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Abstract

We bound the distribution of treatment effects under plausible and testable
assumptions on the joint distribution of potential outcomes, namely that poten-
tial outcomes are mutually stochastically increasing. We show how to test the
empirical restrictions implied by those assumptions. The resulting bounds sub-
stantially sharpen bounds based on classical inequalities. We apply our method
to estimate bounds on the distribution of effects of attending a Knowledge is
Power Program (KIPP) charter school on student academic achievement, and
find that a substantial majority of students’ math achievement benefitted from
attendance, especially those who would have fared poorly in a traditional class-
room.

1 Introduction

What fraction of patients benefit from a certain medical procedure? What is the

median response of subjects to a treatment? How does the effect of a novel education

intervention vary by the outcome that would have been realized in a traditional

classroom? Questions such as these are often of great interest to researchers, policy

makers, and individuals.

∗Department of Economics, Brigham Young University. The authors thank Brigham Young
University College of Family, Home, and Social Sciences for financial support. This research was
approved by the Brigham Young University Institutional Review Board. We thank Ryan Hill for
excellent research assistance.
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For example, parents and policy makers may be rightly concerned about a program

that harms a substantial fraction of participants despite a positive average effect,

particularly given that a positive average effect often depends on how outcomes are

scaled. Additionally, parents considering enrolling a child in an education intervention

may have private information regarding their child’s likely outcome in a traditional

classroom. Knowledge about how the effects of an intervention vary across students

who would do well and do poorly in a conventional setting can then improve the

efficiency of enrollment decisions and minimize the probability that the student is

harmed by placement in an ill-suited program.

Yet even ideal experimental data, under standard assumptions, cannot identify

the answers to questions such as these concerning the distribution of treatment ef-

fects. The reason for this is that experimental data identify the separate marginal

distributions of potential outcomes under treatment and control, not the joint dis-

tribution, a point made by Heckman et al. (1997). Consequently, researchers can

identify parameters that are functions of the marginal distributions, such as quantile

treatment effects, which compare the distributions of potential outcomes at different

quantiles, or average treatment effects. Researchers cannot, however, identify param-

eters that depend on the joint distribution of potential outcomes such as the fraction

of subjects harmed by the treatment, the median treatment effect, or the expected

treatment effect given a subject’s outcome in the control distribution.

While the distribution of treatment effects is not point identified, it may be

bounded. The marginal distributions of potential outcomes themselves imply bounds

on the joint distribution via the classical Frechet-Hoeffding limits. Bounds based

on these limits, however, are typically very wide, precluding meaningful economic

inferences. We develop a method that provides much tighter bounds. Our method

relies on an assumption about the joint distribution of potential outcomes that is
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both plausible in many economic contexts and testable. In particular, we assume

that potential outcomes are mutually stochastically increasing: the distribution of

outcomes under treatment among individuals who would have realized a higher out-

come in the control state (weakly) stochastically dominates that among individuals

who would have realized a lower outcome in the control state, and vice versa. In an

education setting, this means that if student A performs better than student B in

the control distribution, student A would likely have outperformed student B in the

treated distribution, and vice versa. The assumption should be plausible in many eco-

nomic settings, and indeed is even implied by some models of program self-selection,

as shown by Heckman et al. (1997).

This assumption substantially sharpens the classical bounds on the overall distri-

bution of treatment effects, and also implies bounds on the conditional distribution

of treatment effects at each point of the control and treated distribution. Thus we

can place informative bounds on parameters such as the overall fraction of individ-

uals harmed by treatment and the median treatment effect. We also can bound the

average treatment effect, median treatment effect, and probability of being harmed

for a student who performed, say, one standard deviation below the control mean in

the absence of treatment. We can create similar bounds for a treated individual who

performed one standard deviation below the treated mean.

What can be learned from our approach beyond what can be learned from tradi-

tional analyses of treatment effect heterogeneity? The traditional approach to ana-

lyzing treatment effect heterogeneity focuses on how average effects vary by subgroup

(see Djebbari and Smith, 2008 and Bitler et al., 2014 for discussion). Examining

average treatment effects by subgroup can be useful for targeting policy interventions

and exploring mechanisms, but it cannot answer questions regarding the fraction of

individuals helped or harmed by a treatment, as our approach can. Similarly, indi-
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viduals often have information regarding their potential outcome in the control or

treated state not available to researchers. In this case bounds on the distribution of

treatment effects given one’s potential outcome in the treated or control state condi-

tional on observables provides relevant information beyond average treatment effects

by observed subgroup.

The bounds on the treatment effect distribution conditional on potential outcomes

can be calculated using standard nonparametric or semiparametric regression tech-

niques. The bounds on the overall treatment effect distribution can be calculated

using either of two methods. The first, and computationally faster, method simply

integrates over the conditional bounds. This yields somewhat conservative bounds,

since it implicitly imposes worst-case assumptions pointwise across the distribution,

while the uniformly worst-case assumption would not correspond to the worst case

at every point. The second method is computationally more intensive but yields

tighter bounds, and involves searching across the set of joint distributions of control

and treated outcomes that satisfy stochastic increasingness but yield the observed

marginal distributions.

We show how incorporating covariates that are predictive of outcomes in the

control and treatment states can substantially tighten the bounds. Consequently, our

bounds will be most informative when highly predictive covariates exist. Our bounds

will also tend to be more informative regarding the fraction of students benefitted by

treatment when the average treatment effect is large in absolute value.

We propose a test of stochastic increasingness that probes the implication that po-

tential outcomes are positively correlated. Although the correlation between potential

outcomes cannot be computed directly, we can compute the correlation of predicted

outcomes in the control and treament states. If the covariates are sufficiently predic-

tive of outcomes in the treatment and control states and if the predicted outcomes
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are sufficiently highly correlated themselves, we demonstrate that potential outcomes

in the treated and control states are positively correlated—a necessary condition for

our assumption of stochastic increasingess.

We apply our method to calculate bounds on the distribution of effects on student

achievement of the Knowledge Is Power Program (KIPP) charter school in Lynn, Mas-

sachusetts. Our bounds imply that the substantial majority of students who attended

the charter school benefitted in terms of mathematics achievement. Furthermore, our

bounds allow us to say definitively that students who would have performed poorly

in the control distribution experienced a large positive average treatment effect and

were very likely to benefit from KIPP attendance. These results are novel relative to

prior findings on KIPP attendance, which focus on the average treatment effect. Our

bounds are also much tighter than bounds that do not impose stochastic increasing-

ness.

The next section describes our paper’s contribution relative to prior work on the

distribution of treatment effects. Section 3 develops our econometric framework,

defines the restrictions we propose, derives the implied bounds on the distribution

of treatment effects, shows how they are identified in the data, and shows how they

may be tested. Section 4 applies the bounds and the testing procedure in the KIPP

setting. Section 5 concludes.

2 Relationship to Previous Literature on the Dis-

tribution of Treatment Effects

Prior researchers have developed methods to bound the distribution of treatment ef-

fects. Williamson and Downs (1990) and Heckman et al. (1997) derive bounds on
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features of the joint distribution of potential outcomes using only information con-

tained in the marginal distributions. Fan and Park (2010) show how to perform

inference on these bounds. Firpo and Ridder (2010) develop uniform versions of

the bounds, resulting in tighter bounds on functionals of the treatment effect dis-

tribution. These papers rely on the fact that the marginal distributions of control

and treatment outcomes themselves restrict the joint distribution via the well-known

Frechet-Hoeffding bounds. Unfortunately, these bounds, which place no additional

restrictions on the joint distribution of outcomes, tend to be uninformative. Often,

one cannot rule out harm to a substantial majority of subjects, even in the presence

of a positive average effect. Furthermore, bounds on the conditional distribution of

treatment effects given the outcome in the non-treated state tend to be extremely

wide since any outcome in the support of the control distribution can correspond

to any outcome in the support of the treated distribution. For these reasons, such

bounds tend to preclude meaningful economic inferences.

Additional restrictions are therefore required to meaningfully bound the distri-

bution of treatment effects. Manski (1997) proposes the restriction that treatment

responses are monotone, and derives the resulting bounds. These restrictions allow

the bounds to be substantially tightened, but may be too strong to be plausible in

many empirical settings. Heckman et al. (1997) and Fan and Park (2009) show the

bounds on the distribution of treatment effects can sometimes be tightened if one

assumes that a dependence measure between between potential outcomes is known.

Our results complement this approach by relaxing the need to specify a known mea-

sure, and instead assumes only the direction of dependence is known. The restriction

we propose, stochastic increasingness of potential outcomes (defined in the following

section), implies substantially tighter bounds than those of Williamson and Downs

(1990), should be plausible in many applied settings, and is testable.
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Stochastic increasingness or related assumptions have been used in other settings.

In a sample selection setting, Blundell et al. (2007), Lechner and Melly (2010), and

Blanco et al. (2013) employed stochastic dominance assumptions across working and

nonworking individuals to estimate features of distribution of wages. Imai (2008)

adopted a similar approach when the source of sample selection is attrition. To esti-

mate measures of intergenerational mobility, Chetty et al. (2016) imposed stochastic

increasingness of fathers’ and sons’ earnings.

3 Econometric Framework

Consider a binary treatment indicator, D, that possibly affects a continuously dis-

tributed outcome Y . Let Y (1) and Y (0) be potential outcomes with and with-

out treatment, with marginal cdfs F1 and F0. Observed variables are the outcome,

Y = Y (D), and the treatment indicator D. For clarity, we first consider the case

without covariates, and where treatment D is independent of potential outcomes.

We show in the appendix how covariates may be incorporated to tighten the bounds,

and how instrumental variables methods can be incorporated, if necessary, to aid in

identification.

The parameters of interest in this paper are features of the distribution of treat-

ment effects ∆ := Y (1)−Y (0), including the cdf, F∆; the conditional cdf given Y (d),

F∆|Y (d), d ∈ {0, 1}; and the expectation conditional on Y (d), E [∆|Y (d)] , d ∈ {0, 1}.

These parameters are typically of policy and economic importance, but, unlike the

marginal distributions of potential outcomes, are not directly identified by experi-

mental data. The parameters are not identified because they depend on the joint

distribution of Y (0) and Y (1), which are never jointly observed. The marginal dis-

tributions F1 and F0 themselves impose some restrictions on the joint distribution via
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the Frechet-Hoeffding bounds, but these are rarely tight enough to imply economi-

cally meaningful restrictions. As discussed above, economically meaningful bounds in

the current literature require strong, typically implausible assumptions. The bounds

we construct here substantially improve upon the Frechet-Hoeffiding bounds and the

related bounds on the distribution of treatment effects derived by Williamson and

Downs (1990) and discussed by Fan and Park (2010) and Fan et al. (2014) by imposing

natural—and testable—restrictions on the joint distribution of potential outcomes.

3.1 Bounding the Distribution of Treatment Effects

The separate distributions of Y (0) and Y (1) themselves imply bounds on the joint

distribution of (Y (1) , Y (0)) and also the distribution of Y (1) − Y (0). The well-

known Frechet-Hoeffding bounds provide upper and lower bounds on the joint distri-

bution of (Y (1) , Y (0)), while the following expressions due to Williamson and Downs

(1990) provide upper and lower bounds on the distribution of their difference—that

is, the distribution of treatment effects:

FL
∆ (t) = sup

y
max {F1 (y)− F0 (y − t) , 0} , (1)

FU
∆ (t) = 1 + inf

y
min {F1 (y)− F0 (y − t) , 0} . (2)

These bounds, while attractive in that they impose no restrictions on the joint distri-

bution of (Y (1) , Y (0)), are often uninformative. They also provide no information

on the distribution of treatment effects conditional on Y (d). Further restrictions are

required to provide more informative bounds.

The restriction we propose assumes that potential outcomes are mutually stochas-

tically increasing:

8



Definition 1 Potential outcomes Y (0) and Y (1) are mutually stochastically

increasing if Pr (Y (1) ≤ t|Y (0) = y) and Pr (Y (0) ≤ t|Y (1) = y) are each non-

increasing in y almost everywhere.

Lehmann (1966) described the property of stochastic increasingness, referring to

it as positive regression dependence. It means that individuals with higher poten-

tial outcomes in one treatment state draw from a more favorable—in the first-order

stochastic dominant sense—conditional distribution of outcomes in the other state.

It is a generalization of constant treatment effects restrictions and the rank invariance

assumption discussed in Chernozhukov and Hansen (2005). The condition is satisfied

whenever Y (1) and Y (0) are positively likelihood ratio dependent, and it implies

that Y (1) and Y (0) are positively correlated. The condition also rules out negative

dependence between potential outcomes and can be tested, as we discuss below in

Section 3.4.

Stochastically increasing potential outcomes should be a plausible assumption in

many economic settings. For example, students with strong family backgrounds and

high levels of prior knowledge are likely to outperform students without such ad-

vantages in most settings, including treatment and control situations. In a clinical

setting, pretreatment level of morbidity would tend to cause those who do well in the

control group to also do well in the treatment group. Unemployed workers with strong

literacy and numeracy skills are likely to do better than workers without such skills

both in a control setting as well as a treatment setting in which they’ve been ran-

domized into a job training program. All of these situations would satisfy stochastic

increasingness and seem very plausible.

Situations in which stochastic increasingness would be violated, in contrast, often

seem unusual. This would happen if, on average, unobserved characteristics that were
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beneficial in the control state were harmful in the treatment state. This would also

occur if two latent skills had different relative skill prices in the treatment and control

state and were strongly negatively correlated. In such cases as these, one ought to be

cautious about using our methodology.

3.1.1 Bounds on the treatment effect distribution given Y (0) or Y (1)

Under the stochastically increasing property, the conditional distribution of the treat-

ment effect given Y (0) (or Y (1)) can be sharply bounded by a function of the separate

marginal distributions of Y (0) and Y (1), as the following theorem establishes.

Theorem 2 Suppose Y (1) and Y (0) are mutually stochastically increasing. Then

F∆|Y (0) (t|Y (0)) := Pr (∆ ≤ t|Y (0)) is bounded from below by

FL
∆|Y (0) (t|Y (0)) :=

 0 , Y (0) + t < Ỹ (1)

F1(Y (0)+t)−F0(Y (0))
1−F0(Y (0))

, Y (0) + t ≥ Ỹ (1)
(3)

and from above by

FU
∆|Y (0) (t|Y (0)) :=


F1(Y (0)+t)
F0(Y (0))

, Y (0) + t ≤ Ỹ (1)

1 , Y (0) + t ≥ Ỹ (1)
, (4)

where Ỹ (1) := F−1
1 (F0 (Y (0))) .

Proof. See the appendix.

Theorem 2 gives bounds on the conditional distribution of treatment effects—

which in general depends on the unidentified joint distribution of (Y (0) , Y (1))—as a

function of the separate marginal distributions of potential outcomes, which are iden-

tified. The bounds themselves are proper probability distributions. Mutual stochas-
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tic increasingness also implies analogous bounds on the conditional distribution of

treatment effects given Y (1), denoted FL
∆|Y (1) and FU

∆|Y (1), expressions for which are

provided in the proof.

Figure 1 provides graphical intuition for the bounds. The expression for the upper

bound of the cdf in equation (4) corresponds to the worst-case conditional distribution

for Y (1) given Y (0) that is still consistent with stochastic increasingness. As the left

panel of Figure 1 shows, the worst case occurs when an individual with a given Y (0)

has zero probability of drawing a Y (1) that exceeds his or her rank in the control

state, but instead draws from the truncated distribution of Y (1) ranks below his or

her rank in the control state. The best case, shown in the right panel of Figure 1, is

just the opposite: an individual with a given Y (0) has zero probability of drawing a

Y (1) below his or her rank in the control state, but instead draws from the truncated

distribution of Y (1) ranks above his or her rank in the control state. The best case

corresponds to the lower-bound cdf given in equation (3).

These bounds on the treatment effect cdf also imply bounds on the average treat-

ment effect conditional on Y (0) (or Y (1)), a quantity that is frequently of great

interest in applications, but not point identified. Let the average treatment effect

conditional on Y (d) be denoted ∆ (Y (d)) := E [Y (1)− Y (0) |Y (d)]. By definition,

bounds on the conditional expectation are given by integrating the derivative of the

cdf bounds:

∆L (Y (d)) =

∫
tdFU

∆|Y (d) (t|Y (d)) , (5)

∆U (Y (d)) =

∫
tdFL

∆|Y (d) (t|Y (d)) . (6)
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3.1.2 Bounds on the overall treatment effect distribution

Bounds on the overall distribution of treatment effects can be constructed by taking

the expectation of the conditional bounds:

F̃L
∆ (t) = max

d∈{0,1}
E
[
FL

∆|Y (d) (t|Y (d))
]

(7)

F̃U
∆ (t) = min

d∈{0,1}
E
[
FU

∆|Y (d) (t|Y (d))
]
. (8)

Integrating over the conditional bounds in this way will yield conservative bounds on

the overall distribution, however, since the conditional bounds FL
∆|Y (d) and FU

∆|Y (d) are

by construction sharp pointwise in Y (d), but not uniformly.

Sharp bounds on the overall distribution of treatment effects based on conditional

stochastic increasingness can be obtained in principal by searching over the set of

joint distributions of (Y (0) , Y (1)) that satisfy mutual stochastic increasingness, and

of course yield the observed marginal distribution distributions of Y (0) and Y (1).

Defining CSI to be the set of bivariate copula functions H that satisfy mutual stochas-

tic increasingness, we can define sharp bounds on overall distribution of treatment

effects as

FL
∆ (t) = inf

H(·,·)∈CSI

∫ ∫
1
(
F−1

1 (v)− F−1
0 (u) ≤ t

)
H (u, v) dudv, (9)

FU
∆ (t) = sup

H(·,·)∈CSI

∫ ∫
1
(
F−1

1 (v)− F−1
0 (u) ≤ t

)
H (u, v) dudv. (10)

As functions of the observed F1 and F0 only, these bounds are in principal identi-

fied, although the infinite dimensional optimization problem that defines them may

complicate estimation, as described below.

These results can be applied directly to bound quantities such as the fraction

of individuals who are harmed by treatment (i.e., the cdf of ∆ evaluated at zero),
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but can also be used to construct sharp bounds on any feature of the distribution

of treatment effects that is monotonic in the cdf in a stochastically dominant sense,

such as the expectation or any quantile of the treatment effect.

Our bounds are substantially tighter than the bounds based on classical limits.

Appendix Figures 11 and 12 report numerical simulations of the bounds on the frac-

tion hurt by treatment, and in all cases our bounds are much narrower than the

Williamson-Downs bounds.

When are the bounds tightest? The numerical simulations reported in the ap-

pendix illustrate factors that determine the tightness of the bounds. First, the bounds

on the fraction hurt by treatment are more informative the larger in magnitude the

average treatment effect (or other central measure of the treatment effect size). The

intuition for this is that with such minimal restrictions on heterogeneity, even a treat-

ment with a small average effect is nevertheless consistent with a large fraction of indi-

viduals being either slightly helped or harmed by treatment. Second, the bounds can

be substantially tightened by introducing covariates that predict outcomes, which we

show how to incorporate in the appendix. A practical implication is that researchers

will benefit from collecting a rich set of covariates, especially lagged outcomes, as part

of the study design.

3.2 Estimating the Bounds

The conditional cdf bounds (3) and (4) can be consistently estimated by plugging in

consistent estimators for the conditional cdfs F1 and F0. Here we give details for the

simplest case where Di is independent of potential outcomes. See the appendix for

estimation details when covariates are available or instrumental variables methods

are necessary.
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Bounds on the distribution of treatment effects given some untreated potential

outcome value y can be constructed via the following steps:

1. Construct F̂0 (y) as the sample mean of the indicator 1 (Yi ≤ y) in the untreated

subsample

2. Construct F̂1 (y + t) as the sample mean of the indicator 1 (Yi ≤ y + t) in the

treated subsample

3. Plug in to form estimates of the bounds

F̂L
∆|0 (t|Y (0) = y) : = max

{
0,
F̂1 (y + t)− F̂0 (y)

1− F̂0 (y)

}
(11)

F̂U
∆|0 (t|Y (0) = y) : = min

{
1,
F̂1 (y + t)

F̂0 (y)

}
. (12)

Bounds (5) and (6) on the conditional expectation of treatment effects given Y (0)

can be computed by integrating over the numerical derivative of the cdf estimates (11)

and (12) on a discrete grid. Analogous steps can be followed for the distribution of

treatment effects given Y (1).

Bounds on the overall cdf of treatment effects can be constructed in either of

two methods, following the discussion in Section 3.1.2. The computationally simpler

method takes the sample averages of (11) and (12) evaluated at the observed out-

comes in the untreated sample. While computationally simple, these bounds may be

conservative. The second method computes a numerical approximation to the sharp

uniform bounds defined in (9) and (10) by adapting Chetty et al.’s (2016) computa-

tional algorithm for optimizing over the space of discrete copulae defined on a k × k

grid, subject to the mutual stochastic increasingness constraints. This approximation

is the solution to a linear programming problem, and can be computed relatively
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quickly for grid sizes on the order of one hundred. The grid approximation error can

be made arbitrarily small for large k. The appendix provides details on the algorithm.

3.3 Inference

The procedures described above for bounds conditional on Y (0) or Y (1) and for the

overall bounds when obtained by integrating the conditional bounds lead to consistent

and asymptotically normal estimates. This subsection gives the limiting distribution

of the bound estimators (11) and (12). The limiting distributions provide the basis

for asymptotically valid inference on the parameters of interest, by applying Imbens

and Manski’s (2004) method for inference on partially identified parameters.

The bound estimates are themselves functions of estimators for potential outcome

cdfs, F̂0 and F̂1:

 F̂0 (y)

F̂1 (y + t)

 =

 n−1
∑n

i=1 1(Yi≤y)−n−1
∑n

i=1 1(Yi≤y)Di

1−n−1
∑n

i=1Di

n−1
∑n

i=1 1(Yi≤y+t)Di

n−1
∑n

i=1Di

 ,

which in turn are (differentiable) functions of the following vector of sample means:

Ŵ (v) =



n−1
∑n

i=1 1 (Yi ≤ y)

n−1
∑n

i=1 1 (Yi ≤ y)Di

n−1
∑n

i=1 1 (Yi ≤ y + t)Di

n−1
∑n

i=1 Di


,

with corresponding vector of population expectations W (v), where v = (y, t)′. Collect

the arguments of the max and min in expressions (11) and (12) in the vector Ĥ :=
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(
ĤL, ĤU

)′
, where

ĤL : =
F̂1 (y + t)− F̂0 (y)

1− F̂0 (y)

ĤU : =
F̂1 (y + t)

F̂0 (y)
,

with corresponding probability limits H :=
(
HL, HU

)′
. The following theorem estab-

lishes the limiting distribution of Ĥ:

Theorem 3 Let {Yi, Di}ni=1 be an iid sample. Then
√
n
(
Ĥ (v)−H (v)

)
converges

uniformly to a Gaussian process with zero mean function and covariance function

Ω (v, ṽ) := J (v) γ (v) Σ (v, ṽ) γ (ṽ)′ J (ṽ)′ where the Jacobians J (v) and γ (v) are given

by

J (v) : =

 − 1−F1(y+t)

(1−F0(y))2
(1− F0 (y))−1

−F1(y+t)

F0(y)2
F0 (y)−1

 ,
γ (v) : =

 1
1−p −

1
1−p 0 F0(y)

(1−p)

0 0 1
p
−F1(y+t)

p

 ,
and the covariance function Σ (v, ṽ) is given by

Σ (v, ṽ) := E
[
Wi (v)Wi (ṽ)′ −W (v)W (ṽ)′

]
.

Proof. The result follows from an application of standard Donsker and functional

delta method results in, for example, Theorem 3.9.5 in van der Vaart and Wellner

(1996).

Inference on F∆|0 (t|y) can then be performed following Imbens and Manski (2004),
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whose method applied to our setting yields the following confidence interval:

CI (1− α) :=

[
ĤL − C̄α

√
n−1Ω̂ (v, v)[1,1], Ĥ

U + C̄α

√
n−1Ω̂ (v, v)[2,2]

]
∩ [0, 1] ,

where the critical value C̄α satisfies

Φ

C̄α +
√
n

ĤU − ĤL√
max

(
Ω̂ (v, v)[1,1] , Ω̂ (v, v)[2,2]

)
− Φ

(
−C̄α

)
= α.

3.4 Testing for Stochastic Increasingness

Stochastic increasingness has testable implications. This section illustrates these

implications and shows how they can be tested. Stochastic increasingness implies

that Y (1) and Y (0) are positively correlated. This implication cannot be tested

directly, since we do not observe the joint distribution of potential outcomes, but

we can test it indirectly by examining how Y (1) and Y (0) move with observed

variables S. Specifically, the Cauchy-Schwarz inequality implies (see Theorem 5 in

the appendix) that a necessary condition for Cov (Y (1) , Y (0)) ≥ 0 is that

Corr
(
Ŷ (0) , Ŷ (1)

)
≥ −

√
(1−R2

0) (1−R2
1)

R2
0R

2
1

, (13)

where Ŷ (0) and Ŷ (1) are linear projections of potential outcomes on S with corre-

sponding coefficients of determination R2
0 and R2

1. Condition (13) is only nontrivial

when the covariates S strongly predict potential outcomes: the respectiveR2s between

S and each potential outcome must geometrically average at least .5 in order for the

right-hand side of (14) to be greater than than negative one. A practical procedure

for verifying this condition when treatment is exogenous is to estimate the conditional
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expectation by regressing Yi on Si in the treated and untreated subsamples, calculate

the correlation coefficient between the predicted values, and compare it to the right

hand side of (13). When treatment is endogenous, but responds monotonically to an

exogenous instrument Zi, the projections of potential outcomes on covariates and the

calculation of the correlation should be performed using Abadie’s (2003) κ weights.

In this case the procedure tests stochastic increasingness among compliers.

The test described above may have little power for either of two reasons. The

first is that unless covariates S sufficiently strongly predict outcomes, the inequality

will trivially be satisfied, since the right-hand side will be less than negative one.

The second is that predicted potential outcomes must be very negatively correlated

in order for the null to be rejected, meaning that moderate violations of stochastic

increasingness will not be detected.

Even in cases in which the formal test is underpowered, the test statistic can

still provide useful evidence regarding the plausibility of the stochastic increasingness

assumption. In particular if the correlation between Ŷ (0) and Ŷ (1) is positive,

it indicates that observable factors move both treated and untreated outcomes in

the same direction lending plausibility to the belief that unobservable factors act in

the same manner. This is similar in spirit to how selection on unobservables can be

assessed by examining selection on observables (Altonji et al., 2013). If the correlation

between predicted outcomes is not only positive but also satisfies the more stringent

condition

Corr
(
Ŷ (0) , Ŷ (1)

)
≥

√
(1−R2

0) (1−R2
1)

R2
0R

2
1

, (14)

then it must be the case that Cov (Y (1) , Y (0)) ≥ 0, a necessary condition for stochas-

tic increasingness.
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4 Empirical Example: Distributional Effects of KIPP

Lynn

A substantial literature has found that charter schools have widely varying effects on

student achievement (see Hanushek et al., 2007; Bettinger, 2005; Dobbie and Fryer,

2013). In many cases, students who attend charter school appear to perform no bet-

ter than students attending traditional public schools. However, Dobbie and Fryer

(2013) show that charter schools that focus on increased instructional time, tutoring,

high expectations, effective use of data, and frequent teacher feedback are effective at

increasing student achievement. Specific examples such as Harlem Children’s Zone

and the Knowledge is Power Program (KIPP) have been shown to close or dramati-

cally narrow the achievement gaps between white and minority students (see Dobbie

and Fryer, 2011; Angrist et al., 2010, 2012). While these studies suggest that effective

charter schools may boost disadvantaged students’ academic achievement on average,

understanding the distribution of effects is also important. In particular, parents may

be more comfortable enrolling their students in charter schools if a large majority of

students benefit from attendance than if only a minority of students do. Addition-

ally, by understanding how the effects of achievement vary across the distribution of

control outcomes, parents and policy makers may have a better sense of the types of

children who would most benefit from charter school attendance.

For these reasons, we estimate our bounds in the context of KIPP, which is an

organization that manages a set of “No Excuses” charter schools. Relative to many

other traditional and charter schools, KIPP schools employ a longer school day and

school year. They seek to maintain high behavioral standards and focus instruction

on math and reading skills.

Angrist et al. (2010, 2012) provide an evaluation of this program utilizing data
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from students who applied to the KIPP Academy in Lynn, Massachusetts from 2005

to 2008. Student outcomes are observed prior to application in 4th grade and then in

subsequent grades up to 8th grade. Taking advantage of the fact that admission to this

location was rationed through a lottery, the authors find that each year of attendance

leads to an average increase in math achievement of 0.35 standard deviations.

We utilize the data from these earlier studies. In contrast to prior work, our

treatment is a binary variable for whether the student attended KIPP academy. Our

outcome variable is math performance in the 7th grade. Hence our estimate captures

the cumulative effect of KIPP attendance for up to three years of attendance. For

this reason, our estimated effect sizes will tend to be somewhat larger than those

estimated by prior researchers.

In Table 1 we present summary statistics for our sample. Similar to prior studies,

we find that approximately 65 percent of students are admitted into KIPP and 55

percent of all applicants eventually enrolled. This implies that 85 percent of admitted

students attended for at least one year. Examining the student performance prior to

application, we see that in fourth grade the students performed 0.39 standard devia-

tions below the state-level mean in mathematics. Seventh grade performance suggests

the program was efficacious given that applicants performed just above the state mean

in mathematics. This is confirmed when observing the substantial difference in per-

formance between admitted and non-admitted students. Examining demographics,

we see that the sample is disproportionately male and Hispanic. Roughly 20 percent

of students are categorized as special education and the same fraction are limited

English proficient. Over 80 percent of applicants qualify for free or reduced price

lunch. In the same table, we show characteristics of students who won the lottery

for admission and those who did not. All of the observable characteristics prior to

application appear balanced across admitted and non-admitted students suggesting
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randomization was successful.

Prior to estimating our bounds, it is helpful to estimate the average effect of

attendance on math achievement. To do so, we simply employ two-stage least squares

in which the dependent variable is math performance and our binary attendance

measure is instrumented by an indicator variable that takes of a value of 1 if the

student was admitted to KIPP. We control for covariates including indicator variables

for gender, ethnicity, special education status, limited English proficiency, and free or

reduced price lunch receipt. Table 2 shows the results. We see that the first stage has

very high power with an F-statistic of the instrument in excess of 500. The estimated

effect of enrollment on math achievement for applicants who choose to enroll is 0.67

standard deviations, an effect that is both large and highly statistically significant.

While our specification differs from those in Angrist et al. (2010, 2012), the results

are broadly consistent with those that they found.

In order to construct our bounds, we make the assumption of stochastic increas-

ingness. We employ the test we develop to see if observable characteristics are associ-

ated with outcomes in the treated and control state in a manner consistent with this

assumption. To perform this test, we perform Abadie-κ-weighted regressions of out-

comes on a spline in prior math score and the demographic characteristics described

above. Table 3 shows the results. The correlation between predicted outcomes in

treated and control states is 0.947. This satisfies the necessary condition for positive

correlation of potential outcomes (and thus for stochastic increasingness) and also

satisfies the sufficient condition for positive correlation, shown in the bottom row of

Table 3 labeled “threshold correlation.” The positive correlation between predicted

potential outcomes lend plausibility to the assumption of stochastic increasingness.

Naturally, when using covariates to tighten the bounds, we must make the assumption

of conditional stochastic increasingness, which is untestable without other predictive

21



variables in addition to those in the conditioning set.

We now examine bounds on the cdf of treatment effects. Figure 2 shows the

Williamson-Downs bounds, our integrated pointwise bounds, and the uniform bounds,

all calculated without incorporating covariates. Note that the integrated pointwise

bounds are much tighter than the Williamson-Downs bounds. The uniform bounds

tend to be even somewhat narrower. This figure suggests that the assumption of

stochastic increasingness is very valuable for narrowing the bounds on the distribution

of treatment effects. Table 4 provides a numerical comparison between these three

methods showing the lower and upper bound on the fraction of students experiencing

negative treatment effects. Examining the second column, we see that the the upper

bound on the fraction hurt using the Williamson-Downs bounds is 0.68, while our

integrated pointwise and uniform bounds are 0.47 and 0.40 respectively.

These bounds, while substantially tighter than the Williamson-Downs bounds,

can be tightened further by incorporating covariates. Figure 3 shows the integrated

pointwise bounds on the overall distribution of treatment effects with and without

covariates. Our covariates include fourth grade math score and indicators for female,

black, Hispanic, other race or ethnicity, special education, limited English proficiency,

free or reduced-price lunch status, and the interaction bertween female and minority

status. We show the integrated pointwise bounds since they are nearly as tight as the

uniform bounds and calculating uniform bounds when using continuous covariates

takes orders of magnitude more computational time. The figure shows that covari-

ates dramatically tighten the bounds. Referring back to Table 4 we see that using

covariates tighten our bounds on the fraction hurt from 0.47 to 0.33.

In Figure 4 we show the 95 percent confidence intervals corresponding to our

integrated pointwise bounds incorporating covariates. Even looking at the top of the

confidence interval on the upper bound of fraction of students hurt by treatment, we
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can still infer that even in the worst case only a minorty of students could have been

harmed by treatment. Indeed, Table 4 shows that the top of the confidence interval

on the upper bound of students who could have been harmed by treatment is 0.41.

We now employ the methodology we developed to bound the fraction hurt by out-

come in the control state. Figure 5 shows this relationship incorporating covariates.

We see that the upper bound on the fraction of students hurt is increasing in the

outcome in the control distribution. The lower bound is uniformly zero. The figure

makes clear that the probability of being hurt by KIPP attendance was lower than .5

for students performing below the state average level in the control distribution, even

taking into account the 95-percent confidence interval. Table 5 shows these results

in table form. Once covariates are used, our bounds suggest that even students ex-

pected to perform in the 75th percentile of the control distribution likely benefitted

from attending KIPP. Collectively, these results suggest that students who would have

performed poorly in regular public schools overwhelmingly benefitted from treatment.

In Figure 6 we trace out bounds on the average treatment effect as a function

of the outcome in the control state. The lower bound suggests that all except stu-

dents who would have performed extremely well in the control distribution enjoyed a

positive expected treatment effect from KIPP attendance. This provides additional

evidence that students who would have performed poorly in their regular schools

likely benefitted from KIPP attendance. This is true even looking at the bottom of

the confidence interval of the lower bound of average treatment effects. We show

these results numerically in Table 5.

Summarizing the findings from the KIPP charter school experiment, we confirm

that attendance increased math achievement substantially. Even in the worst case,

we find that treatment increased math achievement for the substantial majority of

students. Furthermore, worst case bounds suggest that nearly all students who would
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have performed poorly in the control state benefitted from treatment. We also show

that the average treatment effect was very large and positive for such students and

still unambiguously positive for all except the students with the very best control out-

comes. These results suggest that our bounds can be informative regarding the dis-

tribution of treatment effects—particularly when we have covariates that are strongly

predictive of student outcomes and large treatment effects.

5 Conclusion

In this paper we propose partially identifying conditions that imply bounds on the dis-

tribution of treatment effects, an object of considerable policy and economic interest,

but which is not identified under standard assumptions. The proposed condition—

that an individual’s potential outcomes are each weakly stochastically increasing in

the other—should be plausible in many empirical settings, and has testable impli-

cations. The bounds can be constructed from standard estimates of the conditional

distributions of potential outcomes.

Specifically, our results give bounds on quantities such as the fraction of individ-

uals harmed by treatment, the median treatment effect, and the average treatment

effect conditional on the untreated potential outcome. The bounds implied by our

stochastic increasingness condition are substantially tighter than the Williamson-

Downs bounds based only on the restrictions implied by the marginal distributions

of potential outcomes. Our bounds are further tightened with the use of covariates.

We calculate our bounds in the context of a KIPP charter school. We show that

not only was the impact of attendance on mathematics positive overall, but also that

we can rule out that more than a small fraction of attending students were harmed.

The beneficial effects were particularly strong for students with poor outcomes in the
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control distribution.

The bounding methodology we develop in this paper represents an important tool

for applied researchers. To maximize the usefulness of these bounds, we offer a few

suggestions. First, our bounds are much tighter in the presence of covariates that

strongly predict outcomes in the treatment and control state. Such covariates are

also useful for assessing the plausibility of the stochastic increasingness assumption.

Hence, we encourage researchers to take full advantage of existing pre-treatment

covariates and when possible collect additional covariates, even if such variables are

not required to consistently estimate an average treatment effect.
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Appendix A: Proofs

The following result is crucial to Theorem 2:

Lemma 4 Let X and Y be random variables with marginal distributions FX and FY ,

where Y is the support of Y . Suppose continuously distributed random variable X is

weakly stochastically increasing in Y . Then

FX|Y (x|y) ≤ Pr (X ≤ x|Y = y) ≤ F̄X|Y (x|y) ,

where

FX|Y (x|y) =

 0 , x < F−1
X (FY (y))

FX(x)−FY (y)
1−FY (y)

, x ≥ F−1
X (FY (y))
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and

F̄X|Y (x|y) =


FX(x)
FY (y)

, x ≤ F−1
X (FY (y))

1 , x ≥ F−1
X (FY (y))

.

Proof. Take the lower bound first. Assume x ≥ F−1
X (FY (y)) since the bound

is trivially satisfied otherwise. The lower bound for Pr (X ≤ x|Y = y), FX|Y (x|y),

solves the following minimization problem for a given x, y:

min
F (x|·)

F (x|y)

subject to

(1) : F (x|y) ≤ F (x|y′) , y′ < y,

(2) : F (x|y) ≥ F (x|y′′) , y
′′ ≥ y,

(since X is stochastically increasing in Y ) and

(3) :

∫
Y
F (x|s) dFY (s) = FX (x)

(since the conditional must integrate to the marginal). The second constraint will

clearly bind at the lower bound, which implies FX|Y (x|y′′) = K (x) for y′′ ≥ y, where

K (x) is some function that does not depend on y′′. The first constraint is maximally

relaxed by setting FX|Y (x|y′) = 1 for y′ < y. The third constraint then implies the
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result:

FX (x) =

∫
Y
FX|Y (x|s) dFY (s)

= FY (y) +

∫
[y,∞)∩Y

K (x) dFY (s)

= FY (y) +K (x)

∫
[y,∞)∩Y

dFY (s)

= FY (y) +K (x) (1− FY (y))

⇔ K (x) =
FX (x)− FY (y)

1− FY (y)
.

Now take the upper bound. Assume x ≤ F−1
X (FY (y)) since the bound is trivially

satisfied otherwise. The upper bound for Pr (X ≤ x|Y = y), F̄X|Y (x|y), solves the

following maximization problem:

max
F (x|·)

F (x|y)

subject to

(1) : F (x|y) ≤ F (x|y′) , y′ ≤ y,

(2) : F (x|y) ≥ F (x|y′′) , y
′′
> y,

(since X is stochastically increasing in Y ) and

(3) :

∫
Y
F (x|s) dFY (s) = FX (x)

(since the conditional must integrate to the marginal). The first constraint will clearly

bind at the upper bound, which implies F̄X|Y (x|y′) = G (x) for y′ ≤ y, where G (x)

is some function that does not depend on y′. The second constraint is maximally
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relaxed by setting F̄X|Y (x|y′) = 0 for y′′ > y. The third constraint then implies the

result:

FX (x) =

∫
Y
F̄X|Y (x|s) dFY (s)

=

∫
(−∞,y]∩Y

G (x) dFY (s)

= G (x)

∫
(−∞,y]∩Y

dFY (s)

= G (x)FY (y)

⇔ G (x) =
FX (x)

FY (y)
.

Proof of Theorem 2. Note that by definition

Pr (∆ ≤ t|Y (0) , X) = Pr (Y (1) ≤ Y (0) + t|Y (0) , X) .

Since Y (1) is conditional stochastically increasing in Y (0), Lemma 4 applies to this

case conditionally on X, taking x = Y (0)+ t; y = Y (0); FX = FY (1)|X ; FY = FY (0)|X .

Making these substitutions in the lemma’s result gives the result in the theorem. The

argument for the lower bound is similar. Bounds on the conditional distribution of ∆

given Y (1) and X can be obtained by imposing that Y (0) is stochastically increasing

in Y (1) in an analogous manner. Note that by definition

Pr (∆ ≤ t|Y (1) , X) = Pr (Y (0) ≥ Y (1)− t|Y (1) , X)

= 1− Pr (Y (0) ≤ Y (1)− t|Y (1) , X)
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since Y (0) is assumed to be continuously distributed. We can thus simply interchange

Y (1) and Y (0) in (3) and take the complement to obtain an upper bound:

FU
∆|Y (1),X (t|Y (1) , X) :=

 1 , Y (1) + t < Ỹ (0|X)

1−F0|X(Y (1)+t|X)

1−F1|X(Y (1)|X)
, Y (1) + t ≥ Ỹ (0|X)

, (15)

and similarly with (4) to obtain a lower bound:

FL
∆|Y (1),X (t|Y (1) , X) :=


F1|X(Y (1)|X)−F0|X(Y (1)+t|X)

F1|X(Y (1)|X)
, Y (1) + t ≤ Ỹ (0|X)

0 , Y (1) + t ≥ Ỹ (0|X)
,

(16)

where Ỹ (0|X) := F−1
0|X
(
F1|X (Y (1) |X) |X

)
.

Theorem 5 Let Ŷ (0) and Ŷ (1) be linear projections of potential outcomes on X with

corresponding coefficients of determination R2
0 and R2

1. Then Cov (Y (1) , Y (0)) ≥ 0

implies

Corr
(
Ŷ (1) , Ŷ (0)

)
≥ −

√
(1−R2

0) (1−R2
1) / (R2

0R
2
1).

Proof. Define ε (1) = Y (1) − Ŷ (1) and ε (0) = Y (0) − Ŷ (0). Note that by con-

struction Cov
(
Ŷ (1) , ε (0)

)
= Cov

(
Ŷ (0) , ε (1)

)
= 0. Also, note that V ar (ε (1)) =

(1−R2
1)V ar (Y (1)) and V ar (ε (0)) = (1−R2

0)V ar (Y (0)). Since ε (0) is orthogonal

to Ŷ (1) and ε (1) is orthogonal to Ŷ (0), the covariance between potential outcomes

can be written:

Cov (Y (0) , Y (1)) = Cov
(
Ŷ (0) , Ŷ (1)

)
+ Cov (ε (0) , ε (1)) . (17)

The Cauchy-Schwarz inequality implies

Cov (ε (0) , ε (1)) ≤
√

(1−R2
0)V ar (Y (0)) (1−R2

1)V ar (Y (1)).
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Inserting this into (17) yields an upper bound on the covariance between potential

outcomes:

Cov (Y (0) , Y (1)) ≤ Cov
(
Ŷ (0) , Ŷ (1)

)
+
√

(1−R2
0)V ar (Y (0)) (1−R2

1)V ar (Y (1)).

This upper bound is nonnegative when

Cov
(
Ŷ (0) , Ŷ (1)

)
≥ −

√
(1−R2

0)V ar (Y (0)) (1−R2
1)V ar (Y (1)),

or, equivalently,

Corr
(
Ŷ (0) , Ŷ (1)

)
≥ −

√
(1−R2

0) (1−R2
1)

R2
0R

2
1

.

Appendix B: Incorporating Covariates and Instru-

mental Variables

For expositional simplicity the bounds above were developed without additional co-

variates and assuming exogenous treatment assignment. In practice, the bounds may

be substantially tightened by incorporating additional covariates X, and, in the case

of endogenous treatments, identification may require the use of instrumental variables.

In this section we show how the framework can be extended to these cases.

When additional covariates are available that predict the outcome Y , the bounds

may be tightened by adopting the following conditional version of the stochastic
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increasingness asssumption:

Definition 6 Y (0) and Y (1) are mutually stochastically increasing condi-

tional on X if Pr (Y (1) ≤ t|Y (0) = y,X) and Pr (Y (0) ≤ t|Y (1) = y,X) are each

nonincreasing in y almost everywhere.

The following bounds on the treatment effect cdf conditional on Y (0) and X are

conditional versions of (3) and (4) and follow from the conditional mutual stochastic

increasingness condition above:

FL
∆|Y (0),X (t|Y (0) , X) : =

 0 , Y (0) + t < Ỹ (1|X)

F1|X(Y (0)+t|X)−F0|X(Y (0)|X)

1−F0|X(Y (0)|X)
, Y (0) + t ≥ Ỹ (1|X)

FU
∆|Y (0),X (t|Y (0) , X) : =


F1|X(Y (0)+t|X)

F0|X(Y (0)|X)
, Y (0) + t ≤ Ỹ (1|X)

1 , Y (0) + t ≥ Ỹ (1|X)
,

where Ỹ (1|X) := F−1
1|X
(
F0|X (Y (0) |X)

)
; expressions for the treatment effect cdf

conditional on Y (1) and X are similar.

Bounds on the distribution of treatment effects conditional on Y (0) (or Y (1))

alone—which are frequently of greater interest than the distribution conditional on

Y (0) and X—can be obtained by integrating the conditional bounds over the condi-

tional distribution of X given Y (0):

FL
∆|Y (d) (t|Y (d)) = E

[
FL

∆|Y (d),X (t|Y (d) , X) |Y (d)
]

(18)

FU
∆|Y (d) (t|Y (d)) = E

[
FU

∆|Y (d),X (t|Y (d) , X) |Y (d)
]
, (19)

for d = 0 or 1. As before, bounds on the average treatment effect conditional on Y (d)
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can be formed by integrating over the cdf bounds:

∆L (Y (d)) =

∫
tdFU

∆|Y (d) (t|Y (d)) ,

∆U (Y (d)) =

∫
tdFL

∆|Y (d) (t|Y (d)) .

A simple method for computing bounds on the marginal cdf of the treatment effect

is to average over the bounds on the conditional cdf as before, though these bounds

may not be sharp:

F̃L
∆ (t) = max

d∈{0,1}
E
[
FL

∆|Y (d),X (t|Y (d) , X)
]

(20)

F̃U
∆ (t) = min

d∈{0,1}
E
[
FU

∆|Y (d),X (t|Y (d) , X)
]
. (21)

Sharp bounds may be computed by directly searching over the space of bivariate copu-

lae that satisfy mutual stochastic increasingness condition to find bounds conditional

on X

FL
∆|X (t|X) = inf

H(·,·)∈CSI

∫ ∫
1
(
F−1

1|X (v|X)− F−1
0|X (u|X) ≤ t

)
H (u, v) dudv,

FU
∆|X (t|X) = sup

H(·,·)∈CSI

∫ ∫
1
(
F−1

1|X (v|X)− F−1
0|X (u|X) ≤ t

)
H (u, v) dudv,

which can then be averaged to produce bounds on the marginal cdf:

FL
∆ (t) = E

[
FL

∆|X (t|X)
]
, (22)

FU
∆ (t) = E

[
FU

∆|X (t|X)
]
. (23)
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The bounds (22) and (23) are sharp, but in practice are prohibitively costly to calcu-

late as they require an infinite-dimensional optimization at each covariate value X.

In the application we estimate the integrated conditional bounds (20) and (21), which

are slightly less tight but computationally feasible.

The conditional cdf bounds (18) and (19) can be consistently estimated by plug-

ging in consistent estimators for the conditional cdfs F1|X and F0|X . For the case

where Di is exogenous, the bounds can be constructed via the following steps for

each untreated observation j:

1. Nonparametrically regress an indicator 1 (Yi ≤ Yj) on Xi in the untreated sub-

sample and construct predicted value F̂0|X (Yj|Xj)

2. Nonparametrically regress an indicator 1 (Yi ≤ Yj (0) + t) on Xi in the treated

subsample and construct predicted value F̂1|X (Yj (0) + t|Xj)

3. Form estimates of the bounds

F̂L
∆|0,X (t|Yj (0) , Xj) : = max

{
0,
F̂1|X (Yj (0) + t|Xj)− F̂0|X (Yj (0) |Xj)

1− F̂0|X (Yj (0) |Xj)

}
(24)

F̂U
∆|0,X (t|Yj (0) , Xj) : = min

{
1,
F̂1|X (Yj (0) + t|Xj)

F̂0|X (Yj (0) |Xj)

}
. (25)

The bounds (18) and (19) on the conditional distribution of treatment effects given

Y (0) can be constructed by nonparametrically regressing the estimates (24) and (25).

Bounds (5) and (6) on the conditional expectation of treatment effects given Y (0) can

be computed by numerically integrating the estimates for (18) and (19) on a discrete

grid. Analogous steps can be followed for the distribution of treatment effects given

Y (1).

When treatment status is exogenous, standard nonparametric regression methods
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such as local polynomial regression or spline regression suffice in steps 1 and 2 and in

constructing the bounds (18) and (19). When treatment is endogenous, instrumental

variables methods will be required. The particular instrumental variables method to

be used depends on which assumptions are appropriate in the empirical setting, and

the interpretation of the bounds may depend on those assumptions. For example, in

settings where individuals’ treatment status can be assumed to respond monotoni-

cally to the instrument Zi, the nonparametric regressions above can be estimated via

Abadie’s (2003) semiparametric κ-weighted estimator. The resulting estimates (11)

and (12) would then identify bounds on the distribution of treatment effects among

compliers, those individuals whose treatment status is affected by the instrument.

The bound estimates are themselves functions of estimators for potential outcome

conditional cdfs, F̂0|X and F̂1|X . Several methods exist for estimating conditional cdfs;

which is most suitable will depend on the specific empirical setting. For example,

when treatment is exogenous and X has continuous components, the semiparametric

distribution regression approach of Chernozhukov et al. (2013) may be most appro-

priate. When X is discrete, standard least squares regressions where treatment is

fully interacted with X may be used.

Appendix C: Algorithm for approximating overall

bounds

Let {C [i, j]}i=1..k,j=1..k be the elements of a k×k matrix which discretely approximates

a bivariate copula function. By definition, each marginal distribution is uniform,
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which implies the following constraints:

{
k∑
s=1

C [s, j] = 1

}k

j=1

,

{
k∑
s=1

C [i, s] = 1

}k−1

i=1

.

Stochastic increasingness means each conditional cdf is decreasing in the conditioning

dimension, which implies the following set of constraints:


{

i∑
s=1

C [s, j] ≥
i∑

s=1

C [s, j + 1]

}k−1

j=1


k−1

i=1

,

and 
{

j∑
s=1

C [i, s] ≥
j∑
s=1

C [i+ 1, s]

}k−1

i=1


k−1

j=1

.

Let the set of discrete copulae satisfying the above k2+(k − 1)2 constraints be denoted

Ck. Given estimates of the separate conditional distributions of Y (0) and Y (1) given

X (obtained possibly via the methods described in Section 3.2) the lower bound on

F∆|X can be approximated by solving the following linear program:

min
{C[i,j]}

k∑
j=1

k∑
i=1

1
(
F−1

1|X (r (i))− F−1
0|X (r (j)) ≤ t

)
C [i, j]

subject to C [·, ·] ∈ Ck,

where

r (i) =
i

n
− 1

2n
.
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The upper bound can be approximated by replacing the min with a max. Since the

objective function and all constraints are linear, the program can be solved using

efficient dual-simplex linear programming routines. Unconditional bounds can then

be obtained by integrating the conditional bounds over X. In practice the algorithm

works well for k ≈ 100 and discrete X with a moderate number of cells.

Appendix D: Simulations

This section illustrates the bounds on the distribution of treatment effects derived

above using numerical simulations. The simulations adopt the following data gen-

erating process. Untreated potential outcomes are generated as Yi (0) = βXi + εi.

The treated potential outcome is Yi (1) = Yi (0) + δ. The treatment indicator Di

is assigned independently of Xi and εi by random lottery whereby half the sample

receives Di = 1 and half receive Di = 0. The unobservables are generated according

to  Xi

εi

 ∼ N

0,

 σ2
X 0

0 σ2
ε


 .

In the simulated model, the R2 between Yi (0) and Xi is R2 = β2σ2
X/
(
β2σ2

X + σ2
ε

)
.

The simulations set σ2
X = 1. The simulations vary σ2

ε from .01 to 1, corresponding to

an R2 between Yi (0) and X from .99 to zero, and β is set accordingly to
√
R2/σ2

X

to ensure the variance of Yi (0) remains equal to one. The simulations also vary the

treatment effect size δ from −1 to 1.

The first set of simulations illustrates how the bounds on the average treatment

effect conditional on Yi (0) vary by across the values of Yi (0). These simulations set

the R2 between Yi (0) and Xi to 0.7, corresponding to σ2
ε = 0.3 and β =

√
.7 ≈ 0.84

and set the treatment effect size to δ = 1. Figure 7 plots the bounds (5) and (6) as
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a function of Y (0). The bounds always include the true treatment effect δ = 1, and

are tightest in the middle of the Y (0) distribution, and widen in the tails. Notice

that although in the simulated model the treatment effect is positive across the entire

distribution of Y (0), the bounds reach into negative territory for very high values

of Y (0), since the stochastic increasingness assumption allows for mean reversion;

individuals with high values of Y (0) have a larger probability of drawing a value of

Y (1) lower than Y (0).

The second set of simulations shows how these bounds on the average treatment

effect conditional on Yi (0) depend on the informativeness of the covariate X. These

simulations set the treatment effect δ = 1 and vary the R2 between Yi (0) and Xi

from zero to .99. Figure 8 plots the bounds (5) and (6) at Y (0) = 0 (i.e., at the

median) as a function of the R2. They show that the bounds tighten dramatically as

the covariate X more strongly predicts outcomes.

The next set of simulations illustrates how bounds on the fraction of individuals

harmed by treatment (i.e., the treatment effect cdf evaluated at zero) conditional

on Y (0) depends on the size of the treatment effect δ. As above, these simulations

set the R2 between Yi (0) and Xi to 0.7. Figure 9 plots the bounds (18) and (19)

evaluated at zero as a function of δ for Y (0) = 0. Since the simulated model has

constant treatment effects, the true fraction is one on the left side of the graph (where

the treatment effect is negative) and zero on the right side. When the treatment effect

is sufficiently large in magnitude, the bounds are quite tight. When the treatment

effect is zero or slightly positive, the bounds are completely uninformative, spanning

zero and one.

The next set of simulations shows how the bounds on the fraction of individuals

hurt conditional on Yi (0) depend on the informativeness of the covariate X. These

simulations set the treatment effect δ equal to one, and vary the R2 between Yi (0)

40



and Xi from zero to .99. Figure 10 plots the bounds (18) and (19) evaluated at

zero as a function of R2 for Y (0) = 0. Since the (constant) treatment effect in this

simulation is positive, the true fraction is zero. On the far left, where the covariate

has no predictive power, the bounds are quite wide, the upper bound reaching .3, but

the bounds tighten dramatically as R2 increases.

The next set of simulations shows how the bounds on the overall fraction of in-

dividuals hurt by treatment vary with the treatment effect size δ. Again, R2 is set

to 0.7 for these simulations. Figure 11 plots the Williamson-Downs bounds (which

make no restrictions), our stochastic increasingness bounds calculated by integrat-

ing the conditional bounds, and the stochastic increasingness bounds calculated by

searching over the space of copula functions, each evaluated at zero, for a range of

treatment effects sizes δ. All bounds are tightest when the treatment effect is large in

magnitude. The stochastic increasingness bounds are much tighter than the classical

Williamson-Downs bounds.

The final set of simulations shows how the bounds on the overall fraction of indi-

viduals hurt by treatment vary with the predictive power of the covariate S. Again,

the treatment effect δ is set to one, and R2 varies from zero to .99. Figure 12 plots

the Williamson-Downs bounds (which make no restrictions), our stochastic increas-

ingness bounds calculated by integrating the conditional bounds, and the stochastic

increasingness bounds calculated by searching over the space of copula functions, each

evaluated at zero, for a range of values of R2. Since the treatment effect is positive,

the true fraction is zero. On the left side of the plot, where the covariate has lit-

tle explanatory power, the bounds we propose are quite wide, spanning zero to .35.

However, even these are much tighter than the bounds that impose no restrictions,

which span zero to over .6. As the R2 between Y (0) and X increases, the bounds

tighten substantially.
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Table 1: KIPP Lynn Summary Statistics

 Full Sample 
Non-

Admitted Admitted 
P-Value 

Equal Means 

Offered 0.65 0.00 1.00  
(0.48) (0.00) (0.00)  

Enrolled 0.55 0.00 0.85  
(0.50) (0.00) (0.36)  

7th Grade Math 0.03 -0.36 0.23  
(1.02) (1.09) (0.93)  

4th Grade Math -0.39 -0.43 -0.37 0.70 
(1.06) (1.16) (1.01)  

Female 0.46 0.46 0.45 0.73 
(0.50) (0.50) (0.50)  

Black 0.20 0.17 0.21 0.46 
(0.40) (0.38) (0.41)  

Hispanic 0.57 0.61 0.56 0.60 
(0.50) (0.49) (0.50)  

Asian 0.02 0.01 0.03 0.71 
(0.16) (0.12) (0.17)  

Other 0.01 0.00 0.02 0.30 
(0.10) (0.00) (0.12)  

Special Education 0.19 0.18 0.20 0.63 
(0.40) (0.39) (0.40)  

Limited English Proficiency 0.19 0.24 0.16 0.16 
(0.39) (0.43) (0.37)  

Free or Reduced Price Lunch 0.83 0.85 0.82 0.83 
(0.38) (0.36) (0.38)  

Observations 202 71 131  

Notes: The table shows summary statistics for the entire sample as well as for admitted and non-
admitted students.  Standard deviations are in parentheses.  The right column contains p-values 
of an F-test of equal means between the admitted and non-admitted students.  
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Table 2: Estimated Effects of KIPP Lynn Attendance on Math Score

Effect of Enrollment 
0.67 

(0.17) 
First Stage Partial F-Statistic 572.2 
Observations 176 

Notes: The first row shows the estimated impact of enrollment 
in KIPP on mathematics in the 7th grade.  This estimate comes 
from a two-stage least squares regression in which the excluded 
instrument is an offer of admission into KIPP through the 
lottery.  Robust standard errors are in parentheses.  Controls 
include indicator variables for gender, ethnicity, special 
education status, limited English proficiency, and free or 
reduced price lunch receipt.  The second row shows the first 
stage partial F-statistic of the instrument. 

  

Table 3: Test of Positive Correlation of Potential Outcomes

R2 Treated Outcomes 0.539 

R2 Control Outcomes 0.628 

Correlation between Predicted 
Treated and Control Outcomes 

0.947 

Threshold Correlation 0.71 

Notes: The R2 for the treated outcomes comes from a kappa-
weighted regression of math outcomes on a cubic spline in 4th 
grade math achievement with three knots and variables for 
gender, ethnicity, special education status, limited English 
proficiency, and free or reduced price lunch receipt. 
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Table 4: Bounds on the Fraction with a Negative Effect of Charter School Enrollment
on Math Score

Bounding method: lower upper lower upper

Williamson-Downs 0.00 0.68 0.05 0.49
(0.00 , 0.81) (0.01 , 0.57)

Stochastic Increasingness (integrated pointwise) 0.00 0.47 0.07 0.33
(0.00 , 0.63) (0.02 , 0.41)

Stochastic Increasingness (uniform) 0.00 0.40 - -
- - - -

No covariates Covariates

Notes: Estimated lower and upper bounds for the fraction of students whose 7th grade 
math score was hurt by enrollment in KIPP Lynn, among students whose enrollment was 
determined by the lottery outcome. 95-percent confidence intervals for the fraction hurt are 
reported in parentheses below the estimated bounds, calculated via Imbens and Manski's 
(2004) method. The covariates used in computing the bounds in the two right-hand 
columns include fourth-grade math score and indicators for female, black, hispanic, other 
race or ethnicity, special education, limited English proficiency, free or reduced-price 
lunch status, and the interaction of female and minority status. Confidence intervals and 
covariate-adjusted bounds corresponding to Stochastic Increasingness (uniform) were not 
estimated due to computational infeasibility. N = 176.
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Table 5: Effects of Charter School Enrollment Conditional on Math Score in Un-
treated State

Percentile in 
control group

St.dev. relative to 
MA average lower upper lower upper

10 -1.92 0.00 0.16 0.00 0.13
(0.00 , 0.39) (0.00 , 0.22)

25 -1.18 0.00 0.25 0.00 0.16
(0.00 , 0.43) (0.00 , 0.25)

50 -0.33 0.00 0.40 0.00 0.25
(0.00 , 0.58) (0.00 , 0.36)

75 0.46 0.00 0.62 0.00 0.46
(0.00 , 0.74) (0.00 , 0.55)

90 0.89 0.00 0.76 0.00 0.59
(0.00 , 0.86) (0.00 , 0.73)

10 -1.92 0.65 2.65 1.03 2.54
(0.15 , 2.82) (0.73 , 2.82)

25 -1.18 0.46 2.01 0.77 1.98
(0.05 , 2.14) (0.55 , 2.12)

50 -0.33 0.16 1.43 0.48 1.43
-(0.18 , 1.60) (0.28 , 1.55)

75 0.46 -0.24 0.89 0.18 0.86
-(0.46 , 0.97) (0.07 , 0.93)

90 0.89 -0.49 0.58 0.03 0.52
-(0.66 , 0.69) -(0.10 , 0.60)

No covariates Covariates

Notes: Estimated lower and upper bounds for the conditional fraction of students 
whose 7th grade math score was hurt by enrollment in KIPP Lynn (Panel A) and 
the conditional average effect of KIPP Lynn attendance (Panel B), among 
students whose enrollment was determined by the lottery outcome, by level of the 
untreated potential math score. 95-percent confidence intervals for the fraction 
hurt are reported in parentheses below the estimated bounds, calculated via 
Imbens and Manski's (2004) method. The covariates used in computing the 
bounds in the two right-hand columns include fourth-grade math score and 
indicators for female, black, hispanic, other race or ethnicity, special education, 
limited English proficiency, free or reduced-price lunch status, and the interaction 
of female and minority status. N = 176.

Untreated math score

A. Bounds on fraction with negative treatment effect

B. Bounds on conditional average treatment effect
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U(0) density

Worst Case Best Case

q q

Independence Rank 
invariance

Rank 
invariance

Independence

U(1) density given 
U(0) = q

Figure 1: The figure illustrates intuitively the bounds implied by stochastic increas-
ingness of potential outcomes on the conditional distribution of treated potential
outcomes given the untreated potential outcome. The graphs in the top row plot
the density of untreated ranks, U (0) := F0 (Y (0)), which is by definition uniform.
The graphs in the bottom row plot the worst- and best-case conditional density of
the treated rank U (1) := F1 (Y (1)) given the untreated rank is equal to q. The
worst-case plot on the left corresponds to the upper-bound cdf of treatment effects in
equation (4). The best-cast plot on the right corresponds to the lower-bound cdf of
treatment effects in equation (3).
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Stochastic increasingness
(no covariates,
integrated pointwise)

Stochastic increasingness
(no covariates,
uniform)

Bounds on CDF of Effect on Math score

Figure 2: Estimated bounds on the cdf of effects on 7th grade math score. The solid
curves show the Williamson-Downs bounds. The short-dash curves impose stochastic
increasingness by integrating over the conditional (pointwise) bounds. The long-
dash curves impose stochastic increasingness uniformly by searching over the space
of copulae that satisfy stochastic increasingness. No set of bounds uses covariates.
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Figure 3: Estimated bounds on the cdf of effects on 7th grade math score. The solid
bounds include no covariates. The dashed bounds use 4th grade math score and
demographic characteristics described in the text.
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Bounds on CDF of Effect on Math score

Figure 4: Estimated bounds on the cdf of effects on 7th grade math score. The solid
curves show the bounds imposing stochastic increasingness by integrating over the
conditional (pointwise) bounds incorporating covariates. The dashed curves show
95-percent confidence bands for the treatment effect cdf calculated via Imbens and
Manski’s (2004) method.
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Figure 5: Estimated bounds on the probability of a negative effect of KIPP atten-
dance on 7th grade math scores conditional on 7th grade math score in the untreated
state. The solid curves show the estimated bounds using 4th grade math score and
demographic characteristics described in the text. The dashed curves show 95-percent
confidence bands.
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Figure 6: Estimated bounds on the average effect of KIPP attendance on 7th grade
math scores conditional on 7th grade math score in the untreated state. The solid
curves show the estimated bounds using 4th grade math score and demographic char-
acteristics described in the text. The dashed curves show 95-percent confidence bands.
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Figure 7: Simulated bounds on the average treatment effect conditional on untreated
potential outcome. The true treatment effect is one for all values of Y (0).
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Figure 8: Simulated bound on the average treatment effect conditional on Y (0) = 0
as a function of the R2 between Y (0) and X. The true treatment effect is one.
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Figure 9: Simulated bound on the fraction hurt by treatment conditional on Y (0) = 0
as a function of the treatment effect. The true fraction is one when the treatment
effect is negative (left side of the plot) and zero when the treatment effect is positive.
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Figure 10: Simulated bound on the fraction hurt by treatment conditional on Y (0) =
0 as a function of the R2 between Y (0) and X. The true fraction in the simulation
is zero.
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Figure 11: Simulated bounds on the fraction hurt by treatment as a function of the
treatment effect. The true fraction is one when the treatment effect is negative (left
side of the plot) and zero when the treatment effect is positive. The solid bounds
impose no restrictions. The short-dashed bounds impose stochastic increasingness by
integrating over the conditional (pointwise) bounds. The long-dashed bounds impose
stochastic increasingness uniformly by searching over the space of copulae that satisfy
stochastic increasingness.
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Figure 12: Simulated bound on the fraction hurt by treatment as a function of the
R2 between Y (0) and X. The true fraction is zero. The solid bounds impose no
restrictions. The short-dashed bounds impose stochastic increasingness by integrating
over the conditional (pointwise) bounds. The long-dashed bounds impose stochastic
increasingness uniformly by searching over the space of copulae that satisfy stochastic
increasingness.
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