We are grateful to Laura Alfaro, Luigi Bocola, Alberto Cavallo, Riccardo Colacito, Massimiliano Croce, Wenxin Du, Emmanuel Farhi, Gita Gopinath, Tarek Hassan, Arvind Krishnamurthy, Hanno Lustig, Gian Maria Milesi-Ferretti, Toby Moskowitz, Emi Nakamura, Jonathan Ostry, Monika Piazzesi, Diego Perez, Robert Ready, Kenneth Rogoff, Stephanie Schmitt-Grohe, Martin Schneider, Jeremy Stein, Jón Steinsson, Andrew Tilton, Harald Uhlig, Martin Uribe, Adrien Verdelhan, Frank Warnock, and Eric Van Wincoop for their comments, and we offer particular thanks to Steve Kaplan for his generous help with the project. Bob Freeman, Clark Hyde, Sara Lux, Christine Rivera, Ravi Wadhwani, and Matt Weiss offered outstanding technical assistance at various stages of the project. We thank Andrew Lilley, Antonio Coppola, Hillary Stein, Brian Wheaton, George Vojta, and Sanjay Misra for excellent research assistance. Our analysis makes use of data that are proprietary to Morningstar and/or its content providers. Neither Morningstar nor its content providers are responsible for any of the views expressed in this article. We thank the Becker-Friedman Institute, the NSF (1653917), the Sloan Foundation, and the Weatherhead Center for financial support. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2018 by Matteo Maggiori, Brent Neiman, and Jesse Schreger. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
International Currencies and Capital Allocation
Matteo Maggiori, Brent Neiman, and Jesse Schreger
NBER Working Paper No. 24673
May 2018
JEL No. E4,F3,F5,G1,G2

ABSTRACT

We establish that global portfolios are driven by an often neglected aspect: the currency of denomination of assets. Using a dataset of $27 trillion in security-level investment positions, we demonstrate that investor holdings are biased toward their own currencies to such an extent that each country holds the bulk of all foreign debt securities denominated in their own currency. Surprisingly, currency is such a strong predictor of the nationality of a security's holder that the nationality of the issuer - to date, the most powerful predictor in a voluminous literature on cross-border portfolios - adds very little explanatory power. While large firms issue bonds in foreign currency and borrow from foreigners, the vast majority of firms issue only in local currency and do not directly access foreign capital. These patterns hold across countries with the exception of the US, which issues an international currency. The global willingness to hold US dollars means that even smaller US firms that borrow exclusively in dollars have little difficulty borrowing from abroad. Global portfolios shifted sharply away from the euro and toward the dollar after the 2008 financial crisis, further cementing the dollar's international role and potentially amplifying the benefit its status brings to the US.

Matteo Maggiori
Department of Economics
Harvard University
Littauer building
1805 Cambridge Street
Cambridge, MA, 02138
and NBER
maggiori@fas.harvard.edu

Jesse Schreger
Columbia Business School
3022 Broadway
Uris Hall 821
New York, NY 10027
and NBER
jesse.schreger@columbia.edu

Brent Neiman
University of Chicago
Booth School of Business
5807 South Woodlawn Avenue
Chicago, IL 60637
and NBER
brent.neiman@chicagobooth.edu
1 Introduction

Capital crosses international borders far more today than only a few decades ago. In the late 1970s, almost none of the total outstanding value of US corporate debt was held by foreigners. Today, more than one-quarter is held abroad. In part due to a lack of detailed data, however, surprisingly little is known about the determinants of cross-border investment. We introduce a novel security-level dataset with, as of 2015, $27 trillion in global investment positions to demonstrate that portfolios at both the macro and micro levels are driven by an often neglected aspect: the currency of denomination of assets.

We emphasize four findings. First, investors’ bond portfolios exhibit strong home-currency bias as they disproportionately invest in bonds denominated in their own country’s currency. Using micro data, we identify this effect by measuring the extent to which investors disproportionately hold bonds in their own currency relative to debt in other currencies issued by the same firm. This within-firm analysis allows us to disentangle the importance of the currency of denomination of a bond from possible confounding factors such as maturity, legal jurisdiction, and an issuer’s credit risk and sector of operation. This home-currency bias holds to such an extent that each country owns the vast majority of bonds issued in its currency, even when the issuer is foreign and resides in a developed country. In fact, given the currency of denomination of a bond, knowledge of the issuer’s nationality – the focus of a large and influential literature on home bias – adds very little information for predicting the investor’s nationality. If one considers only the global supply of bonds denominated in a country’s currency, that country’s investment portfolio exhibits little if any bias toward securities issued by domestic firms. Similarly, if one considers only bonds that are not denominated in a country’s currency, there is also little or no bias towards securities issued by domestic firms.

Second, this home-currency bias is associated with a stark pattern of capital allocation across firms. In each country, a small number of large firms issue debt denominated in foreign currency and borrow from foreigners. By contrast, a large number of medium or smaller sized firms issue bonds only in the local currency (LC) and do not borrow substantially from foreigners. To demonstrate that this pattern does not simply reflect an unobservable characteristic of local currency borrowers that makes them unappealing to foreign investors, we show that these same local currency borrowers do receive equity investments from abroad. These facts suggest that the currency of issuance itself is a key factor associated with the differential receipt of foreign capital.

Third, the United States is the exception to the above patterns, with global investors uniquely willing to hold US dollars. In addition to their own currencies, foreigners invest a substantial portion of their portfolio in dollar-denominated securities, what we dub an international-currency bias, when they invest in all destination countries. This implies that when foreigners buy US
securities, they predominantly buy dollar-denominated securities, thus behaving similarly to US
domestic investors. Relatedly, US firms that borrow exclusively in dollars place their bonds in
domestic and foreign portfolios with comparable ease. This is not true for any other country in
our data. Our work offers a novel perspective on the potential benefits that accrue to countries that
issue an international currency like the dollar – international currencies effectively open up the
capital account for domestic firms that only borrow in domestic currency.

Fourth, we uncover a striking shift in the time-series of global portfolios. The US dollar ap-
pears today to be the world’s only international currency. As recently as ten years ago, however,
this was not the case. While the dollar was the currency of denomination for about 45 percent of
global cross-border holdings of corporate debt in our data in 2005, the euro also accounted for a
substantial amount, about 35 percent. These shares were essentially stable until the global financial
crisis of 2008, after which the euro’s share rapidly declined to below 20 percent, while the dollar’s
share rose to above 60 percent. This massive international portfolio reallocation is not only inter-
esting in its own right, but also offers a unique opportunity to assess how the above cross-sectional
stylized facts changed in response to variation in the international status of the dollar and the euro.
In line with the time-series shift of global portfolios toward the dollar, we find that differences
between foreign and domestic investors in the European Monetary Union (EMU) and in the US,
which are large in 2015, were more muted earlier in our sample.

Our security-level dataset covers holdings of mutual funds around the world. We must there-
fore confront some common but thorny issues in international financial data as well as challenges
specific to our data. We unwind issuance in fiscal paradises and opaque international ownership
structures in order to attribute securities to their ultimate parent firm (and its industry and country
of operation), the revenues of which are used to repay the debt. We offer evidence that mutual funds
domiciled in a particular country primarily invest on behalf of domestic residents, an assumption
maintained throughout our analysis. Finally, we benchmark our mutual fund data against other
aggregates to verify that our core results are externally valid and are informative of patterns in the
broader set of portfolio investments.

These new facts on the critical role of currency for understanding global capital flows have the
potential to shape international macroeconomics models in much the same way as the stylized facts
on home-country bias, uncovered in French and Poterba (1991), influenced the earlier theoretical
literature. Our intent is to establish these four facts in a simple and transparent way, leaving it to
future work to identify the exact mechanisms underlying them. There are a number of possibilities.
For example, investor home-currency bias may reflect the optimal allocation since home-currency
bonds are a good hedge for investors’ risks. Alternatively, this bias may reflect a combination
of financial frictions like hedging costs or behavioral factors that effectively segment the market
by currency. If foreign currency debt issuance requires incurring a fixed cost and if investors
exhibit a bias toward local currency, only the largest firms would access foreign capital, much like the selection into exporting in the Melitz (2003) model of trade. As in the trade literature, quantitatively estimating the real economic impact of this selection will likely require a heavy structural apparatus that we leave for future work.

Related Literature. Our work relates to a large empirical literature linking net foreign asset dynamics to the differential composition of gross assets and gross liabilities, including important contributions by Lane and Milesi-Ferretti (2007). Gourinchas and Rey (2007), and Curcuru et al. (2008). Our finding that foreigners’ portfolios are underweight local-currency debt to such an extent that the external debt liabilities of countries are in large part denominated in foreign currency complements the work by Lane and Shambaugh (2010) and Bénétrix et al. (2015). Our finding that home-country bias is largely attenuated within the set of local currency bonds expands upon the message in Burger et al. (2017), who first found using TIC data that US foreign investment across destination countries does not appear home-country biased in the subset of debt that is dollar denominated and suggested it might apply more generally across countries and debt markets. Boermans and Vermeulen (2016) find that a common currency is an important explanatory variable in a gravity portfolio setting for European investors.

Our results on which firms select into foreign currency borrowing and the heterogeneity across countries in such selection have analogies both with the international corporate finance literature, including Gozzi et al. (2010, 2015) and Larrain and Stumpner (2017), and the trade literature following Melitz (2003). The model of Salomao and Varela (2016) features an endogenous funding choice by heterogeneous firms that must pay a fixed cost to borrow in foreign currency. They apply their framework to data on Hungarian firms and study the link between their borrowing and investment decisions. Liao (2016) shows that variation in the currency-hedged cost of debt across different currencies predicts firms issuance: firms issue the most in those currencies in which borrowing is cheaper (including the cost of currency hedging). Bruno and Shin (2015b,a) study how movements in the dollar affect capital allocation and corporate investment via a balance sheet channel, and Bruno and Shin (2017) provide evidence that the recent increase in dollar borrowing by emerging market non-financial corporates is driven by these firms running a carry trade.

1 Other recent work includes Alfaro et al. (2008), Bertaut et al. (2014), Du and Schreger (2017), and Lane and Milesi-Ferretti (2018). These papers make use of the IMF’s International Investment Position (IIP) and Coordinated Portfolio Investment Survey (CPIS), the US Treasury’s International Capital Flow (TIC) data, and the BIS’s Debt Security Statistics and Locational Banking Statistics. A related literature studies international mutual fund data, but typically concentrates on equity flows or includes only a small subset of countries (See, for example, Chan et al. (2005), Hau and Rey (2004, 2008b,a), Forbes et al. (2016), Jotikasthira et al. (2012), Raddatz and Schmukler (2012), and Didier et al. (2013)). Hau and Lai (2016) focus on European money market funds to study monetary policy. Hale and Obstfeld (2016) examine the effect of the euro on the geography of cross-border debt investment. Choi and Kronlund (2017) study Morningstar data on US corporate bond mutual funds. Kalemli-Ozcan et al. (2017) uses loan-level data to examine how global shocks drive capital flows to Turkey.
Our results on the special role of the dollar and its use in denoting internationally held bond contracts complements a growing body of research. The existing literature including Caballero et al. (2008), Mendoza et al. (2009), Gourinchas et al. (2011), He et al. (2018), Maggiori (2017), and Farhi and Maggiori (2018) has mostly focused on the safe-haven properties of the US dollar and the lower risk-free rate it affords to US government bonds, whereas we focus on the allocation of capital among corporate borrowers and offer evidence that the US “exorbitant privilege” includes the unique ability of US corporates that only borrow in dollars to raise capital from foreigners. Our finding that most cross-border bond positions are denominated in dollars, even when neither the investor nor the issuer are based in the US, has a mirror in the dominance of the dollar in invoicing traded goods, discussed in Goldberg and Tille (2008), Goldberg (2010), Gopinath (2016), and Gopinath and Stein (2018). It also relates to the international use of the dollar as a unit of account and means of payment modeled by Matsuyama et al. (1993), Doepke and Schneider (2017), and Chahrour and Valchev (2017).

Finally, the empirical patterns that we document offer a challenge as well as new guidance for international macro models. Benchmark models cannot match our facts because they generate no bond trading, as in Lucas (1982), or because they predict that foreign investors, conditional on investing in a country, tend to take on direct exposure to the borrower’s local currency, as in Alvarez et al. (2009), Bacchetta and Van Wincoop (2010), Pavlova and Rigobon (2012), and Lustig and Verdelhan (2016). A few models do generate home-currency bias either as the optimal solution of a frictionless portfolio choice (Solnik (1974), Adler and Dumas (1983), Engel and Matsumoto (2009), Coeurdacier and Gourinchas (2016)) or exogenously by postulating that households invest abroad in bonds denominated in their own domestic currency (Gabaix and Maggiori (2015)). Even these few models, however, would struggle to match the skewed foreign capital allocation – where foreign currency issuers receive the bulk of foreign investment – that we show is a critical feature of the data. We conclude in Section 6 by elaborating on these points and suggesting how future work might generate models in which currency is critical for both debt investors and issuers and in which the US dollar plays a special global role.

2 Mutual Fund Investment Data

Morningstar, Inc., one of the world’s largest providers of investment research to the asset management industry, provided us with their complete position-level data collected from mutual funds domiciled in over 50 countries. These data are collected from open-end funds (excluding exchange traded funds) that invest in equities, fixed income, and a variety of other asset classes including

2 Also see Corsetti et al. (2008), Tille and Van Wincoop (2010), Devereux and Sutherland (2011), Dou and Verdelhan (2015), Colacito and Croce (2011), Colacito et al. (2017), Hassan (2013), and Hassan et al. (2016).
commodities, convertible bonds, and housing properties. The funds report all positions including stocks, bonds, cash, and alternative investments. Funds occasionally list derivative holdings, but we exclude these due to erratic reporting. Positions include a 9-digit identifier (the CUSIP) which allows us to match with information on the security’s characteristics such as currency, maturity, coupon or dividend, and the security issuer’s geographic location and industry. Reporting is typically monthly and, when not, is almost always quarterly. At the most disaggregate level, our dataset contains millions of individual positions. For example, in December 2015 we observe 2.2 million unique positions held by approximately 8,000 US mutual funds and 4.1 million unique positions held by approximately 48,000 mutual funds domiciled in the rest of the world.

2.1 Morningstar’s Coverage of the Mutual Fund Industry

Our data account for a substantial fraction of all worldwide open-end mutual fund assets under management (AUM). The Investment Company Institute (ICI), a major association of mutual funds and other regulated investment vehicles, reports that the US mutual fund industry had about $16 trillion of AUM as of 2015 across equity, fixed income, allocation, and money market funds. Figure 1 compares the total value of assets under management in US-domiciled mutual funds in our dataset and in the ICI data. From very low levels of AUM in the 1980s, the industry grew at a rapid pace in the 1990s. AUM declined in value in the 2001 and 2008 recessions but rapidly recovered and expanded to their present levels. Our data, displayed as a dashed line in Figure 1a, exhibit meaningful coverage of US-domiciled funds starting in the mid-1990s and by 2015 account for 97 percent of the value reported by ICI. Figures 1b, 1c, and 1d plot equivalent comparisons for the value of AUM broken down by funds specializing in equities, fixed income, and allocation (or hybrid), respectively. By the end of the sample, the coverage of our data for the US is nearly complete across all major types of funds.

Our data also include holdings of mutual funds domiciled in more than 50 other countries. ICI reports that these countries together have $16 trillion of AUM in 2015. Substantial coverage of these funds in our data starts in the early-to-mid 2000s. Figures 2a and 2b show that over the last decade our data capture between half and two-thirds of equity and fixed-income funds outside the US. Figures 2c and 2d further show that our data on funds domiciled in the European Monetary Union (EMU) and the UK closely track over time the equivalent aggregates provided by ICI. To

3Mutual fund managers are not required by law to report their holdings to Morningstar but choose to do so in order to be included in Morningstar’s ratings and reviews. In principle, fund managers might not wish to correctly report their positions to Morningstar in order to “window dress”. Morningstar’s internal procedures verify the accuracy of the data against publicly available returns of the funds. Our own independent checks of the data against regulatory filings, voluntary disclosures, and other datasets of investment fund positions revealed the data to be accurate.

4These numbers exclude funds-of-funds to avoid double counting the AUM. The ICI statistics are essentially identical to AUM reported for the mutual fund sector in the US Flow of Funds data compiled by the Federal Reserve.

5The ICI data for non-US domiciled funds are available quarterly on their web page when they release their “World-
ensure that analyses are not influenced by domiciles for which Morningstar data are unrepresentative, our analysis is performed on a subsample of the data that includes those developed economies for which Morningstar’s coverage of fixed-income funds is at least one-quarter of what ICI reports for that market at the end of 2015. These criteria select a final sample of 21 countries, about half of which are subsumed into the EMU. Table 1 lists the remaining 10 effective countries, ranked by the order of their AUM in 2015 in our data. While the US and EMU clearly account for the bulk of global AUM, we observe about $1 trillion in AUM for the UK and Canada.

2.2 Representativeness of Mutual Fund Investments

Mutual fund data is valuable for studying global capital allocation both because mutual funds directly constitute a sizable share of all global portfolio investments and because mutual fund investments are in many ways representative of aggregate cross-border portfolio investment. While mutual funds are differentially important across countries, they always constitute one of the main holders of securities. The left panel of Table 2 uses OECD data to show that the share of total bond investment in 2015 that is intermediated by mutual funds is 40 percent in the EMU, 21 percent in the US, and averages about one-third across the 10 countries included in our analysis.

Comparisons with publicly available datasets suggest that, in the characteristics that we emphasize, our data appear largely representative of the broader set of portfolio investments. In the appendix, we include figures demonstrating that the country and currency shares of US outward investment in our data closely match their equivalents in TIC data. Since TIC covers all portfolio investment, including positions by pensions and hedge funds, for example, this suggests that US mutual fund positions are broadly representative of US portfolio positions. We also report similar statistics for inward investments, which do not align well with our data. This likely owes to large foreign entities directly investing in US securities, such as government institutions in China and Japan or large European insurance companies.

To examine the representativeness of non-US mutual funds, we compare our data with reported positions from the CPIS, a survey of cross-border portfolio holdings conducted by the IMF that includes information on the currency of foreign debt holdings for a few countries in recent years. In the appendix, we include tables demonstrating that the currency composition of Canadian, Danish, Swiss, and US portfolios in 2015 are similar in our data and in CPIS, as is also the case for a number of EMU member countries. We cannot directly compare the data for the EMU as a whole since the CPIS does not report a consolidated EMU figure that removes intra-EMU investment.

Our data align less well with aggregates reported by the European Central Bank (ECB). For

wide Public Tables”. We were able to obtain these tables for most quarters since the first quarter of 2005 using the Internet Archive (https://web.archive.org/). We log-linearly interpolate between the ICI values in the first quarter of 2005 and their values in the second quarter of 2002, which we obtained from Khorana et al. (2005).
example, the ECB reports the dollar share of EMU foreign bond holdings in 2015 to be 37 percent, below the 57 percent in our data. The discrepancy likely reflects the fact that Luxembourg and Ireland, countries that are disproportionately important in the mutual fund sector, have a higher share of their foreign holdings in dollars than the EMU average.

Finally, it is important to highlight that our analysis focuses on bond finance and therefore excludes information on bank lending. The right panel of Table 2 compares the shares of bonds and loans (so they sum to 100 percent) in non-financial corporate liabilities in 2015. As is well known, US firms rely more heavily on bond financing (77 percent of total debt financing) than do European firms (17 percent).6 The share of bonds is between one-third and one-half in countries like Australia, Canada, and the UK. Despite this heterogeneity, we note that the key patterns we highlight hold similarly among all non-US countries.

2.3 Mapping Positions to Firms, Industries, and Countries

Morningstar reports the domicile country of each mutual fund but does not have information on the nationality of individuals who invest in each fund. In general, tax optimization and regulatory restrictions make it unlikely that investors buy mutual funds domiciled in other countries.7 Based on this principle, we assume that the domicile of a mutual fund is also the country of residency of its investors and we use the two concepts interchangeably in the rest of the paper. Notable exceptions are funds domiciled in Ireland and Luxembourg, which include a large number of Undertakings for Collective Investment in Transferable Securities (UCITS) funds that are designed to be sold throughout the European Union under a harmonized regulatory regime. Given our focus on currency, we pool all data for countries within the EMU, including Luxembourg and Ireland, and treat the EMU itself as a single consolidated country in our benchmark analyses.8 We demonstrate in the appendix the robustness of our main analyses to the removal of Luxembourg, Ireland, and the EMU from our dataset.

Turning from investors to issuers, one benefit of working with security-level data is that we can trace issuers to their ultimate parent company, which allows us to associate security issuance with the industry and country that faces the economic liability and deploys the borrowed capital. The raw data from Morningstar associates each portfolio position with an industry and country of issuer, typically the residence of the direct issuer. For example, if a British energy firm has

6See De Fiore and Uhlig (2011) for an analysis of the sources of the differential reliance on bond and loan finance in the US and Europe.

7In the appendix, we provide support for this assumption using TIC data that shows that US outward investment is only rarely directed to foreign funds and that foreign investment into the US is only rarely directed to US funds.

8This leaves open the possibility of some cross-border holdings of mutual fund shares for countries that are in the EU but not in the EMU (such as Sweden or the United Kingdom), as well as the possibility of investors outside the EU buying some UCITS in Luxembourg and Ireland.
a financial subsidiary that issues debt in the US, the raw data would likely classify this as US financial-sector borrowing. In this hypothetical case, we would like to be able to link the securities to the energy sector in the United Kingdom. To accomplish this goal, we need to unwind layers of ownership and allocate securities to their ultimate parent issuing firm. We do so by building an algorithm that uses several different data sources including the CUSIP/CINS_db Combined Master Issuer File, the CUSIP Global Services Associated Issuer Master File, and the Capital IQ and SDC Platinum New Issues datasets. We compile a comprehensive list that associates each CUSIP 9-digit security code with a unique CUSIP 6-digit code for the ultimate parent firm. We provide additional details on this procedure in the appendix.

The left panel of Table 3 shows how much of each investor country’s positions were reallocated by our algorithm. For example, the bottom row shows that of all US corporate bond positions, 12 percent (by market value) were ultimately associated with issuing countries that differed from what was originally listed in the raw data. This amount is equal to about 40 percent of the value of US investment in foreign issuers. Of that 12 percent of reallocated positions, roughly one-sixth (or 2 percent) was reallocated from tax havens such as Bermuda or the Cayman Islands. The right panel of Table 3 shows that – consistent with the above example of the British energy firm that borrows through its US financial subsidiary – our algorithm generally reallocates away from the Financials sector and toward the rest of the economy. We offer further details of the quantitative impact of this reallocation in the appendix, but here note that the procedure has no qualitative impact on the key patterns that are the focus of this paper.

In summary, our data tracks well the best publicly available information on the aggregate scale of mutual fund assets, domiciled inside and outside the US. These data clearly represent only a subset of cross-border investment positions but a comparison with public aggregate data suggests that they are informative about many facets of non-mutual fund intermediated portfolio positions, such as those held by insurance companies and hedge funds. Our data are security-level, providing enhanced details that allow us to link borrowing to the industry and country of the ultimate parent of the issuer, and give insight into domestic and foreign investment by the same type of investors in many countries around the world.

3 Investor Home-Currency Bias

In this section we demonstrate the strength of investor home-currency bias at both the security and country level. Surprisingly, currency is such a strong predictor of the nationality of a security’s holder that the nationality of the issuer – to date, the most powerful predictor in a voluminous literature on portfolio determination – has little additional explanatory power. We also introduce the notion of international-currency bias, the tendency in our data of investors to disproportionately
hold securities denominated in an international currency such as the US dollar.

3.1 Country Level Results

We find that domestic bond investments are almost always denominated in the domestic currency. For example, when Canadian investors buy bonds issued by Canadian issuers, the bonds are almost always denominated in Canadian dollars. However, foreigners invest differently. When Australians buy bonds issued by Canadian issuers, the bonds are rarely denominated in Canadian dollars.

Figure 3a plots the shares of investment that are in the issuer’s currency for the bond portfolios in our data as of December 2015. The shaded red bars on the left illustrate for each country the share of all lending by that country’s investors to that same country’s issuers that is denominated in the local currency. For example, the second red shaded bar from the top shows that about 95 percent of lending by Canadian investors to Canadian issuers is denominated in Canadian dollars, as per the example above. The red shaded bars are all above 0.75 and most are quite close to 1. Unsurprisingly, and consistent with conventional modeling assumptions in the literature, all countries invest overwhelmingly in local currency when buying the bonds of domestic issuers.

More surprising, however, is our finding that foreigners invest differently. The hollow blue bars on the right of Figure 3a show the same statistic but for foreign investment portfolios, i.e. the share of foreign investment in each country’s bonds that is denominated in the issuer’s currency. For example, the second blue hollow bar from the top shows that less than 20 percent of bonds purchased by non-Canadian investors and issued by Canadian entities are denominated in Canadian dollars. If foreign and domestic investors held similar portfolios in each market, then the length of red and blue bars would be identical in each row. On the contrary, Figure 3a shows that the blue bars are systematically (much) smaller than the red bars for each row. Domestic investment is almost always in the local currency. Excluding (for now) investment in the United States, foreign investment is rarely in the local currency.

Figure 3b performs the analysis separately for sovereign bonds, where this pattern still holds but is more muted. Most developed countries’ sovereigns issue a very limited amount of foreign currency bonds (the US government, for example, does not issue in foreign currency). While we show that foreigners are disproportionately likely to buy those few foreign-currency denominated sovereign bonds, we also show that they buy substantial amounts of local-currency bonds.

9 The hollow blue bars on the right are calculated by simply adding up positions over multiple foreign investors that purchase from each issuer country. The relative weight of these foreign investors therefore implicitly relates to its scale of AUM in our data and therefore may differ from equivalent values reported by national statistical agencies. We have disaggregated the hollow blue bars into the portfolios from individual investor countries and verified that these patterns hold robustly across bilateral pairs. See the appendix for details.

10 For an analysis of determinants of the currency composition of sovereign debt, see Ottonello and Perez (2016), Engel and Park (2018), and Du et al. (2016).
The picture for corporate bonds is extremely stark. As seen in Figure 4, which restricts the analysis to corporate bonds, foreigners are very unlikely to hold local-currency corporate debt. For example, whereas roughly 20 percent of foreign investment in all Canadian bonds was in Canadian dollars, less than 10 percent of foreign investment in Canadian corporate bonds is in Canadian dollars. Unlike sovereigns, many corporations issue a substantial fraction of their debt in multiple foreign currencies, thus offering investors the possibility to invest in the same issuer but in the currency of their choice. Since our focus is precisely on this currency choice, both from the investor and the issuer perspective, we focus our analysis in the rest of the paper on the corporate bond market.\footnote{We rule out that the stark currency selection in corporate bonds is purely an artifact of rules preventing mutual funds from investing in foreign currency. In fact, we have shown that the same class of investors, open-end mutual funds, buys sovereign bonds predominantly in foreign currency.}

Rather than holding local-currency bonds, foreigners tend to hold bonds denominated either in their own domestic currency or in an international currency, such as the US dollar.\footnote{Foreigners’ holdings of dollar-denominated securities do not fully explain their low holdings of local-currency securities. To see this, Figure 5b simply replicates the results in Figure 4 after dropping all dollar-denominated holdings and excluding the United States as an issuer.} Figure 5a shows the currency composition of each country’s external bond investments. We exclude investment in the United States to focus purely on the international role of the dollar. The vast majority of all foreign investment is either denominated in the investing country’s currency or in US dollars.\footnote{The outsized role of the US dollar in cross-border portfolios of corporate debt that do not involve the US as either the investor or the borrower provides a possible channel for the outsized role of US monetary policy in global economic activity, as discussed in Bruno and Shin (2015b) and Rey (2015). See also Wiriadinata (2018), Zhang (2018), and Mukhin (2018).}

Our results imply a strong sorting of foreign investment away from local currency bonds, despite the fact that these bonds constitute the bulk of the corporate bond market in each country. This sorting underlies the importance of studying portfolio holdings and not just the stock of securities outstanding to understand the external positions of countries. For example, a naive assumption that foreign and domestic investors buy securities in each country according to market-value weights would imply that developed countries have external liabilities denominated in their own currency and external assets denominated in foreign currency to a greater extent than is in fact the case.\footnote{A large literature on “Original Sin” such as Eichengreen and Hausmann (1999) and Eichengreen and Hausmann (2005) has emphasized the similar fact that emerging economies borrow from foreigners in “hard” currencies like the US dollar, presumably due to their inflation risk, weaker institutions, or less developed internal capital markets. We show, however, that even rich and developed economies that do not suffer from these problems borrow in foreign currency from foreigners to a surprising extent via their corporate sector. Adams and Barrett (2018) and Fanelli (2017) offer recent theoretical models that focus on the currency exposure in countries’ external portfolios. Drenik et al. (2018) examine theoretically the decision of private agents to denominate their domestic contracts in local or foreign currency.} An important consequence is that a domestic currency depreciation might not have as much of a
positive wealth effect as is commonly conjectured.15

3.2 Security Level Results

The above results suggest that investors exhibit “home-currency bias”, in that they disproportionally hold securities denominated in their domestic currency, and “international-currency bias”, in that they disproportionally hold securities denominated in a particular third-country currency, which in 2015 is the US dollar. To demonstrate that currency is a critical factor driving this pattern, we must overcome the concern that correlated and omitted factors such as the borrower’s sector, participation in international trade, and credit worthiness, or the security’s maturity, coupon, legal jurisdiction, and place of issuance are in fact the true drivers of the bias and are simply correlated with the security’s currency. Our security-level dataset offers sufficient variation across all these elements to allow us to affirmatively demonstrate that currency itself is an important factor.

We start by exploiting security-level variation in the currency of denomination of multiple bonds offered by the same issuer. After all, a given issuer has the identical nationality, industry, trade exposure, and very similar default risk, regardless of which currency its debt is denominated in. Further, we can control for each security’s maturity and coupon. If Canadians, for instance, are much more likely to hold a given UK firm’s long-term Canadian dollar debt than that firm’s long-term British pound debt, this would support the conclusion that currency is the true underlying factor driving that investment decision.

Let $s_{j,p,c}$ denote the share of the total holdings in our data of a particular corporate bond c (i.e. a 9-digit CUSIP) issued by parent firm p (i.e. a 6-digit CUSIP) that is held by investors from country j. A value of $s_{j,p,c}$ equal to 0.1 means that mutual funds domiciled in countries other than j account for 90 percent of the investment in that security in our data. We pool all individual corporate bonds c in our data and estimate the following regression separately for each investing country j:

$$s_{j,p,c} = \alpha_{j,p} + \beta_j \mathbb{1}_{\{\text{Currency}_c = \text{Currency}_j\}} + \text{Controls} + \epsilon_{j,p,c},$$

where $\alpha_{j,p}$ is a fixed effect for the parent firm and $\mathbb{1}_{\{\text{Currency}_c = \text{Currency}_j\}}$ is an indicator variable that equals one when security c is denominated in the currency of the investing country j. The coefficient of interest is the estimate of β_j, which reports the extent to which a country disproportionately holds securities denominated in its home currency. If country j had no home-currency bias then β_j would be zero.16 Our benchmark estimates are run using data for 2015, are weighted

15The wealth effect would also be affected by the extent of hedging and the residency of the counterparties with whom the bonds are hedged, as this would determine whether the exchange rate exposure remained in the country or not. Liao (2016) offers useful evidence suggestive that firms often hedge, but the lack of systematic data on derivatives use precludes us from drawing too strong a conclusion.

16Our approach differs from that more commonly used in the home-bias literature in two ways. First, we use in our
by the total holdings in our data of each security, and control for maturity and coupon payment.\footnote{We control for maturity with dummies corresponding to the categories: less than 2 years, between 2 and 5 years, between 5 and 10 years, and greater than 10 years. We treat coupon similarly by using seven equally spaced buckets from below 1 percent to greater than 6 percent.}

Table 4 reports our estimates of equation (1). Looking across the top row, the β_j coefficients are all positive, statistically significant, and large in magnitude. For example, the top row of column 1 shows that if a security is denominated in Canadian dollars, Canadian mutual funds hold a share of the total holdings of this security that is 93 percentage points larger than what they hold of securities that are not denominated in Canadian dollars but issued by the same issuer. This implies that Canadian investors hold the vast majority of Canadian dollar securities that are issued around the world. A similar effect holds for all other countries. Even among bonds issued by the same issuer, investors disproportionately hold those bonds that are denominated in their home currency.

Table 5 demonstrates the robustness of our results by reporting the same β_j coefficients from various alternative samples of our data.\footnote{We denote statistical significance at 1 percent using asterisks, but to improve the presentation, we do not report standard errors. Standard errors are clustered at the level of the fixed effects.} The first specification estimates equation (1) when we drop firms that only issue in local currency and restrict the sample to only those firms that issue in multiple currencies (MC), since variation within these firms is what identifies the currency bias. To be included in this specification as an MC issuer, a firm must issue in the local currency of the investor country and at least one other currency. The second specification only includes foreign issuers and the third specification additionally excludes any issuance by these firms that is done in the issuer’s domestic market. The fourth and fifth specifications restrict the sample to financial and non-financial corporates, respectively. The sixth and seventh specifications also examine financial and non-financial corporates separately, but additionally restrict the sample to only include foreign firms. The eighth specification includes borrowing by local governments and municipalities, sovranational such as the World Bank, and various structured fixed income products. The ninth specification includes all bonds in our dataset (including sovereigns). Finally, our tenth specification distinguishes securities not only by issuer and currency, but also by residence (i.e. the country where the security is issued). In particular, we add to the currency dummy in equation (1) a dummy for the security being issued in the investors’ country (j). This specification allows us to ensure that our results are driven by currency and not by investors exhibiting a preference for bonds issued in their own legal jurisdiction. While for some countries, the residence of bond issuance does enter statistically significantly, it only very slightly attenuates the coefficient on currency. In all these analyses, despite the extensive differences in the included sample of issuers and the variation used benchmark regressions of equation (1) a country’s share of total holdings rather than measure the ratio of the share that a security accounts for in a country’s portfolio relative to the share that security accounts for in total holdings. These two measures are linear transformations of each other within countries, so regressions that use either measure as the dependent variable contain the same information. Second, whereas the literature often uses worldwide market capitalization to measure total holdings, we measure total holdings internal to our mutual fund data.

17We control for maturity with dummies corresponding to the categories: less than 2 years, between 2 and 5 years, between 5 and 10 years, and greater than 10 years. We treat coupon similarly by using seven equally spaced buckets from below 1 percent to greater than 6 percent.

18We denote statistical significance at 1 percent using asterisks, but to improve the presentation, we do not report standard errors. Standard errors are clustered at the level of the fixed effects.
to estimate fixed effects, the coefficient on home currency bias remains economically large, stable, and precisely estimated.

3.3 Home-Country Bias and Home-Currency Bias

A voluminous prior literature has documented the strength and pervasive presence of home-country bias, more commonly referred to as simply “home bias.” The influential work of French and Poterba (1991) found that investors disproportionately hold equity securities issued by domestic firms. The subsequent literature demonstrated that the same is true, to an even greater extent, for bonds. Furthermore, while equity home-country bias has seen a marked decline over the recent years, bond home bias has declined much less, as shown in Coeurdacier and Rey (2013). Home-country bias is to date the singularly effective force for empirically characterizing global portfolios and is essential for the quantitative performance of models in international macroeconomics and finance.\(^{19}\)

Our results, however, offer the intriguing possibility that home-country bias largely reflects home-currency bias, since the propensity to issue in local currency is greater for local borrowers. Indeed, Burger et al. (2017) first suggested this possibility by demonstrating with US TIC data that home bias measures greatly attenuate when excluding non-dollar securities. Ultimately, distinguishing a bias for home-currency from a bias for home-country requires exogenous variation in either country or currency. While we do not have such exogenous variation, we compare the relative explanatory power of country and currency by estimating equation (1), adding a home-country indicator \(1_{\{\text{Country}_p = j\}}\), equal to one when parent issuer \(p\) is located in country \(j\) and dropping the firm fixed effects (since the country and firm indicators are collinear). We run three related regressions:

\[
\begin{align*}
 s_{j,p,c} &= \alpha_{j,0} + \gamma_{j,0} 1_{\{\text{Country}_p = j\}} + \epsilon_{j,p,c}, \\
 s_{j,p,c} &= \alpha_{j,1} + \beta_{j,0} 1_{\{\text{Currency}_c = \text{Currency}_j\}} + \epsilon_{j,p,c}, \\
 s_{j,p,c} &= \alpha_{j,2} + \gamma_{j,1} 1_{\{\text{Country}_p = j\}} + \beta_{j,1} 1_{\{\text{Currency}_c = \text{Currency}_j\}} + \epsilon_{j,p,c}.
\end{align*}
\]

Equation (2) is a classic home-country bias regression that measures the extent to which a country is overweight securities issued by domestic firms. Panel A of Table 6 reports the estimates of the country dummy \(\gamma_{j,0}\) from this regression. Consistent with the large literature on home-country bias, all these coefficients are positive and range from about 9 percent to more than 50 percent depending on the country, thus confirming that countries are overweight securities issued by do-

\(^{19}\)Additionally, see Fidora et al. (2007), De Moor and Vanpée (2013a,b), and Adams and Barrett (2018) for studies of home-country bias in bond portfolios and Lewis (1999), Sercu and Vanpée (2007), and Bekaert and Wang (2009) for surveys of the literature.
mestic firms. The large R^2 values in the third column indicate that country information alone explains roughly one-third of the variation in securities’ holdings around the world. Estimates of equation (2) remind the reader of why home-country bias is the focus of such a large academic literature and is considered a critical moment to match in theoretical models.

However, as we have emphasized, data limitations have meant that traditional analyses have not included information on currency. We report in Panel B of Table 6 the estimates of equation (3), in which we replace the home-country indicator from equation (2) with a home-currency indicator. The results are much stronger, with the point estimates on the home-currency indicator and the R^2s both approximately twice as large as what they are in Panel A. This regression at the country level re-affirms our result from Table 4, which exploited only within-firm variation: the currency of denomination of an asset on its own has surprisingly high predictive power for the nationality of the holder of the asset.

Finally, to demonstrate that the results in Panel A are mostly driven by the correlation of issuers’ countries with their securities’ currencies of denomination, Panel C reports the estimates of equation (4), in which we include both the home-country and home-currency indicators. The coefficient on currency of denomination ($\beta_{j,1}$) is little changed from the corresponding variable in the univariate regression ($\beta_{j,0}$) in Panel B. Likewise, the R^2s show only modest increases over those in Panel B. By contrast, the coefficient on country of issuance ($\gamma_{j,1}$) is dramatically reduced from the corresponding univariate regression ($\gamma_{j,0}$) in Panel A. Once we account for a security’s currency of denomination, there is little additional scope for the security issuer’s country to add information regarding the nationality of the holder. At least for bonds, inference of home-country bias is confounded by the presence of home-currency bias. Open-economy macroeconomic models must face these new facts: whatever structural mechanism the theories are proposing, the resulting equilibrium must feature a pairing between issuers and investors that is mostly associated with the currency of denomination.

4 Currency Bias: The Firms’ Perspective

Having documented the importance of the currency of denomination of bonds for the composition of investors’ portfolios, we now turn to characterizing the implications from the perspective of borrowing firms. We show that in each country a small number of foreign-currency borrowers are typically the only firms that borrow substantially from foreigners. In each country, most firms borrow only in local currency and their debt is mostly held by domestic investors. We also show

20 Standard errors are not shown, but nearly all reported coefficients are statistically significant at the one percent level. The only exceptions are the country coefficients for Denmark and New Zealand.

21 In order to make the R^2 statistics easily interpretable we have removed security-level controls such as maturity and coupon. The controls, if included, would add minimal explanatory power.
that, consistent with the country level results in Figure 4, the United States is an exception to this rule: US firms that only borrow in dollars place their debt into foreign and domestic portfolios with comparable ease.

4.1 Foreign Currency Issuers Borrow from Foreigners

In most countries, only firms that issue in foreign currency place substantial shares of their bond debt in foreign portfolios. For example, Figure 6a plots for each Canadian firm with debt in our data in 2015 the share of the total firm debt that is denominated in foreign currency, i.e. currencies other than the Canadian dollar, against the share of the total firm debt that is held by foreigners. The scale of each firm’s bubble captures the market value of its total bond borrowing. We have aggregated the data across all debt securities issued by each firm, including those issued by subsidiaries or other associated issuers. This plot exemplifies two common features of the data. First, a large mass of smaller (by debt) firms are at the origin or slightly above it. These are smaller Canadian firms that borrow only in Canadian dollars and almost entirely borrow from Canadian investors. Second, as firms borrow more and more in foreign currency, they borrow more and more from foreigners. The relationship is nearly one for one, with the data points clustered along the 45 degree line. Figures 6b and 6c show similar patterns for the European Monetary Union and the United Kingdom.

An important caveat is that we do not observe firm loan financing by banks. Hence, our data do not rule out the possibility that local-currency firms access the international market indirectly by receiving loans from domestic banks that themselves borrow from abroad in foreign currency. Even in this case, however, local-currency firms might be adversely affected since the loans are likely to come at a premium over direct bond financing from the foreigners. An extensive corporate finance literature has indeed shown that loan financing is in general more expensive than bond financing, including Diamond (1991), Rajan (1992), Bolton and Scharfstein (1996), and De Fiore and Uhlig (2011, 2015).

The relationship between foreign currency issuance and foreign borrowing is markedly different for firms in the United States, as shown in Figure 6d. While it is still true that foreign currency borrowers tend to borrow more from foreigners, there is a significant mass of medium sized firms that issues only in US dollars but receives substantial financing from foreigners. One way to interpret these data is that the global taste for holding dollar debt securities effectively opens up the capital account for local currency borrowers in the US, whereas local currency borrowers in other countries are relegated to borrowing almost exclusively from domestic investors.

The fact that the bubbles located away from the origin in Figure 6 are generally larger shows that bigger firms are more likely to borrow in foreign currencies. For example, for the case of Canada, Figure 7a ranks firms along the x-axis in terms of their total borrowing, from the the
largest borrower on the left to the smallest borrower on the right. The y-axis plots the number of currencies in which the debt of each firm is denominated. Toward the right end of the plot, nearly all firms only issue bonds denominated in a single currency (which, in this case, is typically Canadian dollars). Moving to the left, as firms’ borrowing increases, firms issue in an increasing number of currencies. The largest Canadian borrower in our data issues bonds denominated in 7 different currencies. Figures 7b, 7c, and 7d show a similar pattern in the EMU, the UK, and the US. Together with Figure 6, this implies that large borrowers issue in foreign currency and borrow from abroad, whereas small and medium borrowers issue in domestic currency and borrow from domestic investors.

We can more formally analyze selection into foreign currency borrowing by estimating on data for 2015 the following probit model:

$$Pr\left(1_{MC_p} = 1\right) = \Phi\left(\alpha_j + \beta_j Size_p + \gamma_{j,p} Industry_p\right),$$

where 1_{MC_p} is an indicator for a firm p having debt in foreign currency, $Size_p$ is a measure of firm size, and $Industry_p$ are a set of fixed effects capturing the firm’s two-digit SIC. Unlike our prior analyses, we estimate equation (5) using operating and balance sheet data from Compustat (North America and Global) and Worldscope and using issuance data from the SDC New Issues database. We proxy for firm size using four alternative measures: total bond principal outstanding, profits (EBIT), total assets, and revenues. We include industry fixed effects to account for differences in capital intensity, the collateral value of the firm, and propensity to be involved in export/import activity since these might in turn affect the capital structure decision by the firm. This regression is run separately for each country in our sample, and so the intercept α_j, the industry fixed effects $\gamma_{j,p}$, and coefficients on the different proxies for size β_j are allowed to vary across countries.

Table 7 presents the average marginal effects for the country atop each column from estimates of equation (5) using each of our four size proxies. All estimates are positive and statistically significant: Bigger firms, all else equal, are more likely to issue in foreign currency. All the different measures of firm size point in the same direction.

This type of size-dependence is a hallmark of selection in the presence of fixed costs. Indeed, issuing in foreign currency often involves substantial set-up costs. Firms need to build an infrastructure capable of complying with enhanced accounting standards and arranging for and paying costs of currency hedges. This often involves establishing a more sophisticated corporate treasurer’s department. Foreign currency issuance also generally involves a relationship with...

22In the regressions, we use data from SDC instead of our data from Morningstar since the SDC data captures all issued bonds, not just those held by mutual funds. The results are robust, however, to instead using Morningstar data. We merge the SDC database with firm-level balance sheet data using the CUSIP6 of the Ultimate Parent as reported in SDC. Figures 6 and 7 use only the Morningstar data.
an international investment bank, roadshows in foreign countries, and investor meetings aimed at familiarizing foreign investors with the firm.

4.2 International Currencies and Foreign Borrowing by LC Firms

We now turn our attention to those smaller firms that borrow only in local currency, the firms in Figure 6 that are located along the y-axis. Figure 8 demonstrates the extent to which foreign investors are underweight the bonds of Canadian firms that only issue in Canadian dollars, their local currency. To see this, start with the left panel. The solid red circles plot investment in each Canadian issuer (the parent firm) by Canadian investors in 2015 as a share of those Canadian investors’ total investment in Canadian corporate bonds. Similarly, the blue hollow diamonds plot investment in each Canadian issuer by foreign investors as a share of the total foreign portfolio of Canadian corporate bonds. The sum of the solid red dots and the sum of the blue hollow diamonds, therefore, each equals one. The parent firms are ordered along the x-axis based on their shares of domestic investment in Canadian firms, as opposed to the foreign or overall holdings, so the solid red dots monotonically decline by construction. Looking across the plot, there are some firms for which the solid red dots are above the hollow blue diamonds – indicating domestic investors are overweight relative to foreign investors – and others for which the opposite is true.

A striking pattern emerges if we remove the points corresponding to firms that issue in foreign currencies. The right panel of Figure 8 plots the exact same objects as the left panel but restricts the sample to include only the subset of firms that issue only in local currency (i.e. in Canadian dollars). As noted earlier, LC-only issuers are typically smaller, and indeed the data for the largest 5 (i.e. leftmost) firms in the figure’s left panel are missing from the right panel. The difference between the solid red dots and hollow blue diamonds in the right panel is clear – the red dots are almost uniformly above the blue diamonds. Canadian firms that issue only in their local currency represent significantly larger shares of Canadian investors’ portfolios than of foreign investors’ portfolios.

Figure 9 conducts this same analysis of domestic and foreign investment in LC-only firms in the European Monetary Union, the United Kingdom, and the United States, as well as repeating the analysis for Canada for comparison. The solid red dots in the plots for Canada, the European Monetary Union, and the United Kingdom are all almost uniformly above the hollow blue diamonds. In those countries, LC-only issuers do not typically place their debt into foreign portfolios and therefore borrow almost exclusively from local lenders. The one exception is the US, where the solid red dots roughly split through the center of the hollow blue diamonds, indicating that LC-only firms in the US are almost equally likely to represent a given share of domestic or foreign portfolios. US firms that borrow only in dollars, unlike LC-only firms in the other countries,
borrow substantially from foreigners.23

Aggregating across firms, we sum the solid red dots and hollow blue diamonds in each of the sub-plots in Figure 9 and plot in Figure 10a for these four countries (and the other 6) the aggregate shares of LC-only issuers’ debt in domestic portfolios as red bars and the aggregate shares of LC-only issuers’ debt in foreign portfolios as blue bars. The red bars are almost always dramatically taller than the blue bars, confirming that LC-only firms account for a far larger share of domestic than of foreign investment portfolios. The one exception is the United States, where the red and blue bars are of similar height. US firms that issue only dollar-denominated debt account for similar shares of domestic and foreign investment portfolios.

Figure 10b shows that LC-only firms account for vastly different percentages of the overall corporate debt outstanding across countries. LC-only firms in the US account for nearly 60 percent of the country’s total borrowing, as shown in the first bar on the left. The equivalent value for Canada, the European Monetary Union, and the United Kingdom ranges from 15 to 25 percent.

Taken together, the above results are consistent with the view that selection into foreign currency borrowing leads to different outcomes across countries. In this view, US firms face ample demand for their bonds, both by domestic and by foreign investors, even when just borrowing in dollars. These firms, consequently, mostly borrow in dollars and only issue in foreign currency when their borrowing needs grow extremely large. Firms in countries with a smaller local-currency debt market, like Sweden, quickly outgrow the demand for their local currency debt and in order to borrow more (without pushing interest rates too high) switch to foreign currency borrowing. In these countries, even relatively small firms borrow in multiple currencies and MC-firms account for most of the countries’ overall borrowing.

One might worry that the above patterns, at least for countries other than the US, reflect differences between the local-currency and multi-currency firms that are distinct from, though correlated with, the currency of the debt security. Perhaps local-currency firms are in industries for which foreign investors naturally lack expertise or interest. Alternatively, multi-currency firms might be those that export a lot to foreign destinations and are therefore well known to foreign investors. To evaluate this possibility, we proxy a firm’s appeal to foreign investors using the firm’s equity portfolio shares. After all, though debt and equity do not offer identical payoffs, if something about a firm caused it to be a fundamentally unappealing investment for foreigners, foreign investors should avoid both the firm’s equity and its debt. If equity markets are unaffected by currency-related frictions (for example, because equities are real assets not affected by the currency of denomination), then the equity portfolio shares provide a helpful model-free benchmark for what optimal debt portfolio shares might look like in the absence of home-currency bias. Fig-

23In the appendix, we repeat this analysis separating issuers into financial and non-financial corporations. The documented patterns hold across both subsamples.
Figure 11 considers the same LC-only firms as in Figure 10a, but plots the share of their equities in domestic and foreign equity portfolios for that market. It is clear that the difference in LC-only firms’ shares of foreign and domestic equity portfolios, if any, is far more muted than is the case for their debt securities, even for countries other than the United States. For example, there is only a small positive difference for Europe, Sweden, and Norway, and the gap is actually negative for New Zealand.

To investigate this further, Figure 12 explores the joint holdings of equity and debt of the same firm by foreign and domestic investors. We define a measure of how overweight foreigners are in the debt or equity of a firm by taking the log of the ratio of the foreign portfolio share of firm to the domestic portfolio share of firm in that asset class. The higher this ratio, the more overweight the foreign investors are for that firm. A log ratio value of zero means a firm represents the same portfolio weight in domestic and foreign portfolios. We include all firms with both an equity and a bond security in our sample and plot the foreign overweight ratio for debt on the vertical axis and for equity on the horizontal axis. LC firms are depicted with red circles and MC firms with blue ones, with the size of each circle proportional to the total market value of the total debt of the firm.

For the MC firms in countries other than the US, there is a strong positive correlation of the debt and equity foreign overweight ratios, as seen in the upward sloping blue best-fit lines. If MC firms attract a lot of foreign equity investment, they also attract a lot of foreign debt investment. By contrast, the red best-fit lines for the LC firms are flat. Unlike the case for MC firms, even when LC firms receive a lot of foreign equity investment, this is not also associated with large foreign debt investments. Finally, we again see that the US constitutes an exception, with the foreign overweight ratios for debt and equity behaving more similarly. Whereas the two best-fit lines are flatter than with the MC firms for the other countries, the US is the one case in which the dollar-only issuers and foreign-currency issuers exhibit a similar relationship between debt and equity foreign overweight ratios.

In sum, investor home-currency bias and the firm-size dependency for foreign-currency issuance together imply that most firms issue only local-currency debt and do not borrow much from abroad. The United States, however, issues an international currency and represents an exception to these patterns. Even smaller US firms place their dollar-denominated bonds into foreign portfolios. In the US, these LC firms account for comparable shares of domestic and foreign portfolios and for a large share of overall US borrowing.

24 We drop firms for which either the domestic or the foreign portfolio share is zero since in these cases the log ratio is not defined. We winsorize the log ratio for both debt and equity at the 1% level. In unreported results, we confirmed the robustness of our analysis to introducing these data points by setting the corresponding log ratio to a very large or very small constant.

25 The best fit lines are weighted by the amount of debt issued by each firm owned by mutual funds in the dataset.
5 The Rise of the Dollar and Fall of the Euro

The above results demonstrate that, as of 2015, the US appears to be the only international currency issuer and that it receives a unique capital allocation from the rest of the world. One might understandably assume that the US dollar has had this status for many decades or more, perhaps since the advent of the Bretton Woods system following the Second World War, if not earlier. In this section, we demonstrate that in fact the euro was also used to denominate a significant share of total global bonds held across borders as recently as 2007. Following the global financial and eurozone crises, however, its share fell pervasively and dramatically and this fall was mirrored by a rise in the use of the dollar. We conclude that international currency status may be more volatile than is typically assumed.

Figure 13 shows the share of all cross-border corporate bond positions in our data accounted for by bonds denominated in dollars and in euros. The solid red line shows that, on the eve of the 2008 global financial crisis, dollar-denominated bonds represented approximately 45 percent of these positions in our data. The dashed blue line shows that euro-denominated bonds accounted for 35 percent at that point in time. Further, these shares had been stable during the preceding four years. No other currencies came close to representing such large shares in cross-border portfolios.

Strikingly, starting immediately after the crisis, these international bond portfolios exhibited a dramatic shift away from the euro and into the dollar. The euro share of total cross border bonds collapsed by late 2015 to below 20 percent while the dollar share exceeded 60 percent. The currency switch is similarly apparent when one includes sovereigns, local governments, and all other bonds in our data, as shown in Figure 14a.26

This pattern is not driven (directly) by something specific to investors or borrowers in the US or the EMU. Indeed, Figure 14b plots the currency shares in global cross-border corporate bond portfolios after excluding the US and EMU as either the investor in or issuer of the bonds.27 The fact that the pattern remains strong in this subset of data shows that the shift is not simply attributable to changes in the relative size of the US and EMU markets nor is it directly driven by the unconventional monetary policy (quantitative easing) of the Fed or the ECB. Another possibility is that the dollar-euro exchange rate underlies these patterns and indeed, the dollar has strengthened relative to the euro since 2008. This relative price movement, however, can only directly explain

26 The BIS International Debt Securities database collects information on the currency of securities that are issued in foreign markets (i.e. for which the nationality of the issuer and the market of issuance of the security are different). The database, therefore, excludes domestic issuance of debt securities and only captures a subset of the world debt market. Nonetheless, we demonstrate in the appendix that even in these BIS data there is a rise in the share of dollar-denominated bonds and a collapse in euro-denominated bonds that moves similarly to our measures.

27 Figure 14b makes clear that the dollar and the euro are used to denominate a large share of bonds between borrowers and lenders which do not use either as their home currency. In this sense, our notion of international currency echoes that discussed in the literature on the invoicing of international trade in goods. See, for instance, Goldberg and Tille (2008), Goldberg (2010), Gopinath (2016), and Gopinath and Stein (2018).
a small portion of the relative trends in the previous charts. We have verified this by regenerating Figure 13 using an alternative dataset constructed using exchange rates fixed at their 2005 levels.

One might be concerned that these patterns merely reflect compositional changes in our data. For example, if Canada and Mexico hypothetically entered late in the dataset and predominantly hold dollar bonds, it would plausibly explain the above trends.28 To address this concern, we regress the share of euro-denominated bonds and dollar-denominated bonds in the portfolio of country \(j \) invested in securities issued by \(i \) on time fixed effects and country-pair (issuer \(i \) and investor \(j \)) fixed effects. We run this regression separately for the euro and dollar, for various assets, and for various country pair rules (such as excluding domestic investment or excluding the USA or EMU as issuers, investors, or both). The country-pair fixed effect ensures that changes in the composition of countries in our sample do not drive our inference on the time series variation in the roles of the dollar and euro in cross-border bond portfolios. We run this regression on the baseline as well as constant exchange rate data sets and find that composition is not driving this trend. Figure 14c plots time fixed effects, both normalized to zero in 2005, from specifications that focus on cross-border corporate bond positions valued at constant (2005 base) exchange rates and weighted with the size of portfolios in the first quarter of 2009. The pattern remains.

Finally, one might wonder if the shift is driven by the banking sector alone. Figure 14d restricts the sample to only contain non-financial corporate borrowers. There is a levels difference from the earlier plots as non-financial corporates more commonly borrow in US dollars. The shift away from euro-denominated bonds and into dollar-denominated bonds, however, is robust even after excluding financial institutions.

Table 8 summarizes this evidence on the shift in global portfolios away from euro and into dollar bonds. Column 5 of the table shows the difference in the euro and dollar portfolio share for each specification between the fourth quarter of 2005 and the fourth quarter of 2015. Across most of these specifications, the share of dollar-denominated bonds rises by about 10 to 15 percentage points whereas the share of euro denominated debt declines by about the same magnitude. The rise of the dollar and fall of the euro since 2008 as international currencies is a robust global pattern.

This dramatic shift in the currency composition of global portfolios toward the US dollar has accompanied an increase in the extent to which the dollar stands out in the cross-sectional relationships emphasized above. For example, we demonstrated that the US in 2015 is unique in that the foreign investment it receives is denominated in US dollars to an extent comparable to what it receives domestically. In the appendix, we replicate this analysis using data from 2005, when the dollar and euro shares were less dissimilar in cross-border portfolios. We find that the US dollar share of foreign investment into US corporate bonds is smaller, equal to about 40 percent in 2005 compared to about 75 percent in 2015. The euro share of foreign investment into EMU corporate

28The appendix includes figures demonstrating that this pattern is pervasive across bilateral country pairs.
bonds was nearly 25 percent in 2005, slightly larger than its recent levels. We similarly show
that whereas in 2015 US LC-firms accounted for similar shares in domestic and foreign portfolios,
their relative share in domestic investment increases as we move back earlier in our dataset, both
in levels and relative to that for EMU LC-firms. We view these results as strongly suggestive that
the roles of the dollar and euro in shaping cross-border capital allocation have changed during this
period, but an important aim for future work is to identify the driver of this shift away from euros
and toward the dollar and to further elaborate on the global implications.

6 Interpreting the Facts

Before concluding, we discuss the implications of our four facts for international macroeconomic
models and suggest how we hope they can shape the research agenda moving forward. In the same
way that home-country bias in portfolios is a key calibration target in the existing literature, our
evidence demands that – contrary to most current practice – models must also produce portfolios
that strongly exhibit home-currency bias. Further, while home-currency bias arises in some fric-
tionless portfolio models such as Solnik (1974) and Adler and Dumas (1983), it does not manifest
in those models in the same way we show it manifests in the data. In particular, those models do
not replicate our finding that foreign investors almost entirely avoid debt exposure to firms that
issue only in local currency even when they buy the equity of those same firms. Rather, with
perfect markets, investors would not distort their allocation across firms and would instead adjust
any undesired currency exposure in their overall portfolio using a long-short position in short-term
risk-free bonds in the different currencies.

The difficulty in reconciling our facts with frictionless models comes from the insight that, with
complete markets and in the absence of frictions, currency risk can be traded (hedged) separately
and therefore cannot be a source of distortions. Indeed, this is the logic used in Van Wincoop and
Warnock (2006, 2010), Engel and Matsumoto (2009), and Coeurdacier and Gourinchas (2016) to
argue that exchange-rate risk cannot be responsible for home-country bias in equities. We believe
that equity markets are less affected by currency-related frictions because they are real assets, and
we consequently view our results as pointing future work toward models with currency-related
frictions in debt markets.

Finally, future models will have to embed mechanisms capable of generating these patterns
with differential strength across countries and currencies. Otherwise, they will be unable to capture
the special role of the dollar, or to analyze the benefits that accrue to the US economy from the
unique ability of its local currency borrowers to access foreign capital. Such heterogeneity is
necessary by construction to understand the rise of the dollar and the fall of the euro after the
recent global financial and eurozone crises. The literature has examined many asymmetries in
order to generate pricing implications consistent with the observed cross-country variation in the failure of uncovered interest parity, as discussed in Lustig and Verdelhan (2007), Colacito and Croce (2011), Hassan (2013), and Farhi and Gabaix (2016). This paper provides a new set of facts about asymmetries in portfolio allocations across countries. We view the next challenge as presenting a theory of exchange rates consistent with these observed patterns of portfolios in the same way that this earlier literature focused on matching the pricing patterns.

We think that home-currency bias reflects a combination of financial frictions, like hedging costs, and behavioral biases that effectively segment the investor pool for firm debt by currency. One might have thought that global bond investors would be the ones hedging their currency exposures, as prescribed, for instance, by Campbell et al. (2010). Indeed, we find that investors limit their exchange rate risk by avoiding foreign currency debt in the first place, leaving firms with the potential need to hedge. We view the size-dependency of foreign-currency issuance by firms as the result of fixed costs in issuing in foreign currency, and the cost of hedging may be an important component of these fixed costs.29

In our view, these new facts point to models with market segmentation by currency, as in Gabaix and Maggiori (2015), and size-based selection into foreign-currency issuance, as in Melitz (2003). In the appendix, we sketch such a model and provide a simple numerical example. Much like in the trade literature, the model points to interesting real effects of home-currency bias and selection. In each country, all firms can borrow in the local currency. The most productive firms pay a fixed cost in order to issue in foreign currency, which gives them access to a larger pool of investors and therefore lowers the cost of borrowing a given amount of debt. Smaller firms, by contrast, do not borrow enough because their lower borrowing needs do not justify paying the fixed cost, so they remain LC-only firms. Given global willingness to buy US-dollar denominated assets, US firms have the least incentive to issue in foreign currency, so the threshold for paying the fixed cost is higher and US LC-only firms grow closer (compared to LC firms in other countries) to their optimal size. In the model, consistent with what we found in the data, issuing an international currency effectively opens up the capital account for the country’s LC-firms and leads to capital deepening.

7 Conclusion

In this paper, we demonstrated that currency plays a crucial role in understanding global capital allocation. Other than international currencies like the US dollar, investors take on much less

29We verified in several annual reports that firms reporting foreign currency debts commonly report the existence of hedges of the values of these same foreign currencies. The annual reports generally, however, do not provide details on the scope or cost of this hedging.
currency risk when buying the debt of foreign countries than was previously thought, even when those countries are developed countries like Canada, the EMU, or the United Kingdom. Firms can borrow from abroad by issuing in foreign currency, but evidence suggests it is costly to do so. Unless a country issues an international currency, therefore, the firms from that country issuing only in the local currency may have to do without foreign capital. This highlights a potential new benefit that the dollar – today the world’s only international currency – brings to the United States: it effectively opens the capital account for its local currency firms that borrow only in US dollars. Our evidence suggests that the fall of the euro and the rise of the dollar as international currencies since the global financial and eurozone crises of 2008-2009 have important consequences for the global allocation of capital.
References

_ and _ , “Corporate debt structure and the financial crisis,” Journal of Money, Credit and Banking, 2015, 47 (8), 1571–1598.

29

<table>
<thead>
<tr>
<th>Country Code</th>
<th>AUM in 2015 ($ Billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>15,397</td>
</tr>
<tr>
<td>EMU</td>
<td>5,063</td>
</tr>
<tr>
<td>GBR</td>
<td>1,230</td>
</tr>
<tr>
<td>CAN</td>
<td>973</td>
</tr>
<tr>
<td>CHE</td>
<td>374</td>
</tr>
<tr>
<td>AUS</td>
<td>326</td>
</tr>
<tr>
<td>SWE</td>
<td>299</td>
</tr>
<tr>
<td>DNK</td>
<td>116</td>
</tr>
<tr>
<td>NOR</td>
<td>103</td>
</tr>
<tr>
<td>NZL</td>
<td>23</td>
</tr>
</tbody>
</table>

Note: This table reports total Asset Under Management (AUM) for the countries (i.e. domiciles of mutual funds) that have sufficient coverage relative to the levels AUM reported in ICI and therefore are included in our main analyses. All types of funds (equity, fixed income, allocation, and money markets) are included in the AUM figures.
Table 2: Importance of Investment Funds and Bonds Across Countries

<table>
<thead>
<tr>
<th>Investor</th>
<th>Share of Domestic Investment Intermediated by Investment Funds</th>
<th>Share of Non-Financial Corporate Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Debt</td>
<td>Equity</td>
</tr>
<tr>
<td>AUS</td>
<td>73%</td>
<td>45%</td>
</tr>
<tr>
<td>CAN</td>
<td>15%</td>
<td>11%</td>
</tr>
<tr>
<td>CHE</td>
<td>23%</td>
<td>11%</td>
</tr>
<tr>
<td>DNK</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>EMU</td>
<td>40%</td>
<td>17%</td>
</tr>
<tr>
<td>GBR</td>
<td>23%</td>
<td>28%</td>
</tr>
<tr>
<td>NOR</td>
<td>8%</td>
<td>6%</td>
</tr>
<tr>
<td>NZL</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>SWE</td>
<td>48%</td>
<td>34%</td>
</tr>
<tr>
<td>USA</td>
<td>21%</td>
<td>21%</td>
</tr>
</tbody>
</table>

Note: Left panel reports the share of domestic investment in bonds and equities in each economy that is intermediated via domestic investment funds. It is computed using the OECD financial balance sheets by dividing the holdings of “Money market funds” and “Non MMF investment funds” by those of the “Total economy”. “Non MMF investment funds” include mutual funds but also other categories of investment funds. We use the consolidated accounts for a country whenever available, and the unconsolidated otherwise. Right panel reports the fraction of financing of non-financial corporations in each country that comes from bonds versus loans (it omits equity finance and is sourced from the OECD). All statistics are for the year 2015, except for the statistics in the left panel for New Zealand for which the last reporting year, 2013, is used.
Table 3: Reallocation of Securities Among Nationality and Sector of Issuers

<table>
<thead>
<tr>
<th>Investor</th>
<th>Share of Positions Reallocated</th>
<th>Share of Positions Reallocated Away from Tax Havens</th>
<th>Issuing Industry</th>
<th>Share of Positions in Raw Data</th>
<th>Share of Positions in Final Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>10%</td>
<td>1%</td>
<td>Energy</td>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td>CAN</td>
<td>13%</td>
<td>1%</td>
<td>Materials</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>CHE</td>
<td>11%</td>
<td>1%</td>
<td>Industrials</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>DNK</td>
<td>7%</td>
<td>1%</td>
<td>Consumer</td>
<td>14%</td>
<td>17%</td>
</tr>
<tr>
<td>EMU</td>
<td>14%</td>
<td>2%</td>
<td>Health</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>GBR</td>
<td>15%</td>
<td>3%</td>
<td>Financials</td>
<td>44%</td>
<td>38%</td>
</tr>
<tr>
<td>NOR</td>
<td>7%</td>
<td>0%</td>
<td>IT</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>NZL</td>
<td>16%</td>
<td>0%</td>
<td>Telecom</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>SWE</td>
<td>2%</td>
<td>0%</td>
<td>Utilities</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>USA</td>
<td>12%</td>
<td>2%</td>
<td>Real Estate</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Note: The second column of the left panel reports the share of total corporate bond positions (weighted by market value) domiciled in each country in our data where our analysis attributes the borrowing to countries different from that associated with the security in the raw data. The third column of the left panel reports the share of those reallocations that originated in tax havens such as Bermuda or the Cayman Islands. The right panel compares the sectoral share of all positions in our raw data to that in the reallocated data that we analyze. The fact that the share of financials reduces from 44 percent in our raw data to 38 percent in the reallocated data reflects the association of many offshore banking subsidiaries to their onshore industrial parent companies.
Table 4: Home Currency Bias: Within-Firm Variation

<table>
<thead>
<tr>
<th>Currency</th>
<th>AUS</th>
<th>CAN</th>
<th>CHE</th>
<th>DNK</th>
<th>EMU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.561***</td>
<td>0.925***</td>
<td>0.682***</td>
<td>0.789***</td>
<td>0.587***</td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(0.010)</td>
<td>(0.015)</td>
<td>(0.074)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Obs.</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
</tr>
<tr>
<td># of Firms</td>
<td>10555</td>
<td>10555</td>
<td>10555</td>
<td>10555</td>
<td>10555</td>
</tr>
<tr>
<td>R^2</td>
<td>0.777</td>
<td>0.953</td>
<td>0.938</td>
<td>0.905</td>
<td>0.833</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Currency</th>
<th>GBR</th>
<th>NOR</th>
<th>NZL</th>
<th>SWE</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.526***</td>
<td>0.779***</td>
<td>0.456***</td>
<td>0.788***</td>
<td>0.623***</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.031)</td>
<td>(0.172)</td>
<td>(0.028)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Obs.</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
</tr>
<tr>
<td># of Firms</td>
<td>10555</td>
<td>10555</td>
<td>10555</td>
<td>10555</td>
<td>10555</td>
</tr>
<tr>
<td>R^2</td>
<td>0.806</td>
<td>0.925</td>
<td>0.639</td>
<td>0.953</td>
<td>0.873</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: Table reports estimates of the regression in equation (1). The dependent variable is the share of each security bought by each country in our sample: $s_{i,j,p,c}$. We include fixed effects at the ultimate-parent firm level. Controls include maturity and coupon bins. Standard errors in parentheses are clustered at the ultimate-parent firm level. *** p<0.01, ** p<0.05, * p<0.1.
<table>
<thead>
<tr>
<th>(1) MC Only</th>
<th></th>
<th>AUS</th>
<th>CAN</th>
<th>CHE</th>
<th>DNK</th>
<th>EMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td></td>
<td>0.562***</td>
<td>0.924***</td>
<td>0.682***</td>
<td>0.790***</td>
<td>0.586***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>6,725</td>
<td>5,688</td>
<td>8,425</td>
<td>1,186</td>
<td>14,283</td>
</tr>
<tr>
<td>(2) Foreign</td>
<td>(\beta)</td>
<td>0.491***</td>
<td>0.941***</td>
<td>0.664***</td>
<td>0.943***</td>
<td>0.623***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>34,177</td>
<td>33,248</td>
<td>33,985</td>
<td>34,397</td>
<td>25,395</td>
</tr>
<tr>
<td>(3) Foreign, Int’l</td>
<td>(\beta)</td>
<td>0.621***</td>
<td>0.972***</td>
<td>0.711***</td>
<td>-</td>
<td>0.571***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>3,675</td>
<td>3,669</td>
<td>3,382</td>
<td>-</td>
<td>2,764</td>
</tr>
<tr>
<td>(4) Financial</td>
<td>(\beta)</td>
<td>0.570***</td>
<td>0.916***</td>
<td>0.674***</td>
<td>0.788***</td>
<td>0.590***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>13,294</td>
<td>13,294</td>
<td>13,294</td>
<td>13,294</td>
<td>13,294</td>
</tr>
<tr>
<td>(5) Non-Financial</td>
<td>(\beta)</td>
<td>0.579***</td>
<td>0.942***</td>
<td>0.704***</td>
<td>-</td>
<td>0.585***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>14,032</td>
<td>14,032</td>
<td>14,032</td>
<td>-</td>
<td>14,032</td>
</tr>
<tr>
<td>(6) Foreign Financial</td>
<td>(\beta)</td>
<td>0.488***</td>
<td>0.919***</td>
<td>0.666***</td>
<td>0.966***</td>
<td>0.632***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>12,538</td>
<td>12,376</td>
<td>12,564</td>
<td>12,599</td>
<td>9,768</td>
</tr>
<tr>
<td>(7) Foreign Non-Fin.</td>
<td>(\beta)</td>
<td>0.548***</td>
<td>0.966***</td>
<td>0.671***</td>
<td>-</td>
<td>0.608***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>13,754</td>
<td>12,852</td>
<td>13,649</td>
<td>-</td>
<td>10,982</td>
</tr>
<tr>
<td>(8) SF, SV, LS</td>
<td>(\beta)</td>
<td>0.568***</td>
<td>0.924***</td>
<td>0.685***</td>
<td>0.810***</td>
<td>0.604***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>61,047</td>
<td>61,047</td>
<td>61,047</td>
<td>61,047</td>
<td>61,047</td>
</tr>
<tr>
<td>(9) All bonds</td>
<td>(\beta)</td>
<td>0.548***</td>
<td>0.893***</td>
<td>0.675***</td>
<td>0.764***</td>
<td>0.605***</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>242,692</td>
<td>242,692</td>
<td>242,692</td>
<td>242,692</td>
<td>242,692</td>
</tr>
<tr>
<td>(10) Residency</td>
<td>(\beta)</td>
<td>0.554***</td>
<td>0.909***</td>
<td>0.679***</td>
<td>0.792***</td>
<td>0.585***</td>
</tr>
<tr>
<td>Resid.</td>
<td></td>
<td>0.039**</td>
<td>0.043**</td>
<td>0.036</td>
<td>-0.022</td>
<td>0.015</td>
</tr>
<tr>
<td>Obs.</td>
<td></td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
</tr>
</tbody>
</table>

Note: (1) Includes only the debt of firms that issues in multiple currencies (MC), including the local currency of the issuer. (2) Includes only foreign firms from the perspective of the investing country. (3) Includes only the international issuance of foreign firms. (4) Includes only financial firms. (5) Includes only non-financial firms. (6) Includes only foreign financial firms. (7) Includes only foreign non-financial firms. (8) In addition to corporate bonds, includes structured finance (SF), sovranational issuance (SV), and local government debt (LS). (9) Includes all bonds. (10) Sample is the benchmark set of corporates; regression specification includes the usual dummy for the bond being denominated in the investing country’s currency and also includes a dummy for the bond being issued in the investing country. Controls include maturity and coupon bins. Standard errors are omitted for readability, but are clustered at the ultimate-parent firm level. *** p<0.01, ** p<0.05, * p<0.1. In the case of Denmark, for some specifications, there is no variation available to estimate the regression and therefore we leave those specifications blank.
Table 5: Home Currency Bias: Robustness (Continued)

<table>
<thead>
<tr>
<th></th>
<th>GBR</th>
<th>NOR</th>
<th>NZL</th>
<th>SWE</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) MC Only</td>
<td>β</td>
<td>0.521***</td>
<td>0.778***</td>
<td>0.458***</td>
<td>0.787***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>10,703</td>
<td>3,028</td>
<td>3,714</td>
<td>3,822</td>
</tr>
<tr>
<td>(2) Foreign</td>
<td>β</td>
<td>0.526***</td>
<td>0.775***</td>
<td>0.444**</td>
<td>0.729***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>32,409</td>
<td>33,709</td>
<td>35,352</td>
<td>34,260</td>
</tr>
<tr>
<td>(3) Foreign, Int’l</td>
<td>β</td>
<td>0.545***</td>
<td>0.712***</td>
<td>0.787***</td>
<td>0.633***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>3,175</td>
<td>3,835</td>
<td>3,844</td>
<td>3,818</td>
</tr>
<tr>
<td>(4) Financial</td>
<td>β</td>
<td>0.471***</td>
<td>0.812***</td>
<td>0.559***</td>
<td>0.804***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>13,294</td>
<td>13,294</td>
<td>13,294</td>
<td>13,294</td>
</tr>
<tr>
<td>(5) Non-Financial</td>
<td>β</td>
<td>0.606***</td>
<td>0.481***</td>
<td>0.143</td>
<td>0.704***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>14,032</td>
<td>14,032</td>
<td>14,032</td>
<td>14,032</td>
</tr>
<tr>
<td>(6) Foreign Financial</td>
<td>β</td>
<td>0.458***</td>
<td>0.820***</td>
<td>0.559***</td>
<td>0.748***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>11,902</td>
<td>12,804</td>
<td>13,283</td>
<td>12,585</td>
</tr>
<tr>
<td>(7) Foreign Non-Fin.</td>
<td>β</td>
<td>0.606***</td>
<td>0.316***</td>
<td>0.059**</td>
<td>0.692***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>13,094</td>
<td>13,851</td>
<td>13,992</td>
<td>13,856</td>
</tr>
<tr>
<td>(8) SF, SV, LS</td>
<td>β</td>
<td>0.539***</td>
<td>0.741***</td>
<td>0.393***</td>
<td>0.788***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>61,047</td>
<td>61,047</td>
<td>61,047</td>
<td>61,047</td>
</tr>
<tr>
<td>(9) All bonds</td>
<td>β</td>
<td>0.536***</td>
<td>0.743***</td>
<td>0.365***</td>
<td>0.757***</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>242,692</td>
<td>242,692</td>
<td>242,692</td>
<td>242,692</td>
</tr>
<tr>
<td>(10) Residency</td>
<td>β</td>
<td>0.525***</td>
<td>0.773***</td>
<td>0.357**</td>
<td>0.791***</td>
</tr>
<tr>
<td></td>
<td>Resid.</td>
<td>0.008</td>
<td>0.041</td>
<td>0.298**</td>
<td>-0.045</td>
</tr>
<tr>
<td></td>
<td>Obs.</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
<td>35,479</td>
</tr>
</tbody>
</table>

Note: (1) Includes only the debt of firms that issues in multiple currencies (MC), including the local currency of the issuer. (2) Includes only foreign firms from the perspective of the investing country. (3) Includes only the international issuance of foreign firms. (4) Includes only financial firms. (5) Includes only non-financial firms. (6) Includes only foreign financial firms. (7) Includes only foreign non-financial firms. (8) In addition to corporate bonds, includes structured finance (SF), sovereign issuance (SV), and local government debt (LS). (9) Includes all bonds. (10) Sample is the benchmark set of corporates; regression specification includes the usual dummy for the bond being denominated in the investing country’s currency and also includes a dummy for the bond being issued in the investing country. Controls include maturity and coupon bins. Standard errors are omitted for readability, but are clustered at the ultimate-parent firm level. *** p<0.01, ** p<0.05, * p<0.1.
Table 6: Home Country Bias or Home Currency Bias?

<table>
<thead>
<tr>
<th></th>
<th>Panel A: Only Country Indicator</th>
<th>Panel B: Only Currency Indicator</th>
<th>Panel C: Country and Currency Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\gamma_{j,0}$ R^2</td>
<td>$\beta_{j,0}$ R^2</td>
<td>$\gamma_{j,1}$ $\beta_{j,1}$ R^2</td>
</tr>
<tr>
<td>AUS</td>
<td>0.091 0.059</td>
<td>0.685 0.587</td>
<td>0.031 0.669 0.593</td>
</tr>
<tr>
<td>CAN</td>
<td>0.492 0.403</td>
<td>0.941 0.919</td>
<td>0.034 0.914 0.921</td>
</tr>
<tr>
<td>CHE</td>
<td>0.371 0.240</td>
<td>0.825 0.884</td>
<td>0.067 0.791 0.890</td>
</tr>
<tr>
<td>DNK</td>
<td>0.565 0.581</td>
<td>0.795 0.822</td>
<td>0.051 0.746 0.824</td>
</tr>
<tr>
<td>EMU</td>
<td>0.419 0.270</td>
<td>0.682 0.692</td>
<td>0.085 0.636 0.700</td>
</tr>
<tr>
<td>GBR</td>
<td>0.221 0.135</td>
<td>0.551 0.658</td>
<td>0.031 0.537 0.660</td>
</tr>
<tr>
<td>NOR</td>
<td>0.554 0.504</td>
<td>0.853 0.881</td>
<td>0.034 0.825 0.881</td>
</tr>
<tr>
<td>NZL</td>
<td>0.115 0.043</td>
<td>0.569 0.500</td>
<td>0.051 0.557 0.508</td>
</tr>
<tr>
<td>SWE</td>
<td>0.545 0.522</td>
<td>0.810 0.920</td>
<td>0.040 0.778 0.921</td>
</tr>
<tr>
<td>USA</td>
<td>0.482 0.400</td>
<td>0.677 0.777</td>
<td>0.089 0.620 0.785</td>
</tr>
</tbody>
</table>

Note: Panel A reports estimates of the regression in equation (2). Panel B reports estimates of the regression in equation (3). Panel C reports estimates of the regression in equation (4). The dependent variable is the share of each security (at the CUSIP 9-digit level) bought by each country in our sample: $s_{j,p,c}$. Standard errors not reported for readability.
Table 7: Firm Size and Foreign Currency Debt Issuance

<table>
<thead>
<tr>
<th>Measure of Size (Log $B)</th>
<th>Bond Issuance</th>
<th>EBIT</th>
<th>Assets</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUS</td>
<td>0.050***</td>
<td>0.075***</td>
<td>0.041***</td>
<td>0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.009)</td>
<td>(0.004)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Obs.</td>
<td>4,354</td>
<td>341</td>
<td>1,205</td>
<td>1,106</td>
</tr>
<tr>
<td></td>
<td>0.033***</td>
<td>0.100***</td>
<td>0.042***</td>
<td>0.058***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.010)</td>
<td>(0.004)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,361</td>
<td>258</td>
<td>1,141</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>0.023*</td>
<td>0.049**</td>
<td>0.051**</td>
<td>0.072***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.025)</td>
<td>(0.022)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Obs.</td>
<td>342</td>
<td>88</td>
<td>114</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>0.054***</td>
<td>0.126***</td>
<td>0.087***</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.020)</td>
<td>(0.030)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>Obs.</td>
<td>231</td>
<td>17</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>0.041***</td>
<td>0.081***</td>
<td>0.060***</td>
<td>0.058***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Obs.</td>
<td>4,851</td>
<td>910</td>
<td>1,294</td>
<td>1,231</td>
</tr>
<tr>
<td></td>
<td>0.053***</td>
<td>0.108***</td>
<td>0.079***</td>
<td>0.074***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.009)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Obs.</td>
<td>4,495</td>
<td>361</td>
<td>610</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>0.099***</td>
<td>0.116***</td>
<td>0.096***</td>
<td>0.156***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.035)</td>
<td>(0.024)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Obs.</td>
<td>386</td>
<td>52</td>
<td>83</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>0.078***</td>
<td>0.204***</td>
<td>0.170***</td>
<td>0.100***</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Obs.</td>
<td>180</td>
<td>30</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>0.064***</td>
<td>0.100***</td>
<td>0.056***</td>
<td>0.052***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.009)</td>
<td>(0.006)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Obs.</td>
<td>714</td>
<td>90</td>
<td>185</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>0.011***</td>
<td>0.031***</td>
<td>0.013***</td>
<td>0.013***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Obs.</td>
<td>17,364</td>
<td>2,150</td>
<td>3,471</td>
<td>3,246</td>
</tr>
</tbody>
</table>

Note: This table reports the results from the probit regression in equation (5). Each row is a different regression where “Size” is defined as (1) billions of USD of principal of bond issuance, (2) billions of USD of earnings before interest and tax (EBIT), (3) billions of dollars of total assets, and (4) billions of dollars of total revenue. Every specification includes two-digit SIC industry fixed effects. All estimates use robust standard errors and the coefficients reported are average marginal effects. All specifications are run using data for 2015. *** p<0.01, ** p<0.05, * p<0.1.
Table 8: International Currencies: The Rise of the Dollar and Fall of the Euro

<table>
<thead>
<tr>
<th>Specification</th>
<th>2005q4</th>
<th>2008q4</th>
<th>2015q4</th>
<th>Long Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) All Bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD Share</td>
<td>0.561</td>
<td>0.667</td>
<td>0.680</td>
<td>0.119</td>
</tr>
<tr>
<td>EUR Share</td>
<td>0.312</td>
<td>0.220</td>
<td>0.170</td>
<td>-0.143</td>
</tr>
<tr>
<td>(2) All Bonds Held by Foreigners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD Share</td>
<td>0.474</td>
<td>0.464</td>
<td>0.581</td>
<td>0.106</td>
</tr>
<tr>
<td>EUR Share</td>
<td>0.282</td>
<td>0.262</td>
<td>0.162</td>
<td>-0.120</td>
</tr>
<tr>
<td>(3) Govt Bonds Held by Foreigners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD Share</td>
<td>0.484</td>
<td>0.466</td>
<td>0.488</td>
<td>0.004</td>
</tr>
<tr>
<td>EUR Share</td>
<td>0.164</td>
<td>0.171</td>
<td>0.104</td>
<td>-0.060</td>
</tr>
<tr>
<td>(4) Corp Bonds Held by Foreigners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD Share</td>
<td>0.447</td>
<td>0.448</td>
<td>0.610</td>
<td>0.163</td>
</tr>
<tr>
<td>EUR Share</td>
<td>0.361</td>
<td>0.313</td>
<td>0.207</td>
<td>-0.153</td>
</tr>
<tr>
<td>(5) Financial Corp Bonds by Foreigners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD Share</td>
<td>0.397</td>
<td>0.429</td>
<td>0.545</td>
<td>0.148</td>
</tr>
<tr>
<td>EUR Share</td>
<td>0.402</td>
<td>0.333</td>
<td>0.252</td>
<td>-0.150</td>
</tr>
<tr>
<td>(6) Non-Financial Corp Bonds by Foreigners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD Share</td>
<td>0.609</td>
<td>0.599</td>
<td>0.717</td>
<td>0.108</td>
</tr>
<tr>
<td>EUR Share</td>
<td>0.234</td>
<td>0.222</td>
<td>0.160</td>
<td>-0.074</td>
</tr>
<tr>
<td>(7) Corp Bonds by Foreigners, Ex-USA/EMU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USD Share</td>
<td>0.291</td>
<td>0.235</td>
<td>0.327</td>
<td>0.036</td>
</tr>
<tr>
<td>EUR Share</td>
<td>0.191</td>
<td>0.211</td>
<td>0.127</td>
<td>-0.065</td>
</tr>
</tbody>
</table>

Note: This table reports the portfolio shares of euro and dollar denominated bonds at year end in 2005, 2008, and 2015, as well as the difference between the 2015 and 2005 share (last column). We study seven different portfolio configurations. For each configuration the dollar share is reported in the first row and the euro share in the second row.
Figure 1: Morningstar’s Coverage of US Mutual Fund Assets Under Management

(a) All US Mutual Funds

(b) US Equity Mutual Funds

(c) US Fixed Income Mutual Funds

(d) US Hybrid Mutual Funds

Note: The graphs plot total Asset Under Management (AUM) for open-end mutual funds domiciled in the US. The blue solid line plots data on total AUM provided by the Investment Company Institute (ICI). The red dashed line reports the total AUM in our data. Panel (a) includes all type of mutual funds (equity, fixed income, hybrid allocation, money market funds). Panels (b), (c), and (d) focus separately on each type of fund.
Figure 2: Morningstar’s Coverage of Non-US Mutual Fund Assets Under Management

(a) Non-US Equity Mutual Funds

(b) Non-US Fixed Income Mutual Funds

(c) EMU Mutual Funds (All)

(d) GBR Mutual Funds (All)

Note: The graphs plot total Asset Under Management (AUM) for open-end mutual funds domiciled outside the US (Panels (a) and (b)), in the EMU (Panel (c)), and in the United Kingdom (Panel (d)). The blue solid line plots data on total AUM provided by the Investment Company Institute (ICI). The red dashed line reports the total AUM in our data. Panel (a) includes only equity focused mutual funds. Panel (b) includes only fixed-income mutual funds. Panels (c) and (d) include all types of funds (equity, fixed income, allocation, money market funds).
Figure 3: Share of Investment in Country i’s Bonds Denominated in i’s Currency, 2015

(a) All Bonds

Note: In Panel (a) the solid red shaded bars show for each country i the share of bonds denominated in i’s local currency out of all domestic investment in bonds. In Panel (a) the hollow blue bars show for each (destination) country i the share of bonds denominated in i’s local currency out of all foreign investment in i’s bonds. Panel (b) reports the same statistics as Panel (a) except the analysis is limited to sovereign bonds.
Figure 4: Share of Investment in Country i's Corporate Bonds Denominated in i’s Currency, 2015

Note: The solid red shaded bars show for each country i the share of bonds denominated in i’s local currency out of all domestic investment in corporate bonds. The hollow blue bars show for each (destination) country i the share of bonds denominated in i’s local currency out of all foreign investment in i’s corporate bonds.
Note: In Panel (a) the hollow black bars show for each country i the share of bonds denominated in i’s local currency out of all investment abroad in corporate bonds by country i. The solid red bars show for each country i the share of bonds denominated in US dollars out of all investment abroad in corporate bonds by country i. In Panel (a) for each country we have excluded all investments done in the United States in order to focus purely on the dollar as an international currency. Panel (b) reports the same statistics as Figure 4 except that all dollar-denominated bonds are excluded from the calculations.
Figure 6: Shares of Foreign Currency Bonds and Foreign Lending

(a) CAN

(b) EMU

(c) GBR

(d) USA

Note: In each panel, each bubble corresponds to a single firm based in Canada, the EMU, the United Kingdom and the United States, respectively. The size of each bubble is proportional to the total amount borrowed by that particular firm. The x-axis plots the share of a firm’s debt that is in foreign currency and the y-axis plots the share of that firm’s debt that is owned by foreign investors. Both variables are measured using the positions in the Morningstar data in 2015.
Figure 7: Number of Currencies and Firm Size

(a) CAN
(b) EMU
(c) GBR
(d) USA

Note: In each figure, firms are ranked in order of the total amount of debt they have issued with the largest firm ranked first. The y-axis denotes the total number of currencies in which that particular firm has a bond that is owned by a mutual fund investor in the Morningstar data in 2015. Firms are ranked within each of these four economies: Canada (a), EMU (b), United Kingdom (c), and the United States (d).
Figure 8: Canadian Corporate Bonds Held in Domestic and Foreign Portfolios, 2015

Note: This figure plots the corporate bond portfolio of domestic and foreign investors in Canada. The portfolio positions in each issuer are ranked according to their size in the domestic portfolio. The left panel considers all issuers and the right panel considers only firms that issue entirely in Canadian dollars, the local currency. Red dots indicate the domestic positions and hollow blue diamonds indicate foreign positions.
Figure 9: Corporate Bonds from LC-only Issuers in Domestic and Foreign Portfolios, 2015

Note: This figure plots the corporate bond portfolio of domestic and foreign investors in Canada (a), the EMU (b), the United Kingdom (c), and the United States (d). The portfolio positions in each issuer are ranked according to their size in the domestic portfolio. Each figure plots only those firms that issue entirely in the local currency. Red dots indicate the domestic positions and hollow blue diamonds indicate foreign positions.
Figure 10: Aggregate Contributions to Borrowing from LC-only Firms, 2015

(a) LC-only Firms Aggregate Shares of Domestic and Foreign Bond Portfolios

(b) LC-only Firms Aggregate Shares of Total Borrowing

Note: The top panel reports the share of all debt that is issued by firms that borrow only in local currency in domestic investor’s domestic debt portfolio (red) and in foreign investor’s debt portfolio in that particular country (blue). These bars are equal to the sum of the value of the red dots and blue diamonds, respectively, in Figure 9. The bottom panel plots the share of all bonds issued by firms in each country that is issued by firms that borrow only in the local currency.
Figure 11: LC-only Firms Aggregate Shares of Domestic and Foreign Equity Portfolios

Note: Figure reports the share of all equity that is issued by firms that borrow only in local currency in domestic investor’s domestic equity portfolio (red) and in foreign investor’s equity portfolio in that particular country (blue).
Figure 12: Joint Holdings of Firms’ Debt and Equity by Foreign and Domestic Investors

(a) CAN

(b) EMU

(c) GBR

(d) USA

Note: This figure plots the relationship between how overweight foreign investors are in a firm’s debt and equity. We measure how overweight foreigners are as the logarithm of the ratio of the share of all corporate bond or equity investment that goes to firm p as a share of investment in country i. Foreign investors are more overweight the debt (equity) of firm p compared to domestic investors when this ratio is higher. This figure plots the debt ratio on the vertical axis and the equity ratio on the horizontal axis for each firm in our sample that has a both an equity and a debt security. We exclude firms for which the foreign or domestic portfolio share, in either debt or equity, is zero. Firms that borrow only in the local currency are depicted with red circles and those that borrow in multiple currencies (MC) with blue ones. The size of each circle is proportional to the total market value of total debt of the firm.
Figure 13: Dollar and Euro Shares of Cross-Border Corporate Bond Positions

Note: Figure plots the share of dollar and euro denominated corporate bonds in total cross-border holdings.
Figure 14: International Currencies: The Rise of the Dollar and Fall of the Euro in Cross-Border Asset Trade

Panel (a) plots the share of dollar and euro denominated bonds in total cross-border holdings. Panel (b) plots the analogous shares but only for corporate bonds and further excludes positions for which either the US or the EMU are either the borrower or the lender. Panel (c) plots the currency shares estimated using bilateral country fixed effects on the dataset constructed with fixed exchange rates at 2005 levels and with weights reflecting the position sizes in the first quarter of 2009. Finally, Panel (d) shows that these trends hold also for non-financial borrowers.

Note: Panel (a) plots the share of dollar and euro denominated bonds in total cross-border holdings. Panel (b) plots the analogous shares but only for corporate bonds and further excludes positions for which either the US or the EMU are either the borrower or the lender. Panel (c) plots the currency shares estimated using bilateral country fixed effects on the dataset constructed with fixed exchange rates at 2005 levels and with weights reflecting the position sizes in the first quarter of 2009. Finally, Panel (d) shows that these trends hold also for non-financial borrowers.