.
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likelihood function:

l(Ω) =

N∑
i=1

lnLi(Ω)

=− N

2
ln(2π)− N

2
ln(σ2)

− 1

2σ2

N∑
i=1

(
yi,j,g,s,03−04 − yCi,j,g,s,03−04 − γe1eN (πi,02−03)

− θeN (πi,03−04)− ρēNs,02−03 − µ
)2
, (12)

where the full parameter vector is given by Ω = [γe1, θ, ρ, µ, σ
2]′.

Key to our estimation approach is the notion that while student-specific effort values in 2003-

04 are unknown to the econometrician, the function by which they are determined is known

(under Assumption 3, justified above). When searching over values of γe1 to maximize the log

likelihood, we can therefore use standard gradient-based methods by taking the derivative of the

known effort function eN (·) with respect to γe1.37

V.C.1 Identification

Separately identifying γe1 and θ – the parameters related to NCLB – requires that, conditional

on 2002-03 effort given by eN (πi,02−03), there is remaining variation in 2003-04 effort, denoted

eN (πi,03−04), and vice-versa. This requirement is met in our application. Start with the non-

monotonic shape of the effort function in 2002-03: this ensures that two students with the

same level of effort in 2002-03 can have different levels of incentive strength under NCLB and,

correspondingly, different levels of 2003-04 NCLB effort. Given the non-monotonicity of the

2002-03 effort function, the minimal condition for identifying the parameters is that the 2003-04

effort function should not be flat.

To see why, suppose that the 2003-04 effort response is determined by some arbitrary non-

flat function and consider any two inframarginal students, one with a predicted score below the

proficiency target and one above it, yet who receive the same level of effort in 2002-2003 due

to the non-monotonic profile of the effort function in that year. Incentive strength in 2003-04

37Specifically, on each iteration of the search, the routine selects a value for γe1 , substitutes that value along
with the other known inputs into the known effort function eN (yCi,j,g,03−04 + γe1ej(i,02−03) − yT,Ng ) and generates
an effort level in 2003-04 for each student. The iterative search continues until the routine arrives at a value for
γe1 that, together with the 2003-04 effort levels it implies, maximizes the log likelihood. In practice, we perform
the estimation in MATLAB using the ‘fmincon’ command and supplying the gradient vector.
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increases equally for each student, given by the common amount of 2002-03 effort that persists.

A non-flat effort function in 2003-04 then guarantees that at least some student pair satisfying

the identical-effort condition in 2002-03 receives divergent levels of effort in 2003-04.38

To identify the separate effects of NCLB and ABCs incentives and thus identify ρ, we draw

on the fact that the ABCs incentives operate across schools while NCLB incentives operate

within schools.39 Separate identification of ρ from both γe1 and θ relies on there being significant

within-school variation in NCLB incentives, a condition satisfied in the data.

V.C.2 Maximum Likelihood Estimates

Having established parameter identification, we apply the maximum likelihood estimation rou-

tine to a sample of students observed in both 2002-03 and 2003-04 and for whom test scores

are non-missing in both years. This restriction allows us to compare realized scores with coun-

terfactual predicted scores for each student, needed to form the LHS of the main estimating

equation.

Table 4 presents the results. The first column provides an estimate of the persistence of

NCLB effort from 2002-03 without accounting for contemporaneous NCLB effort in 2003-04. In

this case, 40 percent of the initial effort effect persists one year into the future: as shown in

column (2), this estimate overstates the persistence rate. Once we account for contemporaneous

NCLB effort, the estimate of γe1 falls to 0.10, implying that only 10 percent of the initial effort

carries forward to affect 2003-04 test scores.

The estimate of θ = 0.52 in column (2) indicates that the effort response is scaled down by

around 50 percent in 2003-04 relative to 2002-03. This finding of θ̂ < 1 implies that the difference

between the effort received by marginal and non-marginal students at the average school becomes

smaller in 2003-04 than in 2002-03, suggesting a lower relative boost to marginal student test

scores over time. To rationalize this, it is likely that teachers and school principals realized over

time that the sanctions might not be as binding as first thought.40

38Indeed, there is zero variation in effort within all such student pairs only if the 2003-04 effort function is flat,
implying that any non-monotonic effort function in 2002-2003 and non-flat function in 2003-04 are sufficient for
identification. (As an aside, although we assume the same functional form for the effort function (up to the scale
θ) in 2003-04 as in 2002-03, this assumption is not required for identification: any effort function in 2003-04 that
is not flat would be sufficient.)

39Specifically, the ABCs scheme sets only an average school-level growth target, while NCLB sets a student-level
target (the test score required for subject matter proficiency) in addition to an overall school-level target – the
proficiency rate.

40In practice, loopholes such as the Safe Harbor provision meant that sanctions were imposed less frequently
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Accounting for ABCs incentives in column (3) yields an estimate of ρ̂ = 0.29, meaning that

a one standard deviation increase in school-level NCLB effort from 2002-03 (ēNs,02−03) produces

a 0.8 percent of a standard deviation increase in student-level test scores the following year.41

While this is a relatively small effect, the positive and significant estimate of ρ is consistent with

the effort response to NCLB in 2002-03 strengthening ABCs incentives in the following year by

making the targets more difficult to pass, which in turn led to student performance gains. The

estimates of γe1 and θ are nearly identical to those obtained from the maximum likelihood routine

that does not account for ABCs incentives, consistent with NCLB incentives varying within

schools while ABCs incentives vary across schools (as the respective accountability incentives

imply).42

In sum, our combined estimation approach has allowed us to recover the separate effects

(current and persisting) of two unobserved teacher inputs – ability and effort – for the first time

in the literature. The estimates for effort draw attention to the role of the economic agency of

teachers. They make clear that teacher effort can be shifted, based on accountability incentive

variation, and that the resulting effort brings performance benefits in the short and longer term.

VI Cost-Effectiveness Analysis: Effort versus Ability

We now explore policy implications of these new estimates. At a basic level, they suggest distinct

input-specific policy levers for influencing student and school outcomes via shifts in ability and

effort, respectively. Accordingly, we assess whether incentive reforms that target teacher effort

are likely to be more cost-effective than policies that target teacher ability.

In order to do so, we present a novel framework that allows incentive reforms to be compared

with alternative policies, based on their respective benefits (in terms of test score output) and

associated financial costs. The framework has two key components: first, a method for credibly

estimating the cost required to bring forth one extra unit of output under the incentive reform,

and second, a means of cost-equating the two types of reform to ensure comparability. The

resulting cost-effectiveness comparisons are new to the education policy literature.

than a strict enforcement of the rules would dictate.
41The standard deviation of ēNs,02−03 across schools in 2003-04 is 0.27 developmental scale points. Multiplying

0.27 by ρ̂ = 0.29 gives an effect of 0.078 developmental scale points, or 0.8 percent of a student-level standard
deviation.

42The estimate of µ in the fullest specification in column (3) is 0.39 developmental scale points, or less than 5
percent of a student-level SD of the test score – not economically significant. It is also less precisely estimated
than the other parameters.
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We start this section by laying out the structure of the two policies we compare. Then we

compute the benefits and costs of the ability-based reform, before describing the first and second

key components of the framework. The headline numbers from the cost effectiveness analysis

will make clear that the incentive reform comes out ahead by a substantial margin. We then

present a thorough sensitivity analysis to explore the robustness of our findings, and also discuss

possible extensions, given that our policy analysis represents a first step and not the last.

VI.A Two Types of Reform being Compared

Ability-based reforms seek to improve average teacher productivity through the dismissal of

low-performing teachers. They have featured prominently in recent work, with Hanushek (2009,

2011), CFR (2014b), and Rothstein (2015) all analyzing policies that replace teachers whose

value-added falls in the bottom portion of the measured distribution (for example, the bottom

five percent).43 Accordingly, we consider an ability-based reform that involves dismissing the

bottom five percent of teachers in the VA distribution, drawing on that prior literature to provide

credible estimates of the implied benefits and costs of the reform, useful for the comparison below.

The incentive reform we analyze uses the ABCs already in place in North Carolina as a

template, which we scale to make it directly comparable to the ability-based reform. As with

NCLB, it features performance targets, although these targets are student-specific rather than

common to all students in a given grade. As such, all students are made marginal with respect

to the scheme and not just a subset found close to a common threshold target. The incentive

reform offers monetary rewards rather than non-pecuniary penalties (as under NCLB), which

will allow a comparison to be made with the financial costs of the ability-based reform already

estimated in the prior literature.

VI.B The Ability-Based Reform: Benefits and Costs

We now describe how the benefits (in terms of test scores) and the financial costs of the ability-

based reform are calculated, drawing on the prior literature and our estimates above.

Benchmark estimates of the achievement benefits for ability-based reforms come from CFR

(2014b). Those indicate that replacing teachers in the bottom five percent with random draws

43The literature has also focused on reducing the attrition of the highest rated teachers. Existing research
(CFR 2014b) suggests that focusing on the top is less cost effective than replacing the lowest rated teachers,
which motivates our focus on the latter.
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from the distribution of new teachers results in an average two standard deviation improvement

in teacher ability (measured in student test score units) for that subset. We take those values

as a basis for estimating the benefits of a similar ability-based policy in our setting. A two

standard-deviation improvement in performance for the five percent of teachers at the bottom

of the distribution who are replaced translates into a performance improvement of 0.1 (= 2×0.05)

teacher-level standard-deviations across the full distribution of teachers – the short-run benefit

of the ability-based reform.

To calculate the long-run benefit, we use our estimates of the persistence of teacher ability.

These indicate that 19 percent of the initial effect persists four years into the future, implying

that the ability-based reform achieves a performance improvement of 0.019 (= 0.1×0.19) teacher-

level standard deviations over that horizon. To express this long-run gain in terms of test scores,

we note from Section IV.A that one (teacher-level) standard deviation is 1.79 developmental scale

points, giving a long-run effect of the ability-based reform of 0.034 (= 1.79×0.019) developmental

scale points.

In terms of the costs, it is well-appreciated that ability-based reforms create increased em-

ployment risk for teachers throughout the distribution due to estimation error in value-added

measures. Rothstein (2015) estimates that compensating teachers for the increased risk would

require a mean salary increase across all teachers of 1.4 percent, which amounts to an aver-

age increase of $700 per teacher in North Carolina, where the mean salary is approximately

$50,000. Thus we assume that implementing the ability-based reform in our setting comes at

this additional cost of $700 per teacher.

VI.C The Incentive Reform

We wish to compare the ability-based reform with a viable incentive reform; here, the ongoing

ABCs serves as a suitable template. In order to use that, we first need to recover the underlying

mapping between output (measured by test scores) and expenditures (in dollars), the latter

representing the pecuniary reward required to generate extra output through heightened effort

incentives. We will think of this mapping in an incremental sense: the cost, based on the

pecuniary rewards associated with ABCs-type accountability incentives, required to bring forth

one additional unit of output. The incremental expenditure-output mapping in hand, we can

then project the cost of attaining any given additional quantity of output. This will allow us,
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via the second component of the framework, to calculate the benefits and costs of alternative

settings of the incentive reform in ways that can be compared directly to other policies – in the

current instance, the ability-based reform whose benefits and costs we have quantified.

The Output-Incentive Expenditure Mapping: We now explain how the output-expenditure

mapping can be estimated in a credible way using the North Carolina data, starting with an

intuitive account of our estimation procedure and introduce the key institutional features we

draw on. We then lay out the series of steps involved in more detail, given that the approach is

of independent interest.

Our primary goal (as noted) is to uncover the incremental dollar cost of a one-unit increase

in output, measured by test scores, which can be written heuristically as dC/dy.44 This response

is not observed. It can, however, be recovered using the relationship:

dC

dy
=
dC

de
× de

dy
, (13)

noting that the two incremental responses on the RHS are estimable.

To estimate these components in our setting, we take advantage of two facts. First, the

ABCs system uses monetary rewards, and second, there is necessarily a dynamic link between

any NCLB effort response in 2002-03 (which is a response to non-pecuniary sanctions) and the

ABC targets in 2003-04, given the way incentives are set under the value-added ABCs.

These facts allow us to leverage the introduction of NCLB in 2002-03 and the change in

effort it engendered in that year (documented clearly above). Specifically, by altering the ABC’s

targets, the NCLB ‘shock’ provides exogenous variation in both financial rewards (the targets

became harder to attain, lowering the expected payout) and also in effort, as schools responded

to the induced ABCs incentive shock, leading to higher scores. These two sources of exogenous

variation then allow us to estimate (i) the expected financial loss resulting from the increase

in effort under NCLB (from which we can recover dC
de ), and (ii) the test score effects of the

increased effort response due to stronger incentives under the ABCs,45 which can be inverted to

give de
dy . We then combine these two effects, as in (13), yielding the desired mapping between

expenditures and output that is central to the pecuniary reward-based class of schemes we focus

44The basic notation here is intended to fix ideas. We will introduce more precise notation when laying out the
relevant steps in detail.

45Those incentives can be expressed as a function of school-level effort, as we will see.
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on.

The Four Steps: We now describe the first component of the policy framework in more

detail.46 This involves the following four steps, also summarized in Table 5.

Step 1 - Calculating Schools’ Expected Financial Losses Under the ABCs. School

effort responses to the introduction of NCLB in 2002-03 raised the targets that schools faced

in 2003-04 under the ABCs – automatically so, given the value-added incentives under the lat-

ter. Following the prescribed school growth score calculations under the ABCs and using the

production technology given by equation (4), we estimate the degree to which school responses

to NCLB in 2002-03 lowered the probability of passing the ABCs in 2003-04 (relative to the

probability in the counterfactual scenario in which NCLB was not enacted), writing this differ-

ence ∆Fs for school s,47 where F (·) is the cdf of the school-level test score noise. Multiplying

the differences in these passing probabilities by the ABCs bonus payment of $750, received by

teachers when their school satisfied its growth target, determines the expected per teacher dollar

loss for each school because of its response to NCLB’s introduction.

Based on our preferred estimate, the average school stood to lose $122 per teacher in 2003-04

because of its effort response in 2002-03.48

Step 2 - Calculating the Change in Financial Incentives for a Unit Change in Effort.

Next, to compute the change in 2003-04 financial incentives for a one-unit change in school effort

from the previous year, we regress the expected dollar value each school stood to lose in 2003-04

(from Step 1) on average school-level effort from 2002-03. The resulting estimate β̂ measures the

response d(750·∆Fs)
dēNs,02−03

. Intuitively, the underlying parameter governs the magnitude by which a one-

unit increase in school-level effort in 2002-03, written ēNs,02−03, lowered the likelihood of ABCs

46Appendix F provides a thorough account.
47To be precise, we define ∆Fs, the difference in passing probabilities under the two scenarios, as

∆Fs =

[
− F

(
−

Gs∑
g=3

(
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

)
− (γe1 − α)ēg−1,s,02−03

)

+ F

(
−

Gs∑
g=3

(
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

))]
.

(See Appendix F for a detailed description of the notation involved and a full derivation.)
48This estimate in the number in bold font given in row (4) of Panel (a), Table 6. Other numbers reported in

this subsection are drawn from the same column in that table, which we discuss in some detail below.
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target attainment in 2003-04, expressed in terms of expected financial losses by multiplying by

the ABCs bonus payment of $750.

In our central case, a one-unit increase in average school-level effort in 2002-03 would lead

to an expected financial loss of $146.

Step 3 - NCLB’s Effect on Subsequent Student Test Scores: Next, we need an estimate

of the impact of lagged school-level effort on test scores in 2003-04. This is captured by the

parameter ρ, which can be written explicitly as the incremental effect of school-level effort on

scores, dy
dēNs,02−03

. It represents the effect of ABCs financial incentives (which NCLB alters – see

Step 1) on test scores due to changes in teacher effort. We recovered this parameter precisely in

Section V, estimating ρ̂ = 0.29.

Step 4 - Relationship between Test Scores and Changes in Financial Incentives: We

then estimate the effect of test scores on financial incentives due to increased teacher effort by

dividing the effect of lagged effort on subsequent financial incentives (from Step 2) by the effect

of lagged school-level effort on subsequent test scores (from Step 3).49

Our preferred estimates indicate that the ABCs offering $504.70 per teacher would generate

a one developmental scale point increase in test scores in the short run.

VI.D Policy Comparison Framework and Headline Estimates

The estimates of the underlying output-expenditure mapping feed into the second component of

our policy analysis directly. This component allows us to place incentive reforms on a common

footing with alternative policies, based on their respective costs and benefits.

In order to do so, we make the following scaling assumption:

Assumption 5 – Linear Scaling: a discrete change, ∆C, in the financial rewards associated

with the candidate incentive reform will generate a discrete change in output, ∆y, equal to

dy/dC ×∆C.

49It is straightforward to see that dividing the effect of lagged school-level NCLB effort on expected ABCs
financial rewards in 2003-2004 (β̂ = d(750·∆Fs)

dēNs,02−03
) by the effect of lagged school-level NCLB effort on test scores

(ρ̂ = dy

dēNs,02−03
) ‘cancels’ the effort terms, giving the desired effect of test scores on financial incentives, β̂

ρ̂
=

d(750·∆Fs)
dy

.
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Under this assumption, the policy maker can compute the implied benefits and costs of the in-

centive reform in a way that is directly comparable to alternative policies (equating the financial

costs and comparing the output benefits of each, for example) The cost (or benefit) projec-

tion that is implied utilizes the output-expenditure mapping estimated above; in an extensive

robustness analysis that follows, we examine the sensitivity of the resulting projections.

To illustrate the approach, we focus on a comparison involving the ability-based reform

described above. Recall that this reform costs an estimated $700 per teacher, and generates

output (test score) benefits of 0.179 developmental scale points in the short run and 0.034

developmental scale points in the long run (after four years).

Our preferred estimates indicate a pecuniary incentive scheme with the same structure as

the ABCs but offering $504.70 per teacher would generate a one developmental scale point

increase in test scores in the short run. Using the linear scaling assumption to equate costs with

the ability-based reform, the resulting test score increase produced by a cost-equating incentive

reform that offered $700 per teacher would equal 1.39 (= $700/$504.70) developmental scale

points in the short run.

To compute the long-run gain (in terms of test score ‘output’), we impute the long-run

persistence rate of effort by scaling our ML estimate of the one-year persistence rate (reported

in Table 4). We do so in a way that gives the same rate of decay for teacher effort as the rate

we estimate for teacher ability over a four-year horizon in Figure 5.50 On that basis, the ABCs

offering $700 per teacher would generate a long-run performance gain of 0.064 (or 1.39×0.0463)

developmental scale points, greatly exceeding the corresponding benefit under the ability-based

reform: for the same expenditure, the incentive reform is fully 88 percent more efficient.

Our policy comparison lends itself naturally to a simple graphical representation, in which

each reform is shown as a point in output-expenditure (benefit-cost) space. This can be un-

derstood as the combination of the extra output and extra expenditure entailed by the given

reform, relative to the status quo in which no policy is enacted.

Figure 8 illustrates the policy comparison we have in mind. The ability-based reform (rep-

resented by point A) has a known cost Ca and output ya, provided by estimates from the prior

literature. The incentive reform is represented by the linear cost function C(y) with slope dC
dy ,

50Specifically, Figure 5 shows that the effect of ability on test scores four periods into the future is 46.3 percent
of the ability effect one period into the future (i.e., 0.19/0.41). Assuming the same pattern for the effects of effort,
the effect four periods ahead amounts to 4.63% (i.e., 0.10 × 0.463) of the initial effort effect.
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which we compute from dC
de and de

dy (by inverting dy
de ), using the exogenous NCLB-based shifter

of the ABCs target in 2003-04. The function makes clear the cost associated with any given

output from the incentive reform. To compare the reforms, we select the output ye that costs

the same as the ability-based reform (C(ye) = Ca). As drawn, the slope of the cost function

implies that ye > ya, which means that the incentive reform is more cost effective than the

ability-based reform. In general, the incentive reform is more cost effective if dC
dy <

Ca
ya

; that is,

the slope of the function is flatter than the line connecting the origin and point A.

VI.E Policy Analysis: Robustness and Extensions

The preceding framework permits the first cost effectiveness comparison to be made between

incentive reforms and alternative education policies. The main estimates from applying the

framework are striking. They indicate that implementing the incentive reform would involve a

substantial benefit gain for the same cost as the ability-based reform under consideration – 88

percent more output for the same cost in our preferred specification – making them significantly

more cost effective in the long run. This is despite the stronger estimated achievement effects

for teacher ability than teacher effort. A central driver of the relative magnitudes of the new

cost effectiveness estimates we provide is the following contrast: by design, ability-based reforms

are only effective for a subset of teachers, while incentive reforms can be applied to all teachers.

Our policy framework allows the robustness of this cost effectiveness advantage to be ex-

plored in a systematic way. There are several relevant dimensions: (i) the variance of the

school-level test score noise, a key determinant of the school passing probability under the

ABCs accountability system; (ii) whether a short- or long-run perspective is taken; and (iii)

the combination of parameters governing the incentive cost of an extra unit of output. We

summarize the main findings along each dimension here.

Variance of the school-level test score noise. Table 6 shows the calculations that underpin

the output-incentive expenditure mapping estimates based on our four-step procedure. The

columns reflect different values of the standard deviation of the school-level test score noise.

Our preferred estimate, already referenced, is a standard deviation of 0.36 developmental scale

points.51 Row (4) of the table shows that the implied expenditure under the incentive reform

for one extra unit of short-run output is already less than the $700 per-teacher cost under the

51See Appendix F for the justification.
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ability-based scheme (which delivers only 0.179 units of output) for all values of the SD other

than SD=0.1; our preferred estimate yields a cost well below $700.

Time horizon. In Table 7, we compare the two types of reform over short- and long-run

horizons. Over either horizon, the relative attractiveness of the incentive reform is increasing in

the SD of the test score noise (shown across the table’s columns). In the short run (one year),

the incentive reform has a pronounced absolute advantage, reflected in the values in row (3) of

Panel (a) – all above an output ratio of 4.5 for the same per-teacher cost of the reform. Because

teacher effort is less persistent than ability, the advantage enjoyed by the incentive reform is less

pronounced in the long run, especially for small values of the SD (see row (3) of Panel (b)).

Parameter values. Two key parameters determining the cost of generating one additional

unit of output are the effect of effort on output (ρ) and the cost of higher effort (β), respectively.

In Figure 9, we show combinations of the two parameters, below the upward-sloping line, for

which the incentive reform is more cost effective in the long run. The point defined by our actual

estimate for ρ – obtained from the ML procedure – and our preferred estimate for β falls well

inside the region where the incentive reform has the cost advantage. The figure also depicts

95 percent confidence intervals around each parameter estimate, showing that almost the entire

area defined by the confidence intervals of the two estimates falls within the region of ρ and β

combinations where the incentive reform is more cost effective. As such, the incentive reform

comes out ahead in a range of relevant cases.

The persistence rate of effort, γe1, estimated to be 0.10 (see Table 4), is another important

parameter relevant to the policy comparison. Increasing it has two effects. First, effort then

persists more in the long-run (because we impute the four-year persistence rate from γe1), imply-

ing the incentive reform achieves greater long-run output for the same cost. Second, increasing

γe1 results in a smaller expected financial loss for each school under the ABCs (estimated in Step

1 above), lowering the cost of test score gains.52 Both effects work to make the incentive reform

relatively more cost-effective. Figure 10 captures this reasoning: it reproduces the main results

from Figure 9, but shows how higher values of γe1 expand the region in which the incentive

reform is more cost effective.53

52Greater student learning gains due to higher effort persistence make it less costly for schools to raise ABCs
targets, resulting in a lower estimated value of β (from Step 2 above) – the financial cost of one more unit of
effort, which also reduces the per-teacher cost of one more unit of output (given by β

ρ
in Step 4 above).

53Specifically, we consider the lower and upper bounds of the 95 percent confidence interval of our estimate,
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In sum, the sensitivity analysis indicates that the incentive reform remains more cost effective

than the comparable ability reform across a range of circumstances, in line with our main

estimates.

Extensions: One can think of various ways in which the basic approach could be augmented:

here, we list several. First, policies could be implemented that were a weighted average of

the separate incentive and ability-based policies we compare. One might also consider the

extensive margin effect of ability-based and/or incentive reforms on the stock of teachers, as

the threat of dismissal or sharpened incentives could affect teacher turnover via participation

constraints. Losses and gains may have asymmetric effects on teacher behavior, making reward-

based incentive reforms more or less efficient than sanction-based reforms: it would be interesting

to extend the analysis to allow for such potential asymmetry. In a similar vein, the use of

extrinsic incentives could influence the intrinsic motivation of teachers, which would represent

an additional cost of incentive-based policies.

Having noted these possible extensions, overall we view our policy analysis as a useful first

step in placing incentive reforms in education on a comparable footing with alternative policies.

VII Conclusion

In this paper, we have shown how measured teacher performance is influenced by accountability

incentives, in the process shedding light on the importance of teacher agency. Central to the

analysis was an approach for separating out two unobserved education inputs for the first time:

teacher effort, which is responsive to accountability incentives, from teacher ability, which is not.

Our identification strategy leveraged a natural experiment associated with the introduction of

a federal accountability program (NCLB) in a setting – the state of North Carolina – where

accountability incentives already operated. Specifically, we drew on the proficiency-count design

of NCLB to construct a measure of incentive strength for each teacher, showing a positive linear

relationship between teacher value-added and this incentive measure in the year NCLB was

introduced but not in prior years. We then exploited these incentive differences over time to

separate teacher quality into teacher ability and the effort response to NCLB, allowing us to

equal to 0.06 and 0.14, respectively. (As above, we multiply these values by 0.463 to impute the four-year
persistence rate, obtaining long-run estimates of 0.028 and 0.065.) As expected, raising γe1 to 0.14 rotates the
black line up, resulting in a larger region of (ρ, β) combinations where the incentive reform has the advantage.
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gauge the respective impacts of effort and ability on contemporaneous scores.

To measure the extent to which these two potentially important education inputs might

persist differentially, we then developed an approach built around the education production

technology. This allowed us to identify the persistence of effort separately from teacher ability

and the effects of contemporaneous incentives. Here, we found that effort persists at approxi-

mately 25 percent of the persistence of ability, the latter having a significant positive effect on

future test scores. The estimates indicate that teacher effort is both a productive input and

one that is responsive to incentive variation in a systematic way, with longer-term benefits for

students.

We then used the estimates and the technology to conduct a novel policy comparison. While

incentive-focused education policies have become increasingly widespread over the past two

decades, how they compare with alternatives has remained under-explored. This paper proposed

an approach for computing the cost effectiveness of feasible policies (including incentive-based

reforms) on a comparable basis for the first time in the education literature.

Our analysis indicated that using formal incentives constitutes a viable means of raising stu-

dent and school performance. For the same per-teacher cost, we found that the incentive reform

can deliver significantly higher output than comparable ability-based reforms – an advantage

that holds across a variety of circumstances. This is attributable to the fact that incentive

reforms can apply throughout the value-added distribution while ability-based reforms focus on

a subset. Overall, the analysis shows that incentive reforms are worth considering seriously as

a viable tool for education policy makers.

The general approach serves to open up a fuller comparison of the cost-effectiveness of

alternative policies, based on refinements to the estimation strategies we develop – for instance,

looking at the longer-run persistence of effort, and the teacher’s explicit effort-setting decision

itself. These are areas we are exploring in related research.
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Tables

Table 1 – Student-Level Summary Statistics

Mean SD Observations

Performance Measures

Mathematics Score
Grade 3 144.67 10.67 905,912
Grade 4 153.66 9.78 891,971
Grade 5 159.84 9.38 888,469

Mathematics Growth
Grade 3 13.88 6.30 827,738
Grade 4 9.20 6.02 817,240
Grade 5 6.92 5.35 815,602

Future(a) Mathematics Score
Grade 6 167.16 11.01 739,386
Grade 7 172.61 10.70 617,669
Grade 8 175.79 11.36 503,091

Reading Score
Grade 3 147.03 9.33 901,235
Grade 4 150.65 9.18 887,153
Grade 5 155.79 8.11 883,689

Reading Growth
Grade 3 8.20 6.71 838,387
Grade 4 3.85 5.58 811,890
Grade 5 5.49 5.22 810,216

Future(a) Reading Score
Grade 6 157.07 8.66 737,192
Grade 7 160.76 8.00 616,384
Grade 8 163.32 7.56 502,229

Demographics

College-Educated Parents 0.25 0.43 2,757,648
Male 0.51 0.50 2,778,454
Minority 0.40 0.49 2,776,729
Disabled 0.06 0.24 2,778,635
Limited English-Proficient 0.03 0.17 2,778,623
Repeating Grade 0.02 0.13 2,778,734

Free or Reduced-Price Lunch(b) 0.44 0.50 1,998,653

Notes: Summary statistics are calculated for all third through fifth grade
student-year observations from 1996-97 to 2004-05.
(a) ‘Future’ mathematics and reading scores are the scores we observe for our
sample of third through fifth grade students when they are in sixth, seventh,
and eight grades. They are used to measure the persistent effects of teacher
ability and effort. We do not follow students past 2004-05, as the mathematics
scale changes in 2005-2006, yet no table to convert scores back to the old scale
was created by the state.
(b)The free or reduced-price lunch eligibility variable is not available prior to
1998-99.
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Table 2 – Teacher Performance Variables

Estimated Fraction of Estimated
Ability Marginal Students (mjt ) Effort

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Grade 3rd 4th 5th 3rd 4th 5th 3rd 4th 5th

Mean -0.07 -0.09 -0.06 0.33 0.21 0.23 0.56 0.80 0.45

Observed SD 1.68 1.38 1.30 0.16 0.14 0.15 0.27 0.64 0.36
Estimated SD 2.16 1.63 1.63 - - - - - -

Observations 6,547 7,816 7,046 17,371 16,075 14,817 2,144 2,598 2,570

Notes: This table presents means and standard deviations of the main performance-related teacher
variables. Summary statistics for Estimated Ability are calculated using all teacher-grade obser-
vations from 1996-97 to 2001-02, where we include a teacher in a grade-specific distribution if she
is ever observed teaching in that grade; a given teacher can be in more than one such distribution.
The Observed SD is the raw standard deviation, while the Estimated SD is the estimate of the
true standard deviation of teacher ability, obtained from the EB procedure. Summary statistics
for the fraction of marginal students in classrooms are calculated using all available teacher-year
observations from 1996-97 to 2002-03. (Because second grade scores are not available in 1996-97
and due to the change to the mathematics developmental scale in 2000-01, we are unable to calcu-
late marginal status for third graders in 1996-97 and 2000-01, and for fourth and fifth graders in
2001-02.) Summary statistics for Estimated Effort are calculated across all teacher observations
in 2002-03.

Table 3 – The Effects of NCLB Incentives on Teacher Performance

Third Grade Fourth Grade Fifth Grade
2002-03 Pre-NCLB 2002-03 Pre-NCLB 2002-03 Pre-NCLB

Effect of Incentives (mjt) 1.55∗∗∗ 0.09 4.39∗∗∗ -0.85∗∗∗ 2.41∗∗∗ 0.06
(0.20) (0.13) (0.32) (0.15) (0.23) (0.16)

Observations 2,144 10,452 2,598 11,551 2,570 10,609

Notes: This table presents estimates of the impact of incentives on teacher performance, where incentives are
captured by the fraction of marginal students (mjt) within classrooms and teacher performance is measured
using teacher-year fixed effects. (The reported coefficients are given by ψ from grade-specific regressions
of equation (7).) In the year 2002-03 regression, additional controls include teacher ability and teacher
experience. The estimate in the pre-NCLB columns comes from a pooled regression of all pre-NCLB years
that also includes year fixed effects. For third grade, the pre-NCLB years cover 1997 to 2000 and 2002, and
for fourth and fifth grade, 1997 to 2001. Standard errors clustered at the school level appear in parentheses.
*** denotes significance at the 1% level.
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Table 4 – Maximum Likelihood Parameter Estimates

(1) (2) (3)
Without Contemporaneous NCLB With Contemporaneous NCLB With Contemporaneous NCLB

or ABCs Incentives but Without ABCs Incentives and ABCs Incentives

γe1 0.40∗∗∗ 0.10∗∗∗ 0.10∗∗∗

(0.02) (0.02) (0.02)

θ - 0.52∗∗∗ 0.49∗∗∗

- (0.02) (0.02)

ρ - - 0.29∗∗∗

- - (0.06)

µ 1.19∗∗∗ 0.90∗∗∗ 0.39∗∗∗

(0.04) (0.04) (0.12)

σ2 20.30∗∗∗ 20.14∗∗∗ 20.14∗∗∗

(0.14) (0.14) (0.14)

Notes: This table presents maximum likelihood estimates of variants of equation (10). The sample includes fourth grade
students in 2003-04. The dependent variable in each column is the difference between the realized and ‘counterfactual
predicted’ mathematics score (see main text). The number of observations in each column is 86,236. Standard errors
calculated using the Outer-Product of Gradients method appear in parentheses. *** denotes significance at the 1% level.
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Table 5 – Recovering the Output-Incentive Expenditure Mapping – the Four Steps

Step Description - What is Calculated Formula(a)

Step 1 Expected financial loss under the ABCs, equal to
the ABCs per-teacher bonus payment multiplied by
the probability of passing the ABCs in 2003-04 (rel-
ative to the no-NCLB counterfactual scenario)

750 ·∆Fs

Step 2 Change in 2003-04 financial incentives for a one-
unit change in school effort from the previous year

β =
d(750·∆Fs)

dēNs,02−03

Step 3 Impact of lagged school-level effort on test scores
in 2003-04

ρ = dy

dēNs,02−03

Step 4 Effect of test scores on ABCs financial incentives
(due to increased teacher effort)

β
ρ

=
d(750·∆Fs)

dy

Notes: (a) The formulae in this column are referenced in the main text and derived in
full in Appendix F. The term ēNs,02−03 in the denominator of Steps 2 and 3 measures

school effort in 2002-03 in response to NCLB (relative to a baseline of zero).

41



T
ab

le
6

–
R

ec
ov

er
in

g
th

e
‘O

u
tp

u
t-

In
ce

n
ti

ve
E

x
p

en
d

it
u

re
’

M
ap

p
in

g
–

S
en

si
ti

v
it

y
to

th
e

V
ar

ia
n

ce
of

T
es

t
S

co
re

N
oi

se

S
ta

n
d

a
rd

D
ev

ia
ti

o
n

o
f

th
e

0
.1

0
.2

0
.3

0
.3
6

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
S

ch
o
o
l

E
rr

o
r

T
er

m
(ν
s
)

P
a
n

el
(a

):
S

te
p

1
–

C
o
u

n
te

rf
a
ct

u
a
l

S
ch

o
o
l-

L
ev

el
A

B
C

s
P

a
ss

in
g

P
ro

b
a
b

il
it

ie
s

a
n

d
E

x
p

ec
te

d
F

in
a
n

ci
a
l

L
o
ss

(1
)

A
v
er

a
g
e

P
a
ss

in
g

P
ro

b
.

if
0
.7

2
0
.7

0
0
.6

7
0
.6
6

0
.6

5
0
.6

3
0
.6

2
0
.6

0
0
.5

9
0
.5

8
0
.5

8
N

C
L

B
o
n

ly
o
p

er
a
te

d
in

2
0
0
2
-0

3

(2
)

A
v
er

a
g
e

P
a
ss

in
g

P
ro

b
.

0
.9

2
0
.8

9
0
.8

5
0
.8
2

0
.8

0
0
.7

7
0
.7

4
0
.7

1
0
.6

9
0
.6

7
0
.6

6
w

it
h

o
u

t
N

C
L

B

(3
)

A
v
er

a
g
e

D
iff

er
en

ce
in

-0
.2

0
-0

.1
9

-0
.1

8
-0

.1
6

-0
.1

5
-0

.1
4

-0
.1

2
-0

.1
1

-0
.1

0
-0

.0
9

-0
.0

8
P

ro
b

a
b

il
it

ie
s

(∆
F
s
)

(4
)

E
x
p

ec
te

d
P

er
-T

ea
ch

er
-1

4
7
.0

4
-1

4
1
.8

1
-1

3
0
.1

7
-1

2
1
.8
3

-1
1
6
.2

9
-1

0
3
.1

6
-9

1
.7

5
-8

2
.1

3
-7

4
.0

7
-6

7
.3

0
-6

1
.5

8
L

o
ss

in
D

o
ll
a
rs

(C
≡

7
5
0
·∆

F
s
)

P
a
n

el
(b

):
S

te
p

2
–

C
h

a
n

g
e

in
2
0
0
3
-0

4
A

B
C

s
F

in
a
n

ci
a
l

In
ce

n
ti

v
es

fo
r

a
O

n
e-

U
n

it
C

h
a
n

g
e

in
S

ch
o
o
l

E
ff

o
rt

fr
o
m

P
re

v
io

u
s

Y
ea

r

β
=

d
C d
e

-2
4
5
.3

1
-1

9
9
.4

5
-1

6
3
.2

8
-1

4
6
.3
6

-1
3
6
.7

3
-1

1
6
.6

2
-1

0
0
.9

7
-8

8
.6

0
-7

8
.7

1
-7

0
.6

8
-6

4
.0

9
(2

6
.9

7
)

(2
0
.5

9
)

(1
6
.2

7
)

(1
4
.4
2
)

(1
3
.4

2
)

(1
1
.4

6
)

(1
0
.0

2
)

(8
.9

2
)

(8
.0

3
)

(7
.3

1
)

(6
.7

0
)

P
a
n

el
(c

):
S

te
p

3
–

Im
p

a
ct

o
f

L
a
g
g
ed

S
ch

o
o
l-

L
ev

el
E

ff
o
rt

o
n

T
es

t
S

co
re

s
in

2
0
0
3
-0

4

ρ
=

d
y
d
e

0
.2
9

(s
a
m

e
v
a
lu

es
in

ea
ch

co
lu

m
n

)
(0

.0
6
)

P
a
n

el
(d

):
S

te
p

4
–

In
ce

n
ti

v
e

C
o
st

o
f

O
n

e-
U

n
it

In
cr

ea
se

in
O

u
tp

u
t

(D
u

e
to

In
cr

ea
se

d
E

ff
o
rt

)

β ρ
=

d
C
d
y

8
4
5
.9

1
6
8
7
.7

5
5
6
3
.0

3
5
0
4
.7
0

4
7
1
.4

7
4
0
2
.1

4
3
4
8
.1

8
3
0
5
.5

3
2
7
1
.4

0
2
4
3
.7

3
2
2
0
.9

8

N
o
te
s
:

T
h
is

ta
b

le
p

re
se

n
ts

es
ti

m
a
te

s
fo

r
ea

ch
o
f

th
e

fo
u

r
st

ep
s

in
th

e
p

ro
ce

d
u

re
to

re
co

v
er

th
e

o
u

tp
u

t-
ex

p
en

d
it

u
re

re
la

ti
o
n

sh
ip

,
d

es
cr

ib
ed

in
S

ec
ti

o
n

V
I.

C
.

T
h

e
u

n
it

o
f

o
b

se
rv

a
ti

o
n

is
a

sc
h

o
o
l

in
2
0
0
3
-0

4
(N

=
1
,2

5
0
).

T
h

e
co

lu
m

n
s

co
rr

es
p

o
n

d
to

d
iff

er
en

t
v
a
lu

es
o
f

th
e

st
a
n

d
a
rd

d
ev

ia
ti

o
n

o
f

th
e

sc
h

o
o
l-

le
v
el

er
ro

r
te

rm
(l

is
te

d
in

th
e

co
lu

m
n

h
ea

d
in

g
s)

;
o
u

r
p

re
fe

rr
ed

es
ti

m
a
te

s
a
re

g
iv

en
in

b
o
ld

,
u

n
d

er
th

e
“
0
.3

6
”

h
ea

d
in

g
.

In
P

a
n

el
(a

),
w

e
ca

lc
u

la
te

th
e

ex
p

ec
te

d
p

er
-t

ea
ch

er
lo

ss
a
ss

o
ci

a
te

d
w

it
h

th
e

eff
o
rt

re
sp

o
n

se
to

N
C

L
B

.
S

p
ec

ifi
ca

ll
y,

th
e

a
v
er

a
g
e

sc
h

o
o
l

p
a
ss

in
g

p
ro

b
a
b

il
it

y
is

re
p

o
rt

ed
in

ro
w

(1
)

fo
r

th
e

co
u

n
te

rf
a
ct

u
a
l

sc
en

a
ri

o
in

w
h

ic
h

N
C

L
B

o
n

ly
o
p

er
a
te

d
in

2
0
0
2
-0

3
,

a
n

d
in

ro
w

(2
)

fo
r

th
e

co
u

n
te

rf
a
ct

u
a
l

sc
en

a
ri

o
in

w
h

ic
h

N
C

L
B

w
a
s

n
ev

er
en

a
ct

ed
.

R
o
w

(3
)

g
iv

es
th

e
a
v
er

a
g
e

o
f

th
e

d
iff

er
en

ce
s

in
p

a
ss

in
g

p
ro

b
a
b

il
it

ie
s

fo
r

ea
ch

sc
h

o
o
l

a
cr

o
ss

th
e

tw
o

sc
en

a
ri

o
s.

R
o
w

(4
)

m
u

lt
ip

li
es

th
is

d
iff

er
en

ce
b
y

th
e

p
er

-t
ea

ch
er

b
o
n
u

s
p

a
y
m

en
t

u
n

d
er

th
e

A
B

C
s

to
ca

lc
u

la
te

ex
p

ec
te

d
fi

n
a
n

ci
a
l

lo
ss

p
er

te
a
ch

er
,

a
v
er

a
g
ed

a
cr

o
ss

a
ll

sc
h

o
o
ls

.
In

P
a
n

el
(b

),
w

e
re

g
re

ss
th

e
ex

p
ec

te
d

fi
n

a
n

ci
a
l
lo

ss
o
n

a
v
er

a
g
e

sc
h

o
o
l-

le
v
el

N
C

L
B

eff
o
rt

fr
o
m

2
0
0
2
-0

3
,

a
n

d
re

p
o
rt

th
e

re
su

lt
in

g
es

ti
m

a
te

s
u

n
d

er
ea

ch
v
a
lu

e
o
f

th
e

sc
h

o
o
l-

le
v
el

er
ro

r
te

rm
.

S
ta

n
d

a
rd

er
ro

rs
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.
P

a
n

el
(c

)
re

co
rd

s
th

e
es

ti
m

a
te

d
eff

ec
t

o
f

2
0
0
2
-0

3
eff

o
rt

o
n

te
st

sc
o
re

s
in

2
0
0
3
-0

4
,

co
m

m
o
n

a
cr

o
ss

a
ll

co
lu

m
n

s;
it

is
th

e
es

ti
m

a
te

o
f
ρ

fr
o
m

T
a
b

le
4
.

P
a
n

el
(d

)
re

p
o
rt

s
th

e
in

ce
n
ti

v
e

co
st

o
f

a
o
n

e-
u

n
it

in
cr

ea
se

in
sc

h
o
o
l-

le
v
el

o
u

tp
u

t
(d

u
e

to
in

cr
ea

se
d

te
a
ch

er
eff

o
rt

)
a
s

th
e

S
D

o
f

th
e

sc
h

o
o
l-

le
v
el

n
o
is

e
in

cr
ea

se
s,

fr
o
m

le
ft

to
ri

g
h
t.

42



Table 7 – Comparing Output under Incentive and Ability-Based Reforms
for the Same $700 Per-Teacher Cost - Sensitivity Analysis

Standard Deviation of the 0.1 0.2 0.3 0.36 0.4 0.5 0.6 0.7 0.8 0.9 1
School Error Term (νs)

Panel (a): Short-Run Comparison

(1) Incentive Reform Output 0.827 1.017 1.243 1.387 1.484 1.740 2.010 2.291 2.579 2.872 3.167
(Dev. Scale Units)

(2) Ability Reform Output 0.179
(Dev. Scale Units)
– same values in each col.

(3) SR Output Ratio: 4.623 5.686 6.945 7.749 8.294 9.724 11.23 12.799 14.409 16.045 17.696
Incentive/Ability

Panel (b): Long-Run Comparison

(1) Incentive Reform Output 0.038 0.047 0.057 0.064 0.068 0.080 0.093 0.106 0.119 0.133 0.146
(Dev. Scale Units)

(2) Ability Reform Output 0.034
(Dev. Scale Units)
– same values in each col.

(3) LR Output Ratio: 1.126 1.386 1.693 1.882 2.021 2.370 2.737 3.119 3.512 3.911 4.313
Incentive/Ability

Notes: This table presents test score gains under cost-equated ability and incentive reforms in both the short run (Panel (a))
and long run (Panel (b)). In rows (1) and (2) of each panel, test score ‘output’ is measured in developmental scale units; for
reference, the standard deviation of the student-level test score is 10 developmental scale units. In row (1) of Panel (a), output
in each column under the incentive reform is determined as 700 · dy/dC, where dC/dy is calculated in Panel (d) of Table 6; in
row (1) of Panel (b), output is calculated as (700 · dy/dC) · γe4 , where γe4 is estimated as 0.0463. Row (3) of each panel equals
the ratio of row (1) to row (2) output. The columns correspond to different values of the standard deviation of the school-level
error term (listed in the column headings); our preferred estimates are given in bold, under the “0.36” heading.
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(c) Fifth Grade
Notes: The panels in this figure plot the relationship between teacher-year VA measures and the fraction of marginal
students within a classroom in the academic year 2002-03. To construct the figure, we first group teacher-year observations
into 20 equally-sized (vingtile) bins of the distribution for third, fourth, and fifth grade of the fraction of marginal students
on the horizontal axis. Within each bin, we calculate the average proportion of marginal students and the average teacher-
year VA estimate. The dots in each panel represent these averages in 2002-03. The lines represent the associated linear
fits, estimated using the underlying teacher-year data.

Figure 1 – Teacher-Year Fixed Effects versus the Proportion of Marginal Students
in the Classroom
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(a) All Grades
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(b) Third Grade
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(c) Fourth Grade
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(d) Fifth Grade
Notes: The panels in this figure show the distributions of teachers’ incentive-invariant abilities (which include baseline
effort). To construct the figures, we estimate equation (6), and construct EB estimates of teacher ability. Panel (a) shows
the distribution of ability across all teachers. Panels (b), (c), and (d) show the distributions for teachers in third, fourth
and fifth grades, respectively. We include a teacher in a grade-specific distribution if she is ever observed teaching in that
grade; a given teacher can be in more than one grade-specific distribution.

Figure 2 – Incentive-Invariant Ability Distributions
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(a) Third Grade

-2
0

2
4

6
T

ea
ch

er
-Y

ea
r 

V
A

-.3 -.2 -.1 0 .1 .2 .3 .4 .5
Residual Proportion of Marginal Students in Class

2003 1998 - 2001

 

(b) Fourth Grade
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(c) Fifth Grade
Notes: This figure plots teachers’ 2002-03 effort responses. In panels (a) to (c), we present grade-specific partial relation-
ships between teacher-year effects and the fraction of students in a teacher’s class who are marginal. To construct these
figures, we first residualize mjt with respect to the other controls in equation (7). For the pre-NCLB years, these controls
also include year fixed effects. The horizontal axis measures residualized mjt. We group teacher-year observations in 20
equal-sized groups (vingtiles) of the residualized mjt distribution on the horizontal axis. Within each bin, we then calcu-
late the average residualized mjt and the average teacher-year effect. The circles in each panel represent these averages.
The lines represent the estimated linear effects using the underlying teacher-year data.

Figure 3 – Teacher-Year VA versus Proportion of Marginal Students
in 2002-03 Classrooms
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(a) Third Grade
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(b) Fourth Grade
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(c) Fifth Grade
Notes: This figure illustrates teachers’ effort responses to the introduction of NCLB. In panels (a) to (c), we present
grade-specific densities of 2002-03 effort levels. To construct these figures, we first obtain 2002-03 effort for each teacher
by taking the linear prediction (fitted value) from e(mj2003) = ψ̂mj2003. We then plot the distributions of these effort
levels separately by grade.

Figure 4 – Effort Distributions in 2002-03
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Notes: This figure reports estimates of the persistence of teacher ability (the φn co-
efficients) from equation (8). Each estimate is obtained from a separate regression
in the pre-NCLB period from 1996-97 to 2001-02. The horizontal axis measures
the number of years separating students from their period-t teacher while the ver-
tical axis measures the impact of the period-t teacher on students’ test scores in
period t + n. The dots represent the estimated effects and the dashed lines, 95
percent confidence intervals with the associated standard errors clustered at the
school level.

Figure 5 – Persistence of Teacher Ability and Baseline Effort in Pre-NCLB Period
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Notes: This figure shows the effect of accountability incentives on fourth grade mathematics scores. It
is constructed as follows: In both years, we calculate a predicted score for each fourth grade student and
then subtract off the known proficiency score target from this prediction – the horizontal axis measures
the difference. We then group students into 2-point width bins on the horizontal axis. Within each bin,
we calculate the average (across all students) of the difference between students’ realized and predicted
scores. The circles represent these bin-specific averages, the solid circles representing academic year
2002-03 averages, and the hollow circles, academic year 1999-00 averages. The figure also shows the
associated 95 percent confidence intervals for each year. Standard errors are clustered at the school
level.

Figure 6 – Inverted-U Response to NCLB’s Introduction
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Notes: This figure plots the student-specific effort function. The horizontal axis
measures incentive strength (as in Figure 6). To construct the smooth curve,
we first form bins on the basis of incentive strength, then take the bin-specific
differences between the year 2002-03 and the year 1999-00 vertical-axis variable
in Figure 6. The circles represent the resulting within-bin differences. We then
estimate an eight-order polynomial using the binned data, weighting the regression
by the number of student observations (across both 1999-00 and 2002-03) within
each bin.

Figure 7 – Student-Specific Effort Function
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Notes: This figure illustrates the policy comparison we have in mind. The ability-based reform (represented by point
A) has a known cost Ca and output ya, provided by estimates from the prior literature. The incentive reform is

represented by the linear cost function C(y) with slope dC
dy

, which we compute from dC
de

and de
dy

(inversion of dy
de

),

using the exogenous NCLB-based shifter of the ABCs target in 2004. The function makes clear the cost associated
with any given output from the incentive reform. To compare the reforms, we select the output ye that costs the
same as the ability-based reform (C(ye) = Ca). As drawn, the slope of the cost function implies that ye > ya, which
means that the incentive reform is more cost effective than the ability-based reform. In general, the incentive reform
is more cost effective iff dC

dy
< Ca

ya
; that is, the slope of the function is flatter than the line connecting the origin and

point A.

Figure 8 – Policy Comparison
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Notes: This figure compares the long-run cost effectiveness of the ability and incentive reforms under
various combinations of ρ and β. The incentive reform achieves higher output than the ability reform
(for the same per-teacher cost of $700) for all combinations of ρ and β below the solid black line, while
the ability reform achieves higher output than the incentive reform above. The dashed vertical lines
represent the 95% confidence interval for our estimate of ρ. The dashed horizontal lines represent the
95% confidence interval for β, based on a standard deviation of the school-level ABCs error term equal
to our preferred estimate of 0.36 developmental scale points. The specific (ρ, β) estimates from the ML
routine are indicated by the ‘*’ in the figure.

Figure 9 – Comparing the Long-Run Cost Effectiveness of Ability and Incentive
Reforms for Different (ρ, β) Combinations
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Notes: This figure replicates Figure 9 under different assumptions for the value of the persistence rate
of effort, γe1 . Refer to the notes of that figure for further details. Our estimated value, reported in Table
4 and used in the construction of Figure 9, is 0.10. The solid increasing black line from Figure 9 is
reproduced here for ease of comparability, indicating the ρ and β pairs for which each type of reform
is more cost effective under our baseline estimate of γe1 . In this figure, we additionally consider higher
and lower values of γe1 , equal to 0.14 and 0.06 (the upper and lower bounds of the 95 percent confidence
interval for our main estimate), respectively, and trace out how the cost-effectiveness region shifts in
each case. The dashed vertical lines represent the 95% confidence interval for our estimate of ρ. The
dashed horizontal lines represent the 95% confidence interval for β, based on a standard deviation of
the school-level ABCs error term equal to our preferred estimate of 0.36 developmental scale points
and using our baseline estimate for γe1 of 0.10. The specific (ρ, β) estimates from the ML routine are
indicated by the ‘o’ in the figure. Changing the value of γe1 does not affect the estimate of ρ but does
shift the estimate of β.

Figure 10 – Comparing the Long-Run Cost Effectiveness of Ability and Incentive
Reforms for Different (ρ, β) Combinations

Under Different Assumptions for the Persistence of Effort (γe1)
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Appendices

Appendix A Relation to the Prior Literature

In this appendix, we place our analysis in the context of related prior studies, expanding on the

discussion in the Introduction.

Among the studies estimating teacher value-added, most existing strategies in the literature treat

teacher quality as fixed. Yet some recent evidence shows that teacher performance varies systematically

over time and depending on the context – see Jackson, Rockoff, and Staiger (2014) for a detailed review.

The workplace environment has been shown to matter particularly, as the interactions teachers have

with their colleagues (Jackson and Bruegmann, 2009; Papay et al., 2016), the tasks-specific experience

they accumulate (Ost, 2014), and the overall fit with their schools (Jackson, 2013) all affect measured

performance.

Performance incentives – the central focus of our paper – also influence teacher quality. The existing

literature has highlighted the contrasting effects of teacher pay-for-performance schemes on the one hand

and school-level accountability programs on the other – see Neal (2011) and Figlio and Loeb (2011) for

comprehensive reviews of each. Studies of teacher pay-for-performance schemes in the United States

indicate that teacher-level programs are largely ineffective at improving teacher performance (Springer

et al., 2010; Fryer et al., 2012),54 while the effectiveness of group-based programs depends heavily on

program design (Goodman and Turner, 2013; Fryer, 2013; Imberman and Lovenheim, 2015). School-

based accountability schemes, in contrast, have been found to change educators’ actions in ways one would

predict based on the incentives embedded in the programs. Proficiency-count systems, for example, have

been shown to lead teachers to direct attention to marginal students, as expected (Reback, 2008; Neal

and Schanzenbach, 2010; Deming et al, 2016), and growth-based programs can lead to resources being

allocated across grades differentially in ways that make target attainment easier (Macartney, 2016).

Popular teacher VA estimators either seek to estimate fixed teacher quality (Kane and Staiger,

2008) or teacher quality that drifts over time according to a statistical process (CFR 2014a), despite the

fact that school-based accountability programs are increasingly widespread in the US, and the evidence

that these programs change teachers’ actions. While these methods identify important heterogeneity

across teachers, based on a fixed component of performance, they do not recover any information about

the influence of (potentially changing) incentives on teacher performance.55 As such, it is difficult to

54Fryer et al., (2012) find large gains from a non-standard loss-aversion treatment but small gains from a
traditional pay-for-performance program.

55For a given teacher, teacher VA methods typically construct some weighted average of the (residual) test
scores of the students assigned to that teacher over time. If a teacher is observed many times and incentives
are changing frequently, their influence in the teacher VA estimate may be averaged away. In contrast, when
incentives remain constant over time, standard teacher VA estimates capture a composite of (true) fixed ability
and the component of performance that is responsive to the incentive environment.
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compare the effectiveness of policies that seek to change the distribution of the teaching force based on

teacher VA with policies that aim to change the incentive environment in which teachers work.

We address these gaps by showing, first, that teacher VA estimates depend on both fixed teacher

ability and the incentives teachers face from prevailing school-based accountability programs, thus high-

lighting the importance of the agency of teachers in determining overall teacher performance. We then

compare the cost-effectiveness of incentive-based reforms alongside the widely-discussed ability-based re-

form that removes the lowest-performing teachers based on standard VA measures, showing that incentive

reforms come out ahead in a range of plausible cases.

Our policy comparisons do not consider the potential for either reform to change the types of teacher

who enter the teaching profession. Few existing studies address this issue in a North American context,

although the limited available evidence suggests that both ability- and incentive-based reforms may induce

positive selection into the teaching profession.56 While teacher selection considerations are relevant when

considering the generalizability of the effects of both types of reform, we note in our context that North

Carolina implemented the state-operated ABCs of public education in the 1996-97 school year; this left

ample time for selection to play out following the bonus payment reform prior to NCLB being implemented

in the 2002-03 year. It is therefore unlikely that our proposed incentive-based reform would induce much

additional selection into or out of teaching in North Carolina’s public schools.

56Dee and Wyckoff (2015) find that a dismissal-based policy in the District of Columbia increased voluntary exit
rates of low-performing teachers, suggesting a further gain from the ability-based reform associated with teacher
self-selection. At the same time, financial incentives offered for high-performing teachers increased retention
at the top of the performance distribution (although the effect was not statistically significant), indicating the
performance incentives may operate in a similar manner. High-performing teachers may be induced to enter and
stay in the profession given the opportunity to earn a bonus payment on top of regular income, as these teachers
tend to have higher earnings opportunities outside the classroom (see Chingos and West, 2012).
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Appendix B Data: Implications of Test Score Scale Changes

In this appendix, we discuss the timing of the changes to the developmental scale that the mathematics

and reading end-of-grade tests are measured on. We also draw out the implications of these changes

in terms of our methods for – respectively – estimating teacher VA, predicting student test scores, and

estimating the contemporaneous and persistent effects of teacher effort.

B.I Mathematics Scale Change

Mathematics scores were measured on different scales before and after 2000-01. Because North Carolina’s

ABCs accountability program required test scores from adjacent years in order to calculate student

growth, the state provided a conversion table for the test scales. We convert ‘second edition’ scale scores

to their ‘first edition’ counterparts for all tests except the third grade pre-test, which is written at the

start of the academic year. The state did not provide a conversion table for that pre-test because both

the pre-test and the end-of-grade test would be on the second edition scale in 2000-01, thus making it

possible to calculate student growth.

While test scores measured on both scales provide a valid way to track student learning, the timing

of scale change and the steps involved in our analyses require us to use test scores expressed one scale or

the other, depending on the task at hand. By way of overview, when reporting summary statistics, we

keep a consistent presentation by expressing all mathematics ‘level’ and ‘gain’ scores on the first edition

scale, except for third grade gains, which are calculated using first edition scores prior to 2000-01 and

second edition scores thereafter. When estimating teacher VA, we also use test scores measured on the

first edition in all cases except for third grade teachers observed after 2000-01 (whose VA we measure

using the second edition). When estimating teacher effort, we only use test scores measured on the

second edition scale because – as explained below – this allows us to predict students’ test scores and

their marginal status more accurately.57 We now explain the implications of the test scale change for our

analyses in more detail.

B.I.i Scale Change Implications for Estimating Teacher Value-Added

Teacher-Year Fixed Effects: When estimating teacher-year fixed effects for fourth and fifth

grades, we convert all post-2000-01 test scores back to the first edition scale and estimate teacher VA

using a pooled regression covering 1996-97 to 2004-05, based on equation (C.1) in Appendix C below.

Here, both contemporaneous test scores (the dependent variable) and lagged test scores (control vari-

ables) are measured on the first edition scale, allowing us to measure fourth and fifth grade teacher VA

57It is worth noting that all of our results are qualitatively similar if we apply the test scale conversion and
measure effort on the first edition, as we do for teacher value-added (results available on request).
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on the first edition scale throughout the sample period. For third grade, because we are not able to

convert the second grade test to the first edition scale, we conduct two separate regressions, given the

prior-year test score is needed as a control variable in the value-added estimation: prior to 2000-01, third

grade teacher value-added is measured on the first edition scale, while post-2000-01, it is measured on

the second edition scale.

Empirical Bayes Estimates of Teacher Ability: When estimating incentive-invariant teacher

ability using the Empirical Bayes (EB) procedure in the pre-NCLB period (equation (6) in the main

text), the differential timing of the 2000-01 mathematics developmental scale change in third grade and

the non-availability of second grade scores in 1995-1996 together imply that we have two fewer years of

data for third grade teachers than for those teaching fourth and fifth grade. We therefore estimate a

separate EB regression for third grade teachers, where the sample period runs from 1997-98 to 1999-00

(instead of from 1996-97 to 2000-01 for the pooled regression of students and teachers in fourth and fifth

grades).

B.I.ii Scale Change Implications for Test Score Prediction

As explained in Section V of the main text and Appendix E below, a component of our empirical approach

involves predicting student test scores in both the year NCLB was introduced – 2002-03 – and in years

prior. We predict scores in prior years in order to conduct placebo tests when NCLB incentives were

not operating. To estimate our prediction equations and categorize students according to their predicted

scores, we opt not to use converted (across first and second edition scales) test scores. Instead, we measure

test scores on the scale that was in effect when the tests were written.58 This prevents us from using a

prediction equation estimated prior to 2000-01 to predict test scores in 2000-01 and after. As a result,

for fourth and fifth grades, the nearest pre-NCLB year for which we have predicted scores to conduct

placebo tests is 1999-00. For third grade, we are able to conduct placebo tests using data from 2001-02.

Here, we rely on the third grade pre-test (second grade test) and the end-of-grade test both being written

and measured on the same scale in 2000-01. We then use data from 2000-01 to estimate the prediction

equation, using that equation and out-of-sample student covariates in 2001-02 to predict performance in

2001-02.

58Conversion across scales results in lumpiness in the distribution of predicted scores because the mapping
from second to first edition scales is many-to-one – that is, in some instances, more than one test score on the
second edition scale corresponds to the same value on the first edition scale. Because it is important to classify
students correctly according to the distance between their predicted score and the proficiency cutoff, we conduct
the analysis without converting.
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B.I.iii Scale Change Implications for Estimating the Effort Function and Effort Persistence

As discussed in Section V of the main text and Appendix E below, we use the difference between students’

realized and predicted scores in 2002-03 to estimate student-level effort when NCLB is introduced, and

the difference between students’ realized and ‘counterfactual’ predicted scores in 2003-04 to estimate the

persistence of effort one year forward. Because we do not convert second edition scores back to the first

edition scale when constructing predicted scores, we must use realized scores measured using the second

edition when carrying out these exercises. Therefore, both initial NCLB effort and its persistence are

estimated using mathematics test scores measured on the second edition scale.

B.II Reading Scale Change

We do not conduct our main analyses based on reading scores because the scale used to measure reading

tests changed in 2002-03, coinciding exactly with the introduction of NCLB. As mentioned in Section IV

of the main text, there is a potential concern that the timing of the scale change could have provided

the state with an opportunity to change the curriculum or test scale in a way that would have allowed

marginal students to perform better than in pre-NCLB years. In addition, because we opt not to convert

scores between first and second editions when categorizing students based on predicted scores, the timing

of the scale change prevents us from identifying ‘marginal’ students based on reading scores in 2002-03.
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Appendix C Estimating Teacher Value-Added: Technical Details

This appendix describes the estimation of teacher VA in some detail: how the sample is selected for

teacher VA estimation, how teacher-year fixed effects are estimated, and how we interpret Empirical

Bayes (EB) estimates of teacher ability in light of North Carolina’s pre-existing ABCs program.

C.I Construction of the Teacher Value-Added Sample

To estimate teacher value-added, we need to match students in the end-of-grade (EOG) files to their

teachers in an accurate way in any given year. Using data on students and teachers from 1996-97 to

2004-05, we follow previous studies that use the NCERDC data by restricting attention to students in

third through fifth grade, given that the teacher recorded as the test proctor is typically the teacher who

taught the students throughout the year. We follow Clotfelter, Ladd and Vigdor (2006) and subsequent

research by only counting a student-teacher match as valid if the test proctor in the EOG files taught a

self-contained class for the relevant grade and year and if at least half of the tests administered by that

teacher were for students in the correct grade.

When calculating value-added for each teacher, we include a given year of performance data in the

value-added regressions for that teacher only if she had more than seven but fewer than forty students

in her class with valid test scores and demographic variables, following existing studies using the North

Carolina data. A student is excluded from the value-added analysis if any of the following conditions

hold: (1) the student had multiple scores for current or lagged EOG mathematics or reading tests; (2)

the student had EOG scores corresponding to two or more teachers in a given year; (3) the student had

EOG scores corresponding to two or more grades in a given year; or (4) the student had EOG scores

corresponding to two or more schools in a given year.59 Applying these restrictions leaves 1.67 million

student-year observations for estimating teacher VA. Summary statistics for this sample are presented in

Table C.1 below.

C.II Estimation of Teacher-Year Fixed Effects

As described in Section IV, we compute teacher-year fixed effects for each teacher using all students and

teachers in the VA estimation sample. We follow recent studies and regress contemporaneous mathemat-

ics scores on prior mathematics and reading scores and other student characteristics, in addition to the

teacher-year fixed effects that are our main focus. The scores we use are measured on a developmental

scale, rather than being standardized (as is common in the literature, usually at the grade-year level).60

59Special education and honors classes are excluded from the analysis, but students who repeat or skip grades
are retained.

60Although standardizing test scores guards against changes in testing regimes over time, de-meaning would
effectively remove the effects of changes in performance incentives: given our goal of assessing how teacher effort
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Here we rely on the careful psychometric design of developmental scales in a North Carolina context, al-

lowing one to track changes in learning within and across students as they progress through the education

system.

To estimate teacher-year fixed effects, we specify the following grade-specific regressions (for third,

fourth and fifth grades):

y
ijgst

= f(yi,j′,g−1,s′,t−1) + qjt + x′ijgstβ + εijgst . (C.1)

Equation (C.1) is the empirical analog to equation (3) in the main text. In bringing the latter to the

data, we control flexibly for the lagged test score, letting f(yi,j′,g−1,s′,t−1) be a cubic function of lagged

mathematics and reading scores; teacher-year fixed effects are denoted by qjt, and we include a host of

other determinants of test scores (abstracted from in the conceptual framework).61 Conditional on those

covariates, we obtain teacher-year fixed effect estimates as

q̂jt =

n(j,t)∑
i=1

yijgst − f̂(yi,j′,g−1,s′,t−1)− x′ijgstβ̂
n(j, t)

, (C.2)

where n(j, t) denotes the number of students in teacher j’s classroom in academic year t. The resulting

estimates represent a teacher’s average contribution to her students’ test scores, along with a common

classroom shock that includes mean test score noise (ε̄jt), thus providing the basis for equation (5) in

Section IV. Summary statistics for our estimated teacher-year fixed effects are presented in Table C.2

below.

C.III Interpreting the Estimates of Teacher Ability with the ABCs

We now interpret our estimates of incentive-invariant ability in light of North Carolina’s pre-existing

ABCs program. In Section IV, we used the EB estimator to recover teacher ability, estimating the

following pooled regression across grades in the pre-NCLB period:

yijgst = fg(yi,j′,g−1,s′,t) + x′ijgstβ + h(expjt) + aj + θjt + εijgst, (C.3)

where aj represents teacher ability, θjt is a classroom-specific shock, and εijgst is student-level noise.

Accounting for the fact that the ABCs program was already operating in the pre-NCLB period, we

affects student learning, we wish to preserve all incentive-related performance variation over time.
61The other controls, xijgst, serve to mitigate the bias caused by non-random sorting of students to teachers

(Chetty et al. 2014a). They consist of student race, gender, disability status, limited English-proficiency classi-
fication, parental education, and an indicator for grade repetition, which is likely to be correlated with innate
student ability and previous teacher assignments.
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can estimate the same equation but with modified notation, written

yijgst = fg(yi,j′,g−1,s′,t) + x′ijgstβ + h(expjt) + µj + θjt + εijgst, (C.4)

where µj ≡ aj +ej is the sum of true incentive-invariant teacher ability (aj) and a term we label ‘baseline’

ABCs effort (ej). Baseline effort reflects the average ABCs-related effort exerted by the teacher across

all of her years of teaching under the ABCs program. We cannot identify incentive-invariant ability and

baseline effort separately, instead estimating a composite of the two, ̂(aj + ej), for each teacher j.

Our strategy for identifying the variation in teacher performance in 2002-03 that is driven by NCLB

incentives relies on an across-teacher comparison and should be unaffected by our inability to separate

true incentive-invariant ability from baseline effort. This follows from the fact that the ABCs sets only a

school-level target, without associated student-level test-score proficiency thresholds62 – a design feature

that contrasts sharply with NCLB and ensures that effort incentives under the ABCs operate at the school

level.63 As such, the baseline effort component of our EB estimate is likely to be constant across teachers

within a school, implying that our estimates reflect true incentive-invariant ability plus a constant shift

(common to all teachers within a school). As there is little variation in ABCs effort incentives across

teachers, the pre-existing accountability program does not confound our estimation of the effects of

NCLB incentives on teacher performance, given that our identification strategy exploits variation in

NCLB incentives across teachers in 2002-03.

It is unlikely that the introduction of NCLB in 2002-03 created systematic variation in ABCs incen-

tives across teachers (as noted in the main text), given the rules of the ABCs remained constant in that

year. Our identification strategy does permit aggregate changes to ABCs incentives at the school level –

for example, by NCLB drawing attention away from ABCs-related considerations. To separately identify

the variation in performance due to NCLB incentives from the variation due to ABCs incentives, we only

require that ABCs-related incentives do not change across teachers in a way that is correlated with the

strength of NCLB incentives in 2002-03.

62The ABCs system sets average growth targets at the grade level and then aggregates the differences between
average and target growth across all grades within a school to arrive at a school-level growth score. Under the
ABCs, average test score growth at a school is the key determinant of school success under the program, regardless
of where the growth is concentrated in terms of the underlying student distribution.

63For a more detailed discussion of the ABCs, see Macartney (2016).
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Table C.1 – Student-Level Summary Statistics: Value-Added Sample

Mean SD Observations

Performance Measures

Mathematics Score
Grade 3 145.09 10.49 595,097
Grade 4 154.10 9.56 553,833
Grade 5 160.48 9.15 527,762

Mathematics Growth
Grade 3 13.90 6.30 595,097
Grade 4 9.34 6.02 553,833
Grade 5 7.13 5.28 527,762

Future(a) Mathematics Score
Grade 6 167.84 10.76 456,348
Grade 7 173.29 10.41 387,525
Grade 8 176.43 11.07 316,557

Reading Score
Grade 3 147.37 9.19 595,097
Grade 4 150.95 9.02 553,833
Grade 5 156.21 7.93 527,762

Reading Growth
Grade 3 8.24 6.70 595,097
Grade 4 3.90 5.55 553,833
Grade 5 5.56 5.20 527,762

Future(a) Reading Score
Grade 6 157.60 8.36 455,871
Grade 7 161.29 7.63 387,140
Grade 8 163.84 7.16 316,225

Demographics

College-Educated Parents 0.26 0.44 1,676,692
Male 0.50 0.50 1,676,692
Minority 0.37 0.48 1,676,692
Disabled 0.05 0.22 1,676,692
Limited English-Proficient 0.02 0.13 1,676,692
Repeating Grade 0.01 0.10 1,676,692

Free or Reduced-Price Lunch(b) 0.41 0.50 1,203,519

Notes: Summary statistics are calculated for all third through fifth grade
student-year observations from 1996-97 to 2004-05.
(a) ‘Future’ mathematics and reading scores are the scores we observe for our
sample of third through fifth grade students when they are in sixth, seventh,
and eight grades. They are used when measuring the persistent effects of
teacher ability and effort. We do not follow students past 2004-05, as the
mathematics scale changes again in 2005-2006 yet no table to convert scores
back to the old scale was created by the state.
(b) The free or reduced-price lunch eligibility variable is not available prior to
1998-99.
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Table C.2 – Teacher-Year Fixed Effects Summary

(1) (2) (3)
Grade 3rd 4th 5th

Mean -0.17 -0.11 0.19

Standard Deviation 2.65 2.80 2.31

Observations 24,105 22,246 20,596

Notes: This table presents means and standard
deviations for the teacher-year fixed estimates.
Summary statistics are calculated using all avail-
able teacher-year observations from 1996-97 to
2002-03.
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Appendix D Robustness Checks

In this appendix, we consider the robustness of the results presented in Section IV.B. We also consider

three plausible rival hypotheses to teacher effort setting: (i) differential sorting of students to teachers

by ability, (ii) differential class size adjustments in response to NCLB, and (iii) differential sorting of

students to classrooms based on peer characteristics.

D.I Alternative Definitions of ‘Marginal Student’

First we demonstrate that the patterns in Figure 3 are robust to alternative cut-offs for defining a student

as ‘marginal.’

Figure D.1 below shows teacher VA in each grade as a function of the fraction of marginal students in

the classroom in 2002-03 and placebo years (for many different definitions of ‘marginal students’). Each

panel of Figure D.1 shows an increasing relationship in 2002-03 and no relationship in the placebo years,

lending credence to the claim that our results do not depend on the way we choose to classify students

as marginal.

D.II Rival Hypotheses to Teacher Effort Setting

Our leading hypothesis is that the measured test score improvement is due to an increase in teacher

effort in response to the incentives under the proficiency count system. Given that effort is not observed

directly, it is important to consider whether the evidence might be consistent with alternative hypotheses.

In Section IV.B.1, we summarized several such hypotheses, which are explained in greater detail here.

D.II.i State and Family Responses

Curriculum Content or Test Design: One might worry that the state responded to the intro-

duction of NCLB by designing new end-of-grade tests or by changing the curriculum in order to make it

easier for marginal students to pass. In either case, marginal students would likely perform better than

expected in 2002-03, possibly inducing the same positive relationship between the proportion marginal

(mjt) and teacher-year VA, independent of teacher effort. To address such concerns, we focus on the

end-of-grade test in mathematics, as North Carolina used the same test and measured it on the same

developmental scale before and after NCLB’s introduction. The state also maintained the same achieve-

ment level test score thresholds, with Level Three corresponding to ‘proficient’ status both before and

after 2002-03.64

64In contrast, the state issued a second edition of the reading test in 2002-03, the year in which NCLB took
effect. Because of the coincident timing, we opt to not use the end-of-grade reading tests in our analysis.
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Parental or Student Effort: Another concern is that marginal students and their parents reacted

to the introduction of NCLB by adjusting their own effort. Such responses could generate an association

between marginal student classroom presence and teacher-year VA, independent of teacher effort. Here

we note that the introduction of NCLB did not create new stakes for students and parents, nor did it

present them with new information. Thus it is unlikely that our strategy is affected by parental or student

effort adjustments.

D.II.ii Other Potential School Responses

It is possible that schools reallocated students across classrooms in response to NCLB. For example,

school principals might have assigned marginal students to higher ability teachers or smaller classrooms

in 2002-03. In such cases, variation in marginal student presence across classrooms in 2002-03 would

also reflect variation in other teacher and classroom characteristics that help determine teacher-year VA,

calling into question whether our estimates reflect teacher effort. We address such concerns next, assessing

whether differential sorting of marginal students to teachers based on (teacher) ability, class size, and

several other classroom characteristics might explain the effects we estimate above.

Sorting Based on Teacher Ability: A natural way to gauge whether teacher sorting could

be driving the results rather than additional effort being exerted by a given teacher is to test if the

relationship between the fraction of marginal students in a classroom and teacher ability changes in

2002-03. We conduct this test by regressing the fraction of marginal students in each class on grade and

year fixed effects (λg and λt, respectively), our measure of teacher incentive-invariant ability (âj), and

an interaction between that term and an indicator for 2002-03:

mjt = α0 + λg + λt + β1âj + β2âj × 1(t = 2002-03) + εjt, ∀ t ≤ 2002-03. (D.1)

If principals began sorting students to teachers differentially on the basis of ability in 2002-03, we would

expect to find a non-zero coefficient (β2) on the interaction term.

Table D.1 shows the results from estimating variants of equation (D.1). Overall, there is a small

negative relationship between the fraction of marginal students who are in a teacher’s class and the

teacher’s incentive-invariant ability. This reflects the relatively low test score proficiency standard in

North Carolina and the sorting of low-performing students to low-ability teachers.65 The sorting pattern

appears to change slightly in 2002-03, but indicates that high-ability teachers received smaller fractions

of marginal students than in the pre-NCLB period.66 – for our main results to be biased upward, the

65The estimates in column (1) imply that a one standard deviation better-than-average teacher has 0.61 per-
centage points fewer marginal students in her class (which corresponds to a 2.3 percent reduction relative to the
mean fraction).

66To put the magnitude of the change in perspective, the estimate of β2 in Table D.1 is 0.0033, implying that
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change would have to be in the opposite direction.

While these analyses indicate that bias due to sorting by teacher ability is unlikely, we conduct a

further test, showing that our main results are unchanged when estimating the effects of NCLB incentive

strength using only within-teacher variation in performance, thereby removing any potentially confound-

ing correlation between (fixed) teacher ability and incentive strength. To that end, we construct the

difference between 2002-03 and 2001-02 teacher-year fixed effects for each teacher j as:

q̂j02−03 − q̂j01−02 = aj + ej02−03 + ε̄j02−03 − (aj + ej01−02 + ε̄j01−02) (D.2)

= ej02−03 − ej01−02 + ε̄j02−03 − ε̄j01−02.

The RHS of the first line is written in terms of ability and average effort components, and simplifies (on

the second line) to differences in effort and noise.

We explore whether stronger NCLB incentives caused greater within-teacher performance improve-

ments by relating the difference in teacher-year fixed effects to the fraction of marginal students faced by

each teacher in 2002-03 (mj,02−03). To account for mean reversion, we also control for a cubic function

of 2001-02 teacher-year value-added, the estimating equation being

q̂j02−03 − q̂j01−02 = α+ χmj02−03 + g(q̂j01−02) + ζj02−03, (D.3)

where χ is the main parameter of interest, reflecting any relationship between NCLB incentives and

within-teacher performance improvement, and g(q̂j01−02) is the cubic function of 2001-02 teacher-year

VA.67

The panels of Figure D.2 show the partial relationships between the performance improvement

in 2002-03 and mj,02−03, while panel (a) of Table D.2 reports the underlying slope coefficients (i.e.,

estimates of χ), which are very similar to our main estimates in Table 3. Within-teacher performance

improvements are clearly increasing in the fraction of marginal students in the classroom in 2002-03.

Because the specification in equation (D.3) removes any effect of (fixed) teacher ability, it is unlikely that

differential sorting of students to teachers based on ability can explain our results. A pooled regression

of all pre-NCLB years (with transitions from year t− 1 to t) is used as a placebo control in each grade,

showing a relatively flat relationship, and further supporting the claim that the 2002-03 patterns reflect

a teacher who is one standard deviation (1.79 developmental scale points) below average had (1.79 × 0.0033 =)
0.59 percentage points more marginal students in her classroom in the post-NCLB period. This corresponds to 2
percent of the classroom-level mean fraction of marginal students.

67Within-teacher fluctuation in performance could be driven by mean reversion when, for example, teachers
with high fractions of marginal students 2002-03 were ‘unlucky’ in 2001-02 and had performed unusually poorly
in that year. In that case, we would expect their performance to improve mechanically from one year to the next,
independent of the new NCLB performance incentives. We account in a flexible way for any such mechanical
relationship between lagged VA and performance improvement with a cubic function of lagged VA, thereby
identifying the effect of NCLB incentives conditional on that relationship.
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NCLB effort incentives.

Differential Sorting by Class Size: We also assess the robustness of our results to the possibility

that schools might sort marginal students differentially into smaller sized classrooms in response to NCLB;

such a response could arise if schools thought that marginal students might perform better there. In panel

(b) of Table D.2, we investigate the importance of class size by including it as a control variable and

replicating the analysis in Table 3. None of the point estimates are statistically distinguishable from their

Table 3 counterparts.

Differential Sorting by Other Classroom Characteristics: As an additional robustness

check, we account simultaneously for any potentially confounding effects from differential sorting of

marginal students by teacher ability, class size, and a host of other classroom characteristics. We do

so by pooling 2002-03 with all pre-NCLB years and estimating the following difference-in-differences

regression:

q̂jt = αj + γt + ψ1mjt + ψ21(t = 2002-03) ∗mj02−03

+w(expjt) + ωXjt + ξjt, ∀ t ≤ 2002-03. (D.4)

This involves regressing teacher-year fixed effects on teacher fixed effects, year fixed effects, the

proportion of marginal students in the classroom, this proportion interacted with a NCLB-period

indicator, controls for teacher experience, and several other classroom characteristics.68

The main parameter of interest is ψ2, which captures the differential relationship between

teacher-year performance and the fraction of marginal students in the year NCLB is introduced,

relative to the relationship that prevailed in the pre-reform period. The inclusion of teacher fixed

effects and classroom characteristics in equation (D.4) guarantees that ψ2 is identified using

within-teacher variation, conditional on many classroom characteristics. If NCLB incentives

operate independently of teacher ability and other classroom characteristics, we would expect

to find a positive and significant estimate for ψ2.

The results from estimating variants of equation (D.4) are reported in Table D.3.69 In

column (1), we do not include teacher fixed effects or classroom characteristics, instead account-

ing for teacher ability using our EB estimates (which, again, are jack-knife or leave-year-out

68Specifically, the vector of classroom characteristics (Xjt) includes class size, the classroom average prior math
score, the classroom average prior reading score, and the fractions of students who are racial minorities, disabled,
limited English proficient, male, and who have college-educated parents.

69The table reports estimates for the sample of fourth grade teachers. The results in third and fifth grade are
similar.
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estimates in pre-NCLB years). The results are very similar to our main results above, as the

relationship between the fraction of marginal students and teacher performance is large and pos-

itive in 2002-03 but not in the pre-reform period. Accounting for teacher fixed effects in column

(2) yields very similar estimates, as does dropping the teacher fixed effects while accounting

for classroom characteristics in column (3). In column (4), we account for both teacher fixed

effects and classroom characteristics and again obtain nearly identical results, suggesting that

differential sorting of marginal students to teachers based on ability or to classrooms based on

various characteristics is not first order.

In sum, the evidence buttresses our effort interpretation – none of the robustness analyses

supports the view that differential sorting is driving our main results. Further, we note that

our estimates of the effects of NCLB incentives on teacher performance are not dependent on

the method we use to estimate teacher ability. That is, the specifications given by equations

(D.3) and (D.4) are agnostic as to how teacher incentive-invariant ability is measured, as they do

not require an estimate of ability, yet produce very similar estimates to our main specifications

(where teacher ability is estimated using the EB procedure).
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Table D.1 – Tests for Differential Sorting of Students to Teachers in 2002-03

(1) (2) (3) (4)
Full Sample Third Grade Fourth Grade Fifth Grade

Ability -0.0034∗∗∗ -0.0010 -0.0046∗∗∗ -0.0055∗∗∗

(0.0008) (0.0010) (0.0011) (0.0017)

1(t = 2003)×Ability -0.0033∗∗ -0.0050∗∗∗ -0.0045∗∗ 0.0027
(0.0014) (0.0019) (0.0019) (0.0025)

Observations 39,932 12,599 14,151 13,182

Notes: This table presents the results of regressions based on equation (D.1). The
dependent variable in each column is the fraction of students in a teacher’s class who
are marginal. Teacher ability is estimated using the EB estimator from equation (6),
and we use the leave-year-out EB estimate in pre-NCLB years to avoid any mechanical
correlation between EB estimates and outcomes. Standard errors clustered at the
school-level appear in parentheses. *** denotes significance at the 1% level, and **

denotes significance at the 5% level.
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Table D.2 – Robustness Checks: Sorting by Teacher Ability and Class Size

Panel (a): Change in Teacher-Year VA as Dependent Variable

Third Grade Fourth Grade Fifth Grade
2002-03 Pre-NCLB 2002-03 Pre-NCLB 2002-03 Pre-NCLB

Effect of Incentives (mjt) 2.08∗∗∗ 0.18 4.11∗∗∗ -0.16 2.48∗∗∗ 0.49∗∗∗

(0.18) (0.16) (0.31) (0.18) (0.24) (0.17)

Observations 2,651 9,697 2,453 9,087 2,397 8,357

Panel (b): Teacher-Year VA as Dependent Variable Controling for Class Size

Third Grade Fourth Grade Fifth Grade
2002-03 Pre-NCLB 2002-03 Pre-NCLB 2002-03 Pre-NCLB

Effect of mjt 1.39∗∗∗ -0.02 4.16∗∗∗ -0.99∗∗∗ 2.25∗∗∗ -0.13
(0.21) (0.15) (0.32) (0.15) (0.24) (0.15)

Observations 2,144 10,452 2,598 11,551 2,570 10,609

Notes: In Panel (a), we regress the change in teacher-year VA on incentive strength (mjt) in the year NCLB was
introduced (2002-03) and in pre-NCLB years. (The coefficient estimates are for χ from grade-specific regressions
of equation (D.3).) Specifically, for 2002-03, we regress the change in teacher-year VA from 2001-02 to 2002-03 on
the fraction of marginal students in the classroom in 2002-03 and a cubic function of 2001-02 teacher-year VA. In
the pre-NCLB period, we regress the change in teacher-year VA from year t− 1 to t (using a pooled regression of
all years) on the fraction of marginal students in the classroom in year t, year fixed effects, and a cubic function
of year t− 1 teacher-year VA.
In Panel (b), we present estimates of the effects of the fraction of marginal students within classrooms on teacher
performance. (The reported coefficients are ψ from grade-specific regressions of equation (7).) In the year 2002-03
regression, additional controls include teacher ability, teacher experience, and class size. The estimates in the
pre-NCLB columns come from pooled regressions of all pre-NCLB years that also includes year fixed effects. For
third grade, the pre-NCLB years cover 1998 to 2000 and 2002, and for fourth and fifth grade, 1997 to 2001.
Standard errors clustered at the school level appear in parentheses. *** denotes significance at the 1% level.
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Table D.3 – Difference-in-Differences Estimates

(1) (2) (3) (4)

Incentive Strength (mjt) -0.88∗∗∗ -0.17 -0.44∗∗ -0.23
(0.15) (0.23) (0.19) (0.25)

Incentive Strength post-NCLB (mjt × (t = 2002/03)) 5.45∗∗∗ 6.21∗∗∗ 5.32∗∗∗ 5.91∗∗∗

(0.35) (0.54) (0.36) (0.55)

Teacher Fixed Effects? N Y N Y

Classroom Characteristics? N N Y Y

Notes: In this table, we present difference-in-differences estimates from regressions of teacher performance on incentive
strength and incentive strength interacted with a post-NCLB indicator. (The estimates correspond to coefficients ψ1

and ψ2 from equation (D.4).) The dependent variable in each specification is a teacher-year effect. Incentive strength
is given by the fraction of marginal students in the classroom. All regressions include indicator variables for teacher
experience (in bins). Specifications without teacher fixed effects control for incentive-invariant teacher ability using EB
measures of teacher ability. Classroom characteristics include class size, the classroom average prior mathematics score,
the classroom average prior reading score, and the fractions of minority, disabled, limited English proficient, male, and
students with college-educated parents. The sample consists of fourth grade teachers between 1997-98 and 2002-03;
results for third and fifth grade are qualitatively similar. The number of observations in each column is 14,149. Standard
errors clustered at the school-level are given in parentheses. *** denotes significance at the 1% level, and ** denotes
significance at the 5% level.
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(a) 3rd Grade: −2 ≤ ŷ − yT ≤ 2
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(b) 4th Grade: −2 ≤ ŷ − yT ≤ 2
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(c) 5th Grade: −2 ≤ ŷ − yT ≤ 2
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(d) 3rd Grade: −3 ≤ ŷ − yT ≤ 3
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(e) 4th Grade: −3 ≤ ŷ − yT ≤ 3
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(f) 5th Grade: −3 ≤ ŷ − yT ≤ 3
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(g) 3rd Grade: −5 ≤ ŷ − yT ≤ 5
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(h) 4th Grade: −5 ≤ ŷ − yT ≤ 5
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(i) 5th Grade: −5 ≤ ŷ − yT ≤ 5
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(j) 3rd Grade: −6 ≤ ŷ − yT ≤ 6
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(k) 4th Grade: −6 ≤ ŷ − yT ≤ 6
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(l) 5th Grade: −6 ≤ ŷ − yT ≤ 6

Notes: This figure reproduces the analysis in Figure 3 with alternative cutoffs for marginal student status. See the notes
of Figure 3 for details. The range for marginal student classification is given in the label of each panel.

Figure D.1 – Effort Predictions in 2002-03 with Alternative Definitions of
‘Marginal Student’
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(a) Third Grade
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(b) Fourth Grade

-.
5

0
.5

1
1.

5
2

2.
5

D
iff

er
en

ce
 in

 T
ea

ch
er

 V
A

-.4 -.2 0 .2 .4 .6
Residual Proportion of Marginal Students in Classroom

2003 1998 - 2001

 

(c) Fifth Grade
Notes: This figure illustrates teachers’ 2002-03 effort responses. In panels (a) to (c), we depict the partial relationship
between the change in teachers’ annual performance from 2001-02 to 2002-03 and the fraction of students in their classes
who were marginal in 2002-03. We also depict the partial relationship between the change in teachers’ annual performance
from all years t− 1 to t in the pre-NCLB period and the fraction of students in their classes who were marginal in year t.
To construct the panels, we first residualize mjt with respect to the other controls in equation (D.3). For the pre-NCLB
years, these controls also include year fixed effects. Accordingly, the horizontal axis measures residualized mjt. We group
teacher-year observations in 20 equal-sized groups (vingtiles) of the residualized mjt distribution on the horizontal axis.
Within each bin, we calculate the average residualized mjt and the average change from years t − 1 to t between each
teacher’s teacher-year fixed effects. The circles in each panel represent these averages. The lines represent the associated
linear effects, estimated on the underlying teacher-year data. For notational convenience, the legend in the panels labels
profiles according to the latter year of the academic year in question. For example, the label ‘2003’ identifies the profile
corresponding to the 2002-03 academic year.

Figure D.2 – Within-Teacher Performance Improvements
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Appendix E Estimating the Persistence of Effort: Technical Details

This appendix presents our methodology for estimating the persistence of teacher effort, sup-

plementing the discussion in the main text. We first summarize the key variables used in our

approach, then describe how teacher effort is estimated at the student level, before deriving the

main estimating equation used in our maximum likelihood procedure.

E.I Definitions

The table below presents the definitions of the key variables used to exposit our approach, along

with the corresponding notation..

Table E.1 – Estimating the Persistence of Effort – Notation and Definitions

Variable Definition

ŷi,j,g,s,02−03 The predicted mathematics score of student i, assigned to teacher j in
grade g at school s in academic year 2002-03.

yT,Ng,t The mathematics test score proficiency target in grade g mandated
by NCLB in year t. (The superscripts T and N indicate ‘target’ and
‘NCLB,’ respectively.)

πi,02−03(
≡ ŷi,j,g,s,02−03 − yT,Ng,02−03

) Incentive strength for student i in 2002-03: the difference between the
predicted mathematics score of student i and the test score proficiency
target mandated by NCLB in 2002-03.

yCi,j,g,s,03−04 The ‘counterfactual’ predicted mathematics score of student i, assigned
to teacher j in grade g at school s in academic year 2003-04, under the
scenario where counterfactual NCLB effort is zero.

πi,03−04(
≡ yCi,j,g,s,03−04+γe1e

N (πi,02−03)−yT,Ng,03−04

) Incentive strength for student i in 2003-04: the difference between the
predicted mathematics score of student i and the test score proficiency
target mandated by NCLB in 2003-04.

eN (·) The empirical effort function, as shown in Figure 7. In academic year
2002-03, this function takes πi,02−03 as its argument: in 2003-04, it
takes πi,03−04 as its argument.

γe1 The one-period forward persistence rate of NCLB effort.

E.II Estimating Student-Level Effort

To construct a measure of effort at the student level, we draw on the semi-parametric patterns

in Figure 6 (described in the main text). These show that the introduction of NCLB had clear
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non-linear effects on student test scores, consistent with strong teacher effort responses to the

incentive scheme. This interpretation draws on two notions: (i) a student’s predicted score, and

(ii) a student-specific measure of incentive strength. We discuss each in turn, before explaining

how they are used to derive the student-level effort measure we use.

E.II.i Predicted Score

The predicted score for each student in 2002-03, which captures the score the student would have

earned in that year had NCLB not been enacted, is calculated in two steps. First, we predict

student performance in a flexible way regressing contemporaneous 2001-02 mathematics scores

on various controls in the pre-NCLB period,70 and save the estimated coefficients. Second, we

make an out-of-sample mathematics test score prediction for students in 2002-03 by combining

the estimated coefficients from the first step with the (pre-determined) covariates of students in

2002-03, denoting the predicted score for student i in 2002-03 by ŷi,j,g,s,02−03.

Next, we use equation (3) to express this predicted score in terms of parameters of the

technology – key to being able to uncover NCLB-related effort in 2002-03.

Definition E.1 – Predicted Student Score in 2002-03: ŷi,j,g,s,02−03 ≡ γyi,j′,g−1,s′,01−02 +

aj(i,02−03).

The RHS of the prediction consists of only non-effort inputs, setting effort to zero along with any

prediction error.71 Intuitively, this prediction represents the score students would have earned

had teachers not adjusted their effort decisions in response to NCLB’s introduction, given it is

estimated using the relationship between student characteristics and test scores that prevailed

prior to NCLB.

We then use student i’s predicted score together with the student’s realized test score in

2002-03, yi,j,g,s,02−03, to obtain an estimate of the effort (plus noise) received by each student. In

70These include cubics in prior 2000-01 mathematics and reading scores and indicators for parental education,
gender, race, free or reduced-price lunch eligibility, and limited English proficiency.

71Although the prediction error need not be zero at the individual level, our approach for estimating NCLB
effort requires only that it be zero on average, given that we rely on mean differences between realized and
predicted scores throughout the predicted score distribution. We demonstrate below that these mean differences
are indeed centered around zero prior to NCLB’s enactment, supporting the mean-zero assumption.
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particular, taking the difference between the realized and predicted scores for student i yields:

yi,j,g,s,02−03 − ŷi,j,g,s,02−03 = γyi,j′,g−1,s′01−02 + aj(i,02−03) + ej(i,02−03) + εi,j,g,s,02−03

− (γyi,j′,g−1,s′,01−02 + aj(i,02−03))

= ej(i,02−03) + εi,j,g,s,02−03. (E.1)

This differencing gives the sum of NCLB effort and a random shock to test scores on the last

line.72

E.II.ii Incentive Strength

Our measure of incentive strength is given by the distance between the predicted score (just

described) and the fixed NCLB proficiency target. Letting yT,Ng,t denote this NCLB target in

grade g in year t (where ‘T ’ in the superscript stands for ‘target’ and ‘N ’ stands for ‘NCLB’),

we define incentive strength in 2002-03 as:

Definition E.2 – Incentive Strength in 2002-03: πi,02−03 ≡ ŷi,j,g,s,02−03 − yT,Ng,02−03.

This measure is used on the horizontal axis in Figure 6, in which students are grouped into

two-scale-point width bins of incentive strength in 2002-03. We then plot the average difference

between the realized and predicted score (given by equation (E.1)) within each bin, recover-

ing average teacher effort as a function of incentive strength under the assumption that the

idiosyncratic test score noise has a mean of zero.

E.II.iii Using the Predicted Score and Incentive Strength to Estimate Student-Level Effort

Figure 6 makes clear that students predicted to score near the proficiency threshold – those for

whom effort incentives are strongest – do on average receive the biggest boost to their scores.

To ensure that we do not systematically under- or over-predict for certain parts of the test score

distribution, we conduct the same exercise in the 1999-2000 pre-reform period (when there is

necessarily no NCLB effort response), showing that our predicted score tracks the realized score

well throughout the distribution, given by the approximately flat line; this supports the view

that the 2002-03 patterns reflect student-specific NCLB effort.

72The vertical axis in Figure 6 (discussed below) plots averages of the differences given by equation (E.1),
eliminating the influence of test score noise.
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We then use the profiles for the two years in Figure 6 to estimate a student-specific effort

function that takes incentive strength as its argument. We do so by differencing the binned

2002-03 and 1999-00 profiles and then fitting an eighth-order polynomial to the differenced data

using a weighted regression, where the weights are given by the total number of students in

each bin (across both 2002-03 and 1999-00). The resulting effort function, denoted by eN (·)

and constructed using the estimated coefficients from this regression, is plotted in Figure 7. We

use this function to assign a level of effort to each student directly, according to the following

assumption:

Assumption E.1: Given student-specific values of πi,02−03 and the estimated effort function

eN (·), the effort directed by teacher j to each student i in 2002-03 is given by ej(i,02−03) =

eN (πi,02−03).

E.III The Components of the Estimating Equation

With the student-specific effort measure in hand, we turn to specifying an equation for estimating

effort persistence and other relevant parameters that can be taken to the data.

We start by using (4) to obtain an expression for test scores in 2003-04 as a function of

inputs in that year and inputs from the previous year whose effects persist:

yi,j,g,s,03−04 = γ(yi,j′,g−1,s,02−03 − aj(i,02−03) − ej(i,02−03))

+ γa1aj(i,02−03) + aj(i,03−04)

+ γe1ej(i,02−03) + ej(i,03−04) + ηi,j,g,s,03−04. (E.2)

The RHS of this equation captures, on the first line, the persistent effect of once-lagged scores

from 2002-03 excluding teacher ability or effort, written yi,j′,g−1,02−03 − aj(i,02−03) − ej(i,02−03),

where the j-subscripts coincide – that is, j′ = j(i, 02− 03). Given the technology, we interpret

this component as the persistent effect of non-ability and non-effort inputs. The second line

captures the persistent effects of teacher ability from 2002-03 and teacher ability in the current

year 2003-04; and the third line includes the persistent effects of teacher effort from 2002-03 and

in the current year 2003-04, along with a random shock to current test scores.

From an estimation perspective, the first two lines of the RHS consist of components that

can all be estimated using the prior steps of our estimation procedure. On the third line, the only
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component that remains to be estimated is contemporaneous effort, ej(i,03−04), noting the first

term, ej(i,02−03), can be recovered from the procedure expressed in Assumption E.1. Effort in

2003-04 needs to be controlled for in the estimation procedure to avoid overstating the persistent

effect of effort from the previous year. Given the prevailing incentives in 2003-04, we hypothesize

that contemporaneous effort comes from two sources: NCLB, introduced in the previous year;

and the ABCs, whose incentives are likely to have been disrupted following the effort response

to NCLB in 2002-03. We take these two sub-components in turn.

E.III.i NCLB Effort in 2003-04

Under NCLB, the descriptive evidence indicates that marginal students are likely to receive the

most teacher effort. To identify marginal students in 2003-04, and thus who is likely to receive

more effort and who less, we need to form a test score prediction in the absence of NCLB effort

being exerted in that year. This will determine who, absent such effort, is likely to be close to

the 2003-04 target and who will be further away.

Here, it is convenient to introduce some notation that will both help to form that test score

prediction and to express the main estimating equation in a convenient way.

Definition E.3 – Counterfactual Predicted Score in 2003-04: yCi,j,g,s,03−04 ≡

γ(yi,j′,g−1,s′,02−03 − aj(i,02−03) − ej(i,02−03)) + aj(i,03−04) + γa1aj(i,02−03).

This notation collects the first two lines of (E.2) under the label yCi,j,g,s,03−04. We think of this

as the test score that students would have earned in 2003-04 had NCLB not been enacted in the

prior year.73 The term “counterfactual” reflects the notion that, having isolated the inputs other

than effort that determine test scores in 2002-03, the scores that would prevail counterfactually

in 2003-04 would solely reflect the persistent effects of non-effort inputs from the previous year

plus contemporaneous (2003-04) ability. In effect, we envisage a counterfactual effort decision

on the part of teachers that involves setting ‘counterfactual’ effort in both years equal to zero –

notationally, eCj(i,02−03) = eCj(i,03−04) = 0.74

73To be very clear, NCLB did occur in that prior year, and did engender an actual effort response, denoted by
ej(i,02−03). Thus it is necessary to subtract actual effort from test scores in 2002-03 in order to isolate non-effort
(and non-ability) inputs, whose persistent effects we wish to keep track of in 2003-04; the technology assumptions
imply the appropriate ‘recipe’ for purging effort (and ability) effects from once-lagged scores.

74In the counterfactual scenario, simply plug zero counterfactual effort levels on the last line of (E.2), and this
yields yCi,j,g,s,03−04, according to the definition (assuming the test score noise is zero in expectation).
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In our estimation procedure, we will use an empirical analog to the counterfactual predicted

score in 2003-04. This is constructed along the same lines as the predicted score (ŷi,j,g,s,02−03) in

the previous year, which also abstracted from NCLB effort. Specifically, we use the prediction

equations (one for each grade) from the first step of the procedure for estimating student-level

effort above to make forecasts for the 2003-04 academic year by substituting predicted test

scores from 2002-03 (ŷi,j′,g−1,s′,02−03) in place of realized grade g − 1 test scores, forecasting

based on the actual 2003-04 values for all other covariates. Realized grade g − 1 scores from

2002-03 contain NCLB effort, and their persistence into 2003-04 therefore depends on the effort

persistence parameter, γe1. Using predicted scores in place of realized scores ensures that the

counterfactual predicted score represents the score students would earn in 2003-04 in the absence

of NCLB incentives in 2002-03.

Using the machinery just developed, we now discuss teacher effort setting in response to

NCLB in 2003-04. Here, additional structure is needed to capture the way teachers form pre-

dictions (drawing on the notation we introduced) about likely student performance in 2003-04

and specifically, how they incorporate the persistence of prior-year effort into those predictions.

We make the following pair of assumptions – about teachers’ information sets and the common

test score prediction rule they follow, respectively:

Assumption E.2a: Teachers know the level of effort devoted to each student in the previous

year, ej(i,02−03) = eN (πi,02−03), and the persistence rate of effort, γe1.

Assumption E.2b: The prediction teachers make about each student’s contemporaneous test

score (in 2003-04) in the absence of any contemporaneous effort is given by yCi,j,g,s,03−04 +

γe1ej(i,02−03).

The prediction draws on the technology directly. According to equation (E.2) and using the

definition of yC above, student test scores in 2003-04 can be written:

yi,j,g,s,03−04 = yCi,j,g,s,03−04 + γe1ej(i,02−03) + ej(i,03−04) + νi,j,g,s,03−04 ,

which is the predicted score in that year plus contemporaneous teacher effort (plus noise). In

line with the previous assumption, teachers use the student-level prediction in 2003-04 to decide

how much effort to devote to each student, taking account of the incentive in the current year
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to direct effort to student i. That incentive is given by

Definition E.4 – Incentive Strength in 2003-04: πi,03−04 ≡ yCi,j,g,s,03−04 + γe1ej(i,02−03) −

yT,Ng,03−04.

Specifically, teachers account for the distance, given by πi,03−04, between a student’s predicted

score and the NCLB proficiency target, setting effort according to an effort-setting rule expressed

in

Assumption E.3: The effort devoted to student i in 2003-04 is given by θeN (·) evaluated at

πi,03−04, where θ > 0.

This ‘shape’ assumption implies that teachers rely on the same empirically-determined effort

function as in 2002-03 to set effort, with the given function taking πi,03−04 as its argument in

2003-04, and the parameter θ either diminishing (when θ < 1) or amplifying (when θ > 1) all

effort levels in a proportional way.

To justify this assumption, it is plausible to think that teachers would direct effort to

students in a similar way across the two years, with marginal students receiving relatively more

effort than non-marginal students in each year, given that NCLB incentives remained in place

across 2002-03 and 2003-04.75 Yet the overall effort response across the two years might still

differ if, for example, the novelty and added publicity of NCLB in its first year caused schools

to try harder than they would in future years, with θ reflecting changes in effort over time.76

Given Definition E.4 and Assumption E.3, it is clear that the effort decision in 2003-04

depends on the effort students received in 2002-03 and the effort persistence parameter γe1, as

these influence incentive strength in 2002-03, highlighting the correlation of effort over time. We

will account for this correlation in our main estimating equation.

75This assumption serves as an approximation to a more explicit modeling of the effort-setting process developed
in Macartney et al. (2015).

76As an alternative to having effort levels changing proportionally across years, one might think that teachers
would become better able to predict which students were marginal over time, thereby directing more effort to
those students, which would result in a compressed effort function rather than one that is scaled up or down
by a constant factor. This alternative hypothesis is unlikely to hold in North Carolina, given that the state’s
pre-existing accountability program (the ABCs) relied on the same end-of-grade tests and proficiency thresholds
as NCLB; as the ABCs system was implemented in 1996-97, educators had fully six years prior to NCLB to
become familiar with the state tests and learn how to form expectations about student performance. Teachers
becoming better at predicting student proximity to the passing threshold is more likely to occur in states that
did not have pre-existing accountability programs prior to NCLB.
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E.III.ii Accounting for ABCs Effort

The other subcomponent of 2003-04 effort referenced above is associated with changes to effort

incentives under North Carolina’s pre-existing ABCs program in 2003-04. Such changes arise

because of teacher effort responses in 2002-03 following NCLB’s introduction. ABCs incentives

will be affected (in ways we describe below) by changes in prior scores, given that ABCs growth

targets depend on those scores by institutional design.

Our strategy to account for changing ABCs effort decisions draws on institutional features of

the ABCs system and our conceptual framework. In terms of relevant institutional background,

North Carolina’s ABCs program sets test score growth targets that are grade- and subject-

specific for each school. The targets for average test score growth across all students in a

subject-grade are a linear function of students’ prior scores. We can approximate these actual

targets with a single coefficient, α, which multiplies a single prior score in the ABCs target,

capturing the required test score growth rate under the ABCs.77

The growth targets are then aggregated across all grade-subject pairs within the school to

form a school-level growth score for every school in the state. Thus a school passes the ABCs

when the sum of the differences between average and target scores across all grades is greater

than zero. We write the formal condition as

Gs∑
g=3

∑
i∈g

yijgst − αyi,j′,g−1,s′,t−1

Ngt
≥ 0, (E.3)

where Gs stands for the highest grade served at a given school.78

To see how an effort response to NCLB in 2002-03 can affect the likelihood of the school

passing the ABCs in 2003-04, use the test score technology and the notation above to write the

passing condition in 2003-04 as

Gs∑
g=3

((
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

)
+ ēg,s,03−04 + (γe1 − α)ēg−1,s,02−03 + η̄g,s,03−04 − αε̄g−1,s,02−03

)
≥ 0,

(E.4)

77In practice, the ABCs program sets grade-specific targets using both prior mathematics and reading scores,
and individual multiplicative coefficients for each. While this is a simplification, the main feature to preserve is
the linearity.

78In the equation, the first sum is taken over all grades in the school, from third grade up to grade Gs. The
second sum is taken over all students in grade g in year t, and Ngt is the corresponding number of students in
that grade-year combination in the school.
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which consists of a sum of grade-specific averages (represented by the upper bars).79 The key

term is the difference, (γe1 − α), namely how the persistence rate of effort compares with the

target growth rate legislated under the ABCs. This captures the extent to which the 2002-03

NCLB response changes 2003-04 ABCs incentives. If effort persists at a lower rate than α, then

the target grows at a faster rate than the tests score, implying that the school-level ABCs target

becomes more difficult to satisfy than in the pre-NCLB period: the opposite is true when effort

persists at a higher rate than α. In either case, the change in ABCs incentives should lead

schools to respond by adjusting contemporaneous effort.

Such responses need accounting for in order to separately identify the direct persistent

effect of once-lagged effort on student test scores. To do so, we recognize that for a given

persistence rate of effort and ABCs required growth rate, average 2002-03 NCLB effort is the

key determinant of the distortion to 2003-04 school-level ABCs incentives,80 captured by (γe1 −

α)
∑G

g=3 ēg−1,s,02−03 after moving the summation through (E.4).

On that basis, when estimating the persistence of NCLB effort in 2002-03, we control for

average school-level 2002-03 NCLB effort to account for distortions to ABCs incentives. We

state this formally as an assumption.

Assumption E.6: In 2003-04, the effect of the effort response to NCLB in 2002-03 on ABCs

effort incentives (parameterized by ρ) is determined by the average school-level effort response

from the prior year, ēNs,02−03 =
∑G

g=3 ēg−1,s,02−03, with the change to ABCs effort incentives

being common to all students in a given school.

Because schools’ ABCs effort responses in 2003-04 are unobserved, it is worth pointing out that

our strategy does not control for the responses directly; instead, we hold the effort response

fixed by accounting (based on the reasoning above) for the primary variable that determines the

79To see how equation (E.3) implies equation (E.4), consider the academic year 2003-04 and note that, given
our framework, the contemporaneous test score may be written as the sum of the counterfactual predicted score in
that year (capturing the effect of all non-effort inputs), contemporaneous effort, the persistent effect of prior-year
effort, and measurement error. Likewise, the lagged (2002-03) test score may be written as the sum of the predicted
score in that year (capturing the effect of all non-effort inputs), contemporaneous effort, and measurement error.
Making the relevant substitutions for contemporaneous and prior-year test scores in equation (E.3) yields

Gs∑
g=3

∑
i∈g

yCi,j,g,s,03−04 + ej(i,03−04) + γe1ej(i,02−03) + ηi,j,g,s,03−04 − α(ŷi,j′,g−1,s′,02−03 + ej(i,02−03) + εi,j′g−1,s,02−03)

Ng,s,03−04
≥ 0.

Taking grade-level means then results in equation (E.4).
80There is no distortion only when effort persists at the same rate as the ABCs required growth rate, when

α = γe1 .
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effort response, working through its effect on the degree to which a school alters its probability

of passing the ABCs.

E.III.iii The Estimating Equation

Given the test score technology in (E.2) and definition of the counterfactual predicted score

(yCi,j,g,s,03−04), the main estimating equation is written:

yi,j,g,s,03−04 − yCi,j,g,s,03−04 = γe1e
N (πi,02−03) + θeN (πi,03−04) + ρēNs,02−03︸ ︷︷ ︸

ei,j,g,s,03−04

+νi,j,g,s,03−04. (E.5)

Deducting the counterfactual predicted score from students’ realized scores on the LHS allows us

to isolate the three effort responses that are relevant from an estimation perspective. The first

term on the RHS – effort in 2002-03 – is known by the econometrician, determined by incentive

strength πi,02−03 according to the semi-parametric effort function eN (·). The second term, un-

known to the econometrician, represents effort in 2003-04, which depends on the key persistence

parameter of interest (given that incentive strength in 2003-04 is partly a function of effort

carrying over from 2002-03). The third term, following Assumption D.6, adds average school

effort from 2002-03 multiplied by the parameter ρ in order to control for ABCs effort incentives

in 2003-04.81 (The underbrace in (E.5) highlights the way that the second and third terms on

the RHS are subcomponents of contemporaneous effort, ei,j,g,s,03−04, in our formulation.)

81We calculate ēNs,2003 as the jack-knife mean 2002-03 effort across all students in school s, leaving out the effort
received by student i, to ensure that the estimates of γe1 and ρ are not confounded.
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Appendix F Policy Analysis: Estimating the Output-Incentive Expendi-

ture Mapping

In this appendix, we set out our strategy for estimating the output-incentive expenditure map-

ping described in Section VI.C in detail.

Key to our approach is the dynamic link between incentives under NCLB and the ABCs.

This dynamic link is apparent from our main estimates, which show that the NCLB effort

response decreased the likelihood of ABCs target attainment the following year. This is because

the persistence rate of effort (γe1) is estimated to be lower than the required rate of growth

under the ABCs, given by α.82 For a given change in effort in 2002-03, the persistence of

effort determines the rate at which the test score increases the following year, while the ABCs

coefficient determines the rate at which the target increases. The discrepancy between the two

parameters implies that the ABCs target increased at a faster rate than student test scores, thus

making it more difficult for schools to pass the ABCs, similar to the prediction in Macartney

(2016).

The strategy for estimating the output-incentive expenditure mapping consists of the four

steps given in the main text:

Step 1 - Calculating Schools’ Expected Financial Losses Under the ABCs

First, we calculate the degree to which school responses to NCLB lowered – as the estimates

indicate – the probability of passing the ABCs, relative to a counterfactual scenario in which

NCLB was not introduced. To do so, we calculate the probability of passing the ABCs in

2003-04 under two different scenarios: one in which NCLB never occurred (the benchmark)

and a second scenario in which NCLB was introduced and teachers responded to the prevailing

incentives in 2002-03. The difference in these passing probabilities multiplied by the ABCs

per-teacher bonus payment gives the expected per teacher loss (in dollars) from responding to

NCLB’s introduction.

Our calculations of these probabilities draw heavily on the structure and estimates from

above. In our discussion of the institutional details of the ABCs in Section E.III.ii, we established

that a school passes the ABCs in 2003-04 when the sum of the differences between average and

82In particular, we estimate γe1 = 0.10 while the implied coefficient on the prior mathematics score under the
ABCs is far higher, given by α = 0.68.
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target scores (which are themselves a function of prior-year test scores) across all grades is

greater than zero. This condition is given by equation (E.3) above, which we rewrite here for

convenience:83

Gs∑
g=3

∑
i∈g

yi,j,g,s,03−04 − αyi,j′,g−1,s′,02−03

Ng,s,03−04
≥ 0.

Relying on the structure of our framework and the definitions in Table E.1 , we can write both

the contemporaneous and prior score in this equation in terms of their respective component

parts, which will facilitate our probability calculations.

Taking these in turn, the contemporaneous test score in 2003-04 is the sum of the coun-

terfactual predicted score in that year (yCi,j,g,s,03−04, capturing the effects of all relevant non-

NCLB effort inputs), contemporaneous effort (ej(i,03−04)), the persistent effect of prior-year ef-

fort (γe1ej(i,02−03)), and measurement error (ηi,j,g,s,03−04). Likewise, the prior-year test score from

2002-03 is the sum of the predicted score in that year (ŷi,j′,g−1,s′,02−03, reflecting the effects of all

non-effort inputs), contemporaneous effort (ej(i,02−03)), and measurement error (εi,j′g−1,s,02−03).

Making the relevant substitutions into equation (E.3), taking grade-specific means and rearrang-

ing yields the following passing condition:

Gs∑
g=3

((
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

)
+ ēg,s,03−04 + (γe1 − α)ēg−1,s,02−03 + η̄g,s,03−04 − αε̄g−1,s,02−03

)
≥ 0.

(F.1)

where the grade-specific means are indicated by the upper bars.

We use equation (F.1) to calculate the probability of a given school passing the ABCs in

2003-04 under each of the two scenarios we need to consider. Take first the benchmark scenario

in which NCLB was not enacted in the prior year. We calculate the probability of a school

passing the ABCs in this case by first using equation (F.1) but setting NCLB effort in both

2002-03 and 2003-04 equal to zero (ēg,s,03−04 = ēg−1,s,02−03 = 0) reflecting the fact that there

were no NCLB incentives to respond to in this hypothetical scenario; in terms of our framework,

83Although we simplify the notation in this appendix for expositional ease, our calculations of ABCs growth
scores follow the detailed rules for calculating school-level ABCs scores precisely. In particular, rather than take
simple averages, we sum the weighted and standardized grade-and-subject-specific average differences between
realized and target growth scores within each school.
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a school passes the ABCs in 2003-04 under this ‘no NCLB’ scenario when

Gs∑
g=3

((
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

)
+ η̄g,s,03−04 − αε̄g−1,s,02−03

)
≥ 0. (F.2)

Both the average counterfactual predicted score (ȳCg,s,03−04) and the average predicted score

(¯̂yg−1,s,02−03) are known quantities, calculated according the procedures outlined in Appendix

E above. To calculate the probability that the condition given by equation (F.2) is satisfied

for a particular school, we must make an assumption about the distribution of the stochastic

component,
∑Gs

g=3(η̄g,s,03−04−αε̄g−1,s,02−03), reflecting the influence of noise at the school level.

Assumption F.1: the average test score noise in each school is distributed according to the

cumulative density function F (·), represented using a normal distribution with mean zero and

standard deviation σ.

We assess the sensitivity of our analysis to a variety of alternatives for σ.84 We then calculate

the probability that school s passes the ABCs in the ‘no-NCLB’ scenario as

1− F

(
−

Gs∑
g=3

(
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

))
. (F.3)

Under the second scenario (allowing for effort in the first year NCLB was introduced), we

wish to isolate the reduction in ABCs passing probabilities caused by the initial response to

NCLB in order to determine the extent to which schools reduced their chances of passing the

ABCs relative to the scenario without NCLB. To that end, we calculate ABCs school-level growth

scores in 2003-04 while only allowing schools to respond with additional effort in 2002-03. We

eliminate subsequent 2003-04 NCLB effort responses in the calculation by setting ēg,03−04 = 0,

in which case the passing condition from equation (F.1) becomes

Gs∑
g=3

((
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

)
+ (γe1 − α)ēg−1,s,02−03 + η̄g,s,03−04 − αε̄g−1,s,02−03

)
≥ 0. (F.4)

To calculate the probability that this condition is satisfied for any given school, we again

84Specifically, we let the SD of school-level randomness vary from 0.1 to 1 developmental scale points in in-
crements of 0.1 For comparison, the standard deviation of the school-level ABCs score under the counterfactual
scenario in which NCLB was not enacted is 0.34 developmental scale points. Using even smaller values (between
0.01 and 0.1 for the standard deviation) does not appreciably alter any of our conclusions.
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use the fact that both the average counterfactual predicted score (ȳCg,s,03−04) and the average

predicted score (¯̂yg−1,s,02−03) are known quantities and substitute them into equation (F.4)

directly. We calculate average effort in 2002-03 (given by ēg−1,s,02−03) by first calculating an effort

level for each student in that year using the student-specific effort function described in Appendix

E above and then aggregating these quantities up to the school-grade level. Further, we can

easily calculate (γe1 −α), as we estimate γe1 = 0.10, and the coefficient on the prior mathematics

score under the ABCs (α = 0.68) is fixed by the institutional arrangements that govern the

program. Maintaining the same distributional assumption as in the first scenario above, the

remaining stochastic component,
∑Gs

g=3(η̄g,s,03−04 − αε̄g−1,s,02−03), is distributed according to

the cumulative density function F (·), given by a normal distribution with mean zero. We then

calculate the probability that school s passes the ABCs in 2003-04, given its response to NCLB

in 2002-03 as

1− F

(
−

Gs∑
g=3

(
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

)
− (γe1 − α)ēg−1,s,02−03

)
. (F.5)

Subtracting the probability of passing the ABCs in the ‘no-NCLB’ scenario from the proba-

bility given by equation (F.5) results in the degree to which each school s lowered its likelihood

(in percentage-point terms) of passing the ABCs in 2003-04 because of its effort response to

NCLB in 2002-03:

∆Fs = − F

(
−

Gs∑
g=3

(
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

)
− (γe1 − α)ēg−1,s,02−03

)

+ F

(
−

Gs∑
g=3

(
ȳCg,s,03−04 − α¯̂yg−1,s,02−03

))
. (F.6)

Panel (a) of Table 6 provides a summary of the school-level passing probabilities under

the two scenarios. As mentioned above, we assess the sensitivity of our analysis to a variety

of alternatives for the standard deviation of school-level average test score noise, given by σ.

For a 0.1 scale-point standard deviation in noise (
∑Gs

g=3(η̄g,s,03−04 − αε̄g−1,s,02−03)), the average

difference (across all schools) between the two passing probabilities is 20 percentage points,

while it is 8 percentage points for a 1 scale-point standard deviation of noise, and monotonically

decreasing in between. By responding to NCLB in 2002-03, the average school therefore lowered

its chances of passing the ABCs in 2003-04 by between 8 and 20 percentage points. Multiplying
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these figures by the ABCs bonus payment of $750 implies that, the average school stood to lose

between $60 and $150 per teacher in 2003-04 because of its effort response in 2002-03.

Preferred Estimate for the Standard Deviation of the School-Level Error Term

Prior to describing the remaining three steps involved in recovering the output-incentive expen-

diture mapping, we describe briefly how we determine our preferred estimate for the standard

deviation of school-level average test score noise, which is 0.36 developmental scale points.85

To start, for each school s, write the average test score noise that appears in equations

(F.2) and (F.4) as νs ≡
∑Gs

g=3(η̄g,s,03−04 − αε̄g−1,s,02−03). This captures the difference in mean

test score shocks across adjacent years, with the required growth coefficient under the ABCs,

α, multiplying the prior-year average. While νs is in practice a weighted average (where the

weights are determined by the ABCs’ rules), we take it to be a simple average. Further, we

assume that student-level test score noise follows a stationary process and is uncorrelated –

both within-student over time and across students – within and across years. We also assume

student test score shocks are drawn from the same distribution in each grade.

On that basis, we simplify and write ν̄s = η̄s,03−04 − αε̄s,02−03 as a simple school-level

difference of average student test score noise across adjacent years and calculate its variance as

σ2
η

Ns
+ α2 σ

2
ε

Ns
, where Ns is the total number of students attending school s. Stationarity implies

σ2
η = σ2

ε = σ2, so the variance is σ2

Ns
(1 + α2). Our estimate of σ2 is 20.14 developmental scale

points (from the maximum likelihood results in Table 4). The average school size (grades 3 to

5), denoted Ns =, is equal to 227 students and α = 0.68 for grade 4 mathematics. Substituting

these values into the variance expression and taking the square root yields the standard deviation

of 0.36 developmental scale points, which is our preferred estimate.

Step 2 - Calculating the Change in Financial Incentives for a One-Unit Change in School Effort

Equation (F.6) establishes that the degree to which each school lowered its likelihood of passing

the ABCs in 2003-04 depends on both the average effort it exerted (eNs,02−03 =
∑Gs

g=3 ēg−1,s,02−03)

and the difference between the persistence rate of effort and the growth rate of the ABCs target

(γe1 − α) – see the interaction on the first row. Because we find (as noted) that effort persists

(γe1 = 0.1) at a lower rate than the (known) growth rate of the ABCs target (α = 0.68), a

85As a reference point, the standard deviation of the school-level ABCs score under the counterfactual scenario
in which NCLB was not enacted is 0.34 developmental scale points.

85



one-unit increase in school-level effort in 2002-03 lowers the likelihood of the school passing the

ABCs in 2003-04, and correspondingly creates an expected financial loss for each school.

In this second step, we estimate the relationship between these financial incentives and one-

unit change in prior NCLB school-level effort. This represents the impact of an additional unit

of effort on schools’ subsequent financial incentives, which we later combine with the relationship

between an additional unit of effort and subsequent student test scores in order to back out the

direct effect of NCLB-induced changes in financial incentives on test scores.

We estimate the magnitude by which additional school-level effort in 2002-03 affected ABCs

financial incentives in 2003-04 by regressing the expected dollar value each school stood to lose

in 2003-04 (given by equation (F.6)) on average school-level effort from the prior year:

750 ·∆Fs = α+ βēNs,02−03 + νs,03−04. (F.7)

The estimate β̂, which equals the response d(750·∆Fs)
dēNs,02−03

, governs the magnitude by which a one-unit

increase in school-level effort in 2002-03 lowers the expected dollar amount the average school

stood to gain under the ABCs financial incentives in 2003-04.

Panel (b) of Table 6 reports the estimated coefficients from equation (F.7). The coefficient

ranges from −245.31, when the standard deviation of school-level noise is assumed to be 0.1

to −64.09 when the standard deviation is assumed to be 1. A one-unit increase in average

school-level effort in 2002-03 thus results in an expected financial loss between $64 and $245 per

teacher.

Step 3 – NCLB’s Effect on Subsequent Student Test Scores

Next, in order to link passing probabilities (and the expected financial losses incurred) to scores,

we need the effect of a one-unit change in average school-level effort from 2002-03 on test scores

in 2003-04. This is captured by the parameter estimate ρ̂ = 0.29, already recovered in Section

V.

The parameter can be written explicitly as the effect of lagged effort on scores: ρ̂ = dy
dēNs,02−03

.

It reflects the indirect relationship between financial incentives under the ABCs and the corre-

sponding teacher effort responses in 2003-04.
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Step 4 – Relationship between Test Scores and Changes in Financial Incentives:

We now scale the effect of lagged school-level NCLB effort on ABCs financial incentives in 2003-

2004 (β̂ = d(750·∆Fs)
dēNs,02−03

) by the effect of lagged school-level NCLB effort on test scores ( dy
dēNs,02−03

=

ρ̂ = 0.29). The relevant division ‘cancels’ the effort terms, giving the direct effect of test score

gains on financial incentives, β̂ρ̂ = 750·d(∆Fs)
dy . This represents the financial cost (in terms of bonus

payment incentives offered) associated with a one-unit (one developmental scale point) gain in

student test scores.

Panel (d) of Table 6 reports the direct effect of financial incentives on test scores, indicating

that a one-unit increase in test scores is associated with a per-teacher cost ranging between $220

and $845. Our preferred estimate implies a cost of $504 per teacher.
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