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1 Introduction

We are interested in estimating the causal effect β of a policy variable zit on an outcome yit in
a linear panel data model, where i indexes units and t indexes time. We are concerned that the
strict exogeneity of zit may fail due to the presence of a time-varying unobservable ηit that is
correlated with both zit and yit. In the literature on the effects of the minimum wage, yit is youth
employment, i indexes states, t indexes calendar years, and zit is an indicator for years after passage
of a minimum-wage increase. The unobserved confound ηit is labor demand. The concern is that
states tend to pass minimum-wage increases during good economic times (Card and Krueger 1995;
Neumark and Wascher 2006).

A common diagnostic approach in such settings is to look at whether the policy change appears
to have an effect on the outcome before it actually occurs.1 The presence of such pre-event trends
or “pre-trends” is taken as evidence against the strict exogeneity of the policy change.

This approach is incomplete. If pre-trends are not detected, it may be that there are no pre-
trends, or that pre-trends are present but undetected due to limited statistical power. In the latter
case, estimation under the assumption of strict exogeneity is typically inappropriate. If pre-trends
are detected, it is understood that strict exogeneity is likely to fail, but it is not clear what to do.

In both cases, what is needed is a notion of magnitude: given some pre-trend in the outcome,
how much of the apparent effect of the policy is due to confounds, and how much to the causal
effect of the policy? Armed with such a notion, a researcher can conduct valid inference on β
whether or not pre-trends are detected.

In this paper, we propose to obtain such a notion from the behavior of a covariate xit that
is affected by the confound ηit but not by the policy zit. In the minimum wage context, adult
employment responds to labor demand ηit but not to the minimum wage (Brown 1999). Instead of
using adult employment as a control variable, as is commonly done in the literature,2 we propose
to look at its dynamics around minimum wage increases, and use these to infer the dynamics of
ηit.

To fix ideas, suppose we observe the outcome yit in periods t = 1, ..., T and the policy zit in

1Of the 16 papers in the 2016 American Economic Review that use a linear panel data model, 11 are concerned with
the existence of pre-trends as a sign of endogeneity. Of these 11, 9 include a plot of pre-trends, of which 2 provide
a formal test of whether pre-trends are zero. In the minimum wage context, Allegretto et al. (2011) provide a plot of
pre-trends.

2Brown (1999, table 3) describes 13 models of the effect of the minimum wage on teenage or young adult unem-
ployment that have been estimated using state-level panel data. In 5 of these there is a control for the contemporaneous
or past employment-to-population ratio or the prime-age unemployment rate.
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periods t = 1− L, ..., T + L for some L ≥ 1. Say that

yit = βzit + γηit + εit (1)

E(εit|ηit, {zit}T+Lt=1−L) = 0 (2)

E(xit|ηit, {zit}T+Lt=1−L) = ληit, (3)

where (1) defines the causal model, (2) is strict exogeneity of the policy with respect to the un-
observed error εit, and (3) defines the relationship of the covariate xit to the confound ηit up to
the nonzero parameter λ. When the parameter γ is equal to zero, the confound does not affect the
outcome, and identification of β is immediate.

Figure 1a plots coefficients from a regression of yit on
{

∆zi,t+l
}L
l=−L in data simulated from

an example of (1). Here and throughout, ∆ denotes the first difference operator. Because the figure
resembles event-study plots in finance (Ball and Brown 1968; MacKinlay 1997), the corresponding
estimates are sometimes called “event-study estimates” (Hoynes and Schanzenbach 2009; Duggan
et al. 2016).

Figure 1a shows a clear pre-trend in the outcome, indicating that γ 6= 0. Figure 1b shows that
the covariate xit exhibits a pre-trend similar to that of the outcome, and a relatively smaller increase
at the event time. We would like to use the covariate xit to correct for the role of the confound ηit.
Including the covariate xit as a control variable will suffice only if xit is a perfect proxy for ηit (i.e.,
xit = ληit). Subtracting the covariate from the outcome (yielding dependent variable yit−xit) will
suffice only if the effects of the confound are exactly parallel between the outcome and covariate
(i.e., γ = λ).

The alternative that we propose can be understood with reference to Figure 1c. Here, we
rescale the series in Figure 1b so that it exactly matches that in Figure 1a in the two periods
immediately before the event. Under our maintained assumptions, comparing the two series in
Figure 1c allows us to decompose the change in the outcome at the event time into a component
due to the causal effect of the policy and a component due to the confound ηit. The adjusted plot
in Figure 1d removes the estimated effect of the pre-trend from Figure 1a, revealing the dynamics
of the outcome net of the confound, and hence β, the causal effect of interest.

The geometry of these plots suggests an instrumental variables setup, in which Figure 1a plots
the reduced form for the outcome and Figure 1b plots the first stage. Indeed, we show that β can
be estimated by two-stage least squares (2SLS) regression of the outcome yit on the policy zit and
covariate xit, with leads (e.g., zi,t+1) of the policy serving as excluded instruments. An essential
assumption is that the dynamic relationship of xit to zit mirrors the dynamic relationship of ηit to
zit. This means, in particular, that xit is affected by ηit but not by zit.

We also require that there be a pre-trend in the covariate xit. We argue that a pre-trend in ηit
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(a) Outcome of interest yit around event time.
Solid line depicts true causal effect.
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(b) Unaffected covariate xit around event time.
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(c) Overlaying outcome of interest (with confi-
dence intervals) yit and rescaled unaffected co-
variate xit (triangles) around event time.
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(d) Outcome of interest yit around event time,
using the behavior of the covariate to net out the
effect of the confound.

Figure 1: Hypothetical event plots. An unobserved factor potentially causes endogeneity, mani-
fested as a pre-trend in the outcome yit. A covariate xit affected by the confound, but not by the
policy, permits us to learn the dynamics of the confound and adjust for them.

is natural in the many economic settings in which the policy zit changes when some unobserved
state variable ηit crosses a threshold. Indeed, the common approach of using pre-trends to diagnose
failures of exogeneity (γ = 0) is presumably motivated, in part, by the belief that the confound
ηit is likely to exhibit a pre-trend. Our assumptions imply that a pre-trend in ηit manifests as a
pre-trend in the covariate xit, and may or may not manifest as a pre-trend in the outcome yit.

Section 2 generalizes the setup in (1)-(3) to allow for multiple confounds, additive unit-specific
fixed effects, and exogenous controls. We show that the model admits a GMM representation, from
which standard results on estimation and inference (with large N and fixed T ) are available.

Section 3 presents Monte Carlo evidence on the finite-sample performance of our proposed
estimator under a range of alternative data-generating processes, varying both the quality of the
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proxy xit and the strength of identification. In these simulations, when strongly identified our
estimator outperforms the approach of controlling directly for xit except when xit is a nearly perfect
proxy for ηit. Our estimator also outperforms the approach of conducting a test for pre-trends
before proceeding with estimation. We show that this “pre-test” approach is unreliable because it
is vulnerable to undetected (but important) confounds.

The main requirement that our approach imposes on a practitioner is to find a covariate xit that
is related to the confound ηit but unaffected by the policy zit. This is similar in difficulty to finding
a suitable control variable, but without the additional burden of ensuring that xit proxies perfectly
for ηit. (Of course, as our simulations reinforce, xit must still provide a reasonable signal of ηit in
order to permit strong identification.) We believe suitable covariates are present in many, though
by no means all, applied settings of interest.

Section 4 presents applications of our proposed approach to the effect of SNAP on household
spending (Hastings and Shapiro 2018), the effect of newspaper entry on voter turnout (Gentzkow
et al. 2011), and the effect of the minimum wage on youth employment (Neumark et al. 2014;
Allegretto et al. 2017). These applications illustrate a range of possibilities, including cases with
clear pre-trends in the outcome, a case without meaningful pre-trends, and a case in which it is
hard to tell. In some cases our proposed adjustment makes a small difference to point estimates, in
some cases a larger difference, and in some cases it simply implies greater statistical uncertainty.

We are not aware of an existing formal proposal to use an unaffected covariate to adjust causal
inference for pre-trends in a panel data model. In their appendix, Gentzkow et al. (2011) implement
an estimator that is similar in spirit to the one that we propose, but that is not formally justified by
our setup.3 Borusyak and Jaravel (2017) study the identification and estimation of pre-trends in a
dynamic panel data model, but do not consider the use of a covariate to address endogeneity, as we
do here.

Our framework is closely related to classical work on models with measurement error and on
panel data models with strict exogeneity. Replacement of ηit with xit produces a factor model or
a measurement error model (Aigner et al. 1984). A large literature, partially reviewed in Abbring
and Heckman (2007), Heckman and Vytlacil (2007), and Matzkin (2007), shows how to establish
identification in such models, typically by imposing covariance restrictions across equations gov-
erning multiple imperfect measurements of the latent factor. Instead, we impose strict exogeneity
of the policy variable zit with respect to the measurement error in xit to achieve identification using
only a single covariate.4

3Specification (6) of Table B1 in Gentzkow et al. (2011) uses a dynamic first stage analogous to Figure 1b and a
static second stage analogous to (1). They provide a heuristic justification of their estimator in their footnote 5 but do
not justify it formally.

4In the applications we have in mind, the number of covariates is small. If there are instead many covariates
that contain independent information about the unobserved confounds, one may alternatively adapt methods from the
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There are other ways to address policy endogeneity in linear panel data models like (1). One
is to find an instrument for policy changes (Besley and Case 2000). This is an appealing approach
when feasible, but in many settings such instruments are not readily available. Our approach
replaces the requirement of an instrument that impacts the policy but not the outcome with the
requirement of a covariate that is related to the confound but unaffected by the policy. Another
approach is to impose dynamic restrictions on the relationship between xit and ηit. In a panel data
setting with mismeasured regressors, Griliches and Hausman (1986) propose to use lags of xit to
construct valid instruments for xit. This approach requires either that the measurement errors are
serially uncorrelated or that the correlation structure of the measurement error is known (Wansbeek
2001; Xiao et al. 2010). Our approach allows for arbitrary correlation in the measurement errors,
but requires that the policy be strictly exogenous with respect to these errors.

2 Setup and Proposed Estimator

2.1 Model and Identifying Assumptions

We consider a static linear panel data model:

yit = βzit + q′itθ + η′itγ + αi + εit (4)

xit = q′itψ + Ληit + νi + uit, (5)

where yit and zit are observed scalars, qit is an observed Q × 1 vector, xit is an observed K × 1

vector, the R × 1 vector ηit, the K × 1 vector uit and scalar εit are time-varying unobservables,
αi is a time-invariant unobserved scalar, νi is a time-invariant unobserved K × 1 vector, and the
remaining objects are conformably defined parameters. The target of interest is β. We require
that K ≥ R and suppose for simplicity that K = R. We observe data {yit, qit, xit}N,Ti=1,t=1 and
{zit}N,T+`i=1,t=1−m for m ≥ 0 and ` ≥ R. We do not require that zit is binary.

Vector qit collects all observed exogenous variables (e.g., time period indicators) in the sense
that we impose E[ηit|{qit}Tt=1] = E[εit|{qit}Tt=1] = E[uit|{qit}Tt=1] = 0 for all i and t. The vector is
low-dimensional in the sense that Q� N . We do not impose any restrictions on the αi and νi and
thus treat them as fixed effects.

We take two steps to simplify the presentation of the results. First, we set θ = ψ = 0. State-
ments carry over to the more general case by interpreting all data matrices as residuals from the
projection of the remaining variables onto the exogenous variables. Second, we remove the fixed

literature on factor models in high dimensions as in, e.g., Stock and Watson (2002), Bai (2003), Bai and Ng (2010),
and Hansen and Liao (2016).
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effects. Let k̃it = kit − 1
T

∑T
s=1 kis denote the within transformation for any variable kit.5 Then,

we can simplify (4) and (5) to obtain

ỹit = βz̃it + η̃′itγ + ε̃it (6)

x̃it = Λη̃it + ũit. (7)

We now state two assumptions that suffice to identify β.

Assumption 1 (Orthogonality conditions). There exists a set of non-negative integers l = 0, 1, . . . , L

such that

(a) E
[
z̃i,t+lε̃it

]
= 0 ∀ l

(b) E
[
z̃i,t+lũit

]
= 0 ∀ l.

Assumption 2 (Rank conditions). Let wit = (z̃it, z̃i,t+1, · · · , z̃i,t+L)′ and define a matrix H as

H = E(wit[z̃it, x̃
′
it]). Then:

(a) rank(Λ) = R.

(b) rank(H) = (R + 1).

Assumptions 1 and 2 are analogous, respectively, to the exclusion and relevance conditions in
a linear instrumental variables setup. Strict exogeneity of zit in (4), as is commonly assumed in
panel event studies, implies Assumption 1(a). Strict exogeneity of zit in the first stage relationship
(5) implies Assumption 1(b), which allows z̃it and its leads to be correlated with x̃it only through
η̃it.

Remark 1. We do not require the orthogonality of ε̃it and ũit. The covariates xit may be correlated
with the outcome yit through channels other than the confound ηit.

Remark 2. We may think of (7) as structural, or as a projection of x̃it on η̃it. In principle, the latter
interpretation permits the structural relationship between xit and ηit to be nonlinear, provided the
projection residuals respect Assumption 1(b).

Assumption 2(a) imposes that the covariates xit contain information about all of the latent fac-
tors ηit. Assumption 2(b) is the equivalent of the usual instrumental variables relevance assumption
and can in principle be checked in the data. It requires a nonzero correlation between the noisy
proxy xit and leads of zit, i.e., a pre-trend in xit.

Remark 3. Although Assumption 2(a) rules out that Λ = 0, we allow for γ = 0. This means that
our assumptions do not imply a pre-trend in yit.

5We also use this convention for leads and lags of a variable, so, for example, k̃i,t−m = ki,t−m− 1
T

∑T
s=1 ki,s−m.
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Remark 4. If rank(E(wit[z̃it, η̃
′
it]) = (R + 1), then Assumption 2(b) follows from Assumption 1,

Assumption 2(a), and (7). That is, a pre-trend in the confound implies a pre-trend in the covariate.

Remark 5. Suppose that zit = 1 (∃t∗ ≤ t : ηit∗ > η∗) for some threshold η∗. Then, Assumption
2(b) will hold for a wide range of processes. Intuitively, if ηit is autocorrelated, a threshold crossing
at time t + 1 provides a signal that the latent ηit was already large (close to the threshold) in the
previous period. Economic settings covered by this case include:

• Means-tested program. We are interested in the effect of a household’s participation zit
in a means-tested program on some outcome yit as in Hastings and Shapiro (2018). Each
household i becomes eligible for the program when the gap ηit between the household’s
income and a poverty line exceeds a threshold η∗. This setting is closely related to that
in Ashenfelter (1978), who found that an individual’s earnings tend to decline prior to the
individual’s entry into a job training program.

• Firm entry. We are interested in the effect of firm entry into a market on some outcome
yit as in Gentzkow et al. (2011). At any given time t, a single potential entrant can pay
a one-time cost to enter market i and earn a stream of cash flows whose expected present
discounted value is ηit. Under appropriate assumptions on ηit (for example, that it evolves
as a random walk with i.i.d. innovations), the firm enters the first time that ηit exceeds a
threshold η∗ (McDonald and Siegel 1986; Dixit and Pindyck 1994). The policy zit is an
indicator for the presence of a firm in the market.

• State law change. We are interested in the effect of the passage of a law on some outcome
yit. A given state i passes the law when the underlying strength ηit of its economy exceeds
some threshold η∗. The policy zit is an indicator for periods after passage of the law.

Remark 6. It is straightforward to allow the dimension of zit to be greater than one, and to allow
for dynamic treatment effects such that yit =

∑m
j=0 βjzi,t−j + q′itθ + η′itγ + αi + εit. We do not

pursue these in order to keep notation and statements simple.

Remark 7. Our model rules out anticipatory effects of the policy. Specifically, (6) and Assumption
1(a) exclude any direct effect of leads of zit on yit.

Remark 8. Although we have written (6) and (7) in terms of within-transformed variables, our anal-
ysis would apply to first-differenced variables, with corresponding changes in the interpretation of
the assumptions.
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2.2 GMM Representation and 2SLS Estimator

To move towards a GMM representation, use Assumption 2(a) to define the R × 1 matrix Γ̃ =

Λ(Λ′Λ)−1γ. Now define

ṽit ≡ ε̃it − ũ′itΓ̃ (8)

= ỹit − βz̃it − x̃′itΓ̃ (9)

where (9) follows from (6) and (7) given the definition of Γ̃. Now from Assumption 1:

E [witṽit] = 0. (10)

Assumption 2(b) guarantees that the moment conditions in (10) are sufficient to identify β (and,
incidentally, Γ̃).

Estimation may proceed by GMM using the sample analogues of (10) as moment conditions.
For the case where T is fixed and N grows large, estimation and inference results are available
under standard regularity conditions (Newey and McFadden 1994).

One convenient estimator justified by (10) is a 2SLS regression of ỹit on z̃it and x̃it, treating
the covariates x̃it as mismeasured regressors and the leads of z̃it as the excluded instruments. We
will use this 2SLS estimator in our simulations and applications.

Remark 9. In principle, any functions of the leads of z̃it are valid instruments. In practice, we
expect that T will often be moderately sized, and that the closest leads will be most informative.
As a default we therefore suggest choosing the R closest leads of z̃it as instruments. Because the
number of potential instruments will usually be small and the instruments are ordered (with closer
leads more likely to be informative), BIC will often be a natural choice among formal methods for
instrument selection.

Remark 10. Extending our framework to the case whereK > R provides many additional moment
restrictions in principle, though one suspects the usual complications from using many moment
conditions (Han and Phillips 2006; Newey and Windmeijer 2009) would arise in this setting.

Remark 11. Suppose that we observe ỹit and z̃it in one sample and x̃it and z̃it in another. Then we
may proceed with two-sample instrumental variables estimation (Angrist and Krueger 1992; Inoue
and Solon 2010) using the leads of z̃it as instruments for x̃it.

3 Simulations

This section presents results from Monte Carlo simulations. These allow us to compare the perfor-
mance of alternative estimators and to assess the adequacy of standard asymptotic approximations
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of the finite-sample distributions of our estimator.

3.1 Data-generating Processes and Estimators

Definition 1 (Data-generating processes). Throughout this section we consider the following data-

generating processes (DGPs):

• ηit = ρηit−1 + ζit, where ζit ∼ N(0, σ2
ζ ) are i.i.d across i and t.

• zit = 1({∃t∗ ≤ t : ηit∗ > η∗}), where η∗ is chosen so that the average number of events is

approximately constant across different values of the simulation parameters.6

• K = 1 and

xit = ληit + uit (11)

where uit ∼ N(0, σ2
u) are i.i.d. across i and t.

• The outcome is generated by:

yit = βzit + 0.25ηit + 0.2t+ αi + εit (12)

where β = 1, αi ∼ N(0, 1) are i.i.d. across i, εit ∼ N(0, 1) are i.i.d. across i and t, and αi
and εit are independent for all i and t.

All of the simulations are based on the DGPs specified in Definition 1. Section 3.2 presents
benchmark results for a design with λ = ρ = 1, σ2

ζ = 1 and σ2
u = 4. We initialize ηit with ηi1 = 0

and generate 20 time series observations for each i. We then use the ten time periods t ∈ {6, 15}
as the sample for estimation.

Section 3.3 presents more extensive results for a variety of designs with ρ ∈ [0, 1). For these we
choose σ2

ζ and σ2
u such that Var(η̃it) = 1 and Var(x̃it) = 2. To simulate these designs, we generate

20 time-series observations for each of 1000 cross-sectional units i. We initialize ηi,−19 as i.i.d.
draws from a standard normal distribution and use the initial 20 observations t = −19,−18, . . . , 0

as burn-in. We then keep an estimation sample of 10 time-series observations consisting of the
periods t = 6, 7, . . . , 15, retaining the full history of zit so that we can construct leads and lags.
Applying this procedure leaves us with T = 10 time-series observations on N = 1000 units, of
which approximately 200 experience an event.7

6Specifically η∗ = 1(ρ < 0.9)(1.96 + 0.2ρ) + 1(ρ = 0.9)1.85 + 1(ρ = 1)4. Online Appendix Figure 4 shows
how the performance of our estimator changes as we change the importance of ηit in determining zit.

7Online Appendix Figure 1 shows the mean number of cross-sectional observations in which an event occurs across
the design space considered in the stationary case. Within each set of simulation parameters, the number of units with
an event generally lies between 160 and 240. We include in our analysis all cross-sectional units, including those in
which an event does not occur (Borusyak and Jaravel 2017).
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To vary the strength of identification we will consider varying values of ρ in [0, 0.9]. As ρ
increases, our instruments, the leads of zit, will become stronger, resulting in better identification.
On the other hand, as the autocorrelation in ηit approaches zero, we lose identification. Within this
design, stronger persistence in ηit will tend to exacerbate bias that arises from failing to account
for ηit.

To vary the quality of xit as a proxy for ηit, we vary λ to control the population R2 from the
infeasible regression of xit on ηit in (11). When this R2 equals one, xit is a perfect proxy, and the
best possible control for ηit is xit. As this R2 approaches zero, the proxy xit provides no signal
about the latent variable ηit, and identification fails.

We consider four different feasible estimators for the policy effect β and its dynamic coun-
terparts, and include individual and time fixed effects in all specifications. The first estimator we
consider ignores ηit entirely and simply regresses the outcome yit on the event indicator zit (“Fail-
ing to control for ηit”). The second estimator uses xit as a proxy for ηit and corresponds to the
regression of the outcome yit on the event indicator zit and the covariate xit (“Using xit as proxy
for ηit”). The third estimator is from our proposed 2SLS regression of the outcome yit on the
event indicator zit and the covariate xit, using zi,t+1 as an excluded instrument for xit (“2SLS -
one lead”). Online Appendix Figure 2 presents corresponding results using the BIC to choose the
number of first-stage leads.

The last estimator that we consider formalizes the idea of testing for pre-trends that is common
in applied work (“Pre-testing for pre-trend”). To compute this estimator, we first compute the
typical event study estimates, normalized so that the coefficient on zi,t+1 is equal to zero. We then
perform a conventional test that the coefficient on zi,t+2 is equal to 0 at the 5% level. If we fail
to reject the hypothesis, we conclude that there is no pre-trend and proceed with the analysis as
in “No control.”8 If we reject the null, we conclude that there is a pre-trend and “give up.” We
formalize the notion of “giving up” by returning a confidence interval of (−∞,∞) and no point
estimate. When evaluating point estimates for this procedure, we consider only those cases where
we do not give up. Online Appendix Figure 3 summarizes the rejection frequency of the pre-test.

3.2 Results for a Benchmark Data-generating Process

Figure 2 presents event-study estimates for a single realization from the DGP with ρ = 1. Specif-
ically, each panel of Figure 2 depicts estimates of the coefficients δk from a different method of

8We designed this implementation of the pre-test procedure to match practice in empirical research based on our
survey of the 2016 American Economic Review. For example, Bustos et al. (2016) estimate the effect of their policy
variable one period in advance (Equation 13, Table A6) and report that, depending on the outcome variable, pre-trends
are either not statistically different from zero or are opposite to the causal effect they estimate (section V.B). Pierce and
Schott (2016) (Equation 3, Figure 4, and p. 1644) report that the estimated effect of their policy variable is statistically
indistinguishable from zero in all periods prior to the policy change.

10



estimating the parameters of the following model:

yit = δ−6+(1− zi,t+5) + δ6+zi,t−6 +
5∑

k=−5

δ−k∆zi,t+k + ωt + αi + ηit + εit, (13)

where ωt are time effects, (1 − zi,t+5) indicates that the event is more than five time periods in
the future, and zi,t−6 indicates the event took place more than five periods in the past. We use the
normalization that δ−1 = 0.

Figure 2 shows both pointwise 95% confidence intervals and uniform 95% sup-t confidence
bands (Olea and Plagborg-Møller 2017). Applied papers commonly include pointwise confidence
intervals in event plots. These permit testing only of preselected pointwise hypotheses. Uniform
bands such as those we show here are designed to contain the true path of the coefficients 95%
of the time, and are therefore arguably more useful for the goal of giving readers a sense of what
kinds of pre-trends are consistent with the data.

Figure 2a reports results from estimating (13) including ηit as an additional regressor. Because
ηit is unobserved, this approach is infeasible, but it provides a useful benchmark of best-case per-
formance. Point estimates of pre-event trends are reasonably small and well-estimated. Estimates
of the policy effects (δk for k > 0) are reasonably close to one, the true value.

Figure 2b reports estimates without any control for ηit and shows both strong pre-trends and
substantial bias in the estimated effects of the policy. Figure 2c reports estimates based on including
the observable xit in place of the latent variable ηit. As xit is a noisy measure of ηit, controlling
for xit only partially mitigates the pre-trends and the bias in the estimated policy effects relative to
Figure 2b.

Figure 2d shows the event plot using our proposed 2SLS estimator to account for the unob-
served factor ηit. Specifically, we proxy for ηit with xit and instrument for xit with zi,t+1.9 As ex-
pected, the proposed estimator delivers sensible estimates of pre-trends and policy effects, though
there is a loss of precision relative to the infeasible benchmark in Figure 2a.

Figure 2e reports estimates after pre-testing. As no pre-trend is detected in this particular
realization, this plot is identical to Figure 2b.

Figure 3 shows the median and uniform confidence band for the estimates in Figure 2 across re-
peated simulations from the same benchmark DGP. Figure 3 reinforces the conclusion from Figure
2 that, among the feasible estimators, only the 2SLS approach is centered at the true value.10 On-
line Appendix Figure 6 shows that including unit-specific deterministic linear trends as a control—
another common strategy for modeling confounds in a panel setting (Jacobson et al. 1993)—does

9Using zi,t+1 as an instrument means that we need to normalize δk for an additional k. In Figure 2d we set δ−2 = 0.
10Online Appendix Figure 5 shows how the appearance of plots based on our proposed 2SLS estimator depends on

the choice of normalization.
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(a) Controlling directly for ηit (infeasible)
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(b) Failing to control for ηit
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(c) Using xit as proxy for ηit
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(d) Proposed 2SLS estimator, with closest lead
of zit as excluded instrument
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(e) Pre-testing for pre-trend

Figure 2: Exemplary event plots in the presence of a confounding factor using simulated data. Each
plot shows estimates of the coefficients δk from (13) using either the infeasible estimator or one of
the four feasible estimators defined in Section 3.1. Inner confidence sets as indicated by the dashes
correspond to 95% pointwise confidence intervals, while outer confidence sets are the uniform
95% sup-t bands (with critical values obtained via simulation). Standard errors are clustered at the
individual level. Data are a single draw from the benchmark DGP defined in Section 3.1 with a
true causal effect of β = 1.
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(e) Pre-testing for pre-trend

Figure 3: Distribution of event plots under the presence of a confounding factor using simulated
data from the benchmark DGP defined in Section 3.1 with a true causal effect of β = 1. Each
plot shows estimates of the coefficients δk from (13) using either the infeasible estimator or one
of the four feasible estimators defined in Section 3.1. The red solid line in the center represents
the median estimate across 10,000 realizations, while the blue dotted lines depict the uniform 95%
confidence band: 95% of the estimated sets of coefficients lie within this band. In the plot labeled
“Pre-testing for pre-trend”, we depict estimates that fail to control for ηit from the 584 realizations
in which we do not detect a pre-trend.
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Figure 4: Median bias for each estimator defined in Section 3.1. Each point represents the median
bias across 2000 simulation replications from the DGPs in Definition 1 with ρ ∈ [0, 0.9]. The
horizontal axes in each panel correspond to the different values of ρ and of the population R2 from
the infeasible regression of xit onto ηit in (11).

not lead to a correctly centered estimator.

3.3 Results for a Set of Data-generating Processes

We turn next to an exploration of the full space covered by the stationary variant of the DGPs. We
consider estimates β̂ from

yit = βzit + ωt + αi + ηitγ + εit, (14)

where ωt are time effects. We consider the four feasible estimators defined in Section 3.1.
Figure 4 depicts the absolute median bias of each estimator. As expected, the presence of the

unobserved confound severely biases the estimator that completely fails to control for ηit (top left
panel). Using xit directly to control for ηit also results in severe bias except when the R2 from the
infeasible regression of xit on ηit is very large, in which case xit is a nearly perfect proxy for ηit
(top right panel). Also in line with our expectations, the median of our proposed 2SLS estimator
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Figure 5: Median absolute deviation from the true parameter value for each estimator defined in
Section 3.1. Each point represents the median absolute deviation across 2000 simulation replica-
tions from the DGPs in Definition 1 with ρ ∈ [0, 0.9]. The horizontal axes in each panel correspond
to the different values of ρ and of the population R2 from the infeasible regression of xit onto ηit
in (11).

is close to the true value across most of the parameter space (bottom left panel). The exceptions
occur in the regions of weak identification, where there is either little correlation between xit and
ηit or little autocorrelation in ηit. Finally, the test for pre-trends leads to little improvement relative
to no controls at all (bottom right panel). The reason is that the test often fails to detect pre-trends,
even though they are present.

Figure 5 depicts the median absolute deviation of each estimator from the true parameter value.
The sampling distribution of estimators other than our proposed 2SLS estimator are dominated by
bias. Therefore, for these estimators, the plots in Figure 5 closely resemble those in Figure 4. In
contrast, our proposed estimator performs well except in regions of the parameter space in which
identification is weak.

Figure 6 depicts the coverage of the 95% confidence interval for each estimator constructed
from the usual asymptotic approximation assuming the underlying sampling distribution is ap-
proximately normal and correctly centered. Failing to do anything to account for ηit results in
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Figure 6: Coverage of the 95% confidence interval for each estimator defined in Section 3.1. Each
point represents the coverage of the 95% confidence interval across 2000 simulations replications
from the DGPs defined in Definition 1 with ρ ∈ [0, 0.9]. The confidence interval is constructed
from the usual asymptotic approximation, with standard errors clustered at the individual level.
The horizontal axes in each panel correspond to the different values of ρ and of the population R2

from the infeasible regression of xit onto ηit in (11).

severe size distortions across the entire parameter space (top left panel). Coverage is likewise poor
when xit is used directly as a proxy for ηit, except when xit proxies ηit very well (top right panel).
In contrast, empirical coverage for the 2SLS estimator is close to 95% throughout the parameter
space, except where identification is weak (bottom left panel).11

The pre-test estimator exhibits uniformly poor coverage in this simulation design (bottom right
panel). The observed coverage is a consequence of two offsetting patterns. When we reject the
null of no pre-trend, coverage is necessarily 1 as we conclude we cannot use the data to learn about
β. When we fail to detect a pre-trend and proceed as if no confound is present, coverage is close
to 0 as the estimator is severely biased.

Although we present quantitative results for one particular form of pre-testing, we expect sim-

11Poor coverage in regions of weak identification could be corrected by applying appropriate weak-identification
robust procedures (Stock et al. 2002; Andrews and Mikusheva 2016).
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ilar issues would arise for any analogous attempt to weed out bad cases in advance of estimation.
The reason is that such approaches are vulnerable to the presence of confounds that are small
enough that they cannot be reliably detected in finite samples, but still large enough to signifi-
cantly bias results obtained assuming such confounds are absent. By contrast, under the assump-
tions in Section 2, our proposed estimator delivers valid inferential statements when there are large
confounds (in scenarios where pre-trends are detected), when there are modest confounds (where
pre-trends are present but too small to be detected), and when there are no confounds (where omit-
ting ηit would also be fine). Our recommendation to use the 2SLS estimator is in line with the large
statistics and econometrics literature regarding the use of pre-tests for model/specification choice.
Guggenberger (2010), in particular, makes a very similar argument in the context of choosing
between OLS or IV estimation.

4 Applications

In this section, we apply our proposed estimator to empirical settings corresponding to the three
examples discussed in Remark 5. Together these capture many of the scenarios a practitioner might
encounter:

• A clear pre-trend in the outcome variable and a clear pre-trend in the covariate (Section 4.1).

• No pre-trend in the outcome variable and a clear pre-trend in the covariate (Section 4.1).

• An unclear pre-trend in the outcome variable and a clear pre-trend in the covariate (Section
4.2).

• An unclear pre-trend in the outcome variable and an unclear pre-trend in the covariate (Sec-
tion 4.3).

4.1 The Effects of SNAP Participation on Household Spending Patterns

Hastings and Shapiro (2018) study the effect of participation in the Supplemental Nutrition As-
sistance Program (SNAP) on household spending in a panel event-study design. Here i indexes
households and t indexes calendar quarters. The outcome yit is either at-home food expenditures
or the share of food spending going to store-brand items. The policy zit is an indicator for time
periods following entry into the program. SNAP is means-tested, so households become eligible
when income ηit is sufficiently low. Past research shows that lower household income is associ-
ated with lower at-home food expenditures (Castner and Mabli 2010) and greater store-brand share
(Bronnenberg et al. 2015), so income is a potential confound. Hastings and Shapiro (2018) have
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access to Rhode Island administrative data which includes SNAP participation zit and a measure xit
of household income, and separate data from a grocery retailer which includes SNAP participation
zit and the outcomes yit.12

Figure 7 reproduces from Hastings and Shapiro (2018) a plot of the time path of household
income around the adoption of SNAP. Specifically, denoting average monthly household income
during the quarter as xit, we depict estimates δ̂ from

xit = δ−5+(1− zi,t+4) + δ5+zi,t−5 +
4∑

k=−4

δ−k∆zi,t+k + φt + νi + uit, (15)

where φt are time effects.
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Figure 7: Estimated changes in household income at quarters around SNAP adoption. Figure plots
estimates of coefficients δ from (15), with the time period one quarter prior to SNAP adoption
(“-1”) as the omitted category. Inner confidence sets as indicated by the dashes correspond to 95%
pointwise confidence intervals, while outer confidence sets are the uniform 95% sup-t bands (with
critical values obtained via simulation). Standard errors are clustered at the household level.

The patterns in Figure 7 are consistent with a model in which household income is a determi-
nant of SNAP eligibility as in Remark 5. We see a clear decline in income in the time periods
leading up to a household’s adoption of SNAP. Following the adoption, we observe an increase in
household income.

Figure 8 depicts estimates δ̂ from two specifications of

yit = δ−5+(1− zi,t+4) + δ5+zi,t−5 +
4∑

k=−4

δ−k∆zi,t−k + γηit + αi + ωt + εit, (16)

12The results in this section are based on regression output obtained from the authors at http:
//www.brown.edu/Research/Shapiro/data/government.zip and http://www.brown.edu/
Research/Shapiro/data/retailer.zip on January 11, 2018.
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(a) At-home food expenditure around SNAP adop-
tion, not controlling for household income.
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(b) At-home food expenditure around SNAP adop-
tion. Proposed 2SLS estimator, with zit+1 as ex-
cluded instrument.
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(c) Store-brand share of food expenditures around
SNAP adoption, not controlling for household in-
come.
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(d) Store-brand share of food expenditures around
SNAP adoption. Proposed 2SLS estimator, with
zi,t+1 as excluded instrument.

Figure 8: Estimated changes in outcomes at quarters around SNAP adoption. Each figure plots
estimates of coefficients δ from (16), with the time period one quarter prior to SNAP adoption
(“-1”) as the omitted category. Inner confidence sets as indicated by the dashes correspond to 95%
pointwise confidence intervals, while outer confidence sets are the uniform 95% sup-t bands (with
critical values obtained via simulation). Standard errors are clustered at the household level.

where ωt are time effects and the outcome yit represents either monthly at-home food expenditure
(Figures 8a and 8b) or store-brand share of food expenditures (Figures 8c and 8d).

In Figures 8a and 8c, the term in (16) involving ηit is ignored and so no attempt is made to
control for confounds. Figure 8a shows that there is no economically meaningful pre-trend in
monthly at-home food expenditure. This is consistent with the argument in Hastings and Shapiro
(2018) that the effect of cash income on food spending is small. By contrast, Figure 8c shows a
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Figure 9: Geometric illustration of proposed estimator. Dashed line depicts household income
(Figure 7, rescaled). Round markers depict store-brand share of food expenditures (Figure 8c)
around SNAP adoption respectively. Difference depicted in Figure 8d.

clear pre-trend in store-brand share that is small in absolute terms but large relative to the change
on adoption. We note that, since SNAP adoption can occur at any time in the quarter, period 0 is
“partially treated”.

Figures 8b and 8d use our proposed estimator, with the closest lead of zit serving as an excluded
instrument for xit. Because yit and xit are not observed jointly, we use a two-sample instrumental
variables estimator (Angrist and Krueger 1992; Inoue and Solon 2010). In the case of at-home
food expenditures, Figure 8b shows that, as expected, taking the income confound into account
does not alter the conclusions from the uncorrected plot in Figure 8a.

By contrast, Figure 8d differs markedly from Figure 8c. This is because the relatively large pre-
trend in store-brand share implies a significant response to changes in income. The instrumental
variable approach we take accounts for this pre-trend through the presence of the confound ηit,
and eliminates the pre-trend from the plot. The dynamics of store-brand share that we observe
following adoption likely reflects households’ gradual exit from the program following adoption.

Figure 9 provides a geometric intuition for our proposed procedure. It combines a rescaled ver-
sion of Figure 7 with Figure 8c. Our proposed estimator uses the dynamics in both the household
income and store-brand share in the two quarters prior to the event to infer the size of the effect of
the confound. Geometrically this amounts to aligning the two plots in the two-period window prior
to the event. We interpret the remaining difference, depicted in Figure 8d, as an approximation of
the causal effect of SNAP adoption on the store-brand share.

Figure 8 illustrates two possible scenarios for applying our approach in the presence of a clear
potential confound. In the first scenario, confidence sets exclude a meaningful pre-trend in the
outcome, and our proposed method formalizes the intuitive notion that the confound does not
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cause significant bias in the estimation of the policy effect. In the second scenario, there is a clear
pre-trend in the outcome, and our method adjusts causal inference for the presence of the confound.

Table 1 presents estimates β̂ from the static analogue of (16). Although a static model does
not capture the post-treatment dynamics of the outcomes, it is a common way to summarize the
effect size (Borusyak and Jaravel 2017). The first row shows that, with no control for household
income, the estimated effect of adopting SNAP on monthly expenditure is 86 dollars, while SNAP
adoption leads to a decrease in the store-brand share of 0.4%. The second row notes that controlling
for household income directly is infeasible, as household income and the outcomes of interest are
not observed in the same data. The third row shows that, using our proposed 2SLS estimator, the
estimated effect of SNAP adoption on monthly food expenditure is 84 dollars, similar to the first
row. On the other hand, the estimated effect on the store-brand share is a decrease of 0.7%, an
increase in magnitude of almost 60% compared to the first row. As expected from Figure 7, the
first stage is highly significant. The last row shows the estimate from pre-testing for a pre-trend.
This estimate coincides with that in the first row in the case of monthly food expenditure, where
there is no detectable pre-trend, and is undefined in the case of the store-brand share, where there
is a clear pre-trend.

Estimator Effect of SNAP adoption on Coefficient on lead
monthly expenditure store-brand share in first-stage

No control 85.97 -0.0044
(1.23) (0.0004)

Controlling for xit infeasible infeasible

Proposed 2SLS estimator 84.35 -0.0070 -151.81
(one lead) (1.11) (0.0004) (2.55)

Pre-testing for pre-trend 85.97 —
(1.23) (—)

Table 1: Estimates of the effect of SNAP adoption. In the first two columns, each row corresponds
to a different estimate β̂ from yit = βzit + ωt + γηit + αi + εit. The first row uses no control
for household income. The second row reports that controlling directly for household income is
infeasible. The third row uses our proposed 2SLS estimator, treating the closest lead of SNAP
adoption as an excluded instrument for household income. The last row depicts our pre-test esti-
mator. For monthly expenditure, we cannot reject δ−2 = 0 at the 5% level in (16) (see Figure 8a),
and therefore proceed with estimation as in the first row. In contrast, for store-brand share, we re-
ject δ−2 = 0 at the 5% level in (16) (see Figure 8c), and therefore do not proceed with estimation.
The last column shows the coefficient on the excluded instrument in the first stage of the 2SLS
estimator. Standard errors in parentheses are clustered at the household level.
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Figure 10: Estimated changes in population at election years around newspaper entries/exits. The
plot shows estimates of coefficients δk from (17). Inner confidence sets as indicated by the dashes
correspond to 95% pointwise confidence intervals, while outer confidence sets are the uniform
95% sup-t bands (with critical values obtained via simulation). Standard errors are clustered at the
county level.

4.2 The Effect of Newspaper Entry and Exit on Electoral Politics

Gentzkow et al. (2011) study the effect of newspapers on voter turnout, exploiting variation gen-
erated by the entries and exits of daily newspapers to local markets in the US. Here, i indexes
local markets (counties) and t indexes presidential election years. The outcome yit is voter turnout.
The policy zit is the number of English-language daily newspapers in the market. Following Re-
mark 5, it is reasonable to expect the entry of a newspaper to coincide with an improvement in
market profitaiblity ηit. Because the state of the local economy could also affect voter turnout,
market profitability is a potential confound. Gentzkow et al. (2011) have proxies for profitability,
including a measure xit of the log of the voting-eligible population.13

Figure 10 depicts estimates of the coefficients δk from

∆xit =
5∑

k=−5

δ−k∆zi,t+k + ∆φst + ∆uit, (17)

where φst is a state-year fixed effect. The patterns in the figure are consistent with a model in
which the voting-eligible population approximates newspaper profitability: We see a clear increase
in population growth in the time periods leading up to a market entry, and then population growth
flattens out again after an entry has occurred.

13We use the authors’ original data, available at https://www.aeaweb.org/articles?id=10.1257/
aer.101.7.2980, in our analysis.
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Figure 11 depicts estimates of the coefficients δk from three specifications of the equation:

∆yit =
5∑

k=−5

δ−k∆zi,t+k + ∆ωst + γ∆ηit + ∆εit, (18)

where ωst is a state-year fixed effect. We omit additional control variables but show in the Online
Appendix how their inclusion affects our results. In Figure 11a the term involving ηit is omitted
from (18). This specification therefore does not control for newspaper profitability. Figure 11b
controls for market profitability by directly substituting the observed xit for ηit in (18). Figure 11c
uses our proposed 2SLS estimator, with the closest lead of ∆zit serving as an excluded instrument
for ∆xit. Based on the uniform bands, we reject the hypothesis of no pre-trends when no control
is used, but fail to reject in the other two specifications.

Table 2 presents estimates β̂ from the static analogue of (18), which represents the causal
effect of an additional newspaper on voter turnout. The first row shows that with no controls the
estimated effect is 0.26 percentage points per newspaper. The second row shows that controlling
for the log of voting-eligible population leads the estimate to increase to 0.37 percentage points
per newspaper. The third row shows that our proposed 2SLS estimator gives an estimate of 0.34
percentage points per newspaper, which is statistically and economically similar to the estimate in

Estimator Effect of Coefficient on lead
newspaper entry in first-stage

No control 0.0026
(0.0009)

Controlling for xit 0.0037
(0.0010)

Proposed 2SLS estimator 0.0034 0.0128
(one lead) (0.0013) (0.0017)

Pre-testing for pre-trend —
(—)

Table 2: Estimates of the effect of newspapers on voter turnout. In the first column, each row
corresponds to a different estimate β̂ from ∆yit = β∆zit + ∆ωst + γ∆ηit + ∆εit. The first
row uses no control for market profitability. The second row uses the log of the voting-eligible
population as a proxy. The third row uses our proposed 2SLS estimator, treating the closest lead of
the number of newspapers as an excluded instrument for the log of the voting-eligible population.
The last row depicts our pre-test estimator. Because we reject δ−1 = 0 at the 5% level in (18) (see
Figure 11a), we do not proceed with estimation. The second column shows the coefficient on the
excluded instrument in the first stage of the 2SLS estimator. Standard errors in parentheses are
clustered at the county level.
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(a) Not controlling for market profitability
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(b) Using the log of voting-eligible population as
a proxy for market profitability
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(c) Proposed 2SLS estimator, with ∆zc,t+1 as
excluded instrument

Figure 11: Estimated effects on presidential turnout at election years around newspaper en-
tries/exits. The plot shows estimates of coefficients δk from (18). Inner confidence sets as indicated
by the dashes correspond to 95% pointwise confidence intervals, while outer confidence sets are
the uniform 95% sup-t bands (with critical values obtained via simulation). Standard errors are
clustered at the county level.

the second row.14

The fourth row shows the results from the pre-test procedure defined in Section 3.1. A test
of the hypothesis that the coefficient on ∆zi,t+1 in Figure 11a is significantly different from zero
yields a t−statistic of -2.07 with a p−value of 0.039. The pre-test procedure therefore suggests not
to proceed with estimation.

14The p−values for equality of estimates relative to controlling for xit directly are 0.000 for the estimator with no
control and 0.714 for our proposed 2SLS estimator. These p−values are based on 100 cluster-bootstrap replications.
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Figure 12: Prime-age employment at quarters around minimum wage increases. The plot shows
estimates of coefficients δ from (19). Inner confidence sets as indicated by the dashes correspond to
95% pointwise confidence intervals, while outer confidence sets are the uniform 95% sup-t bands
(with critical values obtained via simulation). Standard errors are clustered at the state level.

4.3 The Effect of the Minimum Wage on Youth Employment

There is an ongoing debate about the effect of the minimum wage on youth employment (Neumark
et al. 2014; Allegretto et al. 2017). Let i index states and t index quarters. The outcome yit
is the log of the teen (16-19) employment-to-population ratio. The policy zit is the log of the
state minimum wage. The control qit is the share of teenagers in the population. We may be
concerned that states implement minimum-wage increases when demand ηit for labor is strong
(Card and Krueger 1995; Neumark and Wascher 2006). We proxy for labor market conditions
using a measure xit of the log of the prime-age (25-55) employment-to-population ratio. For
prime-age workers the effect of minimum wages is minor compared to other sources of variation
(Brown 1999). However, directly controlling for xit, as is commonly done, fails to allow for
mismeasurement of the true demand for youth labor.

We construct data on yit, xit, and qit from the CPS Outgoing Rotation Groups for the years
1985 − 2014.15 We obtain data on zit from David Neumark’s Minimum Wage Dataset.16 All
regressions in this section are weighted by teen population.

Figure 12 depicts the time path of our proxy, the log of prime-age employment, around mini-
mum wage increases. Specifically, the figure depicts estimates of the coefficients δk from

xit = δ−4+(1− zi,t+3) + δ3+zi,t−3 +
3∑

k=−2

δ−k∆zi,t+k + q′itψ + φt + νi + uit. (19)

15The Current Population Survey data is available at http://www.nber.org/data/morg.html. We con-
struct the employment-to-population ratios as the proportion of individuals in the corresponding age category who
self-report as either “Working” or “With a job, not at work.” We weight individual observations using the final weight
variable to obtain state-level aggregates.

16The minimum wage data is available at http://www.socsci.uci.edu/˜dneumark/datasets.html
We use the higher of the federal or state minimum wage as the prevailing minimum wage.
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(a) Not controlling for state of economy
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(b) Using prime-age employment as a proxy for
the state of the economy
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(c) Proposed 2SLS estimator, with zi,t+1 as ex-
cluded instrument

Figure 13: Teen employment at quarters around minimum wage increases. The plot shows esti-
mates of coefficients δk from (20). In the top row, inner confidence sets as indicated by the dashes
correspond to 95% pointwise confidence intervals, while outer confidence sets are the uniform
95% sup-t bands (with critical values obtained via simulation). In the bottom figure, dashed con-
fidence intervals correspond to 95% pointwise confidence intervals, ignoring weak identification.
Standard errors are clustered at the state level.

Here, we slightly abuse notation to define qit to exclude time-period indicators. Consistent with
our expectation, the point estimates indicate that increases in the minimum wage tend to occur
following an increase in prime-age employment. However, the estimates are imprecise, and based
on the uniform confidence intervals we cannot reject the hypothesis of no pre-trends.

Figure 13 depicts estimates δ̂ from three specifications of the equation:

yit = δ−4+(1− zi,t+3) + δ3+zi,t−3 +
3∑

k=−2

δk∆zi,t+k + γηit + q′itθ + ωt + αi + εit. (20)

In Figure 13a the term involving ηit is omitted from (20). This specification therefore does not
control for the state of the labor market. Figure 13b uses prime-age employment xit directly as a
control. Figure 13c depicts the results from our proposed estimator, in which we use the closest
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lead of the policy, zi,t+1, as an excluded instrument for xit. Note that the first stage for this model is
weak, and the confidence set for γ/λ based on inversion of the Anderson-Rubin (AR) test consists
of the entire real line. A projection argument therefore implies that valid confidence sets in Figure
13c also include the entire real line.

Table 3 presents estimates β̂ from the following static model, represented in first differences:

∆yit = β∆zit + ∆q′itθ + ∆ωt + γ∆ηit + ∆εit. (21)

The first row of Table 3 shows that with no controls we estimate a statistically insignificant elastic-
ity of teen employment with respect to the minimum wage of−0.0114. The second row shows that
controlling for adult employment leads the estimated elasticity to decline in absolute magnitude
to −0.0094. This estimate remains statistically insignificant. The third row shows that using our
proposed 2SLS estimator we estimate an elasticity of 0.0003. This estimate is statistically insignif-
icant according both to conventional standard errors, and to a confidence interval constructed by
projection based on inversion of the AR test for γ/λ, which has infinite length. The last row shows

Effect of log(MW) Coefficient on lead
in first stage

No control -0.0114
(0.0743)

Controlling for -0.0094
prime-age employment (0.0708)

Proposed 2SLS estimator 0.0003 0.0314
(one lead) (0.0668) (0.0136)

[−∞,∞]

Pre-testing for pre-trend -0.0114
(0.0743)

Table 3: Estimates of the effect minimum wage on teen (16-19) employment. Dependent variable:
log(employment/population). Each row corresponds to a different estimate β̂ from the model in
first differences given by (21). The first row uses no control for the state of the economy. The
second row uses the prime-age employment as a proxy. The third row uses our proposed 2SLS
estimator, treating the change in the first lead of the log of the minimum wage as an excluded
instrument for the change in the log of prime-age employment. We present both conventional
standard errors and a confidence interval (in square brackets) constructed by projection based on
an inversion of the AR test for γ/λ. The last row depicts our pre-test estimator. Because we cannot
reject δ−2 = 0 at the 5% level in (20) (see Figure 13a), we proceed with estimation as in “No
control”. All regressions are weighted by teen population. Standard errors are clustered at the state
level.
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that, because we cannot reject the hypothesis of no pre-trends in yit, the estimate from the pre-test
procedure coincides with the one in the first row.

This last application demonstrates the limitations of our proposed estimator. Instrument rel-
evance requires a strong pre-trend in the covariate xit. Absent such a pre-trend, our proposed
estimator is not strongly identified and our approach implies that the econometrician cannot learn
about the parameter of interest. Arguably, however, that is a valid conclusion if we are concerned
about a confound ηit and are not confident that xit is a perfect proxy for that confound.

5 Conclusion

We consider a linear panel data model with possible endogeneity. The common approach of ex-
amining plots of event-study estimates, or formally testing for the presence of pre-trends, is inade-
quate. We show how to exploit a covariate related to the confound but unaffected by the policy of
interest to perform causal inference in this setting. We validate our proposal in simulations from a
range of data-generating processes, and apply it to three economic settings of interest.
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