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1 Introduction

This paper addresses the question: is the non-uniqueness of equilibria a substantive problem for the

analysis of fiscal policy in New Keynesian (NK) models? There would be a substantive problem

if there were no compelling way to select among different equilibria that give different answers to

critical policy questions. To be concrete we focus our analysis on the impact of changes in government

consumption when the economy is at the (zero lower bound) ZLB.1

Eggertsson and Woodford (2003)(EW) and Eggertsson (2004) develop an elegant and transparent

framework for studying fiscal policy in the NK model at the ZLB. A key result from this literature

is that the output multiplier associated with government consumption is larger when the ZLB binds

than when it does not. The more binding is the ZLB constraint, the larger is the multiplier.2

These results are based on linearized versions of the NK model which have a unique bounded

minimum-state solution. In fact, non-linear versions of these models can have multiple rational

expectations equilibria. This multiplicity occurs even if one restricts attention to bounded minimum-

state-variable solutions. The efficacy of fiscal policy can vary a great deal across those equilibria

(see Mertens and Ravn (2014)). At some ZLB equilibria, the government consumption multiplier

(or ‘multiplier’ for short) is small or even negative. In others, it is very large. So, in principle,

non-uniqueness of equilibria poses an enormous challenge for the analysis of fiscal policy in NK

models.

In the spirit of the literature summarized by Evans and Honkapohja (2001), we adopt E-stability

as an equilibrium selection criterion in our analysis. The concept of E-stability is closely linked

to least-squares learnability in linear models.3 We view E-stability as a necessary condition for an

equilibrium and the associated policy implications to be empirically plausible.4

We apply the E-stability criterion to a standard, fully non-linear NK model with Calvo-pricing

frictions. Working with this model poses an interesting challenge. Unlike linearized NK models of

the type considered by EW, rational expectations equilibria cannot be characterized by one set of

1The key constraint is that there is some lower bound (not necessarily zero) on the nominal interest rate.
2See, for example, EW, Eggertsson (2011), Christiano et al. (2011)(CER), and Woodford (2011).
3See Evans and Honkapohja (2001) and McCallum (2007).
4Our notion of stability contrasts sharply with the one used in Benhabib et al. (2001) (BSGU). They study an

endowment economy populated by a representative household with preferences defined over consumption and real
balances. There is also a monetary authority that sets the nominal interest rate using a Taylor rule subject to a ZLB
constraint. BSGU show that there are two steady states corresponding to a nonnegative inflation rate and a deflation
rate equal to the household’s gross discount rate. They consider the scenario in which actual inflation πt is close to
but not exactly equal to either of the steady state values. BSGU say that a steady state is stable if the economy
converges back to it in a rational expectations equilibrium. BSGU show that the deflation steady state equilibrium is
the unique stable steady state in their sense of the term.
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numbers when the ZLB binds. Because there is an endogenous state variable (price dispersion),

finding an equilibrium amounts to finding a set of functions. To this end, we conduct our analysis

using non-linear functions that approximate the equilibrium mapping from the state of the economy

to the vector of time-t endogenous variables.

Some authors have analyzed fiscal policy in a non-linear version of the NK model with Rotemberg

pricing frictions (see Boneva et al. (2016), and Evans et al. (2008)). An advantage of the Rotemberg

model is that it eliminates the endogenous state variable of price dispersion. However, others have

argued that the reduced-form adjustment cost specification in that model can have a large influence

on its implications for fiscal policy (see Ngo and Miao (2015)). To avoid this issue, we work directly

with the Calvo model. Our appendix shows that for reasonable adjustment cost specifications, a

Rotemberg model delivers qualitatively similar results to the fully non-linear Calvo model.

Using numerical methods, we show that there exists a unique interior, minimum-state equilibrium

of our non-linear Calvo model that is E-stable. The predictions of the linearized NK model about

fiscal policy at the ZLB hold in the unique interior E-stable rational expectations equilibrium of the

non-linear model.

We also study fiscal policy at the ZLB when agents are learning about the structure of the

economy. This part of the analysis is in the spirit of Lucas (1978) and Evans and Honkapohja (2001).

In particular, Lucas (1978) explored the robustness of his results under rational expectations to a

situation where agents are learning about their environment.5

The conceptual difficulty that we face in modeling learning is that, in our model, agents are learn-

ing about non-linear functions with a state variable. We call an equilibrium stable-under-learning if

the outcomes in a learning equilibrium converge to the outcomes under rational expectations. Our

key findings are: 1) the unique E-stable equilibrium is stable under learning, 2) the other minimum

state variable equilibria are not stable under learning.

In contrast to Mertens and Ravn (2014), we find that the ZLB fiscal multiplier is large in all of

our learning equilibria. The basic reason is as follows. In calculating the multiplier, Mertens and

Ravn (2014) assume that an increase in government spending is associated with a one-time adjust-

ment of agents’ expectations.6 Specifically, agents’ expectations about inflation and consumption

5In motivating his learning analysis, Lucas (1978) writes: “... the model described above ‘assumes’ that agents
know a great deal about the structure of the economy and perform some non-routine computations. It is in order to
ask, then: will an economy with agents armed with ‘sensible’ rules-of-thumb, revising these rules from time to time
so as to claim observed rents, tend as time passes to behave as described[...].”.

6Brendon et al. (2015) have also considered ZLB episodes because of confidence shocks.
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fall discretely so that they are close to the values that they would have in the post-shock rational

expectations equilibrium. In contrast, we do not have assume a one-time ‘jump’ in agents’ expecta-

tions when government consumption initially changes. While we think our experiment is closer in

spirit to learning literature, further research on how actual agents learn under these circumstances

is certainly warranted.

Finally, our paper assess the accuracy of linear approximations of the NK model at the ZLB. We

show that the standard log-linear approximation delivers predictions about the effects of government

spending that are qualitatively similar to those of the non-linear E-stable equilibrium. In addition,

we propose a new log-linear approximation to the ZLB equilibrium which is substantially more

accurate than the linearization used in much of the literature.

Viewed overall, our results support the view that the standard NK model does not have a

substantive uniqueness problem, at least with regards to the effects of fiscal policy at the ZLB. The

unique E-stable minimum state variable equilibrium of the non-linear NK model has properties that

are qualitatively and quantitatively similar to the linear NK model.

The remainder of this paper is organized as follows. In section 2 we analyze rational expectations

equilibria at the ZLB in a nonlinear Calvo model. Section 3 contains our main results regarding E-

stability. In section 4 we discuss learning equilibria. Concluding remarks are contained in section 5.

Finally, the Appendix shows that our main results hold in a model with Rotemberg pricing frictions.

2 Fiscal Policy in the ZLB

In this section we derive the implications of the NK model for the effects of changes in government

purchases when the ZLB in binding. We conduct our analysis in a non-linear version of the NK

model in which firms face Calvo price-setting frictions.

2.1 Model Economy

A representative household maximizes

E0

∞∑
t=0

dt

[
log (Ct)−

χ

2
N2
t

]
(1)
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where Ct is consumption, Nt are hours worked, and

d0 = 1, dt =
t∏

j=1

(
1

1 + rj−1

)
, t ≥ 1. (2)

Here, dt is the household’s rate of time discounting. As in EW, the rate of time discounting varies

over time as rt changes. EW refer to rt as the natural rate of interest. We assume that rt can take

on two values: r and r`, where r` < 0.7 The stochastic process for rt is given by

Pr
[
rt+1 = r`|rt = r`

]
= p, Pr

[
rt+1 = r|rt = r`

]
= 1− p, Pr

[
rt+1 = r`|rt = r

]
= 0. (3)

We assume that rt is known at time t. The household faces the flow budget constraint

PtCt +Bt ≤ (1 +Rt−1)Bt−1 +WtNt + Tt. (4)

Here, Pt is the price of the consumption good, Bt is the quantity of risk-free nominal bonds held

by the household, Rt−1 is the gross nominal interest rate paid on bonds held from period t − 1 to

period t, Wt is the nominal wage, and Tt represents lump-sum profits net of lump-sum government

taxes and transfers.

A final homogeneous good, Yt, is produced by competitive and identical firms using the technology

Yt =

[∫ 1

0

(Yj,t)
ε

ε−1 dj

] ε−1
ε

, (5)

where ε > 1. The representative firm chooses inputs, Yj,t, to maximize profits

PtYt −
∫ 1

0

Pj,tYj,tdj, (6)

subject to (5). The firm’s first order condition for the jth input is

Yj,t = (Pt/Pj,t)
ε
Yt. (7)

The jth input in (5) is produced by firm j who is a monopolist in the product market and is

7We use the letter ` to indicate that the natural rate of interest is ‘low’.
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competitive in factor markets. Monopolist j has the production function

Yj,t = Nj,t. (8)

Here, Nj,t is the quantity of labor used by the jth monopolist. The monopolist maximizes

Et

∞∑
k=0

dt+kλt+k ((1 + υ)Pj,t+k − Pt+kst+k)Yj,t+k, (9)

where st is real marginal cost and λt is the utility value of a dollar to the household. The variable υ

is a subsidy that is designed to remove monopoly power distortions in a deterministic steady state

when rt = r. The jth monopolist sets its price, Pj,t, subject to the demand curve, (7), and the

following Calvo sticky price friction (10)

Pj,t =

 Pj,t−1 with probability θ

P̃j,t with probability 1− θ
. (10)

Here P̃j,t is the price chosen by monopolist j in the event that it can re-optimize its price. The

monopolist satisfies whatever demand occurs at its posted price.

The aggregate resource constraint is given by

Ct +Gt ≤ Yt. (11)

In equilibrium, this constraint is satisfied as an equality because households and the government go

to the boundary of their budget constraints. We consider two processes for Gt. In the first, the level

of government purchases is a constant, G, independent of rt for all t. In the second

Gt =

 G rt = r

G` rt = r`
.

The government runs a balanced budget in each period with lump-sum taxation and monetary policy

is conducted according to an interest rate rule

Rt = max {1, 1 + r + α (πt − 1)} . (12)
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The max operator reflects the ZLB constraint on nominal interest rates and α is assumed to be

larger than 1 + r. As in BSGU, the latter assumption guarantees the existence of two steady states.

It is well known that Calvo pricing gives rise to dispersion in the price of intermediate goods. As

shown in Appendix A, price dispersion, p∗t , evolves according to

p∗t =

(1− θ)
[

1− θπε−1
t

1− θ

] −ε
1−ε

+ θπεt (p
∗
t−1)−1

−1

. (13)

Moreover, aggregate output is given by

Yt = p∗tNt. (14)

We use following baseline parameterization of the model

ε = 7.0, β = 0.99, α = 2.0, p = 0.75, (15)

r` = −0.02/4, θ = 0.85, G = 0.2, χ = 1.25.

The value ε = 7 implies markups of roughly 15 percent. We set β = 0.99, which implies a steady

state real interest rate of 4 percent. The parameter α = 2 is set larger than 1 so as to satisfy the

Taylor principle. We set θ = 0.85, implying that prices are updated a little less than once per year,

on average. The parameter χ = 1.25 normalizes labor supply to be 1 in steady state, and government

spending is 20 percent of steady state output. We set p = 0.75, implying that the probability of

remaining at the ZLB in each period is 75 percent, and we set r` so that the natural rate of interest

at the ZLB is -2 percent.
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2.2 Equilibrium

The model is similar to others in the literature, and in Appendix A, we show that the equilibrium

conditions of the model can be summarized as

[
(1− θ)

[
1− θπε−1

t

1− θ

] ε
ε−1

+
θπεt
p∗t−1

]−1

− p∗t = 0 (16)

1

1 + rt
max (1, 1 + r + α (πt − 1))Et

1

Yt+1 −Gt+1

1

πt+1
− 1

Yt −Gt
= 0 (17)

Et

∞∑
j=0

dt+jθ
j

(
p̃t∏j

k=0 πt+k
− χ

Y 2
t+j

p∗t+j

)(
j∏

k=0

πt+k

)−ε
Yt+j

Yt+j −Gt+j
= 0. (18)

At time t the model has two state variables, lagged price dispersion, p∗t−1, and the current period

realization of the discount rate, rt. We define a rational expectations equilibrium as a set of functions

X
(
p∗t−1, rt

)
=

[
Y(p∗t−1, rt) π(p∗t−1, rt) p∗(p∗t−1, rt)

]
(19)

that satisfy (16)-(18) for every p∗t−1 and rt. Since the equilibrium functions depend only on p∗t−1

and rt, we have restricted ourselves to minimum-state-variable equilibria. Also since the equations

in (16) hold with strict equality, we have restricted ourselves to interior equilibria.

We use the following recursive procedure for computing equilibria. We first solve for X
(
p∗t−1, rt = r

)
,

because rt = r is an absorbing state for rt. We then use this solution to find X
(
p∗t−1, rt = r`

)
. In

both cases X solves a particular fixed point problem. Consider rt = r. Given a function, X̃ (p∗t , r),

which determines aggregate prices and quantities after period t, and a value of p∗t−1, we use (16)-(18)

to solve for Yt, πt, p
∗
t . By varying p∗t−1 we obtain a new function, X̄(p∗t−1, r). This procedure defines

a mapping on the space of candidate equilibrium functions. An equilibrium, X(p∗t−1, r), is a fixed

point of the mapping. Now consider rt = r`. Conditional on X(p∗t−1, r), X
(
p∗t−1, r

`
)

is a fixed point

of another mapping defined by (16)-(18). Interiority of the equilibrium requires that consumption

and gross inflation are positive. In practice, we approximate X(p∗t−1, r) and X
(
p∗t−1, r

`
)

by functions

that are piecewise linear and continuous in p∗t−1 (see the Appendix C for details).

Significantly, we find two functions X(p∗t−1, r) that satisfy (16)-(18). That is, we find equilibria,

each of which is associated with a different steady state. Corresponding to each function X(p∗t−1, r),

we find two functions, X
(
p∗t−1, r

`
)
. That is, for each X(p∗t−1, r), we find two equilibria when the

zero lower bound is binding. So, in total we find four equilibria.
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It is useful to discuss how the two equilibrium functions X
(
p∗t−1, r

)
relate to the two steady

states discussed in BSGU. A steady-state is the 3-tuple

Y ≡ Y(p∗, r), π ≡ π(p∗, r), p∗ = p∗(p∗, r).

As in BSGU, there are two steady-state equilibria corresponding to the two solutions of equation

(17) evaluated in steady state

1

1 + r
max (1, 1 + r + α (π − 1))

1

π
= 1

The solutions are π = 1 and π = 1/ (1 + r). The corresponding value of Y is computed using

equation (17).

Corresponding to each steady state, there is an equilibrium function, X
(
p∗t−1, r

)
, that satisfies

(16)-(18).8 We call the function X associated with steady-state inflation π = 1 the target-inflation

equilibrium because it is associated with the target-inflation steady-state. We call the function X

associated with steady-state inflation of π = β the deflation equilibrium because it is associated

with the deflation steady state.

We now discuss our procedure for finding the two equilibrium functions, X
(
p∗t−1, r

`
)
, conditional

on a given X(p∗t−1, r). In order to construction the functions X
(
p∗t−1, r

`
)
, it is useful to consider

how the economy would evolve if rt = r` for a very long time. As pointed out by Mertens and Ravn

(2014), in such an equilibrium, p∗t converges to a constant p∗`, where

p∗` = p∗(p∗`, r`).

The other equilibrium quantities converge to the constants

Y ` ≡ Y(p∗`, r`), π` ≡ π(p∗`, r`).

When the system has converged, (16)-(18) consists of three equations in Y `, π`, and p∗`. These

8These two functions are distinct in the sense that there is no transition path from one steady state to the other.
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equations can be collapsed into one equation in one unknown, π` :9

f(π`) = 0. (20)

For every case that we consider, there are two values of π` which solve (20). It follows that

there are always two points to which the economy could converge if it remained at the ZLB for a

very long period of time. For each of these points of convergence, there is a corresponding function,

X
(
p∗t−1, r

`
)
, which we construct.

The two curves in Figure 1 display the function f(π`) for the two steady states. In each case

f(π`) has an inverted ‘U’ shape and there are two points to which inflation could converge if rt = r`

for many periods.

Figure 1: Graph of f (π`)

0.90 0.92 0.94 0.96 0.98 1.00

0.04

0.02

0.00

0.02

0.04

f(
)

Post-ZLB target inflation SS
Post-ZLB deflation SS

9To define f, solve the first equation in (16) for p∗` = p∗t−1 = p∗t conditional on a given value π`. Then, use

X(p∗`, r) and the second equation in (16) to solve for Y `. The third equation in (16) can then be used to solve for
F `. The value of f(π`) is the expression on the left of the equality in the fourth equation of (16).
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Figure 2: RE Equilibrium Paths In ZLB
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2.3 Baseline Fiscal Multiplier Results

In this sub-section, we consider the following experiment. At time t = 0 the economy is in a

nonstochastic steady state for r0 = r and π0 = p∗0 = 1. Consistent with (3), agents assign zero

probability to a change in rt. In period t = 1, r1 = r`. Afterward, rt evolves according to (3).

For now, we assume that the economy will return to the target inflation steady state after rt = r.

The solid and dashed lines in each panel of Figure 2 display the dynamic path of inflation and

consumption in the two rational expectations equilibria when rt = r`. Given our assumptions, the

ZLB is binding.

A number of features of these equilibria are worth noting. First, in one equilibrium, quarterly

inflation and consumption drop in the impact period of the shock by roughly 1.5 and 5.1 percentage

points, respectively. After about 5 quarters these declines stabilize at 1.3 and 5 percentage points,

respectively. We refer to this equilibrium as the relatively-good equilibrium. Second, in the other

equilibrium, quarterly inflation and consumption drop in the impact period of the shock by 6.8 and

17.5 percentage points, respectively. After about 5 quarters these declines stabilize at 5.5 and 17.3

percentage points, respectively. We refer to this equilibrium as the relatively-bad equilibrium. Third,

the dynamics induced by the evolving state variable p∗t are larger, the larger is the drop in inflation.

In both equilibria, p∗t , Ct, and πt effectively converge to constants after roughly a year.

To derive values for the multiplier we assume that G` = 1.05×G, i.e. when rt = r`, G rises by

11



Figure 3: RE Multiplier at the ZLB
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1 percent of steady state output. We define the multiplier to be

∆Ct + 0.05G

0.05G
.

Here, the ∆ refers to the difference between outcomes when government purchases are G` and the

ZLB and when government purchases are G at the ZLB. We compute the multiplier assuming that if

the economy is in the relatively good equilibrium then it is in the relatively good equilibrium when

government purchases are higher. We make the symmetric assumption for the other equilibrium.10

The two panels of Figure 3 display the multiplier in the two equilibria at the ZLB as a function of

time. Notice that the multiplier in the relatively good ZLB equilibrium is large, exceeding two over

the time period displayed. In contrast, the multiplier is actually negative in the relatively-bad ZLB

equilibrium. To understand why the multiplier depends on the equilibrium, note that an increase in

G` shifts f upwards (see Figure 4). This shift implies that the effect of an increase in G depends on

which equilibrium we consider. At the relatively-bad equilibrium (the crossing to the left), inflation

falls. That decline induces a rise the real interest rate and a fall in consumption. At the relatively-

good equilibrium (the crossing to the right), inflation rises. That rise induces a decline in the real

interest rate and an increase in consumption.

In the analysis above, the ZLB becomes binding because of a shock to the household’s discount

rate. In Appendix B we suppose, as in Mertens and Ravn (2015), that the ZLB binds because of a

10This assumption is non-trivial because one can easily construct examples in which G serves as a sunspot inducing
a switch from one equilibrium to the other. As in Mertens and Ravn (2014), we abstract from this issue.
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Figure 4: Effects of an Increase in G on f
(
π`
)
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non-fundamental sunspot shock. We find qualitatively similar results to those discussed above.

3 E-Stability at the ZLB

In this section, we investigate whether or not rational expectations equilibria at the ZLB are E-stable.

This section is organized as follows. In the subsection 3.1, we restate the model in terms of general

beliefs, rather than imposing rational expectations. In the subsection 3.2, we define E-stability for

a non-linear model and show that only the relatively good ZLB equilibrium that returns to the

target-inflation steady state is E-stable. In subsection 3.3, we analyze the relationship between our

E-stability results and those that obtain in a log-linear version of the NK model. We propose a new

log-linearization that turns out to be more accurate than the traditional one used in the literature.

Finally, in section 3.4 we investigate the magnitude of the fiscal multiplier in the non-linear model

and in linearized versions of the model.
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3.1 Beliefs

To solve agents problems, we must attribute to them beliefs about all relevant aggregate variables.11

We assume that households and firms enter the period with the same beliefs.

Denote beliefs about time-t aggregate consumption and inflation by Ce,t
(
p∗t−1, rt

)
and πe,t

(
p∗t−1, rt

)
.

The first-order condition for firms that can pick p̃t ≡ P̃t/Pt−1 is given by

Et

∞∑
j=0

dt+jθ
j

(
p̃t∏j

k=0 π
e,t
t+k

− χ
(Ce,tt+j +Gt+j)

2

p∗e,tt+j

)(
j∏

k=0

πe,tt+k

)−ε
Ce,tt+j +Gt+j

Ce,tt+j
= 0. (21)

Here we have used the aggregate resource constraint and the intratemporal Euler equation. Consis-

tent with (13), firms form beliefs about p∗t according to

p∗,e,tt =

(1− θ)

[
1− θ

[
πe,t

(
p∗t−1, rt

)]ε−1

1− θ

] −ε
1−ε

+ θ
[
πe,t

(
p∗t−1, rt

)]ε
(p∗t−1)−1

−1

. (22)

Equations (21)-(22) correspond to the standard optimality condition for p̃t in the Calvo model and

the law of motion for p∗t−1, except that we have not imposed rational expectations.

Note that firms choose p̃t based on beliefs about time-t aggregate prices and quantities. The

current values of these variables are a function of firms’ collective time-t decisions. So firms cannot

actually observe these variables when they choose p̃t. The standard assumption is that firms form

a “belief” about these variables, based on state variables and contemporaneous shocks, when they

make their decisions. In a rational expectations equilibrium that belief is correct. In a world where

firms do not necessarily have rational expectations it is not natural to assume that firms see the

current values of aggregate variables when they choose prices.

Households observe the current-period wage when they supply labor and know the current-period

inflation rate when they purchase consumption goods. In addition, they know their own discount

rate, rt. They form time-t beliefs about aggregate inflation in the next period, πe,t+1 (p∗t , rt+1). This

notation reflects that, in contrast to firms, households know πt and p∗t when forming expectations

11Under rational expectations, intermediate good firms choose their price level, P̃t, based on the current and
expected values of aggregate output, consumption, and inflation. The current values of these variables are a function
firms’ collective time t decisions. So firms cannot actually observe these variables when they choose P̃t. The standard
assumption is that when firms make their time-t decisions, they form ‘beliefs’ about these variables, based on the
values of the time-t state variables and realizations of the shocks. In a rational expectations equilibrium those beliefs
are correct. If firms do not have rational expectations it is not natural to assume that they see the current values of
aggregate variables when they choose their prices.
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about inflation at time t+ 1. The household intertemporal Euler equation is given by

1

C
(
p∗t−1, rt

) =
1

1 + rt
max (1, 1 + r + α (πt − 1))Et

1

Ce,t (p∗t , rt+1)

1

πe,t+1 (p∗t , rt+1)
. (23)

Here, Ce,t (p∗t , rt+1) denotes households’ future consumption plan. When rt = r`, (23) can be written

as

1

C
(
p∗t−1, rt = r`

) =
1

1 + rt

[ p

Ce,t (p∗t , rt+1 = r`)

1

πe,t+1 (p∗t , rt+1 = r`)

+
1− p

Ce,t (p∗t , rt+1 = r)

1

πe,t+1 (p∗t , rt+1 = r)

]
. (24)

In their analysis of learning in an infinite-horizon model, studies like Preston (2005) use the

household’s lifetime budget constraint in conjunction with the household’s first-order conditions to

expression consumption as a function of current and future aggregate variables. This strategy is

feasible with log-linear versions of the model. But, as far as we know, those strategies do not work

in our non-linear setting.12

3.2 E-stability in the non-linear model

E-stability, as defined by Evans and Honkapohja (2001), is a relationship between the parameters

characterizing beliefs and the parameters characterizing outcomes. Loosely speaking, E-stability

implies that small deviations from parameters that characterize rational expectations beliefs induce

smaller deviations in the parameters that characterize equilibrium outcomes. In non-linear models

with state variables, rational expectations equilibrium beliefs cannot be exactly characterized by a

finite number of parameters. However, these beliefs can be well-approximated with a finite number

of parameters (see Judd (1998)). We use this fact to when assessing the E-stability of equilibria in

our non-linear model.

Recall that the aggregate state variables in the economy are p∗t−1 and rt. We assume that,

conditional on rt, firms’ beliefs are formed using a finite-elements approximation on a fine grid over

p∗t−1. This finite-elements approximation is on the same grid that we use to solve for the rational

expectations equilibria.

We define a rational expectations equilibrium as a set of functions Yt = Y(p∗t−1, rt; Ψ) and πt =

12Of course, in our analysis the household’s per-period budget constraint holds at every date and for every state.
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π(p∗t−1, rt; Ψ) that solve (3.2) and (3.3) at all of the grid points in our finite-elements approximation.

With N grid points, the procedure yields an N -vector of parameters, Ψ, that characterize the rational

expectations equilibrium.

Denote the vector of parameters characterizing agents’ beliefs about the perceived equilibrium

laws of motion (PLM) by ΨPLM . Conditional on those beliefs, the actual law of motion (ALM)

is defined by the resulting outcomes for aggregate variables, as determined by equations (21)-(23).

Denote by ΨALM the vector of parameters characterizing the finite-elements approximation to the

outcomes for aggregate variables. The model defines a mapping from ΨPLM to ΨALM , given by

ΨALM = T (ΨPLM ). (25)

Evans and Honkapohja (2001)define an equilibrium to be E-stable if the real parts of the eigenval-

ues of ∂T (Ψ)
∂Ψ are negative. The idea is that small perturbations of beliefs from an E-stable equilibrium

induce dynamics that push the system back to the initial equilibrium.

Based on this definition, we investigate the E-stability of the four rational expectations equilibria

in our model. We compute ∂T (Ψ)
∂Ψ for the parameters of our finite-elements approximation. Our

results can be characterized as follows. First, as in McCallum (2009), the negative-inflation steady

state equilibrium is not E-stable. So, the two ZLB equilibria that converge to the negative inflation

steady state after rt = r are not E-stable. Second, the relatively bad ZLB equilibrium that converges

to the intended steady after rt = r is not E-stable. Third, the relatively good ZLB equilibrium that

converges to the intended steady after rt = r is E-stable. So, there is a unique (interior minimum

state variable) rational expectations equilibrium.

Recall, above we established that the qualitative properties of fiscal policy in the E-stable equi-

librium are the same as those stressed in literature based on the log-linearized NK model (see, for

example, Christiano et al. (2011)). Taken together, this result and our E-stability results make

concrete our claim that non-uniqueness in the NK model is not a substantive problem at least as

regards fiscal policy.

3.3 Analyzing E-stability using a linearized version of the model

To provide further insight into the results of the results of section 3.2, it is useful to focus on the

limit points of a ZLB equilibrium, assuming rt = r` for a long time. The advantage of doing so
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is that we can work with linear approximations to the model, where the point of approximation is

taken around the limit point.13 Note that p∗t 6= 1 at the limit point in the ZLB. So this linearization

maintains the dependence of aggregate variables on p̂∗t . Approximating around that point seems

reasonable given the relative speed with which the system converges in the ZLB. In fact, equilibrium

quantities and prices converge to this limit point after about one year (see Figure 2). When rt = r,

we linearize the model around the target-inflation steady state.

We denote log-deviations from steady-state values by x̂t. The equilibrium of the linearized model

when rt = r is characterized by a set of coefficients γx, so that

x̂t = γxp̂
∗
t−1 (26)

for each of the endogenous variables. Normally the dependence of x̂t on p̂∗t−1 is ignored in the

linearized Calvo model. The rationale is that p̂∗t−1 depends only on its own lagged value, so that if

the system starts in steady state, p̂∗t−1 is identically equal to zero. This assumption does not make

sense in our context because p̂∗t−1 will not be equal to zero once the system has been in the ZLB. So

it makes sense to maintain the dependence of x̂t on p̂∗t−1 when analyzing how the system returns to

steady state after the ZLB episode is over.

When rt = r`, we linearize the equilibrium conditions around a limit point in the ZLB. We

denote log-deviations of the endogenous variables from their value at that limit point by x̂`t. At the

limit point, p∗t−1 is a constant that is less than 1. So, when rt reverts to r, p̂∗t−1 has a non-zero value.

This makes clear why, in (26), x̂t is a function of p̂∗t .

When the equilibrium conditions are linearized around the relatively good ZLB equilibrium, the

linearized system has a unique bounded rational expectations equilibrium. It is also E-stable. It

follows from Evans and Honkapohja (2001) that the equilibrium therefore stable under adaptive

and least squares learning. When the equilibrium conditions are linearized around the relatively

bad ZLB equilibrium, the linearized system is indeterminate in the sense of Blanchard and Khan

and not E-stable. In this way, the E-stability of the non-linear equilibria are closely related to the

determinacy of the linearized equilibria.

13Linear approximations have the added advantage that they do not require numerical approximation to the equi-
librium laws of motion for the linearized equilibrium conditions.
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Table 1: Comparing the Linear and Non-linear Models
Model Multiplier
Standard Linearization 1.63
Our Linearization, rel. good 2.44
Nonlinear, rel. good 2.24
Nonlinear, rel. bad -0.35

3.4 Multipliers in the linear and non-linear model

In this sub-section, we compare the size of the fiscal multiplier in the non-linear and linear models.

Table 1 reports the multiplier in the non-linear model the standard log-linearized model and our

log-linearized model. In the latter case, the multiplier is reported for the linearization around the

point for which the equilibrium is determinate.

Two key results are worth noting. First, the multipliers in the linearized models are similar to

the multiplier in the relatively good equilibrium of the non-linear model. Indeed, for our preferred

linearization, the multipliers are nearly identical. Second, in stark contrast, the multiplier at the

relatively bad ZLB equilibrium of the nonlinear model is very different than the multipliers in the

linear models. These results make concrete our claim that multiplicity in the NK model is not a

substantive problem, at least regarding fiscal policy, because the results from the linearized models

are qualitatively similar to the results at the relatively good ZLB equilibrium, which is E-stable.

4 Stability Under Learning at the ZLB

In this section we investigate stability under learning of equilibria at the ZLB in the non-linear model.

In addition we assess whether the qualitative results of the standard linear NK model continue to

hold in the non-linear learning model.

4.1 The Learning Algorithm

An important question in a nonlinear environment is: how do agents learn about nonlinear equi-

librium functions mapping the state of the economy to aggregate prices and quantities? We follow

Chen and White (1998) and assume that households and firms learn about equilibrium functions

using a recursive non-parametric learning scheme. A virtue of this scheme is that agents do not have

to know the precise functional forms of the equilibrium mappings.
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Specifically, we assume that when the ZLB is binding, households and firms update their beliefs

about consumption and inflation according to

πe,t+1
r`

(x) = πe,t
r`

(x) +K
(
x− p∗t−1

bt

)[
πt − πe,tr` (x)

(t+ 1)bt

]
, (27)

Ce,t+1
r`

(x) = Ce,t
r`

(x) +K
(
x− p∗t−1

bt

)[
Ct − Ce,tr` (x)

(t+ 1)bt

]
. (28)

Here, the kernel K is the normal density function and the bandwidth bt is a sequence of positive

numbers that decreases to zero as t → ∞. As in Chen and White (1998), we assume that bt is of

order O
(

(t+ 1)
−δ
)

for some 0 < δ < 1
4 . Chen and White (1998) make this assumption to ensure

that beliefs that are updated using their non-parametric learning algorithm they propose converges

to rational expectations beliefs in a stochastic environment.14

According to equations (27) and (28), agents update their beliefs using what amounts to a non-

parametric estimator of the equilibrium mapping. A key feature of the learning algorithm is that

when agents see a new value of consumption and inflation, they disproportionately update their

beliefs about the equilibrium functions in an area around p∗t−1. The kernel density and bandwidth

must meet certain regularity condition so that beliefs converge over time. The presence of the

(t + 1)−1 term implies that over time agents give less weight to new observations. The bt term

controls the rate at which future observations get less weight. The term [(t + 1)bt]
−1 goes to zero

as t→∞, although less quickly than (t+ 1)−1. Notice in the kernel, x− p∗t−1 is divided by bt. So,

as the bandwidth goes to zero, agents are less willing to update their beliefs about the equilibrium

mappings for values of p∗t−1 that are far away from the current realization.

Unlike Chen and White (1998), we are not working with a model that is stationary and ergodic.

To see this, note that the state in which the ZLB is no longer binding is an absorbing state. So

agents only observe one sequence of consumption and inflation corresponding to a particular se-

quence of p∗t−1, at the ZLB.15 It follows that beliefs in a learning equilibrium can’t converge to the

rational expectations beliefs for all values of p∗t−1. For this reason, we adopt a more-limited notion

of stability under learning that is more-applicable to EW equilibria. Specifically, we say that a

rational expectations equilibrium is stable under learning if the values of inflation and consumption

14In practice, we assume bt = t+100
t+1

(t+ 1)−0.24.
15For example, we assume that a particular value of p∗t−1 at the beginning of the ZLB episode, so agents are only

going to learn about the properties of the ZLB starting from that point.
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in the learning equilibrium when the ZLB binds converge to their values in the limit point of the

corresponding rational expectations equilibrium if the ZLB binds for a very long time.

4.2 Results

In what follows, we imagine that the economy is initially in the target-inflation steady state. Then,

rt drops to r` and obeys the law of motion given by (3). Agents have to learn about consumption

and inflation evolve when rt = r`. We establish four key results. First, the relatively good ZLB

equilibrium is stable under learning in the sense defined above. Second, the key results from the

standard log-linear NK model carry over to the learning environment. Specifically, the multiplier is

much bigger when the ZLB constraint is binding compared to when it is not. Third, the relatively

bad ZLB equilibrium is not stable under learning. Fourth, the multiplier in the ZLB is large even

when agents’ beliefs are begin near the relatively bad ZLB equilibrium.

Throughout, we characterize agents’ beliefs by a finite elements approximation on the grid for

p∗t−1 that we use to calculate the rational expectations equilibria. Agents update their expecta-

tions according to (27) and (28), where these equations are evaluated at each grid point. In our

initial experiment, we assume that agents’ initial beliefs are equal to the mappings for the rational

expectations equilibrium that converges to target-inflation steady state. Agents also think that,

in the post-ZLB period, when rt = r, the equilibrium laws of motion correspond to the rational

expectations equilibrium that eventually converges to the target-inflation steady state.16 These as-

sumptions are reasonable given the E-stability of the target-inflation steady state equilibrium, and

the presumption that rt = r` is a relatively rare event.

The purple solid lines in Figure 5 display the paths of consumption and inflation in the learning

equilibrium, assuming no change in government spending. The corresponding rational expectations

equilibrium paths are given by the blue dashed lines. Notice that, in the learning equilibrium,

consumption and inflation converge from above to their limiting values in the relatively good ZLB

equilibrium. Significantly, the ZLB is not binding in the first few periods because inflation is rel-

atively high as a result of agents initially high inflation expectations. In those periods, the Taylor

rule calls for a non-negative interest rate. After 3 periods, the ZLB becomes binding. As expecta-

tions about inflation and consumption adjust downward in response to low realized outcomes, actual

16In Appendix B, we analyze the case in which agents assume that inflation and consumption converge to the
negative inflation steady state when rt = r. We find similar results.
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inflation and consumption decline.

The top panel of Figure 6 displays the value of the multiplier in the learning equilibrium. We

calculate the multiplier assuming that Gt increases by 1 percent of steady state output for as long

as long as rt = r`. After the ZLB binds, the multiplier rises above 1 and then converges to its value

in the corresponding rational expectations equilibrium.17

It is instructive to consider an analogous experiment, but where r` = r and the ZLB does not

bind. That is, in period 0, G increases. When G increases, agents also think that it will revert

to its steady state value with probability 1 − p.18 After G reverts to its steady state value, agent

believe that the equilibrium laws of motion correspond to the rational expectations equilibrium that

eventually converges to the target-inflation steady state. We assume that agents’ initial beliefs about

consumption and inflation are equal to the mappings for the rational expectations equilibrium that

converges to target-inflation steady state. The bottom panel of Figure 6 displays the value of the

multiplier in the learning equilibrium for this case. Notice that the multiplier is lower than 1, and

quickly converges to its value in the corresponding rational expectations equilibrium.

We now re-do the ZLB experiment assuming that initial beliefs about the equilibrium mapping

for consumption and inflation are slightly higher than their relatively bad ZLB equilibrium values.

The top two panels of Figure 7 are the analogue of Figure 5. Notice that consumption and inflation

diverge from the limit points in the relatively bad ZLB equilibrium. Indeed, after many periods, they

converge to the limit points of the relatively good ZLB equilibrium.19 The purple solid line in the

bottom panel of Figure 7 displays the multiplier in the learning equilibrium. The blue dashed line

displays the multiplier in the relatively bad ZLB equilibrium. Note the multiplier is initially about 1.

Then, reflecting relatively high inflation rates, the multiplier becomes very large.20 These properties

contrast sharply with the properties of the multiplier in the corresponding rational expectations

equilibrium.

We conclude that for all of the different learning equilibria that we consider, the multiplier is large

when the ZLB binds. Moreover, the multiplier is relatively small when the ZLB is not binding. These

results are qualitatively very similar to the results that we obtain in E-stable rational expectations

17The value of the multiplier is initially low because the ZLB isn’t binding in the first few periods.
18In these equilibria, we assume that beliefs are such that the ZLB does not bind. This is in contrast to the

assumption we make in Appendix B.
19If we re-do the experiment assuming that the initial beliefs about consumption and inflation are lower than the

relatively bad ZLB equilibrium values, the outcomes for inflation and consumption diverge toward zero.
20Eventually the multiplier converges from above to its value in the limiting point of the relatively good ZLB

equilibrium.
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Figure 5: Learning Equilibrium, Starting at Steady State RE Equilibrium
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Figure 6: Learning Equilibrium, Starting at Steady State RE Equilibrium
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Figure 7: Learning Equilibrium, Starting Near Relatively Bad ZLB Equilibrium
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equilibria of the NK model. We infer that the multiplier results do not depend sensitively on the

rational expectations hypothesis being literally true.

4.3 Reconciling with Mertens and Ravn (2014)

Mertens and Ravn (2014) report that the fiscal multiplier is small in a learning equilibrium. In their

experiment, agents’ initial beliefs are near a rational expectations equilibrium that is analogous

to our relatively bad ZLB equilibrium. Their result contrasts sharply with our finding that the

multiplier is large when we begin with beliefs that are near the relatively bad ZLB equilibrium.

There are three differences our analyses. First, they work with a linearized Calvo model when

they study the learning equilibrium. Second, they assume that when firms choose prices, they see

the contemporaneous aggregate price level. Third, the experiment that underlies their multiplier

calculation is subtly different than ours. When we calculate the multiplier, we assume agents’ initial

expectations about consumption and inflation are the same regardless of the value of G. Recall that

in the relatively bad ZLB equilibrium, inflation actually falls by επ when G increases. Similarly,

Ct falls by εC . When Mertens and Ravn (2014) initially raise G in a learning equilibrium, they

simultaneously decrease agents’ expectations of inflation by επ and consumption by εC . Consistent

with the analysis above, this fall in inflation expectations would in and of itself reduce output in the

ZLB.

It turns out that the first two differences between our analysis and that of Mertens and Ravn

(2014) do not have a large impact on the multiplier. In contrast the third difference is very important.

Figure 8 displays the multiplier if we adopt the assumption in Mertens and Ravn (2014) about how

expectations about inflation change when G increases. Notice that that the multiplier is negative

for roughly 3 years. In this example, the initial drop in inflation expectations is quantitatively much

more important than the increase in G.

5 Conclusion

In this paper we analyze whether non-uniqueness of equilibria poses a substantive challenge to the

key conclusions of NK models about the efficacy of fiscal policy in the ZLB. We argue that it does

not. This conclusion rests on our view that if a rational expectations equilibrium is not E-stable

or stable under learning, then it is simply too fragile to be a description of the data. We have also
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Figure 8: Multiplier with Shock to Expectations
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argued that the key properties of linear and non-linear models are very similar. Indeed, under our

proposed new way of linearizing the NK model in the ZLB, the quantitative value of the multiplier

is very similar in the linear and non-linear model.

To asses stability under learning, we adopted a particular model of learning. It is certainly

possible that there exist some models of how agents learn for which our results would not hold.

Exploring stability under learning under alternative plausible learning models is an important avenue

for future research.
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A Benchmark NK Model

Representative households maximize

E0

∞∑
t=0

dt

[
log (Ct)−

χ

2
N2
t

]
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where Ct is consumption, Nt are hours worked, and

d0 = 1, dt =
t∏

j=1

(
1

1 + rj−1

)

The stochastic process for rt is given by

Pr
[
rt+1 = r`|rt = r`

]
= p, Pr

[
rt+1 = r|rt = r`

]
= 1− p, Pr

[
rt+1 = r`|rt = r

]
= 0

The household face the budget constraint

PtCt +Bt ≤ (1 +Rt−1)Bt−1 +WtNt + Tt

Here Pt is the price of the consumption good, Bt is the quantity of risk-free nominal bonds held

by the household, Rt−1 is the gross nominal interest rate paid on bonds held from period t − 1 to

period t, Wt is the nominal wage, and Tt represents lump-sum profits net of lump-sum government

taxes. First-order necessary conditions

1

Ct
= λt

χNt =
Wt

Pt
λt

λt = dtRtEt
λt+1

πt+1

A final homogeneous good, Yt, is produced by competitive and identical firms using the technology:

Yt =

[∫ 1

0

(Yj,t)
ε

ε−1 dj

] ε−1
ε

where ε > 1. The representative firm chooses inputs, Yj,t, to maximize profits:

PtYt −
∫ 1

0

Pj,tYj,tdj,

The first-order necessary condition is

Yj,t = (Pt/Pj,t)
ε
Yt.
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Monopolists maximize

Et

∞∑
k=0

dt+k
λt+k
Pt+k

((1 + υ)Pj,t+k − Pt+kst+k)Yj,t+k

where st is real marginal cost and υ is a subsidy that can be used to offset monopoly distortions in

steady state. The jth monopolist sets its price, Pj,t, subject to the demand curve, and the following

Calvo sticky price friction. The probability that a firm updates its price is 1 − θ. The monopolist

maximizes

Et

∞∑
k=0

dt+kλt+k ((1 + υ)Pj,t+k − Pt+kst+k)

(
Pj,t+k
Pt+k

)−ε
Yt+k.

The first-order conditions is

Et

∞∑
k=0

θkdt+kλt+k

(
P̃t
Pt+k

− st+k

)(
Pt
Pt+k

)−ε
Yt+k = 0,

which can be written as

Et

∞∑
j=0

(θ)
j
dt+jλt+j

(
p̃t

Πt,t+j
πt − st+j

)
Πε
t,t+jYt+j = 0

where p̃t ≡ P̃t/Pt−1 and Πt,t+j ≡ Pt+j/Pt. It is convenient to write this as

p̃t = πt
Et
∑∞
j=0 dt+jθ

jχΠε
t,t+jY

2
t+j/p

∗
t+j

Et
∑∞
j=0 dt+jθ

jΠε−1
t,t+j

Yt+j

Ct+j

.

This expression can be simplified by writing the infinite sums recursively,

p̃t = πt
Kt

Ft

where

Ft = λtYt + θ
1

1 + rt
Etπ

ε−1
t+1Ft+1

and

Kt = λtYtst + θ
1

1 + rt
Etπ

ε
t+1Kt+1.
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The price index evolves so that

Pt =

(∫ 1

0

P 1−ε
i,t di

) 1
1−ε

=

(
(1− θ) P̃ 1−ε

t + θ

∫ 1

0

P 1−ε
i,t−1di

) 1
1−ε

=
(

(1− θ) P̃ 1−ε
t + θP 1−ε

t−1

) 1
1−ε

.

meaning

1 =

(
(1− θ)

(
p̃t
πt

)1−ε

+ θπε−1
t

) 1
1−ε

,

market clearing in the labor market implies

Nt =

∫ 1

0

Nj,tdj

Define

p∗t ≡

(∫ 1

0

(
Pj,t
Pt

)−ε
dj

)−1

Then

Yt = p∗tNt

and

p∗t =

(
(1− θ)

(
p̃t
πt

)−ε
+ θπεt

(
p∗t−1

)−1

)−1

The aggregate resource constraint is

Ct +Gt ≤ Yt

In equilibrium, household and firm optimality conditions are satisfied, and the budget and resource

constraints hold. In equilibrium we need to determine Ct, ht, Yt, wt, πt, λt, Rt, st, Ft, Kt, p̃t, and

p∗t . To do that, we use the following equations:

1

Ct
= λt

χNt =
Wt

Pt
λt

λt =
1

1 + rt
RtEt

λt+1

πt+1

p̃t = πt
Kt

Ft
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Ft = λtYt + θ
1

1 + rt
Etπ

ε−1
t+1Ft+1

Kt = λtYtst + θ
1

1 + rt
Etπ

ε
t+1Kt+1

st = wt

1 =

(
(1− θ)

(
p̃t
πt

)1−ε

+ θπε−1
t

) 1
1−ε

Yt = p∗tNt

p∗t =

(
(1− θ)

(
p̃t
πt

)−ε
+ θπεt

(
p∗t−1

)−1

)−1

Ct +Gt = Yt

The monetary policy equation is

Rt = max

{
1,

1

β
+ θπ (πt − 1)

}
.

These equations can be simplified to the following 4 equations

1

Ct
=

1

1 + rt
RtEt

1

Ct+1πt+1

Ft =
Ct +Gt
Ct

+ θ
1

1 + rt
Etπ

ε−1
t+1Ft+1

(
1− θπε−1

t

1− θ

) 1
1−ε

Ft = χ
(Ct +Gt)

2

p∗t
+ θ

1

1 + rt
Etπ

ε
t+1

(
1− θπε−1

t+1

1− θ

) 1
1−ε

Ft+1

p∗t =

[
(1− θ)

(
1− θπε−1

t

1− θ

)− ε
1−ε

+ θπεt
(
p∗t−1

)−1

]−1

Alternatively, the equations can be simplified to (16)-(18).

A.1 Target-inflation steady state

The intended steady state can be found as follows. Normalize N = 1 and assume that G/Y = 0.2.

In steady state,π = 1 (R = 1), so p∗ = 1, p̃ = 1, and Y = 1. From the resource constraint, C = 0.8.

Firm optimality implies K = F , meaning that s = 1. We can then get χ from the intratemporal
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Euler equation.

A.2 Linearization away from ZLB

We linearize the model around the target-inflation steady state. Denote the log deviation of a

variable from steady state by x̂t. The log-linear equations are

−Ĉt = λ̂t

N̂t = ŵt − Ĉt

−Ĉt = R̂t − β ̂(1 + rt)− Et
(
Ĉt+1 + π̂t+1

)
ˆ̃pt = π̂t + K̂t − F̂t

F̂t = (1− βθ)
(
λ̂t + Ŷt

)
− θβ ̂(1 + rt) + θβ (ε− 1)Etπ̂t+1 + θβEtF̂t+1

K̂t = (1− βθ)
(
λ̂t + Ŷt + ŝt

)
− θβ ̂(1 + rt) + θβεEtπ̂t+1 + θβEtK̂t+1

ŝt = ŵt

1

1− θ
π̂t = ˆ̃pt

Ŷt = p̂∗t + N̂t

p̂∗t = (1− θ) ε
(

ˆ̃pt − π̂t
)
− θεπ̂t + θp̂∗t−1

C

Y
Ĉt +

Y − C
Y

Ĝt = Ŷt

After some more algebra

−Ĉt = R̂t − β ̂(1 + rt)− Et
(
Ĉt+1 + π̂t+1

)

π̂t =
(1− βθ) (1− θ)

θ

(
C + Y

Y
Ĉt +

Y − C
Y

Ĝt − p̂∗t
)

+ βEtπ̂t+1

p̂∗t = θp̂∗t−1
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Setting rt = r, ignoring the ZLB, and assuming our Taylor rule holds, we have

−Ĉt = βθππ̂t − Et
(
Ĉt+1 + π̂t+1

)

π̂t =
(1− βθ) (1− θ)

θ

(
C + Y

Y
Ĉt +

Y − C
Y

Ĝt − p̂∗t
)

+ βEtπ̂t+1

p̂∗t = θp̂∗t−1

We want a solution of the form

Ĉt = γC p̂
∗
t−1

π̂t = γπp̂
∗
t−1

So

−γC p̂∗t−1 = βθπγπp̂
∗
t−1 −

(
γCθp̂

∗
t−1 + γπθp̂

∗
t−1

)
γπp̂
∗
t−1 =

(1− βθ) (1− θ)
θ

(
C + Y

Y
γC p̂

∗
t−1 − θp̂∗t−1

)
+ βγπθp̂

∗
t−1

For these equations to hold, it must be

(θ − 1) γC = (βθπ − θ) γπ

(1− βθ) γπ =
(1− βθ) (1− θ)

θ

(
C + Y

Y
γC − θ

)
So, after some algebra,

γC = θ

(
θ

βθπ − θ
+
C + Y

Y

)−1

γπ = − 1− θ
βθπ − θ

θ

(
θ

βθπ − θ
+
C + Y

Y

)−1

Note that we also have

F̂t = γF p̂
∗
t−1

where

γF =
(
1− θ2β

)−1
θ2β (ε− 1) γπ −

(
1− θ2β

)−1
(1− βθ) G

Y
γC
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A.3 Standard linearization at the ZLB

As is Carlstrom et al. (2014), as well as CER, the linearizaiton at the ZLB starts with the following

two equations

−Ĉt = β (Rt − 1− rt)− Et
(
Ĉt+1 + π̂t+1

)
π̂t =

(1− βθ) (1− θ)
θ

(
C + Y

Y
Ĉt +

Y − C
Y

Ĝt

)
+ βEtπ̂t+1

Note that p̂∗t is ignored. Also, we have used that Rt = 1 + rt = β−1 in steady state. After the

ZLB, it is assumed that Ĉt = Ĝt = π̂t = 0 because there are no state variables. At the ZLB, these

equations become

−Ĉ`t = −βr` − pEt
(
Ĉ`t+1 + π̂`t+1

)
π̂`t =

(1− βθ) (1− θ)
θ

(
C + Y

Y
Ĉ`t +

Y − C
Y

Ĝ`t

)
+ βpEtπ̂

`
t+1

Combine these equations to get

− Y

Y + C

θ

(1− βθ) (1− θ)
(
π̂`t − βpEtπ̂`t+1

)
+
Y − C
Y + C

Ĝ`t + βr` =

−p
(
− Y

C + Y

θ

(1− βθ) (1− θ)
(
Etπ̂

`
t+1 − βpEtπ̂`t+2

)
+
Y − C
Y + C

EtĜ
`
t+1 + Etπ̂

`
t+1

)

To simplify, define κ ≡ (1− βθ)(1− θ)/θ, ηG ≡ G/Y , φ ≡ β + 1 + (2− ηG)κ, and note that Y = 1.

π̂`t − p (β + 1 + (2− ηG)κ)Etπ̂
`
t+1 + βp2Etπ̂

`
t+2 = κβ(2− ηG)r` + κηG (1− p)EtĜ`

Similar to Carlestrom, et al. (2014), the full set of solutions is given by

p̂it = π̂` + a1λ
t
1 + a2λ

t
2

where a1 and a2 are arbitrary constants,

π̂` =
κβ(2− ηG)r` + κηG (1− p)EtĜ`

∆

and

∆ = (1− p)(1− βp)− p(2− ηG)κ.
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The values λ1 and λ2 are the solutions to

1− (β + 1 + (2− ηG)κ) pλ+ βp2λ2 = 0.

Let

z (λ) ≡ 1

λ
+ βp2λ.

We seek values of λ so that z(λ) = (β + 1 + (2− ηG)κ) p. The function f achieves a minimum at

λ =

√
1

βp2
> 1.

Note that

z(1) = 1 + βp2 = ∆ + (β + 1 + (2− ηG)κ) p

Both values of λ exceed unity if, and only if, z(1) > (β + 1 + (2− ηG)κ) p, which is equivalent to

∆ > 0.

If both roots exceed unity, then a1 = a2 = 0 gives the unique bounded solution. We focus on this

case. We then have the following proposition.

Proposition 1. There is a unique non-explosive solution to the linearized system of equations at

the ZLB if an only if ∆ > 0.

Note that if ∆ < 0, then inflation rises as r` falls and the system is pushed away from the ZLB.

The linearization predicts that at the ZLB, the drop in output is given by

Ŷ ` =
1− ηG
2− ηG

1

κ

[
(1− βp)π̂`κ ηG

1 + ηG
Ĝ`
]
.

The government purchases multiplier is then

dY `

dG`
=
Y

G

dŶ `

dĜ`
=

1− ηG
2− ηG

[
(1− βp)(1− p)

∆
+

1

1− ηG

]
.
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A.4 Our linearization at ZLB

Start by writing the non-linear system of equations at the ZLB explicitly, where we use a superscript

` for the value at the lower bound.

1

C`t
=

1

1 + r`
Et

[
p

C`t+1π
`
t+1

+
1− p

Ct+1πt+1

]

F `t =
C`t +G`t
C`t

+ θ
1

1 + r`
Et

[
p
(
π`t+1

)ε−1
F `t+1 + (1− p) (πt+1)

ε−1
Ft+1

]

(
1−

(
π`t
)ε−1

θ

1− θ

) 1
1−ε

F `t = χ

(
C`t +G`t

)2
p`∗t

+ θ
1

1 + r`
Et

[
p
(
π`t+1

)ε(1−
(
π`t+1

)ε−1
θ

1− θ

) 1
1−ε

F `t+1+

(1− p)πεt+1

(
1− πε−1

t+1 θ

1− θ

) 1
1−ε

Ft+1

]

p`∗t =

(1− θ)

(
1− θ

(
π`t
)ε−1

1− θ

)− ε
1−ε

+ θ
(
π`t
)ε (

p`∗t−1

)−1

−1

Now, note that for the purposes of our linearization, we are going to linearize around the limit point

at the ZLB when the ZLB is binding and around the point to which the system will jump when the

ZLB is not binding, both from the nonlinear model. It is useful to note that

p̂∗t ≈ log (p∗t )

and

p̂`∗t ≈ log

(
p∗t
p`∗

)
≈ p̂∗t − log

(
p`∗
)

Denote the points to which the system jumps with
−→
X t+1. Note that

−̂→
X t+1 ≈ log

(
Xt+1
−→
X

)
≈ log

(
Xt+1

X

)
+ log

(
X
−→
X

)
≈ X̂t+1 + log

(
X
−→
X

)

We know that we can solve for

X̂t+1 ≈ γX p̂∗t
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So

−̂→
X t+1 ≈ γX p̂∗t + log

(
X
−→
X

)
≈ γX p̂`∗t

This means that we can write the t+ 1 variables if rt = r as a function of p̂`∗t . Also, we can write,

Xt+1 ≈
−→
X exp

(
−̂→
X t+1

)
≈
−→
X exp

(
γX p̂

`∗
t

)
Thus, we can write the system as

1

C`t
=

1

1 + r`
Et

[
p

C`t+1π
`
t+1

+
1− p

−→
C exp

(
γC p̂`∗t

)−→π exp
(
γπp̂`∗t

)]

F `t
(
π`t
)1−ε

=
C`t +G`t
C`t

+ θ
1

1 + r`
Et

[
pF `t+1 + (1− p)

−→
F exp

(
γF p̂

`∗
t

)]

((
π`t
)1−ε − θ
1− θ

) 1
1−ε

F `t
(
π`t
)−ε

= χ

(
C`t +G`t

)2
p`∗t

+ θ
1

1 + r`
Et

[
p

((
π`t+1

)1−ε − θ
1− θ

) 1
1−ε

F `t+1+

(1− p)

((−→π exp
(
γπp̂

`∗
t

))1−ε − θ
1− θ

) 1
1−ε −→

F exp
(
γF p̂

`∗
t

) ]

p`∗t =

(1− θ)

(
1− θ

(
π`t
)ε−1

1− θ

)− ε
1−ε

+ θ
(
π`t
)ε (

p`∗t−1

)−1

−1

We log-linearize these equations around the limit point at the ZLB to obtain

− 1

C`
Ĉ`t =

1

1 + r`
Et

[
− p

C`π`

(
Ĉ`t+1 + π̂`t+1

)
− 1− p
−→
C−→π

(γC + γπ) p̂`∗t

]

F `
(
π`
)1−ε (

F̂ `t + (1− ε) π̂`t
)

=
G`

C`

(
Ĝ`t − Ĉ`t

)
+ θ

1

1 + r`
Et

[
pF `F̂ `t+1 + (1− p)

−→
F γF p̂

`∗
t

]
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0 =−

((
π`
)1−ε − θ
1− θ

) 1
1−ε

F `
(
π`
)−ε((π`)1−ε − θ

1− θ

)−1 (
π`
)1−ε

1− θ
− ε

 π̂`t + F̂ `t


+ χ2

(
C` +G`t

)
p`∗

C`Ĉ`t + χ2

(
C` +G`

)
p`∗

G`Ĝ`t − χ
(
C` +G`

)2
p`∗

p̂`∗t

+ θ
p

1 + r`

((π`)1−ε − θ
1− θ

) 1
1−ε

F `F̂ `t+1 +

((
π`
)1−ε − θ
1− θ

) 1
1−ε−1

F `
1

1− θ
(
π`
)1−ε

π̂`t+1


+ θ

1− p
1 + r`

( (−→π )
1−ε − θ

1− θ

) 1
1−ε −→

F γF +

(
(−→π )

1−ε − θ
1− θ

) 1
1−ε−1

−→
F

1

1− θ
(−→π )

1−ε
γπ

 p̂`∗t

−
(
p`∗
)−1

p̂`∗t = εθ

(π`)ε (p`∗)−1 −

(
1− θ

(
π`
)ε−1

1− θ

)− ε
1−ε−1 (

π`
)ε−1

 π̂`t − θ
(
π`
)ε (

p`∗
)−1

p̂`∗t−1

An alternative approach to finding the point around which to linearize would be to calculate the

limit point using the linear approximation that obtains after the ZLB no longer binds. Note that

p̂∗t ≈ p̂`∗t + log
(
p`∗
)

−→
X ≈ X exp

(
γX log

(
p`∗
))

Then we can write

1

C`
=

1

1 + r`

[
p

C`π`
+

1− p
C exp (γC log (p`∗))π exp (γπ log (p`∗))

]

F `
(
π`
)1−ε

=
C` +G`

C`
+ θ

1

1 + r`
[
pF ` + (1− p)F exp

(
γF log

(
p`∗
))]

((
π`
)1−ε − θ
1− θ

) 1
1−ε

F `
(
π`
)−ε

=χ

(
C` +G`

)2
p∗`

+ θ
1

1 + r`
Et

[
p

((
π`
)1−ε − θ
1− θ

) 1
1−ε

F `

+ (1− p)

((
π exp

(
γπ log

(
p`∗
)))1−ε − θ

1− θ

) 1
1−ε

F exp
(
γF log

(
p`∗
)) ]

p`∗ =

(1− θ)

(
1− θ

(
π`
)ε−1

1− θ

)− ε
1−ε

+ θ
(
π`
)ε (

p`∗
)−1

−1
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Given π`, we can get p`∗

(
p`∗
)−1

=
1− θ

1− θ (π`)
ε

(
1− θ

(
π`
)ε−1

1− θ

)− ε
1−ε

.

Given π` and p`∗ we can get C`

1

C`
=

1− p
C exp (γC log (p`∗))π exp (γπ log (p`∗))

(
1− p

(1 + r`)π`

)−1

.

Note that we already have a restriction on π` here,

π` >
p

(1 + r`)

Given π`, p`∗ , and C`, we get F `:

F ` =

(
C` +G`

C`
+ θ

1− p
1 + r`

F exp
(
γF log

(
p`∗
)))((

π`
)1−ε − θ p

1 + r`

)−1

Use the final equation as a check to see if the original guess gives us a limit point. We have found

that our main results are not sensitive to how this limit point is calculated.

B Analysis of other equilibria than considered in text

B.1 Expectations of returning to negative-inflation steady state

Here, we reproduce the analogue of Figure 5, along with the government purchases multiplier,

assuming that agents believe they will return to the negative-inflation steady state after the ZLB

ends.
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Figure 9: Learning Equilibrium, Returning to Negative-Inflation SS
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Figure 10: Effects of an Increase in G on f
(
π`
)
, Sunspot Equilibrium
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B.2 Sunspot equilibria

Here, we assume that rt never changes. Instead, we assume that there is a sunspot that take

value 1 at time t = 1. With probability p, the sunspot remains at the value 1. With complementary

probability, the sunspot takes the value 0 and remains at that value forever. Figure 10 is analogous to

Figure 4 in the main text. Again, an increase in G shifts f
(
π`
)

up. Because the sunspot equilibrium

is the left crossing, inflation declines, causing real interest rates to rise, and consumption to fall.

The multiplier in the sunspot equilibrium is about 0.91.
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C Details about non-linear approximations

We approximate equilibrium laws of motion for prices and quantities in the nonlinear NK model using

a finite-elements method. In particular, we define a grid on p∗t−1 that spans 0.8 to 1 and contains

at least the 2001 points at each increment 0.0001. At each grid point, we assign a parameter value

that characterizes equilibrium law of motion for the relevant aggregate variable if p∗t−1 is equal to

the grid point. Between grid points, we linearly interpolate the values at the two closes points.

D Rotember-style adjustment costs

In this section, we consider a version of the model where firms face Rotember-style adjustment costs

rather than Calvo-style adjustment costs.

D.1 Model specifcation

Households and final goods firms are identical to those in the Calvo model. In each period, all

monopolists update their price. They maximize

Et

∞∑
k=0

dt+k
λt+k
Pt+k

((1 + υ)Pj,t+k − st+kPt+k)

(
Pj,t+k
Pt+k

)−ε
Yt+k −

Φt+1

2

(
Pj,t+k
Pj,t+k−1

− 1

)2

Pt+k (29)

The where all variables are defined as in the main paper, and Φt is a potentially endogenous scaling

parameter that determines the cost of adjusting prices. The first-order condition is

0 = ε

(
Pj,t
Pt

)−ε
Yt−εst

(
Pj,t
Pt

)−ε−1

Yt+Φt

(
Pj,t
Pj,t−1

− 1

)
πt−

1

1 + rt
Et
λt+1

λt
Φt+1

(
Pj,t+1

Pj,t
− 1

)
πt+1

(30)

Imposing symmetry, we have that p∗t = 0 for all t and

(πt − 1)πt =
ε

Φt
(st − 1)Yt +

1

1 + rt
Et
λt+1

λt

Φt+1

Φt
(πt+1 − 1)πt+1. (31)

The resource constraint becomes

Yt = Ct +Gt +
Φt
2

(πt − 1)
2
. (32)
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The system of equations determining equilibrium can then be expressed as

1

Ct
=

1

1 + rt
RtEt

1

Ct+1πt+1

(πt − 1)πt =
ε

Φt

(
χ

[
Ct +Gt +

Φt
2

(πt − 1)
2

]
Ct − 1

)
Yt +

1

1 + rt
Et

Ct
Ct+1

Φt+1

Φt
(πt+1 − 1)πt+1

along with the monetary policy equation.

D.2 Steady states

The target-inflation steady state of the model is identical to the Calvo model because in both steady

states there is no inflation. The negative-inflation steady state can be easily solved for by setting

π = β and computing C from the resource constraint.

D.3 Equilibrium in the nonlinear model

In an EW equilibrium, consumption and inflation jump to their steady state values after the ZLB

no longer binds. We initially focus on the target-inflation steady state. We consider the same value

for rt we consider in the Calvo model. We look for a minimum-state, interior equilibrium. Thus,

we look for two numbers, C` and π`. The monetary policy rule divides the candidate inflation rates

into a subinterval in which the ZLB is binding and a second one in which it is not. Define

π`UB ≡
1 + α− 1

β

α
.

Then R` = 1 if π` ≤ π`ZLB , and R` = 1
β + α(π` − 1) otherwise. Solving the intertemporal Euler

equation for π` ≤ π`ZLB gives us consumption as a function of inflation so that

C`
(
π`
)

=
1 + r` − p 1

π`

1− p
C

where C is the steady state level of consumption. We have assumed π = 1. The requirement that

C > 0 means

π` > π`LB =
p

1 + r`
.
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Note that C` is increasing on the interval from π`LB to π`ZLB , which is not surprising, given that the

nominal interest rate is fixed.

Non-negativity of C` also implies an upper bound on π`. To see this, solve for C` using the

intertemporal Euler equation for π` > π`ZLB to get

C`(π`) ≡ C

1− p

[
1 + r`

1
β + α(π` − 1)

− p 1

π`

]
=

C

1− p

p(
(
α− 1

β

)
−
[
pα− 1− r`

]
π`[

1
β + α(π` − 1)

]
π`

.

Note that the numerator is linear and decreasing in π`, while the denominator is positive and

increasing. It follows that there is exactly one value of π` for which C` = 0, given by

π`UB =
p(βα− 1)

pβα− β(1 + r`)
.

we assume that β(1+r`) > p and pα > 1+r` so that π`UB > 1. By continuity C` > 0 on the interval

π`LB to π`UB . We then have the following proposition.

Proposition 2. An interior, minimum-state equilibrium exists if and only if for some π` ∈
(
π`LB , π

`
UB

)
the value C` = C`(π`) solves

f(π`) =−
(
π` − 1

)
π` +

ε

Φ`

(
χ

[
C` +G` +

Φ`

2

(
π` − 1

)2]
C` − 1

)[
C` +G` +

Φ`

2

(
π` − 1

)2]
+

1

1 + r`
p
(
π` − 1

)
π`

If no such π` exists, there is no EW equilibrium.

A similar set of conditions can be derived using the negative-inflation steady state. Note that

the function f in the Rotemberg model is analogous to the function f in the Calvo model. The

difference is that in the Calvo model the function f relates to the limit point in the ZLB, while in

the Rotemberg model the function f relates to the equilibrium values.

Figure 11 is the analogue of Figure 1, but using our Rotemberg model. Similar to the Calvo

model, the relatively-good ZLB equilibrium shifts left when the post-ZLB steady state will be the

deflation steady state.

Figure 12 is the analogue of Figure 4, but using our Rotemberg model instead of our Calvo

model.
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Figure 11: Graph of f (π`)
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Because we know the entire possible support of π`, we can be sure that the only solutions to the

model at the ZLB are those displayed in the figures.

D.4 Linearization

The only equation that needs to be altered relative to the Clavo model is the pricing equation from

the monopolists. When we linearize the pricing equation around steady state, we get

π̂t =
ε

Φ

(
(2− ηG)Ĉt + ηGĜt

)
+

1

1 + r
Etπ̂t+1

which is identical to the Calvo model with p̂∗t = 0 if

ε

Φ
=

(1− βθ)(1− θ)
θ

.
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Figure 12: RE Multiplier in ZLB
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We work with

Φt =
θ

(1− βθ)(1− θ)
ε (Ct +Gt) ≡ φ (Ct +Gt)

where the value of θ = 0.85 comes from our calibration of the Calvo model.

D.5 E-stability and learning

D.5.1 A simple framework of expectation formation

The first-order condition of an individual firm can be written as

0 =

(
ε

(
πj,t
πt

)−ε
− εχ

[
Ct +Gt +

Φt
2

(πt − 1)
2

]
Ct

(
πj,t
πt

)−ε−1
)[

C` +G` +
Φ`

2

(
π` − 1

)2]
+ (Ct +Gt)φ (πj,t − 1)πt −

1

1 + rt
Et

Ct
Ct+1

φ (Ct+1 +Gt+1) (πj,t+1 − 1)πt+1

where πj,t ≡ Pj,t/Pj,t−1. Because rt is the only state variable, when rt = r`, it is natural to assume

that firms believe that they will set their inflation rate tomorrow equal to the value they set today.

This assumption is true in a rational expectations equilibrium, but not necessarily in a learning

equilibrium. Further, it is natural to assume that firms believe that consumption will be the same

value in each period that rt = r`. Under these assumptions, and further assuming that the economy

returns to the target-inflation steady state when rt = r`, the first-order condition of the firm becomes

0 =

(
ε

(
πt
π`et

)−ε
− εχ

[
C`et +G`t + φ

C`et +G`t
2

(
π`et − 1

)2]
C`et

(
πt
π`et

)−ε−1
)[

C`et +G`t + φ
C`et +G`t

2

(
π`et − 1

)2]
+

[
1− 1

1 + r`
p

]
φ
(
C`et +G`et

)
(πt − 1)π`et

where C`et and π`et are the firm’s time-t belief about consumption and inflation when rt = r`. We

have subsituted πt = πj,t because each firm makes the same decision, which determins πt.

Households see current inflation. It is natural for households to assume that inflation in the next

period will the same as in the current period if rt+1 = r`. Thus, the intertemporal Euler equation is

1

Ct
=

1

1 + r`
max

(
1,

1

β
+ α (πt − 1)

)[
p

πt
+

(1− p)
Ch

]
.

Here, C is the value of consumption in the target-inflation steady state.

These equations define a mapping from beliefs about ocnsumption and inflation, to outcomes for
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Figure 13: Learning Equilibrium, Starting at Steady State RE Equilibrium
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consumption and inflation at the ZLB.

 Ct

πt

 = T


 C`et

π`et


 .

We if we define ΨPLM ≡
[
C`et π`et

]
, we again have a mapping from the perceived law of motion

to the actual law of motion, ΨALM ≡
[
Ct πt

]
. When we compute ∂T (Ψ)

∂Ψ , we find that only the

relatively-good ZLB equilibrium is E-stable. The relatively-bad ZLB equilibrium is not E-stable.

We next compute a learning equilibrium. We assume that π`et = πt−1. That is, firms expect

inflation to be what it was in the previous period. Consistent with this rule, we assume that

the eocnomy had been in steady state and firms initially believe that πt = 1. The outcomes for

consumption, inflation, and the government purchases multiplier are shown in Figure 13. Note that

the outcomes eventually converges to the values in the relatively-good ZLB rational expectations

equilibrium.
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Figure 14: Learning Equilibrium, Starting at Steady State RE Equilibrium
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D.5.2 Learning as in Evans and Honkapohja (2003)

We can alternatively specify expectations as in Evans and Honkopohja (2003) so that

1

Ct
=

1

1 + r`
max

(
1,

1

β
+ α (πt − 1)

)[
p

C`et π
`e
t

+
1− p
Ch

]

(πt − 1)πt =
ε

Φt

(
χ

[
Ct +Gt +

Φt
2

(πt − 1)
2

]
Ct − 1

)
Yt +

1

1 + r`

[
Ct
C`et

Φ`et
Φt

(
π`et − 1

)
π`et

]
.

We again assume that expectations are updated so that agents think tomorrow’s values will be the

same as yesterday’s values. In this case, we also find that only the relatively-good ZLB equilibrium

is E-stable. This form of learning is slower than the other form of learning we consider in the

Rotemberg model. Figure 14 shows the equilibrium outcomes.
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