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1 Introduction

In a highly influential paper, Almond (2006) argued that the 1918 influenza pandemic

offers a natural experiment for testing Barker’s 1995 hypothesis that in utero exposure

to malnutrition increases susceptibility to heart disease in adulthood. The pandemic

was an unexpected, severe, but ultimately temporary shock. As Almond noted, this

allows the researcher to simply compare the adult outcomes of birth cohorts that

were in utero during the pandemic to the outcomes of adjacent birth cohorts. Results

from this specification indicate that in utero flu exposure not only decreased health

in adulthood but it also lowered educational attainment, income, and socioeconomic

status (SES) (Almond, 2006; Almond & Mazumder, 2005).

While Almond (2006) is often cited as evidence that early-life health insults can

have lasting effects, recent work by Brown & Thomas (2018) offers an alternative

explanation for these results. Specifically, the authors suggest that Almond’s critical

identifying assumption – that unobserved determinants of human capital vary contin-

uously between birth cohorts – might not hold. As Brown & Thomas note, the 1918

pandemic coincided with the height of World War I (WWI) deployment and WWI

veterans were positively selected from the overall population. Thus, the cohort that

was in utero during the pandemic may have had worse outcomes in adulthood be-

cause they came from low SES families and not because of their exposure to flu while

in utero. Importantly, Brown & Thomas (2018) show that Almond’s core results are

not robust to the inclusion of proxies for parental characteristics as controls.

We revisit Almond (2006) while taking the criticisms of Brown & Thomas (2018)

seriously. Our efforts are made possible by Ancestry.com’s recent digitization of the

entire 1920 and 1930 federal censuses. These data allow us to construct an individual-

level panel dataset by linking World War II enlistment records back to the census.

This means that we can observe each individual twice: first as a child with their

parents and again as an adult when they enlist.
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Linking offers a number of advantages for this empirical setting. First, we do not

have to rely on proxies for parental characteristics since we observe (and subsequently

control for) own parental characteristics such as mother’s and father’s literacy, na-

tivity, age, and occupational income score, as well as whether the family owned or

rented their home, and the number of siblings. Second, and more importantly, linking

allows us to adopt a more credible identification strategy. We assume that an individ-

ual’s location at the time of enumeration is the same as their in utero environment.

This allows us to exploit geographic variation in the intensity of the pandemic as an

additional source of identification, which means that we can include birth year fixed

effects in all of our specifications. These fixed effects account for the general rise in

WWI deployment. Finally, the availability of these full count records also allows us

to construct a large sample of brothers. For this subsample, we can include household

fixed effects, which completely accounts for any parental selection.

We begin with a series of placebo tests to examine the credibility of our identifica-

tion strategy. In contrast to Almond (2006), whose primary identifying assumption

was that other determinants of human capital varied continuously across cohorts, our

identifying assumption is that other determinants of human capital did not system-

atically vary with the intensity of the pandemic. Taking parental characteristics as

outcome variables indicates that this assumption is likely valid, as we find no statis-

tically significant relationships between any of our 10 measures of parental quality

and intensity of exposure. Turning to long-run outcomes, we find robust evidence

that in utero exposure to the pandemic reduced high school graduation rates. This

is true before and after we control for parental characteristics, when we include city-

specific time trends, and even when we analyze our household fixed effects model.

As for biological outcomes, we find no consistent evidence that in utero exposure to

the pandemic affected heights, weights, or BMI – the only proxies for health that are

available in the enlistment records.
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2 Data

2.1 Constructing a linked dataset

This section describes the construction of our linked dataset. We begin by identifying

all male WWII enlistees whose reported year of birth falls between 1909 and 1922.1

Parman (2015b) estimates that about 65 percent of men born between 1913 and 1923

enlisted in WWII, and so the sample is more representative of the male population

than one might initially think.2 The exception to this is that registrants could be

rejected for failing to meet the minimum education or physical standards. This type

of selection should bias against finding evidence that in utero flu exposure impaired

human capital development.3

Our linking procedure builds upon our previous work (Long & Ferrie, 2013; Beach

et al. , 2016) and can be summarized as follows: we take our set of enlistment records

and cast a wide net to find a set of potential matches in the census immediately

following their birth.4 We then impose a number of requirements to ensure that the

match is reasonable. If there is no match or if there is more than one potential match,

we classify the enlistment record as unable to be linked.

1These records were digitized by the National Archives and Records Administration and are
available at http://aad.archives.gov/aad/fielded-search.jsp?dt=893.

2Failing to link women is common in this literature, e.g. Aizer et al. (2016); Feigenbaum (2015);
Long & Ferrie (2013). This is because women tend to change their name when they marry, and so
without knowing their maiden name it is impossible to find their childhood records.

3A related source of selection is that the most exposed individuals may not survive until obser-
vation. This selection is present for both Almond (2006) and Brown & Thomas (2018) as well. This
selection should also work against finding that in utero exposure impaired human capital develop-
ment if we assume that these individuals would have had worse educational or health outcomes.

4For those reporting a year of birth between 1909 and 1919 this will be the 1920 census. For
those reporting a year of birth between 1920 and 1922 the closest census will be the 1930 census.
The 1920 census was enumerated in January and asks for an individual’s age as of January 1, 1920.
Thus, anyone born on or after January 1, 1920 should not appear in the 1920 census. It is worth
pointing out that our ultimate empirical specification includes birth cohort fixed effects, which will
address differential changes in the linking introduced by the fact that our 1920-1922 cohorts come
from a different census. We prefer to include these cohorts for our baseline analysis because they
received no direct exposure to the pandemic, and so they are our cleanest set of control cohorts. As
a robustness check, we exclude these cohorts and we find nearly identical results.

3



We begin by standardizing all given names (e.g., “Ed” and “Eddie” would be

recoded as “Edward”) in both the enlistment records and the census records. A

potential census match is one where the birth state is the same, the race is the same,

the birth year is similar (plus or minus three years), the first initial of the standardized

first names match, and the first initial of the last name matches. We then require

that the raw first and last name strings are reasonably close. Specifically, we require

that the Jaro-Winkler string distance for both the first names and the last names is

greater than or equal to 0.8; a perfect match will have a string distance of 1. We do

not require the names to match exactly for two reasons. First, during this time period

census enumerators went door-to-door and recorded the information that was spoken

to them; thus, the information recorded by the enumerator may represent a common

spelling variant (e.g., “Elliot” and “Elliott”). Second, both the census records and

the enlistment records were handwritten, and so relaxing the “exact name match”

criteria allows us to deal with minor transcription errors.

A successful enlistment-to-census link is one where there is only one census record

that survives this matching process.5 Note however that the unique record may have

an inconsistently reported birth year. The reason we allow year of birth to vary by

up to three years is to accommodate the fact that the information comes from two

different sources. From the census, we have to infer year of birth from reported age at

the time of enumeration, which likely comes from a parent. The year of birth reported

in the enlistment records, however, comes from the individual. If parents were less

5Recent work by Bailey et al. (2017) has raised concerns about false matches in linking studies.
Our modified linking algorithm (relative to some of our previous work, e.g. Beach et al. (2016))
responds to these concerns in two ways. First, we cast a very wide net to increase the chance that
the true link is in our set of potential matches. Second, if a record has more than one potential
match, rather than try to break that tie by choosing the record with the closest name or closest
age (as was done in our previous work) we simply classify the record as unable to be linked. To
assess the false positive rate with our algorithm we take the full census sample and create a modified
version where we take the original record and modify both the names and ages to incorporate the
types of spelling errors, transcription errors, and misreporting of birth years outlined above and in
Goeken et al. (2017). We then try to link from the original census to the modified census using our
linking algorithm. Our linking algorithm yields a successful match rate of 36.5 percent and a false
positive rate of 1.8 percent. This highlights the conservativeness of our algorithm.

4



numerate than their children then these numbers may not match. Another practical

consideration is that the 1930 census was enumerated in April and collected age as of

April 1, 1930. Thus, when we link to 1930, our inferred year of birth may be off by

up to one year. Because accurately identifying birth year is essential for identifying

in utero exposure, we further restrict our final linked sample to include only those

whose year of birth matches is consistently reported. This procedure allows us to link

853,141 enlistees to a record in the 1920 or 1930 censuses.

2.2 Measuring in utero flu exposure

With our linked dataset in hand, we now turn our attention to measuring in utero

flu exposure. Ideally we would have individual microdata identifying prenatal flu

exposure (i.e., if and when exposure took place as well as a measure of severity).

These data do not exist. Reliable data on maternal infection rates or morbidity are

also unavailable as influenza morbidity data was not systematically collected prior

to the pandemic. Beginning in 1900, however, annual influenza mortality data were

collected and published in a systematic fashion for registration states and cities.6

Thus, influenza mortality is a natural starting point for assessing in utero exposure.7

The most important feature of the influenza mortality data series, which was

published alongside other important causes of death on an annual basis by the US

6Registration states and cities are those with laws requiring that mortality statistics be collected.
In contrast to England, which standardized and mandated the reporting of deaths in 1846, the
United States left this decision to state and local governments. Several large cities and states
passed mandatory reporting laws by 1900, and in that year the Census Bureau worked with those
registration areas to establish uniform reporting standards. The result of this was the adoption of a
standardized death certificate and the international classification standard, as well as the distribution
of “The Manual of International Classification of Causes of Death”, which cross referenced terms
appearing in causes of death from 1890 and 1900 reports with the new uniform classification standard.

7Whether influenza mortality tracks influenza morbidity trends reasonably well is a natural ques-
tion. During the fall of 1918, the Public Health Service went door-to-door collecting morbidity and
mortality information for 12 cities. Appendix Figure A.1, which appears in their report, plots weekly
morbidity and mortality rates for five cities during the fall of 1918. The figure indicates the fatality
rate tracks the case rate reasonably well on a weekly basis but with a bit of a lag. Given that we
ultimately draw on annual-level data, this lag is unlikely to be much of a concern.
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Census Bureau, is that the underlying data conform to a common reporting standard.

This ensures that we are able to measure flu fatalities with a great degree of precision,

but it does come with one drawback: the data are not comprehensive. Cities and

states were only included in the published reports if the underlying data were deemed

reliable. In 1900 there were 330 registration cities systematically collecting mortality

data, but by 1920 the registration area included 662 cities spanning 41 states.

While influenza mortality data capture total influenza deaths in 1918, one concern

is that influenza mortality will capture more than just the severity of the pandemic.

For instance, early public health scholars often noted that clean water interventions

lowered mortality from waterborne causes as well as causes that are not typically

thought of as waterborne (e.g., influenza, tuberculosis, pneumonia, kidney failure,

and heart failure).8 Relatedly, Clay et al. (2015), document that mortality rates

in 1918 were higher in places with more coal pollution and places with worse water

quality. These relationships are attributable to the fact that air pollution and typhoid

fever compromise an individual’s immune system, making them more susceptible to

influenza. In light of this, observing high influenza mortality rates in 1918 could mean

that a city was hit relatively hard by the pandemic, or that a city had relatively worse

water and air quality, or both. Since air pollution and water quality have also been

shown to impair human capital development, influenza mortality rates may capture

more than in utero flu exposure.9

Our solution to this problem is as follows. First, we generate a counterfactual

estimate of influenza mortality in 1918. To do so, we transcribe all city-level mortality

statistics spanning 1900-1930 from the annual Mortality Statistics reports. We then

run a series of city-level regressions where we restrict the sample to the 1900-1917

period and regress ln(influenza deaths) on a city-specific linear time trend.10 Taking

8This phenomenon is often referred to as the Mills-Reincke Phenomenon. See Ferrie & Troesken
(2008) for more discussion as well as an empirical test of this theory in Chicago.

9See Sanders (2012) and Isen et al. (2017) on early-life exposure to air pollution and Beach et al.
(2016) on early-life exposure to typhoid fever.
10We only run these regressions for the 287 cities that appear in every report.
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the exponential of the predicted values from this regression yields a prediction of

influenza fatalities in the absence of the pandemic for post-1917 years.11 This allows

us to construct a measure of excess influenza deaths by simply subtracting predicted

influenza deaths in 1918 from actual influenza deaths in 1918.

This measure of excess deaths gives us the unanticipated increase in influenza

mortality due to the pandemic. Of course, we need to normalize this measure because

excess deaths will be related to city size, and the goal is to have a measure of in

utero exposure to influenza, not in utero exposure to large cities. Our options are

to divide by population or to divide by predicted influenza deaths. Population and

predicted influenza deaths are positively correlated: all else equal, a larger city should

have more predicted influenza deaths. However, dividing by population ignores the

fact that cities of similar sizes may have different underlying disease and pollution

environments. Because of this, normalizing by population will likely overstate flu

intensity for cities with particularly bad health environments. For this reason, and

also because accurate population data are only available in census years, we use

predicted influenza deaths as our denominator. Mechanically this measure is simply

the ratio of the number of excess influenza deaths occurring in 1918 to the number of

expected influenza deaths in 1918, where that expectation captures underlying trends

in population growth and intrinsic differences in disease and pollution environments.

Appendix Figure A.2 plots the average excess influenza ratio by year. The figure

spans 1900-1917 (the sample period) as well as 1918 through 1930 (our out of sample

predictions).12 There we see the severe and temporary nature of the 1918 pandemic

as well as the overall fit of our model. Excess influenza remains close to zero until

1918, during which approximately 35 influenza deaths occurred for every expected

influenza death. Influenza deaths are higher during than the 1920s than would have

11The natural logarithm ensures that predicted influenza deaths is always greater than zero.
12Alternatively, we could have used data from the 1900-1917 and 1920-1930 years, omitting the

years during which the pandemic occurred. However, if the pandemic had lingering effects on
influenza rates or city population counts, then data from the 1920-1930 period may be endogenous.
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Figure 1: Spatial Variation in Flu Intensity

Below Median Exposure Above Median Exposure

Notes: High exposure cities had an excess flu ratio greater than 28.2.

been predicted using the pre-pandemic data, however, even 13 years after 1917, excess

influenza deaths are not far above zero. It appears influenza reached its new steady

state in 1921.

Figure 1 provides an illustration of the spatial variation in our sample. We plot

separate markers for cities that had above median vs below median exposure to the

pandemic. The median excess flu ratio is 28.2. The key takeaway from Figure 1 is

that there is meaningful sub-state variation in our measure of flu intensity: there are

many situations where neighboring cities had different exposure to the pandemic.13

This level of spatial variation, which has not been exploited in prior studies, will be

particularly useful for examining the long-run effects of the pandemic.

13Appendix Figure A.3 plots a continuous version of this figure.
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Combining our linked dataset with our measure of excess influenza yields a final

sample of 218,662 linked records. The reduction in sample size largely stems from

the fact that many of our linked individuals did not live in a city for which we can

calculate exposure to the pandemic.14 Summary statistics are reported in Appendix

Table A.1. The average years of schooling for our sample is 11.4 with about 54 percent

of our sample completing high school. In terms of family characteristics, the literacy

rates among mothers and fathers were quite high at 94 and 92 percent, respectively.

About 36 percent of families owned their homes and only 4.5 percent of mothers were

in the labor force at the time of enumeration.

3 Empirical Approach

We adopt a difference-in-differences strategy to identify the impact of in utero flu

exposure on adult outcomes. Specifically we estimate variations of two regressions.

For the first, we regress:

yibc = α0 + βb + γc + δ1 [yob = 1919]× Highc + ΓX ′
i + εibc (1)

where yibc is outcome y of individual i from birth year b in birth city c. The parameters

βb and γc are birth year and birth city fixed effects, respectively. The variable Highc

is equal to one if city c had above median excess influenza in 1918. Our baseline

specification restricts our analysis to a narrow window (cohorts born in 1918, 1919,

or 1920) to better isolate the effect of in utero exposure. The vector Xi includes

additional controls such as race and parental characteristics. For some specifications,

14We are unable to use 597,486 of our original links because we do not have flu data for their birth
city. We throw out an additional 26,556 links because the child is not observed with both parents
at the time of enumeration and we throw out an additional 4,296 links because one or more of the
relevant parental controls is missing. Next we discard an additional 6,141 links because the parental
age at time of birth is implausible (e.g., mother or father’s age at the time of birth is over the age
of 50 or under the age of 18). We discard these observations because we are concerned that the
indicated mother or father is not actually the birth mother or birth father.
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we only estimate a treatment effect for the 1919 birth cohort and include birth-city

linear time trends. Standard errors are clustered at the birth city level.

Figure 2 depicts this identification strategy (and one of our main results). Specif-

ically, we plot the average high school graduate rate by birth cohort for cities that

will ultimately have above and below median exposure to the pandemic. To ease

interpretation, we normalize high school graduation rates at the city-level. The figure

reveals that for the 1909 to 1916 birth cohorts, graduation rates in cities with above

and below median exposure tended to follow a nearly identical trend. Beginning with

the 1917 cohort the average graduation rates start to fall relative to previous trends

for both groups and the effects appear to be much more severe for those born in cities

with above average exposure to the pandemic. While the 1919 cohort experiences the

largest deviation from trend, by 1920 graduation rates appear to return to normal.

Figure 2 indicates that this difference-in-difference strategy is likely to satisfy the

parallel trends assumption. However, it is worth noting that the slight deviations

in trend for the 1917-1919 cohorts in low exposure cities may be due to early life

pandemic exposure. A large literature has shown that early life exposure to disease

and deprivation also impairs human capital development (Currie & Almond (2011)).

Our regressions, however, treat those deviations as the counterfactual trend that

would have been observed in high exposure cities if the pandemic had never occurred.

To the extent that the stagnation in low exposure (i.e. control) cities is due to the

pandemic, our estimates can be thought of as a lower bound.

While the previous specification assigns above median excess influenza cities as

the treatment group and below median excess influenza cities as the control group,

our second specification uses continuous variation in treatment status:

yibc = α0 + βb + γc + δ1 [yob = 1919]× flu1918,c

E(flu1918,c|yob = 1919)
+ ΓX ′

i + εibc. (2)

The variable flu1918,c is excess influenza in 1918 for city c. This variable is divided by
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Figure 2: Normalized graduation rates by birth cohort in above and below median
pandemic exposure cities
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Notes: Sample consists of 218,662 enlistees linked to either the 1920 or 1930 censuses. Graduation
rates normalized by removing city-specific mean before collapsing to the cohort level. The median
pandemic city had an excess flu ratio of 28.2.

E(flu1918,c|yob = 1919) so that δ is the average effect of the pandemic for the 1919

birth cohort. All other parameters are defined as above.

4 Results

Before proceeding to our main results, Table 1 provides additional support for our

identification strategy. Each column corresponds to a different parental characteristic:

father’s age when the child was born, father’s occupational income score, whether the

father is literate, whether the father is foreign born, mother’s age when the child was

born, whether the mother is employed, whether the mother is literate, whether the

mother is foreign born, whether the family owns their home, and number of siblings.

All of these characteristics are available from the census where we observe the child

with his parents. We take each of these characteristics as outcome variables and
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estimate equations 1 and 2. The coefficients of interest from those specifications are

the interaction between being born in 1919 and pandemic intensity.

None of the 20 regressions presented in Table 1 are statistically significant and

many of the coefficients are close to zero. This is reassuring as it suggests that the

parental selection concerns raised by Brown & Thomas (2018) are not also systemat-

ically related to the intensity of the pandemic. In other words, an empirical approach

that includes cohort fixed effects and instead relies on variation in pandemic intensity

as a source of variation is likely to lend itself to a causal interpretation.

Having established the credibility of our identification strategy, we now turn our

focus to long-run outcomes. Our main results are presented in Figure 3. The top

panels consider high school graduation as the outcome of interest while the bottom

panels consider height at the time of enlistment. These are the main economic and

biological outcomes that are available in the enlistment records. The left panels use

the discrete treatment from equation 1 while the right panels use the continuous

exposure from equation 2.

Within each panel we present results from four specifications. The baseline spec-

ifications correspond directly to equations 1 and 2. The “W/Parental Controls”

specifications add all of the family characteristics that we examined in Table 1. The

“W/City Time Trends” specifications include both the family characteristic controls

and city-specific linear time trends. Finally, the “No 1920” specifications return to

the baseline but omit the 1920 cohort, such that the analysis simply compares the

1919 birth cohort against the 1918 birth cohort. We omit the 1920 cohort for two

reasons. The first is to ease any concerns about the 1920 cohort being observed in the

1930 census while the 1918 and 1919 birth cohorts are observed in the 1920 census.

The second is because omitting the 1920 cohort offers the most conservative test of

the Fetal Origins Hypothesis, as the implicit counterfactual to in utero exposure is

exposure during infancy. Thus, this specification allows us to ask whether in utero

exposure matters more than exposure in the post-natal period.
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Table 1: Placebo Tests – Intensity of in utero exposure and family characteristics
Dependent Variable: Father’s Father’s Literate Foreign Mother’s

age OccScore Father Father age
(1) (2) (3) (4) (5)

Treatment is above 0.058 0.147 -0.003 -0.003 0.118
median exposure (0.112) (0.272) (0.004) (0.008) (0.095)

Continuous 0.068 0.131 0.001 0.001 0.141
treatment (std.) (0.074) (0.174) (0.003) (0.005) (0.086)

Dependent Variable: Mother Literate Foreign Fam. Num.
Works Mother Mother Owns Home Siblings

(6) (7) (8) (9) (10)
Treatment is above -0.004 0.000 -0.006 -0.001 0.025
median exposure (0.003) (0.004) (0.007) (0.008) (0.035)

Continuous -0.003 -0.002 0.003 -0.001 0.008
treatment (std.) (0.003) (0.003) (0.006) (0.006) (0.026)

Notes: * p<0.1; ** p<0.05; *** p<0.01. Standard errors (clustered at the city level) in parentheses.
Each entry is the coefficient obtained from regressing the indicated outcome variable on the defined
measure of flu intensity as well as cohort fixed effects and birth city fixed effects. Each regression
includes 71,026 observations, corresponding to the linked birth cohorts born in 1918, 1919, or 1920.
The above median exposure specifications interact an indicator for being born in 1919 with another
indicator for being born in a city that had above median pandemic exposure (as measured by the
excess influenza rate). The continuous treatment specifications interact each city’s excess influenza
rate with an indicator for being born in 1919. We standardize the excess influenza rate by dividing
by the mean excess influenza rate, such that the coefficient can be interpreted as the pandemic’s
average impact.
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Figure 3: Flu intensity and long-run outcomes
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that we examined in Table 1. The “W/City Time Trends” specifications include both the family
characteristic controls but also add in city-specific linear time trends. High exposure cities had an
excess flu ratio greater than 28.2.
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The results in Figure 3 are remarkably stable. We consistently find that in utero

exposure decreased the likelihood of completing high school by about 1 to 1.5 per-

centage points. Each of these estimates is statistically significant at roughly the 5%

level. For height, however, we find statistically insignificant effects. Moreover, the

95% confidence interval is not economically meaningful, as it suggests that in utero

exposure may have affected height at the time of enlistment by up to one-tenth of

an inch. Given the lack of statistical and practical significance, we interpret this as

evidence that the pandemic did not meaningfully affect the height of enlistees.

5 Evidence from a wider set of cohorts

The previous section provided results from a narrow band of birth cohorts. As men-

tioned previously, these results are somewhat conservative because one of the two

control cohorts (those born in 1918) are treated in the sense that they were exposed

to the pandemic during infancy. In contrast to the results in the previous section,

which only consider the 1918, 1919, and 1920 birth cohorts, the results in this section

will consider every cohort from 1909 through 1922. The advantage of this expansion

is that it allows us to construct a sufficiently large sample of brothers such that we

can eventually include household fixed effects.

These results are presented in Table 2. Panel A presents results for high school

graduation, Panel B presents results for total years of schooling, and Panel C presents

results for height. In each panel, the first row models exposure as a simple indicator

for being born in a high exposure city in 1919 and the second row models in utero

exposure by interacting each city’s excess influenza rate with an indicator for being

born in 1919. Column 1 presents our baseline results. In column 2 we add controls for

our parental characteristics (described above), while in column 3 we add city-specific

linear trends. In column 4 we focus on brothers and add household fixed effects.15

15Since the 1909 to 1919 cohorts are observed in the 1920 census and the 1920 to 1922 cohorts
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We find robust evidence that the pandemic decreased high school graduation rates

by about 2 percentage points. This result survives the inclusion of household fixed

effects when we model in utero exposure continuously, but the p-value falls just outside

the 10-percent level of significance when those with below median exposure to the

pandemic are considered as part of the control group. For schooling, we find consistent

and negative effects, but we lose statistical significance in the household fixed effects

specification. In the Appendix we show that omitting the 1930 links (the 1920 to

1922 birth cohorts) has little effect on our estimates.

Turning to biological outcomes, we find no effect on heights when influenza is

measured discretely and, as before, the estimated coefficient is close to zero. When

influenza exposure is measured continuously, the pandemic appears to have increased

heights but this result is not robust to the inclusion of household fixed effects. Even

for the specifications that are statistically significant, however, the estimates are

not economically significant. The estimates suggests that the pandemic may have

increased heights by less than one twentieth of one inch.16 In the appendix we consider

weight and BMI at the time of enlistment and find no evidence that these outcomes

were affected by in utero exposure to the pandemic. When we consider the totality of

these results, we conclude that there is little consistent evidence that the pandemic

impaired health as measured at the time of enlistment. Of course, it is worth pointing

out that these results should be interpreted with the caveat that we are observing

enlistees in their 20s and 30s. Thus, it is possible that these results are driven by the

fact that unfit individuals will not appear in our sample or that many of the health

effects (e.g., heart disease) will not manifest for another 10 to 20 years or more.

are observed in the 1930 census, we won’t observe any of the 1920 to 1922 birth cohorts with their
older brothers born before 1920. To remedy this we go back to census manuscripts and identify
any older brothers that are still in the household in 1930. If any of those older brothers happen
to be successfully linked between the enlistment records and 1920, then we are able to generate a
household identifier that is consistent regardless of whether the brother was born in 1909-1919 (and
thus enumerated in 1920) or born between 1920 and 1922 (and thus enumerated in 1930).

16To put this in perspective, Parman (2015a) relates enlistee height to state and city-level disease
environments and finds that a standard deviation increase in infant mortality rates decreases height
by 0.3 inches, nearly 6 times greater than the effect we find.
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Table 2: In utero exposure and long-run outcomes
(1) (2) (3) (4)

Panel A: DV is High School Graduate
Treatment is above median exposure -0.023*** -0.020*** -0.020*** -0.041

(0.007) (0.007) (0.006) (0.030)

Continuous treatment (std.) -0.016*** -0.014*** -0.013*** -0.043*
(0.004) (0.005) (0.004) (0.022)

Observations 218,662 218,662 218,662 23,395

Panel B: DV is Years of Schooling
Treatment is above median exposure -0.087** -0.070** -0.050* -0.051

(0.034) (0.030) (0.028) (0.141)

Continuous treatment (std.) -0.063*** -0.055*** -0.037** -0.069
(0.021) (0.018) (0.018) (0.095)

Observations 218,662 218,662 218,662 23,395

Panel C: DV is Height at Enlistment
Treatment is above median exposure 0.013 0.015 0.027 -0.097

(0.041) (0.039) (0.040) (0.220)

Continuous treatment (std.) 0.044** 0.045** 0.047** 0.022
(0.022) (0.019) (0.020) (0.123)

Observations 168,317 168,317 168,317 18,051

Parental controls N Y Y Y
City-year trends N N Y Y
Household fixed effects N N N Y

Notes: * p<0.1; ** p<0.05; *** p<0.01. Standard errors (clustered at the city level) in parentheses.
Parental controls include: father’s age at time of birth, mother’s age at time of birth, father’s
OccScore, indicators for whether the father and mother can read and write, indicators for whether
the father and mother are foreign born, an indicator for whether the mother was in the labor force
at the time of enumeration, an indicator for whether the family owns their home, and number of
siblings. The continuous treatment specifications interact each city’s excess influenza rate with an
indicator for being born in 1919. We standardize the excess influenza rate by dividing by the mean
excess influenza rate, such that the coefficient can be interpreted as the pandemic’s average impact.
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6 Discussion

Overall the results in the previous two sections are remarkably consistent. The ability

to include household fixed effects increases our confidence that the previous results

are not due to parental selection but are instead attributable to exposure to the pan-

demic. In short, we conclude that in utero exposure to the 1918 influenza pandemic

did impair human capital development. One natural question, however, is why we

find evidence that is consistent with Almond (2006) while Brown & Thomas (2018)

find that Almond’s results are not robust to the inclusion of proxies of parental char-

acteristics as controls.

There are many differences between our sample and the samples analyzed by

Almond (2006) and Brown & Thomas (2018). We examine a linked sample of males

that resided with both parents at the time of enumeration and ultimately enlisted

in WWII. Moreover, due to our desire to exploit variation in pandemic intensity,

we further require that our individuals resided in a city at the time of enumeration.

Because we examine outcomes at the time of enlistment, our outcome variables are

measured anywhere from 20 to 40 years earlier than in Almond (2006) and Brown &

Thomas (2018).

In light of these differences, it is perhaps useful to try and draw a closer comparison

between our results and the results that appear in Almond (2006) and Brown &

Thomas (2018). Section VI of Almond (2006) asks whether there is evidence of a

dose response. To do so, he constructs a proxy for state-level maternal infection

rates and runs a series of regressions that are otherwise quite similar to our main

results (i.e. restricting to the 1918, 1919, and 1920 birth cohorts).17 The primary

17Almond defines the maternal infection rate for the 1918, 1919, and 1920 cohorts as follows:
MIRs,1918 = 0; MIRs,1919 =

MMRs,1918−MMRs,1917

κ−MMRs,1917
; and MIRs,1920 =

MMRs,1919−MMRs,1917

κ−MMRs,1917
, where

MIRs,t denotes the maternal infection rate for cohorts born in state s during year t, MMRs,t
denotes that maternal mortality rate in state s during year t (the year in which the child was in
utero); and κ denotes maternal mortality conditional on influenza infection (1.4%).
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limitation of this proxy relative to our preferred proxy is that it only exploits state-

level variation, and thus does not fully exploit geographic variation in pandemic

exposure. A second issue is that this proxy does not incorporate actual influenza

mortality data. Nevertheless, when Brown & Thomas (2018) revisit this analysis they

show that including their proxies for parental characteristics as controls attenuates

Almond’s findings, but notably unlike earlier specifications the inclusion of these

controls does not flip the sign of the coefficient.

We reconstruct this maternal infection rate proxy, which allows us to draw compar-

isons between our findings and the findings in Almond (2006) and Brown & Thomas

(2018). We present these results graphically in Figure 4. The baseline specification

corresponds to equation 2 in that it includes cohort fixed effects and city fixed effects,

but instead of continuous excess influenza as our treatment we use the maternal in-

fection rate proxy described above. The next specification – “Almond” – corresponds

to Brown & Thomas’s replication of Almond, using the 5% sample from the 1960

census. Column 3 – “W/Parental Controls” – returns to our baseline specification

but includes each of our 10 family background characteristics. Column 4 – “Brown

and Thomas” – corresponds to the estimates that Brown & Thomas produce when

they include their proxies for parental characteristics. As is clear from this figure,

results are consistent across all four specifications: it is not possible to reject equality

for any of these coefficients at standard levels of significance.

We interpret Figure 4 as suggestive evidence that our findings are not driven by

the differences in samples. Appendix Table A.4 presents additional evidence in favor

of this conclusion. There we apply the maternal infection rate approach to the 1918-

1920 birth cohorts as observed in the 100% files of the 1940 census. The 1940 offers a

unique set of advantages and disadvantages. The advantage of the 1940 census is that

we are able to observe all enumerated individuals, which alleviates concerns about

the bias of our linked sample. Further, roughly half of the individuals born between

1918 and 1920 (and born in states for which we can compute the maternal infection
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Figure 4: Flu intensity and high school graduation
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Notes: The baseline specification and “W/Parental Controls” specification analyze 1918, 1919, and
1920 birth cohorts from our linked sample. Sample is further restricted to those residing in a state for
which maternal mortality data are available. Each of these regressions includes cohort fixed effects
and city fixed effects. The “W/Parental Controls” specifications add all of the family characteristics
that we examined in Table 1.This sample includes 53,214 linked individuals. Maternal infection
rate is calculated as in Almond (2006). The “Almond” and “Brown and Thomas” specifications are
recreated from Table 7 of Brown & Thomas (2018).
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rate) are observed with both of their parents. This means that the 1940 census offers

a rare opportunity to observe adult outcomes and parental characteristics at the same

time. The fundamental drawback of the 1940 census, however, is that the reference

date for the age question is April 1, 1940, which means that year of birth is measured

much less precisely.

Appendix Table A.4 presents two sets of results. Panel A examines the impact of

the in utero exposure on high school graduation rates. Column 1 examines the full

census, while column 2 restricts the sample to the set of individuals that still reside

at home. For those individuals, column 3 includes a host of parental controls. In all

three specifications we see that in utero exposure decreased the likelihood that the

individual would graduate high school. The point estimates are roughly half of the

size of our baseline effect in the enlistment sample, perhaps reflecting that we are

measuring in utero exposure with less precision.

Panel B of Appendix Table A.4 applies the same empirical specification but con-

siders 8 different parental characteristics as outcome variables (whether the individ-

ual’s mother or father graduated high school, mother and father’s age when the child

was born, whether the individual’s mom was foreign born, whether the individual’s

parents were employed, and the father’s occupational income score). Most of the

coefficients are not economically meaningful, and only “mother is foreign born” is

statistically significant at conventional levels. This panel suggests that this empirical

approach is in fact a credible identification strategy.

In light of these results, it is an open question as to why Brown & Thomas (2018)

find that including proxies for parental controls reverses Almond’s original findings.

One potential explanation may stem from the fact that Brown & Thomas (2018) are

forced to use proxies for parental characteristics, which can be problematic if those

proxies are systematically mismeasured.

To explore this further, let us consider a simple human capital model where son

i’s educational attainment (yson
i ) depends on in utero influenza exposure (flui), his
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father’s educational attainment (yfather
i ), and exogenous unobserved characteristics

(εi), which are independent of the other explanatory variables, so that:

yson
i = βflui + γyfather

i + εi. (3)

Further assume that as in Brown & Thomas and Almond, flui is an indicator variable

that affects all children from the 1919 birth cohort and otherwise equals zero. Esti-

mation of equation 3 would yield consistent estimates of β if yson
i , flui, and yfather

i

were observable.

The advantage of our linked data approach is that we are able to observe all three

of these variables. Brown & Thomas, however, do not observe yfather
i . Instead,

Brown & Thomas observe average parental characteristics for a state-year cell. As-

suming the observed averages correspond to the truth, we can express these parental

characteristics as ȳfather
s,t = yfather

i + νi, where νi is the deviation from the mean for

father i and is by assumption independent of ȳfather
s,t .18 Since flui is only a function

of t, it follows that νi is also independent of flui. Then estimation of

yson
i = βflui + γȳfather

s,t + ui (4)

yields consistent estimates since ui = −γνi + εi, both of which are exogenous to

the explanatory variables. Thus, if parental characteristics are accurately measured,

Brown & Thomas’s inclusion of proxies would successfully account for parental char-

acteristics and return causal estimates of the effects of the 1918 influenza pandemic.

Now suppose that ȳfather
s,t is mismeasured. This mismeasurement could be due to

age heaping: the phenomenon that relatively uneducated parents tend to round the

ages of their children (e.g. age 10 instead of 9 or 11), whereas relatively educated

parents correctly report the ages of their children. This phenomenon would cause

18The two are by definition uncorrelated, but we strengthen the assumption to independence to
simplify the discussion.
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average parental characteristics to be biased downwards for heaped ages and upwards

for non-age heaped ages. Note that Brown & Thomas obtain parental characteristics

from the 1930 census, where the cohort that was in utero during the pandemic should

be individuals with a reported age of 10.

Formally, let ˜̄y
father
s,t be the mismeasured average parental characteristics, and es,t

be the error, so that ˜̄y
father
s,t = ȳfather

s,t +es,t. For heaped ages, es,t < 0; for non-heaped

ages, es,t > 0.

Consider the estimation of

yson
i,s,t = βflui + γ˜̄y

father
s,t + ηi. (5)

The error can be written as ηi = γ(es,t − νi) + ε, which is correlated with flui be-

cause those exposed to the pandemic in utero are also assigned lower SES parental

characteristics due to age heaping. This is precisely the bias we aim to overcome.

While age heaping offers an illustrative example, it is worth noting that Brown &

Thomas discuss the age heaping phenomenon in their paper and they conclude that

age heaping is not an issue. Of course, age heaping is just one potential source of

bias. Brown & Thomas use parental characteristics as measured in 1930 or 1920 as

controls when estimating outcomes in 1960, 1970, or 1980). An alternative source of

bias could be selective mortality (e.g., if low SES children are less likely to survive to

be enumerated in the 1960, 1970, or 1980 censuses). If there is any complementarity

between this mortality phenomenon and exposure to the pandemic, then Brown &

Thomas’s proxies for parental characteristics will again be systematically mismea-

sured. The only way to confidently overcome this problem is to use linked data,

which is not possible for Brown & Thomas since they analyze censuses that are not

yet publicly available.
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7 Conclusion

Almond (2006) provides some of the first evidence in economics in favor of the fetal

origins hypothesis by analyzing the 1918 influenza pandemic as a natural experiment.

A key assumption of Almond’s work is that the 1919 birth cohort would have had

similar outcomes to adjacent birth cohorts if the pandemic had never occurred. This

assumption is not obvious since other events coincided with the pandemic, most

notably the height of WWI. Brown & Thomas (2018) argue that, because servicemen

were positively selected from the pool of potential fathers, the 1919 birth cohort had

systematically lower SES parents. After accounting for these differences in parental

characteristics, they find that the long-run effects of the pandemic disappear.

We estimate the long-run effects of the 1918 influenza pandemic using linked

data and city-level variation in influenza exposure. Using linked data allows us to

accurately observe parental characteristics with minimal measurement error. Thus,

we can directly control for parental differences in the 1919 birth cohort. Second, using

city-level data allows us to more accurately measure the local influenza environment

and provides us with the necessary variation to include birth cohort fixed effects.

Results indicate that the 1918 influenza pandemic reduced educational attainment

and the estimates are similar in magnitude to those in Almond (2006).
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8 Appendix

This appendix presents additional figures and tables that were not included in the

primary draft.

Figure A.1 reproduces a graph from Frost (1920) in order to illustrate that in-

fluenza mortality rates track influenza morbidity rates reasonably well. The slight

lag observed in Figure A.1 is not a concern for us because we use annual rather than

weekly data to construct our measure of excess influenza.

Figure A.2 plots average excess influenza ratios by year. Note that our sample

period is 1900-1917 whereas the 1918-1930 observations are our out of sample pre-

dictions. Our model fits the data reasonably very well in the pre pandemic period.

The observations in the post pandemic period (1922 and beyond) are noisier, but

still close to zero. Further there is no indication of a post pandemic trend in excess

influenza.

Figure A.3 depicts the spatial variation of excess influenza. The size of each circle

relates to the magnitude of exposure. While less clean than the discrete figure in

the draft (Figure 1), we continue to see substantial sub-state variation in pandemic

exposure.
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Figure A.1: Weekly morbidity and mortality for five cities in the fall of 1918

Notes: Figure reprinted from Frost (1920).
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Figure A.2: Excess influenza mortality ratio by year
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Notes: Excess influenza ratio is calculated by taking actual influenza deaths minus predicted
influenza deaths and then dividing by the predicted influenza deaths. City-specific trends in annual
ln(influenza mortality) are estimated over the 1900-1917 period.
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Figure A.3: Spatial Variation in Flu Intensity
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Table A.1: Summary statistics

Variable Mean Std. Dev. Min. Max. N
Excess flu in 1918 36.093 25.025 3.64 179.172 218,662

WWII variables
Years of schooling 11.478 2.305 8 17 218,662
High school graduate 0.561 0.496 0 1 218,662
Height (inches) 68.284 2.679 50 80 168,317
Weight (pounds) 152.143 22.225 100 300 168,317
Birth year 1916.879 3.535 1909 1922 218,662

Census variables
Father’s age at child’s birth 32.066 6.542 18 50 218,662
Father’s OccScore 21.712 14.83 0 80 218,662
Father reads and writes 0.949 0.22 0 1 218,662
Father is foreign 0.435 0.496 0 1 218,662
Mother’s age at child’s birth 28.334 5.899 18 50 218,662
Mother is in labor force 0.044 0.205 0 1 218,662
Mother reads and writes 0.928 0.259 0 1 218,662
Mother is foreign 0.383 0.486 0 1 218,662
Family owns home 0.361 0.48 0 1 218,662
Number of siblings 2.364 1.941 0 9 218,662

Notes: Excess flu in 1918 is calculated by taking actual influenza deaths minus predicted influenza
deaths and then dividing by the predicted influenza deaths. See text for more details. WWII
variables come from the enlistment records. Sample is restricted to linked males born between 1909
and 1922 in a city for which we have flu data. Census variables are observed in either 1920 for the
1909-1919 birth cohorts or 1930 for the 1920-1922 cohorts. OccScore is the median income for a
particular occupation as measured in 1950. This variable is measured in hundreds of 1950 dollars.
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Table A.2: In utero exposure and schooling – 1920 links only
(1) (2) (3) (4)

Panel A: DV is High School Graduate
Treatment is above median exposure -0.023*** -0.021** -0.019*** -0.045

(0.009) (0.008) (0.007) (0.032)

Continuous treatment (std.) -0.018*** -0.015*** -0.016*** -0.042**
(0.004) (0.005) (0.004) (0.020)

Observations 163,263 163,263 163,263 16,219

Panel B: DV is Years of Schooling
Treatment is above median exposure -0.091** -0.077** -0.031 -0.043

(0.040) (0.036) (0.030) (0.168)

Continuous treatment (std.) -0.078*** -0.066*** -0.034 -0.066
(0.021) (0.019) (0.027) (0.088)

Observations 163,263 163,263 163,263 16,219

Parental controls N Y Y Y
City-year trends N N Y Y
Household fixed effects N N N Y

Notes: * p<0.1; ** p<0.05; *** p<0.01. Standard errors (clustered at the city level) in parentheses.
Parental controls include: Father’s age at time of birth, Mother’s age at time of birth, Father’s
OccScore, indicators for whether the father and mother can read and write, indicators for whether
the father and mother are foreign born, an indicator for whether the mother was in the labor force
at the time of enumeration, an indicator for whether the family owns their own home, and number
of siblings. The continuous treatment specifications interact each city’s excess influenza rate with
an indicator for being born in 1919. We standardize the excess influenza rate by dividing by the
mean excess influenza rate, such that the coefficient can be interpreted as the pandemic’s average
impact.
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Table A.3: In utero exposure and adult health
(1) (2) (3) (4)

Panel A: DV is Weight
Treatment is above median exposure 0.157 0.227 0.472 -0.008

(0.376) (0.363) (0.317) (1.863)

Continuous treatment (std.) 0.159 0.174 0.213 -0.803
(0.195) (0.189) (0.182) (1.312)

Observations 168,317 168,317 168,317 18,051

Panel B: DV is BMI
Treatment is above median exposure 0.012 0.021 0.049 0.079

(0.053) (0.050) (0.045) (0.240)

Continuous treatment (std.) -0.004 -0.003 0.001 -0.140
(0.028) (0.027) (0.025) (0.159)

Observations 168,317 168,317 168,317 18,051

Parental controls N Y Y Y
City-year trends N N Y Y
Household fixed effects N N N Y

Notes: * p<0.1; ** p<0.05; *** p<0.01. Standard errors (clustered at the city level) in parentheses.
Parental controls include: father’s age at time of birth, mother’s age at time of birth, father’s
OccScore, indicators for whether the father and mother can read and write, indicators for whether
the father and mother are citizens, an indicator for whether the mother was in the labor force at the
time of enumeration, an indicator for whether the family owns their home, and number of siblings.
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Table A.4: Flu intensity, graduation rates, and parental characteristics in the 1940 census

Panel A: Flu Exposure and High School Graduation

Sample: All Residing Residing
1918-1920 W/Parents W/Parents
Cohorts in 1940 in 1940

(1) (2) (3)
Maternal Infection Rate -0.031*** -0.019** -0.017**
While In Utero (0.006) (0.008) (0.007)

Parental Controls N N Y
Observations 3,568,851 1,860,609 1,860,609
R-Squared 0.055 0.055 0.160

Panel B: Parental Characteristic Placebo Tests

Dependent Variable: Pop is Mom is Mom Pop Mom is Mom is Pop is Pop’s
HS Grad. HS Grad Age Age Foreign Employed Employed OccScore

(4) (5) (7) (7) (8) (9) (10) (11)
Maternal Infection Rate -0.004 -0.007 -0.065 -0.119 0.020*** 0.003 -0.004 0.042
While In Utero (0.006) (0.006) (0.097) (0.108) (0.007) (0.004) (0.005) (0.183)

Observations 1,860,609 1,860,609 1,860,609 1,860,609 1,860,609 1,860,609 1,860,609 1,860,609
R-Squared 0.013 0.016 0.007 0.004 0.144 0.009 0.009 0.032

Notes: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors in parentheses. All regressions include year of birth, state of birth, race,
and sex fixed effects. The sample is limited by to the 21 states for which we can calculate maternal infection rate (see text).
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