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1. INTRODUCTION

This paper develops a model in which two factors contribute to growth: investments

in technology by heterogeneous �rms and investments in human capital by hetero-

geneous workers. Income growth in turn takes two forms: growth in the quantity

produced of each di�erentiated good and growth in the number of goods available.

Call these two forms total factor productivity (TFP) growth and variety growth.

Both types of investment a�ect both forms of growth, but the contributions are

not symmetric. Improvements in the parameters governing investment in skill raise

the rate of TFP growth and reduce the rate of variety growth. Improvements in the

parameters governing investment in technology raise the rate of variety growth, while

the e�ect on TFP growth is positive, zero, or negative as the elasticity of intertemporal

substitution (EIS) is greater than, equal to or less than unity.

This asymmetry appears despite the fact that skill and technology are modeled as

symmetric in many respects, and on balanced growth paths (BGPs) the rate of TFP

growth is also the (common) growth rate of technology and human capital. But the

factors are fundamentally di�erent in two respects. First, human capital is a rival

input while technology is nonrival. That is, an increase in a worker's human capital

a�ects only his own productivity, while an improvement in a �rm's technology can

be exploited by all its workers.

In addition, the two factors di�er in the way entry occurs. Growth in the size of

the workforce is exogenous. Entry by new �rms is endogenous, and entering �rms

must invest to obtain technologies for new goods. Thus, the expected pro�tability of

a new product a�ects the incentives of entrants, and the entry rate is governed by a

zero-pro�t condition.

Analyzing both types of investment together is important because there is strategic

complementarity in the incentives to invest. Incumbent workers invest in skill to
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increase their wages. But without continued improvement in the set of technologies

used by �rms, the returns to workers' investments would decline and, eventually, be

too small to justify further investment. Similarly, incumbent �rms invest in better

technologies to increase their pro�ts, but without continued improvement in the skill

distribution of the workforce, their returns would eventually be too small to justify

further investments. Sustained growth requires continued investment in both factors,

and the contribution of this paper is to characterize the interplay between the two

types of investment. It also suggests why empirical work based on regression analysis

is likely to fail: if two factors are highly complementary, a linear framework will have

di�culty picking up their e�ects.

The rest of the paper is organized as follows. Related literature is discussed in

section 2. Section 3 sets out the production technologies and characterizes the (static)

production equilibrium. The production function for di�erentiated intermediates has

two inputs, technology and human capital, and it is log-supermodular. Hence the

competitive equilibrium features positively assortative matching between technology

and skill. Proposition 1 establishes the existence, uniqueness and e�ciency of a

production equilibrium, describing the allocation of labor across technologies and

the resulting prices, wages, output levels, and pro�ts. Lemmas 2 and 3 establish

some homogeneity properties. The �rst main result, Proposition 4, shows that if the

technology and skill distributions are Pareto, with locations that are appropriately

aligned, then the equilibrium allocation of skill to technology is linear, and the wage,

price, output, and pro�t functions are isoelastic.

Section 4 treats dynamics: the investment decisions of incumbent �rms, new en-

trants, and workers; the evolution of the technology and skill distributions; and the

interest rate and consumption growth. Section 5 provides formal de�nitions of a com-

petitive equilibrium and a balanced growth path. A balanced growth path features

stationary, nondegenerate distributions of relative technology and relative human
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capital, with both growing at a common, constant rate.

Section 6 specializes to the case where technology and skill have Pareto distribu-

tions, showing that the isoelastic forms for the pro�t and wage functions are inherited

by the value functions for producers and workers. This fact leads to a tractable set of

conditions describing investment and the evolution of the technology and skill distri-

butions on a BGP. The second main result, Proposition 5, provides conditions that

ensure the existence of a BGP.

Section 7 looks at the e�ects of various parameters and policies. Proposition 6,

the third main result, describes the e�ects of parameter changes on TFP and variety

growth. Because investments of both types have important positive external e�ects,

the competitive equilibrium investment rates are presumably too low, and the ef-

fects of subsidies to investment are described in Corollary 1. In a roughly calibrated

example, such subsidies are very powerful.

Section 8 examines the incentives to invest o� the BGP. Proposition 8 shows, in a

simple setting, that the incentive increases (decreases) for the lagging (leading) factor,

suggesting that growth in one factor alone cannot be sustained in the long run.

Section 9 concludes. Proofs and technical derivations and arguments are gathered

in Appendices.

2. RELATED LITERATURE

This paper is related to two literatures: on di�usion of ideas/technologies and on

technology-skill complementarity. Each has both theoretical and empirical compo-

nents.

The idea that technology di�usion is an important factor for growth has a long

history, and in an early contribution Nelson and Phelps (1966) emphasize the role

of educated labor in facilitating such di�usion. Jovanovic and Rob (1989) look at

an aggregate model with heterogeneous agents, where meetings between agents can
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generate both new ideas and imitation|di�usion of an idea from the initially more

productive agent to one that is less productive. Jovanovic and MacDonald (1994)

look at innovation and di�usion in a competitive industry, where �rm-level incentives

are inuenced by the distribution of technologies across their rivals.

Kortum (1997) introduces the notion of a technology frontier as a description of the

state of knowledge in a society, and Lucas (2009, 2015) develops models where that

frontier evolves as a consequence of meetings between agents that result in the transfer

of knowledge. Lucas and Moll (2014) extend those models to allow agents to divide

their available time between production and knowledge acquisition, and Caicedo,

Lucas and Rossi-Hansberg (2016) embed idea di�usion into a model of hierarchies.

Benhabib, Perla, and Tonetti (2017) analyze a model with innovation as well as

di�usion. Models of learning by doing at the �rm, industry, or society level, as in

Arrow (1962), Stokey (1988), and Bahk and Gort (1993) can also be interpreted as a

type of di�usion.

There is also an extensive literature looking at the di�usion of technologies or ideas

across international boundaries as engines of growth, including Eaton and Kortum

(1999), Parente and Prescott (1999), Alvarez, Buera and Lucas (2014), Perla, Tonetti

and Waugh (2015), Stokey (2015), Buera and Ober�eld (2017). See Buera and Lucas

(2017) for a description of some of the key models of technology di�usion.

The model here is most closely related to Perla and Tonetti (2014). Indeed, the

investment model used here, separately for workers and �rms, is exactly the one

developed there, where the single type of agent can equally well be interpreted as a

�rm or a worker. The change here is to introduce a production function that uses

both inputs and displays complementarity.

Empirical studies of technology di�usion have taken several approaches, looking at

geographic di�usion within a country, di�usion across �rms within an industry, and

cross-country di�usion. Geographic di�usion of agricultural innovations, where inputs
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and outputs are easily measured, include Griliches' (1957) early study of hybrid corn

in the U.S., and Foster and Rosenzweig's studies of the introduction of high yielding

varieties in India during the green revolution (1996) and of adoption in a broader

set of countries (2010). In both cases they �nd that schooling is an important factor

in explaining di�erences. Manuelli and Seshadri (2014) look at the slow di�usion

of tractors in U.S. agriculture, while Allen, Bilir, and Tonetti (2017) look at the

geographic di�usion of prescriptions for statins across physicians in the U.S.

Mans�eld (1961) looks at the di�usion of twelve major innovations across large �rms

in four industries, �nding wide variation in the speed of adoption, much of which can

be explained by the pro�tability of the innovation and the cost of adoption. Gort

and Klepper (1982) look at the di�usion of 46 new products through entry and exit

of producers, identifying various stages in the product life-cycle that include an early

period of rapid entry and a later period of substantial net exit.

Comin and Hobijn look at cross-country di�usion for speci�c technologies over two

centuries, in 23 industrial economies (2004) and in 166 countries covering the full

range of income levels (2010). In the former they �nd that human capital is an

important factor inuencing speed of adoption. In Comin and Hobijn (2017) they

build on the latter, looking at adoption lags and intensity of use. They conclude

that di�erences in adoption lags account for much of the cross-country divergence in

incomes during the nineteenth century, while di�erences in intensity of use account

for further divergence in the twentieth century.

Since many new technologies are `embodied' in new capital goods, technology-

skill and capital-skill complementarity are to a large extent two labels for the same

phenomenon, di�cult to distinguish either conceptually or empirically. Griliches

(1969) introduced the notion of capital-skill complementarity in a three-input demand

model with capital and two types of labor, and found evidence in its favor in cross-

industry U.S. data. Since then the idea has been incorporated into many types of
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models, including models of long run growth.1 Some of these drop the physical capital

component, looking at technology-skill complementarity, and some retain it, often in

the form of vintage capital.

Jovanovic and Nyarko (1996) explore a single-agent model of learning-by-doing

and technology choice, where the agent switches to better technologies as her skill

improves, while Greenwood and Yorokoglu (1997) investigate the hypothesis that

adoption of new technologies requires signi�cant learning, and that skilled workers

facilitate that learning. They �nd evidence going back to the period of the Industrial

Revolution that supports this idea. Caselli (1999) studies a vintage capital model

with overlapping generations, looking at the adoption of a single new technology

that is more productive but requires more training for workers. In his model use

of the new technology increases gradually. If it is a su�ciently large improvement,

the new technique eventually displaces the old one, but only in the long run. In a

similar vein Jovanovic (2009) looks at the spread of technology in a frictionless market

with heterogenous labor, where low-skill agents may prefer to use older technologies

because they are less expensive.

Acemoglu (1998) suggests that reverse causation may also play a role, as over time

newer technologies are designed to complement the rising skills of the workforce. See

Acemoglu (2002) for a more comprehensive discussion of the extensive literature on

1In other applications, capital-skill complementarity has been used by Stokey (1996) to analyze

the wage e�ects of lowering trade barriers between countries with di�erent aggregate input mixes;

by Krusell et al. (2000) in a dynamic model with investment-speci�c technical change to explain

the increasing skill premium; and by Costinot and Vogel (2010) and Stokey (2016) in static models

to look at the general equilibrium wage e�ects of various types of technical changes. Labeled as

skill-biased technical change, it has also been o�ered as the main source of the rising skill premium

in the 1970's, 1980's and 1990's, as in Berman, Bound, and Griliches (1994); Dunne, Haltiwanger,

and Troske (1996); Bresnahan, Brynjolfsson and Hitt (2002), Violante (2002), and Autor, Levy and

Murnane (2003)).
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skill-biased technical change.

Nelson, et. al. (1967) suggest that the educational requirement of a technology

declines as the technology ages, emphasizing the role of high-skill labor in di�usion.

The idea is that experience|transferable learning-by-doing|allows substitution to-

ward less skilled workers. Thus, short-run and long-run e�ects may di�er. Never-

theless, sectors with faster rates of technical change should employ relatively more

highly educated labor, an implication that has been studied empirically.

Bartel and Lichtenberg (1987) examine it using cross-industry data for 61 U.S.

manufacturing industries in 1960, 1970, 1980. They �nd that the share of labor cost

accounted for by workers with more than a high school education declines with the

average age of the equipment in that industry. Doms, Dunne and Troske (1997) �nd in

cross-section that high-tech plants employ more skilled workers, and in time series that

plants with more skilled workers are more likely to adopt new technologies. Bartel,

Ichniowski and Shaw (2007) �nd that adoption of IT-enhanced capital equipment is

associated with increases in skill requirements for the operators of that equipment.

Goldin and Katz (1998) report evidence of capital-skill and technology-skill com-

plementarity in manufacturing in the U.S. in the early nineteenth century, where they

were related to the adoption of electric motors and to the transition from artisanal

shops to factories and assembly lines.

More recently, two particular innovations have been examined for evidence of

technology-skill complementarity, computers and internet access. Studies of the for-

mer have used cross-industry data as in Autor, Katz and Krueger (1998) and Beaudry,

Doms, and Lewis (2010) for the U.S. and Machin and Van Reenen (1998) for seven

OECD countries. Internet access has been studied using geographic variation, as in

Forman et al. (2012) looking at county-level U.S. data, and Akerman et al. (2015)

using data from a broadband rollout in Norway. All �nd evidence of technology-skill

complementarity.
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Only a few papers to date look at multiple engines of growth, all focusing on

skill and technology as the two factors. In an early contribution, Jovanovic (1998)

develops a vintage capital model, where later vintages are more productive, workers

are heterogeneous in terms of skill, and each worker is assigned to one machine.

The model of long-run growth in Lloyd-Ellis and Roberts (2002) features overlap-

ping generations, who acquire skill to implement and invent new technologies. Like

the model here, it features complementarity between investments in skill and technol-

ogy. But those investments are modeled as schooling and R&D decisions, in contrast

to the di�usion model here.

The model in Stokey (2018) is similar in many respects to the one here. The

main di�erence is the way investments in technical change and human capital are

treated. There, �rms have technologies that evolve as geometric Brownian motions,

as in Luttmer (2007), and the �rm's investment rate controls the drift of the process.

Workers' skills evolve in the same way, with an investment decision controlling the

drift. Fairly strong joint restrictions on the investment cost functions are needed to

obtain existence a balanced growth path.

Goldin and Katz (2008) provide a comprehensive review of the evidence on the

co-evolution of education and technology in the U.S. over the twentieth century.

3. PRODUCTION AND PRICES

The single �nal good is produced by competitive �rms using intermediate goods as

inputs. Intermediate goods are produced by heterogeneous, monopolistically compet-

itive �rms. Each intermediate �rm produces a unique variety, and all intermediates

enter symmetrically into �nal good production. But intermediate �rms di�er in their

technology level x; which a�ects their productivity. Let Np be the number (mass) of

intermediate good producers, and let F (x); with with continuous density f , denote

the distribution function for technology.
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Intermediate good producers use heterogeneous labor, di�erentiated by its human

capital level h; as the only input. Let Lw; be the size of the workforce, and let 	(h);

with continuous density  ; denote the distribution function for human capital. This

section looks at the the allocation of labor across producers, and wages, prices, output

levels, and pro�ts, given Np; F; Lw;	:

A. Technologies

Each �nal good producer has the CRS technology

yF =

�

N1��
p

Z

y(x)(��1)=�f(x)dx

��=(��1)

; (1)

where � > 1 is the substitution elasticity and � 2 (0; 1=�] measures diminishing

returns to increased variety. Let p(x) denote the price charged by a producer with

technology x: Then input demands are

yd(x) = N���
p p(x)��yF ; all x;

where the price of the �nal good is normalized to unity,

1 = pF =

�

N1���
p

Z

p(x)1��f(x)dx

�1=(1��)

: (2)

The output of a �rm depends on the size and quality of its workforce, as well as

its technology. In particular, if a producer with technology x employs ` workers with

human capital h; then its output is

y = `�(h; x);

where �(h; x) is the CES function

�(h; x) �
�

!h(��1)=� + (1� !) x(��1)=�
��=(��1)

; �; ! 2 (0; 1) : (3)

The elasticity of substitution between technology and human capital is assumed to

be less than unity, � < 1. Firms could employ workers with di�erent human capital
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levels, and in this case their outputs would simply be summed. In equilibrium �rms

never choose to do so, however, and for simplicity the notation is not introduced.

B. Intermediate goods: price, output, labor

Let w(h) denote the wage function. For a �rm with technology x; the cost of

producing a unit of output with labor of quality h is w(h)=�(h; x): Optimal labor

quality h�(x) minimizes this expression, so h� satis�es

w0(h�)

w(h�)
=
�h(h

�; x)

�(h�; x)
: (4)

It is straightforward to show that if the (local, necessary) second order condition for

cost minimization holds, then � < 1 implies h� is strictly increasing in x. The labor

market is competitive, and since the production function in (3) is log-supermodular,

e�ciency requires positively assortative matching (Costinot, 2009).

Unit cost

c(x) =
w(h�(x))

�(h�(x); x)
;

is strictly decreasing in x;

c0(x)

c(x)
= �

�x(h
�(x); x)

�(h�(x); x)
< 0:

As usual, pro�t maximization by intermediate good producers entails setting a

price that is a markup of �= (�� 1) over unit cost. Output is then determined by

demand, and labor input by the production function. Hence price, quantity, labor

input, and operating pro�ts for the intermediate �rm are

p(x) =
�

�� 1

w(h�(x))

�(h�(x); x)
; (5)

y(x) = yFN
���
p p(x)��;

`(x) =
y(x)

�(h�(x); x)
;

�(x) =
1

�
p(x)y(x); all x;
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where the price normalization requires (2). Firms with higher technology levels x

have lower prices, higher sales, and higher pro�ts. They may or may not employ

more labor.

Each worker inelastically supplies one unit of labor. Let xm and hm denote the

lower bounds for the supports of F and 	: Then markets clear for all types of labor

if

hm = h�(xm); (6)

Lw [1�	(h
�(x))] = Np

Z

1

x

`(�)f(�)d�; all x � xm: (7)

C. Production equilibrium

At any instant, the economy is described by its production parameters, the number

of �rms and workers, and the distributions of technology and skill.

Definition: A production environment Ep is described by

i. parameters (�; �; !; �) ; with � > 1; � 2 (0; 1=�]; ! 2 (0; 1) ; � 2 (0; 1) ;

ii. numbers of producers and workers Np > 0 and Lw > 0;

iii. distribution functions F (x) with continuous density f(x) and lower bound

xm � 0 on its support, and 	(h) with continuous density  (h) and lower bound

hm � 0 on its support.

A production equilibrium consists of price functions and an allocation that satisfy

pro�t maximization and labor market clearing.

Definition: Given a production environment Ep; the prices w(h); p(x); and al-

location h�(x); y(x), `(x); �(x); yF ; are a production equilibrium if (2) and (4)-(7)

hold.

The following result is then straightforward.

Proposition 1: For any production environment Ep; an equilibrium exists, and
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it is unique and e�cient.

D. Homogeneity properties

The analysis of BGPs will exploit the fact that production equilibria have cer-

tain homogeneity properties. Lemma 2 deals with proportionate shifts in the two

distribution functions.

Lemma 2: Fix Ep; and let EpA be a production environment with the same parame-

ters (�; �; !; �) and numbers Np; Lw, but with distribution functions FA;	A satisfying

FA(X) = F (X=Q); all X;

	A(H) = 	(H=Q); all H:

If [w; p; h�; y; `; �; yF ] is the production equilibrium for Ep; then the equilibrium for

EpA is

wA(H) = Qw(H=Q); pA(X) = p(X=Q)

h�A(X) = Qh�(X=Q); yA(X) = Qy(X=Q);

`A(X) = `(X=Q); �A(X) = Q�(X=Q);

yFA = QyF ; all X;H:

Price and employment for any �rm depend only on its relative technology x = X=Q,

while its labor quality, output, and pro�ts are scaled by Q: Wages and �nal output

are also scaled by Q:

Lemma 3 deals with the e�ects of changes in the numbers of producers and workers.

The impact of variety growth depends on


 �
1� ��

�� 1
; (8)

where 
 2 [0; 1= (�� 1)). In the limiting case � = 1=�; growth in variety is not valued

and 
 = 0.
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Lemma 3: Fix Ep; and let EpB be a production environment with the same pa-

rameters and distribution functions, but with LwB = e�Lw and NpB = enNp: If

[w; p; h�; y; `; �; yF ] is the production equilibrium for Ep; then the equilibrium for EpB

is

wB = e
nw; pB = e
np;

h�B = h�; yB = e��ny;

`B = e��n`; �B = e�+(
�1)n�;

yFB = e�+
nyF ; all X;H:

A change in Lw leads to proportionate changes in employment, output and pro�ts

at each �rm and in �nal output, with wages, prices and the allocation of skill to

technology una�ected.

An increase in Np leads to proportionate decreases in employment and output at

each �rm. Final output, the price of each intermediate, and all wage rates change

with an elasticity of 
 � 0: Thus, all increase if variety is valued, if 
 > 0; and all

are unchanged if it is not, if 
 = 0:

Pro�ts per �rm|which reect both the increase in price and decrease in scale|

can change in either direction. If 
 > 1; then the love of variety is strong enough

so that an increase in the number of producers actually increases the pro�t of each

incumbent. This case occurs only if � < 2 and, in addition, the parameter � is not

too large. In the analysis of BGPs we will impose the restriction � � 2; to rule out

this case.

E. Pareto distributions

In this section we will show that if the distribution functions F and 	 are Pareto,

with shape parameters that are not too di�erent and location parameters that are

appropriately aligned, the production equilibrium has a linear assignment of skill to
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technology, and wage, price, and pro�t functions that are isoelastic.

Proposition 4: Let Ep be a production environment for which F and 	 are

Pareto distributions with parameters (�x; xm) and (�h; hm) : Assume that �x > 1;

�h > 1; and

�1 < �x � �h < �� 1: (9)

De�ne

" �
1

�
(1 + �x � �h) ; (10)

� � "+ �h � �x; (11)

ah �

�

1� "

"

1� !

!

��=(��1)

; (12)

and in addition, assume

hm = ahxm: (13)

The production equilibrium for Ep has price and allocation functions

h�(x) = ahx; all x; (14)

w(h) = w2

�

h

hm

�1�"

; all h; (15)

yF = LwN


p p

�
0�(ah; 1)

�h
�x
xm; (16)

p(x) = N

p p0

�

x

xm

�

�"

; all x; (17)

y(x) = `2�(ah; 1)x

�

x

xm

��x��h

; all x;

`(x) = `2

�

x

xm

��x��h

; all x;

�(x) = �2

�

x

xm

�1��

; all x;

where

w2 �
�� 1

�
L�1w yF

�x
�h
p1��0 ; (18)
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`2 � LwN
�1
p

�h
�x
;

�2 �
1

�
N�1
p yFp

1��
0 ;

p��10 � EF

�

x

xm

�1��

:

The shape parameters �x and �h need not be the same, but (9) puts a restriction on

how di�erent they can be. It implies that 1 � " 2 (0; 1) and 1 � � 2 (0; �� 1) ; so

both the wage and pro�t functions are strictly increasing.

Pareto distributions for skill and technology imply that wages and pro�ts also have

Pareto distributions, with tail parameters �w � �h= (1� ") and �� = �x= (1� �),

respectively. Thus, �w is increasing in �x and is increasing or decreasing in �h as

� > 1+�x or � < 1+�x; while �� is increasing in �h and decreasing in �x: Employment

has a Pareto distribution if and only if �x > �h; and in this case it has tail parameter

�` = �x= (�x � �h) : If �h = �x; employment is uniform across �rm types, and if

�x < �h employment declines with technology level. Thus, evidence on the size

distribution of �rms by employment suggests �x > �h is the relevant case.
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4. DYNAMICS

In this section the dynamic aspects of the model are described: investment decisions

of incumbent producers and workers, the entry decisions of new �rms, the evolution

of the distribution functions for technology and skill, and the consumption/saving

decisions of households. As in Perla and Tonetti (2014) investment is imitative, and

it is a zero-one decision. The Pareto shape for the technology and skill distributions

this investment technology requires for balanced growth �ts well with the production

environment here.

It is useful to start with a brief overview. Time is continuous and the horizon

is in�nite. At any date t � 0; there are three groups of �rms: producers, process

innovators and product innovators. A producer can at any time abandon its current

technology and become a process innovator, attempting to acquire a new technology.

The only cost is the opportunity cost: process innovators do not produce. Success is

stochastic, with a �xed hazard rate, and conditional on success the process innovator

receives a technology that is a random draw from those of current producers. Hence

producers become process innovators if and only if their technology lies below an

endogenously determined threshold.

New �rms, product innovators, arrive at an endogenously determined rate. Each

entrant chooses a one-time (sunk) investment level, which determines its hazard rate

for success. After paying the sunk cost, product innovators are like process innovators

except that their hazard rate is di�erent.

Similarly, at any date the labor force has three groups: workers, retoolers and

trainees. A worker can at any time become a retooler, attempting to acquire a new

skill, and the only cost is an opportunity cost|retoolers do not work. Success is

stochastic, with a �xed hazard rate, and conditional on success the retooler receives

a skill that is a random draw from those of current workers. Hence workers become
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retoolers if and only if their skill lies below an endogenously determined threshold.

The workforce grows at an exogenously �xed rate �: New entrants, trainees, are

like retoolers except that their hazard rate for success may be di�erent.

Note that there is an important asymmetry between �rms and workers: the work-

force grows at an exogenously �xed rate, while entry by new �rms is endogenous,

satisfying a free entry condition.

At date t, Np(t); Ni(t); Ne(t) are the numbers of producers, process innovators, and

product innovators, with sum N(t); Lw(t); Li(t); Le(t) are the numbers of workers,

retoolers, and entrants, with sum L(t); F (X; t); 	(H; t) are the distribution functions

for technology among producers and skill among workers;W (H; t); H�(X; t); P (X; t);

Y (X; t); L(X; t); �(X; t); YF (t); t � 0; are the wage function, skill allocation, and so

on; and r(t) is the interest rate. Note that only producers and workers are identi�ed

by a technology or skill level.

A. Firms: process and product innovation

Let V f (X; t) denote the value of a producer with technology X at date t: A �rm

that chooses to become a process innovator abandons its current technology and

waits to acquire a new one. A process innovator pays no direct costs: there is only

the opportunity cost of forgone pro�ts. Abandoned technologies cannot be reclaimed,

so all process innovators at date t are in the same position. Let Vfi(t) denote their

(common) value.

Success is stochastic, arriving at rate �xi; and conditional on success at date t, the

innovator gets a new technology that is random draw from the distribution F (�; t)

among current producers. Hence Vfi(t) satis�es the Bellman equation

[r(t) + �x]Vfi(t) = �xi
�

EF (�;t)[V
f (X; t)]� Vfi(t)

	

+ V 0

fi(t); all t;

where the term in braces is the expected gain in value conditional on success, r(t) is
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the interest rate, and �x � 0 is an exogenous exit rate.

The value V f (X; t) of a producer is the expected discounted value of its future pro�t

ows. Clearly V f is nondecreasing in its �rst argument: a better technology can only

raise the �rm's value. Hence at any date t, producers with technologies below some

threshold Xm(t) become process innovators, while those with technologies above the

threshold continue to produce. It follows that at date t; the value of a producer with

technology X is Vfi(t) if X � Xm(t); and the irreversibility of investment means that

Xm(t) is nondecreasing. While a �rm produces, its technology X grows (or declines)

at a constant rate �x: Hence the value V
f (X; t) of a producer, a �rm with X > Xm(t);

satis�es the Bellman equation2

[r(t) + �x]V
f (X; t) = � (X; t) + �xXV

f
X(X; t) + V

f
t (X; t); all t:

Value matching provides a boundary condition for this ODE, and the optimal choice

about when to invest implies that smooth pasting holds. Hence

V f [Xm(t); t] = Vfi(t);

V f
X [Xm(t); t] = 0; all t:

Entering �rms|product innovators|have a similar investment technology, except

that they make a one-time (sunk) investment Ie: The success rate of an innovator

depends on his own investment Ie relative to the average spending Ie of others in his

cohort, scaled by the ratio of new entrants to existing products. In particular, let

2At this stage, it would be easy to assume that the technology X of an incumbent evolves

as a geometric Brownian motion. The cross-sectional distribution of technologies among initially

identical �rms, within each age cohort, would be lognormal, with a growing variance, and the

overall distribution would be a mixture of lognormals. When the solution to the model is actually

characterized in section 6, however, the argument relies on technologies across incumbents having

a Pareto distribution. At that point the mixture of lognormals would be incompatible with the

requirement of a Pareto distribution overall, and the variance term would have to be dropped.
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E(t) denote the ow of entrants at t; and de�ne the entry rate �(t) = E(t)=Np(t):

The success rate of an entrant who invests Ie is

�xe(Ie=Ie; �) =
�e
�
�

8

>

>

>

<

>

>

>

:

0; if Ie=Ie < 1� "x;

1�
�

1� Ie=Ie
�

="x; if Ie=Ie 2 [1� "x; 1] ;

1 + "x
�

Ie=Ie � 1
�

; if Ie=Ie > 1;

where �e > 0 and where "x > 0 is small. Thus, �xe(:; �) is kinked at Ie=Ie = 1;

reecting a `patent race' with intense competition among entrants, and scaling by 1=�

reects the reduced chances for success when the �eld is crowded. The value Vfe(�; �)

of a product innovator with success rate � who is waiting for a technology at date �;

gross of the investment cost, satis�es the Bellman equation

[r(�) + �x]Vfe(� ; �) = �
�

EF (�;�)
�

V f (X; �)
�

� Vfe(� ; �)
	

+
@Vfe(� ; �)

@�
; � � 0:

Note that it does not depend on the investment date t:

An entrant takes Ie(t) and �(t) as given, chooses Ie to solve

max
Ie

�

Vfe
�

t; �xe(Ie=Ie; �)
�

� Ie
	

;

and is willing to enter if and only if the maximized value is nonnegative. Since �xe

diverges as � ! 0; in equilibrium there is positive entry at all dates, E(t) > 0. All

entering �rms choose the same investment level, and their common success rate is

�xe(t) = �e=�(t). Free entry, together with the form of the function �xe; imply that

their common expenditure level is bid up to exhaust pro�ts,

Ie(t) = Vfe(t;�xe(t)); all t;

and aggregate spending by entrants at t is E(t)Ie(t):

B. Workers: investment in human capital

Workers invest to maximize the expected discounted value of their lifetime earnings.

An individual who chooses to invest|a retooler|stops working, abandons his old skill
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and waits to acquire a new one. Let V w(H; t) denote the value of a worker with skill

H at date t, and let Vwi(t) denote the value of a retooler.

Success for retoolers is stochastic, arriving at rate �hi > 0; and conditional on

success at date t, the individual gets a skill level drawn from the distribution 	(�; t)

across current workers. Hence Vwi(t) satis�es the Bellman equation

[r(t) + �h]Vwi(t) = �hi
�

E	(�;t)[V
w(H; t)]� Vwi(t)

	

+ V 0

wi(t); all t;

where the term in braces is the expected gain in value conditional on success, and

�h � 0 is an exogenous exit rate.

Clearly V w(H; t) is nondecreasing in its �rst argument: higher human capital can

only raise the worker's expected lifetime income. Hence at any date t; all individuals

with skill below some threshold Hm(t) become retoolers, while those with skill above

the threshold continue working. It follows that at date t; the value of a worker with

skill H � Hm(t) is Vwi(t); and the irreversibility of investment implies that Hm(t) is

nondecreasing.

While an individual works, his human capital H grows (or declines) at a constant

rate �h; which can be interpreted as on-the-job learning. Hence the value V
w(H; t)

for a worker with skill H > Hm(t); satis�es the Bellman equation

[r(t) + �h]V
w(H; t) = W (H; t) + �hHV

w
H (H; t) + V

w
t (H; t); all t:

As for �rms, value matching and smooth pasting hold at the threshold Hm(t); so

V w[Hm(t); t] = Vwi(t);

V w
H [Hm(t); t] = 0; all t:

New entrants into the workforce|trainees, have an investment technology like the

one for retoolers, except that their hazard rate for success, call it �he;may be di�erent.

They pay no costs, so their value function Vwe(t) satis�es the Bellman equation

[r(t) + �h]Vwe(t) = �he
�

E	(�;t)[V
w(H; t)]� Vwi(t)

	

+ V 0

we(t); all t:
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Trainees arrive at the rate (� + �h)N(t):

C. The evolution of technology and skill

Next consider the evolution of the group sizes (Np; Ni; Ne) and (Lw; Li; Le) and the

distribution functions F and 	:

The number of producers Np(t) grows because of success by innovators of both

types, and declines because of exit and decisions to switch to process innovation.

The producers that switch to innovating around date t are those with technologies

X(t) that are close enough to the threshold Xm(t) so that growth in that threshold

overtakes them. Since technologies for producers grow at the rate �x; there is a

positive level of switching at date t if and only if

X 0

m(t)� �xXm(t) > 0; all t; (19)

and

N 0

p(t) = �xiNi(t) + �xeNe(t)� �xNp(t)

�max f0; [X 0

m(t)� �xXm(t)] f [Xm(t); t]Np(t)g ; all t:

The number of process innovators Ni grows because producers switch to innovating,

while the number of product innovators Ne grows because new entrants join. Each

declines because of exit and success, so

N 0

i(t) = max f0; [X 0

m(t)� �xXm(t)] f(Xm(t); t)Np(t)g � (�x + �xi)Ni(t);

N 0

e(t) = E(t)� (�x + �xe)Ne(t); all t:

The distribution function F for technology among producers evolves because their

technologies grow at rate �x; they exit at the rate �x; innovators of both types succeed,

and �rms at the threshold Xm(t) switch to process innovations. As shown in the
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Appendix, F (X; t) satis�es

�Ft(X; t) = f(X; t)�xX + [1� F (X; t)]

�

�
N 0

p(t)

Np(t)
� �x + �xi

Ni(t)

Np(t)
+ �xe

Ne(t)

Np(t)

�

;

all X � Xm(t); t � 0:

The dynamics for the labor force are analogous. Workers who switch to retooling

around date t are those whose human capital H(t) falls below the (moving) threshold

Hm(t); despite growth at the rate �h: Hence workers are switching at date t if and

only if

H 0

m(t)� �hHm(t) > 0; all t; (20)

and

L0w(t) = �hiLi(t) + �heLe(t)� �hLw(t)

�max f0; [H 0

m(t)� �hHm(t)] [Hm(t); t]Lw(t)g ;

L0i(t) = max f0; [H 0

m(t)� �hHm(t) [Hm(t); t]Lw(t)]g � (�h + �hi)Li(t);

L0e(t) = (� + �h)L(t)� (�h + �he)Le(t); all t;

and 	(H; t) satis�es

�	t(H; t) =  (H; t)�hH + [1�	(H; t)]

�

�
L0w(t)

Lw(t)
� �h + �hi

Li(t)

Lw(t)
+ �he

Le(t)

Lw(t)

�

;

all H � Hm(t); t � 0:

D. Consumption

Individuals are organized into a continuum of identical, in�nitely lived households

of total mass one, where each dynastic household comprises a representative cross-

section of the population. New entrants to the workforce arrive at the �xed rate �h+�;

so each household grows in size at the constant rate � � 0; and total population at

date t is L(t) = L0e
�t:
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Members of the household pool their earnings and they own the pro�t streams from

�rms. The investment decisions of �rms and workers, both incumbents and entrants,

maximize, respectively, the expected discounted value of net pro�ts and wages. Hence

there are no further investment decisions at the household level. Since there is no

aggregate uncertainty, the household faces no consumption risk.

The household's income consists of the wages of its workers plus the pro�ts from

its portfolio, which sum to output of the �nal good,

YF (t) = Lw(t)E	(�;t) [W (H; t)] +Np(t)EF (�;t) [�(X; t)] ; all t:

That income is used for consumption and to �nance the investment (entry) costs of

new �rms. Hence the household's net income at date t is YF (t)� E(t)Ie(t):

All household members share equally in consumption, and the household has the

constant-elasticity preferences

U =

Z

1

0

L0e
�te�r̂t

1

1� �
c(t)1��dt;

where r̂ > 0 is the rate of pure time preference, 1=� > 0 is the elasticity of intertem-

poral substitution, and c(t) is per capita consumption.

The household chooses c(t); t � 0; to maximize utility, subject to the budget

constraint,
Z

1

0

e�R(t)
�

L0e
�tc(t)� [YF (t)� E(t)Ie(t)]

	

dt � 0;

where

R(t) =

Z t

0

r(s)ds; all t:

The condition for an optimum implies that per capita consumption grows at the rate

c0(t)

c(t)
=
1

�
[r(t)� r̂] ; all t;

with c(0) determined by budget balance.
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Final output is used for consumption and for the investment costs of entering �rms.

Hence market clearing for goods requires

YF (t) = L0e
�tc(t) + E(t)Ie(t); all t:

5. COMPETITIVE EQUILIBRIA, BGPS

This section provides formal de�nitions of a competitive equilibrium and a BGP.

We start with the de�nition of a (dynamic) economy.

Definition: An economy E is described by

i. parameters (�; �; !; �; �; r̂; �) ; with � > 1; � 2 (0; 1=�]; ! 2 (0; 1) ; � 2 (0; 1) ;

� > 0; r̂ > 0; � � 0;

ii. parameters �j � 0; �ji > 0 and �j; for j = h; x; and �he > 0;

iii. parameters �e > 0 and "x > 0 for the function �xe;

iv. initial conditions Np0; Ni0; Ne0 > 0; Lw0; Li0; Le0 > 0;

v. initial distribution functions F0(X) with continuous density f0(X) and lower

bound Xm0 on its support, and 	0(H) with continuous density  0(H) and

lower bound Hm0 � 0 on its support.

A. Competitive equilibrium

The de�nition of a competitive equilibrium is standard.

Definition: A competitive equilibrium of an economy E consists of the following,

for all t � 0:

a. the numbers of producers, process innovators, product innovators, workers,

retoolers, and trainees, [Np(t); Ni(t); Ne(t); Lw(t); Li(t); Le(t)] ; and the inow rate

E(t) of product innovators;

b. distribution functions F (X; t);	(H; t);

c. prices and allocations [W (H; t); P (X; t); H�(X; t); Y (X; t);L(X; t);�(X; t); YF (t)] ;
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d. value functions
�

V f (X; t); Vfi(t)
�

for producers and process innovators and an

investment threshold Xm(t); and a value function Vfe(t; �); investment level Ie(t);

success rate, �xe(t) for product innovators;

e. value functions [V w(H; t); Vwi(t); Vwe(t)] ; for each workers, retooler, and trainees,

and an investment threshold Hm(t) for retoolers;

f. per capita consumption c(t); and the interest rate r(t);

such that for all t � 0;

i. [W;P;H�; Y;L;�; YF ] ; is a production equilibrium, given [Np; Lw; F;	] ;

ii.
�

V f ; Xm

�

solve the investment problem of producers, given [r;�; Vfi] ; Vfi and

Vfe are consistent with
�

r; V f ; F
�

; Ie satis�es the optimization and entry conditions;

and the success rate for product innovators is �xe = �xe(1; E=Np);

iii. [V w; Hm] solve the investment problem of workers, given [r;W; Vwi] ; and [Vwi; Vwe]

are consistent with [r; V w;	] ;

iii. [Np; Ni; Ne; F ] are consistent with [Xm; E] ; and the initial conditions [Np0; Ni0; Ne0; F0] ;

and Xm(0) = Xm0;

v. [Lw; Li; Le;	] are consistent withHm and the initial conditions [Lw0; Li0; Le0;	0] ;

and Hm(0) = Hm0;

vi. c solves the consumption/savings problem of households, given [r; YF � EIe] ;

and

vii. the goods market clears.

B. Balanced growth

The rest of the analysis focuses on balanced growth paths, competitive equilibria

with the property that quantities grow at constant rates, and the normalized distri-

butions of technology and skill are time invariant.

Let Q(t) � EF (�;t) (X) ; t � 0; denote average technology at date t. On a BGP

Q grows at a constant rate, call it g; and the distributions of relative technology
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x = X=Q(t) and relative human capital h = H=Q(t) are constant. By assumption

total population L grows at the �xed rate �: On a BGP the number of �rms N also

grows at a constant rate, call it n; and the shares of �rms and individuals in each

category, [Np=N;Ni=N;Ne=N ] and [Lw=L; Li=L; Le=L] are constant. The growth rates

g and n are endogenous.

It follows from Lemma 2 that on a BGP the labor allocation in terms of relative

technology and relative skill is time invariant. The growth rates for wages, prices,

output levels, and so on are then described by Lemma 3, where 
; de�ned in (8),

measures the impact of variety growth. In particular, average product price grows

at rate 
n; average output per �rm at rate g + � � n; and average employment per

�rm at rate ��n: Output per capita (wages), aggregate output, and pro�ts per �rm,

grow at rates

gw = g + 
n; gY = gw + �; g� = gY � n: (21)

Total investment costs EieEF [�]; also grow at rate gY : If 
 > 1; then love of variety

is so strong that an increase in the number of producers actually raises the pro�ts

of each incumbent. In a dynamic model with free entry, this feature poses obvious

problems. In the rest of the analysis we will assume that � � 2, which implies 
 < 1:

These observations lead to the following de�nition.

Definition: A competitive equilibrium for E is a balanced growth path (BGP) if

for some g > 0 and n; with gY ; gw and g� as in (21), the equilibrium has the property

that for all t � 0:

a. the numbers of �rms and individuals satisfy

Np(t) = entNp0; Ni(t) = entNi0; Ne(t) = entNe0;

Lw(t) = e�tLw0; Li(t) = e�tLi0 Le(t) = e�tLe0;

and for some E0 > 0; the ow of entrants satis�es

E(t) = entE0;

27



b. for Q0 � EF0 [X] ; average technology satis�es

Q(t) � EF (�;t) [X] = egtQ0;

and for some
h

F̂ (x); 	̂(h)
i

; the distribution functions satisfy

F (X; t) = F̂ (X=Q(t)); all X;

	(H; t) = 	̂(H=Q(t)); all H;

c. for some [w; p; h�; y; `; �; yF ] ; the production equilibria satisfy

W (H; t) = egwtQ0w(H=Q(t)); all H;

P (X; t) = e
ntQ0p(X=Q(t));

H�(X; t) = egtQ0h
�(X=Q(t));

Y (X; t) = e(g+��n)tQ0y(X=Q(t));

L(X; t) = e(��n)t`(X=Q(t));

�(X; t) = eg�tQ0�(X=Q(t)); all X;

YF (t) = egY tQ0yF ;

d. for some [vfp(x); vfi; xm] ; the value function and optimal policy for producers

and the value for process innovators satisfy

V f (X; t) = eg�tQ0vfp(X=Q(t)); all X;

Xm(t) = egtQ0xm;

Vfi(t) = eg�tQ0vfi;

for some [vfe(�); ie] ; the value function and investment level for product innovators

satisfy

Vfe(�; t) = eg�tQ0vfe(�);

Ie(t) = eg�tQ0ie;
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and their success rate

�xe(t) = �xe0 = �xe

�

1;
E0
Np0

�

is constant;

e. for some [vw(h); vwi; vwe; hm] ; the values and optimal policies for individuals

satisfy

V w(H; t) = egwtQ0vw(H=Q(t)); all H;

Vwi(t) = egwtQ0vwi;

Vwe(t) = egwtQ0vwe;

Hm(t) = egtQ0hm;

f. for some c0 > 0 aggregate consumption satis�es

C(t) = egY tQ0L0c0;

and the interest rate satis�es

r(t) = r � r̂ + �gw:

BGPs arise|if at all|only for initial conditions [Np0; Ni0; Ne0; Lw0; Li0; Le0; F0(X);	0(H)]

that satisfy certain restrictions. The rest of the analysis focusses on a class of

economies for which BGPs exist, and studies the determinants of the growth rates g

and n of TFP and variety

6. CONDITIONS FOR BALANCED GROWTH

In this section we will show that if an economy E has initial distribution functions

F0 and 	0 that are Pareto, with shape and location parameters that satisfy the

requirements of Proposition 4, then the normalized value functions vfp(x) and vw(h)
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for producers and workers inherit the isoelastic forms of the normalized pro�t and

wage functions, and simple closed form solutions can be found. Moreover, the growth

rates g and n, as well as other features of the BGP, can be solved for explicitly. The

arguments are summarized in Proposition 5, which provides su�cient conditions for

existence and uniqueness of a BGP.

A. Production equilibrium

Suppose the initial distributions F0 and 	0 are Pareto, with parameters (�x; Xm0)

and (�h; Hm0) : Assume (9) holds, de�ne "; � and ah by (10)-(12), and assume that

Hm0 = ahXm0: Average technology under the initial distribution is

Q0 � EF0 [X] =
�x

�x � 1
Xm0: (22)

Use Q0 to de�ne the normalized distribution functions

F̂ (X=Q0) � F0(X); all X � Xm; (23)

	̂(H=Q0) � 	0(H); all H � Hm:

By construction EF̂ (x) = 1; and the location parameters for F̂ and 	̂ are

xm =
Xm0

Q0
=
�x � 1

�x
; hm �

Hm0

Q0
= ahxm: (24)

Hence the hypotheses of Proposition 4 hold for F̂ ; 	̂; and given Np0; Lw0; (14)-(17)

describe the production equilibrium [w; p; h�; y; `; �; yF ] :

B. Firms, investment in technology

Next we will characterize the normalized value functions [vfp(x); vfi; vfe0] and in-

vestment cost ie0 for entrants as functions of (g; n) ; and derive one additional equa-

tion relating (g; n) : Recall that a BGP requires positive process innovation, which in
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turn requires g > �x; so that the investment threshold grows faster than producers'

technologies. We will assume that this condition holds.

Consider the investment decision and value of a producer. As shown in the Appen-

dix, if � and V f have the forms required for a BGP, and �(x) has the isoelastic form

in Proposition 4, then the normalized value function vfp(x) for a producer satis�es

(r � g� + �x) vfp(x) = �2 (x=xm)
1�� � (g � �x) xv

0

fp(x); x � xm;

where �2 is as de�ned in (18), with Lw = Lw0 and Np = Np0: This equation is a �rst-

order ODE. Value matching provides a boundary condition, yielding the solution

vfp(x) = �2Bx (x=xm)
1�� + (vfi � �2Bx) (x=xm)

Rx ; x � xm; (25)

where the constant Bx > 0 and characteristic root Rx < 0 are known functions of the

parameters. The �rst term in (25) is the value of a producer who operates forever,

never investing. The second term represents the additional value from the option to

invest in process innovation. The smooth pasting condition

vfi = �2Bx

�

1�
1� �

Rx

�

(26)

=
�2

r � g� + �x
;

determines vfi, the normalized value of a process innovator, from the optimal choice

of the investment threshold by a producer switching to process innovation.

But from the perspective of a �rm that has already switched and is waiting for a new

technology, its value vfi is the expected discounted value across current producers,

adjusted for exit, growth, and waiting time. That is, on a BGP vfi also satis�es

(r � g� + �x) vfi = �xi fEF̂ [vfp(x)]� vfig :

To simplify this condition, substitute for EF̂ [vfp(x)] and vfi from (25) and (26) and

factor out �2Bx to get

r � g� + �x =
�Rx (1� �)�xi

(�x � 1 + �) (�x �Rx)
: (27)
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Since r; g� and Rx involve g and n; while all of the other parameters in this expression

are exogenous, (27) is an equation in the pair (g; n) ; a restriction that the Bellman

equation for process innovators places on the ratio EF̂ [vfp(x)] =vfi:

For any success rate �; on a BGP the normalized value vfe(�) of a product inno-

vator, gross of the sunk cost, satis�es

(r � g� + �x + �) vfe(�) = �EF̂ [vfp(x)] ; (28)

which determines the function vfe: The ow of new entrants is determined by the

rate of variety growth, E = (n+ �x)N; so the entry rate is � = (n+ �x)N=Np: As

shown below, the ratio N=Np is constant on a BGP, so the entry rate � > 0 is also

constant. In any equilibrium ie=ie = 1; so the success rate for product innovators is

also constant,

�xe0 = �xe(1; �) = �e=� > 0:

From (28), the value of an entrant is then

vfe0 =
�xe0

r � g� + �x + �xe0
EF̂ [vfp(x)] ; (29)

and expected pro�ts just cover entry costs if

ie0 = vfe0: (30)

We must also check the incentive to invest. Given the function vfe(�) in (28), the

entry rate �; and the average investment ie of others in its cohort, the normalized

problem of a product innovator is

max
ie

�

vfe[�xe(ie=ie; �)]� ie
	

;

As shown in the Appendix, the optimum is at ie=ie = 1 if and only if

"x �
r � g� + �x

(r � g� + �x + �xe0)
2

�e
�
�
1

"x
; (31)

which holds for "x > 0 su�ciently small.
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C. Workers, investment in skill

The argument for the labor force is analogous except that the entry rate of trainees

is exogenous, as is their success rate �he. Hence the normalized value function vw for

a worker satis�es

(r � gw + �h) vw(h) = w2 (h=hm)
1�" + (�h � g)hv0w(h); h � hm:

Suppose g > �h; so there is positive retooling, as required on a BGP. Using value

matching for the boundary condition, the solution to this ODE is

vw(h) = Bhw2 (h=hm)
1�" + (vwi �Bhw2) (h=hm)

Rh ; h � hm; (32)

where the constant Bh > 0 and characteristic root Rh < 0 are known functions of the

parameters. The �rst term in (32) is the value of a worker who never invests, and

the second represents the additional value from the option to retool. The value of a

retooler vwi is determined by the smooth pasting condition

vwi = Bhw2

�

1�
1� "

Rh

�

(33)

=
w2

r � gw + �h
:

The value of a retooler also satis�es the Bellman equation

(r � gw + �h) vwi = �hi fE	 [vw(h)]� vwig :

Using (32) and (33) to substitute for E	̂ [vw] and vwi; and factoring out w2Bh; gives

r � gw + �h =
�Rh (1� ")�hi

(�h � 1 + ") (�h �Rh)
; (34)

a second equation in the pair (g; n) ; a restriction that the Bellman equation for

retoolers places on the ratio E	 [vw(h)] =vwi:

The value vwe of a trainee is determined by

(r � g� + �h + �he) vwe = �heE	̂ [vw(h)] : (35)
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D. Flows of �rms and workers, the evolution of technology and skill

On a BGP the number of �rms grows at a constant rate n; and the shares of �rms

engaged in production and the two kinds of innovation are constant. Hence the ow

of new entrants at any date is

E = (n+ �x)N; (36)

and the entry rate is constant,

� =
E

Np
= (n+ �x)

N

Np
:

The laws of motion for Np; Ni and Ne determine the ratios of process and product

innovators to producers,

Ni
Np

=
�x (g � �x)

n+ �x + �xi
; (37)

Ne
Np

=
n+ �x
�xe

�

1 +
�x (g � �x)

n+ �x + �xi

�

:

The success rate for product innovators is

�xe0 = �xe(1; �) =
�e

n+ �x

Np
N
; (38)

where Np=N is determined by (37).

The shares of the labor force in each group are also constant, and the laws of motion

for Lw; Li; and Le imply that the ratios of retoolers and trainees to workers are

Li
Lw

=
�h (g � �h)

� + �h + �hi
; (39)

Le
Lw

=
� + �h
�he

�

1 +
�h (g � �h)

� + �h + �hi

�

:

It is easy to check that if Xm and Hm grow at rate g; as required on a BGP, then

the distribution functions F (�; t) and 	(�; t) evolve as required.
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E. Consumption, the interest rate

On a BGP per capita consumption grows at the rate gw; so the interest rate is

r = r̂ + �gw: (40)

Aggregate income grows at the rate gY ; so its present discounted value is �nite if and

only if r > gY ; or

r̂ > gY � �gw = � + (1� �) (g + 
n) :

Using (30) for ie0; market clearing for goods determines c0;

yF = L0c0 + E0ie0: (41)

F. Existence of BGPs

The growth rates (g; n) are determined by (27) and (34). Substituting for gw; g�; r;

and the roots Rx and Rh; gives a pair of linear equations in the two unknowns,

g =
1

�h
(Zh + Ah�hi �Wnn) ; (42)

n = � + (�h � �x) g + (Zx � Zh) + (Ax�xi � Ah�hi) ;

where

�h � �h � 1 + � > 0; �x � �x � 1 + � > 0;

Zh � �h�h � �h � r̂; Zx � �x�x � �x � r̂;

Ah �
1� "

�h � 1 + "
> 0; Ax �

1� �

�x � 1 + �
> 0;

Wn � (� � 1)
:

Propositions 5 and 6 both use the assumption � � 2, which implies 
 < 1; so love

of variety is not too strong. One additional joint restriction on �; �h is also imposed

if � < 1. Although stronger than required for existence, it will be needed for the

comparative statics results.
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Proposition 5: Let E be an economy with:

a. � � 2; and � > �h= (�h � 1) if � < 1;

b. initial distributions F0;	0 that are Pareto, with shape and location parameters

(�x; Xm0) ; (�h; Hm0) satisfying the hypotheses of Proposition 4.

De�ne " and � by (10) and (11). Then the pair of equations in (42) has a unique so-

lution (g; n) ; and there are unique [Q0; F̂ ; 	̂]; [w; p; h
�; y; `; �; yF ] satisfying conditions

(b)-(c) for a BGP; [vfp(x); xm; vfi; vfe(�); �xe0; ie0] satisfying (d); [vw(h); hm; vwi; vwe]

satisfying (e); and [c0; r] satisfying (f).

If in addition:

c. the initial ratios [Ni0=Np0; Ne0=Np0] and [Li0=Lw0; Le0=Lw0] satisfy (37) and (39);

and

d. g > �x; g > �h; r > gY ; "x satis�es (31), and c0 > 0;

then E has a unique competitive equilibrium that is a BGP.

7. GROWTH RATES ON THE BGP

In this section we will examine the e�ect of various parameters on the growth rates

g and n: We will also look at subsidy policies that increase growth and provide a

roughly calibrated numerical example. In the example, subsidies to retooling have a

powerful e�ect on growth.

A. Growth rates

If preferences are logarithmic, � = 1; or if 
 = 0; so variety is not valued, then

Wn = 0 and the �rst equation in (42), by itself, determines g: Thus g is a weighted

sum of the skill parameters �h; �hi; �h; and the rate of time preference r̂, and the

technology parameters �x; �xi; �x; do not enter. Faster on-the-job skill growth �h

raises g; as does a higher success rate �hi for retoolers. A higher exit rate �h or
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discount rate r̂ reduces g: If � > 1 and 
 > 0; then TFP growth has a downward

adjustment for variety growth.

From the second equation in (42), the rate of variety growth n increases one-for-one

with population growth, with adjustments for di�erences in the parameters governing

technology and skill acquisition. As noted in section 4, data on the distribution of

�rm or establishment size by employment suggests �x > �h: In this case �h � �x < 0;

so variety growth is adjusted downward for TFP growth.

Proposition 6 has a precise summary of the comparative statics results.

Proposition 6: Let E be as in Proposition 5. Then

a. an increase in �h; �hi or a decrease in �h raises g and reduces n;

b. an increase in �; �x; �xi or a decrease in �x raises n; and

|raises g if (� � 1)
 < 0;

|has no e�ect on g if (� � 1)
 = 0; and

|reduces g if (� � 1)
 > 0;

c. a decrease in r̂ raises g if (� � 1)
 � 0; and has otherwise ambiguous e�ects.

The initial population size and number �rms, L0 and N0; do not a�ect the growth

rates, although they do a�ect the levels for wages, pro�ts and the distribution of

employment across technologies. In particular, since Np0 and Lw0 are directly pro-

portional to N0 and L0; it follows from the de�nitions of w2; `2; and �2; that wages

are proportional to N

0 ; employment is proportional to L0: and pro�ts per �rm are

proportional to L0N

�1
0 : Similarly, the success rates �he; �xe for entrants acquiring

initial skill/productivity a�ect the population shares but not the growth rate.

B. Policies to increase growth

Investments by incumbent producers and workers have positive external e�ects,

since they improve the pools from which later investors|both incumbents and entrants|
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draw their technologies and skills. Hence investment is below the e�cient level, as in

Perla and Tonetti (2014, Propositions 3 and 4). Subsidies to investment are obvious

policies to overcome this ine�ciency.

A complete analysis of optimal policies, which would require characterizing the

transition path between old and new BGPs, is beyond the scope of this paper. But

it is easy to assess the e�ect of subsidies on long-run growth rates.

Consider subsidies to process innovators and retoolers at constant rates �x and �h;

scaled by the wage/pro�t ow of the the marginal producer/worker. Under such a

policy the normalized Bellman equations for process innovators and retoolers are

(r � g� + �x) vfi = �x�2 + �xi
�

EF [v
f (x)]� vfi

	

;

(r � gw + �h) vwi = �hw2 + �hi fE	[v
w(x)]� vwig ;

and the constants Ax and Ah in (42) become

Âx =
1

1� �x
Ax; Âh =

1

1� �h
Ah:

Thus, subsidies increase the coe�cients on the hazard rates �xi and �hi: The next

result is then immediate.

Corollary 1: Under the hypotheses of Proposition 6, a subsidy �h > 0 to re-

toolers raises g and reduces n; while a subsidy �x > 0 to process innovators increases

n and increases, leaves unchanged, or decreases g as (� � 1)
 < 0; = 0; or > 0:
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C. An example

We conclude with a roughly calibrated numerical example, using data for estab-

lishments to calibrate parameters for products (technologies). In particular,

�x = 7; �h = 1:2; � = 8;

� = 2; r̂ = 0:04; � = 0:0107;

�x = 0:10; �x = 0:008; �xe = 0:33;

�h = 0:03; �h = 0:008; �he = 0:20;

� = [1=8; 1=16; 1=1000] ; �hi = [0:576; 0:572; 0:567] ;


 = [0; 0:0714; 0:1417] ; �xi = [0:0283; 0:0276; 0:0270] ;

which implies

�R = 1:18; �` = 1:21; �w = 8;

gw = 0:00995; n = 0:00741; r = 0:0599;

gY = 0:02065; g� = 0:0132; g = [0:00995; 0:00942; 0:00890] :

The parameters �x; �h; �; are chosen to roughly target the tail parameters �R; �`; �w;

for the distributions of revenue, employment and wages. Zipf's law for establishment

size, measured by either revenue or employment, suggests values not too far above

unity, while the distribution for wages is approximately log-normal, suggesting a large

value for �w:

The values for �; r̂ are standard in the macro literature, � is set at the average

rate of employment growth over the period 1988-2015, �x is the empirical exit rate

for �rms, and �h implies an average working lifetime of 33 years. The evidence for

on-the-job-training/learning-by-doing in Hansen and Imrohoroglu (2009) suggests a

high value for �h: Here it is set near the upper bound imposed by Proposition 5, and

�x is set at the same level.

Since there is little evidence on returns-to-variety, several values|spanning the

entire feasible range|are used for �: For each value, the success rates for incumbent
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investors �hi and �xi are chosen to target wage growth gw and growth n in the number

of establishments, which are set at their historical averages for the period 1988-2015.

These determine the interest rate r; aggregate output growth gY ; growth in pro�ts per

establishment g�; and TFP growth g: Of these, only g varies with �: The success rates

�he and �xe do not a�ect g or n: The growth rates satisfy the inequalities required

by Proposition 5, c0 > 0; "x can be chosen so (31) holds, and the ratios Ni0=Np0; etc.

can be chosen so condition (c) holds.

The model also has predictions for wage growth for individuals and growth in

revenue and employment for establishments. For either type of agent growth has two

components, continuous growth while working/producing and jumps from successful

investment. Since the jumps are hard to match with data, we will focus on age cohorts

of individuals and establishments, which display smooth growth.

Each age cohort of individuals has a mix of workers, retoolers, and entrants, with

proportions that change as the cohort ages. Among survivors at age a � 0, the shares

of the three groups, �w(a); �r(a); �he(a); are

�w(a) =
�hi
bh
�
�he
bh

bh � �hi
bh � �he

e�bha �
�hi � �he
bh � �he

e��hea;

�r(a) = 1� �w(a)� �he(a);

�he(a) = e��hea; a � 0;

where bh � �hi + �h (g � �h) : The share of workers is zero at a = 0 and grows

monotonically as the cohort ages, converging to �hi=bh:

Similarly, each age cohort of establishments has a mix of producers, process inno-

vators, and entrants. Among survivors at age a � 0; the shares of the three groups,

�p; �i; �xe; are

�p(a) =
�xi
bx
�
�xe
bx

bx � �xi
bx � �xe

e�bxa �
�xi � �xe
bx � �xe

e��xea;

�i(a) = 1� �p(a)� �xe(a);

�xe(a) = e��xea0 ; a � 0;
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where bx � �xi + �x (g � �x) :

Figure 1 displays the demographics for the calibration with 
 = 0 (no love-of-

variety). Panel (a) shows the shares of survivors at each age for entering cohorts of

labor and establishments, panel (b) shows the population shares for the labor force,

and panel (c) shows the population shares for establishments. Note that there are al-

most no retoolers, at any age, but there is a substantial amount of process innovation.

Indeed the share of producers peaks and then declines slightly, as producers switch

to process innovation, and in the long run about a third of cohort of establishments

are investing in process innovation. The di�erence in long run shares comes from the

di�erence in the tail parameters for the technology and skill distributions, with the

technology distribution having a much thicker density near its lower threshold.

Only workers receive wages, and at any date, the workers in every age cohort have

average wages equal to the economy-wide average. Since average wages grow at the

rate gw; average earnings among survivors in the cohort of age a; relative to the

average wage in the economy when they entered, are

eAv(a) = egwa�w(a); a � 0:

This average grows rapidly rapidly when the cohort is young, since �w grows rapidly

as entrants transition to workers. As the cohort ages, �w(a) converges to a constant

and growth in average earnings slows, approaching gw as a grows without bound. The

number of survivors declines over time through exit, so total earnings for the cohort

are

eT (a) = e��haAv(a); a � 0;

which grows when the cohort is young and declines when it is old.

Similarly, only producers have revenue and employees, and at any date producers

in every age cohort have average revenue and employment equal to the economy-wide

averages. Since the averages grow at rates g� (revenue) and �� n (employment), the
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averages among survivors in the cohort, relative to the levels when they entered, are

RAv(a) = eg�a�p(a);

`Av(a) = e(��n)a�p(a); a � 0:

Both grow rapidly when the cohort is young, since �p grows rapidly as entrants

transition to producers. As the cohort ages, �p(a) converges to a constant, and

average revenue (employment) among survivors grows in the long run if and only if

g� > 0 (revenue) or � � n > 0 (employment). The number of survivors in the cohort

declines over time as establishments exit, so cohort totals are

RT (a) = e��xaRAv(a);

`T (a) = e��xa`Av(a); a � 0:

Both have an inverse U-shape.

Figure 2 displays cohort earnings and employment. Figure 2a shows (log) cohort

earnings, both the average per survivor and the cohort total. In the model, \entry"

is the date at which cohort members start attempting to acquire, so at age a = 0;

there are no workers and the cohort has no earnings. To better compare the model

with data, it is useful to view a = 4 as the age when the cohort \enters." At this

point about 55% of the cohort is working. Both curves are normalized to zero at that

point. Earnings per survivor grow rapidly for a little less than a decade, and after

that more slowly. The cohort total peaks quickly and then declines, due to exit.

Figures 2b shows (log) employment for a cohort of entering establishments.3 At

age a = 4; about 71% of the cohort is producing. Average employment per survivor

grows rapidly for the next �ve years. It then declines slightly while the cohort is in

middle age, and many survivors are switching from production to process innovation.

In the cohort's old age the population shares are approximately constant. Since ��n

3The �gure for revenue is very similar, since g� and � � n are both very small.
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is very small, employment per survivor is approximately constant for very old cohorts.

The cohort total starts declining almost immediately.

In the example, a modest subsidy to retooling has a large e�ect on TFP growth.

Speci�cally, a subsidy of 20% of the marginal worker's wage increases TFP growth

by almost one percentage point all three cases. It also reduces variety growth by 2:1

to 2:8 percentage points, depending on �: The net e�ect on per capita income (wage)

growth is between 0:9 and 0.5 percentage points, depending on �;

�g = [ 0:00935; 0:00928; 0:00921] ;

�n = [�0:0206; �0:0243; �0:0278] ;

�gw = [ 0:00935; 0:00755; 0:00526] :

In each case growth in pro�ts per variety rises by about three percentage points,

because of faster TFP growth and slower growth in varieties.

By contrast, a subsidy to process innovation of 5% of a marginal �rm's pro�ts has a

zero or slightly negative e�ect on TFP growth and a strong positive e�ect on variety

growth. The net e�ect on growth in per capita income is zero or slightly positive,

depending on �;

�g = [0:0; �0:000267; �0:000519];

�n = [0:00843; 0:00979; 0:0111];

�gw = [0:0; 0:000432; 0:00105]:

In each case growth in pro�ts per variety falls by close to a percentage point, a result

of the large increase in variety growth.

8. INCENTIVES OFF THE BGP

Complementarity between investments in technology and skill suggests that the

incentive for continued investment in either factor relies on continued growth in the
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other. A complete analysis of dynamics away from the BGP is complicated, but

the incentives for the leading or lagging factor to invest can be explored in a simple

setting.

Lemma 7 provides conditions for existence of an equilibrium with no investment and

no growth. Proposition 8 then specializes to economies in which marginal agents are

just indi�erent about investing, and looks at the incentives to invest in a perturbation

of that environment. It shows that the incentive increases for the lagging factor and

decreases for the leading factor.

For simplicity we consider economies where entry is impossible, �xe = 0; and there

is no population growth, no exit, and no on-the-job learning (� = 0; �h = �x = 0;

�h = �x = 0): Thus, there is no growth in variety, n = 0; and both N and L are

constant over time. TFP growth, if there is any, must come from investment by

incumbents. Retooling and process innovation are possible, �hi > 0 and �xi > 0; but

the pools of investors are initially empty, Ni = Li = 0: Since Ne = Le = 0 as well,

Np = N and Lw = L: If there is no investment by incumbents, then the technology

and skill distributions F and 	; and wages, prices, and the interest rate w; p; r; are

constant over time.

In this setting the values vh(h) and vf (x) for workers and �rms are simply the

present discounted values of their wages and pro�ts. If �hi and �xi are su�ciently

small, then the expected values from retooling and process innovation are less than

the values vh(hm) and vf (xm) of continuing to work or produce, and there is no TFP

growth: g = 0: The interest rate is then the rate of time preference, r = r̂: Formally,

we have the following result.

Lemma 7: Let E be an economy with:

a. �xe = 0; � = 0; �h = �x = 0; �h = �x = 0; and

b. initial conditions Ni0 = Ne0 = 0; Np0 = N; Li0 = Le0 = 0; Lw0 = L:

Let w(h); �(x) denote the wage and pro�t functions at t = 0; and let vh(h) = w(h)=r̂;
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vf (x) = �(x)=r̂; denote the associated value functions. If

r̂vf (xm) � �xiEF [vf (x)� vf (xm)] ; (43)

r̂vw(hm) � �hiE	 [vw(h)� vw(hm)] ;

then E has a competitive equilibrium with no investment and no growth.

The two inequalities in (43) say that the �rm with the worst technology and the

worker with the lowest skill prefer, at least weakly, to continue producing and working.

Hence there is an equilibrium in which the allocation and prices that prevail at t = 0

prevail at every date, and the interest rate and values are as claimed.

The next proposition uses this result, specialized in two ways. First, F and 	

are assumed to be Pareto distributions that satisfy the hypotheses of Proposition 4.

Thus, the wage and pro�t functions are isoelastic. In addition, the two conditions in

(43) are assumed to hold with equality, so the marginal agents are indi�erent about

investing.

Fix the parameters �x; xm for F and �h for 	. For the baseline economy suppose

the location parameter for skill is hm = ahxm; so Proposition 4 holds, and let h
�(x);

w(h); vh(h); etc. denote the equilibrium skill allocation, wage function, value function

and so on in the baseline economy. For the perturbed economy suppose the skill

distribution is shifted to the right, with

ĥm � hm (1 + �) ; (44)

where � > 0 is small. Let 	̂(h); ĥ�(x); ŵ(h); v̂h(h); etc. denote the distribution

function for skill, the equilibrium skill allocation, and so on in the perturbed economy.

Proposition 8 shows that if a producer with technology xm is indi�erent about

investing in process innovation in the baseline economy, then it strictly prefers to

invest in the perturbed economy; and if a worker with skill hm is indi�erent about

retooling in the baseline economy, then a worker with skill ĥm strictly prefers not to

retool in the perturbed economy. Formally, we have the following result.

45



Proposition 8: Let E be an economy satisfying the hypotheses of Lemma 7.

Assume in addition that F0;	0; that are Pareto distributions, with shape and location

parameters (�x; xm) ; (�h; hm) satisfying the hypotheses of Proposition 4, and that

the two conditions in (43) hold with equality.

Let E� be an economy that is the same as E except that it has distribution 	̂ with

location parameter ĥm in (44). Let ĥ
�(x); ŵ(h); etc. denote equilibrium for E�, and

let v̂h(h) = ŵ(h)=r̂ and v̂f (x) = �̂(x)=r̂: Then

r̂v̂f (xm) < �xiEF [v̂f (x)� v̂f (xm)] ; (45)

r̂v̂w(ĥm) > �hiE	̂

h

v̂w(h)� v̂w(ĥm)
i

:

The proof involves �rst-order approximations to the equilibrium allocation and prices

in the perturbed economy, so the same argument applies for a small leftward shift in

the skill distribution or for small shifts in the technology distribution.

Proposition 8 suggests that in economies where the initial skill and technology

distributions are (su�ciently) misaligned, there may be a period where there is in-

vestment only in the lagging factor. It also suggests that in the long run, sustained

investment in either factor requires sustained investment in its complement.

9. CONCLUSION

This paper develops a model in which investments in both technology and skill

acquisition are required for long run growth. Growth, in turn, takes two forms: TFP

growth and growth in product variety. The main results are to provide conditions for

the existence of a BGP, to show how the rates of TFP and variety growth depend

on the parameters governing technology and skill acquisition, and to show that the

incentive to invest in either factor depends on the availability of its complement.

On a BGP skill and technology grow at a common rate, which is also the rate of

TFP growth. Nevertheless, the parameters governing skill accumulation are more
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important than those governing technological change in determining that rate. The

parameters for skill and technology enter more symmetrically|but with opposite

signs|in determining growth in product variety. Thus, improvements in the parame-

ters for technological change encourage entry, while improvements in the parameters

for skill accumulation encourage investment in both skill and technology, but discour-

age growth in variety.

In a roughly calibrated numerical example, a subsidy to retooling has a large e�ect

on TFP growth, and hence on growth in per capital output and consumption. The

reason for this is interesting as well: here a subsidy to retooling is powerful not

because of the direct e�ect on the workers receiving the training, but rather because

it changes the distribution from which new entrants to the labor force draw their

skills. Role models are important here: they are they templates that new workers

imitate. Removing the lowest-skill role models means that young workers who would

have imitated them instead draw from skills higher in the distribution.

In equilibrium, continued investment in either factor remains worthwhile only be-

cause the other grows: the technology and skill distributions must shift together.

Although transitional dynamics are not studied in detail, an example shows that the

incentive for either factor to invest depends on the relative level of development of

its complement. In particular, if one factor has a distribution that gets `ahead' of

the other, the incentive to invest in the leading factor declines while the incentive

to invest in the lagging factor gets stronger. This result suggests that the economy

converges to a BGP for any initial distributions that are Pareto, or at least have

Pareto tails.

The model here also suggests that growth rates depend on various types of invest-

ment in a highly nonlinear way. Thus, nonparametric techniques may be more useful

than linear regression models for empirical studies of these relationships.
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APPENDIX A: PRODUCTION AND PRICES

A. Production equilibrium

Proof of Proposition 1: Use (5) to write labor demand as

`(x) = N���
p

�

�� 1

�

��
�(h�(x); x)��1

w(h�(x))�
yF ; all x � xm; (46)

and di�erentiate (7) to write labor market clearing as

Lw (h
�(x))h�0(x) = Np`(x)f(x); all x � xm; (47)

Lw = Np

Z

1

xm

`(�)f(�)d�: (48)

Then (4) and (47) are a pair of ODEs in w(h) and h�(x); with `(x) given by (46). The

price normalization (2) serves as a boundary condition for w; and (6) is the boundary

condition for h�; with yF determined by (48). The other equations in (5) determine

p; y; �. �

Proof of Proposition 4: The functions in (14)-(17) must satisfy (2), (4)-(6)

and (47)-(48).

For any wage function of the form w(h) = w0 (h=hm)
1�" ; as in (15), the linear

function h�(x) = ahx in (14), with ah in (12), satis�es (4). Moreover, for w(h) of this

form the �rst line in (5) implies that

p(x) =
�

�� 1

w2
xm

(x=xm)
�"

�(ah; 1)
; all x � xm:
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Then (2) implies w2 is as in (18), with p0 as claimed.

Then from the second and third lines of (5), y(x) and `(x) have the form

y(x) = y2

�

x

xm

��"

; all x � xm:

`(x) = `2

�

x

xm

��"�1

; all x � xm:

Using the Pareto distribution for F; (48) holds if and only if

Lw = Np`2EF

"

�

x

xm

��x��h
#

= Np`2
�x
�h
;

so `2 is as claimed. Then y(x) and yF follow from the production technologies, and

�(x) is straightforward from (5). The ODE in (47) requires

 (ahx)ah =
�h
�x

�

x

xm

��x��h

f(x); all x � xm;

which holds for the Pareto densities  and f; and clearly (13) implies (6), completing

the proof. �

B. The evolution of technology

The distribution function for technology among producers evolves as follows. As

noted above, Xm(t) is nondecreasing. Let �t > 0 be a small time increment. For any

t � 0 and any X � Xm(t + �t); the number of producers with technology above X

at t +�t consists of incumbents at t; adjusted for exit, plus successful innovators of

both types, selected to include only those with technology greater than (1� �x�t)X

at date t;

[1� F (X; t+�t)]Np(t+�t)

� f1� F [(1� �x�t)X; t]g [(1� �x�t)Np(t) + �xi�tNi(t) + �xe(t)�tNe(t)]:
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Taking a �rst-order approximation gives

[1� F (X; t)]
�

Np(t) +N
0

p(t)�t

�

� Ft(X; t)�tNp(t)

� [1� F (X; t)] [(1� �x�t)Np(t) + �xi�tNi(t) + �xe(t)�tNe(t)]

+f(X; t)�x�tXNp(t):

Collecting terms and dividing by �tNp(t) gives the equation in the text.

APPENDIX B: BGPS WITH PARETO DISTRIBUTIONS

A. Firms: process and product innovation

If � and V f have the forms required for a BGP, then factoring out eg�tQ0; the

Bellman equation for a producing �rm is

(r + �x) vfp(X=Q(t)) = �(X=Q(t)) + �x
X

Q(t)
v0fp(X=Q(t))

+g�vfp(X=Q(t))� v0fp(X=Q(t))
X

Q(t)

_Q(t)

Q(t)
;

or

(r � g� + �x) vfp(x) = �(x)� (g � �x) xv
0

fp(x);

where x = X=Q and _Q=Q = g: For � as in (17), the normalized Bellman equation is

as claimed. De�ne

Rx � �
r � g� + �x
g � �x

< 0; (49)

Bx � [(g � �x) (1� � �Rx)]
�1 > 0;

where Rx is the characteristic root of the ODE. It is straightforward to verify that

vP (x) = Bx�2 (x=xm)
1�� is a particular solution, and vH(x) = cxx

Rx is the homoge-

neous solution. The coe�cient cx is determined by the value matching condition,

cx = x�Rxm (vfi �Bx�2) > 0;
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and vfp(x) is as in (25). Di�erentiate (25) to get the smooth pasting condition,

v0fp(xm) = 0; so vfi is as in (26).

On a BGP, the Bellman equation for vfi is as claimed. To obtain (27), substitute

from (26) and take the expectation in (25) to get

EF̂ [vfp(x)] = Bx�2

�

�x
�x � 1 + �

�
1� �

Rx

�x
�x �Rx

�

: (50)

Use this expression and (26) in the Bellman equation for vfi to get (27),

r � g� + �x = �xi

�

EF̂ [vfp(x)]

vfi
� 1

�

=
�xiRx

Rx � 1 + �

�

�x
�x � 1 + �

�
1� �

Rx

�x
�x �Rx

� 1 +
1� �

Rx

�

=
�xiRx

Rx � 1 + �

�

1� �

�x � 1 + �
�

1� �

�x �Rx

�

=
�xiRx (1� �)

Rx � 1 + �

�Rx + 1� �

(�x � 1 + �) (�x �Rx)

=
�Rx (1� �)�xi

(�x � 1 + �) (�x �Rx)
:

To show that the optimal investment for a product innovator is at ie=ie = 1; use

the de�nition of vfe in (28) and the de�nition of �xe in the neighborhood of ie=ie = 1

to �nd that

v0fe(�) =
r � g� + �x

(r � g� + �x + �)2
EF̂ [vfp(x)] ;

@

@ie
�xe(ie=ie; �) =

�e
�

1

ie
�

8

<

:

1="x; if ie=ie < 1;

"x; if ie=ie > 1:

Hence an optimum at ie=ie = 1; for ie = EF̂ [vfp(x)] ; requires (31).

For any q < �x; integrating w.r.t. the density f(x) = �xx
�x
m x

��x�1 gives EF̂ [(x=xm)
q] =

�x= (�x � q) :
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B. Workers: investment in human capital on the BGP

The analysis for the labor force is analogous, except that trainees pay no entry

cost. Hence (32)-(35) have the same form as (25)-(28), with

Rh � �
r � gw + �h
g � �h

< 0; (51)

Bh � [(g � �h) (1� "�Rh)]
�1 > 0:

C. Flows of �rms and workers, the DFs for technology and skill

On a BGP Xm(t) grows at the rate g; Np(t); Ni(t); and Ne(t) grow at the rate

n; and there is strictly positive process innovation, so (19) holds. Hence the law of

motion for Np requires

nNp = �xiNi + �xeNe � �xNp � (g � �x)
Xm(t)

Q(t)
f(xm)Np

= �xiNi + �xeNe � [�x + �x (g � �x)]Np;

where the second line the Pareto density for f(x): Hence

[n+ �x + �x (g � �x)]Np = �xiNi + �xeNe:

The laws of motion for Ni and Ne require

(n+ �x + �xi)Ni = �x (g � �x)Np;

(n+ �x + �xe)Ne = E:

Sum the three laws of motion to get (36), which determines the entry rate E: The

population shares for �rms are

Np
N

=
n+ �x + �xi

(n+ �x + �xi) + �x (g � �x)

�xe
n+ �x + �xe

;

Ni
N

=
�x (g � �x)

(n+ �x + �xi) + �x (g � �x)

�xe
n+ �x + �xe

;

Ne
N

=
n+ �x

n+ �x + �xe
;
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and the ratios Ni=Np and Ne=Np are as in (37).

If F (X; t) has the form required for a BGP and Q(t) grows at the rate g, then

f(X; t) = f̂(X=Q(t))=Q(t);

�Ft(X; t) = f̂ (X=Q(t)) gX=Q(t); all X � Xm(t); all t:

Use these expressions in the law of motion for F to get

(g � �x) f̂ (X=Q(t))X=Q(t) =
h

1� F̂ (X=Q(t))
i

�x (g � �x) ;

or

(g � �x) xf̂ (x) = (g � �x)�x

h

1� F̂ (x)
i

; all x � xm;

which holds since F is a Pareto distribution with parameters (�x; xm) :

The arguments for the workforce are analogous.

D. Proofs of Propositions 5 and 6

Proof of Proposition 5: Write the equations in (27) and (34) as

g =
1

�h
[ Zh + Ah�hi �Wn
n] ; (52)

g =
1

�x
[� � n+ Zx + Ax�xi �Wnn] ;

where Zx; Zh; Ax:Ah;Wn; are as de�ned in (42). For existence and uniqueness of a

solution to (52), it su�ces to show that the two equations are not collinear. Here we

will prove a slightly stronger result, that

1

�x
[1 + (� � 1)
] >

1

�h
(� � 1)
;

or

�h > (� � 1) [(�x � �h) 
� 1] : (53)
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Since � 2 (0; 1=�] implies 
 2 [0; 1= (�� 1)); and (9) implies �x � �h 2 (�1; �� 1) ;

it follows that

(�x � �h) 
� 1 2

�

�
�

�� 1
; 0

�

:

Hence if � � 1; the term on the right in (53) is zero or negative. If � < 1; then by

assumption �h > �= (�� 1) : In either case (53) holds, and there exists a unique (g; n)

satisfying (42).

De�ne [Q0; F̂ ; 	̂]; xm; hm by (22)-(24). Since (24) implies (13) holds, by Proposition

4 the normalized production equilibrium [w; p; h�; y; `; �; yF ] is described by (14)-(17),

so the price and allocation functions are isoelastic.

Then (25), (26) and (28) determine [vfp; vfi; vfe] ; (29) determines vfe0 as a function

of �xe0; (30) determines ie0; (32), (33) and (35) determine [vw; vwi; vwe] ; (36) deter-

mines E0; (38) determines �xe0; (40) and (41) determine r and c0; and (d) implies

that the the required inequalities hold. Hence the solution describes a BGP. �

Proof of Proposition 6: Plotted in n-g�space, the pair of equations in (52)

are as shown Figure A1: the line de�ned by the �rst equation is downward sloping;

the line de�ned by the second equation has a positive, zero, or negative slope as

(� � 1)
 < 0; = 0; or > 0; and in all case the second line crosses the �rst from below.

For the �rst claim, note that � � 2 implies 
 2 [0; 1); so [(� � 1)
 + 1] > 0: The

second claim is obvious, and the third follows from (53).

Then claims (a) - (c) follow directly from Figure A1. As shown in panel (a), an

increase in �h or �hi; or a decrease in �h; shifts the second line upward, increasing g

and decreasing n: As shown in panel (b), an increase in �; �x or �xi; or a decrease in

�x; shifts the �rst line to the right, increasing n: The e�ect on g depends on the slope

of the second line. A decrease in r̂ does both, as shown in panel (c). Hence it raises

g if (� � 1)
 � 0; and otherwise the e�ects depend on the relative slopes of the two

lines. �
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E. Proof that c0 > 0 in the example

From (41), c0 > 0 if and only if E0ie0=yF < 1: Use (29) and (30) to �nd that

ie0 =
�xe

r � g� + �x + �xe
EF̂ [vfp(x)] :

Since (�x � g) xv0fp(x) < 0; the Bellman equation for vfp implies

EF̂ [vfp(x)] <
1

r � g� + �x
EF̂

"

�2

�

x

xm

�1��
#

=
1

r � g� + �x

1

�

yF
Np0

;

where the second line uses the fact that 1=� is the factor share of pro�ts in income.

Use these two expression and E0 = (n+ �x)N0 to get

E0ie0
yF

<
�xe

r � g� + �x + �xe

1

r � g� + �x

1

�

(n+ �x)N0
Np0

: (54)

Hence E0ie0=yF < 1 if the term on the right in (54) is less than unity. Hence it su�ces

if

�xe
r � g� + �x + �xe

n+ �x
r � g� + �x

1

�
<

Np0
N0

=
n+ �x + �xi

(n+ �x + �xi) + �x (g � �x)

�xe
n+ �x + �xe

where the second line uses Np=N from above, or

n+ �x + �xe
r � g� + �x + �xe

n+ �x
r � g� + �x

1

�
<

n+ �x + �xi
(n+ �x + �xi) + �x (g � �x)

:

In the example, n < r� g�; so the left side is less than 1=�; while since �x (g � �x) is

small, the right side is close to unity.
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F. Dynamics of cohort composition

As a function of age, the shares of �rms of various types satisfy

0

B

B

B

@

�0p(a)

�0i(a)

�0e(a)

1

C

C

C

A

=

0

B

B

B

@

��x (g � �x) �xi �xe

�x (g � �x) ��xi 0

0 0 ��xe

1

C

C

C

A

0

B

B

B

@

�p(a)

�i(a)

�e(a)

1

C

C

C

A

:

The characteristic roots are Rj = 0;�bx;��xe; where bx � �x (g � �x) + �xi: It is

then straightforward to �nd that

�p(a) =
�xi
bx

�
�xe
bx

bx � �xi
bx � �xe

e�bxa �
�xi � �xe
bx � �xe

e��xea;

�i(a) = 1�
�ix
bx
+
�xe
bx

bx � �xi
bx � �xe

e�bxa �
bx � �xi
bx � �xe

e��xea;

�e(a) = 0 + 0 + e��xea:

The argument for workers is analogous.

APPENDIX C: NO-GROWTH RESULT

Proof of Proposition 8: If wages and prices are constant over time, a �rm's

value is proportional to its pro�t, which in turn is proportional to its total wage

bill, and a worker's value is proportional to his wage. Hence vf and vw in (43) and

(45) can be replaced with w(h�)` and w; respectively. Then, since by hypothesis the

conditions in (43) hold with equality, the conditions in (45) are equivalent to

0 < EF

"

ŵ[ĥ�(x)]

ŵ[ĥ�(xm)]

^̀(x)

^̀(xm)
�

w[h�(x)]

w[h�(xm)]

`(x)

`(xm)

#

; (55)

0 > E	̂

�

ŵ(h)

ŵ(hm)

�

� E	

�

w(h)

w(hm)

�

; for � > 0: (56)

By assumption Proposition 4 holds for the baseline economy, so the functions

w(h) = w0h
1�"; h�(x) = ahx and `(x) = `0x

�x��h are isoelastic. The proof uses
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approximations to ŵ; ĥ� and ^̀ that are linear in �;

ŵ(h) � w(h) [1 + �(h)�] ; h � hm;

ĥ�(x) � h�(x) [1 +m(x)�] ;

^̀(x) � `(x) [1 + q(x)�] ; x � xm;

with

d lnw

d lnh
� (1� ") + h�0(h)�; h > hm;

d lnh�

d ln x
� 1 + xm0(x)�;

d ln `

d ln x
� (�x � �h) + xq

0(x)�; x > xm;

where the functions �(h);m(x) and q(x) are determined by equilibrium conditions.

By direct calculation,

@ ln�(h; x)

@ lnh

�

�

�

�

h=ĥ�(x)

� (1� ") [1� "b3m(x)�] ; (57)

@ ln�(h; x)

@ ln x

�

�

�

�

h=ĥ�(x)

� " [1 + (1� ") b3m(x)�] ; x > xm;

where b3 � 1=� � 1 > 0: Recall from optimization by �rms over choice of skill level

in (4) that
d ln ŵ(h)

d lnh

�

�

�

�

h=ĥ�(x)

=
@ ln�(h; x)

@ lnh

�

�

�

�

h=ĥ�(x)

; x > xm;

so

h�0(h)jh=ĥ�(x) � � (1� ") "b3m(x); x > xm: (58)

In addition, recall from optimal price setting by �rms in (5) that

p̂(x) =
�

�� 1

ŵ[ĥ�(x)]

�[ĥ�(x); x]
; x > xm;

so

d ln p̂(x)

d ln x
= �

@ ln�(h; x)

@ ln x

�

�

�

�

h=ĥ�(x)

� �" [1 + (1� ") b3m(x)�] ; x > xm: (59)
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A. The functions m; q

The market clearing conditions for labor and di�erentiated goods can be used to

characterize the functions m and q:

First note that ^̀(x) satis�es overall clearing in the labor market if and only if

Z

1

xm

^̀(�)f(�)d� =
Lw
Np

; (60)

while markets clear for each skill level if and only if the pair
�

ĥ�; ^̀
�

satis�es

Z

1

x

^̀(�)f(�)d� =
Lw
Np

n

1� 	̂[ĥ�(x)]
o

; x � xm: (61)

Use (60) in (61) evaluated at x = xm to �nd that ĥ
�(xm) = ĥm: Hence (44) implies

m(xm) = 1: Di�erentiate (61) to get

�^̀(x)f(x) = �
Lw
Np

 ̂[ĥ�(x)]
ĥ�(x)

x

d ln ĥ�(x)

d ln x
; x � xm;

or

d ln ĥ�(x)

d ln x
= [1 + q(x)�]

�

1 +m(x)�

1 + �

��h

� 1 + fq(x)� �h [1�m(x)]g�; x > xm;

where the �rst line uses `0 = (Lw=Np) (�h=�x) x
�h��x
m ; the Pareto densities for f and

 ; and m(xm) = 1. Hence

xm0(x) = q(x)� �h [1�m(x)] ; x > xm: (62)

For q0; note that markets in the perturbed economy clear for each di�erentiated

good if and only if

yFN
���
p p̂(x)�� = ^̀(x)�[ĥ�(x); x]; x � xm:
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Di�erentiate this equation and use (59) to get

d ln ^̀(x)

d ln x
= (�� 1)

@ ln�(ĥ�; x)

@ ln x
�
@ ln�[ĥ�(x); x]

@ lnh

d ln ĥ�(x)

d ln x

� �x � �h + (1� ") [�"b3m(x)� xm0(x)]�; x > xm;

where the second line uses (57) and �"� 1 = �x � �h; and use (62) to �nd that

xq0(x) � (1� ") f�"b3m(x)� q(x) + �h [1�m(x)]g ; x > xm: (63)

Then (62) and (63) are a pair of ODEs for (m; q) :

As noted above, m(xm) = 1; which provides one boundary conditions. For the

other, overall market clearing (60) requires

EF
�

x�x��hq(x)
�

= x�xm

Z

1

xm

x��hq(x)x�1dx = 0: (64)

With m(xm) = 1; there is a family of solutions to (62) and (63) indexed by the initial

value q(xm) = qm0: To see that there exists a unique qm0 for which (64) holds, consider

the phase diagram for (62) and (63).

The locus in (m; q) space where m0 = 0 is a straight line with slope ��h: The locus

where q0 = 0 is a straight line, with slope �"b3 � �h: The slope can be positive or

negative, but in either case it exceeds ��h; and the two lines cross at (m; q) = (0; �h) :

The stable arms, paths that converge to (0; �h) ; lie between the locus where m
0 = 0

and the vertical axis. The solution requires m(xm) = 1; so the relevant stable arm lies

in the southeast quadrant, to the left of the m0 = 0 locus and hence below the q0 = 0

locus. Along other trajectories with m(xm) = 1; q(x) diverges and (64) is violated.

Thus (m; q)! (0; �h) :

Hence m is strictly positive and everywhere decreasing, asymptotically converging

to zero, while q is everywhere increasing. For the path that converges, (64) holds,

so clearly q(x) takes negative values for x below some threshold and positive values

above the threshold.
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Thus, the skill allocation ĥ�(x) matches each technology x with a higher skill level.

The wedge is a decreasing function of x; and as x ! 1, the wedge declines to zero.

Correspondingly, labor is shifted away from lower technologies, toward higher ones.

Labor input declines for technologies below some threshold x̂; and rise for those above

x̂:

In the limit as x!1, the increase is the one required by the shift in the density

function. Since limx!1 ĥ
�(x) = ahx; and

 ̂(h) �  (h) (1 + �)�h ; h > ĥm;

it follows that limx!1
^̀(x) = `(x) (1 + �h�) :

B. Incentives for process innovation

Write (55) as

0 < EF

("

1 + �[ĥ�(x)]�

1 + �[ĥ�(xm)]�

1 + q(x)�

1 + q(xm)�
� 1

#

w [h�(x)]

w [h�(xm)]

`(x)

`(xm)

)

� �EF

(

h

�[ĥ�(x)]� �[ĥ�(xm)] + q(x)� q(xm)
i

�

x

xm

�1�"+�x��h
)

:

Note that

�[ĥ�(x)] = � fh�(x) [1 +m(x)�]g

� �(ahx) + �0(ahx)m(x)�:

Dropping terms of order �2, the inequality condition is

0 <

Z

1

xm

[�(ahx)� �(ahxm) + q(x)� q(xm)]�x

�

x

xm

�1�"��h

x�1dx

=

Z

1

xm

Z x

xm

[ah�
0(ah�) + q0(�)] d� �x

�

x

xm

�1�"��h

x�1dx

= �x

Z

1

xm

Z

1

�

�

x

xm

�1�"��h

x�1dx [ah�
0(ah�) + q

0(�)] d�

66



=
�x

�h � 1 + "

Z

1

xm

�

�

xm

�1�"��h

[ah��
0(ah�) + �q

0(�)] ��1d�:

Since ah� = h�(�; 0); from (58),

ah��
0(ah�) = � (1� ") "b3m(�):

Then use (63) for �q0(�) to �nd that the term in brackets in the integral is

(1� ") f(�� 1) "b3m(�)� q(�) + �h [1�m(�)]g

= (1� ") [(�� 1) "b3m(�)� �m0(�)] ;

where the second line uses (62). Since m(�) 2 [0; 1] and m0(�) < 0; this term is

everywhere positive, and the inequality holds.

C. Incentives for retooling

The argument for retooling is similar. Note that

 ̂(h) = (1 + �)�h  (h); h > ahxm (1 + �) ;

and write (56) as

0 >

Z

1

hm(1+�)

�

(1 + �)�h
ŵ(h)

ŵ(hm)
�

w(h)

w(hm)

�

�h

�

h

hm

�

��h

h�1dh

�

Z hm(1+�)

hm

w(h)

w(hm)
�h

�

h

hm

�

��h

h�1dh

�

Z

1

hm(1+�)

�

(1 + �h�)
1 + �(h)�

1 + �(hm)�
� 1

�

�h

�

h

hm

�1�"��h

h�1dh� �h�

� �

Z

1

hm

[�h + �(h)� �(hm)]

�

h

hm

�1�"��h

h�1dh� �h�

� �

Z

1

hm

[�(h)� �(hm)]

�

h

hm

�1�"��h

h�1dh:

From (58) we see that � is everywhere decreasing, so the term in brackets is negative

and the inequality holds.
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Figure 2a: cohort earnings for workers
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Figure A1a: comparative static (a)
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Figure A1b: comparative static (b)
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Figure A1c: comparative static (c)
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