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1. Introduction 

 

Firms are often required to disclose contract terms and other relevant information 

to consumers. For example, credit card companies are often required to disclose interest 

rates. Tech companies are often required to disclose privacy policies. And public firms 

are often required to disclose financial performance.  

Yet in many cases, firms can choose exactly how to present the information they 

are mandated to disclose. One important component of this decision is whether to 

disclose information in manner that is simple to understand or complicated. For example, 

credit card companies can present payment schedules, penalties, and fees clearly or bury 

potentially important details in the fine print.2 Privacy policies can be written in easy to 

understand language, or shrouded in pages of complex legalese. When public firms make 

financial disclosures, they can summarize them into several paragraphs or run as long as 

257 pages.3  

Sometimes, terms are complex by necessity – simply because there is a lot of 

information to provide. For example, there may be many contingencies to describe 

because there are many possible states of the world. However, the ability to choose the 

complexity of disclosures also raises the possibility that companies may strategically 

manipulate information to make it unnecessarily complicated. In other words, there are 

situations where firms might use complicated terms when simple ones would suffice; 

legalistic privacy policies when plain English would be more informative; and pages of 

details about irrelevant firm activities when high-level summaries of firm performance 

would be more useful. 

                                                
2 The Truth in Lending Act of 1968 (TILA) requires lenders to disclose consumer credit terms and cost in a 
standardized way. The Real Estate Settlement Procedures Act of 1974 (RESPA) requires lenders and others 
involved in mortgage lending to provide borrowers with pertinent and timely disclosures regarding the 
nature and costs of a real estate settlement process. In 2015, the US Consumer Finance Protection Bureau 
consolidated the disclosure requirements under TILA and RESPA, resulting in the Loan Estimate Form and 
the Closing Statement Form, which standardize the content and format of disclosure in mortgage 
transactions.  
3 Since the SEC does not impose a limit on the length of a financial filing, an average 10-K has grown from 
roughly 30,000 words in 2000 to 42,000 words in 2013, with GE’s 2014 10-K stretching to 103,484 words 
and 257 pages. Source: https://www.wsj.com/articles/the-109-894-word-annual-report-1433203762 accessed 
on September 26, 2017.  
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However, it is difficult to determine whether firms have actively chosen to make 

information more complex than necessary, so it is challenging to identify strategic uses of 

complexity in the field. Moreover, the reasoning of firms and consumers can be 

challenging to isolate in the field. Because of these challenges, we design a laboratory 

experiment to study the strategic use of complexity directly. In this experiment, the 

incentives to complexify information are clear, the amount of complexity is quantifiable, 

and the beliefs of agents are easily elicited. To our knowledge, this is the first lab 

experiment to examine the strategic use of complexity for a simple sender-receiver 

framework in which preferences are known. 

There are two roles in our experiment: a sender (e.g., the firm) and a receiver 

(e.g., the consumer). Subjects are randomly paired in each round, one randomly assigned 

as the sender and the other as the receiver.4 In each round, the sender observes a new 

state (which is an integer drawn uniformly from 1 to 10), and chooses how complex to 

make their report of this number. When the report is simple, the number is presented as a 

single integer. When the report is complex, the state is presented as several computer-

generated numbers (up to 20) that add up to the true number. While this is just one of 

many ways to operationalize complexity, it has the advantage that individuals have 

experience with the task and may hold well-formed beliefs about their ability to 

internalize complexity of this form. It also allows us to easily measure the extent of 

complexity and the size of mistakes.  

We build in a clear conflict of interest: senders would like receivers to guess that 

the true state is as high as possible and the receiver would like to guess as accurately as 

possible. In the main sessions, we debrief both players at the end of each round about the 

true state, the sender’s choice of complexity, and the receiver’s guess in that round. This 

way, subjects have many opportunities to learn the strategic forces in the game and the 

consequences of their actions.5  

                                                
4 Roles were randomly assigned so that subjects could experience both roles, which allowed subjects to be 
well informed about the actions and payoffs available in both roles. This design feature increases the 
opportunities for learning and was used in two of the primary treatments of Jin, Luca, and Martin (2018). 
5 As a robustness check, we also run sessions without feedback. In addition, we run a robustness check 
where we limit the number of complexity levels available to senders. See Section 4 for more details. 
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We find that senders use complexity often: defining “low complexity” as 

messages with <=5 numbers to sum, senders use low complexity less than 50% of the 

time, even if we look just at the second half of rounds. When not using low complexity, 

senders opt mostly to use high complexity (defined as messages with >=15 numbers to 

sum), and they do so in a systematic way.6 Over rounds, senders gravitate towards two 

extremes: using low complexity for high states (where secret numbers >=8) and using 

high complexity for low states (where secret numbers <=3). When the state is neither 

high nor low, senders use high complexity approximately 33% of the time, even in the 

second half of rounds.  

These patterns are in stark contrast to analogous voluntary disclosure games with 

repeated feedback. Prior work has found that with repeated feedback and voluntary 

disclosure, disclosure patterns eventually converge toward full disclosure. In contrast, 

even with repeated feedback, we find that complexity persists and is effective. These 

results suggest that complexity plays an important role in disclosure and is qualitatively 

different from non-disclosure in voluntary disclosure games.  

Why is complex disclosure so persistent when, as we know from previous work, 

non-disclosure is not? One possibility is that senders are using complex disclosure more 

than they should. However, we find that using high complexity to hide both low and 

middle states is profitable for senders because receivers guess higher than the actual 

secret number in both low and middle states, and this persists into the second half of 

rounds.7 Because sender behavior is largely consistent with these strategic incentives, the 

average losses of senders are small and decrease over rounds.8 

This raises important questions about the effect of complexity on receivers. The 

key difference between complex disclosure and non-disclosure is that complex disclosure 

adds noise to the message. This requires receivers to infer the reason for any complexity 

they observe and adjust their guesses accordingly. Because there are several ways that 

this process can be distorted, and because the downstream impact of these distortions is 

                                                
6 Senders use middle complexity at a similar rate across states, so the only variation across states is the 
fraction of rounds in which low and high complexity are used. 
7 We define the “optimal” action for senders as the one that has the highest expected payoff, and we 
measure losses in terms of expected payoff. 
8 The primary sources of losses are choosing high complexity at high states and choosing low complexity at 
low states. These mistakes, along with their possible sources, are examined in Section 4.3. 
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not immediately obvious, we use a partial-equilibrium structural model to explore 

different potential mechanisms for receiver mistakes.9  

In our structural model of receiver decision-making, receivers observe a level of 

complexity, apply their strategic beliefs about the link between complexity and states, 

receive a noisy signal of the state based on the complexity level (due to math errors), 

update their beliefs about the state, and then make a guess. We estimate math errors out-

of-sample by having subjects complete a math test in which they face high complexity 

without any strategic considerations. As a baseline, we close the model by assuming that 

strategic beliefs are correct and belief updating is perfect, which fails to predict the over-

guessing we observe at middle states and the extent of under-guessing we observe at high 

states. 

In the theoretical literature on complex disclosure, the leading assumption that 

justifies the strategic use of complexity is that receivers are naive about sender strategies 

(for example, see Gabaix and Laibson 2006; Spiegler 2006; Carlin 2009; and Armstrong 

and Vickers 2012). In addition, naiveté about sender strategies has been found in 

experiments that study other forms of disclosure (Cai and Wang 2006; Jin, Luca, and 

Martin 2018). To examine the potential impact of naiveté in our experiment, we add 

naiveté about sender strategies to our structural model of receiver decision-making. If we 

make the strong assumption that all subjects are fully naive, our model (with its out-of-

sample estimates) is able to accurately predict receiver guesses. As a result, this force can 

rationalize the strategic incentives for complex disclosure that we observe in our 

experiment. 

Naiveté is not the only bias that can explain our data. Adding overconfidence 

about math ability (subjects believing they are better at internalizing complex information 

than they actually are) instead of naiveté also allows our structural model to accurately 

predict receiver guesses. Overconfidence about ability has been found in a number of 

domains and can take a wide variety of forms (Moore and Healy 2008; Grubb 2015). 

If they are not overconfident, receivers should understand that there is noise in 

their reading of the complex message, which will lead them to adjust their guesses for the 

fact that senders with worse states are more likely to use complexity. Instead, if they are 

                                                
9 See DellaVigna (2018) for a survey of the growing use of structural models to separate behavioral forces. 



	 6 

overconfident, they should think there is less noise in the message, so they will put too 

much weight on their reading of the message and will not adequately adjust their guesses 

for this fact. Thus, symmetric noise would lead overconfident receivers to systematically 

guess above the actual secret number, as we observe.  

To distinguish between naiveté and overconfidence in receiver over-guessing, we 

elicit beliefs from subjects both about the strategies of other senders and their own math 

ability. These stated beliefs suggest that receivers are not naive about sender strategies, 

but are overconfident about their math ability. To our knowledge, overconfidence about 

the ability to internalize complex information has not been previously proposed as an 

explanation for complex disclosure.10 In addition, overconfidence could help to explain 

why feedback is not effective at reducing receiver mistakes in our experiment. There is 

mounting evidence that ego-utility is an important driver of overconfidence and can lead 

to asymmetric updating in beliefs about ability after receiving feedback about 

performance (Eil and Rao 2011; Mobius, Niederle, Niehaus, and Rosenblat 2011).  

The ability to strategically manipulate complexity to exploit consumers depends 

centrally on the inferences consumers make when they observe complex information. If 

consumers are skeptical of firms using complex disclosures, then firms that offer better 

terms or higher-quality products will want to present this information clearly and simply. 

For example, if the worst firms use complex disclosures, then firms that offer the second-

best terms or medium quality products will want to use simple disclosures to separate 

themselves from those firms. As a result, we would expect all but the worst firms to offer 

the simplest possible terms (constrained by the true complexity of the transaction), 

similar to the “unraveling” results in voluntary disclosure (Viscusi 1978; Grossman and 

Hart 1980; Grossman 1981; Milgrom 1981).  

In a world with unraveling, complex contracts would exist only out of necessity, 

with little scope for strategic complexity. However, systematic mistakes by consumers 

trying to extract the truth from complex reports can also give rise to strategic complexity, 

motivating companies to choose complexity over simplicity in their disclosures in order 

                                                
10 Grubb (2015) presents evidence of how other forms of overconfidence interact with complex disclosures, 
such as overconfidence about the precision of estimates, overconfidence about self-control, and 
overconfidence about attention to fulfilling contract terms. 
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to mislead consumers. The welfare implications of complex disclosure depend heavily on 

the reasons why complexity is used. If complexity arises mainly out of necessity, it can 

be good for consumers – helping to provide as much relevant information as possible. 

However, strategic complexity is likely to be welfare reducing, misleading consumers 

and leading to worse decisions. 

The rest of the paper is organized as follows. Section 2 reviews the related 

literatures and articulates our contribution. Section 3 presents our experimental design 

and predictions for this setting. Section 4 discusses our experimental results. Section 5 

concludes with policy implications.  

 

2. Literature Review 

 

Our paper draws on and contributes to three literatures: the literature on voluntary 

and mandatory disclosure, the literature on obfuscation and behavioral biases, and the 

literature on communication experiments. 

 

2.1 Voluntary and Mandatory Disclosure 

 

In virtually every transaction imaginable, companies must decide what 

information to disclosure and whether to make disclosure simple or complicated. In 

practice, voluntary disclosure is observed in many industries, but is far from complete.11 

As summarized in Dranove and Jin (2010), this incompleteness can be explained by 

external factors such as disclosure cost and consumer knowledge before disclosure or by 

a seller’s strategic incentives.12 Depending on the perceived driver of incomplete 

disclosure, moving to mandatory disclosure can be beneficial or hurtful to the society, 

and could redistribute welfare between sellers and buyers. Also, mandatory disclosures 

                                                
11 See Mathios (2000), Jin (2005), Bollinger et al. (2011), Bederson et al. (2018), Anderson et al. (2015), 
Fung et al. (2007), and Luca and Smith (2015) for specific examples.  
12 For instance, see Jovanovic (1981) for the impact of disclosure cost on disclosure decisions, see 
Matthews and Postlewaite (1985) on the incentive to not knowing true quality, see Board (2009) on the 
incentive to use disclosure for differentiation, see Feltovich et al. (2002) on relating disclosure to counter-
signaling, see Grubb (2011) on the incentive to hide due to dynamic concerns, and see Marinovic and Varas 
(2016) on disclosure decisions in light of litigation risk. 
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can be subject to a range of behavioral biases, limiting their effectiveness (Lowenstein et 

al. 2014). 

While theorists often contrast voluntary disclosure and mandatory disclosure as 

two distinct regimes, there is often a mixture of both voluntary and mandated elements in 

reality. For instance, policies that mandate disclosure on a limited number of dimensions 

may encourage firms to redirect resources to the mandated dimensions, but shirk on other 

dimensions (Lu 2012). Even on the mandated dimensions, firms may game the definition 

of the mandated statistics (Dranove et al. 2003; Jacob and Levitt 2003) or shroud it in a 

way that obfuscates important details (Brown et al. 2010). This effectively allows firms 

to voluntarily choose the content or format of disclosure, even if the disclosure itself is 

mandatory.  

In practice, there are times when this seems to have been the case. For example, 

some accounting scandals occurred, not because the firm did not disclose their creative 

accounting in their SEC filings, but because the information was buried in thousands of 

pages and few readers could understand their real contents (e.g., Enron).13 These 

examples are beyond anecdotes. Ben-Shahar and Schneider (2014) and Lowenstein et al. 

(2014) have criticized a long list of hard-to-understand disclosures and have argued that 

mandated disclosure has failed as public policy as a consequence. Financial experts even 

blame the complexity of financial products for the 2008 financial crisis, although the 

risks embedded in these products were supposedly disclosed to a ratings agency.14 

Because we focus on the voluntary choice of simplicity or complexity, we 

exclude (by design) other external factors that could complicate a firm’s choice of 

simplicity in a mandatory disclosure setting. Senders do not lack information on the true 

state, have no legal concerns, face no disclosure cost, and have just a single attribute. In 

doing so, we simplify the strategic interaction between sender and receiver, which helps 

us to isolate how a subject’s action is driven by their information set and their beliefs 

about their opponent. We believe these elements are fundamental for the general 

understanding of disclosure decisions.  

 

                                                
13 http://www.investopedia.com/updates/enron-scandal-summary accessed on September 26, 2017. 
14 https://www.ft.com/content/24f73610-c91e-11dc-9807-000077b07658 accessed on September 26, 2017. 
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2.2 Obfuscation and Behavioral Biases 

 

A growing literature models why firms may choose obfuscation in light of 

consumer naiveté. For example, Ellison (2005) shows that add-on pricing can be 

rationalized if one adds a subpopulation of irrational consumers. Gabaix and Laibson 

(2006) develop a model in which firms can shroud dimensions of product information 

when some consumers are myopic or unaware. Heidhues et al. (2016) further give out the 

conditions under which a shrouding equilibrium arises when naive consumers ignore add-

on prices until at least one firm unshrouds (reveals) the additional price. Spiegler (2006) 

assumes consumers are only capable of evaluating one of many dimensions of the 

product, which motivates firms to obfuscate by making the product more attractive on 

some dimensions but less attractive on others. He also shows that competition could 

increase obfuscation in equilibrium. Similarly, Armstrong and Vickers (2012) model 

bank overdraft fees in a market where some consumers are sophisticated and some 

consumers are naive. They show that competition may end up subsidizing the 

sophisticated at the expense of the naive. Bianchi and Jehiel (2015) capture complexity 

choice in financial disclosures by allowing firms to add noise in the signals that 

disclosure provides. In their model, investors make mistakes with noisy signals because 

they over-extrapolate from the limited number of signals that they receive. In the finance 

literature, Carlin (2009) has modeled why firms might use complex pricing when some 

consumers are myopic. In the accounting literature, Hirshleifer and Teoh (2003) consider 

the impact of naiveté on financial disclosures, where receivers can be naive about non-

disclosed information and inattentive to disclosed information. 

Theoretically, receiver naiveté is not a necessary condition for senders to choose 

obfuscation. Firms may still engage in obfuscation even if all information receivers are 

rational. In a model where consumers must spend time to search for price, Ellison and 

Wolitzky (2012) show that firms have incentive to increase consumer’s search cost 

through obfuscation. In doing so, obfuscation increases the search cost of consumers, 

raises equilibrium price, and benefits all firms even if some firms do not use obfuscation 

themselves. In a different setting, Perez-Richet and Prady (2012) consider obfuscation in 

front of a third party certifier (say bond rating agencies), whose job is to digest and 
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certify the disclosed information. They find that even good types may add complexity in 

the disclosed information, a result that defies unraveling. This occurs because complexity 

reduces the certifier’s ability to understand the report, which could motivate the certifier 

to lower its validation threshold.  

The empirical literature has documented many examples of obfuscation. Brown, 

et al. (2010) show that shipping and handling cost is often shrouded on e-commerce 

platforms. Sullivan (2017) shows that some hotels keep mandatory resort fees separate 

from room rate, and some online travel platforms conduct the price search by room rate 

only and do not disclose resort fees until consumers reach the hotel-specific page before 

payment. Obfuscation can also appear in a more sophisticated way. Ellison and Ellison 

(2009) document a loss-leader strategy by Internet retailers. In that strategy, the retailer 

sets a low price for a low-quality product on a price comparison site, and then persuades 

consumers to buy higher-quality products at a greater markup after consumers visit the 

retailer’s website. Célérier and Vallée (2017) find that banks offer retail investment 

products in ways that are consistent with strategic obfuscation. For instance, more 

complex products are more expensive and are more harmful for consumers. 

While these studies tend to focus on seller’s choice of obfuscation, other 

empirical studies turn to document the behavior of information receivers. Chetty et al. 

(2009) study two price regimes that include or exclude tax in the list price (tax rate is 

well known). They find that people are much less responsive to tax in the second regime 

because taxes are more complicated to compute. Blake et al. (2017) study an online ticket 

platform that switched from transparent pricing to hiding transaction fees until payment. 

They find that consumers are more likely to buy more tickets and pay higher price if 

transaction fees are “back-end.” Pope (2009) and Luca and Smith (2013) show that the 

salience of quality disclosure determines the extent to which customers respond. In a 

variety of settings, people are found inattentive to relevant details even after disclosure 

occurs (Armstrong and Chen 2010; DellaVigna and Pollet 2005; DellaVigna and Pollet 

2009; Lacetera et al. 2012, Englmaier et al. 2017). In a similar spirit, Hanna, 

Mullainathan, and Schwartzstein (2014) show that consumers often only attend to certain 

once-overlooked information when information is presented in a summary form.  

Our lab experiment complements this field work by jointly studying the decisions 
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of senders and receivers in an environment where we can control the incentives and 

information of subjects and remove non-behavioral reasons for complex disclosure. By 

measuring sender and receiver mistakes at the same time, we can accurately determine 

departures from equilibrium and shed light on the extent to which our subjects behave 

optimally in response to opponent actions.  

In addition, we are able to measure subjects’ information processing difficulties 

and explore their potential behavioral bias in the form of over-confidence or failure to 

form correct beliefs about opponent strategies. In this sense, our work is related to the 

theory of Cursed Equilibrium (Eyster and Rabin 2005), Analogy-Based Expectation 

Equilibrium (Jehiel 2005), Level-k reasoning (Crawford and Iriberri 2007), coarse 

thinking (Mullainathan et al. 2008), and rational inattention (Sims 2003). 

 

2.3 Communication Experiments 

 

Our experimental design is related to the cheap talk experiments of Cai and Wang 

(2006) and the voluntary disclosure experiments of Jin et al. (2018). For instance, we also 

frame states as “secret numbers” and use a similar payoff structure. The key differences 

in our experimental design are that the sender must truthfully reveal their type and can 

choose to make their reports complex. Hence, our experiment tests models of complex 

disclosure, rather than cheap talk or voluntary disclosure.  

Few lab experiments have studied complexity explicitly. Kalayci and Potters 

(2011) implement an experiment where sellers have control over the complexity of 

product quality, but in their experiment buyers face time pressure and are given no 

information about the objectives and incentives of sellers, so it is difficult to know what 

buyers believe about why sellers present products in a complex way. Carlin et al. (2013) 

have used lab experiments to study how subjects trade assets after viewing information of 

different complexity levels. But their subjects are all information receivers and therefore 

they cannot draw a close link between sender and receiver behavior. In Martin (2015), 

buyers are given information about the seller’s incentives, but the complexity of product 

quality is determined exogenously. In comparison, our experiment studies the 

endogenous choice of complexity.  
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Our measure of complexity is similar to what other experiments have used to 

generate cognitive costs for subjects. For instance, Caplin et al. (2011) find evidence of 

sacrificing behavior by having subjects choose among strings of numbers, where the 

value of an option is determined by the sum of the string. Caplin and Martin (2016) ask 

subjects to choose among sums of strings and find evidence consistent with a dual-

process model of choice. 

Though unraveling has been confirmed by multiple disclosure experiments, Jin et 

al.  (2018) show that immediate and repeated feedback is crucial for subjects to converge 

to the predictions of unraveling. In comparison, our experiment focuses on mandatory 

disclosure rather than voluntary disclosure, but the choice of simplicity is voluntary and 

subject to the same unraveling logic. Our results suggest that in a setting different from 

the classical game of voluntary disclosure even immediate and repeated feedback (about 

the real meaning of a complex report) is not enough to salvage unraveling. 

Our work is also related to the experiments that study vagueness and ambiguity as 

a way to shroud information. For instance, Serra-Garcia et al. (2011) allow non-

disclosure to take the form of vague messages. They find that intermediate senders 

sometimes use vague messages, which receivers do not make correct inferences about. 

Agranov and Schotter (2012) study the use of both vague (natural language) and 

ambiguous (interval) messages and find that an announcer in coordination games might 

want to use such messages. Relative to this literature, we consider complexity as another 

way to shroud information, under the constraint that the reported information must 

convey the truth state no matter whether it is simple or complex. Since receivers may 

process complex and vague/ambiguous reports differently, our work speaks directly to 

the real examples of complex disclosure when firms are subject to disclosure mandates.  

 

3. Experimental Design 

 

In this section, we first present a simple game of complex disclosure and then 

describe how we implement it in the lab.  

  

3.1 A Simple Game of Complex Disclosure 
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The aim of this section to generate theoretical predictions and to provide a 

framework that will subsequently inform our structural estimation. The game and its 

predictions are intentionally simple, as they reflect the lab experiment that follows, and 

the lab experiment is intentionally simple to isolate the forces of interest. 

The one-shot disclosure game we study involves two agents: an information 

sender and an information receiver. At the beginning of the game, nature determines the 

state b (which can be interpreted as the sender’s type) by taking a draw from a 

distribution F that has full support over a finite subset of the real numbers B. The sender 

knows the realized state b, but ex ante, the receiver knows only the distribution of 

possible states. In our experiment, b is determined by a computer and is framed as the 

“secret” number, F is the uniform distribution, and B is the set of integers 

{1,2,3,4,5,6,7,8,9,10}. 

The sender must report the realized state truthfully, but can choose the complexity 

of the report. For this simple theoretical analysis, we assume that the sender can just 

choose between low complexity or high complexity. In our experiments, the complexity 

of messages is measured by c computer-generated random integers that add up to the true 

state b. When able to choose any c between 1 and 20, we find that senders mostly choose 

c between 1 and 5 or between 15 and 20, and that behavior is similar if we limit sender 

just to just two choices: c=1 or c=20. 

We assume the receiver observes a noisy signal x of the state b, where the noise 

e=x-b reflects the error receivers make in reading complex reports, and e is drawn from a 

distribution G. Clearly, the distribution G should depend on the complexity of the report, 

so we assume that there are two G functions that correspond to sender choices: Glow and 

Ghigh. For simplicity, we assume that Glow puts all probability on e=0 (no noise). We 

assume further that Ghigh is symmetric has full support over the integers {-9,-8,…,8,9}. 

We make these assumptions also in our structural estimation, which appears to be 

justified by the data, as we see largely symmetric errors in a math test where there is high 

complexity but no strategic considerations (see Figure 6a). 

After observing x, the noisy signal of the state, the receiver takes an action a from 

a subset of real numbers A. In our experiment, A will also be the set of integers 



	 14 

{1,2,3,4,5,6,7,8,9,10} and is framed as the guess of the secret number b. 

The true state and the receiver’s action determine the payoffs for the two parties. 

The sender’s utility is given by a function !"($), which is concave, monotonically 

increasing in the receiver’s action, and independent of the state. The receiver’s utility is 

given by a function !&($, (), which is concave in the receiver’s action a, is symmetric in 

a, and reaches its maximum when a is equal to b.15 In other words, the receiver benefits 

more from selecting an action that is closer to the true state, while the sender benefits the 

most when the receiver’s action is as high as possible. These utility functions produce a 

strong conflict of interest when the state is low. 

When there is uncertainty about actions and states, we assume that senders and 

receiver maximize expected utility. For receivers, the posterior probability of states (after 

observing the noisy signal x) is based on that signal, the prior distribution F, and the 

distribution of noise parameters G for a given complexity level. If G does not generate 

uncertainty about the true state, then regardless of the sender’s action, the receiver will 

always choose an action equal to the realized state. However, with sufficient uncertainty 

about the true state, receivers may sometime choose a state that is not equal to the true 

state. 

If there is sufficient uncertainty about the true state for complex reports, the 

techniques found in Milgrom (1981) can easily be adapted to show that in every 

sequential equilibrium of this disclosure game, the sender low complexity if the state is 

not the minimum element in B, and if the report is highly complex, the receiver takes the 

action that is the minimum element in B. In other words, the sender always reports the 

state in the simplest form (unless it is the worst possible type), and the receiver always 

guesses the worst possible state if the sender chooses a highly complex report. When the 

realized state is the minimum element in B, the sender is indifferent between using low 

and high complexity, so any mixture over these actions is consistent with equilibrium. 

The force behind this equilibrium is that senders with the “best” states using high 

complexity will want to separate from those with “worse” states that are also using high 

complexity. Suppose high complexity is chosen for states b1, b2, and b3 and b1<b2<b3. 

                                                
15 Symmetry can be relaxed somewhat, but highly asymmetric utility functions can lead to pooling in 
equilibrium. However, the payoff function will be symmetry in our experiment.	
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Knowing the strategy of the sender, a rational receiver observing a high complexity 

report will never guess the true state above b3. When the signal is noisy enough, the 

receiver will sometimes even guess a worse state. In light of this, the sender with true 

state b3 would prefer to reveal b3 using low complexity. This leaves b1 and b2 to be the 

only two potential states behind high complexity. The same logic will motivate b2 to 

switch to low complexity. Then observing high complexity automatically implies that the 

true state is b1, which makes b1 indifferent between low and high complexity reports. 

Applied iteratively, this leads to unraveling in the use of high complexity. 

 

3.2 Implementing this Game Experimentally 

 

In each round, subjects were paired together, and in each pairing, one subject was 

randomly assigned to be the sender and the other to be the receiver (with equal 

likelihood). To reduce framing effects, the sender was referred to as the “S Player”, and 

the receiver was referred to as the “R Player”. 

In each round and for each pair, the computer drew a whole number from 1 to 10, 

called the “secret” number. Each of these numbers was equally likely to be drawn, and 

both senders and receivers were made aware of this probability distribution. 

Each sender was shown the secret number for their pairing and then made their 

decision about report complexity while the receivers waited. In our main sessions, the 

sender chose a “report length”, which was a whole number c between 1 and 20. The 

computer program randomly selected c integers between -10 and 10 until those numbers 

add up to the true state b. Both senders and receivers were told this is how the c numbers 

were generated. 

After all senders made their decisions, the receivers’ screens became active. If a 

sender decided to report their secret number with length c, the receiver they were paired 

with was shown this message: “The number I received is”, followed by a table of c 

integers that range from -10 to 10 that add up to the secret number. The instructions were 

clear that the sender only chooses the report length c and the specific random numbers 

shown in the report are generated by the computer. In the Appendix, we present the full 

instructions and an example of a report with maximum length (20). 
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Below the area for the sender’s message, receivers were asked to guess the secret 

number, and these guesses could be any integer between 1 and 10. The receiver had 60 

seconds to view the sender’s report and guess b. If nothing was guessed after that time, a 

random guess is entered for the receiver. In our main sessions, less than 4% of receivers 

hit this time limit. 

Receiver payoffs, denominated in “Experimental Currency Units” (ECU), were 

)*!& = 110 − 20|(( − $)/2|2.4, where b is the secret number and a is the receiver’s 

guess.16 These payoffs decrease monotonically as the guess moves further from the secret 

number. The sender payoffs in each round were )*!" = 110 − 20|(10 − $)/2|2.4. 

These payoffs are independent of the secret number and increase monotonically with 

receiver guesses because guesses cannot be higher than 10. These payoffs are similar to 

the quadratic specification found in Crawford and Sobel (1982) when there is a large bias 

towards higher actions. Because we use just a small number of states and actions, the 

payoffs could be shown in a table, so that subjects did not need to know or interpret these 

functional forms. 

With these payoff functions, there was a clear misalignment of interests between 

senders and receivers. Receiver payoffs were higher when their guesses were closer to the 

secret number, and sender payoffs were higher when the receiver made higher guesses. 

Subjects were told in the instructions about these two features of sender and receiver 

payoffs. 

At the end of each session, subjects were privately paid in cash a show up fee of 

$5 plus all additional earnings they accumulate over the course of the session. ECU were 

converted to U.S. dollars at a rate of 150 to 1 (rounded up to the nearest dollar). While it 

is possible for subjects to end up with a negative balance of ECU, because subjects are 

paid for every round, this outcome is extremely unlikely and never came close to 

occurring in the sessions we ran. However, because subjects are paid for every round, 

                                                
16 We allowed subjects accrue ECU in all rounds because payoffs could vary substantially between roles 
and realizations of the state, and we wanted performance to play a larger role than luck in final payments. 
Cai and Wang (2006) use similar payoff functions and also paid subjects every round. However, this 
approach introduces the possibility of wealth and portfolio effects. To ameliorate such effects, subjects 
were not told the cumulative payoffs they had earned so far in the experiment. 
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there is the potential for intentional variation in play (a “portfolio” strategy), but we find 

little evidence of such behavior.  

 

3.3 Experimental Sessions 

 

Our sessions were conducted at the Computer Lab for Experimental Research 

(CLER) facility at the Harvard Business School (HBS). In this laboratory, subjects are 

separated with dividers, and each subject was provided with a personal computer 

terminal. Subjects do not have to be Harvard University students, but we restricted 

subject to be no older than 25 years old. The software used to run the experiments was 

the z-Tree software package (Fischbacher 2007). 

Each session consisted of 30 rounds of the disclosure game. In each round, 

subjects were randomly matched into pairs. To reduce reputational effects, subjects were 

matched anonymously and were told that it was very unlikely they would be paired with 

the same subject in consecutive rounds. For a session size of 14, the actual likelihood of 

being paired with the same subject in consecutive rounds is 7.7%. The purpose of 

switching roles is to insure that both sides have a good sense for the incentives and 

actions available to the other side. In a related experiment, Kalayci and Potters (2011) 

implement a laboratory experiment where sellers have control over the complexity of 

product quality, but in their experiment, buyers are given no information about the 

objectives and incentives of sellers, so it is very difficult to know what buyers believe 

about why sellers make quality complex. 

 

3.4 Feedback, Beliefs, and Math Test 

 

Our main sessions provide round-by-round feedback. Subjects were told four 

pieces of information after each round: 1) the actual secret number; 2) the report length 

chosen by the sender; 3) the receiver’s guess of the secret number, and; 4) their own 

payoff. After all subjects pressed the “OK” button on the screen containing this feedback, 

the next round began. To reduce social considerations, subjects in the feedback treatment 

were not told the payoffs for the other player in their pairing, though it could be deduced 
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using the payoff table. In addition, between rounds subjects only received feedback about 

their pairing, not all pairings in the session.  

Once all rounds are completed, subjects were asked questions about their beliefs 

of how other subjects played in their session. First, subjects were asked to guess the 

average report length that senders chose for each secret number. Second, subjects were 

asked to guess the average secret number was when the sender chose complexity levels 

between 1 and 5, between 6 and 10, between 11 and 15, and between 16 and 20. The 

purpose of these questions was to assess whether subject beliefs about sender strategies 

influenced their decisions as receivers. These guesses were not incentivized, but in a 

recent paper, Trautmann and Kuilen (2015) show that such “introspective” elicitation can 

yield accurate beliefs. 

In some sessions, subjects were asked to complete a four-question math test after 

answering the two belief questions. For each question in this test, subjects were asked to 

add up 20 numbers, and were paid $4 if a randomly selected question was correctly 

answered. Subjects were told that the numbers would sum up to an integer between 1 and 

10, that all integers were equally likely, and that the 20 numbers would be generated in 

the same fashion as in the disclosure game. After completing the math test, subjects 

answered two additional belief questions. First, they were asked to guess the number of 

questions on the math test (from 0 to 4) that they thought they answered correctly. 

Second, they were asked to guess the average number of questions they thought others 

answered correctly.17 These belief questions were also not incentivized. 

 

3.5 Robustness Sessions and Demographics 

 

For robustness, we adopted two alternative treatments. The first alternative 

replaces round-by-round feedback with “no feedback,” where subjects were given no 

information after completing each round. After all receivers had made their decisions, 

subjects proceeded to a screen that required them to click “OK” to start the next round. 

                                                
17 The exact wording of the questions was “For yourself, what do you think was the number of rounds 
(between 0 and 4) answered correctly?” and “For all participants, what do you think was the average 
number of rounds (between 0 and 4) answered correctly?”	



	 19 

The no-feedback treatment is designed to contrast with the feedback treatment, so that we 

can determine whether round-by-round feedback is crucial in driving convergence 

towards unraveling as in Jin, Luca, and Martin (2018). The second alternative treatment 

also limits sender choice of report length to the two extremes (c is only 1 or 20) rather 

than the full range from 1 to 20. The reason for this alternative treatment is to determine 

whether play is substantially different if the “strategic complexity” of the game is 

reduced for both senders and receivers.  

In short, our experiment includes three treatments: feedback (our main sessions), 

no feedback, and two report lengths. Subjects completed just one of the three treatments. 

In all three treatments, subjects were asked at the end of the experiment to complete a 

questionnaire that includes questions about demographic details. Specifically, subjects 

are asked for their gender, if they are a native English speaker, their year in school, and if 

they have a friend participating in that session.  

 

4. Experimental results 

 

In this section, we first report the results from our main sessions and then 

compare them to the results from our robustness sessions. We then explore the possible 

reasons behind sender and receiver mistakes. For receivers, we estimate a structural 

model to predict choices both with and without behavioral biases. 

 

4.1 Results from the Main Sessions 

 

Table 1 summarizes the characteristics for the subjects in our 29 main sessions. In 

total, we have 294 subjects, all of whom experience both roles (sender and receiver) and 

receive round-by-round feedback for 30 rounds. Roughly 41% of the subjects are male, 

72% are undergraduate students, 85% are native English speakers, and 14% report that 

they have a friend in the same session.18 These demographic distributions are similar to 

                                                
18 One subject did not report any demographics, and three subjects skipped the question about whether they 
were native English speakers. Despite these missing values, we include all subjects in the analysis because 
our regressions will include subject fixed effects and therefore absorb all demographic variables.  
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the ones reported by Jin, Luca, and Martin (2018), who also conducted experiments in the 

CLER lab. 

 

4.1.1 Summary of Behavior and Mistakes 

 

 Table 2A summarizes sender choice of complexity by secret number. In contrast 

to the unraveling prediction, the average choice of complexity is 9.728 and increases 

almost monotonically as the secret number gets smaller.19 For the two smallest secret 

numbers (1 and 2), a majority of senders choose the maximum complexity (report length 

c=20) and over 72% choose high complexity (c>=15). For the two highest secret 

numbers (9 and 10), a majority of senders choose the simplest report (c=1) and over 72% 

choose low complexity (c<=5). For secret numbers in the middle, the median choice of 

complexity goes down from 13 for secret numbers of 4 to 4 for secret numbers of 7. 

 Figure 1A depicts the distribution of complexity choices for each secret number, 

where the size of the bubble represents the number of senders choosing a specific 

complexity level conditional on a specific secret number. Most senders concentrate on 

high complexity when the secret number is below 5, and switch to low complexity when 

the secret number is above 5. If the secret number is exactly 5, sender choices are 

dispersed across all levels of complexity.  

 Turning to receivers, Table 2B shows that the median receiver guess is correct for 

every secret number, but the standard deviation of receiver guesses is non-trivial (ranging 

from 1.167 to 2.326). As a consequence, guesses are significantly different from secret 

numbers for every secret number except for 6 and 7 (using a two-sided t-test and a 

significance level of 5%). On average, the bias in receiver mistakes reveals much greater 

over-guessing for low secret numbers (1.183 for secret numbers of 1 and 0.936 for 2) 

than under-guessing for high secret numbers (-0.367 for 9 and -0.403 for 10), which 

suggests that receiver mistakes are not driven entirely by mechanical boundary effects.20  

                                                
19 In a regression of complexity choice onto secret number with individual fixed effects and robust standard 
errors, the coefficient is negative (-1.496) and statistically significant (p<0.001). 
20 Additional evidence in support of this conclusion is provided in Section 4.4. 
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To further explore receiver behavior, we define the size of receiver mistakes as 

the absolute distance between the receiver guess and the secret number. As shown in 

Table 2B, the average receiver mistake size is the highest for the lowest secret number 

(c=1) and decreases almost monotonically with secret number.21 This is consistent with 

the fact that senders present simpler reports for higher secret numbers, which reduces the 

potential for math errors, shortens the response time for receivers, and lowers the 

probability of receivers not making a decision within the 60 second time limit. For the 

less than 4% of receivers that are over the time limit, the computer generates a random 

guess, which can lead to large mistakes. Excluding these observations, receiver mistake 

sizes remain large for the smallest secret numbers (0.946 for secret numbers of 1 and 

0.777 for 2) as compared to the mistake sizes for large secret numbers (between 0.370 

and 0.379 for secret numbers between 6 and 10). In fact, mistake sizes are significantly 

different between secret numbers of 1 and 10 using a two-sided Wilcoxon rank-sum test 

(p-value<0.001). 

 Because receivers observe the complexity of sender reports, Table 3 tabulates 

how receiver guesses and mistakes vary by the complexity level of sender reports, as well 

as the secret numbers behind these reports. On average, we observe a small amount of 

under-guessing for complexity up to a length of 4. For complexity between 5 and 12, the 

number of observations is smaller, and the average guess fluctuates between over-guess 

and under-guess. Once complexity is over 12, we observe consistent over-guessing that 

peaks at the highest level of complexity (0.655 for length 20). Interestingly, the size of 

receiver mistakes is less monotonic, but is clearly much higher for high complexity than 

for low and medium complexity.22 These results are robust to excluding rounds where 

receivers did not make their decision within the time limit. Without those rounds, the 

magnitude of receiver mistakes is slightly lower for the two highest complexity levels 

(0.783 versus 0.748 for length 19, and 1.284 versus 1.008 for length 20). 

Absent behavioral factors, one would imagine that receiver mistakes should be 

zero for the simplest reports because such report reveals the secret number exactly. In 

                                                
21 In a regression of mistake size onto secret number with individual fixed effects and robust standard 
errors, the coefficient is negative (-0.085) and statistically significant (p<0.001).	
22 In a regression of mistake size onto complexity with individual fixed effects and robust standard errors, 
the coefficient is positive (0.054) and statistically significant (p<0.001). 
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contrast, the data shows an average mistake of 0.243 for length 1 and 0.257 for length 2, 

which are significantly different from 0 using a two-sided t-test. There could be multiple 

explanations for this phenomenon: some receivers may not understand the game, while 

others may understand the game but want to reward the senders that reveal low secret 

numbers with a simple report. To the extent that subjects learn about the game over time, 

errors due to the first explanation should decline over time, but the social preferences in 

the second explanation are likely to persist. These possibilities are discussed and 

analyzed further in Section 4.4. 

To show the joint impact of secret numbers and complexity, Table 4 cross-

tabulates secret numbers by low (<=5), medium (6-14), and high (>=15) levels of 

complexity. Consistent with social preferences, when the secret number is presented 

simply, receivers tend to have larger mistakes (0.6 on average) for the lowest secret 

number (1). This is sensible if receivers possess some social preferences, as a simple 

report of low states are helpful for receivers and therefore if the receiver wants to 

reciprocate, she could be willing to sacrifice her own utility to reward this “honest” 

behavior. In contrast, under-guessing a complex report of high states would hurt both the 

receiver and the sender. These results are also consistent with some strategic confusion, 

as there is a similar average mistake size for other secret numbers. 

 

4.1.2 Payoff Losses 

 

So far, we have documented that sender choice of complexity deviates from the 

unraveling prediction and receiver guesses deviate from the true states behind sender 

reports. However, are these deviations leading to payoff losses? 

To address this possibility, we measure how far a subject is from taking the 

payoff-maximizing action in each decision problem, which provides a rough sense for the 

size and consequences of the “mistakes” they are making.23 To do this, we construct the 

average opponent strategy from our data, determine the expected payoffs from taking 

each possible action, and then calculate how far the expected payoff for the taken action 

                                                
23 This does not tell us if receiver mistakes are optimal given the noise generated by complexity. The 
question of whether receivers are acting optimally will be addressed later in the analysis. 
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is from the highest expected payoff.24 For senders, the possible actions are grouped as low 

(1-5), medium (6-14), and high (15-20) complexity.25 For receivers, the possible actions 

are limited to the guesses available to them, which are integers between 1 and 10.  

All of our calculations take an ex-ante perspective, so when determining the 

highest expected payoff for receivers, we assume that all states are equally likely to 

happen and determine the average sender behavior separately for each state. In addition, 

we pool all rounds when determining average sender and receiver behavior, which is 

equivalent to assuming that a subject is equally likely to face an opponent from any 

round.26  

  Table 5 reports the monetary losses that result from actions taken in our main 

sessions. On average, senders are 15.3% away from the highest expected payoff if they 

take the empirical distribution of receiver guesses for each complexity group as given. 

This percentage differs substantially across secret numbers: for the highest secret number 

(10), sender choice (mostly low complexity) is close to optimal (3.8% loss); but for the 

lowest secret number, sender choice (mostly high complexity) is still 51.6% away from 

the highest payoff. This is driven mostly by the failure to always use high complexity 

when facing a secret number of 1. 

We also calculate expected payoffs relative to the payoff that senders would get in 

the unraveling equilibrium. Because the unraveling equilibrium predicts different receiver 

behavior that we observe, sender payoffs in equilibrium could be higher or lower than the 

sender payoff observed in our data. It turns out that sender choice of complexity results in 

a 71.4% expected gain for secret numbers of 2 and a 3.9% expected loss for secret 

numbers of 10, relative to the unraveling equilibrium. We cannot do the same exercise for 

a secret number 1 because the normalized equilibrium payoff is 0. 

                                                
24 Because the minimum possible payoff can be negative, we normalize payoffs by subtracting the 
minimum possible payoff (for the realized state) to the payoffs from taking any action in that state. 
25 We grouped these actions because some complexity levels are rarely chosen by senders for some secret 
numbers, thus we could have a non-reliable density in the empirical distribution of sender choice of 
complexity conditional on these secret numbers. Our results are robust to small changes in the boundaries 
of these groups, such as having “low” just be lengths of 1 and “high” be lengths of 20. 
26 These assumptions may not hold in a dynamic environment that features learning. We will present 
evidence of learning in Section 4.1.4 and control for these dynamic effects in the regression analyses 
presented in Section 4.1.5. 
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 Table 5 also reports the percentage off from the highest expected payoff that 

receivers could have achieved if they guessed based just on the observed complexity 

level (given the empirical distribution of sender types for that complexity level). This 

deviation is 13.8% for low complexity, 16% for medium complexity, and 16.7% for high 

complexity. On average, receiver payoffs are 30 to 33% worse than the payoff that 

receivers would get in an unraveling equilibrium, because receivers would know every 

state perfectly in this equilibrium. Note that the departure from highest expected payoffs 

is not readily comparable between senders and receivers, because their payoffs differ in 

both scale and range. 

 In short, there are non-trivial sender mistakes and receiver mistakes, even if we 

measure them in the payoff space. We will test the robustness of these results to dynamic 

effects in Section 4.1.5 and explore reasons behind these mistakes in Sections 4.3 and 

4.4. 

 

4.1.3 Beliefs and Math Ability 

 

 As shown before, receivers tend to make their biggest mistakes when the sender 

report is highly complex and when the secret number is low. One potential explanation is 

that receivers make more math mistakes when facing more complex reports. In addition, 

receivers may not fully understand the degree to which senders choose higher complexity 

in lower states, thus not appreciate the extent to which complexity is “bad news”. We 

measure both directly in our experiment using additional tasks. 

After all 30 rounds of the game were completed, we asked subjects to predict the 

average sender choice of complexity for each secret number. The distribution of average 

stated beliefs and the distribution of average sender choices in our data are strikingly 

similar (see Figure 2A), suggesting that subjects are not naive in their beliefs about 

sender strategies.  

Assuming receivers use these stated beliefs as their prior beliefs at the beginning 

of each round and only use the observed complexity level (not the content of each report) 

to determine the value of the secret number, we can infer what they should have guessed 

via Bayes’ Rule. As shown in first panel of Table 6, this value (referred to as the 
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“inferred guess”) is on average 2.546 for high complexity (length>=15), which is lower 

than the average actual guess (4.222) in the game. Since the average secret number is 

3.712 for high complexity, we conclude that the stated sender beliefs cannot explain why 

receivers systematically over-guess the true state when they face a complex report.  

We also asked subjects to report what they would guess for the secret number on 

average if the reported complexity is 1-5, 6-10, 11-15 or 16-20.27 The average answers are 

presented, along with actual averages, in Figure 2B. Once again, stated beliefs are close 

to the empirical frequencies. 

Using these stated beliefs, we find that subjects on average believe the secret 

number is 2.510 if the report has a complexity between 16 and 20. This average, referred 

as “complex guess” in the bottom panel of Table 6, is lower than both the average secret 

number (3.626) and the average guess in the game (4.191). Again, this provides evidence 

that receiver beliefs cannot explain why they over-guess when faced with a complex 

report. 

To what extent are guesses impact by math errors? After beliefs are elicited, 160 

subjects were asked to complete a math tests that consisted of four questions. Each 

question required them to sum 20 numbers in a table similar to the most complex table in 

our game. These questions are highly incentivized for correct answers, and these answers 

do not impact the payoffs of other subjects, which should minimize social considerations. 

As shown in Figure 3, only 54 subjects get all four questions correct (33.75%), 48 get one 

wrong (30%), 27 get two wrong (16.88%), and the remaining get either three wrong 

(10.62%) or all wrong (8.75%).  

Interestingly, when we asked each subject how many math test questions they 

think they answered correctly, 41.88% believe they got all correct and 72.5% believe they 

got three or four correct. Both of these rates are higher than the actual fraction of subjects 

who got this many correct (33.75% and 63.75% respectively), which is shown in Figure 

3. When asked to predict the average number of questions that other subjects answered 

                                                
27 This belief question uses a different grouping of complexity levels due to a lack of perfect foresight about 
the clustering of sender actions. Throughout the rest of the paper, we group complexity into low (1-5), 
medium (6-14) and high (15-20) levels because the empirical distribution of sender choice has much higher 
density at the two ends (1 and 20) and there is clear bunching at 1, 5, 10, 15 and 20. This difference does 
not affect our analysis, as we report the summary statistics of stated beliefs separately from other variables. 
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correctly, the mode prediction was 3 and the average prediction was 2.694, which is very 

close to actual average (also 2.694). 

In short, our subjects on average appear to be sophisticated enough to infer the 

extent to which complexity is bad news and many of them appear to be overconfident 

about their own math ability. In Section 4.4, we will further explore the role of naiveté 

and overconfidence in receiver mistakes.  

   

4.1.4 Evidence of Learning 

 

To provide detail on sender complexity use over rounds, the first panel of Table 7 

also presents how sender payoffs depart from the highest expected payoff over rounds 

(taking the empirical distribution of receiver behavior as given and fixed over rounds). 

Overall, we see a gradual improvement from the beginning 10 rounds (15.9% departure) 

to the last 10 rounds of the game (14.2%). Breaking this down by secret number, the 

biggest improvement comes from the lowest secret number (1), where the departure from 

the highest payoff drops from 55.1% in the first 10 rounds to 51.5% and 48.4% in the 

second and third blocks of 10 rounds. Strikingly, this improvement is accompanied by 

senders increasing their choice of complexity for this secret number. In comparison, at 

the highest secret number (10) senders get closer to the highest payoff (from 5.3% 

departure in the first 10 rounds to 3.1% in the last 10 rounds) while decreasing their use 

of complexity (from 5.829 to 2.512).  

For other secret numbers above 5, we also see senders decrease their use of 

complexity over the experiment. However, for secret numbers at or below 5, senders 

continue to use substantial amounts of complex disclosure throughout the experiment, as 

reflected in an average complexity choice above 10 in the last block of rounds.  

There is also evidence of learning on the receiver side. Figure 4 plots the average 

size of receiver mistakes for low (1-5), medium (6-14) and high (15-20) levels of 

complexity. While receivers may not get better in math within the short time of the 

experiment (and may even become fatigued), they could become more aware of the 

strategic meaning of report complexity and realize that high complexity implies low 

states. This explanation is also consistent with the dynamics of senders, as they chose 
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high complexity in low states and low complexity in high states more often in the second 

half of rounds. This pattern can be seen by comparing Figures 1A and 1B. 

 More details about receiver mistakes are given in the last two panels of Table 7. 

Throughout the game, the average receiver mistake drops for all three groups of 

complexity, but the biggest drop occurs for high complexity. Departure from the highest 

payoff improves as well, while the magnitude of improvement tends to be much larger 

for medium and high complexity (from ~18% to ~13%) than for low complexity (from 

15.3% to 13.7%). This is consistent with the conjecture that many mistakes upon simple 

reports may reflect social preferences but mistakes in medium and high complexity could 

be driven by other factors, such as math errors, overconfidence, and naiveté.  

 

4.1.5 Regression Results 

 

Table 8A presents the results of our regressions based on sender behavior, and 

Table 8B presents those based on receiver behavior. The motivation for these regressions 

is to replicate our results while controlling for round-by-round changes in sender and 

receiver behavior, which we reported in the previous section. 

For senders, the dependent variables are sender choice of complexity and the 

payoff departure from the highest expected payoff. In the first and third columns of Table 

8A, we include subject demographics, math test performance, the degree to which they 

overestimate their performance on the math test, and how much they believe their 

performance was better than the average performance of others. Taking a secret number 

of 1 as the default, Table 8A shows that senders choose significantly less complexity and 

depart less from the highest payoff when their secret number increases. This is consistent 

with our results without subject or round controls. Math ability and overconfidence 

explain little in sender choice, but when a sender believes other subjects are better at 

math, they choose a higher complexity.  

To capture sender learning, we include the round number (1-30) and the 

interaction with whether the secret number is in the medium (4-6) or high range (7-10). 

These coefficients suggest that senders learn to increase complexity for low states (1-3), 

but decrease complexity for medium and high states. We also include a dummy for the 
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first five rounds, in case the initial learning about the game creates a level effect in choice 

of complexity. There is little evidence for a difference when controlling for other factors. 

Columns (2) and (4) include sender fixed effects, which absorb individual 

demographics, math test performance, and beliefs about math performance. Results for 

most coefficients are similar to what we have without individual fixed effects, suggesting 

that sender choice and learning are not driven by unobserved individual characteristics.  

  Turning to receivers, Table 8B attempts to understand the absolute size of 

receiver mistakes and receiver’s payoff losses when controlling for time trends. Because 

we want to study the mistakes that receivers actively made, we focus our analysis on the 

96% of receiver guesses that are made before the time limit. 

Since receivers observe the sender’s choice of complexity, we include a separate 

dummy for each complexity level. In addition to controlling for the same subject 

variables as in the sender regression, we also include the receiver’s inferred guess for a 

given complexity level based on their stated beliefs. If receivers state their true belief and 

are risk neutral, this variable captures what receivers would guess to be the secret number 

if they observe the sender’s choice of complexity but do not have the complex report 

(table of c numbers) in front of them. 

Compared with the default complexity (1), Table 8B shows that receiver mistakes 

drop significantly for some low complexity levels (3-5) but increase significantly for 

almost all levels of high complexity. This pattern is similar with and without subject 

fixed effects. Results on payoff losses are less consistent, but once we control for subject 

fixed effects, payoff losses are significantly different between the default and most 

complexity levels 13 and above.  

 Receivers do appear to lower their guess for high complexity over time (after we 

control for subject fixed effects). As a result, they depart less from the highest expected 

payoff with high complexity. The magnitude of learning is non-trivial: throughout the 30 

rounds, receivers will lower their over-guess of high complexity by 0.453, about half of 

the average over-guess in the pooled data (0.913). 

 Table 8B also suggests that math ability matters. But since the coefficient is 

negative, the regression suggests that lower ability subjects tend to make smaller 

mistakes on average (after controlling for other factors). Conversely, time spent is 



	 29 

positively correlated with receiver mistakes. These counterintuitive results can have two 

explanations: 1) receiver mistakes are not driven by large math errors, or; 2) math errors 

affect receiver mistakes in a more nuanced way than is specified in this reduced-form 

regression.28 In addition, overconfidence does not appear to have a significant 

relationship with receiver mistakes or payoff losses. The impact of both factors will be 

examined further in a structural estimation in Section 4.4. 

 

4.2 Results from the Robustness Treatments 

 

Table 9A compares sender choice of complexity in the main sessions and 

robustness sessions. In particular, we have two types of robustness sessions: Robust 1 

refers to sessions that maintain the random assignment of roles and the same set of 

complexity options (1, 2, …20) but do not provide round-by-round feedback to the 

subjects. Even so, subjects can still learn about the game by playing both roles, by 

observing the random realizations of secret numbers as a sender, by observing simple 

reports as receivers, and by reading complex reports as receivers. Robust 2 refers to 

sessions that also restrict sender choice of complexity to the two extremes (1 or 20).  

All three types of sessions demonstrate similar monotonicity between secret 

number and choice of complexity: most senders choose high complexity for low states 

and low complexity for high states. This tendency is strongest in Robust 2, which makes 

sense because Robust 2 restricts sender choice to the extremes. A comparison between 

main sessions and Robust 1 suggests that feedback drives senders even more to the two 

extremes. 

Table 9B and Figure 5 provide the comparison across treatments for receivers. 

The size of their mistakes is similar across the main and robustness sessions, and if 

anything, receiver mistakes (for high complexity) are slightly higher in Robust 2. Once 

again, this is not surprising given that Robust 2 pushes all complex reports to the 

extreme. However, the size of receiver mistakes at high complexity is not significantly 

different between the main sessions and either of the robustness sessions. 

                                                
28	Our regression specifications do not include interactions between math performance (our measure of 
math ability) and different levels of complexity. 



	 30 

In short, we conclude that the patterns we observe in the main sessions are robust 

to changes in feedback design and the number of complexity options. For the remainder 

of the paper, we focus on main sessions only. 

 
4.3 Reasons Behind Sender Mistakes 

 

 From a policy perspective, sender mistakes often capture less interest than 

receiver mistakes, partly because in the real world senders tend to be firms, which have 

more resources to overcome their mistakes. However, because subjects play both roles in 

our experiment, we can hope to learn something about the sources of receiver mistakes 

by looking at the sources of sender mistakes. 

The largest sender losses come from two types of mistakes: using high complexity 

when the state is high and using low complexity when the state is low. In our main 

sessions, the former decreases from 11.4% of high-state decisions in the first half of 

rounds to 7.8% in the second, and the latter occurs in 16.0% of low-state decisions in 

both the first and second half of rounds. 

Both types of sender mistakes could be driven by incorrect beliefs about receiver 

actions, random errors, or confusion about game form.29 These factors could be 

ameliorated with experience and feedback, so we might expect their impact to lessen over 

rounds. However, only the incidence rate of the first mistake – choosing a high 

complexity level in a high state – decreases over rounds. Evidence that these mistakes 

might be driven by errors or confusion can be found by comparing the choices a subject 

makes when she is a sender and a receiver: there is a positive correlation (0.1344) 

between the likelihood of a subject choosing a high complexity level in high states as a 

sender and incorrectly guessing by more than one integer with a simple report when she 

is a receiver.  

Both types of sender mistakes could also be driven by social preferences. Spite 

could drive senders to use high complexity when it is not justified in their own payoff, 

and social norms could drive senders to use low complexity when it is not justified in 

                                                
29	Martin and Munoz Rodriguez (2018) find evidence of inattention to game form in experiments that use 
the BDM mechanism.	
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payoff. We find some evidence that choosing low complexity in a low state is driven by 

social preferences by once again comparing the choices a subject makes when they are a 

sender versus a receiver. If a subject thinks that the socially correct action is to disclose 

simply for even low states, then he or she might act in this way and reward senders who 

do the same. In fact, there is a positive correlation (0.2666) between the likelihood of a 

subject choosing a low complexity level in low states as a sender and over-guessing the 

state by one integer with a simple report as a receiver.  

 Because subjects play in both roles, we will include these two possible reasons for 

sender mistakes – confusion and social preferences – into our baseline model of receiver 

guesses. However, we will find that neither appears to be a major driver of receiver 

mistakes. 

 

4.4 Reasons Behind Receiver Mistakes  

 

 In this section, we will study the reasons for the mistakes that receivers make 

when the secret number is presented in a complex way. Along the way, we will also 

explore the reasons behind the mistakes made with simple reports, but our primary focus 

is on complex reports because the vast majority of receiver mistakes occur when the 

secret number is disclosed with high complexity, and it is these mistakes that justify the 

complexity that is observed in our experiment. As a consequence, in the subsequent 

analyses we only use receiver guesses from rounds where senders chose high complexity 

and where receivers made a guess before the time limit. 

 We start by modeling receiver mistakes using Logit choice (as in the Quantal 

Response Equilibrium approach of McKelvey and Palfrey 1995), which assumes that 

receivers have Logit demand for each action based on the expected payoffs to taking each 

action given the empirical distribution of opponent actions. This approach has a free 

parameter often interpreted as the sensitivity of errors to expected payoffs, which we 

estimate using maximum likelihood. As can be seen in Table 10, the predictions based on 

this estimated parameter produce an average likelihood of -1.733 and do a reasonably 

good job at predicting the rates of over-guessing and under-guessing in the experiment. In 

particular, it is able to capture over-guessing for middle secret numbers.  
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However, while Logit choice is successful at explaining receiver mistakes, it does 

not indicate why receivers are making these particular mistakes. Instead, it tells us that 

receiver mistakes have a systematic structure that is well approximated by the Logit 

choice approach. To understand why receiver mistakes have this particular structure, we 

explicitly model the decision problem faced by receivers. 

Because receivers face an involved decision problem, we investigate the sources 

of receiver mistakes using a structural model that is based on the theoretical framework 

presented in Section 3. To simplify this analysis, we hold the distribution of sender 

behavior fixed so that we can treat the receiver’s choice as an individual decision 

problem.  

In this structural model, we assume that a receiver facing a complex message 

(c>=15) has prior beliefs about the likelihood of each secret number b given by F, so that 

(~6, 7ℎ9:9	6 ∈ ∆(>). 

The receiver then observes a noisy signal of the secret number, which can be interpreted 

as either an error in summing the numbers or partial attention to the grid of numbers. We 

assume that this noise signal is generated by adding an error term e drawn from the 

distribution Ghigh to the secret number, so that 

? = ( + 9,7ℎ9:9	9~Ahigh 

Based on the signal x and their prior beliefs F, the receiver forms posterior beliefs B and 

takes an action a (makes the guess) that maximizes their expected utility subject to some 

probability of making strategic errors. This decision rule is given by the following 

optimization problem: 

C$?D∈EF B((|?)!&($, ()
G∈H

 

 

7ℎ9:9	B((|?) =
6(()A(? − ()

∑ 6((J)A(? − (J)GJ∈H
 

In our estimations, we pool all complexity choices above 15 to prove sufficient 

power for our analysis, but our results are robust to just looking at complexity choices of 

20. In addition, we estimate parameters by pooling the choices of all receivers. This is 

necessary because we have insufficient power to study each individual in isolation. As a 

consequence, we treat the parameter estimates as coming from a representative agent. 
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4.4.1 Estimating Math Errors  

 

We assume that math error determines the precision of the signal x, and therefore 

affects the receiver’s posterior beliefs about the secret number. We could impose strong 

assumptions on the distribution of math errors and try to identify it using receiver 

decisions in the game, but we choose instead to estimate it out-of-sample for clean 

identification. In particular, we estimate the distribution of math errors non-

parametrically, using the math errors found in the math test completed after playing the 

game. The questions in this test have a similar level of complexity as a report with high 

complexity, but there should be minimal strategic or social considerations when 

answering these questions, and the payoff function is such that the receiver should report 

their modal belief of the secret number, regardless of their risk preferences.  

As mentioned previously, we assume that the distribution of additive errors Ghigh 

is symmetric and has support over the integers {-9,-8,…,0,…,8,9}. This generates enough 

error for a secret number of 1 to get a signal of 10, and a secret number of 10 to get a 

signal of 1. Thus, this model has 10 parameters, which are estimated non-parametrically. 

By assuming that receivers guess their signal, we can identify from guesses and secret 

numbers the frequency with which each signal is realized.  

To estimate G in this way, we used the math test answers for the 160 subjects who 

completed the math test.30 The resulting estimate places a large mass (72.5%) on no noise 

(e=0), and the average parameter is 4.8 percentage points from the corresponding 

parameter in a distribution that places all weight on no noise. Our estimate of G is 

presented visually in Figure 6A. 

 

4.4.2 Estimating Strategic Confusion and Social Preferences 

 

                                                
30 Because we do not observe guesses when subjects hit the time limit, we exclude these decisions from the 
estimation. 
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Two factors that we will add to our model are strategic confusion and social 

preferences. By strategic confusion, we mean confusion about how to play the game, and 

by social preferences, we mean concerns about the payoffs of others.  

We estimate the degree of strategic confusion and the social preferences of the 

subjects jointly, using the guesses of receivers when the message has been reported in a 

low complexity (c<=5). Again, we deliberately use out-of-sample estimation, in order to 

shy away from confounding factors such as math error. In doing so, we assume that there 

are minimal interactions between complexity and strategic confusion or social 

preferences. In practice, it is likely that social considerations when messages are complex 

are different from when messages are simple, as receivers may feel some positive 

reciprocity when simple reports are made. Because of this, our out-of-sample estimate of 

social preferences will only be added to our model later as a robustness check. 

Here we make two functional form assumptions. First, we assume that strategic 

confusion results in a receiver sometimes guessing in a uniform random way. In the 

Level-k model of choice, this is often designated as the “Level-0” behavior. Because we 

are using a representative agent model, this is as if some fraction of agents are Level-0 

agents. Second, we assume that a receiver sometimes uses social preferences that take the 

form proposed by Fehr and Schmidt (1999). Note that only one parameter of this model 

(advantageous inequality) will have bite. Together this gives us three parameters to 

estimate: the probability of uniform random guessing, the probability of using social 

preference, and a parameter of the Fehr-Schmidt model of social preferences. 

The parameters of this model were estimated using the Nelder–Mead method, and 

the standard errors were computed using 1,000 bootstrapping samples. The estimates 

were a 7.4% probability of uniform random choice (with a standard error of 0.007), a 

2.3% probability of using social preferences (with a standard error of 0.005), and a 0.658 

advantageous inequality parameter (with a standard error of 0.194). 

 

4.4.3 Baseline Predictions 

 

In our baseline model: receivers hold correct prior beliefs over the distribution of 

states given a complex report (equal to the empirical frequency in the main sessions); 
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make math errors in accordance with the estimated distribution G; understand that their 

errors come from this distribution, update their beliefs according to Bayes’ rule; and then 

maximize risk-neutral expected utility given their posterior beliefs, but with the estimated 

probability of strategic confusion (random guessing). Importantly, all of the parameters in 

this model are estimated out-of-sample. 

Even with correct beliefs, this model predicts over-guessing and under-guessing 

of the extremes because the boundary pushes math errors and strategic errors into the 

middle of distribution, which then pushes guesses into the middle of the distribution. 

However, it does not do so symmetrically. Because senders are much more likely to have 

low secret numbers when they use complexity, receivers should take this into account 

when they guess, given their uncertainty about the state. 

This asymmetry is reflected in the predictions from the model, which are provided 

in Table 10 along with the predictions given by several variants of this model. For 

100,000 simulated draws from the distribution of noise parameters, it predicts over-

guessing of 0.712 for low states, -0.181 for middle states, and -1.662 for high states (with 

an overall average log-likelihood of -1.553). The actual rates of over-guessing were 

0.772, 0.096, and -0.891. Because of the strong impact of prior beliefs, the baseline 

model failed to capture over-guessing for middle states and over-estimated the degree of 

under-guessing at high states. 

A natural robustness check is adding social preferences to the model. Specifically, 

we add the rate and degree of social preferences estimated out-of-sample, though this is 

likely to be an overestimate of the actual social preferences for senders who use complex 

disclosures. For 100,000 simulations, the amended model predicts over-guessing of 0.792 

for low states, -0.130 for middle states, and -1.640 for high states. While the model 

comes closer to predicting the actual rates of over-guessing, the improvements in 

predicting these rates are small, and the model still fails to capture over-guessing for 

middle states. In addition, the overall average log-likelihood of -1.547 is only a bit better 

for the amended model. 

Because receivers face uncertainty about secret number, it could be that the model 

needs to account for the possibility of risk aversion. For this robustness check, we assume 

that utility takes the CRRA form, which means that we allow a free parameter. To 
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estimate this parameter, we conduct a search over a grid of 1,000 values between 0 and 1 

using again 100,000 simulations, and the standard errors were computed using 1,000 

bootstrapping samples. The parameter that maximizes log-likelihood is set-identified, and 

the lower bound is 0.010 and the upper bound is 0.135.31 As Table 10 shows, adding risk 

aversion to the baseline model does not noticeability improve the overall average log-

likelihood or the predictions of over-guessing. 

 

4.4.4 Naiveté 

 

As discussed previously, the leading assumption in theories of complex disclosure 

that produces the incentives to use complexity is naiveté about the strategic use of 

complexity. As a starting point, we will add full naiveté to our model by assuming that all 

receivers think that all states are equally likely. In the Level-k approach, this often 

constitutes Level-1 beliefs: that opponents are guessing randomly. 

This change to the model (assuming F is uniform on {1…,10}) improves fit 

tremendously over the baseline model. Again, based on simulations of 100,000 decisions, 

the overall average log-likelihood falls from -1.552 to -1.294. The amended model (still 

with no free parameters) now predicts over-guessing of 0.873 for low states, 0.089 for 

middle states, and -0.821 for high states, where the actual rates of over-guessing were 

0.772, 0.096, and -0.891. 

 While naiveté of this degree is relatively good at explaining choices, it is not 

consistent with the stated beliefs of subjects. It is possible that the reported beliefs of 

subjects are not the beliefs used by subjects to play the game or that subjects change their 

thinking when responding to belief elicitation questions (a possibility raised by Costa-

Gomes and Weizsacker 2008). Also, because we elicit beliefs at the end of the 

experiment, it could be that subjects are overweighting their experience in the final 

rounds. However, we observe similar rates of over-guessing in the final rounds, which 

suggests that the reasons behind receiver mistakes should persist into the final rounds. 

 

                                                
31 The risk aversion parameter is set identified because changes in the parameter value lead to 
discontinuous changes in the choice probabilities. 
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4.4.5 Overconfidence 

 

If math errors drive the precision of the signal, what matters for belief updating is 

the perceived precision of the signal, which depends on how confident the subject is 

about her own math ability. To determine the degree of overconfidence, we compare 

beliefs about performance on the math test to actual performance on the math test. This 

form of absolute overconfidence is called “overestimation” by Moore and Healy (2008), 

who find absolute overconfidence is more likely in difficult tasks and less likely in easier 

tasks. Specifically, we use the percentage of subjects who thought they performed “well” 

(more than 50% correct) on the math test. While 72.5% think performed well, only 63.8% 

actually performed well. 

Using this estimate, we amend the baseline model to assume that receivers think 

they have a 72.5% chance of performing well at math task. In other words, the 

representative agent believes that there is a 72.5% chance that the error came from a 

distribution G’, which is estimated non-parametrically from the math test using the 

answers of subjects who actually performed well at the math test. This distribution is 

shown in Figure 6B. 

Based on simulations of 100,000 decisions, the overall average log-likelihood 

falls from -1.552 to -1.272, which is even higher than the log-likelihood of -1.294 from 

the model with naive receivers. The predictions for over-guessing are 0.749 for low 

states, 0.018 for middle states, and -0.904 for high states, where the actual rates of over-

guessing were 0.772, 0.096, and -0.891.  

We also consider an alternative method for estimating overconfidence, which is 

inspired by the approach for determining distortions of Bayes’ rule used in Grether 

(1980) and Holt and Smith (2009). Our approach, which has a free parameter, is to 

assume that when updating beliefs the probability that a signal is observed in a certain 

state is raised to the power of the parameter. When this parameter is equal to 1, the 

receiver updates Bayes’ rule in the standard fashion. When this parameter is greater than 

1, if a signal is more likely in a state (such as the probability of receiving a signal of 7 

when the true state is 7), then more weight is given to the state given this signal (such as 

the probability the true state is 7 given a signal of 7). To estimate this parameter, we 
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conducted a search over a grid of 1,000 values between 1 and 30 using 100,000 

simulations, and the standard errors were computed using 1,000 bootstrapping samples. 

The parameter value that maximizes log-likelihood is also set-identified, but the lower 

bound is 16.760, which is far from the Bayesian value of 1. 

This approach also does a good job at explaining receiver guesses. The overall 

average log-likelihood is -1.261, which is a bit better than the log-likelihood of -1.272 

from the model with absolute overconfidence (though that model does not have free 

parameter). The predictions for over-guessing are 0.776 for low states, 0.050 for middle 

states, and -0.800 for high states, where the actual rates of over-guessing were 0.772, 

0.096, and -0.891. 

 

4.4.6 Other Possible Explanations 

 

Naiveté and overconfidence are not the only behavioral biases that could 

potentially explain receiver guesses. For instance, subjects could fall prey to “wishful 

thinking” by believing that the secret number is higher because that would lead to 

socially better outcomes. Another possibility is that subjects are placed under a 

“cognitive load” when summing up numbers, which causes them to make mistakes in 

strategic inference. 

 Another potential explanation that has a long history in the behavioral economics 

literature is base rate neglect, which is documented in belief updating using a ball-and-

urns task by Grether (1980) and Holt and Smith (2009). While many reasons for base rate 

neglect have been provided in the literature, one reason why base rate neglect could occur 

in our experiment is that subjects might focus entirely on the outcome of the summation 

task, which causes them to overlook the base rate (their prior beliefs) when making 

decisions. In explaining choice, base rate neglect operates very similarly to naiveté, but 

differs in that it could explain why receivers act as if they have a uniform prior even if 

they have skeptical beliefs. We estimated a variant of our baseline model with 

overconfidence and a parameter for base rate neglect. That model has a similar likelihood 

to the one with just overconfidence and is actually worse at predicting the bias in 

mistakes. Together, this suggests that there is little room for base rate neglect if the 
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overconfidence in the game is similar to what we observe in the math tests and impacts 

receiver guesses in the way we have specified.  

 

4.5 Endogenous Attention and Response Times 

 

In our model of receiver decision-making, receivers do not choose whether or not 

to receive a signal about the true state. In practice, receivers may incur a cost to receive 

this signal, so they may decide it is not worth obtaining the signal at all. As proposed by 

Caplin and Martin (2016), one way to evaluate the extensive margin of attention is by 

looking at response times. If subjects have spent almost no time in reaching a decision, it 

is likely that they were inattentive to the information required to make a decision. 

We find that just a small number of subjects make “quick” decisions when reports 

are complex, which is in contrast to the substantial fraction of quick decisions when 

subjects choose among strings of numbers in the individual decision-making task of 

Caplin and Martin (2016). They find that almost 40% of subjects choose in 8 seconds or 

less in their experiment, but in our experiment, just 1.6% of subjects facing high 

complexity choose in 8 seconds or less, and just 5.2% choose in 20 seconds or less. For 

high complexity, the 25th percentile of response times in our experiment is at 33 seconds. 

However, like Caplin and Martin (2016), we find that those who make quick 

decisions choose in line with their beliefs. For subjects who have response times of 33 

seconds or less for high complexity, we regress the receiver’s guess on their stated beliefs 

of the average secret number. The coefficient is positive and substantial (0.3411) and is 

significant at the 1% level (p<0.001). This implies that subjects who make quick 

decisions – those who are intentionally inattentive to complex information – are not 

guessing wildly, but are instead choosing in line with their prior beliefs.  

This interpretation is also consistent with the regression results in Table 8B, 

which demonstrate a positive correlation between time spent and the size of receiver 

mistakes. Combined with the evidence in the structural estimation, it seems that spending 

a long time on a complex report could make a receiver more likely to succumb to the 

biases of naiveté, overconfidence, or base rate neglect.  
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5. Conclusion and Policy Implications 

 

Our results highlight the incentives for firms to strategically complexify 

information disclosed to consumers, potentially harming consumers and undermining the 

effectiveness of disclosure. In our experiment, senders use far more complex disclosure 

than standard unraveling theory predicts. Most of this obfuscation is profitable because 

receivers make systematic mistakes in assessing complex reports. A model that includes 

either overconfidence or naiveté can explain receiver mistakes, but stated beliefs suggest 

that subjects are not naive about the strategic use of complexity. Nonetheless, strategic 

complexity is effective because receivers appear overconfident in their ability to assess 

complex reports. 

The patterns we observe have policy implications as well. For example, many 

obfuscation theories assume naiveté in (a fraction of) consumers, hence consumer 

education that reduces naiveté should alleviate the seller’s incentives to obfuscate. In 

contrast, receivers in our experiment are sophisticated enough to realize the strategic 

incentives behind a sender’s complexity choice. But that sophistication does not save them 

from obfuscation, because they are overconfident about their ability to comprehend 

complex reports. Policy tools that target such overconfidence can be different from 

education efforts that target consumer naiveté. Our results also suggest that a mandate on 

simplicity can be as important as a mandate on truthful disclosure. More generally, this 

highlights the potential for regulation aimed at encouraging disclosure that is simple and 

salient.  

Another policy implication is seen in sender behavior. Surprisingly, round-by-

round feedback does not reduce obfuscation. If anything, learning encourages sellers to 

understand receiver mistakes in low states and exploit it via obfuscation.   

 A final policy implication is related to disclosure in general. Our results suggest 

that the unraveling prediction is fragile. Although immediate and repeated feedback can 

steer voluntary disclosure towards the predictions of unraveling, it fails once we change 

the setting a little away from simple, voluntary disclosure. How to harvest the benefits of 

the incentives produced by unraveling remains a challenge in the real world. 
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Figure 1A. Sender choice of complexity by secret number (main sessions)

 
Figure 1B. Sender choice of complexity by secret number in second half of rounds (main 

sessions) 
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Figure 2A: Sender choice of complexity and stated beliefs of average sender choice of 

complexity by secret number (main sessions) 

 
Figure 2B: Average secret number and stated beliefs of average secret number by 

complexity of 1-5, 6-10, 11-15, or 16-20 (main sessions) 
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Figure 3: Math test performance and stated beliefs of math test performance

 
Figure 4. Average receiver mistake size (|guess – truth|) by round (main sessions) 
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Figure 5: Average secret number and receiver mistake size (|guess – truth|) by sender 

choice of complexity (main and robustness sessions) 
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Figure 6A. Non-parametrically estimated distribution of additive error term (by whether 

assume that distribution is symmetric) 

 
Figure 6A. Non-parametrically estimated distribution of additive error term for subjects 

who answered more than 50% of questions correctly on math test 
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Table 1. Summary of subject characteristics (main sessions) 

Variable N Mean Std. dev. 
    

Number of subjects in the session 294 10.680 2.554 
Feedback provided (dummy) 294 1.000 0.000 
Male (dummy) 293 0.410 0.493 
Undergraduate (dummy) 293 0.720 0.450 
Native English speaker (dummy) 290 0.852 0.356 
Friend in the session (dummy) 293 0.143 0.351 
        

Note: Observation is per subject. Value is missing if demographic information not 
provided by the subject. 

 

Table 2A. Summary of sender choice of complexity by secret number (main sessions) 

  Sender choice of complexity High complexity 
(length>=15) 

Low complexity 
(length<=5)    

Secret 
number N Mean Median Std. 

dev. Mean Mean 
   

1 449 15.626 20 6.617 0.728 0.145    
2 444 15.782 20 6.157 0.721 0.115    
3 464 13.983 17 6.837 0.616 0.19    
4 422 11.969 13 7.218 0.486 0.275    
5 433 10.607 10 7.13 0.390 0.344    
6 453 8.243 6 6.914 0.254 0.455    
7 424 6.748 4 6.664 0.198 0.583    
8 427 5.286 2 6.288 0.141 0.71    
9 447 4.879 1 6.197 0.128 0.729    

10 447 3.832 1 5.622 0.094 0.796    
   Total  4410 9.728 9 7.86 0.378 0.432    

          



	 53 

Table 2B: Summary of receiver guess by secret number (main sessions) 

  

Receiver guess 
Receiver 

mistake bias 
(guess-truth) 

Receiver 
mistake size 

(|guess-truth|) 

% of receiver 
decisions 

hitting time 
limit 

Conditional on receiver decision 
before time limit 

  
Receiver 

mistake bias 
(guess-truth) 

 Receiver 
mistake size 

(|guess-truth|) 
Secret 
number N Mean Median Std. 

dev.  Mean Mean Mean Mean Mean 

1 449 2.183 1 2.326 1.183 1.183 5.57% 0.946 0.946 
2 444 2.923 2 2.209 0.936 1.045 8.11% 0.659 0.777 
3 464 3.399 3 1.462 0.399 0.601 5.39% 0.328 0.492 
4 422 4.232 4 1.458 0.232 0.611 3.08% 0.191 0.538 
5 433 5.169 5 1.378 0.169 0.566 3.23% 0.146 0.489 
6 453 6.031 6 1.167 0.031 0.446 3.97% 0.051 0.377 
7 424 6.887 7 1.234 -0.113 0.424 2.12% -0.067 0.376 
8 427 7.724 8 1.289 -0.276 0.407 1.17% -0.237 0.37 
9 447 8.633 9 1.377 -0.367 0.438 2.01% -0.311 0.379 

10 447 9.597 10 1.574 -0.403 0.403 0.67% -0.372 0.372 
   Total  4410 5.663 6 2.885 0.182 0.614 3.56% 0.128 0.509 
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Table 3. Summary of receiver guess by sender choice of complexity (main sessions) 

  
 

All receiver decisions  
Mean values 

Conditional on receiver decision 
before time limit 

Mean values 

Complexity N Secret 
number 

Receiver 
guess 

Receiver 
mistake bias  
(guess-truth) 

Receiver 
mistake size 

(|guess-truth|) 

% hitting 
time limit 

Response 
time if before 

time limit 

Receiver  
mistake bias  
(guess-truth) 

Receiver 
mistake size 

(|guess-truth|) 
1 1259 7.504 7.466 -0.038 0.243 0.40% 9.15 -0.038 0.236 
2 214 6.967 6.925 -0.042 0.257 0.00% 8.95 -0.042 0.257 
3 140 6.429 6.407 -0.021 0.15 0.00% 13.21 -0.021 0.150 
4 104 5.962 5.885 -0.077 0.135 0.00% 13.35 -0.077 0.135 
5 190 5.600 5.684 0.084 0.179 0.00% 18.15 0.084 0.179 
6 91 5.527 5.582 0.055 0.231 1.10% 18.85 0.089 0.200 
7 89 5.685 5.629 -0.056 0.146 1.12% 21.5 -0.023 0.114 
8 117 5.325 5.299 -0.026 0.402 0.85% 23.67 -0.052 0.379 
9 74 4.932 5.068 0.135 0.405 0.00% 25.45 0.135 0.405 
10 263 5.54 5.388 -0.152 0.479 1.90% 28.77 -0.143 0.438 
11 42 5.500 5.476 -0.024 0.595 2.38% 34.25 0.049 0.537 
12 69 4.87 4.783 -0.087 0.841 1.45% 35.54 0.000 0.765 
13 54 4.778 5.222 0.444 0.778 0.00% 35.56 0.444 0.778 
14 39 4.974 5.513 0.538 0.795 2.56% 37.08 0.632 0.737 
15 190 4.384 4.463 0.079 0.753 3.16% 36.55 0.071 0.712 
16 71 3.592 4.000 0.408 0.662 7.04% 37.21 0.273 0.424 
17 90 4.467 4.789 0.322 1.033 5.56% 40.32 0.306 0.847 
18 96 4.292 4.573 0.281 1.01 9.38% 42.45 0.195 0.839 
19 115 4.07 4.296 0.226 0.783 6.96% 40.33 0.243 0.748 
20 1103 3.455 4.11 0.655 1.284 9.79% 42.76 0.477 1.008 

   Total  4410 5.482 5.664 0.182 0.614 3.56% 24.93 0.128 0.509 
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Table 4. Summary of receiver mistake size by secret number and sender choice of complexity (main sessions) 

  All receiver decisions 
Conditional on receiver decision  

before time limit 
 Mean values of receiver mistake size  

(|guess-truth|) 
Mean values of receiver mistake size 

(|guess-truth|) 

Secret 
number 

Low 
complexity 

(1-5) 

Medium 
complexity 

(6-14) 

High 
complexity 

(15-20) 

Low 
complexity 

(1-5) 

Medium 
complexity 

(6-14) 

High 
complexity 

(15-20) 
1 0.6 0.386 1.437 0.6 0.386 1.126 
2 0.216 0.795 1.234 0.216 0.795 0.873 
3 0.273 0.144 0.846 0.273 0.124 0.691 
4 0.198 0.376 0.961 0.198 0.35 0.839 
5 0.181 0.426 1 0.162 0.372 0.88 
6 0.204 0.432 0.896 0.19 0.392 0.74 
7 0.142 0.366 1.321 0.138 0.33 1.18 
8 0.228 0.672 0.033 0.228 0.548 0.93 
9 0.23 0.641 1.404 0.222 0.603 1.098 
10 0.239 0.776 1.357 0.239 0.776 1.077 

   Total  0.225 0.469 1.133 0.221 0.434 0.91 
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Table 5: Departure from highest expected payoff (main sessions)  

Panel A: Senders 

Secret number 

Fraction of payoff loss from highest 
expected payoff given empirical 

distribution of opponent behavior 
Fraction of payoff loss from payoff in 

the unraveling equilibrium 
1 0.516 .* 
2 0.320 -0.714 
3 0.152 -0.160 
4 0.110 -0.043 
5 0.103 -0.016 
6 0.073 0.006 
7 0.077 0.028 
8 0.078 0.039 
9 0.059 0.041 
10 0.038 0.039 

Total 0.153 -0.088 
Panel B: Receivers 

Complexity 

Fraction of payoff loss from highest 
expected payoff given empirical 

distribution of opponent behavior 
Fraction of payoff loss from payoff in 

the unraveling equilibrium 
Low (1-5) 0.138 0.299 

Medium (6-14) 0.160 0.330 
High (15-20) 0.167 0.311 

Total 0.153 0.308 

* In the unraveling equilibrium, senders with a secret number of 1 earn the minimum possible payoff. After normalizing this 
payoff to 0, it is not possible to calculate the fraction of payoff loss from zero. 
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Table 6: Summary of receiver guess and stated beliefs (main sessions) 

Panel A: Inferred guess (secret number inferred from stated beliefs of sender choices) 

	 All received decisions Conditional on before time limit 

Complexity 

Secret 
number 

Receiver 
guess 

Inferred 
guess 

Secret 
number 

Receiver 
guess 

Inferred 
guess 

Mean Mean Mean Mean Mean Mean 
Low (1-5) 7.091 7.064 7.845 7.091 7.064 7.849 

Medium (6-14) 5.338 5.344 4.893 5.326 5.354 4.891 
High (15-20) 3.712 4.222 2.546 3.72 4.097 2.526 

Panel B: Complex guess (stated belief of average secret number for a given complexity) 

 All receiver decisions Conditional on before time limit 

Complexity 

Secret 
number 

Receiver 
guess 

Complex 
guess 

Secret 
number 

Receiver 
guess 

Complex 
guess 

Mean Mean Mean Mean Mean Mean 
1-5 7.091 7.064 7.813 7.091 7.064 7.823 
6-10 5.448 5.396 5.756 5.447 5.404 5.756 

11-15 4.701 4.835 3.867 4.655 4.818 3.848 
16-20 3.626 4.191 2.51 3.636 4.055 2.471 

Note: Out of all receiver decisions, 6.8% have a missing value for inferred guess because those subjects indicate 
that senders will never choose some complexity level.
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Table 7: Summary of dynamics (main sessions) 

Panel A Sender choice of complexity 

Fraction of sender payoff 
loss from highest 
expected payoff  

 Mean Mean 

Secret number 
Round 
1-10 

Round 
11-20 

Round 
21-30 

Round 
1-10 

Round 
11-20 

Round 
21-30 

1 14.454 16.461 16.032 0.551 0.515 0.484 
2 15.357 15.993 15.958 0.311 0.322 0.326 
3 13.264 15.026 13.693 0.159 0.146 0.150 
4 12.673 12.679 10.467 0.107 0.125 0.097 
5 11.669 9.878 10.13 0.105 0.105 0.098 
6 9.526 7.646 7.545 0.068 0.084 0.066 
7 9.475 5.719 5.036 0.091 0.079 0.061 
8 6.764 5.218 3.693 0.086 0.081 0.064 
9 6.326 5.455 3.093 0.058 0.068 0.050 
10 5.829 3.5 2.512 0.053 0.031 0.031 

Total 10.624 9.786 8.774 0.159 0.156 0.142 

Panel B 
Receiver mistake size 

 (|guess-truth|) 
Conditional on before 

time limit 
 Mean Mean 

Complexity 
Round 
1-10 

Round 
11-20 

Round 
21-30 

Round 
1-10 

Round 
11-20 

Round 
21-30 

Low (1-5) 0.254 0.206 0.222 0.247 0.202 0.219 
Medium (6-14) 0.472 0.518 0.410 0.442 0.476 0.375 
High (15-20) 1.274 1.099 1.004 1.015 0.947 0.751 

Total 0.719 0.604 0.520 0.585 0.526 0.418 

Panel C 
Fraction of receiver payoff loss 
from highest expected payoff 

Conditional on before 
time limit 

 Mean Mean 

Complexity 
Round 
1-10 

Round 
11-20 

Round 
21-30 

Round 
1-10 

Round 
11-20 

Round 
21-30 

Low (1-5) 0.153 0.126 0.137 0.153 0.126 0.137 
Medium (6-14) 0.182 0.148 0.138 0.181 0.148 0.136 
High (15-20) 0.189 0.161 0.147 0.183 0.155 0.130 

Total 0.174 0.143 0.141 0.171 0.141 0.135 
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Table 8A: Regressions of sender behavior (main sessions) 

 

Dependent variable: 
 

Complexity 

Dependent variable: 
Payoff departure from 

the highest 
Secret number = 2 0.161 -0.252 -0.196*** -0.199*** 

 (0.435) (0.412) (0.0231) (0.0224) 
Secret number = 3 -1.458*** -1.297*** -0.360*** -0.360*** 

 (0.444) (0.409) (0.0212) (0.0208) 
Secret number = 4 -1.597** -1.894*** -0.416*** -0.421*** 

 (0.647) (0.601) (0.0259) (0.0258) 
Secret number = 5 -2.829*** -3.358*** -0.424*** -0.429*** 

 (0.650) (0.601) (0.0254) (0.0251) 
Secret number = 6 -5.176*** -5.405*** -0.449*** -0.454*** 

 (0.637) (0.592) (0.0254) (0.0250) 
Secret number = 7 -5.422*** -5.742*** -0.430*** -0.436*** 

 (0.618) (0.586) (0.0254) (0.0251) 
Secret number = 8 -7.054*** -7.393*** -0.434*** -0.435*** 

 (0.610) (0.583) (0.0250) (0.0246) 
Secret number = 9 -7.355*** -7.614*** -0.452*** -0.453*** 

 (0.609) (0.587) (0.0248) (0.0247) 
Secret number = 10 -8.321*** -8.278*** -0.473*** -0.479*** 

 (0.608) (0.591) (0.0250) (0.0247) 
First 5 rounds -0.293 -0.387 0.00814 0.00683 

 (0.349) (0.318) (0.0106) (0.0107) 
Round 0.0458** 0.0409* -0.000529 -0.000601 

 (0.0228) (0.0216) (0.00103) (0.00101) 
Round * (4<=secret number <=6) -0.141*** -0.130*** 0.000609 0.000685 

 (0.0298) (0.0274) (0.00108) (0.00108) 
Round * (secret number>=7) -0.219*** -0.219*** -0.000316 -0.000298 

 (0.0266) (0.0257) (0.00105) (0.00104) 
Actual number of math test  0.0841  -0.00560  

questions correct (out of 4) (0.199)  (0.00649)  
Belief of number correct (self) 0.378  -0.000392  

- actual number correct (0.231)  (0.00745)  
Belief of number correct (others) 0.694***  0.0170***  

- belief of number correct (self) (0.214)  (0.00640)  
Individual demographics Yes No Yes No 
Individual fixed effects No Yes No Yes 
Observations 4,410 4,410 4,399 4,399 
R-squared 0.352 0.529 0.384 0.438 
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Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. In Session 34, receivers' actual 
play is such that the highest payoff for draw=1 is 0 after our normalization, so we cannot calculate 
fraction of payoff departure from 0. That is why columns (3) and (4) have 11 less observations. 
Regressions without individual fixed effects include dummies indicating whether demographics or 
math test measures are missing. 
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Table 8B: Regressions of receiver behavior (main sessions) 
 

 

Dependent variable: 
Receiver mistake size (|guess-

truth|) 

Dependent variable: 
Payoff departure from the 
highest expected payoff 

Sender choice of complexity = 2 -0.0330 0.0289 -0.0228* -0.0123 
 (0.0693) (0.0622) (0.0128) (0.0131) 

Sender choice of complexity = 3 -0.143** -0.0642 -0.0168 -0.0162 
 (0.0688) (0.0713) (0.0156) (0.0165) 

Sender choice of complexity = 4 -0.183** -0.141* 0.000702 0.00820 
 (0.0772) (0.0807) (0.0174) (0.0189) 

Sender choice of complexity = 5 -0.152** -0.179** 0.0177 0.0205 
 (0.0631) (0.0698) (0.0148) (0.0156) 

Sender choice of complexity = 6 -0.0869 -0.0121 0.00677 0.0126 
 (0.136) (0.137) (0.0240) (0.0242) 

Sender choice of complexity = 7 -0.250* 0.0115 0.00625 0.0201 
 (0.133) (0.138) (0.0234) (0.0245) 

Sender choice of complexity = 8 -0.00843 0.0602 0.0157 0.0238 
 (0.152) (0.145) (0.0226) (0.0230) 

Sender choice of complexity = 9 -0.0436 -0.0591 0.0512* 0.0515* 
 (0.165) (0.166) (0.0263) (0.0285) 

Sender choice of complexity = 10 0.0325 0.0979 0.0376* 0.0525** 
 (0.141) (0.140) (0.0195) (0.0209) 

Sender choice of complexity = 11 0.0418 0.0231 -0.0130 0.00356 
 (0.241) (0.242) (0.0299) (0.0329) 

Sender choice of complexity = 12 0.386 0.435* 0.0155 0.0291 
 (0.243) (0.249) (0.0265) (0.0283) 

Sender choice of complexity = 13 0.381 0.536** 0.0605** 0.0682** 
 (0.280) (0.268) (0.0302) (0.0312) 

Sender choice of complexity = 14 0.354 0.477 0.0804** 0.0958** 
 (0.309) (0.300) (0.0359) (0.0377) 

Sender choice of complexity = 15 0.398** 0.651*** 0.0274 0.0536** 
 (0.193) (0.197) (0.0233) (0.0253) 

Sender choice of complexity = 16 0.0810 0.280 -0.0115 0.0175 
 (0.223) (0.223) (0.0300) (0.0307) 

Sender choice of complexity = 17 0.418* 0.736*** 0.0734** 0.0896*** 
 (0.253) (0.242) (0.0314) (0.0319) 

Sender choice of complexity = 18 0.445* 0.583** 0.0259 0.0291 
 (0.237) (0.245) (0.0298) (0.0310) 

Sender choice of complexity = 19 0.354 0.433* 0.0294 0.0575** 
 (0.237) (0.230) (0.0274) (0.0281) 

Sender choice of complexity = 20 0.631*** 0.774*** 0.0252 0.0458** 
 (0.174) (0.183) (0.0207) (0.0223) 

First 5 rounds -0.0195 -0.0701 0.0137 0.0118 
 (0.0749) (0.0715) (0.0109) (0.0109) 

Round -0.00239 -0.00108 -0.000306 -0.000332 
 (0.00296) (0.00281) (0.000540) (0.000552) 

Round * Medium complexity  -0.00569 -0.00773 -0.00147* -0.00146* 
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(6-14) (0.00609) (0.00565) (0.000832) (0.000869) 
Round * High complexity (15-20) -0.00869 -0.0151*** -0.00159** -0.00198** 

 (0.00563) (0.00543) (0.000792) (0.000789) 
Inferred guess for complexity (1-

5, 6-14, or 15-20) this round  
-0.000979 0.0409** 0.00103 0.00333 
(0.0185) (0.0194) (0.00206) (0.00240) 

Actual number of math test  -0.283***  -0.0136**  
questions correct (out of 4) (0.0499)  (0.00593)  

Belief of number correct (self) -0.0481  -0.00146  
- actual number correct (0.0542)  (0.00610)  

Belief of number correct (others) 0.0178  -0.00592  
- belief of number correct (self) (0.0482)  (0.00614)  

Response time 0.00746*** 0.0123*** 0.000482 0.000460 
 (0.00271) (0.00286) (0.000303) (0.000342) 

Individual demographics Yes No Yes No 
Individual fixed effects No Yes No Yes 
Observations 4,253 4,253 4,253 4,253 
R-squared 0.123 0.281 0.044 0.127 
All regressions are conditional on receivers making a guess within the 60 second time limit. Robust 
standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Regressions without individual fixed 
effects include dummies indicating whether demographics or math test measures are missing. A dummy 
variable is included that controls for whether the value of inferred guess is missing. 
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Table 9A: Comparison of sender choice of complexity in main and robustness sessions 
 
Main sessions: random role, complexity 1 to 20, round-by-round feedback 
Robust 1: random role, complexity 1 to 20, no feedback 
Robust 2: random role, complexity 1 or 20, no feedback 

             

 

Sender choice of 
complexity 

Mean values 

High complexity  
(16-20) 

Fraction of choices 

Low complexity  
(1-5) 

Fraction of choices    
Secret 

number 
Main 

sessions 
Robust 

1 
Robust 

2 
Main 

sessions 
Robust 

1 
Robust 

2 
Main 

sessions 
Robust 

1 
Robust 

2    
1 15.626 14.382 16.562 0.728 0.637 0.819 0.145 0.176 0.181    
2 15.782 14.161 15.485 0.721 0.591 0.762 0.115 0.172 0.238    
3 13.983 13.349 14.242 0.616 0.560 0.697 0.190 0.193 0.303    
4 11.969 9.018 11.640 0.486 0.234 0.560 0.275 0.324 0.440    
5 10.607 8.653 7.861 0.390 0.211 0.361 0.344 0.379 0.639    
6 8.243 6.151 7.388 0.254 0.129 0.336 0.455 0.581 0.664    
7 6.748 5.989 3.111 0.198 0.126 0.111 0.583 0.632 0.889    
8 5.286 3.699 3.446 0.141 0.072 0.129 0.710 0.795 0.871    
9 4.879 4.017 3.297 0.128 0.026 0.121 0.729 0.704 0.879    

10 3.832 4.606 1.872 0.094 0.138 0.046 0.796 0.755 0.954    
Total 9.728 8.490 8.544 0.378 0.276 0.397 0.432 0.464 0.603    
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Table 9B: Comparison of mean receiver guess in main and robustness sessions 
 
Main sessions: random role, complexity 1 to 20, round-by-round feedback 
Robust 1: random role, complexity 1 to 20, no feedback 
Robust 2: random role, complexity 1 or 20, no feedback 
 

  Receiver guess 
Receiver mistake size 

(|guess-truth|) 
Receiver guess  

if before time limit 

Receiver mistake size 
(|guess-truth|) 

if before time limit 

Complexity 
Main 

sessions 
Robust 

1 
Robust 

2 
Main 

sessions 
Robust 

1 
Robust 

2 
Main 

sessions 
Robust 

1 
Robust 

2 
Main 

sessions 
Robust 

1 
Robust 

2 
Low (1-5) 7.064 6.806 6.787 0.225 0.200 0.221 7.064 6.814 6.787 0.221 0.192 0.221 

Medium (6-14) 5.344 5.171 . 0.469 0.508 . 5.354 5.156 . 0.434 0.496 . 
High (16-20) 4.222 3.960 . 1.132 1.158 1.148 4.097 3.811 3.720 0.910 0.953 1.005 

Total 5.664 5.595 5.625 0.614 0.544 0.589 5.668 5.588 5.625 0.509 0.472 0.518 
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Table 10: Summary of structural estimation of receiver guesses of high complexity reports before time limit (main sessions) 

Variable Actual Logit Baseline 
Social 

Preferences 
Risk 

Aversion Naiveté Overconfidence Overweighting 
Mean log-likelihood  -1.733 -1.553 -1.547 -1.553 -1.294 -1.272 -1.261 
Total log-likelihood  -2641 -2366 -2357 -2366 -1972 -1939 -1921 
Parameter (lower)  0.047   0.010   16.760 

Std. error  0.066   0.206   0.347 
Parameter (upper)     0.135   23.076 

Std. error     0.196   1.500 

Secret number 
Receiver bias (guess-truth) 

Mean values 
1-3 0.772 0.707 0.712 0.792 0.712 0.873 0.749 0.776 
4-7 0.096 0.038 -0.181 -0.130 -0.181 0.089 0.018 0.050 

8-10 -0.891 -0.641 -1.662 -1.640 -1.662 -0.821 -0.904 -0.800 
Average distance   0.125 0.369 0.332 0.369 0.059 0.038 0.142 

Secret number 
Receiver bias (guess-truth) 

Mean values 
1 1.126 1.100 0.983 1.069 0.983 1.151 1.001 1.034 
2 0.711 0.632 0.706 0.790 0.706 0.859 0.735 0.742 
3 0.431 0.335 0.407 0.476 0.407 0.566 0.475 0.517 
4 0.249 0.154 0.193 0.258 0.193 0.358 0.271 0.289 
5 0.222 0.044 -0.082 -0.033 -0.082 0.093 0.033 0.068 
6 0.040 -0.044 -0.287 -0.255 -0.287 -0.092 -0.141 -0.103 
7 -0.462 -0.154 -1.172 -1.128 -1.172 -0.357 -0.432 -0.385 
8 -0.684 -0.335 -1.368 -1.341 -1.368 -0.564 -0.636 -0.548 
9 -0.980 -0.632 -1.725 -1.699 -1.725 -0.860 -0.926 -0.840 

10 -1.077 -1.100 -2.009 -1.999 -2.009 -1.147 -1.268 -1.115 
Average distance   0.159 0.393 0.370 0.393 0.109 0.091 0.936 
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Appendix: Instructions used in the lab experiment 
 
Welcome 
You are about to participate in an experiment on decision-making, and you will be paid 
for your participation in cash at the end of the experiment. What you earn depends partly 
on your decisions, partly on the decisions of others, and partly on chance. 
 
Please silence and put away your cellular phones now. The entire session will take place 
through your computer terminal. Please do not talk or in any way communicate with 
other participants during the session. We will start with a brief instruction period. During 
the instruction period you will be given a description of the main features of the 
experiment and will be shown how to use the computers. If you have any questions 
during this period, raise your hand and your question will be answered so everyone can 
hear. 
 
Instructions 
The experiment you are participating in consists of 30 rounds. At the end of the final 
round, you will be paid the total amount you have accumulated during the course of the 
session (in addition to the $5 show up fee). Everybody will be paid in private. You are 
under no obligation to tell others how much you earned. 
 
The currency used during these 30 rounds is what we call “Experimental Currency Units” 
(ECU). For your final payment, your earnings during these 30 rounds will be converted 
into dollars at the ratio of 150:1 (150 ECU=$1). They will then be rounded up to the 
nearest (non-negative) dollar amount. 
 
In the first round, you will be matched with one other person, and you are equally likely 
to be matched with any other person in the room. You will not know whom you are 
matched with, nor will the person who is matched with you. One of you will be assigned 
to be A Player and the other to be the B Player for that round. You are equally likely to 
be assigned to either role. In the second round, you will once again be randomly matched 
with one other person (most likely with a different person than in the first round) and 
randomly assigned a role, and this will be repeated until 30 rounds are complete. 
In each round and for every pair, the computer program will generate a secret number 
that is randomly drawn from the set {1,2,3,4,5,6,7,8,9,10}. The computer will then send 
the secret number to the A Player.  
 
After being presented with the secret number, the A Player then will choose a report 
“length”, which can be anywhere between 1 and 20. The B Player will be presented with 
a string of numbers of this length, and this string of numbers will sum up to the secret 
number. The B Player cannot use scratch paper or a calculator for this calculation. 
The string of numbers will not be chosen by the A Player. They will be determined by the 
computer, which will randomly draw numbers between -10 and +10 such that they add up 
to the secret number.  
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After receiving this report, the B Player will guess the value of the secret number. The B 
Player has 60 seconds to make a decision or a number from the set {1,2,3,4,5,6,7,8,9,10} 
will be randomly selected to be their guess for that round. The earnings of both players 
depend on the value of the secret number and the B Player’s guess. 
 
The specific earnings are shown in the table below. In each cell of the table, the payoff 
for the A Player is on the left, and the payoff for the B Player is on the right. As you can 
see from the table, the A Player earns more when the B Player makes a higher guess, and 
the B Player earns more when their guess is closer to the secret number.  
 

Payoffs 
S, R 

Secret 
number: 

1 

Secret 
number: 

2 

Secret 
number: 

3 

Secret 
number: 

4 

Secret 
number: 

5 

Secret 
number: 

6 

Secret 
number: 

7 

Secret 
number: 

8 

Secret 
number: 

9 

Secret 
number: 

10 

Guess: 
1 -54,110 -54,102 -54,90 -54,75 -54,57 -54,38 -54,17 -54,-6 -54,-29 -54,-54 

Guess: 
2 -29,102 -29,110 -29,102 -29,90 -29,75 -29,57 -29,38 -29,17 -29,-6 -29,-29 

Guess: 
3 -6,90 -6,102 -6,110 -6,102 -6,90 -6,75 -6,57 -6,38 -6,17 -6,-6 

Guess: 
4 17,75 17,90 17,102 17,110 17,102 17,90 17,75 17,57 17,38 17,17 

Guess: 
5 38,57 38,75 38,90 38,102 38,110 38,102 38,90 38,75 38,57 38,38 

Guess: 
6 57,38 57,57 57,75 57,90 57,102 57,110 57,102 57,90 57,75 57,57 

Guess: 
7 75,17 75,38 75,57 75,75 75,90 75,102 75,110 75,102 75,90 75,75 

Guess: 
8 90,-6 90,17 90,38 90,57 90,75 90,90 90,102 90,110 90,102 90,90 

Guess: 
9 102,-29 102,-6 102,17 102,38 102,57 102,75 102,90 102,102 102,110 102,102 

Guess: 
10 110,-54 110,-29 110,-6 110,17 110,38 110,57 110,75 110,90 110,102 110,110 

 
 


