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1 Introduction

Findings from the Oregon Health Insurance Experiment are considered the “gold standard”

for evidence in health economics because they are based on a randomized lottery. The state

of Oregon conducted the lottery in 2008 as a fair way to expand eligibility for its Medicaid

health insurance program to a limited number of uninsured individuals. The lottery also

effectively created a randomized experiment that facilitated evaluation of the impact of

expanding health insurance coverage.

A headline finding from the Oregon experiment is that health insurance coverage in-

creased emergency room (ER) utilization (Taubman et al., 2014). Legislation requires that

emergency rooms see all patients regardless of coverage, so the uninsured often access the

healthcare system through the ER. There was hope that coverage would decrease ER uti-

lization, either because of substitution toward primary care or because of improved health.

However, it is plausible that coverage increased ER utilization because formerly uninsured

individuals could visit the ER at lower personal cost after gaining coverage. The sign and

magnitude of the treatment effect of insurance coverage on ER utilization are important

for policy evaluation because care provided in the ER is expensive, but the insured do not

necessarily value additional ER care at its cost.

The finding that ER utilization increased in Oregon was particularly surprising because

previous evidence from an expansion of insurance coverage due to the Massachusetts health

reform of 2006 showed that ER utilization decreased or stayed the same (Chen et al., 2011;

Smulowitz et al., 2011; Kolstad and Kowalski, 2012; Miller, 2012). Unlike the Oregon policy,

the Massachusetts reform was a natural experiment that did not involve randomization.

Therefore, it is tempting to dismiss results based on the Massachusetts reform and to focus

on results from Oregon as the definitive answer. Discussion of the Oregon experiment and

the Massachusetts reform in the New York Times has done just that (Tavernise, 2014).

I start from the premise that when results from two experiments give different answers,

it need not be the case that one experiment must be flawed. Instead, it could be the

case that each experiment yields a different local average treatment effect (LATE), in the

terminology of Imbens and Angrist (1994). If each LATE is derived from the same underlying

marginal treatment effect (MTE) function, as introduced by Björklund and Moffitt (1987)

and developed by Heckman and Vytlacil (1999, 2001, 2005), Carneiro et al. (2011), and

Brinch et al. (2017), then it could be possible to use that MTE function to recover the two

different LATEs, thereby reconciling the results. Although the MTE literature generally

focuses on a single context, I aim to use treatment effect heterogeneity that I find within the

Oregon context to reconcile results across the Oregon and Massachusetts contexts.

To do so, I begin with an MTE model shown by Vytlacil (2002) to assume no more than
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the LATE assumptions of independence and monotonicity proposed by Imbens and Angrist

(1994). In my exposition of the model, I emphasize the link between the MTE and always

takers, compliers, and never takers, using the terminology of Angrist et al. (1996). In that

terminology, the LATE is the average treatment effect on “compliers” who gain coverage if

and only if they win the lottery. However, the MTE function also characterizes the treatment

effects on “always takers” who gain coverage regardless of the lottery outcome and “never

takers” who do not gain coverage regardless of the lottery outcome.

I use simple figures derived from the MTE model to make clear that the LATE assump-

tions imply an ordering from always takers to compliers to never takers, originally shown by

Vytlacil (2002). The intuition behind the ordering is simple. Always takers are individuals

that are already eligible for coverage under the existing policy, compliers are individuals

that become eligible for coverage if they win the lottery implemented by the new policy, and

never takers are remaining individuals do not become eligible for coverage if they win the

lottery implemented by the new policy. Future policies that expand coverage could enroll

never takers, and future policies that contract coverage could disenroll always takers. There-

fore, even though the treatment effect on compliers is relevant for the policy implemented

by the experiment, treatment effects on always and never takers could be relevant for future

policies. Treatment effects on always and never takers could also be relevant for policies in

other contexts.

To reconcile the LATE from the Oregon context with the LATE from the Massachusetts

context, I proceed in three steps. First, starting with the Oregon experiment as the “gold

standard,” I assess whether I find heterogeneity across the unobservable that separates always

takers, compliers, and never takers. Second, I use evidence from Massachusetts to assess

whether heterogeneity across the unobservable within Oregon can reconcile the Oregon and

Massachusetts LATEs. Third, I assess whether observables alone can explain heterogeneity

and reconcile the Oregon and Massachusetts LATEs.

As the first step, I estimate the model using publicly-available data from the Oregon

experiment (Finkelstein, 2013).1 Within my analysis sample, I replicate a positive LATE,

which shows that the average treatment effect of insurance on ER utilization is positive for

compliers. However, only 26% of individuals are compliers, while 15% are always takers

and 59% are never takers. By making comparisons across these groups under the MTE

model that assumes no more than the LATE assumptions, I find heterogeneous selection

into coverage. Specifically, compliers are adversely selected relative to never takers in the

sense that they use the ER more in the absence of insurance. Under transparent ancillary

1Publicly available data are rare in health economics, because many sources of data are proprietary and
confidential. I am grateful to the investigators of the Oregon Health Insurance Experiment for making their
data available. By using publicly available data, I encourage replication and future work.
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assumptions, I find treatment effect heterogeneity. Specifically, I find a downward-sloping

MTE function. The downward slope indicates that the treatment effect of insurance on

ER utilization decreases as enrollment increases. It is so pronounced that even though the

average treatment effect on compliers is positive, the average treatment effect on never takers

is negative.

As the second step in my reconciliation of the Oregon and Massachusetts LATEs, I bring

in evidence from Massachusetts. Recasting my previous work on the Massachusetts reform

from Hackmann et al. (2015) in terms of the MTE model with ancillary assumptions, I show

that the MTE function within Massachusetts is also downward-sloping. Given that I find

downward-sloping MTE functions within Oregon and Massachusetts, I use data from Kolstad

and Kowalski (2012) to characterize the Massachusetts reform as an expansion of coverage

along the Oregon MTE. Because enrollment levels were high in Massachusetts before the

reform, I predict that Massachusetts compliers respond to insurance like a subset of Oregon

never takers. By re-weighting the Oregon MTE to attain a Massachusetts LATE, I predict a

decrease in ER utilization in Massachusetts of the same order of magnitude as the decrease

found by Miller (2012). MTE-reweighting thus offers a plausible pathway to reconcile the

increase in ER utilization found in Oregon with the decrease in ER utilization found in

Massachusetts.

As the third step, I examine observables to assess whether I can reconcile the Oregon and

Massachusetts LATEs using observables alone. I begin by examining self-reported health,

which is elicited as excellent, very good, good, fair, or poor. Finkelstein et al. (2012) shows

that individuals who won the lottery reported better self-reported health, so I only compare

the self-reported health of groups without coverage: compliers who lost the lottery and

never takers. I find that 55% of Oregon compliers who lost the lottery report fair or poor

health, while only 34% of Oregon never takers report fair or poor health. The difference is

statistically different from zero, indicating adverse selection on self-reported health. I also

find suggestive evidence of adverse selection on self-reported health within Massachusetts.

However, the difference between Massachusetts and Oregon is even more striking than the

difference within Massachusetts: only 21% of Massachusetts compliers report fair or poor

health, which suggests that Massachusetts compliers are healthier than Oregon compliers.

These comparisons suggest an important mechanism for my findings—individuals in worse

health gain coverage in early expansions and increase their ER utilization upon gaining

coverage, but individuals in better health gain coverage in later expansions and decrease

their ER utilization upon gaining coverage. However, I cannot directly test this mechanism

by including self-reported heath in the Oregon MTE because self-reported health is only

observed with coverage for always takers.
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Therefore, I turn to a different observable, ER utilization from before the lottery took

place, which is correlated with self-reported health and available for all individuals within the

Oregon data. Before the lottery took place, always takers visited the ER more than compliers,

who visited the ER more than never takers, indicating adverse selection. When I include

previous ER utilization in the Oregon MTE, I can explain all of the heterogeneity in the

treatment effect. Therefore, differences in previous ER utilization between Oregon compliers

and Massachusetts compliers could explain the entire difference between the positive Oregon

LATE and the negative Massachusetts LATE. Unfortunately, I do not observe previous ER

utilization in my Massachusetts data, so I cannot use it directly to reconcile the Oregon and

Massachusetts LATEs.

Finally, I turn to the three common observables available in the Oregon and Mas-

sachusetts data – age, gender, and English-speaking status – and explore whether I can

use them to reconcile the Oregon and Massachusetts LATEs. I cannot reconcile the LATEs

using LATE-reweighting following Angrist and Fernandez-Val (2013) and Hotz et al. (2005).

This result is not surprising. LATE-reweighting compares compliers with different values of

the common observables, but my analysis of the Oregon MTE shows that the meaningful

treatment effect heterogeneity is across the unobservable that separates always takers from

compliers from never takers, not across compliers with different values of the common observ-

ables. MTE-reweighting effectively allows me to extrapolate from Oregon to Massachusetts

using an unobservable that captures previous ER utilization and health, as well as the com-

mon observables. With MTE-reweighting, I can reconcile the positive LATE from Oregon

with the negative LATE from Massachusetts, and I obtain an extrapolated Massachusetts

LATE that is comparable in magnitude to the estimate from Miller (2012).

2 Model

I begin with a model shown by Vytlacil (2002) to assume no more than the LATE assump-

tions. To ensure that I do not introduce additional assumptions, I follow the exposition from

Heckman and Vytlacil (2005) closely. However, I adapt the model for my empirical context,

and I try to build intuition using simple figures.

2.1 First Stage: Enrollment

Let the observed binary variable D represent enrollment in Medicaid, which is the “treat-

ment” offered by the Oregon Health Insurance Experiment. Let VT represent potential utility

in the treated state (enrolled in Medicaid, D = 1), and let VU represent potential utility in

the untreated state (not enrolled in Medicaid, D = 0). The following definition relates
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realized utility V to the potential utilities:

V = VU + (VT − VU)D. (1)

I specify the net benefit of treatment in terms of the potential utilities as follows:

VT − VU = µD(Z,X)− νD, (2)

where µD(·) is an unspecified function, Z is an observed binary instrument, X is an optional

observed vector of covariates, and νD is an unobserved term with an unspecified distribution.

In the Oregon context, Z represents the outcome of the randomized lottery. Individuals with

Z = 0 are lottery losers. I refer to them as the “control group.” Individuals with Z = 1

are lottery winners. I refer to them as the “intervention group” because they receive the

intervention, an opportunity to be eligible for Medicaid. I need different terminology for the

intervention group (Z = 1) and the treated group (D = 1) because not all Oregon lottery

winners enroll in Medicaid. To derive an equation for treatment as a function of the lottery

outcome, I assume

A.1. (Continuity) The cumulative distribution function of νD conditional on X, which I

denote with F (· | X), is absolutely continuous with respect to the Lebesgue measure.

A.2. (Independence) The random vectors (νD,γT ) and (νD,γU) are independent of Z condi-

tional on X, where γT and γU are unobserved terms introduced in the second stage.

A.3. (Instrument Relevance) µD(Z,X) is a nondegenerate random variable conditional on

X.

Under A.1, the transformation of νD by the function F (· | X) is a normalization that yields

UD = F (νD | X), which is uniformly distributed between 0 and 1, as I show for completeness

in Appendix A. Since νD enters negatively into the net benefit of treatment, I interpret

UD as the normalized “unobserved net cost of treatment.” The further imposition of A.2

implies the following treatment equation, which states that individuals are treated if their

unobserved net cost of treatment is weakly less than a threshold:

D = 1{UD ≤ P(D = 1 | Z = z,X)}. (3)

I show the derivation in Appendix B for completeness. Under A.3, the threshold is different

for lottery winners and losers with the same vector of covariates X, which yields the following
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two special cases:

D = 1{UD ≤ pCX} where pCX = P
(
D = 1 | Z = 0, X), (4)

D = 1{UD ≤ pIX} where pIX = P
(
D = 1 | Z = 1, X). (5)

where pCX is the probability of treatment in the control group conditional on X, and pIX is

the probability of treatment in the intervention group conditional on X.

As I show in Figure 1, these two special cases of the treatment equation allow me to

identify three distinct ranges of the unobserved net cost of treatment, UD. As originally

shown by Vytlacil (2002), the three ranges of UD correspond to ranges for always takers,

compliers, and never takers. Within my analysis sample from the Oregon experiment, 15%

of lottery losers enroll and 41% of lottery winners enroll. Accordingly, in Figure 1, I depict

pC = 0.15 and pI = 0.41, suppressing X to emphasize that these quantities are averages in

the full analysis sample, not in a sample conditional on X. In the top line of Figure 1, I depict

the lottery losers. By (4), I infer that treated enrolled lottery losers have 0 ≤ UD ≤ 0.15.

Treated lottery losers must be always takers because always takers are treated regardless of

the lottery outcome. In the middle line of Figure 1, I depict the lottery winners. By (5),

I infer that the untreated lottery winners have 0.41 < UD ≤ 1. Untreated lottery winners

must be never takers because never takers are untreated regardless of the lottery outcome.

In the bottom line of Figure 1, I depict UD for lottery losers and winners on the same axis,

and I label the implied ranges of UD for always and never takers. Individuals with values

of UD in the middle range, 0.15 < UD ≤ 0.41, enroll in Medicaid if they win the lottery,

but they do not enroll if they lose the lottery. These individuals must be compliers because

compliers receive treatment if and only if they win the lottery.

Figure 1: Ranges of UD for Always Takers, Compliers, and Never Takers

0 pC = 0.15 pI = 0.41 1

Always
Takers

Compliers Never Takers

Z = 1

Z = 0 D = 1 D = 0

D = 1 D = 0

UD: unobserved net cost of treatment

I emphasize that the ordering from always takers to compliers to never takers along

UD is an ordering across an important margin: the margin of enrollment in Medicaid. As

Medicaid enrollment expands, always takers enroll first, followed by compliers, followed by
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never takers.

There could be several mechanisms for this ordering, and all of those mechanisms are

captured by the unobserved term UD. In the Oregon experiment, individuals entered the

experiment by joining a waitlist for Medicaid, but they were only required to provide eligi-

bility documentation if they won. Therefore, some individuals who were already eligible for

Medicaid signed up for the lottery, perhaps because they were not aware of their eligibility,

and these individuals could become always takers. On the other side of the spectrum, some

individuals did not enroll in Medicaid even if they won, either because they were ineligible

or because they did not submit eligibility information in the required timeframe. Therefore,

UD could reflect eligibility, the submission of eligibility information, or other correlated fac-

tors. However, the model does not require me to specify what is included in UD. Instead, it

gives me a framework to think about and examine empirically what factors separate always

takers from compliers and never takers. As part of that framework, I can consider their ER

utilization in the second stage.

2.2 Second Stage: ER Utilization

I relate Medicaid enrollment D to realized ER utilization Y as follows:

Y = YU + (YT − YU)D, (6)

where I specify potential ER utilization with Medicaid YT and without Medicaid YU as

follows:

YT = gT (X,UD, γT ) (7)

YU = gU(X,UD, γU), (8)

where gU(·) and gT (·) are unspecified functions that need not be additively separable in their

observed and unobserved components,2 X is the same optional vector of observed covariates

from the first stage, UD is the normalized unobserved net cost of treatment from the first

stage, and γT and γU represent additional unobserved terms with unspecified distributions

in the second stage. To make sure that average treated and untreated potential outcomes

are defined for each X, I assume:

A.4. (Treated and Untreated) 0 < P(D = 1 | X) < 1.

A.5. (Second Stage Technical Assumption) The values of E[YT ] and E[YU ] are finite.

2Vytlacil (2002) shows that the additive separability of the observed and unobserved components of (2)
implies the LATE monotonicity assumption of Imbens and Angrist (1994) in the first stage. The LATE
assumptions do not include a similar monotonicity assumption in the second stage.
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As a whole, because I have only made stylistic changes to the model presented by Heckman

and Vytlacil (2005), by the proof of Vytlacil (2002), the model, given by the utility equations

(1) and (2), the treatment equations (3)–(5), the potential outcome equations (6)–(8), and

assumptions A.2–A.5, assumes no more than the LATE assumptions.

Under the model and the equivalent LATE assumptions, it is not possible to identify

any individual as a complier, but it is possible to derive the average treated and untreated

outcomes of compliers. It is also possible to derive the average treated outcome for always

takers and the average untreated outcome for never takers. However, it is not possible to

derive the average untreated outcome for always takers or the average treated outcome for

never takers without further assumptions because always takers are always treated and never

takers are never treated within the experiment. In Appendix C, I use the model to derive the

average treated outcomes for always takers and compliers, and average untreated outcomes

for compliers and never takers.3 My derivation is consistent with the derivations of Imbens

and Rubin (1997), Katz et al. (2001), Abadie (2002), and Abadie (2003), which rely on the

LATE assumptions.

I use the average treated and untreated outcomes that I derive from the Oregon experi-

ment to illustrate the implications of the model graphically in Figure 2. Along the vertical

axis, I depict average ER utilization after the lottery took place from March 10, 2008 to

September 30, 2009. I show that during that period, always takers visited the ER 1.89

times, compliers visited 1.45 times if enrolled and 1.19 times if not, and never takers visited

0.85 times. The difference in visits between treated and untreated compliers is equal to

the LATE, as shown by Imbens and Rubin (1997). I depict the LATE with an arrow to

indicate that it has magnitude and direction. The positive LATE of 0.27 is consistent the

headline finding of Taubman et al. (2014), who show that insurance increases ER utilization

for compliers.4

3The derivation relies on average ER utilization for four observed groups: lottery losers with Medicaid
(always takers only), lottery winners with Medicaid (always takers and compliers with Medicaid), lottery
losers without Medicaid (never takers and compliers without Medicaid), and lottery winners without Med-
icaid (never takers only). Because of randomization, average ER utilization of lottery losers with Medicaid
identifies average ER utilization with Medicaid for all always takers, even the lottery winners. Similarly,
average ER utilization of lottery winners without Medicaid identifies average ER utilization without Med-
icaid for all never takers. Furthermore, the fraction of always takers among lottery losers and the fraction
of never takers among lottery winners identify the respective fractions in the full sample. Using these frac-
tions and average ER utilization for always takers with Medicaid and never takers without Medicaid, it is
straightforward to back out average ER utilization for compliers with and without Medicaid from the average
ER utilization for lottery winners with Medicaid and lottery losers without Medicaid. (It is not possible to
calculate average ER utilization for always takers without Medicaid or never takers with Medicaid without
ancillary assumptions because these groups do not change their enrollment based on the lottery.)

4I am able to replicate the LATE of 0.41 reported by Taubman et al. (2014), almost exactly, limited only
by minor changes made to the publicly available data to hinder identification of individuals with large and
uncommon numbers of ER visits. However, that LATE is obtained from a regression that includes controls
for previous ER utilization as well as the number of lottery entrants from a household. It would not be valid
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Figure 2: Number of ER Visits for Always Takers, Compliers, and Never Takers

0 pC = 0.15 pI = 0.41 1
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Note. The number of ER visits represents the total number of visits to the emergency department during
the study period from March 10, 2008 to September 30, 2009. pC is the probability of treatment in the
control group, and pI is the probability of treatment in the intervention group. Some differences between
statistics might not appear internally consistent because of rounding.

Figure 2 provides more information than the LATE alone. As originally shown by Angrist

(1990) and Angrist and Krueger (1992), the calculation of the LATE does not require the

ability to calculate the average treated and untreated outcomes of compliers depicted in

Figure 2. Using the Wald (1940) approach, the reduced form E[Y |Z = 1] − E[Y |Z = 0] is

equal to 0.07, and the first stage E[D|Z = 1] − E[D|Z = 0] is equal to 0.26. Dividing the

reduced form by the first stage yields a LATE of 0.27 visits, which is equal to the LATE

reported in Figure 2. However, Figure 2 also includes average outcomes for always and never

to obtain a LATE without any control for the number of lottery entrants because the probability of winning
the lottery was only random conditional on the number of entrants. Therefore, I control for the number
of lottery entrants nonparametrically by restricting my analysis sample to the 19,643 individuals that were
the only members of their household to enter the lottery from the full sample of 24,646 individuals with
administrative data on their visits to the ER. By doing so and excluding controls for previous ER utilization
for simplicity, I obtain a smaller, but still positive, LATE. The focus of my work is on reconciling a positive
LATE in Oregon with a negative LATE in Massachusetts, not on evaluating the Oregon experiment or
previous analysis of it, which has been discussed in Baicker et al. (2013, 2014); Taubman et al. (2014), and
Finkelstein et al. (2016).
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takers, which are not required to calculate the LATE. If these outcomes are different from

the comparable outcomes for compliers, then there could be reason to question whether

the LATE applies to always and never takers. Such differences could reflect selection or

treatment effect heterogeneity.

2.3 Definitions of Selection and Treatment Effect Heterogeneity

I define selection and treatment effect heterogeneity along UD using the following functions:

Selection Heterogeneity: MUO(x, p) = E [YU | X = x, UD = p]

Selection + Treatment Effect Heterogeneity: MTO(x, p) = E [YT | X = x, UD = p]

Treatment Effect Heterogeneity: MTE(x, p) = E [YT − YU | X = x, UD = p] ,

where x is a realization of the covariate vector X and p is a realization of the unobserved

net cost of treatment UD.

I refer to the first function as the “marginal untreated outcome (MUO)” function, and

I use it to define “selection heterogeneity,” a term that I use to capture positive and neg-

ative selection, also referred to as “adverse” and “advantageous” selection in the insurance

literature. The MTE literature uses the MUO function as an intermediate function in the

derivation of the third function, the “marginal treatment effect (MTE)” function of Heckman

and Vytlacil (1999, 2001, 2005). However, the literature does not use the MUO function to

define selection heterogeneity (see Carneiro and Lee, 2009; Brinch et al., 2017). Instead, the

MTE literature and the LATE literature focus on the following definition of “selection bias”

(see Heckman et al., 1998; Angrist, 1998):

Selection Bias: E[YU | D = 1]− E[YU | D = 0]. (9)

By expressing (9) as the following weighted integral of the MUO function:∫ 1

0

[ 1

P(D = 1)

{
P(Z = 0) pC ω(p, 0, pc) + P(Z = 1) pI ω(p, 0, pI)

}
− 1

P(D = 0)

{
P(Z = 0) (1− pC)ω(p, pc, 1) + P(Z = 1) (1− pI) ω(p, pI , 1)

}]
MUO(p) dp.

where the weights are ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH−pL), I demonstrate that selection

heterogeneity generalizes selection bias. The weighted integral also shows that selection bias

is a function of the fraction of lottery winners, P(Z = 1), unlike selection heterogeneity.

To the extent that selection bias is intended to capture a real-world phenomenon, it is

undesirable for it to be an explicit function of the experimental design used to estimate
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it. Furthermore, selection bias is not identified without ancillary assumptions because the

untreated outcome for always takers is not observed. However, I show that a different policy-

relevant special case of selection heterogeneity is identified.

Turning to the next function, which I refer to as the “marginal treated outcome (MTO)”

function, I emphasize that there is a meaningful distinction between the MTO function and

the MUO function. The literature focuses on the MTO and MUO functions as intermediate

inputs used to derive the MTE function. Mechanically, the MTE function is equal to the

MTO function minus the MUO function. I emphasize that because the MTE function defines

treatment effect heterogeneity and the MUO function defines selection heterogeneity, the

MTO function defines the sum of selection heterogeneity plus treatment effect heterogeneity.

It is tempting to assert that there should be no meaningful distinction between the MTO

function and the MUO function because it would be possible to rename the treated as the

untreated and vice versa. However, the treatment effect is defined relative to the untreated

outcome, so changing the definition of the treatment would also change the definition of the

treatment effect, preserving the asymmetry between the MTO and the MUO. The treatment

effect has magnitude and direction: it is equal to YT − YU , not |YT − YU |, so the distinction

between treated and untreated matters.

3 Findings

I have three main findings. First, I find selection and treatment effect heterogeneity within

Oregon along the unobservable that separates always takers from compliers from never tak-

ers. Heterogeneity in the treatment effect is such that even though compliers increase their

ER utilization upon gaining coverage, never takers would decrease their ER utilization upon

gaining coverage. Second, I find that the heterogeneity within Oregon can reconcile the pos-

itive LATE in Oregon with the negative LATE in Massachusetts because the Massachusetts

compliers are comparable to a subset of the Oregon never takers. Third, I find a nuanced

role for observables in explaining the reconciliation. Self-reported health and previous ER-

utilization can potentially explain the heterogeneity within Oregon and reconcile the Ore-

gon and Massachusetts LATEs. However, those observables are not available in the Mas-

sachusetts data, so they are effectively part of the unobservable in the MTE function. Thus,

LATE-reweighting that relies only on the common observables available in both contexts

cannot reconcile the results, while MTE-reweighting can.

3.1 I Find Heterogeneity within Oregon

3.1.1 Selection Heterogeneity

Under the model that assumes no more than the LATE assumptions, I identify a special case

of selection heterogeneity using a test that I refer to as the “untreated outcome test.” The
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test statistic for this test is equal to the average untreated outcome of compliers minus the

average untreated outcome of never takers. I derive both of these quantities in Appendix

C. The untreated outcome test is similar or equivalent to tests proposed by Bertanha and

Imbens (2014), Guo et al. (2014), and Black et al. (2017), which are generalized by Mogstad

et al. (2018). Relative to the literature, my innovation with respect to the untreated outcome

test is that I show that it identifies selection heterogeneity without any assumptions beyond

the LATE assumptions.5 This follows because having defined selection heterogeneity via

the MUO function in an MTE model that assumes no more than the LATE assumptions, I

express the untreated outcome test statistic as the following weighted integral of the MUO

function:

E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] =

∫ 1

0

(ω(p, pC , pI)− ω(p, pI , 1)) MUO(p) dp,

with weights ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL), where the first term represents the

average untreated outcome of compliers (pC < UD ≤ pI) and the second term represents the

average untreated outcome of never takers (pI < UD ≤ 1).

Applying the untreated outcome test to my analysis sample from the Oregon experiment,

I reject the null hypothesis of selection homogeneity. As shown in Figure 3, when they are

not enrolled in Medicaid, compliers visit the ER an average of 1.19 times, while never takers

visit 0.85 times. The difference of 0.34 visits, reported as the untreated outcome test statistic

in Table 1, is statistically different from zero. Under the model, compliers enroll in Medicaid

before never takers, so the selection heterogeneity that I find indicates what the insurance

literature refers to as “adverse selection” from compliers to never takers.

Without further assumptions, the untreated outcome test is not informative about se-

lection heterogeneity from always takers to compliers because untreated outcomes are not

observed for always takers. However, treated outcomes are observed for always takers. A

test that I refer to as the “treated outcome test” has a test statistic that is equal to the

average treated outcome of always takers minus the average treated outcome of never takers.

I derive both of these quantities in Appendix C. The econometric literature that proposes

tests related to the untreated outcome test also proposes tests related to the treated out-

5I refer to the Bertanha and Imbens (2014) test as “similar” to the untreated outcome test because the
authors develop it for a regression discontinuity context, but it is effectively equivalent. However, the authors
do not interpret it as a test of selection heterogeneity; instead, they interpret it as one component of a test
for external validity. Guo et al. (2014) propose a test that is equivalent to the untreated outcome test as
one component of a test for unmeasured confounding, but they also do not discuss it as a test for selection
heterogeneity. Black et al. (2017) propose a test that is equivalent to the untreated outcome test as a test
for selection bias on the untreated outcome, which they define with the outcome test statistic. They do not
discuss how their definition of selection bias relates to the MUO function or to the definition of selection
bias from the literature.
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Figure 3: Number of ER Visits for Always Takers, Compliers, and Never Takers in the
Oregon Experiment
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Note. The number of ER visits represents the total number of visits to the emergency department during the
study period from March 10, 2008 to September 30, 2009. Treatment represents enrollment in Medicaid. pC
is the probability of treatment in the control group, and pI is the probability of treatment in the intervention
group. Some differences between statistics might not appear internally consistent because of rounding.

come test (Bertanha and Imbens, 2014; Guo et al., 2014; Black et al., 2017). Relative to the

literature, I emphasize that a rejection of the treated outcome test identifies selection het-

erogeneity, treatment effect heterogeneity, or a combination of selection and treatment effect

heterogeneity. Recall that MTO function is the sum of the MUO function, which defines

selection heterogeneity, and the MTO function, which defines treatment effect heterogeneity.

Therefore, I show that the treated outcome test identifies the sum of selection heterogeneity

plus treatment effect heterogeneity by expressing the treated outcome test statistic as the

following weighted integral of the MTO function:

E[YT | 0 ≤ UD ≤ pC ]− E[YT | pC < UD ≤ pI ] =

∫ 1

0

(ω(p, 0, pC)− ω(p, pC , pI)) MTO(p) dp,

with weights ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL), where the first term represents the

average treated outcome of always takers (0 ≤ UD ≤ pC) and the second term represents the
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Table 1: Number of ER Visits for Always Takers, Compliers, and Never Takers

(1) (2) (3)

Always
Takers Compliers

Never
Takers

Treated 1.89 1.45 0.55 0.44
(0.08) (0.11) (0.45) (0.17)

Untreated 1.35 1.19 0.85 0.34
(0.17) (0.11) (0.03) (0.13)

Treatment Effect 0.54 0.27 -0.29
    (Treated - Untreated) (0.19) (0.15) (0.45)

Mean

Number of ER Visits

Treated
Outcome Test

(1) - (2)

Untreated
Outcome Test

(2) - (3)

Note. Bootstrapped standard errors are in parentheses. The shaded cells report extrapolated values from
MTE-reweighting via (10)–(12) for treated individuals (N=4,725) and untreated individuals (N=14,897).
The number of ER visits represents the total number of visits to the emergency department during the study
period from March 10, 2008 to September 30, 2009. Treatment represents enrollment in Medicaid. Some
differences between statistics might not appear internally consistent because of rounding.

average untreated outcome of compliers (pC < UD ≤ pI).

Applying the treated outcome test to my analysis sample from the Oregon experiment,

I reject the null hypothesis that treatment effect heterogeneity and selection heterogeneity

sum to zero. As shown in Figure 3, always takers visit the ER an average of 1.89 times when

enrolled in Medicaid, while compliers visit an average of 1.45 times. The average difference

of 0.44 visits, reported as the treated outcome test statistic in Table 1, is statistically dif-

ferent from zero. Under the model, always takers enroll in Medicaid before compliers, so

their greater visits with Medicaid must reflect either adverse selection, or a decrease in the

treatment effect from always takers to compliers, or both. In pursuit of reconciling the Ore-

gon LATE with the Massachusetts LATE, I am particularly interested in whether there is

treatment effect heterogeneity within the Oregon experiment. Although the treated outcome

test indicates that there could be treatment effect heterogeneity, I cannot separate it from

selection heterogeneity without an ancillary assumption.

3.1.2 Treatment Effect Heterogeneity

To identify treatment effect heterogeneity, I make a transparent ancillary assumption beyond

the model that assumes no more than the LATE assumptions:

AA.1. (Linear Selection Heterogeneity and Linear Treatment Effect Heterogeneity) In (7)

and (8), for k ∈ {T, U}, specify gk (X,UD, γk) = αk+βkUD+γk, where E [γk | UD = p] =

0. Therefore,

MTO(p) = E [YT | UD = p] = αT + βTp
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MUO(p) = E [YU | UD = p] = αU + βUp

MTE(p) = E [YT − YU | UD = p] = (αT − αU) + (βT − βU) p.

This assumption requires that any selection heterogeneity is linear in UD and that any

treatment effect heterogeneity is linear in UD, but it allows for the possibility that there

is no selection or treatment effect heterogeneity. In that case, the MUO slope coefficient

βU and the MTE slope coefficient (βT − βU) will both be equal to zero. Brinch et al.

(2017) impose the same assumption to examine the impact of family size on child outcomes;

Olsen (1980) imposes linearity of the MTO function to examine the impact of family size on

maternal outcomes; and several other papers impose linearity of the MTE function in other

applications (see Moffitt, 2008; French and Song, 2014). Applied work that extrapolates to

other policies using the LATE also makes a stronger, implicit assumption that the MTE

function is linear and has zero slope.

Figure 4 depicts the MTO, MUO, and MTE functions within the Oregon experiment

under AA.1. On the vertical axis, the two points labeled with circular markers indicate the

average outcomes of always takers and treated compliers, which fall at the median of the

support for each group on the horizontal axis. These two points identify the intercept and

slope of the MTO function, depicted with a dotted line. The two points labeled with square

markers identify the intercept and slope of the MUO function, depicted with a dashed line. I

depict the MTE function, the vertical difference between the MTO and MUO functions, with

a solid line. As shown, MTE function is positive for low levels of enrollment and negative

for high levels of enrollment, even though the LATE is positive. The downward slope of the

MTE function indicates that the treatment effect of insurance on ER utilization decreases

as enrollment increases.

3.2 Oregon Heterogeneity Can Reconcile Oregon and Massachusetts LATEs

3.2.1 Massachusetts MTE(p) Also Slopes Downward

My goal is to reconcile the Oregon and Massachusetts LATEs using the Oregon MTE func-

tion, since estimates from the Oregon experiment are considered the “gold standard.” Before

assuming that the Oregon MTE function is the same as the Massachusetts MTE function,

however, I assess whether such an assumption is plausible. I acknowledge that many fac-

tors differed between the Massachusetts and Oregon contexts. For example, treatment in

the Oregon context only captures enrollment in Medicaid, while treatment in Massachusetts

also captures enrollment in other types of health insurance coverage. However, given my

interest in reconciling the LATEs across contexts, I am ultimately only interested in factors

that lead to empirical differences in treatment effects across contexts, and such differences

should be captured in differences the MTE functions across contexts.
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Figure 4: MTO(p), MUO(p), and MTE(p)
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MUO(p) 1.41 (0.19) -0.80 (0.31)

MTE(p) 0.64 (0.24) -1.32 (0.88)

Note. Bootstrapped standard errors are in parentheses. The number of ER visits represents the total number
of visits to the emergency department during the study period from March 10, 2008 to September 30, 2009.
Treatment represents enrollment in Medicaid. pC is the probability of treatment in the control group, and
pI is the probability of treatment in the intervention group. Some differences between statistics might not
appear internally consistent because of rounding.

It would be straightforward to estimate a Massachusetts MTE function using individual-

level data on insurance coverage and ER utilization from a representative sample of indi-

viduals in Massachusetts before and after the reform. With such data, I could define the

instrument as an indicator for after the reform, the treatment as an indicator for insurance

coverage, and the outcome as the number of visits to the ER. However, none of the stud-

ies that examine the impact of the Massachusetts reform on ER utilization use such data.6

Therefore, I need to be more creative to estimate a Massachusetts MTE function.

6Chen et al. (2011) use data on ER visits from the Massachusetts Division of Health Care Finance and
Policy aggregated to the quarter level, but they do not use data on insurance. Miller (2012) uses the same
data aggregated to the county-quarter level, matched to county-level data on insurance before the reform,
but the individual-level data on ER utilization and insurance coverage before and after the reform are not
available. In Kolstad and Kowalski (2012), I use data from the Behavioral Risk Factor Surveillance System
(BRFSS), which contains all of the necessary elements except ER utilization. I also use the Healthcare Cost
and Utilization Project (HCUP) National Inpatient Sample (NIS), which contains the necessary elements
on the individual level, but it is restricted to individuals who were admitted to the hospital. The data from
Smulowitz et al. (2011) are even more restricted because they only include individuals who visited the ER
at a convenience sample of 11 Massachusetts hospitals.
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To estimate a Massachusetts MTE function, I recast results from my previous work

on the Massachusetts reform from Hackmann et al. (2015) in terms of the MTE model

with ancillary assumption AA.1. Although I do not observe ER spending or visits in the

Hackmann et al. (2015) data, I do observe total health care spending, and evidence from the

Oregon experiment shows that ER spending and total health care spending are complements

(Taubman et al., 2014). To show the Hackmann et al. (2015) estimates and MTE function,

I reproduce Figure 8 from Hackmann et al. (2015) using notation consistent with the MTE

model while preserving notation from the original figure in lighter typeface in Figure 5. The

marginal cost function estimated in Hackmann et al. (2015) represents a marginal treatment

effect function because it represents the difference between marginal costs to insurers on

behalf of insured individuals and uninsured individuals. This Massachusetts MTE function,

like the Oregon MTE function, is downward sloping, indicating that in both contexts, the

treatment effect of insurance on utilization decreases as insurance enrollment increases.

Figure 5: Figure 8 from Hackmann et al. (2015) Recast as Massachusetts MTE(p)
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3.2.2 MTE-Reweighting from Oregon to Massachusetts Can Reconcile LATEs

Given that I find a downward-sloping MTE function for total health care spending in Mas-

sachusetts, I am more confident in assuming that the MTE function for ER utilization in

Massachusetts is the same as the MTE function for ER utilization in Oregon. Under this as-

sumption, I can re-weight the Oregon MTE function to obtain a LATE for the Massachusetts

reform.

I re-weight the Oregon MTE function and its component MTO and MUO functions over

a general range of the enrollment margin pL < UD ≤ pH as follows:

E [YT | pL < UD ≤ pH ] =

∫ 1

0

ω(p, pL, pH)MTO(p) dp (10)

E [YU | pL < UD ≤ pH ] =

∫ 1

0

ω(p, pL, pH)MUO(p) dp (11)

E [YT − YU | pL < UD ≤ pH ] =

∫ 1

0

ω(p, pL, pH)MTE(p) dp, (12)

using weights ω(p, pL, pH) = 1{pL < p ≤ pH}/(pH − pL). These weights are special cases

of general weights for MTE-reweighting given by Heckman and Vytlacil (2007). Unlike the

weights used by Brinch et al. (2017), these weights allow me to recover exact values of

observed average outcomes for always takers (0 ≤ UD ≤ pC), compliers (pC < UD ≤ pI), and

never takers (pI < UD ≤ 1).

I demonstrate the results of reweighting to obtain estimates for Oregon always and never

takers in the shaded cells of Table 1. I only observe always takers when enrolled in Medicaid,

and they visit the ER 1.89 times. Reweighting indicates that if always takers were not

enrolled in Medicaid, they would visit the ER 1.35 times, such that the average treatment

effect for always takers is an increase of 0.54 visits. In contrast, reweighting indicates that

the average treatment effect for never takers is a decrease of 0.29 visits.

I reweight the Oregon MTE to obtain estimates for Massachusetts compliers using the

same approach. I demonstrate the approach graphically in Figure 6, in which I reproduce the

Oregon MTE. I label the probability of health insurance coverage in Massachusetts before

the reform as pMA
C = 0.89 and after the reform as pMA

I = 0.94. I obtain these values from

the Behavioral Risk Factor Surveillance System (BRFSS) data that I used to study the

Massachusetts reform in Kolstad and Kowalski (2012). Unlike the Hackmann et al. (2015)

data, which only capture enrollment in the individual health insurance market, the BRFSS

data capture enrollment in the entire state. It is important to capture enrollment in the

entire state for comparison to the literature on the impact of the Massachusetts reform on

ER utilization (Chen et al., 2011; Kolstad and Kowalski, 2012; Miller, 2012; Smulowitz et al.,
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2011).

As shown, enrollment levels before and after the Massachusetts reform would entail en-

rollment of a subset of never takers in Oregon. Therefore, application of the Oregon MTE to

Massachusetts implies that Massachusetts compliers are comparable to a subset of Oregon

never takers in terms of their unobserved net cost of treatment UD. There is a case to be

made that the Oregon sample is actually a subset of the Massachusetts sample along the

lower range of UD because all individuals in the Oregon sample entered a lottery for Med-

icaid, so they should all have low unobserved net costs of Medicaid relative to individuals

in Massachusetts. Therefore, it is likely conservative to compare Massachusetts compliers to

this particular subset of Oregon never takers.

MTE-reweighting the Oregon MTE via (12) over the range from pMA
C = 0.89 to pMA

I =

0.94, I predict that the Massachusetts reform should have decreased ER visits by an average

Figure 6: Extrapolation of MTE(p) to Massachusetts
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I the probability of treatment in the intervention group in the Massachusetts reform.
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of 0.57 visits among Massachusetts compliers. Miller (2012) finds that insurance enrollment

induced by the Massachusetts reform decreased ER visits by 0.67 to 1.28 visits per person

per year, depending on the empirical strategy.7 The decrease that I find over the 19 months

from March 10, 2008 to September 30, 2009 translates into a decrease of 0.36 visits per

person per year (=(0.57/19)*12), which is smaller than her estimates but still comparable.

Therefore, my extrapolations can reconcile the increase in ER utilization in Oregon with the

decrease in ER utilization in Massachusetts using only variation in the unobserved net cost

of treatment UD.

3.3 Self-Reported Health and Previous ER Utilization Explain Heterogeneity,

but Common Observables Do Not

3.3.1 Self-Reported Health Could Reconcile LATEs

To explore mechanisms for why the impact of coverage on ER utilization is positive for some

groups but negative for others, I examine observables. I begin by examining self-reported

health. I observe self-reported health for almost all individuals in the Massachusetts BRFSS

data from Kolstad and Kowalski (2012), and I observe self-reported health for a subset

of individuals in the Oregon administrative data who were surveyed. Using the Oregon

data, Finkelstein et al. (2012) shows that Medicaid improved self-reported health, so I only

compare the self-reported health of groups without Medicaid: compliers who lost the lottery

and never takers. I obtain the average probability that individuals in these groups reported

fair or poor health as I describe in Appendix C.

As shown in Table 2, within Oregon and Massachusetts, I find that never takers are less

likely to be in fair or poor health than compliers who are not enrolled in Medicaid, consistent

with adverse selection via the untreated outcome test. However, differences in self-reported

health are more striking across both contexts than they are within each context. As I

show in Table 2, 55% of Oregon compliers report fair or poor health, while only 34% of

Oregon never takers report fair or poor health. In stark contrast, only 21% of Massachusetts

compliers report fair or poor health. These comparisons suggest an important mechanism

for heterogeneity in the treatment effect. Upon gaining coverage, individuals in worse health

(Oregon compliers) increase their ER utilization, while individuals in better health (Oregon

never takers and Massachusetts compliers) decrease their ER utilization.

7Other estimates from the literature are not directly comparable. Chen et al. (2011) does not provide
an estimate but reports no change in ER utilization based on figures that compare ER utilization in Mas-
sachusetts, New Hampshire, and Vermont over time. The Kolstad and Kowalski (2012) estimate shows that
hospital admissions from the ER decreased by 2.02 percentage points on a base of 38.7% after the reform
relative to before the reform in Massachusetts relative to other states. The Smulowitz et al. (2011) estimate
shows that low-severity visits to the ER decreased by 1.8% after the reform relative to before the reform for
publicly-subsidized and uninsured patients relative to insured and Medicare patients.
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Table 2: Always Takers, Compliers, and Never Takers: Oregon vs. Massachusetts

(1) (2) (3)

All
Always
Takers Compliers

Never
Takers (1) - (2) (2) - (3)

Oregon Health Insurance Experiment of 2008
Fair or Poor Health, Untreateda 0.42 0.55 0.34 0.20

(0.01) (0.03) (0.01) (0.04)
Number of Pre-period ER Visits 0.87 1.36 0.88 0.73 0.48 0.15

(0.01) (0.05) (0.07) (0.03) (0.09) (0.09)
Common Observables

Age 40.69 39.45 42.41 40.25 -2.96 2.16
(0.09) (0.29) (0.41) (0.19) (0.53) (0.57)

Female 0.56 0.72 0.53 0.53 0.19 0.003
(0.003) (0.01) (0.02) (0.01) (0.02) (0.02)

English 0.91 0.90 0.92 0.91 -0.02 0.01
(0.002) (0.01) (0.01) (0.004) (0.01) (0.01)

N 19,643 2,986 5,092 11,565

Massachusetts Health Reform of 2006
Fair or Poor Health, Untreateda 0.19 0.21 0.18 0.03

(0.02) (0.03) (0.01) (0.04)
Common Observables

Age 42.00 42.15 42.42 38.98 -0.26 3.43
(0.086) (0.12) (1.41) (0.49) (1.49) (1.57)

Female 0.51 0.52 0.43 0.38 0.10 0.04
(0.003) (0.004) (0.05) (0.02) (0.05) (0.06)

English 0.96 0.98 0.86 0.81 0.12 0.05
(0.001) (0.001) (0.02) (0.02) (0.02) (0.04)

N 62,456 55,966 3,175 3,314

Difference in MeansMeans

- -

--

Note. Bootstrapped standard errors are in parentheses. Data for the Massachusetts health reform are taken
from pooled annual samples of the Behavioral Risk Factor Surveillance System (BRFSS) from years 2004–
2009 and restricted to ages 21–64 (the age range of the Oregon sample). For the Massachusetts health
reform, treatment is an indicator that equals one for individuals with any form of health insurance (“Do
you have any kind of health care coverage, including health insurance, prepaid plans such as HMOs, or
government plans such as Medicare?”). The instrument is an indicator that equals one in the post-period
of the expansion on and after July 2007. “Age” is measured in year 2008 for the Oregon Health Insurance
Experiment and in year 2006 for the Massachusetts health reform. “Female” is a binary indicator for the
gender of the respondent. “English” is a binary indicator that equals one for individuals in the Oregon
Health Insurance Experiment who requested materials in English and that equals one for individuals in the
BRFSS who completed the interview in English. The number of pre-period visits is measured before the
study period from January 1, 2007 to March 9, 2008. “Fair or Poor Health” equals one when individuals
self-report having fair or poor health on a 5-point scale. aNumber of observations in the Oregon Health
Insurance Experiment with nonmissing self-reported health: 5,833. Number of observations in the BRFSS
with nonmissing self-reported health: 62,161. Some differences between statistics might not appear internally
consistent because of rounding.
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3.3.2 Previous ER Utilization Explains Heterogeneity within Oregon

To quantify how much heterogeneity in the treatment effect observables can explain, I incor-

porate observables into the MTE function. To do so, I use a shape restriction commonly used

in the MTE literature (see Brinch et al., 2017; Carneiro and Lee, 2009; Carneiro et al., 2011;

Maestas et al., 2013). In my context, the shape restriction requires that included observables

X and the remaining unobserved net cost of treatment UD have additively-separable impacts

on ER utilization with and without Medicaid. I incorporate the shape restriction into AA.1

to obtain the following alternative ancillary assumption:

AA.2. (Linear Selection Heterogeneity and Linear Treatment Effect Heterogeneity with

Covariate Shape Restriction) In (7) and (8), for k ∈ {T, U}, specify gk (X,UD, γk) =

δ′kX + λkUD + ξk, where E [γk | X = x, UD = p] = 0. Therefore,

MTO(p) = E [YT | X = x, UD = p] = δ′Tx+ λTp

MUO(p) = E [YU | X = x, UD = p] = δ′Ux+ λUp

MTE(p) = E [YT − YU | X = x, UD = p] = (δT − δU)′ x+ (λT − λU) p.

I present an algorithm for estimation of these functions that simplifies the Heckman et al.

(2006) algorithm in Appendix D.8 I reweight these functions using the same approach that

I use in (10)–(12).

I do not incorporate self-reported health into the MTE function because evidence from

Oregon shows that recorded self-reported health is an outcome and not merely a covariate for

treated individuals (Finkelstein et al., 2012). However, I do observe previous ER-utilization

from before the lottery took place for all individuals, and ER utilization from before the

lottery took place is correlated with self-reported health for untreated individuals. Specifi-

cally, for each individual in the Oregon administrative data, I observe the total number of

pre-period ER visits from January 1, 2007, to March 9, 2008. I report the average number

of per-period ER visits for always takers, compliers, and never takers in Table 2, calculated

as described in Appendix C. Always takers visited the ER an average of 1.36 times, while

compliers visited an average of 0.88 times, and never takers visited an average of 0.73 times.

The monotonic relationship in previous ER utilization across these groups indicates adverse

selection on previous ER utilization: individuals with larger previous ER utilization are more

likely to enroll in Medicaid.

Incorporating previous ER utilization into the MTE via AA.2, I find that previous ER

utilization can explain the entire decrease in treatment effect from always takers to compliers

8For inference, I bootstrap using 200 replications, and I report the standard deviation as the standard
error or the 2.5 and 97.5 percentiles as the 95% confidence interval.
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to never takers. There is substantial variation in pre-period ER utilization: 66% of individu-

als have zero visits, 17% have one visit, 11% have 2 to 3 visits, and 6% have 4 or more visits

in the pre-period. By incorporating observables for each of these visit ranges into the MTE,

I obtain a separate MTE(x, p) for each range. As depicted in Figure 7, the MTE(p) function,

which does not incorporate observables, has a pronounced downward slope, indicating sub-

stantial unexplained heterogeneity in treatment effect. However, when I incorporate controls

for previous ER utilization into the MTE(x, p) function, the negative slope disappears, and

the slope becomes negligible and slightly positive.

Figure 7: MTE(x, p) with Previous ER Utilization
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Note. The number of ER visits represents the total number of visits to the emergency department during
the study period from March 10, 2008 to September 30, 2009. Pre-period ER visits refers to a group of
indicators for visiting the ER 0 times, 1 time, 2–3 times, and 4 or more times during the pre-period from
January 1, 2007 to March 9, 2008. Treatment represents enrollment in Medicaid. pC is the probability of
treatment in the control group, and pI is the probability of treatment in the intervention group. In this
figure, the function for 1 pre-period ER visits has been shifted downward slightly to make it easier to discern
from the function for 2–3 pre-period ER visits.

The remaining slope in the MTE with observables is not meaningful. Looking beyond

the slope of the MTE(x, p) function to its level at various values of pre-period ER visits

reveals a clear monotonic relationship between pre-period ER visits and the treatment effect

of Medicaid enrollment on subsequent ER visits. As depicted in Figure 7, the MTE(x, p)

for individuals with 4 or more pre-period visits is always positive, and the MTE(x, p) for
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individuals with zero pre-period visits is always negative. This figure demonstrates that

individuals with high numbers of ER visits in the pre-period increase their ER utilization

upon gaining coverage, while individuals with zero ER visits in the pre-period decrease their

ER utilization upon gaining coverage.

The finding that previous ER utilization can explain all of the treatment effect hetero-

geneity captured by the Oregon MTE suggests that when no observables are included in the

Oregon MTE, the unobservable UD captures previous ER utilization. It is plausible that UD

captures previous ER utilization or even ER utilization after the lottery took place because

Medicaid allows hospitals to facilitate enrollment of eligibles. Because hospitals can facili-

tate enrollment, it is possible that some individuals became always takers precisely because

they showed up at the ER to receive care, and the ER facilitated their enrollment. This

mechanism could explain why always takers signed up for a lottery for Medicaid even though

they were already eligible – they did not know that they were eligible until they showed up

at the ER.

3.3.3 LATE-Reweighting with Common Observables Cannot Reconcile LATEs

Although self-reported health and previous ER utilization provide promising mechanisms

to reconcile the Oregon and Massachusetts LATEs, neither are available for all individuals

in the Oregon and Massachusetts data. Therefore, I consider whether it would be possible

to reconcile the Oregon and Massachusetts LATEs using LATE-reweighting and the three

common observables for all individuals in the Massachusetts BRFSS data and the Oregon

administrative data: age, gender, and an indicator for communications in English. In Table 2,

I present summary statistics on the common observables in both samples.

To examine variation in the common observables available for LATE-reweighting, I use

each common observable to divide the sample into two subgroups, and I report LATEs within

each subgroup in Table 3. As shown, the LATEs within each subgroup are all positive, with

the exception of the LATE within the group that requested communication in a language

other than English. Taubman et al. (2014) report LATEs within a wide variety of observable

subgroups and also find that almost all are positive. Because LATEs within each subgroup

are almost all positive, LATE-reweighting based on any of the common observables yields

a positive treatment effect for almost any weights. Therefore, LATE-reweighting using only

the common observables cannot reconcile the positive treatment effect in Oregon with the

negative treatment effect in Massachusetts.

It is not surprising that LATE-reweighting with common observables cannot explain

treatment effect heterogeneity across Oregon and Massachusetts because the common ob-

servables cannot explain treatment effect heterogeneity within Oregon. To demonstrate, I

estimate an MTE within each subgroup, and I report the slope and intercept in Table 3.
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Table 3: Subgroup Analysis of Common Observables with LATE and MTE(p)

(1) (2) (3) (4) (5) (6) (7)

All
Age

≥ mediana

Age
< mediana Female Male English

Non-
English

Oregon Health Insurance Experiment of 2008
0.27 0.14 0.44 0.14 0.39 0.30 -0.15

(0.15) (0.18) (0.25) (0.21) (0.21) (0.16) (0.34)
0.15 0.13 0.17 0.20 0.10 0.15 0.16

(0.003) (0.005) (0.005) (0.005) (0.004) (0.004) (0.01)
pI 0.41 0.43 0.39 0.43 0.38 0.41 0.38

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
MTE intercept 0.64 0.98 0.31 0.48 0.92 0.72 0.14

(0.24) (0.28) (0.39) (0.32) (0.33) (0.25) (0.47)
MTE slope -1.32 -3.01 0.48 -1.06 -2.20 -1.51 -1.07

(0.88) (1.04) (1.49) (1.08) (1.40) (0.92) (2.07)
p* 0.48 0.33 -0.63 0.45 0.42 0.48 0.13

(2.84) (0.85) (10.37) (1.49) (3.47) (4.53) (11.99)
N 19,622 9,816 9,806 10,932 8,690 17,871 1,751

Massachusetts Health Reform of 2006
0.90 0.93 0.87 0.92 0.87 0.91 0.55

(0.003) (0.003) (0.005) (0.003) (0.005) (0.003) (0.02)
0.95 0.96 0.93 0.96 0.93 0.96 0.74

(0.002) (0.002) (0.004) (0.002) (0.004) (0.002) (0.02)
N 62,456 40,492 21,964 38,808 23,648 59,233 3,223

pI

LATE

pC

pC

Note. Bootstrapped standard errors are in parentheses. The number of ER visits represents the total
number of visits to the emergency department during the study period from March 10, 2008 to September
30, 2009. Treatment represents enrollment in Medicaid. The value p∗ indicates the share of the sample
with positive treatment effects when the MTE(p) curve slopes downward and the share of the sample with
negative treatment effects when the MTE(p) curve slopes upward. When p∗ ≥ 1, this share is 100% of the
sample, and when p∗ ≤ 0, this share is 0% of the sample. “Age” is measured in year 2008 for the Oregon
Health Insurance Experiment and in year 2006 for the Massachusetts health reform. “English” is an indicator
variable for individuals in the Oregon Health Insurance Experiment who requested materials in English and
that equals one for individuals in the BRFSS who completed the interview in English. “Non-English” is the
complement of “English.” aThe median age in the Oregon Health Insurance Experiment is 41. I use the
same age to construct the Massachusetts subgroups.
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In almost all subgroups, the MTE slopes downward. When the MTE slopes downward, the

horizontal intercept p∗ gives the fraction of individuals predicted to have positive treatment

effects. In all but one subgroup, even though the LATEs are positive, the MTEs predict

that the majority of individuals have negative treatment effects, indicating that the common

observables leave substantial heterogeneity unexplained.

Figure 8: MTE(x, p) with Previous ER Utilization vs. MTE(x, p) with Common Observables
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E[MTE(X, p)]: age, female, English

E[MTE(X, p)]: pre-period ER visits

Note. The number of ER visits represents the total number of visits to the emergency department during
the study period from March 10, 2008 to September 30, 2009. Pre-period ER visits refers to a group of
indicators for visiting the ER 0 times, 1 time, 2–3 times, and 4 or more times during the pre-period from
January 1, 2007 to March 9, 2008. Treatment represents enrollment in Medicaid. “Age” is measured in year
2008. “Female” is a binary indicator for the gender of the respondent. “English” is a binary indicator that
equals one for individuals who requested materials in English. The specification with common covariates
(age, female, English) includes all two-way interactions. pC is the probability of treatment in the control
group, and pI is the probability of treatment in the intervention group.

Furthermore, when I include all of the common observables as well as their two-way

interactions in the MTE, substantial heterogeneity remains unexplained. I emphasize the

comparison of unexplained heterogeneity across various MTE functions in Figure 8. To do so,

I present E[MTE(x, p)] functions, which average included observed heterogeneity across all

individuals. Consistent with the depiction in Figure 7, the inclusion of pre-period ER visits

in MTE(x, p) results in a function that is flatter than MTE(p). Therefore, the inclusion

of pre-period ER visits decreases unexplained heterogeneity in the treatment effect. In
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contrast, the inclusion of the common observables in MTE(x, p) results in a function that is

steeper than MTE(p). Therefore, the inclusion of common observables increases unexplained

heterogeneity in the treatment effect.

3.3.4 MTE-Reweighting with Common Observables Can Reconcile LATEs

MTE-reweighting with observables can still proceed if there is unexplained heterogeneity

in the treatment effect. To obtain a LATE for the Massachusetts reform by reweighting

the Oregon MTE with common observables, I estimate the average MTE(x, p) for compliers

in Massachusetts and construct E[MTE(XMA, p)]. In Figure 9, I plot E[MTE(XMA, p)].

Reweighting the Oregon MTE to predict the impact of the Massachusetts reform on ER

utilization, I apply (12) using the pre-reform level of coverage in Massachusetts pMA
C and the

post-reform level of coverage in Massachusetts pMA
I . I predict that the Massachusetts reform

will decrease emergency room utilization for compliers by 0.79 visits over an approximately

19-month period. Translating this decrease into an annual decrease, I predict a decrease of

0.50 visits per person per year (=(0.79/19)*12). This prediction is even closer to the Miller

(2012) estimates of 0.67 to 1.28 than the decrease that I predict without incorporating

common observables using MTE(p), which I also plot for comparison.

Figure 9 illustrates that accounting for differences in the unobservable UD between Ore-

gon and Massachusetts has a much larger impact than accounting for differences in com-

mon observables between Oregon and Massachusetts. If I account for the observables of

Massachusetts compliers with E[MTE(XMA, p)], but do not account for range of UD for

Massachusetts compliers, then I predict a Massachusetts LATE of 0.41, which is even more

positive than the LATE of 0.27 estimated in Oregon. Such an approach, which can be con-

sidered a form of LATE-reweighting, does not reconcile the positive LATE in Oregon with

the negative LATE in Massachusetts, given that common observables do not explain treat-

ment effect heterogeneity across UD in Oregon. This finding demonstrates that the power of

LATE-weighting to reconcile results across contexts is limited by the common observables

available for reweighting. However, MTE-reweighting with the common observables can still

reconcile the positive treatment effect induced by the Oregon experiment with the negative

treatment effect induced by the Massachusetts reform.

4 Conclusion

I aim to shed light on why emergency room (ER) utilization increased following the Oregon

Health Insurance Experiment but decreased following the Massachusetts reform. Starting

from the Oregon Health Insurance Experiment as the “gold standard,” I find treatment

effect heterogeneity across the unobservable that separates compliers from other groups:

although Oregon compliers increase their ER utilization upon gaining coverage, Oregon never
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Figure 9: Extrapolation of MTE(x, p) to Massachusetts
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Note. The number of ER visits represents the total number of visits to the emergency department during
the study period from March 10, 2008 to September 30, 2009. “Age” is measured in year 2008 for the
Oregon Health Insurance Experiment and in year 2006 for the Massachusetts health reform. “English” is
an indicator variable for individuals in the Oregon Health Insurance Experiment who requested materials
in English and that equals one for individuals in the BRFSS who completed the interview in English. The
specification with common covariates (age, female, English) includes all two-way interactions. pOR

C is the
probability of treatment in the control group in Oregon, pOR

I the probability of treatment in the intervention
group in Oregon, pMA

C the probability of treatment in the control group in the Massachusetts reform, and
pMA
I the probability of treatment in the intervention group in the Massachusetts reform.

takers would decrease their ER utilization upon gaining coverage. I also find heterogeneous

selection: Oregon never takers report better health than Oregon compliers.

I extrapolate my findings from within the Oregon experiment to the Massachusetts re-

form. Given higher levels of coverage in Massachusetts, Massachusetts compliers are compa-

rable to a subset of Oregon never takers. Like Oregon never takers, Massachusetts compliers

report better health than Oregon compliers. Therefore, even though the results seem contra-

dictory, I can reconcile the increase in ER utilization induced by the Oregon Health Insurance

Experiment with the decrease in ER utilization induced by the Massachusetts reform.
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Appendix

Appendix A Proof that UD is uniformly distributed between 0 and 1

Per the “probability integral transformation” (see Casella and Berger (2002, page 54)), the

cumulative distribution function of any random variable applied to itself must be distributed

uniformly between 0 and 1. Therefore, the uniformity of UD is not a separate assumption

of the model. A random variable Y is distributed uniformly between 0 and 1 if and only if

FY (c) = c for 0 ≤ c ≤ 1. Therefore, the following shows that UD is distributed uniformly

between 0 and 1, where I omit conditioning on X for simplicity:

FUD
(u) = P (UD ≤ u)

= P (F (νD) ≤ u)

= P (νD ≤ F−1(u))

= F (F−1(u)) = u. (F absolutely continuous under A.1)

�

Appendix B Derivation of the Treatment Equation

Medicaid enrollment D is given by

D = 1{0 ≤ VT − VU}
= 1{0 ≤ µD(Z,X)− νD}
= 1{νD ≤ µD(Z,X)}
= 1{F (νD | X) ≤ F (µD(Z,X) | X)} (definition of F (· | X) from A.1)

= 1{UD ≤ F (µD(Z,X) | X)} (UD = F (νD | X) by definition)

= 1{UD ≤ P(D = 1 | Z = z,X)},

where the last equality follows from

F (µD(Z,X) | X) = P(νD ≤ µD(Z,X) | X)

= P(νD ≤ µD(z,X) | Z = z,X) (νD ⊥ Z | X by A.2)

= P(0 ≤ µD(z,X)− νD | Z = z,X)

= P(0 ≤ VT − VU | Z = z,X)

= P(D = 1 | Z = z,X). �
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Appendix C Derivation of Average Outcomes and Observables

Imbens and Rubin (1997), Katz et al. (2001), Abadie (2002), and Abadie (2003) rely on the

LATE assumptions to calculate average outcomes and observables of always takers, compli-

ers, and never takers. For consistency with my exposition, I perform the same calculations

using the MTE model that assumes no more than the LATE assumptions. I build intuition

with a graphical illustration that follows from the model.

I identify the expected value of YT for always takers as follows, supressing X for simplicity:

E[Y | D = 1, Z = 0] = E[YU +D(YT − YU) | D = 1, Z = 0] (by (6))

= E[YT | D = 1, Z = 0]

= E[YT | 0 ≤ UD ≤ pC , Z = 0] (by (5), where pC = P (D = 1|Z = 0))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC , Z = 0] (by (7))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC ] (Z ⊥ (UD, γT ) by (A.2))

= E[YT | 0 ≤ UD ≤ pC ].

I use similar steps to calculate the expected value of YT for lottery winners enrolled in

Medicaid E[YT | 0 ≤ UD ≤ pI ] = E[Y | D = 1, Z = 1], the expected value of YU for never

takers E[YU | pI < UD ≤ 1] = E[Y | D = 0, Z = 1], and the expected value of YU for lottery

losers not enrolled in Medicaid E[YU | pC < UD ≤ 1] = E[Y | D = 0, Z = 0]. I then use the

four resulting values to calculate the expected value of YT for compliers enrolled in Medicaid:

E[YT | pC < UD ≤ pI ] =
pI

pI − pC
E[YT | 0 ≤ UD ≤ pI ]−

pC
pI − pC

E[YT | 0 ≤ UD ≤ pC ]

=
pI

pI − pC
E[YT | D = 1, Z = 1]− pC

pI − pC
E[YT | D = 1, Z = 0].

and the expected value of YU for compliers not enrolled in Medicaid:

E[YU | pC < UD ≤ pI ] =
1− pC
pI − pC

E[YU | pC < UD ≤ 1]− 1− pI
pI − pC

E[YU | pI < UD ≤ 1]

=
1− pC
pI − pC

E[YU | D = 0, Z = 0]− 1− pI
pI − pC

E[YU | D = 0, Z = 1]

I illustrate the calculations graphically using values from Oregon data in Figure C1. I

use bolded dotted lines to depict average ER utilization when enrolled in Medicaid, YT ,

for two observed groups: lottery losers enrolled in Medicaid (0 ≤ UD ≤ pC) and lottery

winners enrolled in Medicaid (0 ≤ UD ≤ pI). I use bolded dashed lines to depict average

ER utilization when not enrolled in Medicaid, YU , for two observed groups: lottery losers

not enrolled in Medicaid (pC < UD ≤ 1) and lottery winners not enrolled in Medicaid
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(pI < UD ≤ 1). I depict the calculated outcomes for compliers with lighter shading.

To calculate the average observable X for each group, I begin with the same approach.

Even though average outcomes of compliers should depend on whether they win or lose

the lottery, average observables of compliers should not. Therefore, I weight the average

observables of compliers who win and lose the lottery by their respective probabilities:

E[X | pC < UD ≤ pI ] = P(Z = 1)
[ pI
pI − pC

E[X | D = 1, Z = 1]− pC
pI − pC

E[X | D = 1, Z = 0]
]

+P(Z = 0)
[ 1− pC
pI − pC

E[X | D = 0, Z = 0]− 1− pI
pI − pC

E[X | D = 0, Z = 1]
]
.

Figure C1: Average Treated and Untreated ER Visits for Compliers (Ligher Shading)
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Note. The number of ER visits represents the total number of visits to the emergency department during the
study period from March 10, 2008 to September 30, 2009. Treatment represents enrollment in Medicaid. pC
is the probability of treatment in the control group, and pI is the probability of treatment in the intervention
group. Some differences between statistics might not appear internally consistent because of rounding.
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Appendix D Estimating MTO(x, p), MUO(x, p), and MTE(x, p).

The steps below estimate the functions MTO(x, p), MUO(x, p), and MTE(x, p) of the form

MTO(x, p) = δ′Tx+ λTp

MUO(x, p) = δ′Ux+ λUp

MTE(x, p) = MTO(x, p)−MUO(x, p)

= (δ′T − δ′U)x+ (λT − λU) p.

1. Estimate propensity scores, p̂, for all individuals in the sample by fitting

D = φ0 + φ1Z + φ′2X + φ′3(X
′Z) + ε

and using φ̂0, φ̂1, φ̂2, and φ̂3 to predict D conditional on Z and observables X.

2. The MTO function can be derived from the average treated outcome (ATO) function,

defined as follows:

ATO(x, p) = E [YT | X = x, 0 ≤ UD ≤ p]

= δ̃′Tx+ λ̃Tp.

The ATO function can be estimated directly by conditioning the sample on treated

individuals (D = 1) and using OLS to estimate:

Y = δ̃′Tx+ λ̃T p̂+ ζT .

To recover the parameters of the MTO function from the estimated parameters of the

ATO function, note that:

MTO(x, p) =
d [pATO(x, p)]

dp
.

Therefore,

MTO(x, p) = δ̃′Tx+ 2λ̃Tp

= δ′Tx+ λTp.

So, estimates of the MTO parameters can be constructed as follows: δT = δ̃T and

λT = 2λ̃T .
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3. The MUO function can be derived from the average untreated outcome (AUO) func-

tion, defined as follows:

AUO(x, p) = E [YU | X = x, p < UD ≤ 1]

= δ̃′Ux+ λ̃Up.

The AUO function can be estimated directly by conditioning the sample on untreated

individuals (D = 0) and using OLS to estimate:

Y = δ̃′Ux+ λ̃U p̂+ ζU .

To recover the parameters of the MUO function from the estimated parameters of the

AUO function, note that

MUO(x, p) =
d [(1− p)AUO(x, p)]

d(1− p) .

Therefore,

MUO(x, p) = δ̃′Ux− λ̃U + 2λ̃Up

= δ′Ux+ λUp.

So, an estimate for λU can be constructed as λU = 2λ̃U , while the estimate for δU is

equal to the estimated δ̃U with its constant coefficient shifted down by λ̃U .

4. Construct the estimate for MTE(x, p) using the estimated parameters of MTO(x, p)

and MUO(x, p):

MTE(x, p) = MTO(x, p)−MUO(x, p) = (δT − δU)′x+ (λT − λU)p.
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