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had she remained alive. This suggests that while science seeks to divorce the researcher's identity 
from their work, scientists' identities nonetheless play an important role in determining scientific 
valuations.
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You have no control:
Who lives
Who dies

Who tells your story?

Lin-Manuel Miranda

Hamilton: An American Musical (2015)

1 Introduction

Insofar as we human beings have an impact on the world before we leave it, this legacy

is effected via two possible channels: we manipulate the physical world, leaving behind

artifacts or “products” that can be attributed to our agency; or, through our interactions

with others, we influence their beliefs, preferences, feelings, or skills in ways that they might

later recognize. Most people — and certainly those who take on public “producer” roles such

as artists, politicians, or scientists — prefer that their legacy be significant and positive. But

our ability to shape that legacy is limited. Once a product has left the hands of its producer,

the objective features of the product are set. And once we are dead we can no longer promote

our products or influence others’ impressions of our impact on the world. Consider Winston

Churchill’s famous claim that “History will be kind to me for I intend to write it.” Churchill

undoubtedly had more ability to shape his legacy than most; but even during his lifetime his

ability to shape his legacy was limited by his critics and opponents; and since he was mortal

like the rest of us, he obviously did not get to have the last word.

In the same vein, sociological research on “reputational entrepreneurship” has docu-

mented how a politician’s or an artist’s legacy is affected by the producer’s death, either by

preventing the producer from playing the role of “salesman” in publicizing and promoting

himself and his products or by influencing how other parties play the role of a “sales force”

in publicizing and promoting their work (Bromberg and Fine 2002: 1139). In some cases,

the death of the producer/salesman appears to have a negative effect on his legacy. For

example, in accounting for why U.S. President Warren Harding is the “worst president of all

time” (Holmes and Elder 1989), Fine (1996) notes that Harding was a reasonably popular

president during his lifetime, and he was able to boast a strong economic and civil rights

record; however, his early death in 1923 prevented him from defending his reputation in the

wake of the Teapot Dome scandal while his erstwhile supporters had every incentive to let

him take the blame. Yet while the death of the producer can have a negative impact on his
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legacy, it can paradoxically have a positive effect insofar as it mobilizes a sales force com-

posed of people who were positively influenced by the producer during her lifetime. Thus,

Lang and Lang (1988) document how the sudden death of young etchers mobilized friends

and family to commemorate the œuvre of the deceased, thereby making it less likely that the

artist would be forgotten by the next generation. Fine (1996: 1188) too contrasts Harding’s

death with John F. Kennedy’s, showing that Kennedy’s supporters commemorated his life

and work to such an extent that he became one of America’s most popular presidents after

his death, despite a rather brief and controversial term as president.

But to what extent does reputational entrepreneurship determine a producer’s legacy?

Whereas past research has focused on politics and art (e.g., Fine 1996; Jansen 2007; Lang

and Lang 1988; Bromberg and Fine 2002; Kahl et al. 2010; McCormick 2015), the present

study analyses how a scientist’s death affects the amount of positive publicity that his pa-

pers receive, in the form of citations. Note well: the objective quality of a scientific paper

obviously does not change when the scientist who authored the paper dies. Thus, insofar

as the death of a scientist occasions a change in the citations to her papers, it follows that

there is a significant subjective element in the valuation of science. In particular, if death

leads to a reduction in citations, this would imply that scientists’ “salesmanship” (broadly

construed) plays a significant role in shaping its reception. And if death leads to an increase

in citations, this would imply that the promotional efforts of the “sales force” of people that

a scientist influences and inspires are key. Finally, to the extent that the effect of death on

citations is lasting rather than fleeting, we gain insight into the extent to which the overall

direction of science is significantly shaped by contingent, social factors.

To elaborate, there are two main reasons why science provides an especially good setting

for advancing our understanding of how reputational entrepreneurship shapes social valuation

generally and producers’ legacies in particular. First, whereas in the artistic and political

domains the producer’s identity is considered relevant for evaluating their work, the “norm

of universalism” that governs science (Merton 1979) implies that a scientist’s reputation is

irrelevant for evaluating her work, especially once it has passed peer review. Consider a

key contrast between science and art: Whereas even a great a piece of art is not considered

authentic unless its provenance is clear, it is the methodology of a scientific work that is

thought to matter for scientific progress. Accordingly, Whitehead’s dictum, “A science that

hesitates to forget its founders is lost” is not applied to art. Relatedly, artistic works are

generally presented and evaluated in the context of the artist’s larger œuvre, and this body
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of work is expected to have a consistent style (Sgourev and Althuizen 2014; Wohl 2017).

Politicians too face significant penalties insofar as they are inconsistent (Barker and Carman

2010; Hummell 2010), and the reputations they build influence how we evaluate their actions.

Thus, the observation that “only Nixon could go to China.” Note finally that when death

strikes a working artist or politician, it is unsurprising that this will affect the valuation

of their work. The reason is that as long as a producer’s works are evaluated in terms of

their whole agenda, the meaning of this agenda remains open as long as the producer is still

active.

By contrast, while the interpretation of earlier scientific papers can change in light of

findings in subsequent research, it is irrelevant which specific scientist produced such re-

search. In short, insofar as reputations should not matter for the evaluation of scientific

papers, science represents an especially conservative setting for establishing the importance

of reputational entrepreneurship. Of course, while it may be possible to ignore the reputa-

tion of the scientist when allocating credit to scientific papers, it is impossible and indeed

undesirable when allocating jobs to scientists. As such, to the extent that we find that rep-

utational entrepreneurship shapes the assessment of scientific papers, this would imply that

science is more like art and politics than the norms of science would imply.

A second advantage of the setting of science is that it affords easier identification of the

effects of reputational entrepreneurship. A key challenge in verifying any causal claim is to

measure the impact relative to a counterfactual situation in which the event had not occurred

(Lewis 1974). In politics, this is especially difficult because the number of observations is

quite small and events are historically and contextually dependent. And identifying coun-

terfactuals in art is challenging due to the absence of established criteria for judging pieces

of art to be equivalent. In science, however, over 2.5 million articles are published annually

after having completed peer review based on relatively consensual evaluation guidelines. As

a result, it is possible to synthesize a counterfactual world in which death and/or reputa-

tional entrepreneurship did not occur by comparing articles with similar characteristics. In

determining which characteristics are relevant, science’s use of citations provides a further

boon as citations represent an institutionalized means of recording and quantifying the com-

munity’s (cumulative) assessment of a paper’s quality over time (Merton 1988: 621). Thus,

by contrasting citation trajectories, we can arrive at a precise estimate of the difference in the

short and long-term assessment given to any two papers. Finally, memorialization events in

science are fairly standardized, allowing the analyst to go beyond simply inferring the effect
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of reputational entrepreneurship from death and allowing for disentangling the efforts of the

salesman and the sales force.

To preview our findings, our analysis of elite academic life scientists shows that a scien-

tist’s death tends to provide a boost to the citation trajectory of their papers, and it does

so by mobilizing scholars seeking to memorialize the deceased, thereby promoting her work

and reputation posthumously. As a result, these scholars’ research is better remembered

than those still living, or those who died at a much older age. We also find that these effects

appear to be permanent; for up to ten years after their deaths, their work continues to be

cited more than comparable work by scientists who had not yet died. More specifically, we

find that this effect is strongest for younger scientists who die suddenly; with respect to their

least-cited papers at time of death. Overall, the results suggest that it is the sales force,

rather than the salesman, which has more influence, and that the effect manifests itself in a

shift in attention rather than valuation. More generally, the implication is that reputational

entrepreneurship via the memorialization process affects valuations even in a context gov-

erned by the norm of disinterestedness and relatively clear quality criteria. Before reviewing

our data, methods, and results, we clarify the theoretical issues at stake.

2 Theory

In this section, we look to clarify the conditions under which we might expect a scientist’s

death to have an impact on the trajectory of their citations. We begin by first examining the

idealized conditions under which the reception of scientific work would be an unbiased mea-

sure of quality. We then relax those assumptions to clarify how reputational entrepreneurship

could come to affect perceptions of quality, and the various ways this might manifest itself.

2.1 The “Ideal” Valuation Method for Scientific Works

It may at first seem unproductive to consider a näıve baseline by which scientific citations

are an unbiased measure of quality. After all, few scientists are likely to assert that the

community is completely objective in its valuation of research, especially as reflected in the

number of citations to an academic paper. And yet one reason to consider this baseline

is the great demand for objective measures of research quality — for the tenure process

(Segalla 2008), for university and national rankings (Altbach 2012; Collyer 2013), and for

4



the awarding of prizes — citations are widely used because there is no consensus as to how

they may be biased and no apparent alternative to using them. Moreover, by examining the

idealized conditions under which citations are unbiased quality measures and then relaxing

them, we gain a clearer view of when and why reputational entrepreneurship might be

successful within science.

One idealized world in which citations would be unbiased measures of quality is a world

governed by the Mertonian norms of universalism, communalism, organized skepticism, and

disinterestedness (Merton 1979). In such a(n ideal) world, each scientific work would be

objectively evaluated by the community at the time of publication (Merton 1968). Post-

publication, the scientific community would know the objective quality of each work and

would then build on the most promising articles, citing them to give credit where credit is

due (Merton 1988). Thus, the best papers would receive the most citations, thereby making

citation counts an accurate measure of quality.

Yet, this world has always been an unachievable ideal. Merton himself put the norms

forward as science’s aspirations, and not as descriptions of the actual practice of science

(see Merton 1979). Additionally, a significant body of subsequent literature has shown that

science often fails to live up to these ideals; for instance, recent work has found evidence of

the Matthew Effect (e.g., Azoulay et al. 2014, Simcoe and Waguespack 2011), that scientists

often choose research trajectories based on career interests as opposed to research interests

(e.g., Foster et al. 2015), and more specifically, that citations are often used for a variety of

reasons beyond simply giving credit (e.g., Leydesdorff 1988).

A second, and more plausible, basis for expecting citations to be unbiased measures of

quality derives from an appreciation for the factors that make science a relatively “efficient

market.” To clarify, let us consider the analogy of the stock market, and what is responsible

for deviations from efficiency (Brav and Heaton 2002; Zuckerman 2012b). Under the efficient

market hypothesis, stock prices are said to be unbiased indicators of value that reflect all

publicly available information about a company (Fama 1965, 1970; Malkiel 1989). There are

two key mechanisms underlying this idea, the first of which is arbitrage — that is, that in-

sofar as there is a gap between the “fundamental” or “intrinsic” value and the current price,

investors can profit from the difference by buying low and selling high or (short-)selling high

and (re-)buying low (Zuckerman 2012b: 227-228). The second key mechanism is learning:

as some investors make great profits from arbitraging price and value, other investors either
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suffer from capital erosion or they learn the methods employed by the former (Zuckerman

2012b: 228). The efficient markets hypothesis holds that the profits — and thus the incen-

tives — are so great that this process works extraordinarily quickly and expeditiously such

that at any one time, prices are unbiased estimates of future cash flows — i.e., of fundamental

values.

Applied to the context of science (see Zuckerman 2012a: 237-239), the idea that citations

are an unbiased estimate of scientific quality hinges on the assumption that the arbitrage

and learning mechanisms operate strongly. An example of scientific arbitrage is when a

scientist identifies an undervalued idea and builds on it, or when she sees a paper valued too

highly and seeks to attack it and thereby pushes her field in a different direction. In these

scenarios, the scientist is presumed to be motivated not by fealty to communal norms but by

self-interest. The incentives for developing undervalued ideas are strong to the extent that

scientific careers are made by finding and/or recombining ideas that were overlooked (Uzzi

et al. 2013). And the learning process is clearly important as well; science is continually

beset by the steady advance of new ideas and the falsification of old ones (Popper 1959), and

(though less often) paradigm shifts which lead scientific fields in completely new directions

(Kuhn 1970).

Thus, to the extent that either the Mertonian norms govern science and/or the arbitrage

and learning mechanisms in science are strong, a scientist’s death should have no impact on

the citation trajectory of the papers they authored before they passed away. This leads us

to formalize a proposition, which we consider a näıve but important baseline:

Proposition 0: A scientist’s death will have no effect on the citation trajectory

of their work.

2.2 Valuation Entrepreneurship

But, just as arbitrage (and therefore learning) is limited in the stock market (Zuckerman

2012b), so it is in science as well (Zuckerman 2012a: 237). In general, the most effective

forms of arbitrage are what Zuckerman (2012a) calls “valuation opportunism.” This occurs

when an actor who believes an asset to be mispriced can profit from that discrepancy without

any regard for others’ opinions. In the stock market, this is the canonical case of a value

investor such as Warren Buffett who buys a public company outright and earns income from
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it at a discounted price (if they are right that the company was undervalued) (see Graham

2006 [1984]). In science, however, this strategy is much more limited. While some ideas

(such as penicillin or TNT) have a clear immediate use such that those who adopt them

early can benefit from them even in the face of widespread skepticism, the value of most

ideas is hard to assess and apply without significant growth in the community of supporters

both inside and outside academia.

Similarly, while financial markets can learn from the removal of misinformed investors

quickly (e.g., through margin calls), scientific progress takes much longer. This is a result

of a number of factors, for instance, the nature of the scientific method, the review process,

and the fact that established scientists with a vested interest in a particular paradigm are

likely to prevent others from attacking or modifying it, giving rise to Planck’s famous dictum

that science only advances “one funeral at a time” (Azoulay et al. 2016). Consequently, a

scientist who discovers that a well-respected idea is overvalued faces a dilemma in that while

revealing its flaws may well be the best long-term strategy, it may take years to bear fruit

(Foster et al. 2015). This likely creates a general reluctance to try out undervalued ideas

and research modalities as scientists fear their efforts will not be rewarded in time for their

careers to progress (Foster et al. 2015).

It is in the context of the limits to arbitrage and learning that valuation entrepreneurship

becomes a salient, and sometimes necessary, strategy for “market” participants.1 Were scien-

tists able to use valuation opportunism to earn timely rewards as the field re-appraised work

in an unbiased manner, scientists would have little need to promote their work. Similarly,

value investors prefer to remain silent about their investments to avoid others exploiting them

and thereby reducing their returns (Zuckerman 2012a: 235). Absent a mechanism such as

this one, however, scientists are forced to act as valuation entrepreneurs who must change

other participant’s standard of quality in order to reap the rewards of their investment. For

this reason, much like short-sellers, scientists who disagree with the field’s current valuations

must look to promote work they agree with (known as “talking their book” in the parlance

of finance) in order to bring other participants to their point of view, thereby causing the

field to reflect their own valuation (Zuckerman 2012a: 235; Botelho 2017).

1As Zuckerman (2012a:235) notes, “valuation entrepreneurship” differs from “valuation opportunism” in
that it connotes contrarian strategies which explicitly rely on the market changing its valuation of a given
security, while “valuation opportunism” allow the investor to profit regardless of whether or not the market
itself changes its valuation, as in the example of Warren Buffet above.
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The manner in which valuation entrepreneurship shifts valuations is likely to differ be-

tween financial markets and science, however. Financial markets have relatively low search

costs, as participants are largely aware of the options before them and have likely formed

some opinion of them. In such a context, valuation entrepreneurship is most likely to occur

when one participant successfully changes the conclusions another participant has drawn

regarding a specific asset. In science (much like art), however, the search costs are much

higher as the number of works produced is greater than the participants can be aware of

at any given moment (Cole 1970; Evans 2010). Consequently, valuation entrepreneurship

can occur not only when a participant’s conclusions are changed about a specific idea, as

in financial markets above, but also when participants become aware of work unfamiliar to

them. Raising awareness of a work effectively raises its value as works with the attention of

the field are eligible for either a high or low valuation, while those with little to no attention

can only be forgotten, effectively being valued at the bottom of the field (Denrell and Le

Mens 2016). This occurs most dramatically in art, as works by well-known artists are more

highly valued than technically superior works by completely unknown artists (Lang and Lang

1988). Yet, this also occurs in science as awareness of an idea is a pre-condition for credit,

which Merton describes as the “coin of the realm” (Merton 1968). Thus, scientists are much

more likely to build off a popular line of work even if there are other works which are more

promising by virtue of the fact that they unable to know every paper’s value at any given

time (Boudreau et al. 2016; Iaria and Waldinger 2015; Mulkay 1972).

2.3 Salesman versus Sales Force

But how would scientists most effectively influence the community’s perception of work?

Perhaps the most obvious manner is through aggressive self-promotion. Scientists who be-

lieve their research is undervalued by the community may seek to raise awareness of it through

press releases, teaching graduate courses, presenting at conferences, etc. This implies that

at any given point in time, the level of citations a paper receives is a function of the quality

of the paper and the amount of salesmanship it has received. Thus, after the death of the

scientist, the latter factor is removed, and therefore, the number of citations should decline.

This results in our first proposition:

Proposition 1: Insofar as the reception of scientific work increases through ef-

forts of self-promotion, the death of a scientist will cause the reception of scientific

work to decrease relative to the work of extant scientists.
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Yet, the efficacy of self-promotion may be limited for two reasons: size and motive. First,

and most obviously, any given scientist’s capacity for promoting her work is dwarfed by the

number of colleagues who could promote it. Second, because the scientific community is

aware that authors have a strong incentive to see their work more highly valued, efforts to

increase one’s own idea’s valuation may be overshadowed by concerns of partiality. Thus,

while the salesman may have the most incentive to sell their work, their credibility may be

so low as to make them ineffective.

In such a context, touting the ideas of others may seem more credible than touting one’s

own ideas. When there is not an obvious career benefit to promoting a given idea, the field

may perceive such promotion as stemming from the promoter’s assessment of the work’s

intrinsic quality and therefore to be more receptive to the message. This raises the question

of when one would be most likely to find a large group of individuals touting the work of

another. Lang and Lang (1988) suggest that this type of effort is most likely to occur after a

death, when supporters are brought together by the tragedy and seek to record the person’s

life and work as a tribute to the deceased. This leads to the creation of “memory events”

— biographies, news articles, and exhibits of their life and œuvre (Lang and Lang 1988:

94). As a result of these efforts, the field’s attention is directed towards the work of the

deceased, thereby raising its valuation in the manner described above (Lang and Lang 1988:

97). In the field of etchers, Lang and Lang claim that this was effective to such an extent

that memorialized etchers were remembered vastly beyond their living counterparts, even

those with superior work (Lang and Lang 1988: 97). Consider their example of Elizabeth

Fyfe, below (Lang and Lang 1988: 93):

One other case in point: Elizabeth Fyfe, who died in Switzerland in 1933, just

after her thirty-fourth birthday after a long bout with tuberculosis, had been

hailed by British critics as “one of the most original and accomplished young

etchers.” That her name and her work, which amounted to just over 1,600 im-

pressions, somehow survive, whereas those of others once equally or better known

do not, has much to do with her premature death. Her teachers, her friends, her

collectors, and other etchers rallied, while she was in the hospital, to organize an

exhibition of her work, complete with catalog, and then used the proceeds from

sales to help pay for the care she needed. Her dealer saw to it that her plates

were printed when she could no longer do so herself and gave a full set of her

prints to Fyfe’s sister. In this way, the many persons mobilized by the tragedy

helped to preserve the work and, thereby, to sustain the memory of the artist.
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We label this mechanism (the creation of memories about a deceased author) “memori-

alization” and the supporters that participate (or decline to participate) in this process the

“sales force.” This results in our second proposition:

Proposition 2: Insofar as the reception of scientific work increases from the

efforts of supporters and the death of a scientist increases the rate of memorial-

ization by supporters, the death of a scientist will increase the reception of his

or her work relative to extant scientists.

2.4 Predictions Distilled

In summary, there are three different theoretical predictions as to what might happen to

the perception of a scientist’s work after their death, depicted graphically in Figure 1, below.

In these stylized graphs, a flat gray line runs the length of each representing the number

of citations a given deceased scientist’s publication would have received had they remained

alive. Under the assumptions of the ECH, this line also represents the predicted effect of

death on citations. In panel A, the prediction given by the importance of the salesman is

depicted. According to Proposition 1, the trend of citations (represented by a dashed blue

line) decreases after the death of the scientist, as she is no longer alive to sell her work. In

panel B, the dashed blue line slopes upward, representing the boost in citations the scientist

receives due to the mobilization of the sales force. Determining which of these theoretical

predictions best represents the data is the central empirical question of this paper.

As suggested in Panel C, however, if the sales force fails to mobilize it creates an indeter-

minant outcome. Under this scenario, the result would be no change in citations after death

which is empirically indistinguishable from the ECH and from the effects of the salesman

and sales force counteracting each other. To address this possibility, we examine the process

of memorialization, represented by the red box in Panel B of Figure 1. By collecting the

documentation of scientists’ deaths created by their followers, we look to measure the extent

to which the scientists were memorialized and to estimate the relationship between memo-

rialization, the circumstances of the death, and the posthumous reception of their work. In

this manner we are able to develop a robust measure of the efficacy of both the sales force

and the salesman and discern if the two cancel each other out or if neither has any effect at

all.
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Insert Figure 1 Here

3 Data and Empirical Design

The design of our empirical analysis unfolds in three separate steps. The first step

is a causal analysis: how does the premature death of an eminent biomedical academic

researcher change the recognition (as measured by citations) of her work, compared to the

work of other eminent researchers who do not die prematurely. The level of analysis for this

step is an article/scientist pair, and the main challenge to be overcome is the building of

a control group of articles that plausibly pin down the citation trajectories of the deceased

scientists’ articles had they remained alive. The second step is descriptive: what are the

correlates of memorialization? In this step, the level of analysis is the individual scientist

and the key challenge to be overcome is the measurement of the memorialization process,

which is highly variegated and would, at first blush, appear to defy efforts at quantitative

reduction. The third and final step ties the causal and descriptive analyses together. We

ask whether the memorialization process is a plausible mechanism through which scientific

work gets remembered in the long run. The main challenge is one of prediction: for each

article, we must be able to forecast the citation trajectory that would have been observed if

the scientist had remained alive, so as to isolate a net citation premium (or deficit) for each

deceased scientist. With these forecasts in hand, we can then examine whether variation in

memorialization intensity correlates with extinction-induced “excess” citation rates.

Below, we provide a detailed description of the process through which we assembled the

data set used in the statistical analysis. We begin by describing the criteria used to select

the sample of elite academics, with a particular focus on the timing and the manner of their

deaths. The focus then shifts to the publications deceased and still-living scientists authored

during their lifetime, and how one might build a matched sample of publication/scientist

pairs where the citations received by articles authored by extant scientists offer a plausible

counterfactual to the citations that articles authored by extinct scientists would have received

had not died prematurely. Finally, we document how we measured the memorialization

process for each individual scientist. Throughout this description of the data, we outline

how the construction of the sample addresses the empirical design challenges enumerated

above, while leaving the details of our statistical procedure to section 5.4.
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3.1 Institutional Context

Our empirical setting is the academic life sciences. We focus on this domain for three

reasons. First, its sheer size. U.S. Medical Schools employ over 150,000 faculty members

(twice the number of physical scientists) and this figure underestimates the size of the labor

market since it does not take into account scientists and engineers working at NIH, in non-

profit research organizations (such as the Salk Institute), for independent hospitals (such as

the Cleveland Clinic), or within Schools of Arts and Sciences (such as MIT, UC Berkeley,

or Rockefeller University). Academic biomedical research also garners over 70% of all non-

defense Federal R&D dollars. The large size of the labor market is important for reasons of

statistical power: our key source of variation is generated by the premature death of eminent

scientists, and these events are relatively rare. Importantly, the members of this labor

market share broadly similar norms, career goals, incentives, and operate within comparable

institutional structures.

Second, scientific discoveries over the past half-century have greatly expanded the knowl-

edge frontier in the life sciences, and these advances have resulted in more specialization, as

well as an increase in the size of collaborative teams (Jones 2009; Wuchty et al. 2007). These

trends help ensure that career shocks only affect relatively narrow swathes of the intellectual

landscape. Were our research domain smaller in size, or less balkanized across narrow sub-

fields, it would be challenging for us to identify control articles or control scientists (Azoulay

et al. 2010).

Third, and perhaps more pragmatically, our setting is blessed by an abundance of

data sources. The careers of eminent, still-living life scientists are extensively described

in publicly-available curriculum vitas, Who’s Who profiles, or laboratory web sites. De-

ceased scientists leave in the wake of their passing an extensive paper trail in the form of

biographical articles, reminiscences authored by former colleagues, and obituaries. We com-

bine these data with large-scale databases such as the Faculty Roster of the Association of

American Medical Colleges (AAMC), the free and publicly-available bibliographic database

PubMed, NIH’s Compound Grant Applicant File (CGAF), and citation information from

the Web of Science. Together, these sources of information allow us to create an accurate

longitudinal record of publications, citations, and funding for each scientist in the sample.
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3.2 Sample of Elite Academic Life Scientists

In this context, our empirical approach uses the death of elite scientist as a lever to

estimate the extent to which the reception of their work changes posthumously. Our focus on

the scientific elite is justified pragmatically and substantively. Pragmatically, elite scientists

leave behind a large body of work as well as colleagues with an interest in the preservation

of their legacy. This makes tracing and documenting their careers much more viable than

with less-known and less-published scientists. Additionally, the distribution of publications,

funding, and citations are extremely skewed (Lotka 1926; de Solla Price 1963) as only a

tiny fraction of scientists contribute to the advancement of science (Cole and Cole 1972;

Zuckerman 1967).

Rather than a limitation, we believe that our focus on the scientific elite is substantively

justified in light of our goals. One would expect the articles of eminent scientists to be

identified and evaluated immediately after their publication, relative to the articles authored

by scientists of lesser repute. This should in turn should make it less likely that reputational

entrepreneurship should matter here. To some extent, this is testable since our metrics of

eminence are chosen such that substantial heterogeneity will exist even within the sample of

eminent scientists.

We began by demarcating a set of 12,935 “elite” life scientists (roughly 5% of the entire

relevant labor market) who are so classified if they satisfy at least one of the following criteria

for cumulative scientific achievement: (a) highly funded scientists; (b) highly cited scientists;

(c) top patenter; or (d) member of the National Academy of Sciences. Because these four

measures rely on achievements over the course of a scientist’s career, they will tend to select

older scientists. To create more demographic balance, we add three additional measures that

capture individuals with promise at the early and middle stages of their scientific careers

(regardless of whether that success endures): (e) NIH MERIT awardees; (f) Howard Hughes

Medical Investigators; and (g) early career prize winners. Appendix A provides additional

details regarding these seven metrics of “superstardom.”

We trace back these scientists’ careers from the time they obtained their first position

as independent investigators (typically after a postdoctoral fellowship) until 2006. We do

so through a combination of curriculum vitae, NIH biosketches, Who’s Who profiles, acco-

lades/obituaries in medical journals, National Academy of Sciences biographical memoirs,

and Google searches. For each one of these individuals, we record employment history, degree
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held, date of degree, gender, department affiliations, as well as complete list of publications,

patents, and NIH funding obtained in each year.2

The next step in the sample construction process is to subset from this pool scientists

whose premature death will “treat” their past output, as well as those scientists who could

potentially serve as controls. First, we select scientists whose death intervenes between

1969 and 2003 (for the treatment group), as well as those who were still alive in 2006 (the

end of the observation period).3 Second, we need to ensure that the treated scientists had

not entered a pre-retirement phase of their career. This is trickier, because the timing of

retirement is endogenous, and scientists who do not wish to retire can show great initiative

in subverting the rules surrounding mandatory retirement. To overcome this challenge, we

make full use of the narrative data contained in the dossiers we compiled for each scientist

(deceased or not); we also examine publication output as well as funding received to weed

out from the sample those who either “meaningfully” retired or whose output shows sign of

abating prior to their death or the end of the observation period.4

As a result of these steps, we identify 676 “treated” scientists (see Table 1). The mean

age at death is 63, with the youngest scientist dying at age 35 and the oldest dying at

age 89.5 We then investigate the cause of death in this sample of 676 scientists to classify

their deaths as being either “sudden” or “anticipated.” This is less difficult than it appears,

since most obituaries typically are quite specific in this respect.6 To distinguish sudden

from anticipated deaths, we use an arbitrary distinction between deaths that likely occurred

with six months notice or less, versus those that likely occurred with more than six months

notice. In practice, this sudden category mostly comprises fatalities due to heart attacks, car

accidents, and sudden onset illnesses. Conversely, most “anticipated” deaths are from various

2Appendix B details the steps taken to ensure that the list of publications is complete and accurate, even
in the case of stars with frequent last names.

3The control scientists might well die or retire, but only after 2006. An implication of this design choice
is that even for the scientists who die “late” (e.g., in 2003), we will have at least three years of citation data
to pin down how their passing changes the recognition of their work.

4In previous work, one of us has verified that it is essentially impossible to predict death in this sample
using measures of lagged publication output (Azoulay et al. 2010).

5How can one die at the age of 89, and one’s passing still be deemed “premature?” Easily, as it turns out.
Audrey Gorbman (1914-2003), described in academic obituaries as the “father” of the field of comparative
endocrinology (Bern and Sower 2003), succumbed to Parkinson’s disease but still published two first-authored
article in the last year of his life.

6We exclude from the sample one scientist who took his own life, and a further two for whom suicide
was hinted at. In some instances, where the cause of death could not be ascertained from the obituaries, we
contacted former collaborators individually to clarify the circumstances of the superstar’s passing. We were
unable to ascertain the cause of death for 29 (4%) of the 676 treated scientists.
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forms of cancer, or other long-term illnesses. In the treated scientist sample, 307 (45%) of

the treated scientists died suddenly death, while 340 (50%) died from an anticipated illness.

Table 1 provides descriptive statistics on the sample of deceased eminent academics (see

Appendix E for a complete list of these scientists, along with basic demographic and achieve-

ment data). The overwhelming majority (91%) are males (patterns of entry by gender into

the underlying labor market have only recently equalized, and our sample reflects the ex-

treme gender imbalance that prevailed for most of the time period we study). Of note is

the fact that even within this sample, substantial variation in recognition exists: whether

one measures eminence through publications, NIH funding, or citations (excluding those ci-

tations that accrue after the scientist has passed), the mean is always much higher than the

median.

Insert Table 1 Here

3.3 Matched Sample of Articles

The scientist level of analysis is not well-suited to the challenge of identifying the causal

effect of death on the reception of an academic’s work. To be sure, we could try to construct

a synthetic cohort of live scientists who look otherwise similar at some point of time to the

scientists who die prematurely; but, any such comparison would conflate the effect of death

with the effect of being able to build on one’s previous work in a cumulative fashion. In

contrast, the article-level of analysis, as well as the flow of citations that accrue to each

individual article over time, does provide a useful source of variation. This is because the

content of a given article is fixed over time, whereas the engagement of the audience with it

can (and does) change over time. Moreover, there is a very natural datum that determines

unambiguously a “before” and an “after” period for each article: the timing of its author’s

death.7

However, a simple difference between citations that accrue to a paper after, rather than

before, the death of a scientist is not enough to yield estimates with a plausibly causal

7This basic insight is not new. For instance, Murray and Stern (2007) ask how citations to articles shift
once the underlying results appear in a patent; Azoulay, Stuart and Wang (2014) ask how the receipt of
an accolade changes the citation trajectories of articles that appeared before the accolade was received;
Azoulay, Graff, Zivin, and Sampat (2012) investigate how the mix of local to non-local citations changes
after a scientist moves to a geographically distant institution.
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interpretation of the effect of a scientist’s passing. This is because the memory of any article

(or scientist) must eventually fade. Examine (in Figure 2) the mean number of annual

citations received by the 676 treated scientists in the sample, both before and after the

death. This peaks the year before the death, and then undergoes a decline that is steep,

though it will take close to 40 years for the memory of any work by a deceased scientist to

disappear from the scientific literature. Therefore, the question is not whether the recognition

given to the work of deceased scientists will decrease after they die, as it surely will. Rather,

the challenge is to assess this decline relative to the citation trajectory of papers in general,

and more precisely relative to papers whose recognition potential was similar at the time of

the scientist’s passing. Therefore, we need to construct a group of control articles that can

plausibly capture this counterfactual.

Insert Figure 2 Here

Our approach is to recruit control articles from the vast set of articles authored by elite

scientists who did not die prematurely. There exist uncountable ways to build a control

sample in this way, and this step necessarily entails some degree of judgment. For this

reason, it is valuable to specify the characteristics that one would want the control articles

to exhibit if at all possible. First, one would them to be published contemporaneously with

the “treated” articles; Second, one would like them to be of similar expected impact and

fruitfulness, relative to the treated article, up to the time of death; Third, the scientist

who published the control article should be similar, from a demographic standpoint, to the

treated scientist; And fourth, the control article should be isolated (in “intellectual space,”

but maybe also in “social space”) from the treated scientist. In practice, it is impossible to

identify for each treated article a “fraternal twin” that matches it exactly on a list of author

and article characteristics.

Pragmatically, we specify a handful of covariates along which matched article/cite pairs

must resemble each other, and we implement a coarsened exact matching procedure (Iacus

et al. 2011) to identify all the articles among those published by live scientists that satis-

fied these criteria (so that each treated article can and typically does have more than one

associated control article). This is best explained through an example, but we must first

address an obvious obstacle. Modern science is a team sport, with rates of coauthorship that

have steadily increased over the past 40 years (Wuchty et al. 2007). With long authorship

rosters (the median number of authors in the PubMed universe was 4 in 2002), how can
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we know the author with which the article is most closely associated? Here, we are helped

by a strong norm in biomedical research which invariably puts the principal investigator on

a research project in last authorship position on any paper that results from the funding

s/he was able to mobilize (Gans and Murray 2011). Therefore, below we will focus only on

original research articles where the focal scientist appears last on the authorship roster.8

3.3.1 Example of a Treated-Control Pair

Consider the paper “NMDA Receptor Losses in Putamen from Patients with Huntington’s

Disease,” published in the journal Science in 1988 originating from the laboratory of John

B. Penney, Jr., an eminent Harvard neurologist who died in 1999 from heart failure. Using

the coarsened exact matching procedure described in detail in Appendix C, we can match

15 publications to this article, also published in Science in 1988, and where a superstar who

did not die was in last authorship position. Figure 4 illustrates the matching with one of

these articles, “Identification of a Putative Regulator of Early T Cell Activation Genes,”

which came out the laboratory of Gerald Crabtree, a pathologist at Stanford. By 1999, the

Crabtree paper had garnered 410 citations, which is twice as many as the Penney paper had

received. Yet, both articles belong to the top percentile of the 1999 citation distribution for

the universe of papers published in 1988. Notice as well that Crabtree and Penny were born

in the same year. This is not happenstance, as the matching procedure selects for articles

whose lead author is at most three years younger, or older, than the lead author of the

treated article. The number of authors for each of the paper is identical, and a close match

in terms of authorship roster length is also one of the criteria we use.

Yet, it is clear that there are still observable differences between these articles. The

two lead authors do not match particularly closely on metrics of achievement, for example.

Nothing would prevent us from extending the list of match covariates to include measures

such as cumulative funding or citations. But this would entail being unable to find a match

for many of the treated articles. As a result, we have focused on a small set of covariates at

the article-level (journal, year of publication, and citations received up to the year of death)

and only one scientist-level covariate that struck us as important given the context: the age

8To be sure, we can have a deep imprint on a research project and yet occupy authorship position other
than last. In the case of inter-lab collaboration, for instance, it is not unusual to observe one of the PI
occupy the first authorship position, or the next-to-last position. What is important for our purposes is that
it is difficult to imagine circumstances where an author does occupy the last author position and s/he is not
closely identified with the work.
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of the scientist. One might have chosen to match on a host of other scientist-level covariates:

eminence at death (for example, measured by citations), gender, or degree (MD vs. PhD).

From an empirical design perspective, the lack of balance is only a threat to identification

when one has a reason to believe that the unbalanced covariate is correlated with treatment

(the timing of death, in this study). We will come back to this issue when presenting the

results.

Two additional about this pair of articles are worth mentioning, since they hold true

more generally in the sample. Crabtree and Penney never collaborated while Penney was

alive. Furthermore, these two papers tackle unrelated topics. Formally, PubMed, our data

source for biomedical publications, does not list one as being topically related to the other

(The PubMed Related Article Algorithm will be described in more detail below). This

is important insofar as a desirable feature of the control group is to be unaffected by the

treatment event. By eliminating articles by collaborators as well as topically-related articles

from the list of eligible controls, we bolster the claim that the control articles can pin down

a credible counterfactual citation trajectory.

Insert Figure 4 Here

3.3.2 Descriptive Statistics

The procedure described above yields a total of 128,591 papers authored by 6,782 control

scientists, as well as 18,523 treated papers authored by the 676 deceased scientists. Table 2

provides descriptive statistics for control and treated publications in the baseline year, i.e.,

the year of death for the deceased scientist. A number of the covariates are balanced between

treated and control publications solely by virtue of the coarsened exact matching procedure

— for instance, the year the article was written, the number of authors, and the number of

citations at the time of the (counterfactual) death. However, covariate balance in the level

of eminence at the time of (actual or counterfactual) death for treated and control scientists

(measured through NIH funding, number of articles published, or cumulative number of

citations) was not guaranteed by the matching procedure.

Insert Table 2 Here
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Figure 3 examines differences in the shape of the distribution for citations received by

treated and control articles, respectively. Overall, they are quite similar, particularly in the

upper tail. On the other hand, the distribution of control articles exhibits slightly more mass

in the bottom quartile, relative to the distribution of treated articles. Of course, balance in

the stock of citations at baseline is not technically required for the validity of the empirical

exercise. More important is the absence of a trend in the flow of citations up until the time

of treatment. An important step of the empirical analysis will be to verify, ex post, the

absence of pre-treatment trends.

Insert Figure 3 Here

3.4 Memorialization Data

To study the process of memorialization, we focus on the sample of treated scientists

only. We remove from it the 29 stars whose cause of death remains unknown (i.e., not

confirmed to be either sudden or anticipated), resulting in a sample of 647 scientists who died

prematurely. Through systematic web and PubMed searches, we collected and hand-coded

all “memory events” for each of these scientists in our sample. These include obituaries and

reminiscences that appeared in medical journals, obituaries that appeared in newspapers,

festschrifts, symposia, National Academy of Science Biographies, Wikipedia pages, university

press releases, and major awards (e.g., a field-wide award for best paper in a given field named

after a deceased scientist). Appendix D provides further details, but the main descriptive

statistics are displayed in Table 1. We code an average of four “memory” events for the

scientists in this sample. 31% of these events take place in the year of death, 32% in the

year after the death year, 9% two years after the death year, and only 3% three years after

death. In other words, by three year after death, the flow of memorialization events reduces

to a trickle.

Since our period of observation for the death of eminent scientists is between 1969 and

2003, one might worry that certain data sources become available only later in the sample,

mechanically producing more memorialization events for scientists who died more recently.

Our main results, however, pertain to identifying the correlates of academic memorialization

events — those that appeared in scientific journals — and there is less reason to suspect

that the emergence of the internet led to an increase in the number of these types of events.
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To guard against this peril, we will include in all our regressions a full suite of indicator

variables for the years of death in the data.

3.5 Predicting Long-Run Posthumous Recognition

The last step of our analysis examines empirically whether memorialization efforts are

a plausible intermediate outcome in the relationship between a scientist’s death and long-

run acclaim. It would be intuitive to simply modify the citation analysis by substituting

citation outcomes with measures of memorialization activity. This is impossible, however,

since measures of memorialization are only available for prematurely deceased scientists. We

follow an alternative approach to generate measures of citation premium or deficit (whichever

the case maybe) for each treated scientist.

The computation of these measures begins with an acknowledgement that the difference-

in-differences modeling strategy explained above, while well-suited to the challenge of es-

tablishing the causal effect of premature death on citation trajectories, is not adapted to

the task of predicting, at the article level, the future time-path of citations.9 To generate

article-level predictions, we begin by collapsing the data in the longitudinal dimension, such

that for each article (treated or control) there are exactly two observations, one before the

year of death or counterfactual death, and one from the year of death onwards.

We then run a very simple negative binomial model where post-death citations for paper i

authored by scientist j are regressed on the log of pre-death citations for article i, a treatment

indicator which is equal to one if scientist j died, and a vector of control covariates Xij:

E
[
citesAFTERij |Xij

]
= citesBEFOREij · exp

[
α0 + α1TREATj + α2Xij + νi

]
where νi is an omitted variable such that eνi follows a gamma distribution with mean 1

and variance ζ (Cameron and Trivedi 2013: pp. 80-89). The vector X includes a set of

indicator variables for article i’s number of authors, a set of indicator variables for article

9In fact, the precise statistical procedure we will use, the quasi-maximum likelihood fixed effects Poisson
estimator due to Hausman, Hall, and Griliches (1984) only allows us to characterize how scientist death shifts
the conditional mean of the flow of citation over time. It would be invalid to use the resulting estimates to
compute a prediction for each article in the sample. Yet, it is the appropriate estimator for the causal analysis
because it will generate consistent estimates under mild regularity assumptions (Wooldridge 1997). Other
count data estimators, such as negative binomial or zero-inflated count models are much more well-suited
to the task of prediction, but these predictions are only valid if their underlying distributional assumptions
are correct.
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i’s year of publication, and a set of indicator variables for scientist j’s year of death (or

counterfactual death). The predicted counts from this simple regression are then computed

to generate a measure of expected citation. Note that the model includes an offset for the

number of citations that had accrued to article i up to and including in the year of death. In

other words, our predicted citation rate accounts for any momentum that article i’s citation

trajectory portended at the time of death.

“Excess” citation is simply measured as the difference between the predicted count and

the actual number of citations received by the article after the year of death.10In a final

step, we sum both the measure of expected citation and excess citation across all articles

written by each scientist to generate an individual measure of citation premium (or deficit).

Figures 6a and 6b provide an histogram for the distribution of both measures. Note that

the mean of the excess citation measure is 24, while the median is -1.

Insert Figures 6a and 6b Here

In the cross-section of extinct scientists, we then run simple OLS specifications where

expected or excess citations are regressed on the intensity of memorialization activities for

each scientist, as well as a handful of control variables (such as gender, highest degree, cause

of death, age at death, and year of death indicator variables).

4 Results

The exposition of the statistical results proceeds in stages. After a brief review of method-

ological issues, we provide results that pertain to the main effect of a scientist’s death on the

reception of their work. Second, we attempt to elucidate the mechanism (or set of mecha-

nisms) at work to explain our most robust finding, that papers by scientists which die young

and suddenly see a large and sustained increase in citation rates relative to those of scientists

who are still living. We do so by measuring the extent of memorialization of deceased scien-

tists and using it to predict posthumous citation rates. Finally, we correlate predicted excess

citations received with the intensity of memorialization activity at the individual level.

10This measure of excess citations can, and in fact often is, negative.
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4.1 Statistical Considerations

Our estimating equation relates the effect of a scientist’s death on citations in the fol-

lowing way:

E [citesit|Xit] = exp
[
β0 + β1AFTER DEATHjt

+ β2AFTER DEATHijt × TREATij + f(AGEit) + δt + γi

]
where citesit is the number of citations paper i receives in year t (purged of self-citations),

AFTER DEATH denotes an indicator variable that switches to one in the year after the

superstar (real or placebo) associated with i passes away, TREAT is an indicator variable

set to one if the scientist dies during the period, f(AGEit) corresponds to a set of indicator

variables for the age of article i at time t (measured as the number of years since the year

of publication), the δt’s stand for a full set of calendar year indicator variables, and the γi’s

correspond to article fixed effects, consistent with our approach to analyze changes in the

flow of citations within each article following the passing of an elite scientist.11

We follow Jaravel et al. (2018) in including in our specification an indicator for the timing

of death that is common to treated and control articles (whose effect will be identified by the

coefficient β1) in addition to the effect of interest, an interaction between AFTER DEATH

and TREAT (whose effect will be identified by the coefficient β2). The effects of these two

variables are separately identified because: (i) deaths are staggered across our observation

period and (ii) control publications inherit a counterfactual date of death since they are

uniquely associated with a treated publication through the matching procedure described in

section 4.2. The inclusion of the common term addresses the concern that age and calendar

year fixed effects may not fully account for shifts in citation activity around the time of

the scientist’s passing. If this is the case, AFTER DEATH will capture the corresponding

transitory dynamics, while AFTER DEATH × TREAT will isolate the causal effect of

interest. Empirically, we find that in some specifications, the common term has substan-

tial explanatory power, though its inclusion does not radically alter the magnitude of the

treatment effect.

Estimation. The dependent variable of interest, citations accrued per year, is skewed and

non-negative. Specifically, 51.56% of the articles receive no citations in a given year while

11To avoid confusion, we have suppressed any subscript for the scientist. This is without loss of generality,
since each article is uniquely associated with a single scientist (i.e., there can only be one individual in
last-authorship position for each article).
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0.02% accumulate over one hundred. Following a long-standing tradition in the study of

scientific and technical change, we present conditional quasi-maximum likelihood estimates

based on the fixed-effect Poisson model developed by Hausman et al. (1984). Because the

Poisson model is in the linear exponential family, the coefficient estimates remain consistent

as long as the mean of the dependent variable is correctly specified (Gouriéroux et al. 1984).

We cluster the standard errors at the scientist level in the results presented below.

Outcome variables. Our primary outcome variable is the rate of yearly citations (net of

self-citations). In order to better understand the activities of the “sales force,” however,

characterizing the relationship between citing and cited articles is also of interest. Specifi-

cally, are posthumous citations more likely to come from former collaborators or trainees?

Are they more likely to originate from within the narrow subfield of the cited article, or from

outside that narrow subfield? Or are they more likely to be circumscribed in geographic

space, for example emerging from authors employed by the same institution as that of the

deceased scientist? We parse all the citing-to-cited article pairs to distinguish between such

relationships in social space, intellectual space, and geographic space.12 We then aggre-

gate these data up to the article-year level to compute citation counts from related versus

unrelated authors.

Subsamples. The set of articles whose citations we analyze comprises all “original” (i.e.,

excluding reviews, comments, editorials, etc.) articles published by elite scientists (treated

or control). The importance of each of these articles varies widely in the within-scientist

dimension of the data. We will therefore run the citation analysis on the overall sample,

as well as on subsamples designed to highlight the effect of death on different parts of the

distribution of scientific impact. To do so, we assign each original article the percentile of the

citation distribution to which it belongs, given its vintage. When computing these empirical

distributions, we also take into account the year of death or counterfactual death. This

allows us to compare between the citation impact of each article in the sample, regardless of

the year in which it appeared and regardless of the time of treatment.

12Appendix B describes how this is achieved. Briefly, matching each author on citing and cited articles with
the Faculty Roster of the Association of American Medical Colleges (AAMC) allows us to distinguish between
publications with and without former collaborators or trainees, and with or without authors colocated with
the focal elite scientist. Similarly, the use of the PubMed Related Articles algorithm (PMRA) helps us
distinguish between citations coming from within the same subfield, as opposed to outside the subfield.
Importantly, this parsing can be implemented for the articles authored by both the treated and the placebo
scientists, in a rigorously identical fashion.
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Using this information, we create five distinct article subsamples: (1) the set of articles

in the top 10% of impact at time of death for each scientist; (2) the set of articles in the

bottom 10% of impact at time of death for each scientist; (3) the set of articles in the second

and third quartile of the impact distribution at time of death for each scientist; (4) the set

of articles in the top 1% of impact at time of death in the PubMed universe; and (5) the

set of articles published in a narrow window of three years before the time of death. Note

that subsamples one through three use a relative benchmark to delineate a set of articles

(every scientist in the data must have a top 10% and a bottom 10%, for instance). The

fourth subsample uses a universal benchmark, and it is possible for scientists in the data to

contribute no article to this subsample.

4.2 Main Results

Table 3 presents our core results. Overall, we find the papers of deceased scientists

increase in citations slightly after the scientist passes away, but the effect is modest (6.5%)

and imprecisely estimated (column 1). Yet, this result conceals heterogenous patterns with

respect to the degree of impact these individual pieces of research had achieved by the time

of the scientist’s death. For the articles that are among the most well-cited in a relative

sense (Own Top 10%), the post-death increase in citations is 10% relative to papers of living

scientists (column 4), while for the least well-cited articles at the time of death (Own Bottom

10%), the boost is a remarkable 49% (column 2). The papers that lie between the 25% and

75% percentile of citation impact at the time of death (column 3) do not exhibit an effect

statistically distinguishable from zero; neither do articles published three years before the

author’s death nor those that are above the universal benchmark of the 1% most well-cited

articles within the Web of Science.

Insert Table 3 Here

We also explore the dynamics of the effects uncovered in Table 3. We do so by estimating

a specification in which the treatment effect is interacted with a set of indicator variables

corresponding to a particular year relative to the scientist’s death, and then graphing the
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effects and the 95% confidence interval around them (for example, panels A and B of Figure 5

correspond to columns 1 and 2 in Table 4).13

Insert Figure 5 Here

Two features of the figure are noteworthy. First, the dynamics amplify the previous

results in the sense that we see the effects increasing (in absolute value) monotonically over

time: there is no indication that the effects we estimated in Table 3 are merely transitory.

Second, there is no discernible evidence of an effect in the years leading up to the death, a

finding that validates ex post our identification strategy.

We investigate these effects further by breaking down the publications by the age at

which the scientist died and the type of death (Table 4 and Figure 5). This reveals that

papers written by younger authors (below age 65) receive a 8% boost in citations, while

those of older authors do not experience an effect statistically significant from zero (columns

1 and 2, respectively and Figure 5). Those that die young and suddenly receive the largest

boost of 14% (column 3). This evidence is consistent with the findings of Lang and Lang

which suggested that etchers that die young and suddenly are (much) better remembered

than those who are older (Lang and Lang 1988: 93).

Insert Table 4 Here

4.3 Sources of citation increase

One natural question is whether there is something distinctive about the citations that

generate the boost documented above. In particular, are these citations more likely to

originate from proximate rather than more distant sources, relative to the deceased scientist?

We distinguish between three alternative measure of proximity: social, intellectual, and

spatial.

To distinguish between socially proximate vs. distant citations, we simply split the cita-

tions that accrue to each article in each year between those from articles with an author who

13In these specifications, the AFTER DEATH term which is common to treated and control publications
is also interacted with a complete series of lags and leads relative to the year of death or counterfactual death.
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is a former collaborator of the star, versus those where none of the authors had collaborated

with the star previously. The intellectual dimension seeks to differentiate between citing

articles that belong to the same narrow subfield as the source, versus citing articles that

do not belong to the same narrow subfield. Our implementation leverages similarity in key-

words, specifically the PubMed Related Citations Algorithm (PMRA), described in detail by

Azoulay et al. (2016). Finally, we distinguish between geographically proximate vs. distant

citers using authors’ institutional affiliation obtained from the AAMC Faculty Roster and

NIH’s CGAF database.

The results for the corresponding specifications are presented in Table 5. Note that the

different columns do not correspond to splits of the sample; rather, it is only the dependent

variable that changes across specifications. For instance, the first column models the effect

of the scientist’s passing on the number of citations solely coming from articles who do not

include a former collaborator of the deceased (or of the still-living control scientist). Overall,

there is little evidence that post-death citations originate relatively more from proximate

authors. While the magnitudes are slightly higher for proximate citations, the difference

between the effect on proximate vs. non-proximate citations is not itself statistically signif-

icant. We tentatively conclude that the citation boost documented in Tables 3 and 4 (as

well as Figure 5) reflects a diffuse and increased interest in the deceased’s contributions,

particularly those that were slightly less well-known while she was alive. (MW Note: This

has been changed to make our “diffuse” point more neutral - do you like this?)

Insert Table 5 Here

4.4 Memorialization

These results strongly suggest that the sales force has been mobilized. In clear violation

of the efficient citation hypothesis, the perception of scientists’ work does in fact change

after their death. Our results point to young authors who die suddenly getting a boost in

citations, with those who are older or whose death is anticipated experiencing little to no

change.

What these results do not explain, however, is why the sales force is being mobilized. As

noted in Figure 1, while the boost in citations after death is consistent with the notion of

a sales force, by only seeing the boost we can only say that mobilization has occurred. We
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cannot say why it has occurred, or even when it is likely to occur. For this reason, further

investigation must be done to understand the circumstances that would cause scientists’

followers to memorialize them after their death.

To do so, we take a three-step approach. First, we look to measure memorialization to

estimate which scientists are most likely to be memorialized. Second, we use that estimation

to develop a prediction of posthumous citations based on the extent to which the scientist

was memorialized. Finally, we compare our predicted citation rates to the actual citation

rates.

4.4.1 Estimating the Determinants of Memorialization

In estimating the amount of memorialization, our goal is to model the number of memory

events for scientists at the individual level. To do so, we regress the number of academic

memories on the age of the star at death, an indicator variable for whether the death was

sudden, and an interaction between these two variables using quasi-maximum likelihood

Poisson estimates. In addition, we add controls for the gender of the author, the number of

scientists they trained in their career, and the number of distinct collaborators they worked

with but whom they did not train. We also include an indicator variable for membership

in the National Academy of Sciences, and lastly, their cumulative number of citations at

death — two rough proxies for the eminence of these elite scientists within the scientific

community.

Table 6 shows our main results. We begin with a simple model including only the controls

for gender and sudden death. We then gradually add measures of eminence before concluding

with model 8, which includes a control for self-promotion. Columns 2 and 3 show that the

number of cumulative citations and publications at death strongly correlate with greater

memorialization, while column 4 suggests that no such relationship between funding and

memorialization exists. All three measures of eminence are included in column 5, which

shows that when combined publications are the strongest predictor of memorialization out

of the three. We then add in the logged number of trainees and coauthors in columns 6

and 7, respectively. Both appear to have only a weak relationship to memorialization that

is if anything negative. The strongest predictor of memorialization, present in columns 2

through 8, is membership to the National Academy of Sciences.
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Insert Table 6 Here

Our main results show evidence of a strong interaction effect for scientists that died

young and suddenly, we look to see if a similar interaction effect occurs for memorialization,

as Lang and Lang claim (1988). Though the interaction terms for age and sudden deaths

are not displayed in Table 6, they can be visualized in Figure 7. Here, we use a model

similar to the one described above in column 7 of Table 6, but rather than treating age as

a continuous variable we create seven bins for age at the time of death. We then interact

the age bins with the indicator for sudden death and graph the coefficients. This reveals

that dying suddenly substantially increases the amount of memorialization. While ceteris

paribus those who die at an older age are memorialized to a greater extent (as is evident in

Table 6), for those that die young and suddenly, an interaction occurs which leads them to

be significantly more memorialized than their older counterparts. Young scientists which die

suddenly accrue nearly three times more memory events than older scientists of a comparable

status. Thus, consistent with Lang and Lang (1988), we see evidence that the sudden death

of a young scientist mobilizes the sales force to memorialize the deceased scientist.

Insert Figure 7 Here

4.4.2 Who are the Memorializers?

This raises the question of how self-promotion affects the memorialization efforts of the

sales force. Though self-promotion is difficult to measure, we look to shed light on this ques-

tion by including a measure self-promotion in our final specification (column 8) in Table 6.

We measure self-promotion using an indicator variable that corresponds to the top quartile

of the distribution of unrelated citations as a percentage of self-citations (averaged over each

deceased scientist’s entire body of work) in our sample. To the extent that this measure is

a reasonable proxy, we find that self-promotion is very slightly negatively associated with

memorialization, though the relationship is quite noisy and not statistically distinguishable

from zero.

To understand the memorialization process further, we look to examine who wrote the

“memory events” that comprised the observations in our analysis on memorialization in

Sections 4.4.1 above. In examining the 676 deceased scientists in our sample, we identified
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1,194 memorializer/deceased pairs. From these pairs, we determine if the author was a co-

author or a trainee, as discussed in Section 5.1 For those that were neither, we then coded

each of the obituaries written by the remaining memorializers to determine the relationship,

where the full text was available on PubMed (nearly 30% of the articles were not available

in full). Table 7 shows the relationship breakdown for the memorializer/deceased pairs.

Insert Table 7 Here

Consistent with Lang and Lang (1988), we find that the memorializers did have a social

relationship with the decease author, most often as a trainee or collaborator. Over 70% were

written by someone the deceased scientist had worked with before (either as a collaborator or

as a trainee), while fewer than 10% were from individuals that did not have any relationship

at all with the deceased.

4.5 Long-run Citation Afterlife and its Relationship to Memori-
alization Efforts

The last step of our analysis is to connect the memorialization activity with long-run

citation outcomes. We ask whether the memorializers’s efforts in the short-run (recall that

memory events typically occur within a three-year window after the death) are associated

with the long-run citation “afterlife” in our sample of deceased elite scientists. To do so,

we regress the predicted and excess citations computed in Section 4.4 on the intensity of

memorialization activity, along with a handful of control covariates: gender, degree type, an

indicator variable for sudden death, as well as a full set of indicator variables for the scientist’s

age at the time of death and for his/her calendar year of death. Table 8 reports OLS

estimates using the cross-section of deceased scientists for which we were able to ascertain

the circumstances of the death (sudden or anticipated). Because memorialization efforts

might have a non-linear relationship with long-run citations, we break out the overall count

of academic memory events: zero event (185 [27.36%] scientists, the omitted category);

exactly one memory event (194 [28.70%] scientists); exactly two memory event (113 [16.72%]

scientists); exactly three memory event (54 [11.09%] scientists); exactly four memory event

(43 [6.36%] scientists); and five or more memory event (65 [9.76%] scientists).
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In Table 8, columns 1a, 1b, and 1c use the log of predicted citations as the outcome

variables, whereas columns 2a, 2b, and 2c use the level of excess citations (which can be

negative, since it is computed as the difference between actual and predicted citations. Be-

cause the distribution of excess citations is both skewed and takes on negative values (see

Figure 6), we transform it with a NegLog transformation (Yeo and Johnson 2000), and

present results using the transformed outcome in columns 3a, 3b, and 3c.14 Relative to

columns 1a, 2a, and 3a, columns 1b, 2b and 3b slightly modify the data used to compute

the outcome variables. In columns 1a, 2a, and 3a, we use all possible citations to build

a prediction model for the long-run number of citations for each article published by the

deceased scientist. In columns 1b, 2b and 3b, we use the same predictive model but exclude

citations from the deceased scientist’s memorializers and coauthors. Doing so provides some

insight as to the source of increased citations; if the boost in citations is primarily from

the scientist’s closest friends and colleagues, one would expect these estimates to be small

relative to the estimates in columns 1a, 2a, and 3a. Similarly, in columns 1c, 2c, and 3c,

we include all citations less those in the three years that immediately follow the death event

(but otherwise use the exact same prediction model). The reason to exclude citations that

accrue to the deceased scientists’ articles in the immediate aftermath of his/her death is that

these citations could reflect, at least in part, memorialization efforts (it is not uncommon

for obituaries and reminiscences published in scientific journals to have a list of references,

for example). By excluding from the count of cumulative citations those that accrue in the

period of bereavement, we can be more confident that our measures of predicted and excess

citations do not reflect the mechanical impact of memorialization efforts.

Insert Table 8 Here

In Column 1a, we find evidence of a strong positive association between memory events

and predicted long-run, posthumous citations. The effect appears monotonic: relative to

scientists with no academic memory events, scientists with one memory event are predicted

to garner 39% more citations, whereas those in the tail of the memorialization distribution

(5 events or more) are predicted to garner 245% more citations. Column 1b shows an almost

identical point estimate to column 1a, both measured relatively precisely, suggesting that the

boost in citations does not stem from the work of the memorializers and coauthors. Finally,

column 1c makes clear this statistical association does not merely reflect awareness by their

14NegLog(x) = log(x) if x > 0 and −log(−x) if x < 0.
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immediate community of the turbulent years that immediately follow the passing of these

scientists — the estimates are virtually identical to those in columns 1a and 1b.

The estimates presented in columns 2a, 2b, and 2b correspond to the excess citations

outcome, entered in levels. These estimates are noisier, with only the coefficient for five

or more academic memories entering the model with a statistically significant effect (and

a large magnitude, an unexpected boost of 183, 220, and 183 citations at the mean of

the data). The other coefficients are all positive, but imprecisely estimated. By using the

negative log transform, we produce a less skewed dependent variable. The corresponding

estimates, presented in columns 3a, 3b, and 3c, are large in magnitude, precisely estimated,

and relatively similar to those displayed in columns 1a, 1b, and 1c.

Overall, the results presented in Table 8 establish the plausibility of memorialization as

the underlying mechanism triggering the vibrant “citation afterlife” of deceased scientists.

When considered in the context of the results presented in Tables 3-8, our evidence points to

the following chain of events: the death of eminent scientists activates a narrow vanguard of

colleagues who were proximate to the deceased.15 It is this vanguard who engages in memo-

rialization efforts, and these efforts in turn bring to the attention of the scientific community

at large the work of the deceased, in particular work that may have been overlooked while

s/he was alive.

5 Conclusion and Discussion

To recall, the foregoing analysis was motivated by the recognition that science is an

especially good setting for advancing our understanding of how reputational entrepreneurship

might shape producer legacy. Prior research in the domains of art and politics have presented

compelling historical examples where the death of a producer either limits reputational

entrepreneurship of the producer/salesman or mobilizes a sales force of people that the

producer influenced during their lifetime. The main advantage of the current setting is that

there are strong normative and institutional reasons to expect reputational entrepreneurship

to be unimportant. In particular, whereas the norms of science imply that a scientist’s death

should have no impact on the scientific community’s valuation of her work, and scientific

15Proximity is multidimensional, corresponding to relationships that unfolded in geographic space (such
as the case of department or university colleagues), in social space (such as between mentor and trainee, or
between coauthors), and in intellectual space (such as shared topics, research questions, and methodologies).
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institutions should disseminate and evaluate ideas regardless of efforts to promote such ideas

(the efficient citation hypothesis, or ECH), our analysis demonstrates that the promotion of

a scientist’s work — reputational entrepreneurship — has a significant and lasting impact on

its valuation. More specifically, we have seen that the death of a scientist, and especially the

sudden death of a young scientist, acts as a catalyst to mobilize a community of scientists

seeking to commemorate the deceased. Such commemoration draws attention to the work of

the deceased (especially their least-known work), thereby causing the community’s valuation

of it to be higher.

If the avowed norms of science were fully operative or the mechanisms underlying the

scientific marketplace were highly efficient, such commemoration of the deceased would be of

no consequence. But this commemoration does matter, thus indicating the weakness of such

norms and the inefficiency of the scientific marketplace. In particular, the random event of an

untimely death elicits commemoration activity, which increases attention to (and thus higher

valuation of) elite scientists’ lesser known work. The upshot is that a producer’s identity

matters in science for the valuation of a given product much as it does in art and politics.

This limit on the norm of universalism may reflect the fact that although attention and

valuation of scientific work can ignore the identity of the scientist, in practice it is essentially

impossible to do so given that key resources — especially jobs and research funding— must

be allocated to individual scientists on the basis of their past and prospective bodies of work.

Moreover, the social relationships that undergird science are necessarily between individuals

(Merton 1970), and we have documented in Table 7 that these social linkages provide the

fabric necessary for a narrow vanguard — the “sales force” — to mobilize in the wake of a

revered figure’s passing.

5.1 Limitations

Before discussing the implications of these findings, it is important to address one clear

limitation of our study: that it is restricted to the work of elite academic life scientists. As

discussed above, we limit our sample to top academic life scientists in large part because the

wealth of information on them allows us to create precise and meaningful counterfactuals.

This raises questions as to how this focus affects our analysis and whether our findings would

apply to the vast majority of scientists who are lower status.
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Some light may be shed on this question by examining the heterogeneity within our

sample. As noted above, there is significant variation in status even among the elite scientists.

To see if higher status scientists receive a larger boost in citations after their death, we use

our main specification described above and split the sample at the median by cumulative

publications, citations, and funding at the time of death. The results, displayed in Table 9,

do not suggest a much larger effect for high-status scientists. Columns 1 and 2 show that

scientists with above the median number of publications receive a boost of 13% while those

below the median do not receive a boost statistically different than zero. But, in terms of

citations, columns 3 and 4 suggest that if anything, less-cited scientists receive a slightly

larger boost, though the estimate is quite noisy. Lastly, those with above median levels of

funding are not statistically different than those below the median. Taken together, this

could imply that status does not affect the efficacy of reputational entrepreneurship.

Insert Table 9 Here

Yet there are reasons to doubt that we can generalize from an elite sample to the general

population of scientists. On the one hand, it is possible that as differences in status become

more pronounced, status itself becomes more important. More specifically, the literature on

the Matthew Effect (i.e., cumulative advantage processes whereby the attainment of status

provides further advantage in attaining even greater status) suggests that a key advantage

of high-status scientists is having their work much more widely read (Merton 1968; Azoulay

et al. 2014; Simcoe and Waguespack 2011; Cole 1970; Allison et al. 1982). Insofar as this is

the case, it implies that the scientists in our sample are more likely to have had their papers

read and evaluated than their lower-status peers. The work of elite scientists should thus be

relatively insensitive to the benefits of posthumous memorialization. Put differently, while

we find that even the highest-status scientists have some work that has been overlooked by

the community and is thus sensitive to reputational entrepreneurship, this should a fortiori

be true for low-status scientists. On the other hand, while the work of lower-status scientists

might stand to benefit the most from reputational entrepreneurship, the Matthew Effect

would also seem to imply that they are less likely to be the subject of such efforts. Past

research suggests that higher-status scientists attract larger numbers of coauthors, research

assistants, doctoral students, and admirers (see Zuckerman 1967; Dey et al; 1997; Goldstone

1979; Stewart 1983; Rossiter 1993; Allison and Stewart 1974) — i.e., the “sales force” for

the scientist’s work. It is also possible that reputational entrepreneurship would be less
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valuable for lower-status scientists because audiences will find efforts to promote their work

less credible.

In sum, additional research is necessary to clarify how we might generalize beyond our

sample of elite scientists. It seems likely that our findings provide a lower bound on the

misvaluation that occurs as a result of scientific status and thus the potential returns to

reputational entrepreneurship. But they also might provide an upper bound on the level

of reputational entrepreneurship that actually occurs given the challenges of mobilizing a

(credible) sales force for lower status scientists.

5.2 Implications

The foregoing limitation notwithstanding, our findings have important implications for

understanding how scientific works are valued, for understanding how science as a vocation

shapes recognition and the allocation of credit, and for reputational entrepreneurship more

generally. We now discuss each of these implications in turn.

5.2.1 Citations as Biased Measures of Scientific Achievement

How accurate is the scientific community’s valuation of scientific contributions? This

question is important because such valuations help to determine which contributions are

developed into practical applications, which ideas shape the public’s understanding of the

natural world, as well as the future trajectory of science (Polanyi 2009 [1966]: 67). Higher

valuations of certain ideas and methods encourage scientists and the institutions that support

them to redirect their research efforts in some ways but not others (Foster et al. 2015, Mulkay

1972). Citations to prior work are key to this process as they indicate which works, authors,

and topics have gained the attention of the community (Merton 1988: 621). Accordingly,

citations are often used as a measure of quality for rankings of professors and universities

(Altbach 2012; Collyer 2013), and also for the innovativeness of an idea (e.g., Trajtenberg

1990). But the practice of using citations to measure scientific achievement relies on the

assumption that they are reliable measures of scientific quality. As long as the Mertonian

(1979) norms — universalism, communalism, organized skepticism, and disinterestedness

— govern science, this assumption might seem reasonable since the upshot is a community

whose members pursue nothing but the truth. However, Merton himself worried that the

contributions of high-status scientists gain more credit than is their due (the Matthew Ef-
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fect) and the post-Mertonian sociology of science has generally documented the contingent

circumstances by which scientific communities shape the production and evaluation of scien-

tific work (Shapin 1982). Moreover, and as reviewed above, the relative absence of arbitrage

mechanisms by which a contrarian might take advantage of gaps between scientific valuation

and quality makes it unlikely that citations are unbiased indicators of quality.

But while there is reason to doubt that citations are reliable measures of scientific contri-

butions, the nature and extent of the misvaluation is unclear. Building on recent evidence for

the Matthew Effect (Azoulay et al., 2014), our analysis demonstrates clear gaps between the

implied quality of scientific papers measured by citations and their actual quality. Insofar as

this effect centers on the dead scientists’ least cited work, the implication is that certain pa-

pers do not get the attention they deserve. This is consistent with the presence of significant

search costs, as the scientific community struggles to read and evaluate new publications in

a timely manner (Gans and Murray 2011; Iaria and Waldinger 2015). Note well though that

the effect appears to be permanent. This implies that there is much good science that goes

unread and unused. More generally, insofar as our analysis provides clear evidence for how

a contingent event can permanently alter the valuation of science as measured by citations,

citations must always be taken with a grain of salt.

5.2.2 How Science as a Vocation Shapes Recognition and the Allocation of
Credit

Misvaluations arise in part because science struggles to divorce research from the identity

of its author. The norms of disinterestedness and universalism belie the fact that science

is both a vocation and a means of employment (Merton 1969; Polanyi 2009 [1966]; Gieryn

1983). While the community seeks to evaluate work on its own merit, it must also employ

people to teach and to manage laboratories. Similarly, though it publishes papers, science

awards prizes and grants to scientists. This creates a circular problem as the community

seeks to evaluate works independently from their producers while evaluating producers on

the basis of their work. That those who produce the most appreciated research are best

suited to review new research exacerbates this problem, creating a strong incentive to factor

in the author’s identity when evaluating scholarship. This tension between universalism

and science as an employment system is most observable in the debate over the “blinding”

of the review process; though double-blinded reviews are most common in science, there

is significant controversy over the practice precisely because some explicitly wish to use the
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author’s identity as a signal of quality (Blank 1991; Ceci and Peters 1984). While the salience

of identity to the valuation of scientific work is not new in the context of this debate, we

demonstrate that even outside of it (or more specifically, after it), the identity of the author

materially affects the valuation of scientific work.

This struggle shows science to be nearer to art in its evaluation of work than it would

at first appear. There is little debate that the value of a work of art is greatly affected

by the identity of the artist. The salience of the artist’s identity arises from the fact that

art is assessed through the lens of the artist’s style (Sgourev and Althuizen 2014; Wohl

2017). For this reason, art is typically organized by artist and reviews are most often done

by well-known critics where the identity of both parties is plainly visible. As discussed

above, science is structured in stark contrast, organizing its work by subject matter in

publications and conferences and emphasizing the objectivity of its review process, all in

accordance to the norm of universalism (Merton 1969). Our findings demonstrate that these

institutional arrangements are insufficient to completely overcome the incentives created by

the employment system within science, however. Just as in the case of Lang and Lang’s

etchers (1988), the valuation of scientific works is affected by the identity of the author via

reputational entrepreneurship.

5.2.3 The Logic of Reputational Entrepreneurship

Finally, our analysis has implications for our understanding of reputational entrepreneur-

ship as a mechanism. Previous work claimed that reputational entrepreneurship significantly

impacted valuations but lacked quantifiable measures of valuation and clear counterfactuals

(Fine 1996; Lang and Lang 1988). As a result, it was limited in its ability to precisely es-

timate the extent to which reputational entrepreneurship shifted valuations. Using science

as a setting enables us to overcome these obstacles, as it offers citations as a quantifiable

measure of value and counterfactual papers to those authored by the dead scientists. This

approach yields striking results: reputational entrepreneurship can permanently shift the

valuation of work by up to 50% in some cases.

This research design also allows us to shed light on which actors are the most effective

reputational entrepreneurs. Prior work tended to focus on either the sales force (e.g., Lang

and Lang 1988) or the salesman (e.g., Fine 1996), but did not directly compare the two.

Our research design allows for this through the juxtaposition of living scientists and the
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memorializers of deceased ones. This comparison reveals the memorializers (“sales force”)

to be more effective in changing valuations than the scientist herself. Although the question

of why exactly this is the case is one we must leave for future research, one likely reason is

credibility. Individuals promoting their own work may be limited in their ability to change its

valuation because the community recognizes the self-interest at stake and therefore discounts

their message. The sales force, by contrast, has little self-interest in commemorating the

work of a deceased colleague and therefore their actions are seen as more authentic. As

such, the community may be more receptive to their message, and therefore, likely to pay

more attention. In this we see an interesting parallel to religion: scholars of religion have

noted that major religions frequently begin with the founder’s death, which sparks efforts

by the disciples to ensure that the founder’s life is remembered.16 It is intriguing that a

social phenomenon familiar from the histories of such religions as Christianity, Islam, and

Buddhism are also at work in science.

Finally, while prior research on reputational entrepreneurship does not distinguish be-

tween shifts in attention and valuation, our results — in particular, that it is the least-cited

papers that are most sensitive to reputational entrepreneurship — suggest that attentional

processes may be especially important. Our results are not definitive in this regard, nor is

it clear to what extent they would generalize to domains beyond science, but they call into

question a tendency to assume that reputational entrepreneurship operates by changing the

valuations of existing audiences. In bringing overlooked work to the fore, the sales force is

able to increase its valuation by changing the sample of work with which the community

is engaged (Jerker and Le Mens 2016). That this mechanism is so effective in science, and

especially in the work of elite scientists, is testimony to the extent to which search costs

inhibit the scientific community’s ability to digest new work.

16We are grateful to Angela Lee for pointing this to us.
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Figure 1 
Illustration of Different Predicted Results Depending on the Importance of the Salesman 

and Sales Force 
 

A. Salesman B. Sales Force C. Indeterminate 

Note: In the above panels, the horizontal gray line through the middle of the graphs represents the cumulative number of citations a given scientist’s publication would 
have accrued had the scientist remained alive. The dashed blue line in Panel A represents the predicted decrease in citations after the scientist’s death (represented 
by the horizontal gray dashed line) under the hypothesis of the salesman as the key reputational entrepreneur. In Panel B, the dashed blue line represents the 
predicted increase in citations as a result of the mobilization of the sales force. Finally, Panel C displays the third possible outcome in which the effect of death is 
indeterminant as either there is no effect, consistent with the Efficient Citations hypothesis (ECH), or the effect of the absence of the salesman and the boost from 
the sales force counteract each other. 
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Figure 2 
Mean Yearly Citations in Relation to Year of Death 

 
 

Note: We compute the average total number of citations accrued per year scientist to the 
676 treated scientists in the 40 years before and after their death. The dashed-red line 
indicates the year in which the scientist passes away.   
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Figure 3 
Baseline Stock of Citations at Baseline 

 
 

Note: We compute the cumulative number of citations up to the year that immediately precedes the year of 
death (or the counterfactual year of death) for the 18,896 publications by treated scientists and the 
128,218 publications by control scientist.   

 
 
 

  
 



45 
 

Figure 4 
Matching Procedure to Identify Treatment and Control Articles 

 

 
 

Note: The two articles above illustrate the Coarsened Exact Matching (CEM) procedure (Appendix C provides more details). These two articles appeared in the 
journal Science in 1988. They were both in the same percentile of citations (the top percentile) at the time of death (1999; Young et al., had 203 citations 
while Shaw et al. had 410 citations). Note that John Penney and Gerald Crabtree are both in last authorship position. They also obtained their MD within 
a year of each other. This procedure led the Young et al article to be matched with 15 other articles in addition to the Shaw et al article. This same method 
was followed for the other 18,218 treated articles in our sample. 
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Figure 5 
Effect of a Scientist’s Death on the Reception of their Work – All Publications 

 
 

All Causes of Death All Ages 
A. < 65 at Time of Death B. > 65 at Time of Death C. Sudden Deaths D. Anticipated Deaths 

  
Note: The solid blue dots in the above plots correspond to coefficient estimates stemming from conditional (scientist) fixed effects Poisson specifications in which publication 

flows are regressed onto year effects, article age effects, as well as 15 interaction terms between treatment status and the number of years before/after the death of 
the author (the indicator variable for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms 
common to both the treated and control articles to fully account for transitory trends in citations around the time of the death. The 95% confidence interval 
(corresponding to (QML) robust standard errors, clustered around the scientist) around these estimates is plotted with light blue bars; Panels A and B correspond to 
dynamic versions of the specification in columns (1-2) of Table 4. 
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Figure 6 
Histograms of Predicted Citations and “Excess” Citations 

 
A. Histogram of Predicted Citations B. Histogram of “Excess” Citations 

 
 

Note: The blue area in graph A represents the number of citations after death a scientist is predicted to receive in the negative binomial estimates described in section 3.5. 
This area can only be greater than zero as citations cannot be subtracted. This means that scientists can only gain, not lose, citations posthumously. The red area in 
graph B represents the difference between the actual cumulative number of citations the scientist received after dying minus the predicted estimate. This amount can 
be (and is often) negative as scientists receive fewer posthumous citations than our model predicted.   
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Figure 7 
Determinants of Memorialization – Academic Memories 

 
 

 

Note: The solid dots in the above plot correspond to coefficient estimates stemming from conditional (scientist) fixed effects Poisson specifications in which the 
number of memories created for a scientist after their death is regressed onto effects for the scientist’s degree type and year of death, as well as six interaction 
terms between treatment status and the age at which the scientist died. The specifications also includes controls for the scientists gender, number of 
publications, amount of funding, number or trainees, number of coauthors, and whether or not the scientist was a member of the NAS. The results of a 
simplified model are presented in Table 7, column 7; the only difference between these this model and the graph above is the use of age as a continuous 
variable in Table 7 compared to the discrete age bins in the graph above. An academic memory is a festschrift, symposium, obituary in academic journal, or 
NAS biographical memoirs. The black brackets represent the 95% confidence intervals (calculated using the QML standard errors) and anticipated and 
sudden deaths are distinguished using blue and red dots, respectively. 
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Table 1: Summary Statistics of Deceased Scientists (N=676) 
 Mean Median Std. Dev. Min. Max. 
Investigator Year of Birth 1927 1927 11.888 1893 1960 
Investigator Degree Year 1954 1954 12.505 1921 1988 
Investigator Death Year 1990 1992 9.251 1969 2003 
Investigator Age at Death 63 64 10.241 35 89 
Female 0.087 0 0.282 0 1 
MD Degree 0.456 0 0.498 0 1 
PhD Degree 0.450 0 0.498 0 1 
MD/PhD Degree 0.095 0 0.293 0 1 
Investigator Death was Sudden 0.454 0 0.498 0 1 
Investigator Death was Anticipated 0.503 1 0.500 0 1 
Investigator Cause of Death is Unknown 0.043 0 0.203 0 1 
Investigator Cuml. Nb. of Publications 126 102 105 10 1,380 
Investigator Cuml. Nb. of Citations 7,044 4,530 7,836 69 72,122 
Investigator Cuml. Nb. of Posthumous Predicted Citations 319 109 529 0 4,201 
Investigator Cuml. Nb. of Posthumous “Excess” Citations 24 -1 289 -1,170 3,040 
Investigator Cuml. Amount of Funding 15,646,305 9,481,224 24,942,410 0 329,968,960 
Memorialization Efforts      
Total Nb. Memory Events 4.062 3 4.313 0 61 
Total Nb. Academic Memory Events 2.003 1 2.581 0 20 
New York Times Obituary 0.324 0 0.471 0 1 
Wikipedia Page 0.241 0 0.428 0 1 
Named Award 0.226 0 0.419 0 1 
Festschrift or Symposium 0.101 0 0.329 0 2 

Note: Sample consists of 676 superstar life scientists who died while still actively engaged in research. See Appendix A for more details on the sample construction. 
Note that 97 (14%) of the treated scientists are NIH intramural scientists and therefore not eligible for NIH funding, resulting in zero cumulative NIH 
funding.  
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Table 2: Summary Statistics of Control & Treated Articles at Baseline 
 Control Publications  

(N=128,896) 
Treated Publications  

(N=18,218) 
 Mean Med. S.D. Min. Max. Mean Med. S.D. Min. Max. 
Investigator Year of Birth 1930 1930 9.918 1891 1964 1929 1929 10.109 1893 1960 
Investigator Degree Year 1957 1957 10.115 1916 1985 1956 1956 10.348 1921 1988 
Investigator Death Year 1994 1995 7.371 1969 2003 1993 1995 8.039 1969 2003 
Investigator Age at Death 61 61 8.661 35 89 64 64 8.509 35 89 
Female 0.050 0 0.218 0 1 0.058 0 0.234 0 1 
Investigator Death was Sudden 0.456 0 0.498 0 1 0.425 0 0.494 0 1 
Investigator Death was Anticipated 0.514 1 0.500 0 1 0.542 1 0.498 0 1 
MD Degree 0.366 0 0.482 0 1 0.415 0 0.493 0 1 
PhD Degree 0.551 1 0.497 0 1 0.446 0 0.497 0 1 
MD/PhD Degree 0.083 0 0.276 0 1 0.140 0 0.347 0 1 
Nb. Authors Per Publication 3.095 3 1.255 1 15 3.188 3 1.481 1 15 
Publication Age in Year of Death 3.897 4 2.369 0 9 4.404 4 2.522 0 9 
Year Article was Written 1994 1995 7.371 1969 2003 1994 1995 8.039 1969 2003 
Total Article Citations 32.494 21 61.908 0 11,505 31.842 16 61.910 0 3,117 
Citations by Non-Collaborators 30.074 19 59.243 0 11,295 29.822 15 58.846 0 3,071 
Citations by Collaborators 2.420 1 4.852 0 210 2.020 0 4.972 0 184 
Citations outside of Field 27.559 17 59.212 0 11,464 27.853 13 58.844 0 3,090 
Citations within Field 4.934 3 6.238 0 212 3.989 2 6.209 0 138 
Citations from Non-Colocated Field 31.659 20 60.753 0 11505 30.991 16 60.003 0 3070 
Citations from Colocated Authors 0.835 0 2.475 0 167 0.851 0 2.932 0 127 
Investigator Cuml. Nb. of Publications 195 158 138 7 1,124 207 166 163 10 1,380 
Investigator Cuml. Nb. of Citations 14,863 10,282 15,058 17 157,581 13,242 9,780 11,229 69 72,122 
Investigator Cuml. Amount of Funding (in millions) $23.586 $16.355 $25.756 $0 $408.427 $24.137 $14.637 $38.823 $0 $329.969 

Note: The sample consists of all of the publications for the 12,935 scientists in the wider sample. See Appendix C for details on the matching procedure. All time-varying covariates 
are measured in the year of the scientist’s death. All cumulative statistics are taken as of the baseline year, the year of death for the treated scientist (and the counterfactual 
year of death for the control scientist).  
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Table 3: Main Effect of Scientist’s Death – All Ages, All Causes of Death 

 Type of Publications 

 All 
Publications 

Own 
Bottom 10% 

Own 
25%-75% 

Own 
Top 10% 

Universe 
Top 1% 

3 Years 
Before Death 

After Death 
0.063* 0.399*** 0.028 0.096* 0.015 0.074 
(0.033) (0.083) (0.031) (0.055) (0.076) (0.062) 

Nb. of Investigators 6,782 1,556 6,225 2,776 1,066 3,680 
Nb. of Source Articles 145,413 2,871 93,314 10,050 2,917 14,925 
Nb. of Source Artcl.-Year Obs. 3,927,912 72,409 2,486,563 293,405 75,411 255,831 
Log Likelihood -5,068,850 -39,259 -2,945,129 -713,856 -325,431 -393,223 

Note: Estimates stem from fixed effects Poisson specifications. The dependent variable is the total number of citations accrued to a publication in 
a particular year. All models incorporate a full suite of year effects and article age effects, as well as a term common to both treated and 
control articles that switches from zero to one after the death of the scientist, to address the concern that age, year and individual fixed 
effects may not fully account for trends in citations after death. Own Top 10% represents the scientists’ top publications measured in 
citations at the time of death; Own Bottom 10% represents the scientists’ lowest publications measured in citations at the time of death, 
while Own 25%-75% represents the scientists’ middle papers by citations. Exponentiating the coefficients and differencing from one yield 
numbers interpretable as elasticities. For example, the estimates in column (1) imply that the papers deceased scientists see an increase in 
the number of citations posthumously relative to papers whose author remained alive by 100×(exp[0.063]-1)=6.50%. The number of 
observations varies slightly across columns because the conditional fixed effects specification drops observations corresponding to articles for 
which there is no variation in activity over the entire observation period. This is also true for the results reported in Tables 3 through 6. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 4: Effect of Scientist’s Death – All Publications 

 All Causes of Death Sudden Deaths Anticipated Deaths 

 < 65 at Time 
of Death 

> 65 at Time 
of Death 

< 65 at Time 
of Death 

> 65 at Time 
of Death 

< 65 at Time 
of Death 

> 65 at Time 
of Death 

After Death 0.078** 0.025 0.128** -0.055 0.046 0.118 
(0.037) (0.063) (0.055) (0.065) (0.049) (0.096) 

Nb. of Investigators 6,365 2,672 5,306 1,939 4,722 2,023 
Nb. of Source Articles 100,496 44,917 47,798 17,891 50,333 24,940 
Nb. of Source Artcl.-Year Obs. 2,545,626 1,382,286 1,123,255 543,563 1,333,214 760,684 
Log Likelihood -3,439,023 -1,628,138 -1,534,447 -617,523 -1,824,110 -934,761 

Note:  Estimates stem from fixed effects Poisson specifications. The dependent variable is the total number of citations accrued to a publication in a particular 
year. All models incorporate a full suite of year effects and article age effects, as well as a term common to both treated and control articles that switches 
from zero to one after the death of the scientist, to address the concern that age, year and individual fixed effects may not fully account for trends in 
citations after death. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in 
column (1) imply that the papers of young scientists see an increase in the number of citations posthumously relative to papers whose author remained alive 
by a statistically significant 100×(exp[0.078]-1)=8.11%. The number of observations varies slightly across columns because the conditional fixed effects 
specification drops observations corresponding to articles for which there is no variation in activity over the entire observation period. This is also true for 
the results reported in Tables 3 through 6. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 5: Effect of Scientist’s Death – Citation Sources 

 Coauthor Field Location 

 Non-Coauth. 
Cites 

Coauth. 
Cites 

Out-of-Field 
Cites 

In-Field 
Cites 

Non-Coloc. 
Cites 

Coloc. 
Cites 

After Death 0.044 0.060 0.055 0.089** 0.047 0.143** 
(0.038) (0.068) (0.034) (0.043) (0.042) (0.068) 

Nb. of Investigators 5,778 5,778 6,502 6,502 5,022 5,022 
Nb. of Source Articles 90,722 90,722 124,828 124,828 55,464 55,464 
Nb. of Source Artcl.-Year Obs. 2,367,869 2,367,869 3,264,980 3,264,980 1,456,100 1,456,100 
Log Likelihood -3,468,945 -855,386 -4,229,584 -1,437,250 -2,413,017 -354,119 

Note:  Estimates stem from fixed effects Poisson specifications. The dependent variable is the total number of citations accrued to a publication in a particular 
year. All models incorporate a full suite of year effects and article age effects, as well as a term common to both treated and control articles that switches 
from zero to one after the death of the scientist, to address the concern that age, year and individual fixed effects may not fully account for trends in 
citations after death. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in 
column (6) imply that the papers of deceased scientists see a posthumous increase in the number of citations from collocated scientists by a statistically 
significant 100×(exp[0.146]-1)=15.72%. The number of observations varies slightly across columns because the conditional fixed effects specification drops 
observations corresponding to articles for which there is no variation in activity over the entire observation period. This is also true for the results reported 
in Tables 3 through 6. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 6: Estimating the Determinants of Memorialization – Academic Memories 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Ln(cmltv. citations at death)  0.269***   0.012    
 (0.042)   (0.069)    

Ln(cmltv. publications at death)   0.513***  0.497*** 0.544*** 0.647*** 0.608*** 
  (0.053)  (0.089) (0.064) (0.096) (0.107) 

Ln(cmltv. funding at death)    0.019 -0.000    
   (0.012) (0.010)    

Member of the NAS  0.591*** 0.661*** 0.827*** 0.651*** 0.686*** 0.635*** 0.632*** 
 (0.092) (0.084) (0.088) (0.090) (0.087) (0.087) (0.100) 

Ln(Nb. of past trainees)      -0.050  -0.033 
     (0.064)  (0.067) 

Ln(Nb. of past coauthors [non-trainees])       -0.161* -0.109 
      (0.093) (0.092) 

Self-Promoter         -0.020 
       (0.166) 

Female -0.354** -0.185 -0.090 -0.295* -0.093 -0.094 -0.070 -0.074 
(0.166) (0.149) (0.145) (0.157) (0.144) (0.145) (0.144) (0.145) 

Death is Sudden 0.169* 0.191** 0.206** 0.162* 0.208** 0.202** 0.204** 0.204** 
(0.094) (0.086) (0.084) (0.088) (0.083) (0.085) (0.084) (0.084) 

Nb. of Scientists 647 647 647 647 647 647 647 647 
Pseudo-R2 0.087 0.171 0.191 0.146 0.192 0.192 0.193 0.195 

Note: Estimates stem from Poisson specifications. The dependent variable is the total number of academic memories created for a scientist posthumously. An 
academic memory is a festschrift, symposium, obituary in an academic journal, or NAS memoir. All models include controls for degree type, death year, 
six age bins as well as the interaction terms for each age bin and sudden death. Self-Promoter is an indicator variable that corresponds to the top 
quartile of the distribution of unrelated citations as a percentage of self-citations (averaged over each deceased scientist’s entire body of work) in our 
sample. Additionally, the specification in column (8) includes as a control the fraction of related self-citations as proportion of all self-citation (similarly 
averaged over the entire body of work of the focal scientist), to account for his/her propensity to cite his/her own work more generally. The sample 
size of 647 consists of the 676 original scientists less 29 scientists for which we were unable to confirm the cause of death (anticipated or sudden). 

Robust [QML] standard errors in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 7: Memorializers’ Relationships to Deceased Elite Scientists 
Type of Relationship Specific Connection Percentage of Sample 

Social 

Trainee 45.49% 
Collaborator 24.11% 
Family 0.48% 
Trained together 0.48% 

  70.56% 
   

Intellectual 
Colleague in same field 12.47% 
Journal editor 0.59% 

  16.14% 
   

None 
No social relation 6.18% 
Historian 1.54% 
Journalist 1.54% 

  9.26% 
   
Geographic Shared employer 7.13% 
  7.13% 

Note: The sample is as a percentage of the 842 memorializer-deceased pairs for which information was available 
from PubMed. While this meant that we could not account for 352, or 20% of the pairs, there is no 
reason to suggest that they would be systematically different than above. All categories are mutually 
exclusive by design. 
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Table 8: Long-run Citation Afterlife and its Relationship to Memorialization Efforts 
 Ln(Predicted Citations) Excess Citations NegLn(Excess Citations) 
 

All 
citations 

Excl. 
mems. 
and 

coauthors 

Excl. 3 
years 
post- 
death 

All 
citations 

Excl. 
mems. 
and 

coauthors 

Excl. 3 
years 
post- 
death 

All 
citations 

Excl. 
mems. 
and 

coauthors 

Excl. 3 
years 
post- 
death 

Scientists w/ 1 Acad. Memory Event 0.336* 0.334* 0.335* 12.573 17.571 12.576 0.788* 0.681* 0.666* 
(0.175) (0.174) (0.174) (28.935) (29.917) (28.937) (0.407) (0.407) (0.390) 

Scientists w/ 2 Acad. Memory Events 0.594*** 0.586*** 0.593*** 36.295 47.493 36.303 1.342*** 1.378*** 1.080** 
(0.204) (0.202) (0.202) (32.732) (33.579) (32.734) (0.487) (0.477) (0.476) 

Scientists w/ 3 Acad. Memory Events 0.636*** 0.628*** 0.632*** 32.906 51.617 32.907 1.929*** 1.750*** 1.571*** 
(0.230) (0.229) (0.229) (32.953) (33.329) (32.956) (0.557) (0.553) (0.534) 

Scientists w/ 4 Acad. Memory Events 0.887*** 0.867*** 0.888*** 42.397 68.708 42.399 1.041 1.233* 0.773 
(0.267) (0.266) (0.265) (46.220) (45.063) (46.219) (0.702) (0.678) (0.681) 

Scientists w/ 5+ Acad. Memory Events 1.239*** 1.214*** 1.234*** 182.623** 219.806*** 182.666** 2.035*** 2.006*** 1.762*** 
(0.276) (0.275) (0.274) (78.170) (82.153) (78.179) (0.604) (0.593) (0.570) 

Female -0.699** -0.688** -0.698** -42.390 -52.807* -42.394 -0.624 -0.727 -0.520 
(0.283) (0.281) (0.281) (27.665) (27.435) (27.671) (0.560) (0.543) (0.539) 

Death is Sudden -0.223* -0.226* -0.222* -39.411 -44.719* -39.408 -0.585* -0.662** -0.643** 
(0.135) (0.134) (0.134) (25.880) (26.763) (25.882) (0.319) (0.314) (0.306) 

Constant 1.639*** 1.478** 1.449** -87.884 -86.384 -87.888 -0.586 -0.720 -1.376 
(0.617) (0.623) (0.616) (73.016) (74.392) (73.018) (1.294) (1.196) (1.224) 

Nb. Treated Scientists 647 647 647 647 647 647 647 647 647 
Adjusted R2 0.323 0.323 0.375 0.045 0.058 0.045 0.040 0.046 0.030 

Note: Estimates stem from OLS specifications. The dependent variable in columns 1a, 1b, and 1c is the log of the number of predicted long-run, posthumous citations 
(based on the prediction model presented in Section 3.5). Column 1a includes all citations, while column 1b subtracts out citations by memorializers and 
coauthors. Finally, columns 1c includes all citations less those in the three years immediately after the scientist’s death. The dependent variables in columns 
2a, 2b, and 2c is the number of “excess” citations (which is simply the number of actual posthumous citations minus the number of predicted posthumous 
citations), also broken down by all citations, all citations less memorializers and coauthors, and all citations minus the immediate three years after the scientist’s 
death. Because the distribution of excess citations is both skewed and takes on negative values, columns 3a, 3b, and 3c perform a NegLog transformation (Yeo 
and Johnson 2000) before estimating the model, using the same breakdown all citations, all citations less memorializers and coauthors, and all citations minus 
the immediate three years after the scientist’s death. All models include controls for the age at death, year of death, and degree type. The sample size of 647 
consists of the 676 original scientists less 29 scientists for which we were unable to confirm the cause of death (anticipated or sudden). 

Robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 9: Effect of Scientist’s Death – Scientist’s Status 

 Publications Citations Funding 

 Below 
Median 

Above 
Median 

Below 
Median 

Above 
Median 

Below 
Median 

Above 
Median 

After Death 0.015 0.122** 0.072* 0.058 0.047 0.077 
(0.039) (0.053) (0.038) (0.049) (0.043) (0.056) 

Nb. of Investigators 5,800 2,200 5,455 2,238 5,066 2,439 
Nb. of Source Articles 72,973 72,440 72,707 72,706 67,001 66,991 
Nb. of Source Artcl.-Year Obs. 1,977,527 1,950,385 2,024,864 1,903,048 1,788,996 1,838,386 
Log Likelihood -2,534,940 -2,529,819 -2,316,243 -2,751,326 -2,268,927 -2,398,501 

Note:  Estimates stem from fixed effects Poisson specifications. The dependent variable is the total number of citations accrued to a publication in a particular 
year. All models incorporate a full suite of year effects and article age effects, as well as a term common to both treated and control articles that switches 
from zero to one after the death of the scientist, to address the concern that age, year and individual fixed effects may not fully account for trends in 
citations after death. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in 
column (1) imply that the papers of scientists with below the median number of cumulative publication at the time of their death see an increase in the 
number of citations posthumously relative to papers whose author remained alive by a statistically significant 100×(exp[0.015]-1)=1.51%. The number of 
observations varies slightly across columns because the conditional fixed effects specification drops observations corresponding to articles for which there is 
no variation in activity over the entire observation period. This is also true for the results reported in Tables 3 through 6. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Appendix A:
Criteria for Delineating the Set of 12,935 “Superstars”

Highly Funded Scientists. Our first data source is the Consolidated Grant/Applicant File (CGAF) from
the U.S. National Institutes of Health (NIH). This dataset records information about grants awarded to
extramural researchers funded by the NIH since 1938. Using the CGAF and focusing only on direct costs
associated with research grants, we compute individual cumulative totals for the decades 1977-1986, 1987-
1996, and 1997-2006, deflating the earlier years by the Biomedical Research Producer Price Index. We also
recompute these totals excluding large center grants that usually fund groups of investigators (M01 and P01
grants). Scientists whose totals lie above the 95th percentile of either distribution constitute our first group
of superstars. In this group, the least well-funded investigator garnered $10.5 million in career NIH funding
and the most well-funded $462.6 million.i

Highly Cited Scientists. Despite the preeminent role of the NIH in the funding of public biomedical
research, the above indicator of “superstardom” biases the sample towards scientists conducting relatively
expensive research. We complement this first group with a second composed of highly cited scientists
identified by the Institute for Scientific Information. A Highly Cited listing means that an individual was
among the 250 most cited researchers for their published articles between 1981 and 1999, within a broad
scientific field.ii

Top Patenters. We add to these groups academic life scientists who belong in the top percentile of the
patent distribution among academics—those who were granted 17 patents or more between 1976 and 2004.

Members of the National Academy of Science and of the Institute of Medicine. We add to
these groups academic life scientists who were elected to the National Academy of Science or the Institute
of Medicine between 1970 and 2013.

MERIT Awardees of the NIH. Initiated in the mid-1980s, the MERIT Award program extends fund-
ing for up to 5 years (but typically 3 years) to a select number of NIH-funded investigators “who have
demonstrated superior competence, outstanding productivity during their previous research endeavors and
are leaders in their field with paradigm-shifting ideas.” The specific details governing selection vary across
the component institutes of the NIH, but the essential feature of the program is that only researchers holding
an R01 grant in its second or later cycle are eligible. Further, the application must be scored in the top
percentile in a given funding cycle.

Former and current Howard Hughes Medical Investigators (HHMIs). Every three years, the
Howard Hughes Medical Institute selects a small cohort of mid-career biomedical scientists with the potential
to revolutionize their respective subfields. Once selected, HHMIs continue to be based at their institutions,
typically leading a research group of 10 to 25 students, postdoctoral associates and technicians. Their
appointment is reviewed every five years, based solely on their most important contributions during the
cycle.iii

Early career prize winners. We also included winners of the Pew, Searle, Beckman, Rita Allen, and
Packard scholarships for the years 1981 through 2000. Every year, these charitable foundations provide seed

iWe perform a similar exercise for scientists employed by the intramural campus of the NIH. These scientists are not eligible
to receive extramural funds, but the NIH keeps records of the number of “internal projects” each intramural scientist leads. We
include in the elite sample the top five percentiles of intramural scientists according to this metric.

iiThe relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology, neuroscience, molec-
ular biology & genetics, immunology, pharmacology, and clinical medicine.

iiiSee Azoulay et al. (2011) for more details and an evaluation of this program.
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funding to between 20 and 40 young academic life scientists. These scholarships are the most prestigious
accolades that young researchers can receive in the first two years of their careers as independent investigators.
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Appendix B: Linking Scientists with their Journal Articles

The source of our publication data is PubMed, a bibliographic database maintained by the U.S. National
Library of Medicine that is searchable on the web at no cost.iv PubMed contains over 14 million citations
from 4,800 journals published in the United States and more than 70 other countries from 1950 to the present.
The subject scope of this database is biomedicine and health, broadly defined to encompass those areas of
the life sciences, behavioral sciences, chemical sciences, and bioengineering that inform research in health-
related fields. In order to effectively mine this publicly-available data source, we designed PubHarvester,
an open-source software tool that automates the process of gathering publication information for individual
life scientists (see Azoulay et al. 2006 for a complete description of the software). PubHarvester is fast,
simple to use, and reliable. Its output consists of a series of reports that can be easily imported by statistical
software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting
to accurately link individual scientists with their published output. The first relates to what one might
term “Type I Error,” whereby we mistakenly attribute to a scientist a journal article actually authored by
a namesake; The second relates to “Type II error,” whereby we conservatively exclude from a scientist’s
publication roster legitimate articles:

Namesakes and popular names. PubMed does not assign unique identifiers to the authors of the
publications they index. They identify authors simply by their last name, up to two initials, and an optional
suffix. This makes it difficult to unambiguously assign publication output to individual scientists, especially
when their last name is relatively common.

Inconsistent publication names. The opposite danger, that of recording too few publications, also looms
large, since scientists are often inconsistent in the choice of names they choose to publish under. By far the
most common source of error is the haphazard use of a middle initial. Other errors stem from inconsistent
use of suffixes (Jr., Sr., 2nd, etc.), or from multiple patronyms due to changes in spousal status.

To deal with these serious measurement problems, we opted for a labor-intensive approach: the design of
individual search queries that relies on relevant scientific keywords, the names of frequent collaborators,
journal names, as well as institutional affiliations. We are aided in the time-consuming process of query
design by the availability of a reliable archival data source, namely, these scientists’ CVs and biosketches.
PubHarvester provides the option to use such custom queries in lieu of a completely generic query (e.g,
"azoulay p"[au] or "graff zivin js"[au]). As an example, one can examine the publications of Scott A.
Waldman, an eminent pharmacologist located in Philadelphia, PA at Thomas Jefferson University. Waldman
is a relatively frequent name in the United States (with 208 researchers with an identical patronym in the
AAMC faculty roster); the combination "waldman s" is common to 3 researchers in the same database.
A simple search query for "waldman sa"[au] OR "waldman s"[au] returns 377 publications at the time
of this writing. However, a more refined query, based on Professor Waldman’s biosketch returns only 256
publications.v

The above example also makes clear how we deal with the issue of inconsistent publication names. Pub-
Harvester gives the end-user the option to choose up to four PubMed-formatted names under which
publications can be found for a given researcher. For example, Louis J. Tobian, Jr. publishes under "tobian
l", "tobian l jr", and "tobian lj", and all three names need to be provided as inputs to generate a
complete publication listing. Furthermore, even though Tobian is a relatively rare name, the search query
needs to be modified to account for these name variations, as in ("tobian l"[au] OR "tobian lj"[au]).

ivhttp://www.pubmed.gov/
v(((("waldman sa"[au] NOT (ether OR anesthesia)) OR ("waldman s"[au] AND (murad OR philadelphia[ad] OR west

point[ad] OR wong p[au] OR lasseter kc[au] OR colorectal))) AND 1980:2013[dp])

iii



Appendix C: Construction of the Control Group

We detail the procedure implemented to identify the control publications that help pin down the life-cycle and
secular time effects in our difference-in-differences (DD) specification. Happenstance might yield a sample
of publications from aging scientists, or in out-of-fashion fields. More plausibly, citation trends might be
subject to idiosyncratic life-cycle patterns, with citation the rates of articles reflecting the trends of the age
of the article, the age of the scientist, and the age of the field and methods. Relying solely on publications
treated earlier or later as an implicit control group raises the worry that these time-varying omitted variables
will not be fully captured by publication age controls.
To address this concern, we create an additional level of difference by selecting control publications. Recall
that using the PubMed database we can accurately identify the complete publication history of all the
scientists in our sample. From this, the key is to identify articles which are similar to those written by the
deceased scientists. Practically, we must recruit control source articles from the set of articles authored by
scientists who do not die prematurely. But what makes a satisfactory control group? It is important to
distinguish between ex ante vs. ex post criteria. Ex ante, one would like control source articles to have the
following properties:

1. to be published contemporaneously with the article from the treated scientist;

2. to be unrelated (in both an intellectual and a social sense) to the article from the treated scientist;

3. to be of similar expected impact and fruitfulness, relative to the article from the treated scientist;

4. to have a similar number of authors as the article from the treated scientist;

5. to have an author in the same authorship position and of approximately the same age as that occupied
by the deceased scientist on the authorship roster of the article from the treated scientist.

Ex post, it will be important for the control publications to satisfy an additional condition: the treated and
control publications should exhibit very similar trends in publication activity up to the year of treatment
(i.e., the year of death for the treated scientist).

Coarsened Exact Matching. To meet these goals, we implement a “Coarsened Exact Matching” (CEM)
procedure (Blackwell et al. 2009). The first step is to select a relatively small set of covariates on which
we need to guarantee balance ex ante. This choice entails judgement, but is strongly guided by the set of
criteria listed above. The second step is to create a large number of strata to cover the entire support of the
joint distribution of the covariates selected in the previous step. In a third step, each observation is allocated
to a unique strata, and for each observation in the treated group, control observations are selected from the
same strata.

The procedure is coarse because we do not attempt to precisely match on covariate values; rather, we coarsen
the support of the joint distribution of the covariates into a finite number of strata, and we match a treated
observation if and only if a control observation can be recruited from this strata. An important advantage
of CEM is that the analyst can guarantee the degree of covariate balance ex ante, but this comes at a cost:
the more fine-grained the partition of the support for the joint distribution (i.e., the higher the number of
strata), the larger the number of unmatched treated observations.

Implementation. We identify controls based on the following set of covariates (t denotes the year of
death): scientist career age; citations received by the article up to year t; number of authors; position of
the star author on the authorship roster (only last authorship position is considered); journal; and year of
publication. The first three covariates only need to match within relatively coarse bins. For instance, we
create nine career age categories: less than 10 years; between 10 and 20 years; between 20 and 25 years;
between 25 and 30 years; between 30 and 35 years; between 35 and 40 years; between 40 and 45 years;
between 45 and 50 years, over 50 years of career age. Similarly, we coarsen the distribution of citations at
baseline into five mutually exclusive bins: zero citations; between one and 10 citations; between 10 and 50
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citations; between 50 and 120 citations; and more than 120 citations. In contrast, we impose an exact match
on journal, publication year, and the star’s authorship position.

We match approximately 45.57% of the treated source articles in this way. Some further trimming of the
control articles is needed. First, we eliminate any article with more than 15 coauthors. Second, we remove
any article in a non-English speaking journal. Third, we drop any control that shares any author with the
treated source. Finally, we drop from the data any source article that finds itself an orphan (i.e., not paired
with any control) at the conclusion of this process. Figure 4 provides an illustrative example.

The final sample has 18,523 treated source articles and 128,591 control source articles. As can be seen in
Figure 3, the distribution of citations, measured up to the baseline year, is very similar between treated and
control publications. As well, there is no evidence of preexisting trends in activity, as demonstrated by the
coefficient estimates graphed in Figure 5. In Table 2, treated and control publications are very well-balanced
on the covariates that formed the basis of the CEM matching procedure. This is true almost by construction.
What is more surprising (and also welcome) is that the procedure balances a number of covariates that were
not used as inputs for matching, such as various metrics of scientist eminence. For other covariates, we can
detect statistically significant mean differences, though they do not appear to be substantively meaningful
(e.g., 14.0% of control stars vs. 8.5% of treated stars have both an MD and PhD).

Sensitivity Analyses. Human judgment matters for the outcome of the CEM procedure insofar as one
must draw a list of “reasonable” covariates to match on, as well as decide on the degree of coarsening to
impose. We have verified that slight variations in the implementation (e.g., varying slightly the number of
cutoff points for the stock of baseline citations for the source; focusing on birth age as opposed to career age
for the stars) have little impact on the main results.
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Appendix D: Memorialization Data Collection

We started the data collection for memorialization by searching for any academic publications about the
deceased scientists in PubMed. We identified these articles by searching for the authors last name in the title
of the article (e.g, wahlen[ti]). We then reviewed and classified these articles as one of several mutually
exclusive type: academic article, festschrift, symposium, or National Academy of Science Memoir. These
together comprise the memory events we label academic memories. As noted in the table below, we found on
average two academic memories per scientist. There is a significant skew, however, with the median scientist
only receiving one while the maximum recorded was 20 (for physician Solomon Berson).

To get a broader view of memorialization, we then repeated the same process using Google searches. We
searched for articles, web sites, and obituaries by searching for the scientists name, field, and death year
(e.g, wahlen AND physician AND 1987). We categorized these findings as university web posts, New York
Times obituaries, other newspaper obituaries, Wikipedia pages, and miscellaneous online obituaries. We
labeled these memories “popular memories,” and we again found on average just over two per scientist.

We then ran our analysis on the sum of both types of memories (“Total Nb. memory events in academic
publications” and “Total Nb. popular memory events”) as well as a third category, the sum of both (“To-
tal Nb. memory events”). For simplicity, we included only academic memories in the main body of the
manuscript (Table 7). Here, however, we present identical specifications using popular and academic mem-
ories as outcomes (Tables D2 and D3, respectively).

The results suggest a broadly similar, but with attenuated magnitudes and noisier estimates for the main
coefficients of interest. Similar to the results presented in Table 7, popular memories are also positively
correlated with measures of eminence, namely publications, but the point estimates for the relationships are
smaller and the standard errors are relatively larger, as seen in column 5. Similar to the academic memories
in Table 7, membership in the NAS is far and away the best predictor of popular memories, as is evident
in columns 2-7. Finally, self-promotion correlates with popular memories as it does with academic ones,
but the point estimate is again slightly smaller. As total memories are the sum of popular and academic
memories, the results naturally lie in between the two. Here, the relationship between publication count and
memories becomes much stronger relative to popular memories, but not as strong as in the case of academic
memories. Membership to the NAS remains large and significant throughout, as does self-promotion. Taken
together, all three suggest a similar conclusion to that discussed in Section 4.4.1.
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Table D1: Summary Statistics of Memory Events (N=676)  

Type of Memory Specific Memory Mean Median Std. Dev. Min. Max. 

Academic 

      
Festschrift 0.073 0 0.294 0 2 
Memory event in an academic journal 1.830 1 2.443 0 19 
NAS memoir 0.117 0 0.321 0 1 
Symposium 0.030 0 0.170 0 1 

Total Nb. Memory Events in Academic Publications 2.050 1 2.597 0 20 

Popular 

      
New York Times obituary 0.338 0 0.477 0 2 
Other newspaper obituary 0.477 0 0.972 0 17 
University web post 0.495 0 0.685 0 4 
Wikipedia page 0.248 0 0.432 0 1 

Total Nb. Popular Memory Events 2.129 2 2.858 0 55 

       
Total Total Nb. Memory Events 4.179 3 4.354 0 61 
       

Note: The sample size of 676 comprises the original scientists used in the main results data set.  
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Table D2: Estimating the Determinants of Memorialization – Popular Memories 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Ln(cmltv. citations at death)  0.051   -0.064    
 (0.037)   (0.074)    

Ln(cmltv. publications at death)   0.151***  0.247** 0.231** 0.377** 0.354* 
  (0.044)  (0.108) (0.094) (0.176) (0.196) 

Ln(cmltv. funding at death)    -0.008 -0.013    
   (0.010) (0.010)    

Member of the NAS  0.646*** 0.630*** 0.716*** 0.680*** 0.701*** 0.580*** 0.614*** 
 (0.107) (0.113) (0.104) (0.103) (0.089) (0.136) (0.108) 

Ln(Nb. of past trainees)      -0.120  -0.095 
     (0.117)  (0.104) 

Ln(Nb. of past coauthors [non-trainees])       -0.268 -0.184 
      (0.198) (0.152) 

Self-Promoter         -0.156 
       (0.124) 

Female 0.071 0.115 0.164 0.069 0.150 0.148 0.218* 0.208* 
(0.127) (0.112) (0.112) (0.114) (0.113) (0.110) (0.124) (0.121) 

Death is Sudden 0.023 0.023 0.028 0.017 0.025 0.017 0.027 0.024 
(0.127) (0.130) (0.131) (0.131) (0.129) (0.120) (0.127) (0.118) 

Nb. of Scientists 647 647 647 647 647 647 647 647 
Pseudo-R2 0.056 0.098 0.101 0.097 0.104 0.105 0.108 0.115 

Note: Estimates stem from Poisson specifications. The dependent variable is the total number of popular memories created for a scientist posthumously. A 
popular memory is a university web post, New York Times obituary, other newspaper obituary, Wikipedia page, or miscellaneous online obituary. All 
models include controls for degree type, death year, six age bins as well as the interaction terms for each age bin and sudden death. Self-Promoter is 
an indicator variable that corresponds to the top quartile of the distribution of unrelated citations as a percentage of self-citations (averaged over each 
deceased scientist’s entire body of work) in our sample. Additionally, the specification in column (8) includes as a control the fraction of related self-
citations as proportion of all self-citation (similarly averaged over the entire body of work of the focal scientist), to account for his/her propensity to 
cite his/her own work more generally. The sample size of 647 consists of the 676 original scientists less 29 scientists for which we were unable to confirm 
the cause of death (anticipated or sudden). 

Robust standard errors in parentheses, clustered at the level of the star scientist. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table D3: Estimating the Determinants of Memorialization – Total Memories 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Ln(cmltv. citations at death)  0.154***   -0.030    
 (0.032)   (0.059)    

Ln(cmltv. publications at death)   0.324***  0.370*** 0.385*** 0.503*** 0.471*** 
  (0.038)  (0.081) (0.063) (0.112) (0.123) 

Ln(cmltv. funding at death)    0.003 -0.009    
   (0.009) (0.008)    

Member of the NAS  0.619*** 0.640*** 0.770*** 0.664*** 0.692*** 0.604*** 0.622*** 
 (0.081) (0.082) (0.079) (0.079) (0.074) (0.093) (0.088) 

Ln(Nb. of past trainees)      -0.093  -0.072 
     (0.075)  (0.070) 

Ln(Nb. of past coauthors [non-trainees])       -0.213* -0.139 
      (0.124) (0.099) 

Self-Promoter         -0.097 
       (0.115) 

Female -0.103 0.001 0.076 -0.074 0.068 0.066 0.112 0.103 
(0.115) (0.098) (0.095) (0.101) (0.095) (0.095) (0.098) (0.099) 

Death is Sudden 0.098 0.106 0.113 0.090 0.112 0.105 0.112 0.110 
(0.090) (0.087) (0.087) (0.089) (0.085) (0.082) (0.085) (0.081) 

Nb. of Scientists 647 647 647 647 647 647 647 647 
Pseudo-R2 0.053 0.140 0.155 0.124 0.157 0.158 0.161 0.167 

Note: Estimates stem from Poisson specifications. The dependent variable is the total number of total memories created for a scientist posthumously. Total 
memories is the sum of both popular and academic memories. All models include controls for degree type, death year, six age bins as well as the 
interaction terms for each age bin and sudden death. Self-Promoter is an indicator variable that corresponds to the top quartile of the distribution of 
unrelated citations as a percentage of self-citations (averaged over each deceased scientist’s entire body of work) in our sample. Additionally, the 
specification in column (8) includes as a control the fraction of related self-citations as proportion of all self-citation (similarly averaged over the entire 
body of work of the focal scientist), to account for his/her propensity to cite his/her own work more generally. The sample size of 647 consists of the 
676 original scientists less 29 scientists for which we were unable to confirm the cause of death (anticipated or sudden). 

Robust standard errors in parentheses, clustered at the level of the star scientist. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Investigator Name Lifespan Degree Death Type Institution at Time of Death Scientific Domain
Richard K. Gershon 1932 - 1983 MD anticipated Yale University immunologic responses to tumor grafts
George Streisinger 1927 - 1984 PhD sudden University of Oregon genetic mutations and the nervous system development in lower vertebrates
Arthur Cherkin 1913 - 1987 PhD unknown Sepulveda VA Medical Center neurobiology of memory
Lucille S. Hurley 1922 - 1988 PhD sudden University of California — Davis genetic and nutritional interactions in development
Toichiro Kuwabara 1920 - 1991 MD/PhD sudden Harvard Medical School ophthalmology
Howard M. Temin 1934 - 1994 PhD anticipated University of Wisconsin molecular biology and genetics of tumor viruses
Tsunao Saitoh 1949 - 1996 PhD sudden UCSD altered protein kinases in alzheimer's disease
Paul C. MacDonald 1930 - 1997 MD anticipated University of Texas Southwestern Medical Center at Dallas origin and interconversion of gonadal and adrenal streoid hormones
David J.L. Luck 1929 - 1998 MD/PhD anticipated Rockefeller University microtubular systems in human cells
Robert H. Abeles 1926 - 2000 PhD anticipated Brandeis University rational design of small-molecule inhibitors of enzymes
Keith Green 1940 - 2001 PhD anticipated Medical College of Georgia ion and water movement in ocular tissues, ocular response to drugs
Charles A. Janeway, Jr. 1943 - 2003 MD anticipated Yale University innate immunity and t lymphocyte biology
William H. Hildemann 1927 - 1983 PhD anticipated UCLA mechanisms of immunoblocking versus tumor immunity
David T. Imagawa 1922 - 1991 PhD sudden Harbor-UCLA Medical Center morphological conversion with leukemia viruses
Harold Koenig 1921 - 1992 MD/PhD unknown Northwestern University School of Medicine neurology
Allastair M. Karmody 1937 - 1986 MD anticipated Albany Medical College vascular surgery
Paul A. Obrist 1931 - 1987 PhD anticipated University of North Carolina at Chapel Hill psychophysiology
William L. McGuire 1937 - 1992 MD sudden University of Texas HSC at San Antonio mechanisms of hormonal control and growth and regression of mammary carcinoma
Edgar Haber 1932 - 1997 MD anticipated Harvard University School of Public Health biological regulation of the renin-angiotensin system
Roger R. Williams 1944 - 1998 MD sudden University of Utah genetics and epidemiology of coronary artery diseases
Lois K. Miller 1945 - 1999 PhD anticipated University of Georgia genetics and molecular biology of baculoviruses
Frederick B. Bang 1916 - 1981 MD sudden Johns Hopkins School of Medicine physician
Lewis W. Wannamaker 1923 - 1983 MD sudden University of Minnesota Medical School clinical and epidemiologic aspects of streptococcal infections
Henry S. Kaplan 1918 - 1984 MD anticipated Stanford University School of Medicine radiation-induced leukemia in the c57bl mouse
Joseph W. St. Geme, Jr. 1931 - 1986 MD anticipated University of Colorado HSC at Denver pediatrics/infectious diseases
Richard P. Bunge 1932 - 1996 MD anticipated University of Miami schwann cell biology and human spinal cord injury
Robert A. Good 1922 - 2003 MD/PhD anticipated University of South Florida College of Medicine role of the thymus in immune system development
Thomas C. Chalmers 1917 - 1995 MD anticipated Mount Sinai Medical School biostatistics
Barbara H. Bowman 1930 - 1996 PhD unknown University of Texas at Austin biologist
Henry G. Kunkel 1916 - 1983 MD sudden Rockefeller University identification of mhc class ii molecules
Nicholas R. DiLuzio 1926 - 1986 PhD anticipated Tulane University Medical School physiology
Sandy C. Marks, Jr. 1937 - 2002 DDS/PhD sudden UMASS bone cell biology
Morton I. Grossman 1919 - 1981 MD/PhD anticipated UCLA studies on the etiology of peptic ulcer
Peter W. Lampert 1929 - 1986 MD anticipated UCSD pathogenesis of virus-induced brain disease
James R. Neely 1936 - 1988 PhD sudden Penn State University effects of diabetes and oxygen deficiency in regulation of metabolism in the heart
Frank J. Rauscher, Jr. 1931 - 1992 PhD sudden National Cancer Institute cancer research
Carl M. Pearson 1919 - 1981 MD anticipated UCLA studies in adjuvant-induced arthritis
Edward A. Smuckler 1931 - 1986 MD/PhD anticipated UCSF cytochemical studies in liver injury
Catherine Cole-Beuglet 1936 - 1987 MD anticipated University of California — Irvine ultrasonography of the breast
Edwin L. Bierman 1930 - 1995 MD anticipated University of Washington metabolism of particulate fat in diabetes and atherosclerosis
G. Scott Giebink 1944 - 2003 MD sudden University of Minnesota pathogenesis of otitis media and immunizations
Albert S. Gordon 1910 - 1992 PhD sudden New York University internal medicine / hematology
Henryk M. Wisniewski 1931 - 1999 MD/PhD sudden SUNY Downstate Medical Center College of Medicine pathogenesis of inflammatory demyelinating diseases
John S. O'Brien 1934 - 2001 MD anticipated UCSD discovery of the gene responsible for tay-sachs disease
Kenneth L. Melmon 1934 - 2002 MD sudden Stanford University autacoids as pharmacologic modifiers of immunity
Gregory Mooser 1942 - 2003 DDS/PhD anticipated University of Southern California characterization of glucosyltranserase enzymes secreted by oral bacteria
Frederick Stohlman, Jr. 1929 - 1974 MD sudden Tufts University medicine
Jerome R. Vinograd 1913 - 1976 PhD sudden California Institute of Technology biochemistry and molecular biology
Michelangelo G.F. Fuortes 1917 - 1977 MD sudden Laboratory of Neurophysiology of the National Institute of Neurological Diseases and Stroke neurology
Jerome T. Pearlman 1933 - 1979 MD anticipated UCLA laboratory studies of retinal degenerations
David Pressman 1916 - 1980 PhD sudden State University of New York, Buffalo and Niagara University immunochemistry 
Richard C. Lillehei 1928 - 1981 MD/PhD sudden University of Minnesota surgery
E. Jack Wylie 1918 - 1982 MD sudden UCSF development of techniques for the treatment and management of chronic visceral ischemia
Roland L. Phillips 1937 - 1987 MD/PhD sudden Loma Linda University School of Medicine role of lifestyle in cancer and cardiovascular disease among adventists
Jack Orloff 1921 - 1988 MD anticipated Division of Intramural Research at the National Heart, Lung, and Blook Institute renal physiologist
Joaquim Puig-Antich 1944 - 1989 MD sudden University of Pittsburgh psychobiology and treatment of child depression
Jean Mayer 1920 - 1993 PhD sudden Tufts University nutritionist
Robert M. Joy 1941 - 1995 PhD anticipated University of California — Davis pesticide induced changes in central nervous function
Paul M. Gallop 1927 - 1996 PhD anticipated Harvard Medical School/Children's Hospital protein structure and collagen maturation
Richard Gorlin 1926 - 1997 MD anticipated Mount Sinai School of Medicine studies of coronary blood flow and myocardial metabolism
Robert L. Summitt 1932 - 1998 MD unknown University of Tennessee, Memphis pediatrics
Russell Ross 1929 - 1999 DDS/PhD anticipated University of Washington School of Medicine response-to-injury origins of atherosclerosis
Donald J. Reis 1931 - 2000 MD anticipated Weill Medical College — Cornell University neural control of blood circulation

Appendix E: List of 676 Deceased Scientists
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Victor J. Ferrans 1937 - 2001 MD/PhD sudden NIH myocardial and vascular pathobiology
Christopher A. Dawson 1942 - 2003 PhD sudden Medical College of Wisconsin pulmonary hemodynamics
George G. Glenner 1927 - 1995 MD anticipated UCSD molecular structure of the amyloid protein
Jiri Palek 1934 - 1998 MD anticipated Tufts University membrane properties of abnormal red cells
Herman M. Kalckar 1908 - 1991 MD/PhD sudden Boston University biochemistry
Frank A. Oski 1932 - 1996 MD anticipated Johns Hopkins physician (blood disease and cancer)
John R. Williamson 1934 - 2000 PhD anticipated University of Pennsylvania School of Medicine molecular mechanisms of hormonal signal transduction
Sydney E. Salmon 1936 - 1999 MD anticipated University of Arizona quantitative method for evaluating changes in myeloma tumor mass
Alan P. Wolffe 1959 - 2001 PhD sudden NIH role of dna methylation in regulating gene expression in normal and pathological states
Matthew I. Suffness 1942 - 1995 PhD anticipated National Cancer Institute cancer research
C. Henry Kempe 1922 - 1984 MD unknown C. Henry Kempe National Center for the Prevention and Treatment of Child child abuse and neglet
Milton Kern 1925 - 1987 PhD anticipated Abuse and Neglect; immunology
Dante G. Scarpelli 1927 - 1998 MD/PhD anticipated Northwestern University School of Medicine metabolism of pancreatic carcinogens
Gerald D. Aurbach 1927 - 1991 MD sudden NIH bone metabolism and calcium homeostasis
Werner H. Kirsten 1925 - 1992 MD sudden NCI-Frederick Cancer Research and Development Center in Frederick, Maryland cancer research
Allan C. Wilson 1934 - 1991 PhD anticipated University of California — Berkeley use of molecular approaches to understand evolutionary change
Irving J. Selikoff 1915 - 1992 MD anticipated Mount Sinai School of Medicine asbestos and cancer
Arnold F. Brodie 1923 - 1981 PhD unknown University of Southern California microbiology
Takis S. Papas 1935 - 1999 PhD sudden Medical University of South Carolina characterization of ets genes and retroviral onc genes
Harland G. Wood 1907 - 1991 PhD anticipated Case Western Reserve University School of Medicine heterotrophic carbon dioxide fixation
George B. Craig, Jr. 1930 - 1995 PhD sudden University of Notre Dame genetics and reproductive biology of aedes mosquitoes
John P. Merrill 1917 - 1984 MD sudden Harvard Medical School/Brigham & Women's Hospital role of the immune system in kidney transplantation
Sheldon M. Wolff 1930 - 1994 MD anticipated Tufts University School of Medicine treatment of fevers from infectious diseases like wegener's granulomatosis
Kenneth M. Moser 1929 - 1997 MD anticipated UCSD School of Medicine clinical outcomes after pulmonary thromboendarterectomy
Thomas P. Dousa 1937 - 2000 MD/PhD sudden Mayo Clinic cellular action of vasopressin in the kidney
Jeffrey M. Isner 1947 - 2001 MD sudden Tufts University therapeutic angiogenesis in vascular medicine, cardiovascular laser phototherapy
Jon I. Isenberg 1937 - 2003 MD anticipated UCSD duodenal mucosal bicarbonate secretion in human
Richard P. Nordan 1949 - 1998 PhD sudden NIH immunologist and molecular biologist
Trudy L. Bush 1949 - 2001 PhD sudden University of Maryland School of Medicine postmenopausal estrogen/progestins interventions
James R. Klinenberg 1934 - 1999 MD sudden UCLA pathophysiology of gout and hyperuricemia
Matthew L. Thomas 1953 - 1999 PhD sudden Washington University in St. Louis function and regulation of leukocyte surface glycoproteins
Alfred P. Wolf 1923 - 1998 PhD anticipated Brookhaven National Laboratory synthesis of simple molecules in pure form and high specific activity for pet
Ronald G. Thurman 1941 - 2001 PhD sudden University of North Carolina hepatic metabolism, alcoholic liver injury and toxicology
Emil T. Kaiser 1938 - 1988 PhD sudden Rockefeller University mechanism of carboxypeptidase action
Hymie L. Nossel 1930 - 1983 MD/PhD sudden Columbia University causes of thrombosis and the nature of hemostasis
Marian W. Fischman 1939 - 2001 PhD anticipated Columbia University behavioral pharmacology of cocaine
Charles D. Heidelberger 1920 - 1983 PhD anticipated University of Southern California effects of fluorinated pyrimidines on tumors
Choh Hao Li 1913 - 1987 PhD anticipated UCSF School of Medicine isolation and synthesis the human pituitary growth hormone
DeWitt S. Goodman 1930 - 1991 MD sudden Columbia University lipid metabolism and its role in the development of heart and artery disease
Alvito P. Alvares 1935 - 2001 PhD sudden University of Bethesda, Maryland pharmacology
Charlotte Friend 1921 - 1987 PhD anticipated Mount Sinai School of Medicine tissue studies of murine virus-induced leukemia
Gerald L. Klerman 1928 - 1992 MD anticipated Weill Medical College — Cornell University phsychological studies of depression, schizophrenia and panic and other anxiety disorders
J. David Robertson 1922 - 1995 MD/PhD anticipated Duke University School of Medicine electron microscopy of cell membranes
Fred H. Allen, Jr. 1912 - 1987 MD sudden New York Blood Center blood grouping
Markku Linnoila 1947 - 1998 MD/PhD anticipated NIH studies on the biological bases of impulsivity and aggression
Muriel R. Steele 1930 - 1979 MD anticipated University of California- San Francisco surgery
J. Weldon Bellville 1926 - 1983 MD anticipated UCLA dynamic isolation studies of control of respiration
Kwan C. Tsou 1922 - 1985 PhD sudden University of Pennsylvania chemistry and pharmacology
Nathan O. Kaplan 1917 - 1986 PhD sudden UCSD isolation and structure determination of coenzyme a
Amico Bignami 1930 - 1994 MD anticipated Harvard Medical School brain specific protein in astrocytes
Christian B. Anfinsen, Jr. 1916 - 1995 PhD sudden Johns Hopkins University protein structure and protein folding
Hans J. Müller-Eberhard 1927 - 1998 MD anticipated Scripps Research Institute identification of proteins and reaction mechanisms of the complement system
Louis V. Avioli 1931 - 1999 MD anticipated Washington University School of Medicine mineral and skeletal metabolism in diabetes, kidney, and gastrointestinal disorders
Edward Herbert 1926 - 1987 PhD anticipated Oregon Health & Science University regulation of expression of opioid peptides and receptors
Efraim Racker 1913 - 1991 MD sudden Cornell University identifying and purifying factor 1, the first part of the atp synthase enzyme
Simon J. Pilkis 1942 - 1995 MD/PhD sudden University of Minnesota carbohydrate metabolism and diabetes
Thomas W. Smith 1936 - 1997 MD anticipated Harvard Medical School/Brigham & Women's Hospital mechanism and reversal studies of digitalis
Harriet P. Dustan 1920 - 1999 MD anticipated University of Vermont hypertension specialist
Don C. Wiley 1944 - 2001 PhD sudden Harvard University viral membrane and glycoprotein structure
Eva U.J. Paucha 1949 - 1988 PhD anticipated Dana Farber Cancer Institute mechanism of transformation by sv40 large t antigen
Gareth M. Green 1931 - 1998 MD/PhD anticipated Harvard University School of Public Health role of alveolar macrophages in pulmonary defense mechanisms
Geoffrey H. Bourne 1909 - 1988 PhD sudden St. George's University School of Medicine in Grenada nutrition and primates
Edward W. Moore 1930 - 1999 MD anticipated Medical College of Virginia pathophysiology of the billiary tract and gallbladder
Ernst A. Noltmann 1931 - 1986 MD anticipated University of California — Riverside biochemical and physical characterization of phosphoglucose isomerase
Robert M. Pratt, Jr. 1942 - 1987 PhD sudden NIEHS / University of North Carolina at Chapel Hill biochemistry
Hans Popper 1903 - 1988 MD/PhD anticipated Mount Sinai School of Medicine correlation of structure and function in liver disease
Thomas P. Hackett, Jr. 1928 - 1988 MD sudden Massachusetts General Hospital / Harvard Medical School psychosomatic medicine
Carl W. Gottschalk 1922 - 1997 MD sudden University of North Carolina at Chapel Hill School of Medicine micropuncture studies of mammallian renal system
William L. Chick 1938 - 1998 MD anticipated UMASS studies of islet and beta cells in pancreatic transplantation
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Elizabeth Stern 1915 - 1980 MD anticipated UCLA effects of steroid contraception on the ovary
Harold Edelhoch 1922 - 1986 PhD anticipated National Institute of Arthristis, Diabetes, and Digestive Kidnesy Diseases oncology and biochemistry
Ephraim Donoso 1917 - 1988 MD unknown Mount Sinai School of Medicine cardiology
Norton B. Gilula 1944 - 2000 PhD anticipated Scripps Research Institute cell junction biosynthesis and biogenesis/cell-cell communication
George Khoury 1943 - 1987 MD anticipated NIH genetics of simian virus 40, human papovavirus and hiv
Charles G. Moertel 1927 - 1994 MD anticipated Mayo Clinic clinical treatments of gastrointestinal cancer
Bruce W. Erickson 1942 - 1998 PhD anticipated University of North Carolina at Chapel Hill engineering of nongenetic beta proteins
Robert J. Fass 1939 - 2002 MD anticipated Ohio State University in vitro methods to test antimicrobial susceptibility of infectious agents
Ahmad I. Bukhari 1943 - 1983 PhD sudden Cold Spring Harbor Laboratory life cycle of mutator phage µ
B. Frank Polk 1942 - 1988 MD anticipated Johns Hopkins University epidemiology of hiv infection
Frank Lilly 1930 - 1995 PhD anticipated Albert Einstein College of Medicine role of hereditary factors in governing susceptibility to cancer-causing agents
Donald S. Fredrickson 1924 - 2002 MD sudden National Library of Medicine physician
Eva J. Neer 1937 - 2000 MD anticipated Harvard Medical School/Brigham & Women's Hospital regulation and cellular levels of g protein subunits
Sol Spiegelman 1914 - 1983 PhD anticipated Columbia University College of Physicians and Surgeons nucleic acid hybridization
Nina S. Braunwald 1928 - 1992 MD anticipated Harvard Medical School/Brigham & Women's Hospital development of prosthetic heart valves for children
Nava Sarver 1951 - 2001 PhD anticipated National Institute of Health aids
Jeffrey M. Hoeg 1952 - 1998 MD sudden NHLBI's Molecular Disease Branch cell biology
Joseph E. Coleman 1930 - 1999 MD/PhD anticipated Yale University structure and function of metalloenzyme synthesis
Paul B. Sigler 1934 - 2000 MD/PhD sudden Yale University structural analysis of biological macromolecules
Gerald L. Stoner 1943 - 2002 PhD sudden NINDS neurotoxicology
Murray Rabinowitz 1927 - 1983 MD anticipated University of Chicago mitochondrial assembly and replication
Samuel Sutton 1921 - 1986 PhD sudden University of Chicago biometrics
Murray B. Bornstein 1918 - 1995 MD sudden Albert Einstein College of Medicine of Yeshiva University copolymer as a protective treatment for the exacerbation of multiple sclerosis
Harold C. Neu 1934 - 1998 MD anticipated Columbia University surface enzymes in bacteria
J. Murray Steele 1900 - 1969 MD sudden New York University medicine
Harvey M. Patt 1918 - 1982 PhD anticipated UCSF ultra-high dose rates in experimental radiotherapy
John J. Pisano 1929 - 1985 PhD sudden Laboratory of Chemistry, National Heart, Lung, and Blood Institute physiological chemistry
Edward H. Kass 1917 - 1990 MD/PhD anticipated Harvard Medical School/Brigham & Women's Hospital mechanism of toxic shock syndrome
Fred I. Gilbert, Jr. 1920 - 1995 MD unknown University of Hawaii clinical studied of hyper- and hypothyroidism
James K. McDougall 1931 - 2003 PhD anticipated University of Washington/FHCRC role of dna viruses in cancer
Roger O. Eckert 1934 - 1986 PhD anticipated UCLA ionic and metabolic mechanisms in neuronal excitability
James W. Maas 1929 - 1995 MD unknown University of Texas Health Sciences Center at San Antonio psychiatrist
Miriam M. Salpeter 1929 - 2000 PhD anticipated Cornell University neurobiology of myasthenia gravis
Mary Lou Clements 1946 - 1998 MD sudden Johns Hopkins University development of aids vaccines
Donald B. Hackel 1921 - 1994 MD anticipated Duke University cardiac pathology
Vincent Massey 1926 - 2002 PhD sudden University of Michigan Medical School biological oxidation mechanisms of proteins that contain riboflavin
Gordon Guroff 1933 - 1999 PhD sudden NICHD (National Institute of Child Health and Human Development) biochemistry
Merton Bernfield 1938 - 2002 MD anticipated Harvard Medical School/Children's Hospital nature and interactions of cell surface proteoglycans during morphogenesis
Werner Henle 1910 - 1987 MD anticipated University of Pennsylvania School of Medicine serologic response to epstein-barr virus infection
Aaron Janoff 1930 - 1988 PhD anticipated SUNY HSC at Stony Brook pathology of smoking and emphysema
Joachim G. Liehr 1942 - 2003 PhD anticipated University of Texas Medical Branch at Galveston mechanism of estrogen-induced carcinogenesis
Mortimer B. Lipsett 1921 - 1985 MD anticipated NIH steroid metabolic conversions in human subjects
John H. Walsh 1938 - 2000 MD sudden UCLA gastrointestinal hormones, gastric acid production and peptic ulcer disease
Erhard Gross 1928 - 1981 PhD sudden National Health Institute chemistry
C. Clark Cockerham 1921 - 1996 PhD unknown North Carolina State University statistical genetics
Lubomir S. Hnilica 1929 - 1986 PhD sudden Vanderbilt University nuclear antigens in human colorectal cancer
Julius Marmur 1926 - 1996 PhD anticipated Albert Einstein College of Medicine of Yeshiva University genetics and biochemistry of cellular regulation
Ronald S. Wilson 1933 - 1986 PhD sudden University of Louisville behavioral genetics
Edward W. Hook, Jr. 1924 - 1998 MD sudden University of Virginia physician
Paul P. Carbone 1931 - 2002 MD sudden University of Wisconsin Medical School treatment and prevention of hodgkin's disease and early breast cancer
Hamish N. Munro 1915 - 1994 MD/PhD anticipated Tufts University nutrition scientist
Sidney Leskowitz 1923 - 1991 PhD anticipated Tufts Medical School immunology
Roland D. Ciaranello 1943 - 1994 MD sudden Stanford University molecular neurobiology and developmental disorders
Daniel Mazia 1912 - 1996 PhD anticipated Stanford University isolation of the mitotic apparatus
Julian M. Davidson 1931 - 2001 PhD anticipated Stanford University physiological bases of human sexuality
Sidney H. Ingbar 1925 - 1988 MD anticipated Harvard Medical School/Beth Israel Medical Center physiology of the thyroid gland and its clinical diseases
Michael Solursh 1942 - 1994 PhD anticipated University of Iowa School of Medicine extracellular matrix and cell migration
Herbert J. Rapp 1923 - 1981 PhD sudden National Cancer Institute immunologist and cancer research
Paul A. Srere 1925 - 1999 PhD sudden University of Texas Southwestern Medical Center at Dallas cell metabolism and the krebs tca cycle
Frank L. Horsfall, Jr. 1906 - 1971 MD anticipated Sloan-Kettering Institute clinician and virologist
J. Werner Braun 1914 - 1972 PhD unknown Rutgers University microbiology
Elijah Adams 1918 - 1979 MD unknown University of Maryland, Baltimore biochemistry
Albert Dorfman 1916 - 1982 MD/PhD anticipated University of Chicago biochemistry of connective tissues
Abraham I. Braude 1917 - 1984 MD/PhD sudden UCSD pathogenesis and treatment of life-threatening septic shock
Albert L. Lehninger 1917 - 1986 PhD anticipated Johns Hopkins University School of Medicine structure and function of mitochondria
Michael A. Kirschenbaum 1944 - 1997 MD anticipated UC Irvine prostaglandins and kidney medicine
George F. Solomon 1931 - 2001 MD sudden UCLA psychiatry and biobehavioural sciences
Joseph W. Beard 1906 - 1983 MD unknown Duke University biology, animal viruses, cancer induced by viruses
Ralph R. Cavalieri 1932 - 2001 MD sudden UCSF utilization of tyrosine by the thyroid gland
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Philip Handler 1917 - 1981 PhD anticipated Duke University biochemist
N. Raphael Shulman 1925 - 1996 MD anticipated NIDDK (NIH) hematology (biochemistry)
Dale E. McFarlin 1936 - 1992 MD sudden NIH neuroimmunological studies of multiple sclerosis
James M. Felts 1923 - 1988 PhD sudden UCSF synthesis and processing of plasma lipoproteins
John P. Merlie 1945 - 1995 PhD sudden Washington University in St. Louis molecular genetics of the acetylcholine receptor
Wallace P. Rowe 1926 - 1983 MD anticipated NIH genetic basis of disease in murine leukemia viruses
Nelson Butters 1937 - 1995 PhD anticipated UCSD cognitive deficits related to chronic alcoholism
John B. Penney, Jr. 1947 - 1999 MD sudden Harvard Medical School/MGH receptor mechanisms in movement disorder pathophysiology
John C. Seidel 1933 - 1988 PhD sudden Boston Biomedical Research Institute actin-myosin interaction in pulmonary smooth muscle
William H. Oldendorf 1925 - 1992 MD sudden UCLA x-ray shadow radiography and cerebral angiography
Kenneth W. Sell 1931 - 1996 MD/PhD anticipated Emory University immunology
Richard J. Winzler 1916 - 1972 PhD sudden Florida State University biochemistry
Andrew C. Peacock 1921 - 1985 PhD anticipated National Cancer Institute molecules, dna method
Harold A. Menkes 1938 - 1987 MD sudden Johns Hopkins University occupational and environmental lung disease
Norman Kretchmer 1923 - 1995 MD/PhD anticipated University of California, Berkeley obstetrics, pediatrics
John C. Liebeskind 1935 - 1997 PhD anticipated UCLA behavioral and electrophysiological studies of pain
Thomas B. Fitzpatrick 1919 - 2003 MD/PhD anticipated Harvard Medical School/MGH dynamics of epidermal pigmentation
Menek Goldstein 1924 - 1997 PhD sudden New York University School of Medicine purification of enzymes in the catecholamine synthetic pathway
Paul J. Scheuer 1915 - 2003 PhD anticipated University of Hawaii organic chemistry
Loretta L. Leive 1936 - 1986 PhD anticipated NIH microbiology
George Némethy 1934 - 1994 PhD anticipated Mount Sinai School of Medicine methods to analyze and predict the structures of protein molecules
Lonnie D. Russell, Jr. 1944 - 2001 PhD sudden Southern Illinois University School of Medicine filament regulation of spermatogenesis
Samuel A. Latt 1938 - 1988 MD/PhD sudden Harvard Medical School/Children's Hospital genetic and cytogenetic studies of mental retardation
Carl Monder 1928 - 1995 PhD sudden Population Council corticosteroid metabolism in juvenile hypertension
Gary J. Miller 1950 - 2001 MD/PhD sudden University of Colorado HSC vitamin d receptors in the growth regulation of prostate cancer cells
Takeo Kakunaga 1937 - 1988 PhD sudden National Cancer Institute genesis of human cancer
Richard E. Heikkila 1942 - 1991 PhD sudden UMDNJ Robert Wood Johnson Medical School oxidation-reduction reactions and the dopamine receptor system
Roderich Walter 1937 - 1979 PhD anticipated University of Illinois physiology and biophysics
Daniel Rudman 1927 - 1994 MD sudden Medical College of Wisconsin adipokinetic substances of the pituitary gland
J. Calvin Giddings 1930 - 1996 PhD anticipated University of Utah, Salt Lake City chemistry
Ethan R. Nadel 1941 - 1998 PhD anticipated Yale University thermoregulation during exercise and heat exposure
Bertram Sacktor 1922 - 1988 PhD sudden National Institute on Aging in Baltimore gerontology
Gerald T. Babcock 1946 - 2000 PhD anticipated Michigan State University bioenergetic mechanisms in multicenter enzymes
George  Winokur 1925 - 1996 MD anticipated University of Iowa College of Medicine genetics of bipolar disease, mania, alcoholism and other psychiatric diseases
Marian E. Koshland 1921 - 1997 PhD anticipated University of California — Berkeley biochemical methods to examine the immune response
John J. Jeffrey, Jr. 1937 - 2001 PhD sudden Albany Medical College mechanism of action and the physiologic regulation of mammalian collagenases
Richard N. Lolley 1933 - 2000 PhD sudden USC (Keck School of Medicine) neurochemistry
Henry R. Mahler 1921 - 1983 PhD anticipated Indiana University chemistry
Michael J. Goldstein 1930 - 1997 PhD anticipated UCLA contributing factors to the onset of schizophrenia
Ernest Borek 1911 - 1986 PhD unknown City University of New York chemistry
Seymour Fisher 1922 - 1996 PhD sudden State University of New York at Syracuse psychology
Gordon M. Tomkins 1926 - 1975 PhD anticipated University of California at San Francisco hormoe research
Jordi Folch-Pi 1911 - 1979 MD sudden Massachusetts General Hospital neurochemistry
W. Dean Warren 1924 - 1989 MD anticipated Emory University surgery
Roger T. Kelleher 1926 - 1994 PhD unknown Harvard Medical School pharmacology
Hugh L. Keegan 1916 - 1980 PhD anticipated University of Mississippi Medical Center preventive medicine
Andrew G. Morrow 1923 - 1982 MD unknown National Heart, Lung and Blood Institute surgery
Teruzo Konishi 1920 - 1984 MD/PhD anticipated NIEHS physiological and biophysical functions of the inner ear
C. Richard Taylor 1939 - 1995 PhD anticipated Harvard University energetics of animal locomotion
Roy H. Steinberg 1935 - 1997 MD/PhD anticipated UCSF pigment epithelium interactions with neural retina
Fredric S. Fay 1943 - 1997 PhD sudden UMASS generation and regulation of force in smooth muscle
Verne M. Chapman 1938 - 1995 PhD sudden Roswell Park Cancer Institute/SUNY Buffalo development of cumulative multilocus map of mouse chromosomes
Priscilla A. Campbell 1940 - 1998 PhD anticipated University of Colorado HSC/Nat. Jewish center cell biology of the immune response to bacteria
Sol Levine 1922 - 1996 PhD sudden New England Medical Center medical sociology
Donald A. Pious 1930 - 1998 MD anticipated University of Washington School of Medicine somatic cell genetic analysis of human immune response genes
Elizabeth A. Rich 1952 - 1998 MD sudden Case Western Reserve University School of Medicine natural history of lymphocytic alveolitis in hiv disease
Peter Safar 1924 - 2003 MD anticipated University of Pittsburgh clinical studies of brain resuscitation
Belding H. Scribner 1921 - 2003 MD sudden University of Washington dialysis in the treatment of chronic uremia
S. Morris Kupchan 1922 - 1976 PhD unknown University of Virginia chemistry
Edward J. Sachar 1933 - 1984 MD anticipated Columbia University chemicals in mental illness
Bernard N. Fields 1938 - 1995 MD anticipated Harvard Medical School/Brigham & Women's Hospital genetic and molecular basis of viral injury to the nervous system
G. Jeanette Thorbecke 1929 - 2001 MD/PhD sudden New York University School of Medicine histologic and functional aspects of lymphoid tissue development
Fritz A. Lipmann 1899 - 1986 MD/PhD anticipated Rockefeller University biochemistry
Theodore S. Zimmerman 1937 - 1988 MD anticipated Scripps Research Institute platelet/plasma protein interaction in blood coagulation
David G. Marsh 1940 - 1998 PhD anticipated Johns Hopkins University genetics of allergy and asthma
A. Arthur Gottlieb 1937 - 1998 MD sudden Tulane University School of Medicine role of macrophage nucleic acid in antibody production
Joseph B. Warshaw 1936 - 2003 MD anticipated University of Vermont College of Medicine developmental neurobiology of respiratory control
Frederic C. Bartter 1914 - 1983 MD sudden University of Texas HSC at San Antonio interaction between the kidney and various endocrine systems
Edward C. Franklin 1928 - 1982 MD anticipated New York University structure and properties of rheumatoid antibodies
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James A. Campbell 1917 - 1983 MD sudden Rush-Presbyterian-St Luke's Medical Center internal medicine and cardiology
Robert J. Stoller 1924 - 1991 MD sudden UCLA clinical studies of gender identity
Thomas F. Burks, II 1938 - 2001 PhD sudden University of Texas HSC at Houston central and peripheral neuropeptide pharmacology
Dolph O. Adams 1939 - 1996 MD/PhD sudden Duke University development and regulation of macrophage activation
Mette Strand 1937 - 1997 PhD anticipated Johns Hopkins University parasite immunochemistry and vaccine development
Joel D. Meyers 1944 - 1991 MD anticipated University of Washington/FHCRC infections caused by suppression of the immune system in organ transplant and aids patients
Thomas D. Kinney 1909 - 1977 MD anticipated Duke University pathology
Bernard D. Davis 1916 - 1994 MD anticipated Harvard Medical School microbiology
F. Brantley Scott, Jr. 1930 - 1991 MD sudden Baylor University College of Medicine urologist
Fred Karush 1913 - 1994 PhD anticipated University of Pennsylvania Medical School microbiology
Thomas Francis, Jr. 1900 - 1969 MD sudden University of Michigan physician, virologist, and epidemiologist
William J. Mellman 1928 - 1980 MD anticipated University of Pennsylvania human genetics and pediatrics
Charles W. Todd 1918 - 1987 PhD anticipated City of Hope Medical Center immunology / biochemistry
Tsoo E. King 1917 - 1990 PhD unknown University of Pennsylvania School of Medicine bioenergetic apparatus in heart mitochondria
Jonas E. Salk 1914 - 1995 MD sudden Salk Inst. Biol. Studies effective vaccine for polio
Gilda H. Loew 1931 - 2001 PhD anticipated Molecular Research Institute computational investigation of the structural and functional aspects of heme proteins and enzymes
Lloyd J. Filer, Jr. 1919 - 1997 MD/PhD sudden University of Iowa pediatrics
Neil S. Jacobson 1949 - 1999 PhD sudden University of Washington marital therapy, domestic violence, and the treatment of depression
Philip J. Fialkow 1934 - 1996 MD sudden University of Washington origins of myeloid leukemia tumors
Marian W. Kies 1915 - 1988 PhD sudden NIH biochemistry
Pierre M. Galletti 1927 - 1996 MD/PhD sudden Brown Medical School synthesis of artificial lung and kidney systems
Mu-En Lee 1954 - 2000 MD/PhD sudden Harvard Medical School/MGH characterization of vascular smooth muscle lim protein
Ira Herskowitz 1946 - 2003 PhD anticipated UCSF genetics of yeast mating type
Robert M. Macnab 1940 - 2003 PhD sudden Yale University sequence analysis and function of bacterial flagellar motor
C. Andrew L. Bassett 1924 - 1994 MD/PhD anticipated Bioelectric Research Center / Columbia University orthopedic surgery
Ernest Witebsky 1901 - 1969 MD sudden University of Buffalo immunology
Lyman C. Craig 1906 - 1974 PhD unknown The Rockefeller Institute (NY) biochemistry
George C. Cotzias 1918 - 1977 MD anticipated Cornell University Medical College neurology
Robert S. Krooth 1929 - 1980 PhD sudden College of Physicians and Surgeons of Columbia University human genetics and development
Thomas R. Johns, 2nd 1924 - 1988 MD sudden University of Virginia School of Medicine physiological studies of myasthenia gravis
Marshall H. Becker 1940 - 1993 PhD anticipated University of Michigan, Ann Arbor elaboration of the health belief model
Samuel W. Perry, 3rd 1941 - 1994 MD anticipated Weill Medical College — Cornell University psychological course of prolonged infection among aids patients
Howard S. Tager 1945 - 1994 PhD sudden University of Chicago biochemical structure, action, regulation and degradation of the insulin and glucagon molecules
Andrew P. Somlyo 1930 - 2003 MD sudden University of Virginia School of Medicine vasomotor function of smooth muscle and their relation to heart disease
Walter F. Heiligenberg 1938 - 1994 PhD sudden UCSD neuroethological studies of electrolocation
Donald C. Shreffler 1933 - 1994 PhD sudden Washington University in St. Louis organization and functions of h-2 gene complex
Gisela Mosig 1930 - 2003 PhD anticipated Vanderbilt University genetics
Robert F. Spencer 1949 - 2001 PhD anticipated Medical College of Virginia neuroanatomy of the oculomotor system
Harry A. Waisman 1912 - 1971 MD/PhD sudden University of Wisconsin pediatrics and child development
Raymond T. Carhart 1912 - 1975 PhD sudden Northwestern University audiology and otolaryngology
Frederick H. Carpenter 1918 - 1982 PhD anticipated University of California — Berkeley mechanism of leucine aminopeptidase
Peter D. Klein 1927 - 2001 PhD unknown Baylor College of Medicine pediatrics/gastroenterology
Oscar A. Kletzky 1936 - 1994 MD anticipated UCLA ameliorating effects of estrogen replacement therapy on cerebral blood flow and sleep
Myron L. Bender 1924 - 1988 PhD unknown Northwestern University chemist
James N. Gilliam 1936 - 1984 MD anticipated University of Texas Southwestern Medical Center at Dallas cutaneous lupus erythematosus pathogenesis mechanisms
Bernard Sass 1935 - 1989 MD anticipated National Cancer Institute veterinary pathologist
Ernst Freese 1925 - 1990 PhD sudden National Institute of Neurological Disorders and Stroke (NIH in Bethesda) molecular biology
David M. Maurice 1922 - 2002 PhD anticipated Columbia University College of Physicians and Surgeons interference theory of corneal transparency
Eugene P. Cronkite 1914 - 2001 MD anticipated Brookhaven National Laboratory hematopoiesis and radiation injury
Gerald P. Rodnan 1927 - 1983 MD sudden University of Pittsburgh renal transport if uric acid and protein
Norman P. Salzman 1926 - 1997 PhD anticipated NIH virologist
Ruth Sager 1916 - 1997 PhD anticipated Harvard Medical School/DFCI role of tumor suppressor genes in breast cancer
Dennis Slone 1930 - 1982 MD anticipated Boston University Medical Center epidemiology
Ramzi S. Cotran 1932 - 2000 MD anticipated Harvard Medical School/Brigham & Women's Hospital mechanisms of immune, infectious, and vascular renal injury
Maurice Lev 1908 - 1994 MD unknown Rush Medical College, Chicago pathology and cardiology
Joseph H. Ogura 1915 - 1983 MD sudden Washington University (St. Louis) otolaryngology
Gerald Cohen 1930 - 2001 PhD anticipated Mount Sinai School of Medicine neurology
Chaviva Isersky 1937 - 1986 PhD anticipated National Institute of Arthristis, Diabetes, and Digestive Kidnesy Diseases arthritus and rheumatism
Henry Rapoport 1918 - 2002 PhD sudden University of California — Berkeley total synthesis of heterocyclic drugs
Wallace H. Clark, Jr. 1924 - 1997 MD sudden Harvard Medical School pathologist, dermatologist
David Spiro 1921 - 1974 MD/PhD sudden New York Medical College pathology
Reidar F.A. Sognnaes 1911 - 1984 PhD sudden UCLA School of Dentistry forensic scientist on dental records
Adolph I. Cohen 1924 - 1996 PhD anticipated Washington University in St. Louis ophthalmology and anatomy
Clarence J. Gibbs, Jr. 1924 - 2001 PhD sudden NINDS infectuous diseases of the nervous system
Carl C. Levy 1928 - 1981 PhD anticipated Baltimore Cancer Research Program (National Cancer Institute) molecular biology
Helene S. Smith 1941 - 1997 PhD anticipated UCSF malignant progression of the human breast/predictors of breast cancer prognosis
D. Eugene Strandness, Jr. 1928 - 2002 MD sudden University of Washington School of Medicine ultrasonic duplex scanner for noninvasive vascular disease diagnosis
William S. Beck 1924 - 2003 MD anticipated Harvard Medical School biochemistry of blood cell formation
David Tapper 1945 - 2002 MD anticipated University of Washington School of Medicine, Seattle, Washington pediatric surgeon
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Jonathan M. Mann 1943 - 1998 MD sudden Harvard University School of Public Health aids prevention
Bernard R. Baker 1915 - 1971 PhD sudden UCSB chemistry
Leonard R. Axelrod 1927 - 1975 PhD unknown Environmental Protection Agency biochemistry
Cyril S. Stulberg 1919 - 1977 PhD anticipated Wayne State University School of Medicine immunology and microbiology
Herbert F. Hasenclever 1924 - 1978 PhD anticipated National Institute of Allergy and Infectious Diseases / NIH mycologist
William H. Tooley 1925 - 1992 MD anticipated UCSF School of Medicine prevention and treatment of respiratory distress in neonates
J. Christian Gillin 1938 - 2003 MD anticipated UCSD serotenergic mechanisms in sleep and depression
Dan H. Campbell 1907 - 1974 PhD sudden California Institute of Technology immunochemistry
Melvin L. Marcus 1940 - 1989 MD anticipated UMASS cardiology, heart disease, coronary vascular adaptations to myocardial hypertrophy
Charles E. Putman 1941 - 1999 MD sudden Duke University radiologist
Kenneth J.W. Taylor 1939 - 2003 MD/PhD unknown Yale Medical School diagnostic ultrasound imaging
Edgar E. Ribi 1920 - 1986 PhD sudden NIAID Lab in Hamilton, Montana chemistry and biophysics
Alton Meister 1922 - 1995 MD anticipated Weill Medical College — Cornell University amino acid and glutathione biochemistry
John A. Kirkpatrick, Jr. 1926 - 1994 MD unknown Harvard Medical School radiologist
Peter M. Steinert 1945 - 2003 PhD sudden NIH structures and interactions of the proteins characteristic of epithelial cells
Milton Orkin 1929 - 1999 MD anticipated University of Minnesota dermatology
Lawrence Bogorad 1921 - 2003 PhD sudden Harvard University biologist
Joseph F. Foster 1918 - 1975 PhD sudden Purdue University biochemistry
James Olds 1922 - 1976 PhD sudden California Institute of Technology psychology
Carl L. Larson 1909 - 1978 MD unknown University of Montana at Missoula microbiology
Russell J. Barrnett 1920 - 1989 MD sudden Yale Medical School cell biology
Brigitte A. Prusoff 1926 - 1991 PhD unknown Yale University chemist
Nemat O. Borhani 1926 - 1996 MD anticipated University of Nevada at Reno multicenter clinical studies of hypertension and cardiovascular disease
Richard A. Carleton 1931 - 2001 MD anticipated Brown Medical School clinical studies of diet and smoking as cardiovascular disease risk factors
Susan M. Sieber 1942 - 2002 PhD anticipated National Cancer Institute biochemical epidemiology and cancer
Henry Kamin 1920 - 1988 PhD unknown Duke University biochemist
Jay P. Sanford 1928 - 1996 MD anticipated Univ. Texas Southwestern Medical School internal medicine
George J. Schroepfer, Jr. 1932 - 1998 MD/PhD sudden Rice University regulation of the formation and metabolism of cholesterol
James W. Prahl 1931 - 1979 MD/PhD sudden University of Utah structural basis of the functions of human complement
Ira M. Goldstein 1942 - 1992 MD anticipated UCSF pancreatitis, complement and lung injury
Milton H. Stetson 1943 - 2002 PhD anticipated University of Delaware comparative endocrinology
David H.P. Streeten 1921 - 2000 MD/PhD sudden SUNY Upstate Medical University at Syracuse thyroid and parathyroid hormones in hypertension
Victor D. Herbert 1927 - 2002 MD anticipated Harvard biochemistry / clinical nutrition
Giovanni Di Chiro 1926 - 1997 MD anticipated NIH interventional neuroradiology
John L. Doppman 1928 - 2000 MD anticipated NIH Clinical Center radiologist
Arnold M. Seligman 1912 - 1976 MD anticipated Johns Hopkins University School of Medicine chemistry
Robert H. Williams 1909 - 1979 MD sudden University of Washington diabetes
Arthur T. Winfree 1942 - 2002 PhD anticipated University of Arizona ecology and evolutionary biology
E. Carwile LeRoy 1933 - 2002 MD sudden University of South Carolina rheumatology
Walsh McDermott 1901 - 1981 MD sudden Cornell University Medical College public health and medicine
Lucien B. Guze 1928 - 1985 MD sudden UCLA pathogenesis of experimental pyelonephritis
Zanvil A. Cohn 1926 - 1993 MD sudden Rockefeller University macrophage in cell biology and resistance to infectious disease
Seymour Perry 1921 - 2000 MD anticipated Georgetown University Medical Center evaluation of medical technology
Donald T. Witiak 1935 - 1998 PhD sudden University of Wisconsin stereochemical studies of hypocholesterolemic agents
Kelly M. West 1925 - 1980 MD sudden University of Oklahoma diabetes
Thomas A. McMahon 1943 - 1999 PhD sudden Harvard University orthopedic biomechanics
Harold Weintraub 1945 - 1995 MD/PhD anticipated University of Washington/FHCRC characterization and function of myod gene
Julio V. Santiago 1942 - 1997 MD sudden Washington University in St. Louis role of social factors, lifestyle practices, and medication in the onset of type ii diabetes
John J. Wasmuth 1946 - 1995 PhD sudden University of California — Irvine human-hamster somatic cell hybrids/localization of hnyington's disease gene
Anthony Dipple 1940 - 1999 PhD sudden NIH metabolic activation and dna interactions of polycyclic aromatic hydrocarbon carcinogens
Fritz E. Dreifuss 1926 - 1997 MD anticipated University of Virginia School of Medicine clinical investigations of childhood epilepsy
Robert D. Allen 1927 - 1986 PhD anticipated Dartmouth College cytoplasmic rheology of motile cells
Demetrios Papahadjopoulos 1934 - 1998 PhD sudden UCSF phospholipid-protein interactions, lipid vesicles, and membrane function
Julio H. Garcia 1933 - 1998 MD sudden Case Western Reserve University neuroscience
Richard J. Wyatt 1939 - 2002 MD anticipated NIH biochemistry of schizophrenia
Jurgen Steinke 1932 - 1973 MD sudden USC School of Medicine/Rancho Los Amigos Hospital internal medicine/endoctinology
John P. Fox 1908 - 1987 MD/PhD unknown University of Washington epidemiology
Kiichi Sagawa 1926 - 1989 MD/PhD anticipated Johns Hopkins University modelling the mechanics of cardiac chamber contraction
Thoralf M. Sundt, Jr. 1930 - 1992 MD anticipated Mayo Clinic surgical techniques for intracranial aneurysms
Ernest Bueding 1910 - 1986 MD anticipated Johns Hopkins School of Hygiene and Public Health biochemistry and pharmacology
Lynn M. Wiley 1947 - 1999 PhD sudden University of California — Davis morphogenesis in early mammalian embryos
Eleanor M. Saffran 1938 - 2002 PhD anticipated Temple University School of Medicine cognitive deficits in brain-damaged patients
T. C. [Tao-Chiuh] Hsu 1917 - 2003 PhD unknown University of Texas MD Anderson Cancer Center human and mammalian cytogenetics
Irving Kupfermann 1938 - 2002 PhD anticipated Columbia University behavioral and neural analysis of learning in aplaysia
Vincent L. DeQuattro 1933 - 2001 MD sudden University of Southern California cardiology
Abraham White 1908 - 1980 PhD sudden University of California endocrinology
William F. Harrington 1920 - 1992 PhD sudden Johns Hopkins University School of Medicine myosin thick filament structure and assembly
Mehdi Tavassoli 1933 - 1993 MD anticipated University of Mississippi Medical Center hematopoietic stem cell purification and biology
William M. McKinney 1930 - 2003 MD anticipated Wake Forest University neurology
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Frank A. Beach 1911 - 1988 PhD sudden University of California, Berkeley psychobiologist
Erwin Neter 1909 - 1983 MD sudden State University of New York at Buffalo microbiology
Richard E. Bailey 1929 - 1972 MD unknown Case Western Reserve University metabolism and diabetes
William B. Reed 1924 - 1976 MD sudden University of Southern California dermatology
Ora M. Rosen 1935 - 1990 MD anticipated Sloan Kettering Institute for Cancer Research cloning and characterization of gene for human insulin receptor
Donald J. Cohen 1940 - 2001 MD anticipated Yale University tourette’s syndrome and autism in children
Ernest G. Peralta 1959 - 1999 PhD anticipated Harvard University signal transduction mechanisms of muscarinic receptors
Carl V. Moore 1908 - 1972 MD sudden Washington University in St. Louis medicine
Richard M. Asofsky 1933 - 2000 MD anticipated National Institue of Allergy and Infectious Diseases biomedical research
Harvey D. Preisler 1941 - 2002 MD anticipated Rush Medical College clinical and biological studies of myeloid leukemias
James N. Davis 1939 - 2003 MD sudden SUNY HSC at Stony Brook mechanisms underlying neuronal injury after brain ischemia
Henry C. Krutzsch 1942 - 2003 PhD sudden NIH biochemistry
Solomon A. Berson 1918 - 1972 MD sudden Mount Sinai School of Medicine diabetes and endocrinology
Earl W. Sutherland, Jr. 1915 - 1974 MD unknown Vanderbilt University biochemist
Jack E. White 1921 - 1988 MD anticipated Howard University School of Medicine epidemiology and treatment of cancer among african-americans
Christopher L. Longcope 1928 - 2003 MD anticipated UMASS reproductive function and gonadal steroid dynamics
Eric Holtzman 1939 - 1994 PhD sudden Columbia University cell bioligst
John G. Gambertoglio 1947 - 2001 PharmD anticipated UCSF pharmacokinetics in healthy volunteers and subjects with renal insufficiency and on hemodialysis
Laird S. Cermak 1942 - 1999 PhD anticipated Boston University psychological studies of memory and cognitive deficits related to chronic alcoholism
Richard J. Herrnstein 1930 - 1994 PhD sudden Harvard University psychology
Thomas F. Gallagher 1905 - 1975 PhD unknown Albert Einstein College of Medicine endocrinology
Koloman Laki 1909 - 1983 PhD sudden NFCF Regional Director physical biochemistry
Grant W. Liddle 1921 - 1989 MD sudden Vanderbilt University liddle's syndrome
Thomas K. Tatemichi 1952 - 1995 MD anticipated Columbia University College of Physicians and Surgeons mechanisms and syndromes of dementia related to stroke
F. Blair Simmons 1930 - 1998 MD sudden Stanford University School of Medicine development of a cochlear prothesis system for hearing loss
David S. Sigman 1939 - 2001 PhD anticipated UCLA enzymology and gene targeting
Maurice S. Raben 1915 - 1977 MD sudden Tufts Medical School endocrinology
Bruce S. Schoenberg 1942 - 1987 MD anticipated NIH prevention and control of neurological disorders
Albert S. Kaplan 1917 - 1989 PhD unknown Vanderbilt University microbiology
Peter A. Kollman 1944 - 2001 PhD anticipated UCSF free energy perturbation calculations and their application to macromolecules
William T. Niemer 1911 - 1971 PhD sudden Creighton University anatomy
Edward V. Evarts 1926 - 1985 MD sudden NIH electrophysiological activity of in vivo neurons in waking and sleeping states
Ardie Lubin 1920 - 1976 PhD anticipated Naval Health Research Center psychophysiology
Albert  Segaloff 1917 - 1985 MD sudden Tulane University School of Medicine hormonal treatment of advanced breast cancer
Janis V. Giorgi 1947 - 2000 PhD anticipated UCLA cellular immunology of resistance to hiv
Benjamin E. Volcani 1915 - 1999 PhD anticipated University of California, La Jolla microbiology
Sidney Futterman 1929 - 1979 PhD anticipated University of Washington biochemistry of the retina and pigment epithelium
Leonard N. Horowitz 1947 - 1992 MD anticipated University of Pennsylvania School of Medicine diagnosing and treatment of ventricular arrythmia
Alexander B. Gutman 1902 - 1973 MD/PhD sudden Mount Sinai School of Medicine cancer research
Alvin Nason 1919 - 1978 PhD unknown Johns Hopkins University biology
Susumu Hagiwara 1922 - 1989 PhD sudden UCLA evolutionary and developmental properties of calcium channels in cell membranes
Sarah H. Broman 1927 - 1999 PhD sudden Office of Extramural Research, NINDS research psychologist
Donald F. Summers 1934 - 2001 MD anticipated NIH composition, assembly and replication of rna viruses
Patricia S. Goldman-Rakic 1937 - 2003 PhD sudden Yale University development and plasticity of the primate frontal lobe
John W. Porter 1915 - 1984 PhD unknown University of Wisconsin regulation of lipogenesis by insulin and glucagon
Leo K. Bustad 1920 - 1998 PhD anticipated Washington State University radiation biology and physiology
Arend Bouhuys 1926 - 1979 MD/PhD sudden Yale University epidemiology
David E. Green 1910 - 1983 PhD anticipated University of Wisconsin molecular biology of membrane systems
Leo T. Samuels 1899 - 1978 PhD unknown University of Utah biochemistry
Thomas G. Smith, Jr. 1931 - 1998 MD sudden NINDS sensory physiology
William F. Caveness 1908 - 1981 MD anticipated NIH authority on head injuries
Paul M. Aggeler 1911 - 1969 MD anticipated University of California hemophilia
Michel M. Ter-Pogossian 1925 - 1996 PhD sudden Washington University School of Medicine multislice pet scanning technology
Daniel S. Lehrman 1919 - 1972 PhD sudden Rutgers University psychologist
W. Alden Spencer 1931 - 1977 MD anticipated Columbia University physiology and neurology
Margaret O. Dayhoff 1925 - 1983 PhD sudden Georgetown University Medical Center computer study of sequences of amino acids in proteins
D. Martin Carter 1936 - 1993 MD/PhD sudden Rockefeller University susceptibility of pigment and cutaneous cells to dna injury by uv
Peter N. Magee 1921 - 2000 MD unknown Thomas Jefferson University genetic basis of carconogenesis
Terry L. Thomas 1948 - 2002 PhD anticipated National Cancer Institute radiation health effects
R. Gordon Gould 1910 - 1978 PhD anticipated Stanford University internal medicine and cardiology
Peggy J. Copple 1934 - 1997 MD sudden University of Arizona College of Medicine pediatrics and neurology
Ariel G. Loewy 1925 - 2001 PhD sudden Haverford College biology
John N. Whitaker 1940 - 2001 MD sudden University of Alabama at Birmingham neurology
Sidney Farber 1903 - 1973 MD sudden Harvard Medical School cancer and biomedical research
Hans-Lukas Teuber 1916 - 1977 PhD sudden MIT neuropsychologist
Sidney R. Cooperband 1931 - 1979 MD unknown Boston University Medical Center internal medicine / hematology
Joram Heller 1934 - 1980 MD/PhD anticipated UCLA biochemical and biophysical investigation of rhodopsin
Jack Schultz 1904 - 1971 PhD sudden University of Pennsylvania genetics, tumor cells
Isadore Zipkin 1914 - 1973 PhD anticipated University of California- San Francisco biochemistry / periodontology
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Manfred M. Mayer 1916 - 1984 PhD sudden Johns Hopkins University School of Medicine immunochemistry of the complement system
Timothy J. Regan 1924 - 2001 MD anticipated UMDNJ Newark myocardial function and metabolism in chronic disease
Lester Baker 1930 - 2000 MD anticipated University of Pennsylvania School of Medicine/CHOP clinical studies of type i diabetes control and complications
Alfred A. Smith 1928 - 1980 MD unknown New York Medical College pharmacology
J. Kiffin Penry 1929 - 1996 MD anticipated Bowman Gray School of Medicine at Wake Forest University epilepsy expert
Russell L. De Valois 1926 - 2003 PhD sudden University of California — Berkeley brain mechanisms underlying color vision
Felix T. Rapaport 1929 - 2001 MD sudden SUNY Stony Brook induction of unresponsiveness to allografts
Gerald P. Murphy 1934 - 2000 MD sudden Roswell Park Cancer Institute/SUNY Buffalo detection, immunotherapy, and prognostic indicators of prostate cancer
D. Michael Gill 1940 - 1990 PhD sudden Tufts University biochemistry of cholera toxin and other pathogenic toxins
Robert C. Schlant 1929 - 2002 MD anticipated Emory University cardiology
Klaus Schwarz 1914 - 1978 MD sudden UCLA School of Medicine biological chemistry
Per F. Scholander 1905 - 1980 MD/PhD sudden Scripps Institute of Oceanogrpahy in La Jolla, California physiology
Donald J. Magilligan, Jr. 1929 - 1989 MD sudden Henry Ford Health Sciences Center natural history and limitations of porcine heart valves
Leslie A. Stauber 1907 - 1973 PhD sudden Rutgers University zoology
Dominick E. Gentile 1932 - 1997 MD sudden St Joseph Hospital, Orange, California nephrology
Sukdeb Mukherjee 1946 - 1995 MD sudden Medical College of Georgia, Augusta psychiatry
George K. Smelser 1908 - 1973 PhD sudden Columbia University ophtalmology
Sheldon D. Murphy 1933 - 1990 PhD anticipated University of Washington toxicology
James S. Seidel 1943 - 2003 MD/PhD sudden Harbor-UCLA Medical Center clinical studies in pediatric  life support and cardiopulmonary resuscitation
John Gibbon 1934 - 2001 PhD anticipated Columbia University cns functions underlying the interval time sense in animals and humans
Edwin H. Beachey 1934 - 1989 MD anticipated University of Tennessee at Memphis chemistry and immunology of streptococcal m proteins
John M. Eisenberg 1946 - 2002 MD anticipated Georgetown University internal medicine
Merton F. Utter 1917 - 1980 PhD sudden Case Western Reserve University School of Medicine structure and function of pep carboxykinase isozymes
Cornelia P. Channing 1938 - 1985 PhD anticipated University of Maryland School of Medicine physiology
Jane Pitt 1938 - 2003 MD anticipated Columbia University College of Physicians and Surgeons perinatal transmission of hiv and retroviral infections
Norbert Freinkel 1926 - 1989 MD sudden Northwestern University metabolic regulation in normal and diabetic pregnancies
Richard L. Lyman 1927 - 1975 PhD anticipated UC Berkeley biochemistry
Dexter French 1918 - 1981 PhD unknown Iowa State University biochemistry and biophysics
M. Powell Lawton 1923 - 2001 PhD anticipated Philadelphia Geriatric Center studies of mental health, quality of life, and caregiving of the elderly
Mortimer M. Elkind 1922 - 2000 PhD anticipated Colorado State University cell radiation response of cultured mammalian cells
Samuel Schwartz 1916 - 1997 MD anticipated University of Minnesota cancer research
Cornelius A. Tobias 1918 - 2000 PhD anticipated University of California — Berkeley biological effects of cosmic rays and other ionizing radiation
Samuel B. Guze 1923 - 2000 MD anticipated Washington University School of Medicine neurobiology, genetics, and epidemiology of alcoholism
Sidney P. Colowick 1916 - 1985 PhD unknown Vanderbilt University enzymatic oxidation and phosphorylation
Harold A. Baltaxe 1931 - 1985 MD sudden University of California — Davis development of new coronary angiographic techniques
Lee A. Lillard 1943 - 2000 PhD sudden University of Minnesota Retirement Research Center demography
Bruce M. Achauer 1943 - 2002 MD sudden University of California — Irvine non-invasive methods to assess the depth of burn wounds
S. Smith Stevens 1906 - 1973 PhD sudden Harvard University psychophysics
S. Bernard Wortis 1904 - 1969 MD sudden New York University School of Medicine psychiatrist and neurologist
Charles K. Friedberg 1905 - 1972 MD sudden Mount Sinai Hospital pathology, biochemistry
Benjamin Alexander 1908 - 1978 MD unknown NY Blood Center medicine
Lawrence H. Piette 1932 - 1992 PhD anticipated Utah State University electron spin resonance spectroscopy
Robert A. Mendelson, Jr. 1941 - 2001 PhD anticipated UCSF molecular mechanism of muscle contraction
Roger M. Brown 1941 - 2002 PhD sudden NIDA (Neuro-Immune Disease Alliance) neuroscience
Edward C. Heath 1930 - 1985 PhD unknown University of Iowa biochemist
Elizabeth M. Smith 1939 - 1997 PhD anticipated Washington University School of Medicine psychiatric problems among disaster survivors
David F. Waugh 1915 - 1984 PhD unknown MIT biochemistry
Allan Beigel 1940 - 1996 PhD anticipated University of Arizona psychiatry and mental healh policy
Leo J. Neuringer 1928 - 1993 PhD anticipated MIT nmr studies of normal and transformed cell membranes
Arnost Kleinzeller 1914 - 1997 MD/PhD anticipated University of Pennsylvania Medical School physiology
Norman R. Davidson 1916 - 2002 PhD sudden California Institute of Technology physical chemistry of nucleic acids
Lawrence D. Jacobs 1938 - 2001 MD anticipated SUNY Buffalo recombinant b interferon as treatment for multiple sclerosis
Abraham Worcel 1938 - 1989 MD sudden University of Rochester cell bioligst
Albert H. Coons 1912 - 1978 MD sudden Harvard Medical School bacteriology and immunology
Monroe E. Wall 1916 - 2002 PhD sudden Research Triangle Institute isolation and chemistry of plant antitumor agents
William B. Kinter 1926 - 1978 PhD unknown Mount Desert Island Biological Lab physiology
Sidney Riegelman 1921 - 1981 PhD sudden UCSF intersubject variation in first pass effect of drugs
Charles L. Wittenberger 1930 - 1987 PhD sudden Intramural Research Program of the NIDR microbiology
Wigbert C. Wiederholt 1931 - 2000 MD anticipated UCSD age related neurodegenerative diseases in micronesia
Donnell D. Etzwiler 1927 - 2003 MD anticipated University of MInnesota pediatrician
Emanuel M. Bogdanove 1925 - 1979 PhD sudden Medical College of Virginia at Richmond physiology
Griff T. Ross 1921 - 1985 PhD anticipated NIH endocrinologist
James C. Steigerwald 1935 - 1988 MD sudden University of Colorado School of Medicine internal medicine / rheumatology
J. Herbert Conway 1904 - 1969 MD sudden Cornell University Medical College surgery
Barbara J. Lowery 1938 - 2002 PhD anticipated University of Pennsylvania understanding stress responses of people who were physically ill
Larry C. Clark 1948 - 2000 PhD anticipated University of Arizona nutritional prevention of cancer
Irwin M. Weinstein 1926 - 2002 MD sudden Cedars-Sinai Medical Center hematology
Charles E. Huggins 1930 - 1990 MD anticipated Harvard University Medical School human blood storage
Abraham M. Lilienfeld 1920 - 1984 MD sudden Johns Hopkins University School of Public Health epidemiological methods for the study of chronic diseases
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Daniel A. Brody 1915 - 1975 MD sudden University of Tennessee biophysics
Frank Restle 1927 - 1980 PhD sudden Indiana University at Bloomington psychology
Aubrey Gorbman 1914 - 2003 PhD anticipated University of Washington in Seattle endocrinology
Henry A. Schroeder 1906 - 1975 MD unknown Dartmouth Medical School physiology
Josiah Brown 1923 - 1985 MD sudden UCLA biochemical studies of lipid and carbohydrate metabolism
Alexander S. Wiener 1907 - 1976 MD anticipated New York University genetics and biometrics
David H. Blankenhorn 1924 - 1993 MD anticipated USC Keck School of Medicine control of risk factors in atherosclerosis
Joseph Cochin 1916 - 1985 MD/PhD anticipated Boston University Medical Center pharmacology
Thomas F. Necheles 1933 - 1984 MD/PhD sudden NCI biology and infectious disease
Cyrus Levinthal 1922 - 1990 PhD anticipated Columbia University College of Physicians and Surgeons colinearity of genes and proteins, and the nature of messenger rna
Marshall R. Urist 1914 - 2001 MD anticipated UCLA inductive substrates of tooth and bone formation
Victor A. Gilbertsen 1924 - 1990 MD unknown University of Minneosta surgical oncology
Paul A. Bunn 1914 - 1970 MD sudden University of Michigan tuberculosis
John L. Kemink 1949 - 1992 MD sudden University of Michigan, Ann Arbor otolaryngology
Tai-Shun Lin 1939 - 1994 PhD anticipated Yale University School of Medicine synthesis and development of nucleoside analogs as antiviral and anticancer compounds
Norman Geschwind 1926 - 1984 MD sudden Harvard Medical School/Beth Israel Medical Center relationship between the anatomy of the brain and behavior
Lucien J. Rubinstein 1924 - 1990 MD sudden University of Virginia School of Medicine differentiation and stroma-induction in neural tumors
Marion I. Barnhart 1921 - 1985 PhD sudden Wayne State University School of Medicine blood disorders
Roy D. Schmickel 1936 - 1990 MD sudden University of Pennsylvania isolation and characterization of human ribosomal dna
Mones Berman 1920 - 1982 PhD anticipated National Cancer Institute mathematical biology
Edgar C. Henshaw 1929 - 1992 MD sudden University of Rochester intermediary metabolism in animals and in man
Philip R. Kimbel 1925 - 1990 MD unknown University of Pennsylvania School of Medicine causes of emphysema and other pulmonary diseases
Edward W. Dempsey 1911 - 1975 PhD sudden Columbia University anatomy-cytology (microbiology)
Kehl Markley, 3rd 1923 - 1979 MD sudden NIH / NIAMDD burn treatment specialist
Arnold Lazarow 1916 - 1975 MD/PhD sudden University of Minnesota anatomy
Shu-Ren Lin 1936 - 1979 MD sudden University of Rochester imaging studies of cerebral blood flow after cardiac arrest
Jessica H. Lewis 1917 - 2003 MD sudden University of Pittsburgh physician
Alberto DiMascio 1928 - 1978 PhD unknown Tufts University psychiatry and pharmacology
G. Harrison Echols, Jr. 1933 - 1993 PhD anticipated University of California — Berkeley genetic and chemical studies of phage lambda development
V. Everett Kinsey 1909 - 1978 PhD sudden Institute of Biological Sciences at Oakland University ophthalmology (eye)
Leah M. Lowenstein 1931 - 1984 MD/PhD unknown Jefferson Medical College internal medicine / nephrology
Eugene C. Jorgensen 1923 - 1981 PhD sudden UCSF structure/activity relationships of compounds related to thyroxin
Ronald E. Talcott 1947 - 1984 PhD sudden UCSF carboxylesterases of toxicologic significance
William J. Bowen 1911 - 1970 PhD sudden National Institute of Arthritis and Metabolic Diseases biophysics
Wendell M. Stanley 1904 - 1971 PhD sudden University of California biochemist
Herman K. Hellerstein 1916 - 1993 MD anticipated Case Western Reserve University cardiology
Thaddeus S. Danowski 1914 - 1987 MD sudden University of Pittsburgh research medicine
Thomas S. Whitecloud, 3rd 1940 - 2003 MD sudden Tulane University orthopaedics
Cesare G. Tedeschi 1904 - 1974 MD unknown Framingham Union Hospital pathology
John A. Gronvall 1931 - 1990 MD sudden Veterans Administration in Washington,D.C. pathology
Michale E. Keeling 1942 - 2003 MD sudden University of Texas veterinary science
Philip G. Weiler 1941 - 1991 MD anticipated University of California — Davis coronary heart disease & stroke in the elderly
Harold P. Morris 1900 - 1982 PhD sudden Howard University College of Medicine cancer research
Howard J. Eisen 1942 - 1987 MD sudden National Institute of Child Health and Human Development physician
Paul Margolin 1923 - 1989 PhD sudden City College of New York genetics researcher
William W. Montgomery 1923 - 2003 MD anticipated Harvard Medical School medicine and otolaryngology
Sandra A. Daugherty 1934 - 2000 MD/PhD anticipated University of Nevada, Reno epidemiologist
Guillermo H. Pacheco 1931 - 1974 PhD anticipated National Institute of Allergy and Infectious Diseases / NIH microbiology
Michael Doudoroff 1911 - 1975 PhD anticipated University of California, Berkeley bacteriology and immunology
Frederick S. Philips 1916 - 1984 PhD anticipated Sloan Kettering Institute for Cancer Research pharmacological properties of chemotherapeutic agents and chemical carcinogenesis
Ernst Simonson 1898 - 1974 MD sudden University of Minnesota cardiology and physiology
Jacob W. Dubnoff 1909 - 1972 PhD anticipated University of Southern California neurology
Dorothy T. Krieger 1927 - 1985 MD anticipated Mount Sinai School of Medicine cns-pituitary-adrenal interactions
David W. Fulker 1937 - 1998 PhD anticipated University of Colorado at Boulder adoption studies of development in middle childhood
Charles W. Mays 1930 - 1990 PhD anticipated National Cancer Institute radiobiology
Charles H. Rammelkamp, Jr. 1911 - 1981 MD sudden Case Western Reserve University School of Medicine early studies on the clinical application & mechanism of action of antimicrobials
Gustavo Cudkowicz 1927 - 1982 MD sudden SUNY Buffalo controls of proliferation specific for leukemias
Herschel L. Roman 1914 - 1989 PhD sudden University of Washington geneticist
Laurence M. Sandler 1929 - 1987 PhD sudden University of Washington School of Medicine cytogenetics of meiosis and development in drosophila
William D. Nunn 1943 - 1986 PhD sudden University of California — Irvine regulation of fatty acid/acetate metabolism in e. coli
William Likoff 1912 - 1987 MD unknown Hahnemann Medical College cardiology
Robert A. Cooper, Jr. 1932 - 1992 MD sudden University of Rochester Cancer Center pathologist
Caroline T. Holloway 1937 - 1998 PhD sudden NIH / Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory biomedical research
Marilyn Bergner 1933 - 1992 PhD anticipated Johns Hopkins School of Hygiene and Public Health health policy and management
Wylie J. Dodds 1934 - 1992 MD anticipated Medical College of Wisconsin esophageal motor function in health and disease
Mearl F. Stanton 1922 - 1980 MD anticipated National Cancer Institute pathology
Edwin D. Murphy 1917 - 1984 MD unknown former head of the Research Unit on Gynecologic Pathology, NCI experimental pathology
Arthur E. Martell 1916 - 2003 PhD unknown Texas A & M chemistry
Peter W. Neurath 1923 - 1977 PhD sudden Tufts University physics in medicine
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Alfred S. Evans 1917 - 1996 MD anticipated Yale Medical School physician
Nathaniel A. Young 1939 - 1979 MD sudden National Cancer Institute oncology and molecular pathology
Hermann Rahn 1912 - 1990 PhD anticipated University of Buffalo School of Medicine physiologist
George N. Wise 1915 - 1974 MD sudden Albert Einstein College of Medicine ophthalmology
John C. Cassel 1921 - 1976 MD anticipated University of North Carolina School of Public Health epidemiology
Alan S. Morrison 1943 - 1992 PhD anticipated Brown Medical School hormones in the epidemiology of prostatic hyperplasia
David Zeaman 1921 - 1984 PhD unknown University of Connecticut psychology
Jerry D. Niswander 1930 - 1984 MD anticipated National Institute of Dental Research genetics of oral and facial disorders
Lauran D. Harris 1927 - 1987 MD anticipated Boston University Medical Center medicine
Kiertisin Dharmsathaphorn 1950 - 1990 MD anticipated UCSD intestinal secretory mechanisms and antidiarrheal drugs
Harvey C. Knowles, Jr. 1915 - 1984 MD anticipated University of Cincinnati/Children's Hospital clinical studies of gestational diabetes
Ernest Cotlove 1920 - 1970 MD sudden NIH clinical pathology
Chandler McC. Brooks 1905 - 1989 PhD sudden State University of New York neurophysiology and cardiology
James D. Hardy 1904 - 1985 PhD anticipated University of Mississippi Medical Center transplant surgery
George V. Taplin 1910 - 1979 MD anticipated UCLA radioactive albumin macroaggregates for the detection of pulmonary embolism
Maurice Landy 1913 - 1993 PhD unknown NIH genetic control of immune responsiveness
Ronald D. Fairshter 1942 - 1988 MD anticipated University of California — Irvine clinical studies in chronic obstructive pulmonary disease
Elizabeth A. Bates 1947 - 2003 PhD anticipated UCSD cross-linguistic studies of language development, processing and breakdown in aphasia
Peter Kellaway 1920 - 2003 PhD anticipated Baylor College of Medicine clinical investigations of childhood epilepsy
Richard E. Weitzman 1943 - 1980 MD anticipated Harbor-UCLA Medical Center arginine vasopressin metabolism
Grace A. Goldsmith 1904 - 1975 MD unknown Tulane School of Public Health and Tropical Medicine nutrition and dietary diseases
Walter E. Brown 1918 - 1993 PhD unknown American Dental Association Health Foundation chemistry of calcium phosphates
Max Halperin 1917 - 1988 PhD anticipated George Washington University biostatistics
Joseph Stokes, 3rd 1924 - 1989 MD anticipated Boston University School of Medicine epidemiological studies of coronary heart disease
William J. Meyers 1933 - 1970 PhD anticipated University of Louisville psychology and physiology
Philip R.A. May 1920 - 1986 MD anticipated UCLA controlled clinical studies of schizophrenia
JoAnn E. Franck 1950 - 1992 PhD anticipated University of Washington School of Medicine hippocampal damage as a cause of epilepsy
Stephen W. Kuffler 1913 - 1980 MD sudden Harvard University neurobiology
Pokar M. Kabra 1942 - 1990 PhD sudden UCSF application of liquid chromatography to therapeutic drug monitoring
David D. Rutstein 1909 - 1986 MD sudden Harvard University Medical School physician
Nathan W. Shock 1906 - 1989 PhD anticipated NIH gerontology
Howard E. Freeman 1929 - 1992 PhD sudden UCLA sociology
Judith G. Pool 1919 - 1975 PhD anticipated Stanford University physiologist
Lois W. Tice 1934 - 1985 MD sudden NIADDK (National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases) cell biology
Robert Thompson 1927 - 1989 PhD anticipated University of California — Irvine neural systems subserving learning and memory
Robert B. Woodward 1917 - 1979 PhD sudden Harvard University organic chemistry
Morton J. Hamburger 1907 - 1970 MD sudden University of Cincinnati College of Medicine infectuous deseases
Stanley R. Kay 1946 - 1990 PhD sudden Albert Einstein College of Medicine symptoms and diagnostic tests of schizophrenia
John P. Glynn 1932 - 1971 PhD sudden National Cancer Institute immunology, tumor biology
Alex B. Novikoff 1913 - 1987 PhD unknown Albert Einstein College of Medicine of Yeshiva University histochemical studies of the golgi apparatus
Ann L. Brown 1943 - 1999 PhD sudden University of California, Berkeley Graduate School of Education educational theorist
Edward A. Steinhaus 1914 - 1969 PhD sudden University of California, Irvine biology
Morris B. Bender 1905 - 1983 MD sudden Mount Sinai Hospital neurology
Janine André-Schwartz 1931 - 1995 MD anticipated Tufts University immunology
Alexander D. Langmuir 1910 - 1993 MD anticipated Johns Hopkins University School of Hygiene and Public Health epidemiology
Harry A. Feldman 1914 - 1985 MD anticipated State University of New York Upstate Medical Center College of Medicine physician, epidemiologist
Eli Chernin 1924 - 1990 PhD sudden Harvard School of Public Health parasitologist
George E. Murphy 1918 - 1987 MD anticipated Cornell University Medical College pathologist
Arnold M. Mordkoff 1936 - 1971 PhD sudden New York University psychology
Bernard G. Greenberg 1919 - 1985 PhD anticipated University of North Carolina, School of Pubic Health biostatistics
Edward W. Purnell 1928 - 1993 MD anticipated Case Western Reserve University ophthalmology
Eugenia Spanopoulou 1960 - 1998 PhD sudden Mount Sinai School of Medicine cancer research
Jack Metcoff 1917 - 1994 MD unknown Chicago Medical School nephrologist, nutritionist
John E. Howard 1902 - 1985 MD sudden Johns Hopkins Hospital endocrinology
Mindel C. Sheps 1913 - 1973 MD anticipated University of North Carolina at Chapel Hill biostatistics and demography
James L. Lehr 1940 - 1989 MD unknown University of Chicago physician
A. Louis McGarry 1929 - 1985 MD anticipated Nassau County Department of Mental Health psychiatry
Lester R. Dragstedt 1893 - 1975 MD/PhD sudden University of Chicago surgery
Roberta D. Shahin 1953 - 1997 PhD sudden Center for Biologics Evaluation and Research immunology
Donovan J. Thompson 1919 - 1991 PhD sudden University of Washington medicine and biostatistics
William G. Dauben 1919 - 1997 PhD sudden University of California — Berkeley ultraviolet irradiation of natural products
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