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1 Introduction

The literature on foreign exchange (FX) rates has a strong interest in Uncovered Interest
Parity (UIP) violations, that is, in documenting how their risk premiums vary with the state
of the economy and what are the sources of this variation. More recently, this interest has
expanded to multiple periods. One bit of evidence is that exposure of the forecasted depre-
ciation rate to the respective interest rate differential (IRD) has a puzzling non-monotonic
pattern, as a function of the forecast horizon (Bacchetta and van Wincoop, 2010; Engel,
2016; Valchev, 2016). In contrast, as we show in this paper, the same exposure of foreign
forward rates is monotonic. The two pieces of evidence essentially reflect expectations of
the same object – future depreciation rates – but under different probabilities, actual versus
risk-adjusted, respectively.

In this paper we ask which features of the data generating process could account for the
two types of patterns simultaneously. We conclude that incorporating weak, or “long-run”,
purchasing power parity (PPP, hereafter) into a joint model of exchange rates and bond
prices goes a long way towards this goal. PPP posits that the real exchange rate (RER) is
stationary, or, equivalently, that the nominal exchange rate between two countries and their
respective price levels are cointegrated. The error correction component of this cointegrating
relationship is the driving force behind the empirical success of our model.

The error correction term characterizes how state variables adjust in response to a shock to
the RER in order to restore the long-run relationship between these variables. The speed
of this adjustment, which we denote by a parameter alpha, does not matter in the long run
but will affect relationships between the state variables at intermediate horizons. Alphas
are responsible for the documented shapes of exchange rate forecasts. Thus, any economic
theory that is trying to explain the currency predictability patterns should be focusing on
generating endogenous speed of error correction.

This conclusion suggests that bond-based evidence should exhibit similar non-monotonic
patterns across horizons. They do not. This is because bond returns or prices reflect risk-
adjusted expectations, and UIP holds under the risk-adjusted probability, a.k.a. covered
interest parity (CIP). This means that the loading on the IRD is equal to one and that
no other variable predicts the depreciation rate one step ahead: the risk-adjusted alpha
controlling the speed of the depreciation rate’s adjustment is equal to zero. This effect
leads to a monotonic pattern in exposure to the IRD.

We implement these ideas via a Gaussian no-arbitrage international term structure model.
Such models are based on a state that follows VAR-like dynamics. We complement such a
VAR by the cointegrating relationship between the nominal exchange rate and the two price
levels that is implied by PPP. The standard practice is to combine such a relationship with
the VAR dynamics via a VECM representation. We reinterpret the VECM by introducing
the companion form of a VAR and extending the original vector of state variables to include
the new state, that is, the (stationary) RER. Including state variables that are cointegrated
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into the dynamics of the model is new to the literature on no-arbitrage term structure
models.

First, we use this modeling framework to illustrate our main points in the context of the
most simple setting. The state vector contains the nominal depreciation rate, inflation
differential and the IRD. Second, we confirm these insights by estimating a realistic model
of the joint behavior of bilateral depreciation rates and yield curves of the two respective
countries. In this case, the state includes the nominal depreciation rate, the respective
inflation rates, and nominal interest rates of two countries and of different maturities.

We estimate VARs in bilateral settings of the U.S.A. and one of the following four countries:
the U.K., Canada, Germany/Euro, and Japan. In each case the model does a good job in
capturing the joint dynamics of the macro variables and term structures of interest rates.
In particular, the model replicates the cross-horizon regression patterns with respect to
both actual and risk-adjusted expectations. The model also matches the long-horizon UIP
patterns documented by Chinn and Meredith (2004). Further, we provide evidence that
removing the PPP-based cointegrating relationship eliminates the model’s ability to match
the multi-horizon patterns.

Under the null of our model, the IRD-based regressions can be interpreted as projections
of the nominal FX premium on the IRD. We compare the nominal FX premium implied
by our model and that depends on all the VAR variables to the projected one. The two
exhibit similar cyclical properties regardless of the horizon but the model-based premium is
larger and often moves in the direction that is opposite of the projected one. This evidence
suggests that UIP-based intuition about the FX premium behavior could be misleading and
that there are other variables that could play an important role in the premium variation
over time.

Related literature

The literature on currency risk premiums is extensive. In this brief review, we focus on
papers that explore the role of the RER in this context. Our paper is most closely related
to Dahlquist and Penasse (2016), who explore the PPP implications for UIP regressions.
They impose PPP by iterating forward the relationship between nominal excess returns,
real exchange rates, interest differentials, and inflation differential, a.k.a. the present value
approach. They do not focus on the role of deviations from PPP at the short to intermediate
horizons, neither do they study the interaction with yield curves.

Engel (2016) uses a VECM with the cointegrating relationship implied by PPP as a tool for
constructing cross-horizon expectations of nominal depreciation rates, but there is no dis-
cussion of departures from PPP. Jorda and Taylor (2012) use a similar VECM to motivate
predictive regressions of nominal depreciation rates. Boudoukh, Richardson, and Whitelaw
(2016) explore similar regressions. Balduzzi and Chiang (2017) explore the present value
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approach as a restriction that is helpful in increasing the power of tests of the UIP hypoth-
esis. Relatedly, Ferreira Filipe and Maio (2016) use the same restriction to compute vari-
ance decompositions of nominal exchange rates. Asness, Moskowitz, and Pedersen (2013);
Menkhoff, Sarno, Schmeling, and Schrimpf (2017) use real exchange rates in the cross-
section of currencies.

2 Preliminary evidence

2.1 Review of regressions

Let St denote the exchange rate defined in terms of the number of dollars $ per unit of
foreign currency. If St increases, the U.S. dollar depreciates. Let `t and ̂̀t denote the one
period U.S. and foreign interbank rates. We use lower case letters to denote the logarithm
of a variable, i.e., st = logSt, and hats to denote a variable from a foreign country, i.e.,̂̀
t. We use ∆st+1 = st+1 − st to denote the one-period time-series difference operator, and

∆c`t = `t− ̂̀t to denote the cross-country difference operator. We study multiple countries,
but we suppress asset-specific notation for simplicity.

The famous uncovered interest parity (UIP) regressions of Bilson (1981); Fama (1984);
Tryon (1979) construct forecasts of next period depreciation rates, Et [∆st+1], on the basis
of current IRDs. The recent literature, such as Engel (2016); Valchev (2016), focuses on
forecasts of depreciation rates at longer horizons. That is, the authors document how
Et [∆st+n] changes with horizon n as a function of ∆c`t.

Financial markets also make implicit forecasts of future depreciation rates when they value
foreign and domestic bonds. In contrast to the UIP regressions, these forecasts are produced

under the risk-adjusted probability, E∗t [∆st+n] . Let fyn−1
t and f̂y

n−1

t denote the U.S. and
foreign one-period forward interest rates, that is, the rate an investor can lock in at time t

for borrowing from t+ n− 1 to t+ n. The forward exchange rate fsn−1
t = fyn−1

t − f̂y
n−1

t

provides a measure of the market’s risk-adjusted expectation of the future depreciation rate
fsn−1

t = logE∗t [exp ∆st+n] = E∗t [∆st+n] + convexity. This prompts us to complement
the existing evidence on actual forecasts and to study E∗t [∆st+n] as a function of ∆c`t for
different horizons n.

2.2 Data

We work with monthly data from the U.S., U.K., Canada, Germany/Eurozone, and Japan
from January 1983 to December 2015 making for T = 396 observations per country. Nominal
exchange rates are from the Federal Reserve Bank of St. Louis. Prior to the introduction
of the Euro, we use the German Deutschemark and splice these series together beginning
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in 1999. Following a long tradition in the literature, interbank rate differentials ∆c`t are
constructed from forward exchange rates, obtained from Datastream.1 We obtained daily
interbank rate and exchange rate data and take the last business day of each month.

To analyze the risk-adjusted forecasts, we need forward exchange rates at longer matu-
rities. They are constructed from government bond yields, ynt , via fyn−1

t = nynt − (n −
1)yn−1

t . U.S. government yields are downloaded from the Federal Reserve and are con-
structed by Gurkaynak, Sack, and Wright (2007). All foreign government zero-coupon
yields are downloaded from their respective central banks (Bank of England, Bundes-
bank, Bank of Canada and the Bank of Japan). All government yields have maturities
of 12, 24, 35, 48, 60, 72, 84, 96, 108, 120 months. Because the available maturities are annual,
we can only run regressions on average annual forward rates. The quality, frequency, and
available maturities of the government bond data dictate the choice of countries in our
sample.

2.3 Results

We implement UIP forecasting regressions of monthly changes in the depreciation rate on
the IRD of the corresponding country

st+n − st+n−1 = γn0 + γn∆c`t + ut+n, n = 1, 2, . . . , 120. (1)

It is common to implement these regressions with fixed effects (γn is the same across coun-
tries). We report the average of country-specific γn because it is easier to construct a
comparable measure from a model.2 This regression departs from standard UIP regressions
by using the depreciation rate as the left-hand side variable. Usually the left-hand side vari-
able is the excess log return on a currency trade, that is, the one-period depreciation rate
minus the IRD. UIP would predict γ1 = 1 for our setup. A standard result in international
finance is the ‘UIP puzzle’ which finds statistically significant negative estimated values of
γ1.

The blue lines of Figure 1 report the regression coefficients γn. They start below zero
at a horizon of one month. They change sign and become positive at horizons of 3 to 8
years, before converging back towards zero. This evidence is consistent with the numbers
presented in Engel (2016); Valchev (2016) and is viewed as a puzzle because it contradicts
mainstream theories of exchange rates.

We can measure how the risk-adjusted expectation E∗t [∆st+n] is related to ∆c`t from a
contemporaneous regression of forward exchange rates on the IRD. Given annual maturities

1Our analysis does not require the values of foreign rates, ̂̀t. That allows us to avoid addressing the
important analysis of CIP violations in Du, Tepper, and Verdelhan (2016).

2In our dataset, the fixed-effect common γn and the reported average are similar. The comparison is
available upon request.
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of yields, our data on forward exchange rates measures the expected average annual change
instead of monthly changes. The regression is

E∗t [(st+n − st+n−12)/12] = γ∗n0 + γ∗n∆c`t + u∗t+n, n = 12, 24, . . . , 120, (2)

where, again, we report the average value of country-specific γ∗n. At the one-month horizon,
the forward exchange rate equals the IRD by no arbitrage. Consequently, UIP holds under
the risk-adjusted probability, or, equivalently, CIP holds.

The red lines of Figure 1 report the regression coefficients γ∗n. In contrast to γn, they start
positive near a value of one as expected from the CIP condition, decline monotonically, and
never change sign. The presented evidence deepens the puzzle of the γn pattern.

2.4 Interpretation of the evidence

The regressions discussed above implicitly focus on the joint dynamics of the (log) depre-
ciation rate ∆st and the IRD ∆c`t. If we focus our attention on simple models such as a
vector autoregression of order one, then it is mathematically impossible to generate the
documented non-monotonic pattern in the UIP regression coefficients if the joint dynamics
of the two variables is not affected by anything else. Indeed, a vector autoregression (VAR)
of order one would imply that regression coefficients are proportional to the powers of IRD’s
persistence – a monotonic pattern.

Appendix A discusses how, in a simple VAR model, one needs at least one more stationary
variable that possesses the following properties in order to generate the observed patterns.
First, this variable should either forecast ∆st or ∆c`t, or both. Second, the variable must
be forecastable by ∆c`t. These requirements are intuitive: one needs an extra variable
forecasting the depreciation rate to break the monotonic pattern implying the first condition.
However, the first condition on its own does not help at multiple horizons if the second one
does not hold.

Third, the monotonic pattern in the risk-adjusted regression coefficients suggests that fore-
casting ∆st is key. This is because the CIP condition,

∆c`t = logE∗t [exp ∆st+1] ,

implies that no variable, other than the interest rate differential ∆c`t, forecasts ∆st.
3 The

difference between the actual and risk-adjusted worlds would be responsible for the differ-
ence in the patterns of regression coefficients.

In this paper we argue that the RER is a variable that satisfies these requirements. The
cointegrating relationship between the nominal exchange rate and (log) price level differen-
tial implied by the stationarity of the RER, i.e. long-term PPP, guarantees that the first

3Under heteroscedasticity, the variance of the depreciation rate could be another predictor of ∆st, but it
is not forecastable by ∆c`t, so it does not satisfy the first property.
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and second properties hold. Risk-adjustment takes care of the rest. In the following, we
explicitly show how it works. While we cannot prove that there are no other variables that
could satisfy the aforementioned conditions, we argue that none of the variables heretofore
explored in the literature satisfy these requirements.

3 A simple model

The purpose of this section is to illustrate how the documented regression patterns can be
replicated when the RER serves as a variable that co-moves with the nominal depreciation
rate and IRD.

3.1 Error correction representation

We reconcile both actual and risk-adjusted patterns of the regression coefficients by high-
lighting the role of the risk of intermediate-term deviations from Purchasing Power Parity
(PPP). Short-term PPP states that the RER is equal to one, or, in logs, et ≡ st−pt+p̂t = 0,
where pt denotes the (log) price level. Short-term PPP does not hold empirically but there
is a strong, although not universal, opinion that PPP does hold over the long-term, that is,
et is stationary. We assert long-term PPP and show how this helps in understanding the
evidence presented in the previous section.

We present a simple model motivated by the specifications of Engel (2016); Dahlquist and
Penasse (2016); Jorda and Taylor (2012) that allows us to explain how PPP connects to the
evidence. We introduce a vector of non-stationary macro variables mt = (st,∆cpt)

>, where
∆cpt = pt − p̂t. Further, we work with the following stationary variables: domestic and
foreign inflation rates πt = ∆pt and π̂t = ∆p̂t, and their cross-sectional difference ∆cπt =
πt − π̂t; the IRD ∆c`t. Stack the state variables into a vector ft: ft = (∆m>t ,∆c`t)

>. RER
et = β>mmt is stationary, that is, the macro variables mt are cointegrated with cointegrating
vector β>m = (1,−1).

Ignoring means (assuming all variables have a zero mean), the state is assumed to follow a
vector error correction model (VECM):

ft = Φfft−1 + αfet−1 + Σfεt.

Errors in this model are deviations from the cointegrating relation et = 0 (long-term PPP).
They set in motion changes in ft that correct the errors. The vector αf = (αs, απ, α`)

>

controls the speed of this error correction.

To simplify the setup, assume that

Φf =

 0 0 φs`
0 φπ 0
0 0 φ`

 , Σf =

 σs 0 0
0 σπ 0
0 0 σ`

 .
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The coefficient φs` is related to the UIP regression. The RER follows

et = β>mmt = et−1 + ∆st −∆cπt

= −φπ∆cπt−1 + φs`∆c`t−1 + (1 + αs − απ)et−1 + σsεst − σπεπt.

As a result we can re-write the VECM as a (restricted) VAR by creating a new state vector
xt = (f>t , et)

>. The dynamics of xt in companion form are:

xt = Φxxt−1 + Σxεt (3)

with

Φx =


0 0 φs` αs
0 φπ 0 απ
0 0 φ` α`
0 −φπ φs` 1 + αs − απ

 , Σx =


σs 0 0
0 σπ 0
0 0 σ`
σs −σπ 0

 .

One obvious advantage of this companion form is that valuation of bonds is straightforward
in the affine no-arbitrage framework.

Further, if the RER is stationary, the companion form makes it clear that at least one of
the αf ’s must be non-zero. Therefore, et must forecast at least one element of ft. This is
a manifestation of the first property highlighted in section 2.4. In a univariate regression
setting, Dahlquist and Penasse (2016) emphasize that et is helpful in forecasting ∆st+1,
that is, αs 6= 0. The second property holds as well: the IRD ∆c`t forecasts et as long as it
forecasts ∆st. This is because of the PPP-implied restriction φe` ≡ Φx43 = Φx13 ≡ φs`.

Finally, the VAR representation implies that the relationship between horizon n and the
forecast Et [∆st+n] is controlled by exponents of the matrix Φx, which is affected by the
properties of αf . Indeed,

Et [∆st+n] = e>1 Φn
xxt, e>1 = (1, 0, 0, 0).

In general, it is difficult to obtain tractable closed-form expressions for long horizons n. We
can do so for horizons n = 1, 2, 3 in the case of our simple model:

Et [∆st+1] = φs`∆c`t + αset, (4)

Et [∆st+2] = −φπαs∆cπt + (φs`φ` + φe`αs)∆c`t + (φs`α` + αsαe)et, (5)

Et [∆st+3] = −φπ(α2
s + αsαe + φs`α`)∆cπt + [φe`αs(αe + αs) + φs`(φ

2
` + φe`α`)]∆c`t

+ [φs`α`(αe + φ`) + αs(α
2
e − φπαπ + φe`α`)]et, (6)

where αe ≡ 1 + αs − απ, and we used φe`, which is equal to φs` under PPP, to emphasize
the hypothetical case of φe` = 0. The expression in (4) highlights “the missing premium” of
Dahlquist and Penasse (2016). The expressions in (5), (6) make the role of αf for forecasting
obvious. Even if only αs 6= 0, it impacts the forecasting ability of all elements of xt.
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As the horizon increases, the loadings on ∆c`t can be written as the sum of two terms that
are controlled by the forecasting parameters φs` and αf . We highlight these here for n = 3
as

term 1 = φs`(φ
2
` + φe`α`)

term 2 = φe`αs(αe + αs).

The first term contains φs` and it multiplies powers of the IRD autocorrelation coefficient
φ2
` , which becomes φn−1

` at longer horizons. This term induces a slow monotonic decay
in the covariances as the horizon increases and it is the dominant component of the UIP
regression coefficients γn, especially at short horizons. If the RER were not present in the
model (αf = 0), or if φe` = 0 then the cross auto-covariance between the depreciation rate
and the IRD would simply decay monotonically because it is influenced only by the product
φs`φ

n−1
` as the horizon increases. These observations are consistent with the properties

outlined in section 2.4.

In order to illustrate these relationships quantitatively, we estimate the VECM in (3) using
the U.S. and the U.K. data. In the spirit of the previous section, we report the model-implied
coefficients γn. The results are presented in the left panel of Figure 2.

We consider several scenarios to emphasize the role of αf : (i) all elements of αf are equal to
zero; (ii) only one of the elements of αf is not equal to zero; (iii) all the elements of αf are
free. The first case corresponds to the regular VAR for the state ft. It implies the standard
pattern of monotonically increasing coefficients that approach zero at long horizons. The
second case when απ 6= 0 happens to be almost identical. The coefficients γn cross zero at
long horizons suggesting a potential hump at n > 120 months when α` 6= 0. Finally, when
αs 6= 0 and in the third case, we observe the pattern that is qualitatively consistent with
Figure 1.

3.2 Risk adjustment

Our model is too simple to perform a formal risk-adjustment because we do not have an
explicit specification of the reference interest rate `t. Therefore, we follow a storied finance
tradition and use asterisks to denote parameters that are different under the risk-adjusted
probability. The “volatility” matrix Σf is unchanged. The persistence matrix Φ∗f could be
different from Φf , including the zero elements becoming non-zero. For the purposes of this
discussion we simplify and assume the following form:

Φ∗x =


0 0 1 0
0 φ∗π 0 α∗π
0 0 φ∗` α∗`
0 −φ∗π 1 1− α∗π

 .

The first row is dictated by the fact that CIP must hold. The second and third rows are
assumed. The last row is implied by the first three.
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The CIP-imposed restrictions that φ∗s` = 1 and α∗s = 0 immediately suggest that the risk-
adjusted pattern could have different properties. Indeed, the risk-adjusted counterparts of
terms 1 and 2 in equation (6) for a forecast horizon n = 3 are:

term 1∗ = φ∗2` + α∗`

term 2∗ = 0.

If α∗` is sufficiently close to zero, we obtain a monotonic pattern in the regression coefficients,
γ∗n that starts at a value of one at horizon n = 1 due to CIP.

One needs to use prices of market instruments, e.g., bonds, to estimate the risk-adjusted
parameters. We are not going to do that in this section. Instead, we simply assume that
the state variables are more persistent under the risk-adjusted probability. Thus, we set
φ∗` = 0.99 (φ` = 0.97) and φ∗π = 0.5 (φπ = 0.27). We further consider two scenarios with
either α∗π = α∗` = 0, or α∗π = απ and α∗` = α`. We set α∗s = 0 in both scenarios because of
CIP.

The right panel of Figure 2 displays the results. As a benchmark, the red line with crosses
shows the actual pattern of γn corresponding to the full VECM model from the left panel.
The green line with asterisks corresponds to the case when α∗π = απ and α∗` = α`. This
line is monotonic but its slope appears to be too small compared to the evidence in Figure
1. Most importantly, the values of γ∗n for large n are much higher than the corresponding
γn. The black line with squares corresponds to α∗π = α∗` = 0. In this case the pattern is
qualitatively much closer to the empirical one.

4 A realistic model

We have presented multihorizon empirical patterns of coefficients that relate actual and risk-
adjusted expectations of future depreciation rates to the current IRD. We illustrated, using
a simple model, how these patterns can be captured in one framework by incorporating the
RER that converges to PPP in the long run and currency risk premiums. In this section
we verify that this intuition actually holds in the data by developing an international no-
arbitrage term structure model of nominal yields together with inflation rates, and nominal
and real exchange rates.

We follow a plan that is similar to the presentation of the simple model in section 3. We start
with a generic state ft that controls the dynamics of the state variables and follows an error
correction model (ECM). We show how it is related to macro variables and, after properly
adjusting for risk premiums, to domestic and foreign bond prices. Then we present a specific
choice of the state ft whose elements are easily interpretable. To the best of our knowledge,
the VECM structure for the factors and its companion form are new to the literature on no-
arbitrage term structure models. The literature on international no-arbitrage term structure
models does not incorporate the real exchange rate as a factor.
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4.1 State dynamics

We specify the dynamics of the state ft as a Gaussian VECM given by

ft = µf + Φfft−1 + Πff
L
t−1 + Σfεt εt ∼ N (0, 1) (7)

where fLt denotes the factors in levels. The factors ft are stationary while the levels fLt are
unit-root non-stationary. This implies the existence of cointegration and that the matrix
of coefficients Πf has reduced rank; see Engle and Granger (1987). It can be factored
as Πf = αfβ

>
f where βf is the matrix of cointegrating vectors. The matrix αf contains

the speed of adjustment parameters that determine how fast the system converges back to
its long-run equilibrium. Our model of cointegration is an example of an error correction
representation; see, e.g. equation [19.1.42] in Hamilton (1994). Our representation differs
from the standard approach in the econometrics literature in two ways. We define ft to
include only I(0) variables rather than a mixture of I(1) and I(0) variables and we define
the matrix of cointegrating vectors βf to include only linear combinations of non-stationary
variables; see Appendix B for more discussion.

4.1.1 Macro variables

We model the depreciation rate and the inflation rate differential as a linear function of the
state given by

∆st = δs,0 + δ>s,fft (8)

∆cπt = δπ,0 + δ>π,fft. (9)

For convenience, we stack the nominal exchange rates and price level differentials into a
vector mt = (st ∆cpt)

> and write their first differences ∆mt as a function of the factors as

∆mt = δm,0 + δm,fft. (10)

The initial value m0 = (s0 ∆cp0)> is assumed to be known. The log RER between the U.S.
and foreign country is defined as

et ≡ st −∆cpt ≡ β>mmt, (11)

where β>m = (1 − 1).

4.1.2 Companion form of state dynamics

Given the relationship between the macroeconomic variables mt and the state variables ft,
the dynamics of the real exchange rates et are pinned down by the dynamics of the factors
ft in (7). To see this, we write real exchange rates in terms of the factors

et = β>mmt = et−1 + β>m (δm,0 + δm,fft)
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and substitute in ft from (7) to find the dynamics of real exchange rates

et = βf,0 + β>f µf + β>f Φfft−1 +
(

1 + β>f αf

)
et−1 + β>f Σfεt (12)

where β>f = β>mδm,f and βf,0 = β>mδm,0.

Combining (7) and (12), we define the state vector xt =
(
f>t e>t

)>
and write the VECM in

companion VAR form

xt = µx + Φxxt−1 + Σxεt, εt ∼ N (0, 1) , (13)

where the vectors and matrices are defined as

µx =

(
µf

βf,0 + β>f µf

)
Φx =

(
Φf αf
β>f Φf 1 + β>f αf

)
Σx =

(
Σf

β>f Σf

)
.

The companion form for xt makes immediately clear that if αf = 0 so that there is no
cointegration then the real exchange rate et must be non-stationary. This is because Φx

reduces to a lower block-triangular matrix whose lower right block is simply equal to one
when αf = 0. The matrix Φx will have (at least) one eigenvalue equal to one. Conversely,
if et is stationary, then αf 6= 0 and the real exchange rate must forecast one of the variables
in the system: future depreciation rates, inflation rate differentials, or interest rates.

Most theories of the real exchange rate in the international macroeconomics literature result
in stationary real exchange rates. A natural question to address is which other variable the
real exchange rate forecasts. This point is similar to Cochrane (2008), where the price-
to-dividend ratio represents the cointegrating relationship. If it is stationary, then it must
forecast either returns or dividend growth.

4.2 Yields

It is standard practice in the literature to run the UIP regressions using interbank rates
as the one month IRD. While researchers frequently associate these rates with Libor, this
interpretation is problematic prior to Libor’s inception in 1986 and in the wake of the
financial crisis of 2008 (Du, Tepper, and Verdelhan, 2016). We describe how we address
these issues in the implementation section. We refer to the relevant U.S. interbank rate as
U.S. Libor, for brevity. We use the U.S. Libor rate as the reference discount rate so that we
could speak to the UIP regressions directly. Subsequently, we derive all other bond prices
relative to this curve.
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4.2.1 The stochastic discount factor

We model the dynamics of the log stochastic discount factor (SDF) denominated in terms
of the U.S. Libor rate as

logMt,t+1 = −δ`,0 − δ>`,xxt −
1

2
λ>t λt − λ>t εt+1 (14)

with market prices of risk

λt = Σ−1
f (λµ + λφft + λαet) . (15)

See Appendix C.

The physical distribution of the state vector xt implied by (13) together with the stochastic
discount factor (14) yield the risk-adjusted distribution of xt via p∗(xt+1|xt)/p(xt+1|xt) =
Mt,t+1/Et[Mt,t+1]. As a result, risk-adjusted dynamics of xt are given by

xt = µ∗x + Φ∗xxt−1 + Σxεt.

The matrices of parameters under the risk-adjusted probability share a similar form as
above

µ∗x =

(
µ∗f

βf,0 + β∗>f µ∗f

)
Φ∗x =

(
Φ∗f α∗f

β∗>f Φ∗f 1 + β∗>f α∗f

)
Σx =

(
Σf

β∗>f Σf

)
where

µ∗f = µf − λµ Φ∗f = Φf − λφ α∗f = αf − λα
The speed of adjustment parameters αf may carry a risk premium.

In our setting, the matrices containing the cointegrating vectors βf = β∗f are the same across
probability measures, which gives the real exchange rate the same definition. It is possible
to write down a more general model where there may exist cointegrating relationships
across yields, price levels, exchange rates, and other macroeconomic variables. A researcher

could then estimate
(
βf , β

∗
f

)
and test for the presence of cointegrating relationships across

series and across countries. We leave this extension to future research and focus on the
setting where the only cointegrating relationships in the model are those defined by the real
exchange rates in (11).

4.2.2 Libor-related rates

The prices of hypothetical zero-coupon U.S. and foreign Libor bonds with maturity n are
given by the standard pricing condition

Lnt = E∗t

[
e−δ`,0−δ

>
`,xxtLn−1

t+1

]
. (16)

L̂nt = E∗t

[
e−δ`,0−δ

>
`,xxt

St+1

St
L̂n−1
t+1

]
. (17)
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U.S. and foreign yields `nt = −n−1 logLnt and ̂̀nt = −n−1 log L̂nt of all maturities n are linear
functions of the factors

`nt = an + b>n,xxt, (18)̂̀n
t = ân + b̂>n,xxt. (19)

Expressions for the bond loadings can be found in Appendix D. By writing the model in
companion form, they have the same expressions as standard Gaussian ATSMs, see, e.g.,
Ang and Piazzesi (2003). We reserve notation without superscript for the one-period yield,
`t ≡ `1t .

4.2.3 Government yields

It is well known that there exists a spread between short-term interbank rates (Libor) and
and interest rates implicit in bonds issued by government institutions. At the one month
horizon, this is the well-known Ted spread which is a popular way of measuring the credit
quality of large financial institutions. The Ted spread also reflects a liquidity premium
embedded in U.S. Treasuries.

To solve for bond prices, we use the results from Duffie and Singleton (1999) that imply the
following prices for government bonds

Qnt = E∗t

[
e−(`t−ct)Qn−1

t+1

]
, (20)

Q̂nt = E∗t

[
e−(`t−ĉt)St+1

St
Q̂n−1
t+1

]
, (21)

where ct and ĉt are domestic and foreign credit/liquidity risk factors reflecting the product
of risk-adjusted default probability and loss given default, and a liquidity component. We
model these as a linear function of the state vector

ct = δc,0 + δ>c,xxt, (22)

ĉt = δ̂c,0 + δ̂>c,xxt. (23)

Foreign and domestic government yields ynt = −n−1 logQnt and ŷnt = −n−1 log Q̂nt are linear
in the state variables

ynt = dn + h>n,xxt,

ŷnt = d̂n + ĥ>n,xxt.

with yt ≡ y1
t . Expressions for the bond loadings are in Appendix D.

The Ted spread is then measured by ct = `t− yt and with hats for its foreign counterpart.
As is the case with interest rates themselves, the Ted spread could in theory become negative
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in our Gaussian model. In practice, the fitted values are positive. A final caveat is that,
formally speaking, the SDF in (14) has to be adjusted to reflect an additional compensation
for the combined default/liquidity risk. In practice, this risk premium cannot be identified
well because of the rarity of defaults of banks on the Libor panel. As a result, we can only
infer risk-adjusted default probabilities embedded in the Ted spread. For this reason, we
simplify the notation and ignore the default component of the SDF.

4.3 Choice of state

The full state is xt = (f>t , et)
> as before. In this subsection, we describe a particular choice

of the state vector ft that is similar to the VAR tradition in macroeconomics. Specifically,

f>t =
(

∆st, ∆cπt, `t, y120,12
t , ct, ∆c`t, ∆cy

120,12
t , ∆c`

12,1
t

)
(24)

The factors are all observable a priori and, in addition to macro variables, include the
domestic yields variables: the U.S. Libor rate `t, the U.S. government term spread y120,12

t =
y120
t − y12

t , the one month U.S. Ted spread ct; and the variables capturing differences in
yield curves across countries: the one-month Libor differential ∆c`t, the differential in
term spreads ∆cy

120,12
t = y120,12

t − ŷ120,12
t , and the difference in slopes of the Libor curve

∆c`
12,1
t = `12,1

t − ̂̀12,1
t . The large number of yield factors is due to the fact that we are

modeling both domestic and foreign yield curves as well as the Libor differentials. This
choice of the state vector intentionally nests the simple model of section 3, where the state
vector is f>t = (∆st, ∆cπt, ∆c`t) and yields of longer maturity are dropped from the model.

4.4 Identifying restrictions

We develop restrictions on the model that guarantee the elements of xt have the inter-
pretation we have selected. In this section, we briefly discuss some of these identifying
restrictions. Appendix E contains the full details.

In our model, all the state variables in xt are observable. The free parameters that govern the
dynamics of the state, µx,Φx,Σx, are identifiable directly from the vector error correction
model. These parameters therefore require no identifying restrictions. Restrictions are
required on the factor loadings and the risk-adjusted parameters µ∗x, and Φ∗x.

Let ej denote a unit vector with a one in location j and zeros in all other entries. The factor
loadings and intercepts for the macroeconomic variables, Libor rate, and credit spread are
restricted as follows:

δs,0 = 0, δs,x = e1, (25)

δπ,0 = 0, δπ,x = e2, (26)

δ`,0 = 0, δ`,x = e3, (27)

δc,0 = 0, δc,x = e5, (28)
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Each of these restrictions results naturally from placing the observables (∆st,∆cπt, `t, ct) in
the state vector xt. The rows of µ∗x and Φ∗x associated with these four variables all contain
free parameters.

The IRD ∆c`t is also an element of the state vector in (24). Consequently, the risk-adjusted
parameters must satisfy the following restrictions:

µ∗x,1 = −1

2
e>1 ΣxΣ>x e1, e>1 Φ∗x = e>6 , (29)

This restriction can be viewed as an enforcement of the CIP condition. Indeed, equations
(18) and (19) imply that for n = 1, the IRD is

∆c`t = −δs,0 − δ>s,xµ∗x −
1

2
δ>s,xΣxΣ>x δs,x − δ>s,xΦ∗xxt.

See Appendix D. After imposing restriction (25), we see that (29) must hold in order for
∆c`t to be an entry of xt. The restriction (29) forces the parameters in the first row of µ∗x
and Φ∗x to be equal to either zero, one, or a deterministic function of other parameters of
the model, e.g. the variance of the depreciation rate.

The remaining rows of µ∗x and Φ∗x are in general non-zero, but not all of the parameters in
these rows are freely estimable. Instead, some rows of µ∗x and Φ∗x are deterministic non-
linear functions of the parameters in other rows. Specifically, the three rows of µ∗x and
Φ∗x associated with the term spreads in (24) are functions of parameters in other rows.
Intuitively, an asset pricing equation (16) imposes internal consistency across yields of
different maturities. No-arbitrage implies that yields of longer maturity are risk-adjusted
forecasts of future short term interest rates, where forecasts are made using the model of
the short rate `t. Therefore, the rows of µ∗x and Φ∗x associated with longer term yields are
pinned down by this relationship.

Such restrictions make it challenging to parameterize the matrix Φ∗x directly. The term
structure literature solves this problem by parameterizing the matrix Φ∗x in terms of a
latent factor representation as in Joslin, Singleton, and Zhu (2011). We extend their results
for vector autoregressions to vector error correction models.

While parameterizing the risk-adjusted parameters µ∗x and Φ∗x in terms of the latent factors
makes estimation easier, the interpretation of the estimates under this rotation is challeng-
ing. Therefore, we use the latent factor parameterization to estimate the model but we
report the more meaningful estimates of Φ∗x implied by the observable parameterization.

4.5 Empirical approach

In this subsection, we describe the data that we use in addition to what is described in
section 2, how the model is related to the data via the state-space representation, and
which versions of our model we estimate.
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While we refer to `t as U.S. Libor, we have to be careful with the data that we use to
represent the U.S. interbank rate in different periods. Prior to 1986 we use the data from
Engel (2016). We use U.S. Libor that was downloaded from the Federal Reserve Bank of St.
Louis from 1986 to 2007 (similar to Engel’s data during the corresponding period). Because
forward rate transactions are fully collateralized, the market participants started using the
overnight index swap (OIS) rate at the end of 2007 and the whole industry has switched
to OIS by the end of 2008. We reflect this change, by using OIS rates as a measure of `t
starting in 2009, and by using a weighted average of Libor and OIS in 2008 with weights
gradually shifting towards OIS by the end of 2008.

Further, we use the notation `nt for yields corresponding to hypothetical zero-coupon bond
prices Lnt . Such prices can be inferred from quoted Libor rates, `q,nt , via Lnt = (1 + `q,nt · n ·
30/360)−1 for n ≤ 12. As a result, although we refer to `nt as Libor rates, they are different
but close.

The data on forward exchange rates come from Barclays and has maturities 1, 3, 6 and
12 months. The currency forward data implies, via CIP, interest rate rate differentials
∆c`

n
t = `nt − ̂̀nt for the corresponding maturities. By imposing CIP, we are inferring an

implicit foreign bank funding rate as opposed to an observable quantity. Such interpretation
is valid in the light of research focusing on various market frictions leading to violations of
CIP in terms of actual Libor rates (e.g., Borio, McCauley, McGuire, and Sushko, 2016).

As discussed in Section 2, all foreign government zero-coupon yields are downloaded from
their respective central banks (U.S. Federal Reserve, Bank of England, Bundesbank, Bank of
Canada and the Bank of Japan). We have maturities of 12, 24, 35, 48, 60, 72, 84, 96, 108, 120
months for all five countries. Also, we observe the 3 month yield for the U.S. and United
Kingdom. Price level data are from the OECD.

We use bilateral data on the U.S. and a foreign country that include depreciation rate,
inflation differential, LIBOR and governement interest rates of both countries to estimate
the model. The model is cast in a state-space form and is estimated using Bayesian MCMC.
See Appendix F.

5 Results

5.1 Initial observations

We report the estimated parameters in Tables 1-4. The first row of each table shows how the
expected depreciation rate loads on the different state variables. All of them seem to matter
for predictions for the following period, although ∆c`t and et appear to be particularly
significant. We will evaluate the relative importance of the variables for forecasting at
different horizons in the subsequent sections. Some of the variables are close to having
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a unit root under the risk-adjusted probability, but the overall system is stationary (the
largest eigenvalue of Φ∗x is less than one).

The model fit is good. Table 5 displays yield fitting errors. They range between 12 and 57
basis points (on an annualized basis).

The model is also successful in replicating country-specific patterns that were documented in
Figure 1. Indeed, Figure 3 illustrates how both actual and risk-adjusted forecasting patterns
in the model are capable of capturing the respective pattern in the data. The covariances
of risk-adjusted distribution are relatively precisely estimated with tight highest posterior
density intervals, which is typical for no arbitrage models. Estimates of the covariances are
more uncertain under the actual distribution.

5.2 PPP/cointegration

In general, coefficients αf and α∗f appear to be small. Their impact is determined by the
product of a specific parameter and the real exchange rate which is much more volatile than
the other elements of the state xt. For convenience, Table 6 summarizes the estimates of
αf ’s and their risk-adjusted counterparts after re-scaling all the elements in the state vector
by their unconditional volatility.

Very few values are large even after rescaling. Parameters αs and απ appear to be im-
portant across all countries. The risk-adjusted α∗π is larger than its counterpart under the
true probability (α∗s = 0 because of CIP). All other values of α∗f are smaller than their
counterparts. In light of these observations and the requirements outlined in section 2.4,
we see that non-monotonicity arises via et forecasting ∆st (non-zero αs).

Are there other stationary variables besides et that could generate this monotonicity? Ev-
idently, not through the same channel as there are no other variables in our model that
predict ∆st in a significant way. But, there are variables that predict ∆c`t and are pre-
dicted by it. Examples are differences in slopes: ∆c`

12,1
t for the U.K., or ∆cy

120,12
t for Euro

and Japan.

We argue that these variables cannot be solely responsible for the non-monotonic pattern
in γn. One argument is based on additional multi-horizon evidence motivated by the real
exchange rate. Our second argument is based on a VAR model that does not include the
real exchange rate, but is otherwise equivalent to the VECM model that we have discussed
so far.

5.3 Additional evidence

Results in Dahlquist and Penasse (2016) and our model suggest that et is a strong predictor
of ∆st. We extend this result by implementing the UIP-style regressions of section 2.3, but
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where the IRD is replaced by the RER. Eichenbaum, Johannsen, and Rebelo (2018) explore
similar regressions. Figure 4 presents the results.

There is a strong pattern of predictability of nominal depreciation rates via RER across
horizons. In contrast, the risk-adjusted regression produces coefficients that are close to
zero. This result suggests that the RER is approximately unspanned by forward nominal
exchange rates.

Our model can replicate this pattern as the same Figure indicates. Obviously, the pattern
under the real-world probability cannot be replicated by a model without the RER. Thus,
the evidence reinforces the need to include the RER in our model. The pattern under the
risk-adjusted probabilities is, indeed, obtained due to a nearly unspanned RER in forward
nominal exchange rates.

To see how that works, recall that the (log) forward exchange rate is equal to the difference
between the domestic and foreign yields:

fsn−1
t = fyn−1

t − f̂y
n−1

t = n(ynt − ŷnt )− (n− 1) (yn−1
t − ŷn−1

t ).

As a result, bond pricing formulas in Appendix D imply that loadings of n-period forward
exchange rates on factors xt are equal to Φ∗n>x δs,x. This conclusion holds regardless of the
reference curve: Libor-based or government. Because δs,x = e1 in our parametrization, the
RER is unspanned in the forward exchange rate curve if the last element of the first row of
Φ∗nx is equal to zero for any n.

For instance, this happens if α∗f = 0, similar to Duffee (2011). That’s an intriguing possi-
bility because if α∗f ≈ 0, the RER is approximately non-stationary under the risk-adjusted
probability. Such risk-adjusted values would reflect compensation for market participants
who take implicit positions in mean-reverting real exchange rates, but fear that real ex-
change rates will not revert, or the reversion would take a much longer time than expected.
However, in our case α∗π is economically different from zero.

There is an alternative way to achieve a nearly unspanned RER. When n = 1, the last
element of the first row of Φ∗nx is equal to α∗s, which is equal to zero by CIP. In both our
simple model of section 2.4 and our full model, this element is equal to α∗` when n = 2.
Empirically, α∗` is close to zero. In the simple model of section 2.4, a value of α∗` close to zero
guarantees that the condition holds approximately for longer maturities n as well. Because
α∗π 6= 0, we would also need φ∗`π = 0. This is the case in our simple model by assumption.
In the larger model element Φ∗x62 ≡ φ∗`π and is estimated to be close to zero.

Does this result imply that the RER is a factor unspanned by the U.S. or foreign bonds?
Not necessarily. The conditions above ensure that loadings of domestic and foreign bonds
on the RER are the same. But this does not imply that they are equal to zero. For the
RER to be unspanned by bonds, we need extra restrictions on the exposure of the spot
interest rate to the factors.
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These translate into Φ∗xk2 = 0 (interaction between kth element of xt and ∆cπt) for all k
with the exception of k = 2 (the diagonal element) and k = 9 (the element corresponding
to et because it is connected to Φ∗x22 via cointegrating restrictions). These conditions hold
approximately in the estimated model. We confirm that et is approximately unspanned by
yields by regressing yields on the elements of xt. These results are available upon request.

If the RER is unspanned by yields does it help in predicting excess bond returns in the
spirit of Cochrane and Piazzesi (2005)? We run two types of regressions of the bond excess
return on the RER with and without the CP factor. Without the CP factor, the RER
does affect bond risk premiums. However after controlling for the CP factor, the predictive
ability of RER is eliminated.

5.4 Comparison to a model without cointegration

We compare the VECM model to a model with VAR dynamics that does not include the
real exchange rate. Other than dropping the real exchange rate, everything else is the
same as in Section 4.3, that is, ft is unchanged. This model is equivalent to imposing
the restriction αf = α∗f = 0 in the larger VECM, implying that real exchange rates are
non-stationary. After imposing the restriction, we re-estimate the model to ensure the
best possible fit. Figure 5 plots the UIP regression slopes as a function of horizon for
both the VAR and VECM models. The VAR model is clearly incapable of generating a
non-monotonic pattern.

5.5 Long-horizon UIP

Chinn and Meredith (2004) propose to test long-horizon UIP using regressions similar to
(1). Under UIP, the average depreciation rate between t and t+ n should be explained by
the difference in n maturity yields across countries.

n−1
n∑
j=1

∆st+j = γ̃n0 + γ̃n∆cy
n
t + ũt+n, n = 1, 2, . . . , 120. (30)

UIP predicts that γ̃n = 1 for any horizon n. Chinn and Meredith (2004) find that UIP holds
approximately at longer horizons of n = 60 and 120 months. We replicate their finding in
Figure 6. In fact, because we investigate a broader spectrum of horizons, we document
a non-monotonic pattern akin to the one in regression (1): regression slopes between the
Chinn-Meredith horizons of 5 and 10 years are larger than one, albeit not statistically
signifcant.

The two regressions must be related because the left-hand side in (30) is just an aggregation
of that in (1). There is also a similar no-arbitrage relationship explaining why there should
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be a bias (deviation from 1):

∆cy
n
t = n−1 logE∗t

exp

 n∑
j=1

∆st+j

 ,
which implies a slope of 1 under the risk-adjusted probability if the state is homoscedastic.

The difference between the regressions in (30) and (1) is that the regressor’s maturity is
shifting with horizon implying a risk-adjusted slope of 1 for any n, and not just n = 1.
That’s why we do not report a counterpart to regression (2). The issue is then whether a
model can replicate the pattern in risk premiums that is responsible for the pattern observed
in the data. As we’ve seen, risk premiums take a different form depending on whether PPP
holds or not.

Figure 6 shows patterns implied by both the VECM and VAR models. The VECM is closer
to the data. Most important, while the VAR settles at γ̃120 of about zero, the VECM
crosses into the positive territory at horizon n = 24.

5.6 Decomposition of the currency premium

Figure 1 implicitly tells us about the nominal FX risk premium. To see this, consider a
forward contract that pays $St+n/St+n−1 per $1 of notional at time t + n in exchange for
the forward price, the log of which we denote by fsn−1

t , as before. The log risk premium
on such a contract is

rpsnt = logEt
[
e∆st+n

]
− fsn−1

t = logEt
[
e∆st+n

]
− logE∗t

[
e∆st+n

]
.

Because ∆st = e>1 ft, we can compute these risk premiums using the same techniques as the
ones used for bond prices. In particular,

rps1
t = e>1

[
µf − µ∗f + (Φf − Φ∗f )ft + (αf − α∗f )et

]
.

As we noted earlier, the terms on the right hand side are equal, up to convexity, to Et [∆st+n]
and E∗t [∆st+n] , respectively. Figure 1 shows coefficients corresponding to a projection
of these risk premiums onto ∆c`t. Thus, the difference between the two lines times ∆c`t
produces a projection of rpsnt .

We can compare this projection to the full risk premium implied by the model. Because
∆st = e>1 xt, we can compute these risk premiums using the same techniques as the ones
used for bond prices. By construction, the unconditional means of these premiums will be
the same.

20



Figure 7 compares the premiums themselves. We find that the projected version is less
variable. While, mathematically, this result is to be expected, the numerical difference is
quite large. UIP regressions appear to leave a lot out in terms of risk premium measurement.

Besides the scale, the two versions can be quite different at times. The most obvious
departure is that the standard intuition is the risk premium moves in the direction opposite
to the IRD. Here we observe that quite often the projection and the full premium move in
opposite directions implying that the effect of the IRD is overwhelmed by other variables.

This evidence adds a new dimension to the UIP regressions. Not only does UIP not hold
at different horizons, but deviations from UIP are driven not by IRDs alone.

6 Conclusion

Exposures of expected future depreciation rates to the current interest rate differential
violate the UIP hypothesis across horizons in a distinctive pattern that is a non-monotonic.
Conversely, forward, risk-adjusted expected depreciation rates are monotonic. We offered
a potential explanation for why these patterns occur. At short horizons, the interest rate
differential has an immediate influence on the depreciation rate but where the sign of the
impact is the opposite under actual and risk adjusted probabilities. This is the risk-premium
that has been well-documented in the literature. We argued that the non-monotonic pattern
at intermediate horizons comes from the increasing influence of short-term violations of
PPP. To illustrate this mechanism, we built a no-arbitrage term structure model with
VECM dynamics that includes the real exchange rate as a state variable. Including state
variables that are cointegrated into the dynamics of the model is new to the literature on no
arbitrage term structure models. Estimates from the model provide evidence that supports
our explanation.
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Appendix A An extra variable affecting joint dynamics of
IRD and depreciation rate

Appendix A.1 VAR representaton

A natural starting point for thinking about joint dynamics of the depreciation rate ∆st and the IRD ∆c`t is a
simple vector autoregression. We would like to highlight properties of another generic variable vt that affects
these dynamics. Specifically, our focus is on what properties does a simple VAR model that includes vt need
to have in order to generate the patterns in γn and γ∗n that were documented in Section 2. Simultaneously,
under the risk-neutral distribution, the same coefficients must be monotonic and of opposite sign. To keep
ideas tractable, we focus on the case where vt is univariate.

Stack the state variables into a vector xt: xt = (∆st ∆c`t vt)
>. To simplify the setup, we ignore means

(assume all variables have mean zero) and model the state vector as a first order process

xt = Φxxt−1 + Σxεt

with

Φx =

 0 φs` φsv
0 φ` φ`v
0 φv` φv

 , Σx =

 σs 0 0
0 σπ 0
0 0 σv

 .

Our discussion centers on the autocovariance matrix Φx which determines the covariances between variables
at alternative horizons. In our simple illustration, we set the first column of Φx to zero by assumption
although this value is empirically realistic. Depreciation rates are not highly autocorrelated and do not
forecast the IRD. The coefficient φs` reflects the UIP regression. If UIP were to hold, we should anticipate
coefficients in the first row of Φx to be φs` = 1 and φsv = 0.

The values of γn reported in Section 2 are directly related to the forecast function of the VAR. The forecast
Et [∆st+n] is controlled by exponents of the matrix Φx

Et [∆st+n] = e>1 Φnxxt, e>1 = (1, 0, 0).

In general, it is difficult to obtain tractable closed-form expressions for long horizons n. We can do so for
n = 1, 2, 3 in the case of our simple model:

Et [∆st+1] = φs`∆c`t + φsvvt, (A.1)

Et [∆st+2] = (φs`φ` + φv`φsv) ∆c`t + (φs`φ`v + φsvφv)vt. (A.2)

Et [∆st+3] =
(
φs`
(
φ2
` + φ`vφv`

)
+ φsv (φv`φ` + φv`φv)

)
∆c`t

+
(
(φs`φ`v (φ` + φv) + φsv

(
φ2
v + φv`φ`,s

))
vt. (A.3)

In these expressions, the loadings on the IRD ∆c`t have the largest impact on the coefficients γn. At horizon
h = 1, the covariance γ1 is a function of only the UIP coefficient φs`. Because φs` is typically estimated
as large and negative, the covariance γ1 is negative, which is consistent with the patterns documented in
Section 2.

As the horizon increases, the loadings on ∆c`t can be written as the sum of two terms that are controlled
by the forecasting parameters φs` and φsv. We highlight these here for n = 3 as

term 1 = φs`
(
φ2
` + φ`vφv`

)
term 2 = φsv (φv`φ` + φv`φv)
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The first term contains φs` and it multiplies powers of the IRD autocorrelation coefficient φ2
` , which becomes

φn−1
` at longer horizons. This term induces a slow monotonic decay in the covariances as the horizon increases

and it is the dominant component of γn, especially at short horizons. If the forecasting variable vt were not
present in the model (φsv = 0, φ`v = 0), then the cross auto-covariance between the depreciate rate and the
IRD would simply decay monotonically because it is influenced only by the product φs`φ

n−1
` as the horizon

increases. We conclude that a first-order VAR with only the depreciation rate and IRD would not generate
the non-monotonic pattern we observe in practice.

Appendix A.2 Non-monotonic pattern in γn

Next, we will illustrate how this model can generate non-monotonic patterns through two possible channels.
Although it is possible that both could be present simultaneously, we illustrate them one at a time. In the
first channel, the variable vt may forecast the depreciation rate, φsv 6= 0, while having no impact on the
IRD itself, φ`v = 0. The second possible channel occurs if the variable vt forecasts the IRD, φ`v 6= 0, while
it does not forecast the depreciation rate φsv = 0.

If the first channel is at play, term 2 in the analytical expression for n = 3 above starts small at short
horizons but begins to dominate term 1 at intermediate horizons before the system as a whole converges
back to equilibrium.

In the second case term 2 has no influence. Instead, the loading on the IRD is a function of term 1 only. One
component of the loading contains a power, φ2

` , which induces monotonocity. Another component, φ`vφv`,
can induce non-monotonicity. As the horizon increases, this second component must be large enough to
dominate the monotonic component.

Finally, the IRD must forecast the variable vt, φv` 6= 0, for either channel to work. If it does not, then the
cross-autocovariances are monotonic no matter what the values of φsv and φ`v are. This is clear from the
analytical expressions for horizons h = 2, 3 shown above, and we illustrate this numerically below.

Appendix A.3 Monotonic pattern in γ∗n

This discussion has an immediate implication for the risk-adjusted dynamics of the state xt should follow
a VAR in order to replicate the monotonic pattern of γ∗n in Figure 1. Under risk-adjusted probability, the
persistence matrix Φ∗x could be different from Φx, including the zero elements becoming non-zero. For the
purposes of this discussion we simplify and assume the following form:

Φ∗x =

 0 1 0
0 φ∗` φ∗`,v
0 φ∗v,` φ∗v

 .

The first row is dictated by the fact that UIP must hold in the risk-adjusted world.

The UIP-imposed restrictions that φ∗s` = 1 and φ∗sv = 0 already suggests that the risk-adjusted pattern could
have different properties. First, the first-order cross-autocovariance e>1 Φ∗xe2 must be equal to one, consistent
with the evidence. Second, the restriction φ∗sv = 0 rules out the possibility of inducing non-monotonic
patterns in the auto-covariances through the first channel. If this is the channel that induces the real world
covariances to be non-monotonic, it has implications for currency risk premia.
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Appendix B Relationship to a standard VECM(1,1)

In this appendix, we explain how our error correction model of cointegration differs from a traditional VECM.
Ultimately, the models are equivalent but parameterized in different ways. First, a VECM is typically written
in terms of a mixture of I(1) and I(0) variables, whereas we write it entirely in terms of I(0) variables.
Secondly, we define the matrix of cointegrating vectors to be vectors whose linear combinations include
non-stationary series. To illustrate these differences, we provide a simple example.

Consider the VECM of Engel (2016). The state vector zt includes observables st and ∆cpt that are I(1)
while the interest rate differential ∆c`t is I(0).

zt =

 st
∆cpt
∆c`t


The vector zt is a mixture of I(0) and I(1) variables. Taking first differences of zt, the dynamics of a
traditional VECM(1,1) are

∆zt = µz + Γz∆zt−1 + Ωzzt−1 + Σzεt

where Ωz = Ψzβ
>
z and βz is the matrix of cointegrating vectors. Recalling that πt denotes inflation, we can

express this more explicitly in matrices ∆st
∆cπt

∆∆c`t

 =

 µs
µp
µ`

+

 γs γs,π γs,`
γπ,s γπ γπ,`
γ`,s γ`,π γ`

 ∆st−1

∆cπt−1

∆∆c`t−1


+

 ψs,e ψs,`
ψπ,e ψπ,`
ψ`,e ψ`

( 1 −1 0
0 0 1

) st−1

∆cpt−1

∆c`t−1

+ Σzεt

It is traditional to include all stationary relationships in the βz matrix

β>z =

(
1 −1 0
0 0 1

)
This means that βz includes the trivial relationships that are a priori known to be I(0), e.g. see the second
row is not a function of any I(1) variables.

Next, we re-write this model using the error correction representation in our paper. The log-likelihoods of
these two models are equivalent. First, we express the state vector ft in terms of only I(0) variables.

ft =

 ∆st
∆cπt
∆c`t


Secondly, our model defines the matrix of cointegrating vectors βf as only a function of the linear combina-
tions that include non-stationary variables.

β>f =
(

1 −1 0
)

We do not include in βf the “redundant” stationary relationships, i.e. we drop the second row of β>z above.

In our notation, the traditional VECM(1,1) above has dynamics. ∆st
∆cπt
∆c`t

 =

 µs
µp
µ`

+

 γs γs,π γs,` + ψs,`
γπ,s γπ γπ,` + ψπ,`
γ`,s γ`,π 1 + γ` + ψ`

 ∆st−1

∆cπt−1

∆c`t−1


+

 0 0 −γs,`
0 0 −γπ,`
0 0 −γ`

 ∆st−2

∆cπt−2

∆c`t−2

+

 ψs,e
ψπ,e
ψ`,e

( 1 −1 0
) st−1

∆cpt−1

∆c`t−1

+ Σzεt
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This shows that a traditional VECM(1,1) has second order dynamics for those variables that were originally
stationary, e.g. the interest rate differential ∆c`t.

In our paper, we set the second-order lag term to zero γs,` = γπ,` = γ` = 0. We could include this in our
error correction representation by adding a second lag.

ft = µf + Φf,1ft−1 + Φf,2ft−2 + αfβ
>
f f

L
t−1 + Σfεt (B.4)

We choose not to do this for the benchmark model of our paper.

Appendix C Change of probability

Appendix C.1 Notation

We introduce additional notation that we use throughout the appendix. We define the following set of
matrices

C =

(
0
βf,0

)
I =

(
0 0
0 I

)
Bf =

(
I

β>f

)
Af =

(
Φf αf

)
Πf = αfβ

>
f

Sx = ΣxΣ>x

Sf = ΣfΣ>f

When we state that xt can be written as a cointegrated system, we mean that the parameters of the vector
autoregression

xt = µx + Φxxt−1 + Σxεt

can be decomposed as

µx = C + Bfµf
Φx = I + BfAf
Σx = BfΣf

A similar decomposition also holds under the risk-adjusted probability when (µf ,Φf , αf , βf ) are replaced
by
(
µ∗f ,Φ

∗
f , α

∗
f , β
∗
f

)
.

Appendix C.2 Generalized inverse of ΣxΣ
>
x

The matrix Sx = ΣxΣ>x is singular. The generalized inverse S+
x of Sx is

ΣxΣ>x S
+
x ΣxΣ>x = ΣxΣ>x

BfΣf (BfΣf )> S+
x BfΣf (BfΣf )> = BfΣf (BfΣf )>

Σ>f B>f S+
x BfΣf = Idf

B>f S+
x Bf =

(
ΣfΣ>f

)−1
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The solution to this equation is

S+
x = Bf

(
B>f Bf

)−1 (
ΣfΣ>f

)−1 (
B>f Bf

)−1

B>f

We use this below.

Appendix C.3 Prices of risk

Let µx,t and Sx denote the conditional mean and covariance matrix of xt. We define a restriction of Lebesgue
measure to the dimension of rank (Sx). The vector xt has a density w.r.t. to this measure given by

p (xt+1|xt; θ) = det∗ (2πSx)−
1
2 exp

(
−1

2
(xt+1 − µx,t)> S+

x (xt+1 − µx,t)
)

where S+
x denotes the generalized inverse and det∗ is the pseudo-determinant.

The stochastic discount factor (SDF) is

Mt,t+1 = exp (−`t)
p (xt+1|xt; θ∗)
p (xt+1|xt; θ)

Before deriving the SDF, we first write the quadratic form. Using the notation above, the scaled shock can
be written as

Σxε
∗
t+1 =

(
xt+1 − µ∗x,t

)
=
([
B∗fft+1 + Ixt + C∗

]
−
[
C∗ + B∗fµ∗f

]
−
[
I + B∗fA∗f

]
xt
)

=
(
B∗fft+1 − B∗fµ∗f − B∗fA∗fxt

)
= B∗f

(
ft+1 − µ∗f −A∗fxt

)
= B∗f

(
ft+1 − µ∗f − Φ∗fft −Π∗ff

L
t

)
Plugging this into the quadratic form, we find(
xt+1 − µ∗x,t

)>
S∗,+x

(
xt+1 − µ∗x,t

)
=

(
B∗f
(
ft+1 − µ∗f − Φ∗fft −Π∗ff

L
t

))>
S∗,+x

(
B∗f
(
ft+1 − µ∗f − Φ∗fft −Π∗ff

L
t

))
=

(
ft+1 − µ∗f − Φ∗fft −Π∗ff

L
t

)>
S−1
f

(
ft+1 − µ∗f − Φ∗fft −Π∗ff

L
t

)
=

(
ft+1 − µ∗f,t

)>
S−1
f

(
ft+1 − µ∗f,t

)
where we have used the definition of the generalized inverse above.

Using these expressions, we can derive the log stochastic discount factor

logMt,t+1 = −`t −
1

2
log det∗ (2πS∗x)− 1

2

(
xt+1 − µ∗x,t

)>
S∗,+x

(
xt+1 − µ∗x,t

)
+

1

2
log det∗ (2πSx) +

1

2
(xt+1 − µx,t)> S+

x (xt+1 − µx,t)

When βf = β∗f , the pseudo-determinants cancel. This gives

logMt,t+1 = −δ`,0 − δ>`,xxt −
1

2

(
ft+1 − µ∗f,t

)>
S−1
f

(
ft+1 − µ∗f,t

)
+

1

2
(ft+1 − µf,t)> S−1

f (ft+1 − µf,t)

= −δ`,0 − δ>`,xxt −
1

2

(
µf,t − µ∗f,t

)>
S−1
f

(
µf,t − µ∗x,t

)
+ µ>f,tS

−1
f µx,t

−µ∗,>f,t S
−1
f µf,t − f>t+1S

−1
f (µt − µ∗t )

= −δ`,0 − δ>`,xxt −
1

2

(
µf,t − µ∗f,t

)>
S−1
f

(
µf,t − µ∗f,t

)
− ε̃>t+1S

−1
f

(
µf,t − µ∗f,t

)
= −δ`,0 − δ>`,xxt −

1

2
λ>t λt − λ>t εt+1
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where

λt = Σ−1
f

(
µf,t − µ∗f,t

)
= Σ−1

f

(
µf − µ∗f +

(
Φf − Φ∗f

)
ft +

(
Πf −Π∗f

)
fLt

)
= Σ−1

f

(
µf − µ∗f +

(
Φf − Φ∗f

)
ft +

(
αf − α∗f

)
β>f f

L
t

)
= Σ−1

f

(
µf − µ∗f +

(
Φf − Φ∗f

)
ft +

(
αf − α∗f

)
et
)

This defines the market prices of risk

λµ = µf − µ∗f λφ = Φf − Φ∗f λα = αf − α∗f

Appendix D Bond prices

Appendix D.1 U.S. Libor bonds

The price of a 1-period Libor bond is

L1
t = exp

(
ā1 + b̄>1,xxt

)
where ā1 = −δ`,0 and b̄1,x = −δ`,x. The price of an n-period nominal bond is

Lnt = E∗t
[
exp (−`t)Ln−1

t+1

]
= E∗t

[
exp

(
−δ`,0 − δ>`,xxt + ān−1 + b̄>n−1,xxt+1

)]
= exp

(
ān−1 − δ`,0 − δ>`,xxt + b̄>n−1,x [µ∗x + Φ∗xxt]

)
E∗t

[
exp

(
b̄>n−1,xΣxεt+1

)]
= exp

(
ān−1 − δ`,0 − δ>`,xxt + b̄>n−1,x [µ∗x + Φ∗xxt] +

1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

)
This implies that Lnt = exp

(
ān + b̄>n,xxt

)
where

ān = ān−1 − δ`,0 + b̄>n−1,xµ
∗
x +

1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

b̄n,x = Φ∗>x b̄n−1,x − δ`,x

Libor rates are

`nt = an + b>n,xxt

where an = −n−1ān and bn,x = −n−1b̄n,x.

Appendix D.2 Foreign Libor bond prices

The price of an 1-period foreign, nominal Libor bond is

L̂1
t = E∗t

[
exp (−`t)

St+1

St

]
= E∗t

[
exp

(
−δ`,0 − δ>`,xxt + ∆st+1

)]
= E∗t

[
exp

(
δs,0 − δ`,0 − δ>`,xxt + δ>s,xxt+1

)]
= E∗t

[
exp

(
δs,0 − δ`,0 − δ>`,xxt + δ>s,x [µ∗x + Φ∗xxt] + δ>s,xΣxεt+1

)]
= exp

(
δs,0 − δ`,0 − δ>`,xxt + δ>s,x [µ∗x + Φ∗xxt] +

1

2
δ>s,xΣxΣ>x δs,x

)
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This implies that L̂1
t = exp

(
¯̂a1 +

¯̂
b
>
1,xxt

)
where

¯̂a1 = δs,0 − δ`,0 + δ>s,xµ
∗
x +

1

2
δ>s,xΣxΣ>x δs,x

¯̂
b1,x = Φ∗>x δs,x − δ`,x

The price of an n-period nominal bond is

L̂nt = E∗t

[
exp (−`t)

St+1

St
L̂n−1
t+1

]
= exp

(
d̄n−1 + δs,0 − δ`,0 +

(
¯̂
bn−1,x + δs,x

)>
[µ∗x + Φ∗xxt]

)
E∗t

[
exp

([(
¯̂
bn−1,x + δs,x

)>
Σx

]
εt+1

)]
= exp

(
¯̂an−1 + δs,0 − δ`,0 − δ>`,xxt +

(
¯̂
bn−1,x + δs,x

)>
[µ∗x + Φ∗xxt]

)
exp

(
1

2

(
¯̂
bn−1,x + δs,x

)>
ΣxΣ>x

(
¯̂
bn−1,x + δs,x

))

This implies that L̂nt = exp

(
¯̂an +

¯̂
b
>
n,xxt

)
where

¯̂an = ¯̂an−1 + δs,0 − δ`,0 +
(

¯̂
bn−1,x + δs,x

)>
µ∗x +

1

2

(
¯̂
bn−1,x + δs,x

)>
ΣxΣ>x

(
¯̂
bn−1,x + δs,x

)
¯̂
bn,x = Φ∗>x

(
¯̂
bn−1,x + δs,x

)
− δ`,x

Yields are ̂̀n
t = ân + b̂>n,xxt

where ân = −n−1¯̂an and b̂n,x = −n−1¯̂
bn,x.

Appendix D.2.1 U.S. government bond prices

The price of an 1-period nominal bond is

Q1
t = E∗t [exp (− [`t − ct])] = E∗t

[
exp

(
−δ`,0 + δc,0 − (δ`,x − δc,x)> xt

)]
= E∗t

[
exp

(
−δ`,0 + δc,0 − (δ`,x − δc,x)> xt

)]
= exp

(
−δ`,0 + δc,0 − (δ`,x − δc,x)> xt

)
This implies that Q1

t = exp
(
d̄1 + h̄>1,xxt

)
where

d̄1 = −δ`,0 + δc,0

h̄1,x = −δ`,x + δc,x

The price of an n-period nominal bond is

Qnt = E∗t
[
exp (− [`t − ct])Qn−1

t+1

]
= E∗t

[
exp

(
δc,0 − δ`,0 − (δ`,x − δc,x)> xt + d̄n−1 + h̄>n−1,xxt+1

)]
= exp

(
d̄n−1 − δ`,0 + δc,0 − (δ`,x − δc,x)> xt + h̄>n−1,x [µ∗x + Φ∗xxt]

)
E∗t

[
exp

(
h̄>n−1,xΣxεt+1

)]
= exp

(
d̄n−1 − δ`,0 + δc,0 − (δ`,x − δc,x)> xt + h̄>n−1,x [µ∗x + Φ∗xxt] +

1

2
h̄>n−1,xΣxΣ>x h̄n−1,x

)
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This implies that Qnt = exp
(
d̄n + h̄>n,xxt

)
where

d̄n = d̄n−1 − δ`,0 + δc,0 + h̄>n−1,xµ
∗
x +

1

2
h̄>n−1,xΣxΣ>x h̄n−1,x

h̄n,x = Φ∗>x h̄n−1,x − δ`,x + δc,x

Government yields are

ynt = dn + h>n,xxt

where dn = −n−1d̄n and hn,x = −n−1h̄n,x.

Appendix D.2.2 Foreign government bond prices

The price of an 1-period nominal bond is

Q̂1
t = E∗t

[
exp (− [`t − ĉt])

St+1

St

]
= E∗t

[
exp

(
−δ`,0 + δ̂c,0 −

(
δ`,x − δ̂c,x

)>
xt + ∆st+1

)]
= exp

(
δs,0 − δ`,0 + δ̂c,0 −

(
δ`,x − δ̂c,x

)>
xt + δ>s,x [µ∗x + Φ∗xxt] +

1

2
δ>s,xΣxΣ>x δs,x

)

This implies that Q̂1
t = exp

(
¯̂
d1 +

¯̂
h
>
1,xxt

)
where

¯̂
d1 = δs,0 − δ`,0 + δ̂c,0 + δ>s,xµ

∗
x +

1

2
δ>s,xΣxΣ>x δs,x

¯̂
h1,x = Φ∗>x δs,x − δ`,x + δ̂c,x

The price of an n-period nominal bond is

Q̂nt = E∗t

[
exp (− [`t − ĉt])

St+1

St
Q̂n−1
t+1

]
= E∗t

[
exp

(
δs,0 + δ̂c,0 − δ`,0 −

(
δ`,x − δ̂c,x

)>
xt +

¯̂
dn−1 +

¯̂
h
g,>
n−1,xxt+1

)]
= exp

(
¯̂
dn−1 + δs,0 − δ`,0 + δ̂c,0 −

(
δ`,x − δ̂c,x

)>
xt +

(
¯̂
hn−1,x + δs,x

)>
[µ∗x + Φ∗xxt]

)
exp

(
1

2

(
¯̂
hn−1,x + δs,x

)>
ΣxΣ>x

(
¯̂
hn−1,x + δs,x

))

This implies that Q̂nt = exp

(
¯̂
dn +

¯̂
h
>
n,xxt

)
where

¯̂
dn =

¯̂
dn−1 + δs,0 − δ`,0 + δ̂c,0 +

(
¯̂
hn−1,x + δs,x

)>
µ∗x +

1

2

(
¯̂
hn−1,x + δs,x

)>
ΣxΣ>x

(
¯̂
hn−1,x + δs,x

)
¯̂
hn,x = Φ∗>x

(
¯̂
hn−1,x + δs,x

)
− δ`,x + δ̂c,x

Foreign government yields are

ŷnt = d̂n + ĥ>n,xxt

where d̂n = −n−1¯̂
dn and ĥn,x = −n−1 ¯̂

hn,x.
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Appendix E Rotation and Identification

In this appendix, we illustrate how to impose restrictions on the model to allow the state vector to be any
linear combination of the observables (macroeconomic variables and yields) chosen by the researcher. We
also discuss identification of the model.

Appendix E.1 Rotating the state vector to observables

Define the dy × 1 vector of observables Yt as

Yt =


∆mt

∆c`t
yt
ŷt


where ∆mt is a vector of stationary macro variables, ∆c`t is a vector of Libor rate differences, yt are U.S.
government yields, and ŷt are foreign yields. Let W1 and W2 denote df × dy and dy − df × dy matrices, that
when stacked produce a full rank matrix. These matrices are chosen by the researcher. Using W1 and W2,
we define two linear combinations of the data

Y
(1)
t = W1Yt

Y
(2)
t = W2Yt

Following the term structure literature, we assume that Y
(1)
t is observed without error while Y

(2)
t is a vector

observed with error. The specific choice of W1 and W2 used in the paper are described in Appendix F.2.

We start by re-defining the model in terms of a vector of latent state variables x̃t that are an unknown
linear combination of the data. The two state vectors xt and x̃t are related to one another via an affine
transformation

xt = Γ0 + Γ1x̃t (E.5)

For a given W1, we want to determine how to choose Γ0 and Γ1 in order to guarantee the state vector is

xt =

(
ft
et

)
=

(
W1Yt
et

)
and that xt is a cointegrated system as in Appendix C.1. We partition the rotation matrices in blocks as(

ft
et

)
=

(
Γ0,f

Γ0,e

)
+

(
Γff Γfe
Γef Γee

)(
f̃t
ẽt

)
(E.6)

The matrices Γff ,Γfe and Γ0,f are determined by the choice of W1. The matrices Γef ,Γee and vector Γ0,e

have to satisfy internal consistency conditions in order to guarantee that xt is a cointegrated system.

The risk-adjusted and actual dynamics of the state vector under the latent factor rotation are

∆mt = δ̃m,0 + δ̃m,xx̃t (E.7)

`t = δ̃`,0 + δ̃>`,xx̃t (E.8)

x̃t = µ̃∗x + Φ̃∗xx̃t−1 + Σ̃xεt (E.9)

x̃t = µ̃x + Φ̃xx̃t−1 + Σ̃xεt (E.10)

We use a tilde θ̃ on any parameters to distinguish them from the parameters θ of the rotation in terms of
observable factors xt.

32



According to the model, the observed data Yt is related to the latent state vector as

Yt =


δ̃m,0

Ã− ˜̂
A

D̃
˜̂
D

+


δ̃m,x

B̃x − ˜̂
Bx

H̃x
˜̂
Hx

 x̃t = M̃ + Ñxx̃t

where M̃ and Ñx collect all the factor loadings. Pre-multiplying by W1, we find

Yt = M̃ + Ñxx̃t

W1Yt = W1M̃ +W1Ñxx̃t

Y
(1)
t = W1M̃ +W1ÑxΓ−1

1 (xt − Γ0)

Y
(1)
t = W1M̃ −W1ÑxΓ−1

1 Γ0 +W1ÑxΓ−1
1 xt

In order for ft = Y
(1)
t , the rotation requires that two conditions are met

W1M̃ −W1M̃xΓ−1
1 Γ0 = 0

W1ÑxΓ−1
1 =

(
I 0

)
We use these conditions to solve for Γff ,Γfe and Γ0,f in (E.6). We find(

Γff Γfe
)

= W1Ñx

Γ0,f = W1M̃

Therefore, the matrices Γff , Γfe and the vector Γ0,f are determined by the choice of W1.

We still need to determine the unknown matrices Γef ,Γee and the vector Γ0,e in (E.6). How a researcher
must choose these matrices depends on how they parameterize the autocovariance matrix Φ̃∗x and drift µ̃∗x
under the latent factor representation.

We parameterize the matrix Φ̃∗x in (E.9) as a matrix of eigenvalues

Φ̃∗x =

(
Λ∗f Λ∗fe
Λ∗ef Λ∗e

)
where the blocks are the same dimension as ft and et, respectively. In general, the eigenvalues may be
distinct and real, complex, or repeated. In most settings, empirical researchers impose the restrict that the
eigenvalues are distinct and real meaning that Λ∗f and Λ∗e are diagonal matrices and Λ∗fe = 0, Λ∗ef = 0.

Note that under this rotation, the matrix Φ̃∗x implies that the factors x̃t are not cointegrated because this
matrix does not have the structure of a cointegrated system. The relationship between the autocovariance
matrices under the two rotations is

Φ∗x = Γ1Φ̃∗xΓ−1
1

In order for xt to be cointegrated with cointegrating vector β∗f , the autocovariance matrix Φ∗x must have
the structure Φ∗x = I + B∗fA∗f , see Appendix C.1. We use this to determine the values of Γef and Γee that
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maintain internal consistency in the model. We start by writing

I + B∗fA∗f = Γ1Φ̃∗xΓ−1
1

IΓ1 + B∗fA∗fΓ1 = Γ1Φ̃∗x(
0 0
0 I

)(
Γff Γfe
Γef Γee

)
+ B∗f

(
Φ∗f α∗f

)( Γff Γfe
Γef Γee

)
=

(
Γff Γfe
Γef Γee

)
Φ̃x(

0 0
Γef Γee

)
+ B∗f

(
Φ∗fΓff + α∗fΓef Φ∗fΓfe + α∗fΓee

)
=

(
Γff Γfe
Γef Γee

)
Φ̃x(

0 0
Γef Γee

)
+

(
I

β∗,>f

)(
Φ∗fΓff + α∗fΓef Φ∗fΓfe + α∗fΓee

)
=

(
Γff Γfe
Γef Γee

)(
Λ∗f Λ∗fe
Λ∗ef Λ∗e

)
(

0 0
Γef Γee

)
+

(
Φ∗fΓff + α∗fΓef Φ∗fΓfe + α∗fΓee

β∗,>f
(
Φ∗fΓff + α∗fΓef

)
β∗,>f

(
Φ∗fΓfe + α∗fΓee

) ) =

(
ΓffΛ∗f + ΓfeΛ

∗
ef ΓffΛ∗fe + ΓfeΛ

∗
e

ΓefΛ∗f + ΓeeΛ
∗
ef ΓefΛ∗fe + ΓeeΛ

∗
e

)
Next, we guess and verify that Γef and Γee have the form

Γef = β∗,>f Jf

Γee = β∗,>f Je

where Jf and Je are to be determined. β∗f is the cointegrating vector under the risk adjusted distribution.
In our case, the cointegrating vectors β∗f = βf are equal under the two distributions and known in advance.
In other applications, they may be different under both distributions.

Plugging in these solution gives(
Φ∗fΓff + α∗fΓef Φ∗fΓfe + α∗fΓee

β∗,>f
(
Jf + Φ∗fΓff + α∗fΓef

)
β∗,>f

(
Je + Φ∗fΓfe + α∗fΓee

) ) =

(
ΓffΛ∗f + ΓfeΛ

∗
ef ΓffΛ∗fe + ΓfeΛ

∗
e

β∗,>f
(
JfΛ∗f + JeΛ

∗
ef

)
β∗,>f

(
JfΛ∗fe + JeΛ

∗
e

) )
Substitute the top two equations into the bottom two equations to write this system as

β∗,>f
(
Jf + ΓffΛ∗f + ΓfeΛ

∗
ef

)
= β∗,>f

(
JfΛ∗f + JeΛ

∗
ef

)
β∗,>f

(
Je + ΓffΛ∗fe + ΓfeΛ

∗
e

)
= β∗,>f

(
JfΛ∗fe + JeΛ

∗
e

)
In general, we first solve for Jf as a function of Je.

Jf + ΓffΛ∗f + ΓfeΛ
∗
ef = JfΛ∗f + JeΛ

∗
ef

Jf
(
I− Λ∗f

)
= JeΛ

∗
ef − ΓffΛ∗f − ΓfeΛ

∗
ef

Jf =
[
JeΛ

∗
ef − ΓffΛ∗f − ΓfeΛ

∗
ef

] (
I− Λ∗f

)−1

Plugging this into the second equation

Je + ΓffΛ∗fe + ΓfeΛ
∗
e = JfΛ∗fe + JeΛ

∗
e

Je + ΓffΛ∗fe + ΓfeΛ
∗
e =

[
JeΛ

∗
ef − ΓffΛ∗f − ΓfeΛ

∗
ef

] (
I− Λ∗f

)−1
Λ∗fe + JeΛ

∗
e

Je
(

I− Λ∗e − Λ∗ef
(
I− Λ∗f

)−1
Λ∗fe

)
= −

[
ΓffΛ∗f + ΓfeΛ

∗
ef

] (
I− Λ∗f

)−1
Λ∗fe − ΓffΛ∗fe − ΓfeΛ

∗
e

The solution for Je is

Je = −
[(

ΓffΛ∗f + ΓfeΛ
∗
ef

) (
I− Λ∗f

)−1
Λ∗fe + ΓffΛ∗fe + ΓfeΛ

∗
e

] (
I− Λ∗e − Λ∗ef

(
I− Λ∗f

)−1
Λ∗fe

)−1

Once Je is known, we can solve for Jf from the equation above.

In the special case where Φ∗x is a diagonal matrix with real, distinct eigenvalues, the rotation matrices Γef
and Γee simply to

Γef = −β∗,>f ΓffΛ∗f
(
I− Λ∗f

)−1

Γee = −β∗,>f ΓfeΛ
∗
e (I− Λ∗e)

−1
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The state vector is also shifted by Γ0 in (E.5). We need to determine the value of Γ0,e in (E.6) such that
after rotating the latent factor ẽt becomes et. Let Υ∗ = I−Φ∗x. The relationship between the two rotations
is

µ∗x = (I− Φ∗x) Γ0 + Γ1µ̃
∗
x

In order for xt to be cointegrated, the drift must have the structure µ∗x = C + B∗fµ∗f , see Appendix C.1. We
use this to solve for the value of Γ0,e.(

0

β∗,>f δ0

)
+

(
µ∗f

β∗,>f µ∗f

)
=

(
Υ∗ff Υ∗fe
Υ∗ef Υ∗ee

)(
Γ0,f

Γ0,e

)
+

(
Γff Γfe
Γef Γee

)[(
0

β∗,>f δ̃0

)
+

(
µ̃∗f
µ̃∗e

)]
Plugging the second equation into the first, this implies that

β∗,>f δ0 + β∗,>f µ∗f = Υ∗efΓ0,f + Υ∗eeΓ0,e + Γef µ̃
∗
f + Γeeµ̃

∗
e + Γeeβ

>
f δ̃0

β∗,>f
(
Υ∗ffΓ0,f + Υ∗feΓ0,e + Γff µ̃

∗
f + Γfeµ̃

∗
e

)
= −β∗,>f δ0 + Υ∗efΓ0,f + Υ∗eeΓ0,e + Γef µ̃

∗
f + Γeeµ̃

∗
e + Γeeβ

∗,>
f δ̃0(

β∗,>f Υ∗fe −Υ∗ee

)
Γ0,e = −β∗,>f δ0 + Υ∗efΓ0,f + Γef µ̃

∗
f + Γeeµ̃

∗
e

−β∗,>f
(
Υ∗ffΓ0,f + Γff µ̃

∗
f + Γfeµ̃

∗
e

)
+ Γeeβ

∗,>
f δ̃0

The solution is

Γ0,e =
(
β∗,>f Υ∗fe −Υ∗ee

)−1 [
Γeeβ

∗,>
f δ̃0 − β∗,>f δ0 +

(
Υ∗ef − β∗,>f Υ∗ff

)
Γ0,f

+
(

Γef − β∗,>f Γff
)
µ̃∗f +

(
Γee − β∗,>f Γfe

)
µ̃∗e

]
Again, in our case, the vector β∗f = βf are equal and known a priori.

Appendix E.2 Identification

In this section, we discuss how to impose identifying restrictions that are commonly used in the term structure
literature. Then, we discuss some specific details used in our estimation.

Identification.

• The parameters of the VECM given by µf ,Φf , αf ,Σf using the observables rotation. They are
unrestricted.

• The matrix Φ̃∗x is diagonal with eigenvalues along its diagonal. We assume these eigenvalues are all
real and ordered in ascending order.

• The loadings on the short rate are restricted to be a vector of ones δ̃`,x = ι. The remaining loadings
δ̃s,x, δ̃π,x, δ̃c,x and δ̃ĉ,x are unrestricted.

• The vector

δ̃0 =


δ̃s,0
δ̃π,0
δ̃c,0
δ̃ĉ,0
δ̃`,0


can be freely estimated.
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• The vector µ̃∗x is

µ̃∗x =

(
µ̃∗f
µ̃∗e

)
=

(
0
µ̃∗e

)
where µ̃∗f = 0. The value of µ̃∗e must be restricted. In our setting, it is required to be

µ̃∗e = (I − Λ∗e)
(
δ̃s,e − δ̃π,e

)−1 (
δ̃s,0 − δ̃π,0

)
The reason the restriction on the drift of µ̃∗e is required is explained in Appendix E.3.

Appendix E.3 Restriction on the drift µ̃∗e

Let µ̄x and µ̄∗x denote the unconditional mean of xt under the physical and risk-adjusted probabilities.
Cointegration imposes cross-equation restrictions on the long-run mean of xt. Specifically, the cointegrating
vector times the unconditional mean of the states ft must be zero

β′fSf µ̄x = 0

β′fSf µ̄
∗
x = 0

where Sf is a selection matrix defined such that ft = Sfxt. In our setting with β>f =
(
β>m 01×dg

)
and

βm = (1 − 1)>, this restriction implies that the depreciation rate ∆st and inflation rate differential ∆cπt
must have the same unconditional mean.

µ̄s = µ̄π

µ̄∗s = µ̄∗π

This imposes an implicit restriction on the risk neutral drift of the last factor ẽt under the latent factor
representation µ̃∗e .

To see this, the relationship between the unconditional means across the two rotations is

µ̄∗x = Γ0 + Γ1
¯̃µ∗x

Multiplying both sides by β′fSf we get

β′fSf µ̄
∗
x = β′fSfΓ0 + β′fSfΓ1

¯̃µ∗x

0 = β′fSfΓ0 + β′fSfΓ1
¯̃µ∗x

0 = β′fΓ0,f + β′f
(

Γff Γfe
)

¯̃µ∗x

0 = β′fΓ0,f + β′fΓff ¯̃µ∗f + β′fΓfe ¯̃µ∗e

The solution for the mean is

¯̃µ∗e = −
(
β′fΓfe

)−1 (
β′fΓ0,f + β′fΓff ¯̃µ∗f

)
We can also write this in terms of the drift as

µ̃∗e = − (I− Λ∗e)
(
β′fΓfe

)−1 (
β′fΓ0,f + β′fΓff ¯̃µ∗f

)
This condition must be imposed during estimation. In our setting, we know the value of βf together with
the identifying restrictions

¯̃µ∗f = 0

β′fΓ0,f = δ̃s,0 − δ̃π,0
β′fΓfe = δ̃s,e − δ̃π,e

Plugging these values, we find

µ̃∗e =
(
δ̃s,e − ζ∗e

)(
1− δ̃p,e

)−1 (
δ̃s,0 − δ̃π,0

)
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Appendix E.4 Parameterization

In this section, we describe how we parameterize the drifts/unconditional means of the model during es-
timation. For the physical dynamics, we parameterize the model in terms of the unconditional means µ̄x
instead of the drift µf . Instead or parameterizing the model in terms of δ̃0 under the latent factor rotation,
we prefer to estimate the unconditional means µ∗x under the observable rotation.

The state vector ft has dimension df × 1. There are df free parameters in the vector µ̄x. As discussed
above, cointegration imposes long-run restrictions across those variables such that β′fSf µ̄x = 0. In our
model, this implies that the unconditional means of the inflation differential and depreciation rate are equal
µ̄s = µ̄π. Imposing this restriction allows us to estimate the remaining unconditional means of ft as well
as the unconditional mean of the real exchange rate et. We write this as

µ̄x = Sµ̄µ̄x,u

where Sµ̄ is a selection matrix that imposes the cointegration restriction µ̄s = µ̄π. The vector µ̄x,u has
dimension df × 1 and contains the unrestricted means.

From the latent factor rotation, the vector δ̃0 =
(
δ̃s,0, δ̃π,0, δ̃c,0, δ̃ĉ,0, δ̃`,0

)
contains 5 parameters that are

identifiable and there are no free parameters in µ̃∗f . In practice, we could estimate these 5 free parameters
directly under this rotation. We prefer to parameterize these 5 free parameters in terms of unrestricted
values under the observables rotation xt. The reason is that it is easier to place a prior distribution over µ̄∗x
in the observables rotation as it is more meaningful. Doing this requires some understanding of the model
and how the rotation to observables changes the identifiable parameters that enter δ̃0 to free parameters
that enter δ0 and µ̄∗x.

To start, we know that under our rotation δs,0 = δπ,0 = δc,0 = δ`,0 = 0 because all these factors are
observable in the state vector ft. We also know that because the inflation differential and depreciation rate
are cointegrated the unconditional means are equal

µ̄∗s = µ̄∗π. (E.11)

In our setting, δĉ,0 is still a free parameter because the foreign spread ĉt is not observable and does not
enter ft. There are four remaining free parameters in the unconditional mean µ̄∗x even though it has
dimension dx = 9. These parameters are (µ̄∗s , µ̄

∗
e , µ̄
∗
c , µ̄
∗
` ) which are the unconditional means of (∆st, et, ct, `t),

respectively. The remaining parameters in µ̄∗x are not free and are deterministic functions of the estimable
parameters α = (µ̄∗s , µ̄

∗
e , µ̄
∗
c , µ̄
∗
` , δĉ,0). It turns out that we can solve for these unknown values from knowledge

that linear combinations of the loadings M must be zero W1M = 0 and the unconditional mean restriction
in (E.11). First, note that we can always write the loadings as a linear function their means

M = Mc +Mµ̄,rµ̄
∗
x,r +Mµ̄,uµ̄

∗
x,u

We can therefore solve for µ̄∗x,r as a function of other parameters of the model as(
W1M

β>f Sf µ̄
∗
x

)
=

(
0
0

)
(
W1Mc +W1Mµ̄,rµ̄

∗
x,r +W1Mµ̄,uµ̄

∗
x,u

β>f Sf,rµ̄
∗
x,r + β>f Sf,uµ̄

∗
x,u

)
= 0(

W1Mc

0

)
+

(
W1Mµ̄,u

β>f Sf,r

)
µ̄∗x,r +

(
W1Mµ̄,u

β>f Sf,u

)
α = 0

We can solve this system of equations for the restricted parameters µ̄∗x,r as

µ̄∗x,r = −
(
Sr

(
W1Mµ̄,r

β>f Sf,r

))−1

Sr

(
W1Mc

0

)
−
(
Sr

(
W1Mµ̄,r

β>f Sf,r

))−1

Sr

(
W1Mµ̄,u

β>f Sf,u

)
α
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Appendix F Estimation

Appendix F.1 Prior distributions

• Let Sy = ΣyΣ>y with dimension dy2 × dy2 . Note that Y
(2)
t has dimension dy2 × 1. We assume Sy has

an inverse Wishart distribution Sy ∼ Inv-W
(
Ωy, νy

)
with mean E [Sy] = Ωy (ν − dy2 − 1)−1. We set

νy = dy2 + 3 and Ωy = Idy2 (νy − dy2 − 1)× 10−8.

• Let Sf = ΣfΣ>f with dimension df × df . We assume Sf has an inverse Wishart distribution Sf ∼
Inv-W

(
Ωf , νf

)
. We set νf = df +3 and Ω = Sf (νf − df − 1). The matrix Sf is diagonal with blocks

Ss, Sπ, Sg whose dimensions are the same as ∆st,∆cπt and gt. The scale of the depreciation rate is

significantly larger than inflation and yields. We set Ss = I×10−3, Sπ = I×10−5, and Sg = I×10−7.

• As discussed in Appendix E.4, we estimate the unconditional means (µ̄x, µ̄
∗
x) directly instead of the

drifts
(
µf , µ

∗
f

)
. In a VECM, there are df free parameters in µ̄x; the same as the dimension of ft. We

assume each free entry in µ̄x is a-priori independent.

In our setting, the factors xt are observable. First, we calculate the unconditional sample mean of the
factors ˆ̄µx. Our prior for each element of µ̄x is a normal distribution centered at the sample mean.
Then, we choose the variance of this distribution to be large enough to cover the support of the data.
Let κ = 1/12002. Our priors are

– inflation rate differential: µ̄π ∼ N
(
ˆ̄µπ, 25κ

)
– Libor rate: µ̄` ∼ N

(
ˆ̄µ`, κ

)
– term spread: µ̄y120,12 ∼ N

(
ˆ̄µy120,12 , 0.5κ

)
– Ted spread: µ̄c ∼ N

(
ˆ̄µc, 0.25κ

)
– Interest rate differential: µ̄∆c` ∼ N

(
ˆ̄µ∆c`, 0.5κ

)
– term spread differential: µ̄∆cy120,12 ∼ N

(
ˆ̄µ∆cy120,12 , 0.5κ

)
– Libor slope differential: µ̄∆c`6,1 ∼ N

(
ˆ̄µ`6,1 , 0.25κ

)
– real exchange rate: µ̄e ∼ N

(
ˆ̄µe, 5000κ

)
No arbitrage imposes restrictions on µ̄∗x, allowing for only 4 free parameters. We model these using a
conditional prior distribution as

– depreciation rate: µ̄∗s ∼ N (µ̄s, 50κ)

– Libor rate: µ̄∗` ∼ N (µ̄` + 15, 50κ)

– Ted spread: µ̄∗c ∼ N (µ̄c, 50κ)

– real exchange rate: µ̄∗e ∼ N (µ̄e, 25000κ)

Note that our conditional prior distribution implicitly restricts the magnitudes of the market prices
of risk λµ.

• The eigenvalues Λ∗x of Φ∗x are assumed to be real and ordered. Let a1 = −1 and b = 1. We
parameterize them as Λ∗x,1 = a1 + (b− a1)U1 and Λ∗x,j = aj−1 + (b− aj−1)Uj for j = 2, . . . , dx. This
transformation ensures that they are increasing and contained in the interval [−1, 1]. We then place
priors on the eigenvalues Λ∗x,j via Uj ∼ Beta (10, 10).

• We place a prior on the free parameters of the factor loadings δ̃s,x, δ̃π,x, δ̃c,x, δ̃ĉ,x. Our identifying
restriction is that δ̃`,x = ι. We assume that each free entry is independent and distributed as δ̃j,x ∼
N (0, 10000). This implicitly places a prior distribution over the free parameters in Φ∗f and α∗f .

• We use a conditional prior distribution p
(
Φf |Φ∗f

)
where vec (Φf ) ∼ N

(
vec
(
Φ∗f
)
, Vφ∗

)
. The covariance

matrix Vφ∗ then measures the magnitudes of the market prices of risk.

• We use a joint prior distribution over the speed of adjustment parameters p
(
αf , α

∗
f

)
= p

(
αf |α∗f

)
p
(
α∗f
)
.
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Appendix F.2 Observables

We stack the U.S. and foreign nominal yields of different maturities into vectors yt =
(
y3
t , . . . , y

120
t

)
and

ŷt =
(
ŷ3
t , . . . , ŷ

120
t

)
as well as their bond loadings, e.g. D = (d3, . . . , d120)> and Hx = (h3,x, . . . , h120,x)>.

We do the same for the observed Libor rate differentials ∆c`t =
(
∆c`

1
t , . . . ,∆c`

12
t

)
and their loadings

A = (a1, . . . , a12)> and Bx = (b1,x, . . . , b12,x)>. In practice, we also observe the one month U.S. Ted spread
c1t and the one month U.S. Libor rate `1t .

The system of observation equations used in the model are

mt = mt−1 + δm,0 + δm,xxt

`1t = a1 + b>1,xxt

c1t = (a1 − d1) + (b1,x − h1,x)> xt

∆c`t =
(
A− Â

)
+
(
Bx − B̂x

)
xt

yt = D +Hxxt

ŷt = D̂ + Ĥxxt

We define the overall vector of observables as

Yt =


∆mt

`1t
c1t

∆c`t
yt
ŷt


We choose W1 so that the state vector ft is

ft =



∆st
∆cπt
`1t

y120,12
t

c1t
∆c`t

∆cy
120,12
t

∆c`
12,1
t


The matrix W2 is a selection matrix full of zeros and ones that selects out of Yt the elements that are not
used in ft. Specifically, W2 is defined such that Y

(2)
t includes the 3, 12, 24, 36, 48, 60, and 84 month U.S.

yields, the 3, 24, 36, 48, 60, 84, 120 month foreign yields, and a linear combination of Libor rates `1t − `3 + ̂̀3
and `1t − `6 + ̂̀6. The last two linear combinations of Libor rates where chosen so that they have the same
magnitude and sign as foreign government yields.

Appendix F.3 Log-likelihood function

The log-likelihood function is

L = log p (Y1, . . . , YT |θ) =

T∑
t=1

log p (ft|ft−1, et−1; θ) +

T∑
t=1

log p
(
Y

(2)
t |xt; θ

)
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where f0 and e0 are assumed to be known. The density p (ft|ft−1, et−1; θ) is determined by the VECM
dynamics of the factors ft while the second term comes from the linear combination of yields observed with
error

Y
(2)
t = M (2) +N (2)

x xt + Σyηt, ηt ∼ N (0, I) ,

where M (2) = W1M and N
(2)
x = W2Nx and

M = M̃ − ÑxΓ−1
1 Γ0,

Nx = ÑxΓ−1
1 .

This likelihood function assumes that there are no missing values in either Y
(1)
t or Y

(2)
t . In practice, this is

not the case. We impute these missing values during the MCMC algorithm using the Kalman filter.

Appendix F.4 Estimation

Let θ denote all the parameters of the model and define f1:T = (f1, . . . , fT ) and Y1:T = (Y1, . . . , YT ). In
practice, some data points are missing which implies that some of the factors ft are missing. We use Y o1:T

and Y m1:T to denote the observed and missing data, respectively. The joint posterior distribution over the
parameters and missing data is given by

p (θ, Y m1:T |Y o1:T ) ∝ p (Y o1:T |θ) p (θ) ,

where p (Y o1:T |θ) is the likelihood and p (θ) is the prior distribution. We use Markov-chain Monte Carlo to
draw from the posterior.

Appendix F.4.1 MCMC algorithm

We provide a brief description of the MCMC algorithm. Let Sy = ΣyΣ′y and Sf = ΣfΣ′f denote the
covariance matrices. We use a Gibbs sampler that iterates between drawing from each of the full conditional
distributions.

• Place the model in linear, Gaussian state space form as described in Appendix F.5. Draw the missing
data and unconditional means (Y m1:T , µ̄x, µ̄

∗
x) from their full conditional distribution using the Kalman

filter and simulation smoothing algorithm. Given the full data Y o,mt = (Y ot , Y
m
t ), we can recalculate

the factors ft = W1Y
o,m
t .

• Let f̄t = ft − µ̄f and ēt = et − µ̄e denote the demeaned factors. We draw the free elements of Φf , αf
from their full conditional distribution using standard results for Bayesian multiple regression. We
write the VECM as a regression model

f̄t = Xtγ + Σfεt

where γ = (vec (Φf ) αf ) and the regressors Xt contain lagged values of f̄t−1 and ēt−1. Draws from
this model are standard.

• Draw the free elements of Sf from their full conditional using a random-walk Metropolis algorithm.
In this step, we avoid conditioning on the parameters Sy,Φf , αf by analytically integrating these
parameters out of the likelihood.

• Draw the eigenvalues Λ∗x from their full conditional using random-walk Metropolis. To avoid condi-
tioning on Sy,Φf , αf , we draw from the marginal distribution that analytically integrates these values
out of the likelihood.

• Draw the elements of δ̃s,x, δ̃π,x, δ̃c,x and δ̃ĉ,x from their full conditional using random-walk Metropo-
lis. To avoid conditioning on Sy,Φf , αf , we draw from the marginal distribution that analytically
integrates these values out of the likelihood.

• The full conditional posterior of Sy is an inverse Wishart distribution Sy ∼ Inv-Wish
(
ν̄, Ω̄

)
where

ν̄ = ν + T and Ω̄ = Ω +
∑T
t=1 ηtη

>
t .
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Appendix F.5 Imputing missing values

In our data set, some of the macroeconomic variables and yields contain missing values. A missing value
of a macroeconomic variable in levels mt implies two missing values in first differences ∆mt. We therefore
formulate the state space model in levels mt and impute the missing values during estimation under a missing
at random assumption. We use Y Lt to denote the vector of observables that contain the levels of the macro
variables and yields

Y Lt =

(
mt

yt

)
Yt =

(
∆mt

yt

)
while Yt contains the first differences of the macro variables.

Given that ft = Y
(1)
t , we can write the model in VAR form as(
Y

(1)
t

Y
(2)
t

)
=

(
µf

M (2) +N
(2)
x Bfµf

)
+

(
Φf 0

R(2)Φf 0

)(
Y

(1)
t−1

Y
(2)
t−1

)

+

(
αf

N
(2)
e +R(2)αf

)
et−1 +

(
Σf 0

R(2)Σf Σy

)(
εt
ηt

)
where R(2) = N

(2)
f +N

(2)
e β>f . We use N

(2)
f to denote the columns of N

(2)
x associated with the factors ft. A

similar definition applies to N
(2)
e and et. Next we translate this system back into Yt using the fact that

Yt =

(
W1

W2

)−1
(

Y
(1)
t

Y
(2)
t

)
to get

Yt =

(
W1

W2

)−1(
µf

M (2) +N
(2)
x Bfµf

)
+

(
W1

W2

)−1(
Φf 0

R(2)Φf 0

)(
W1

W2

)
Yt−1

+

(
W1

W2

)−1(
αf

N
(2)
e +R(2)αf

)
et−1 +

(
W1

W2

)−1(
Σf 0

R(2)Σf Σy

)(
εt
ηt

)
This structure implies that Yt is a reduced-rank VECM of the form

Yt = µY + ΦY Yt−1 + αY et−1 + ΣY εY,t εY,t ∼ N (0, I)

where

µY =

(
W1

W2

)−1(
µf

M (2) +N
(2)
x Bfµf

)
ΦY =

(
W1

W2

)−1(
Φf 0

R(2)Φf 0

)(
W1

W2

)

αY =

(
W1

W2

)−1(
αf

N
(2)
e +R(2)αf

)
ΣY =

(
W1

W2

)−1(
Σf 0

R(2)Σf Σy

)
εY,t =

(
εt
ηt

)

Appendix F.5.1 State space form

We place this model in the following linear, Gaussian state space form

Y Lt = Zαt + d+ ut ut ∼ N (0, H) , (F.12)

αt+1 = Tαt + c+Rvt vt ∼ N (0, Q) . (F.13)

where the initial condition is α1 ∼ N
(
a1|0, P1|0

)
.
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Let µ̄ =
(
µ̄>x,u µ̄

∗,>
x,u δĉ,0

)>
denote the vector of unrestricted unconditional means that enter µ̄x and µ̄∗x plus

the intercept δĉ,0. The vector of intercepts µY can be written as a linear function of the unconditional means

µY = Sµ,0 + Sµ,1µ̄

We draw unconditional means jointly with the missing data by including them in the state vector. By
definition mt = mt−1 + SmYt and yt = SyYt where Sm and Sy are selection matrices. We define the system
matrices from (F.12)-(F.13) as

d = 0 Z =

(
I Sm 0
0 Sy 0

)
H = 0 Q = ΣY Σ>Y

αt =

 mt−1

Yt
µ̄

 T =

 I δm,f 0

αY β
>
m ΦY Sµ,1

0 0 I

 c =

 δm,0
Sµ,0

0

 R =

 0
I
0


a1|0 =

 m0

αY β
>
mm0 + Sµ,1m̄µ

m̄µ

 P1|0 =

 0 0 0

0 ΣY Σ>Y + Sµ,1VµS
>
µ,1 Sµ,1Vµ

0 VµS
>
µ,1 Vµ


where the prior on the unconditional means is µ̄ ∼ N (m̄µ, Vµ). We use the Kalman filter and simulation
smoothing algorithm to draw the missing values and the unconditional means jointly.
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Figure 1
True and risk-adjusted forecasts of depreciation rates
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Notes. We use data on spot and forward FX rates between the U.S. dollar and currencies of the

U.K., Japan, Canada, and Eurozone to document their relationship to the current IRD. We report

regression slopes averaged across countries for the period from January 1983 to December 2015.

For the risk-adjusted forecasts (red dots), the dependent variable corresponds to expected average

annual change in FX rates. For the real-world forecasts, the dependent variable corresponds to

monthly changes in FX rates.
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Figure 2
True and risk-adjusted forecasts of depreciation rates in a simple U.K.
model
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Notes. We explore variations in the multihorizon pattern in the UIP regressions implied by a simple

bilateral VECM model of U.S. and U.K. On the left panel variations are associated with variations

in the values of elements of αf . VAR corresponds to all αf = 0. On the right panel, we consider

various scenarios of the values of α∗
f . The red line with crosses, αf 6= 0, is the same across the two

panels and represents the implications of the estimated VECM.
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Figure 3
True and risk-adjusted cross-covariances of depreciation rates and the
interest rate differential
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Notes. We report multi-horizon UIP regression patterns in the data (blue line) and in the model

(black line) as cross-country average regression slopes. For the risk-adjusted forecasts (red dots), the

dependent variable corresponds to expected average annual change in FX rates. For the real-world

forecasts, the dependent variable corresponds to monthly changes in FX rates.
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Figure 4
True and risk-adjusted cross-covariances of depreciation rates and the
real exchange rate
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Notes. We report multi-horizon patterns of regressing future nominal depreciation rates on the cur-

rent real exchange rate in the data (blue line) and in the model (black line) as cross-country average

regression slopes. For the risk-adjusted forecasts (red dots), the dependent variable corresponds to

expected average annual change in FX rates. For the real-world forecasts, the dependent variable

corresponds to monthly changes in FX rates.
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Figure 5
True and risk-adjusted forecasts of depreciation rates in a VAR model
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Notes. We compare the multihorizon pattern in the UIP regressions in the VAR model (green line)

to those from the VECM model (black line) and in the data.
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Figure 6
Long-run UIP in the VECM and VAR models
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Notes. We compare the multihorizon pattern in the long-run UIP regressions in the VAR model

(green line) to those from the VECM model (black line) and in the data (red squares).
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Figure 7
Term structure of nominal and UIP-based risk premiums
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Notes. The blue line shows the nominal currency risk premium, rpsnt , for horizons n = 1, 12, and 24

months. The black line shows the projection of this premium on the IRD, ∆c`t.
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Table 1: Posterior mean and stand. dev. of a two country model with the U.S.-U.K.

xt ∆st ∆cπt `t y120,12
t ct ∆c`t ∆cy

120,12
t ∆c`

12,1
t et

µ̄x × 1200 Φx

∆st -0.224 0.065 0.060 -0.792 -2.968 -2.187 -3.430 -0.179 -3.755 -0.053
(0.558) (0.049) (0.184) (0.908) (2.059) (3.166) (1.571) (2.319) (3.049) (0.015)

∆cπt -0.224 0.019 0.210 -0.117 -0.067 0.899 1.095 0.510 1.959 0.008
(0.558) (0.008) (0.046) (0.163) (0.368) (0.584) (0.295) (0.416) (0.584) (0.003)

`t 4.407 6.06e-04 0.006 0.991 -0.057 -0.153 0.023 -0.022 0.103 1.44e-04
(0.663) (7.64e-04) (0.005) (0.015) (0.033) (0.053) (0.026) (0.037) (0.052) (2.62e-04)

y120,12
t 1.686 4.56e-05 -9.87e-05 -0.017 0.928 -0.009 -0.025 0.004 -0.020 -3.42e-04

(0.271) (3.50e-04) (0.002) (0.007) (0.016) (0.028) (0.013) (0.018) (0.027) (1.25e-04)
ct 0.648 8.12e-05 -0.005 0.065 0.027 0.537 0.028 0.027 0.050 4.75e-04

(0.099) (5.46e-04) (0.003) (0.011) (0.025) (0.041) (0.020) (0.028) (0.039) (1.93e-04)
∆c`t -1.726 0.001 -7.72e-04 -0.031 0.019 -0.012 1.032 -0.132 0.582 0.001

(0.396) (8.99e-04) (0.006) (0.016) (0.037) (0.056) (0.028) (0.041) (0.055) (3.01e-04)

∆cy
120,12
t 0.983 3.12e-04 0.003 0.002 -0.027 0.010 -0.009 0.972 -0.037 -2.61e-04

(0.255) (4.18e-04) (0.003) (0.008) (0.019) (0.031) (0.015) (0.021) (0.030) (1.47e-04)

∆c`
12,1
t 0.353 -0.001 0.003 0.027 0.011 -0.018 -0.070 0.072 0.468 -6.71e-04

(0.107) (7.08e-04) (0.004) (0.013) (0.030) (0.046) (0.023) (0.033) (0.045) (2.39e-04)
et 0.462† 0.045 -0.150 -0.674 -2.900 -3.086 -4.524 -0.689 -5.714 0.939

(0.031) (0.050) (0.188) (0.914) (2.072) (3.196) (1.584) (2.333) (3.076) (0.015)

xt δĉ,x Σx ×
√

12× 100

∆st 0.003 10.115 0 0 0 0 0 0 0
(0.001) (0.370) (—) (—) (—) (—) (—) (—) (—)

∆cπt -0.010 0.111 1.674 0 0 0 0 0 0
(0.004) (0.086) (0.064) (—) (—) (—) (—) (—) (—)

`t 0.071 -0.014 0.001 0.151 0 0 0 0 0
(0.017) (0.007) (0.007) (0.005) (—) (—) (—) (—) (—)

y120,12
t 0.084 -0.001 0.004 6.28e-04 0.069 0 0 0 0

(0.034) (0.003) (0.004) (0.003) (0.002) (—) (—) (—) (—)
ct -0.504 0.004 -0.018 0.041 0.007 0.098 0 0 0

(0.070) (0.006) (0.006) (0.005) (0.005) (0.003) (—) (—) (—)
ct 0.083 0.007 -0.007 0.012 -0.018 0.020 0.172 0 0

(0.026) (0.009) (0.009) (0.009) (0.008) (0.008) (0.006) (—) (—)

∆cy
120,12
t -0.119 0.005 0.011 -2.04e-04 0.032 0.001 -0.031 0.068 0

(0.035) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.002) (—)

∆c`
12,1
t 0.181 -0.018 -0.005 -0.014 -0.001 -0.009 -0.097 -0.047 0.080

(0.054) (0.007) (0.007) (0.008) (0.007) (0.007) (0.006) (0.004) (0.003)
et 5.51e-04 10.004 -1.674 0 0 0 0 0 0

(1.87e-04) (0.376) (0.064) (—) (—) (—) (—) (—) (—)

xt µ̄∗x × 1200 Φ∗x

∆st -3.546 0 0 0 0 0 1 0 0 0
(2.771) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆cπt -3.546 0.035 0.587 0.336 -0.807 0.632 3.024 -0.714 4.503 0.016
(2.771) (0.023) (0.036) (0.211) (0.487) (0.558) (0.392) (0.580) (0.599) (0.002)

`t 20.235 5.75e-04 -0.009 1.023 0.059 -0.177 0.089 -0.035 0.176 3.40e-04
(1.313) (4.40e-04) (0.001) (0.006) (0.014) (0.026) (0.012) (0.015) (0.025) (7.74e-05)

y120,12
t -0.620 3.35e-05 0.001 -0.004 0.972 -0.047 -0.009 7.32e-04 -0.018 -8.40e-05

(0.040) (4.24e-05) (1.60e-04) (0.001) (0.002) (0.004) (0.002) (0.002) (0.003) (9.89e-06)
ct 0.525 8.18e-04 -0.008 0.032 0.054 0.460 0.094 -0.040 0.194 1.04e-04

(0.391) (5.98e-04) (0.002) (0.007) (0.017) (0.030) (0.017) (0.017) (0.030) (1.02e-04)
∆c`t -3.034 0.001 -0.002 0.005 -0.003 -0.033 1.023 -0.078 0.489 1.16e-04

(2.770) (4.39e-04) (9.03e-04) (0.002) (0.005) (0.016) (0.006) (0.007) (0.018) (3.16e-05)

∆cy
120,12
t 0.249 2.73e-04 -8.13e-04 0.007 0.011 -0.117 0.018 0.992 -0.072 1.63e-05

(0.067) (1.09e-04) (2.99e-04) (0.001) (0.003) (0.005) (0.002) (0.004) (0.005) (1.74e-05)

∆c`
12,1
t 0.009 -0.001 0.002 -0.005 0.004 0.031 -0.025 0.097 0.613 -1.31e-04

(0.006) (4.49e-04) (9.60e-04) (0.002) (0.006) (0.017) (0.007) (0.007) (0.019) (3.44e-05)
et 0.126† -0.035 -0.587 -0.336 0.807 -0.632 -2.024 0.714 -4.503 0.984

(0.375) (0.023) (0.036) (0.211) (0.487) (0.558) (0.392) (0.580) (0.599) (0.002)

Posterior mean and standard deviation for a two country model of the U.S. and United Kingdom. We report
unconditional means µ̄∗x, µ̄x, autocovariances matrices Φ∗x,Φx, scale matrix Σx and the vector of loadings
δĉ,x. The symbol † indicates that the unconditional means of the real exchange rates are not multiplied by
1200 (annualization and conversion to percent is not applicable).
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Table 2: Posterior mean and stand. dev. of a two country model with the U.S.-Canada

xt ∆st ∆cπt `t y120,12
t ct ∆c`t ∆cy

120,12
t ∆c`

12,1
t et

µ̄x × 1200 Φx

∆st 0.212 -0.061 -0.006 -0.529 -1.426 0.345 -2.103 -0.676 -2.456 -0.016
(0.266) (0.050) (0.187) (0.733) (1.553) (2.620) (1.622) (2.362) (2.667) (0.008)

∆cπt 0.212 0.029 0.001 -0.142 -0.412 -0.445 -0.671 -1.281 -0.788 0.002
(0.266) (0.008) (0.043) (0.119) (0.246) (0.413) (0.265) (0.389) (0.441) (0.001)

`t 4.452 2.76e-04 0.002 0.975 -0.081 -0.107 -0.042 -0.056 -0.022 8.33e-05
(0.699) (0.001) (0.007) (0.015) (0.032) (0.052) (0.034) (0.048) (0.056) (1.92e-04)

y120,12
t 1.656 9.50e-04 0.004 -0.020 0.936 0.009 -0.042 -0.036 0.017 -3.55e-05

(0.264) (4.92e-04) (0.003) (0.008) (0.016) (0.029) (0.018) (0.027) (0.030) (9.04e-05)
ct 0.654 2.89e-04 9.65e-04 0.074 0.021 0.525 0.061 0.092 0.038 1.46e-04

(0.101) (7.69e-04) (0.005) (0.012) (0.025) (0.042) (0.028) (0.040) (0.045) (1.45e-04)
∆c`t -0.825 8.57e-04 -0.001 -0.053 -0.034 0.040 0.881 -0.266 0.366 -1.22e-04

(0.369) (0.001) (0.007) (0.017) (0.034) (0.054) (0.033) (0.050) (0.053) (1.97e-04)

∆cy
120,12
t 0.496 3.34e-04 0.001 -0.008 -0.021 0.013 0.001 0.949 5.23e-04 1.40e-04

(0.204) (5.82e-04) (0.004) (0.010) (0.019) (0.033) (0.021) (0.031) (0.033) (1.06e-04)

∆c`
12,1
t 0.065 -0.002 0.003 0.027 0.014 -0.017 -0.007 0.148 0.488 3.33e-05

(0.077) (8.93e-04) (0.006) (0.015) (0.028) (0.047) (0.029) (0.043) (0.046) (1.66e-04)
et −0.171† -0.090 -0.008 -0.387 -1.014 0.790 -1.431 0.605 -1.669 0.982

(0.043) (0.051) (0.192) (0.741) (1.569) (2.650) (1.644) (2.392) (2.703) (0.008)

xt δĉ,x Σx ×
√

12× 100

∆st 3.15e-04 7.249 0 0 0 0 0 0 0
(0.004) (0.262) (—) (—) (—) (—) (—) (—) (—)

∆cπt -0.003 0.009 1.062 0 0 0 0 0 0
(0.014) (0.055) (0.039) (—) (—) (—) (—) (—) (—)

`t 0.020 -0.002 -0.003 0.148 0 0 0 0 0
(0.049) (0.007) (0.007) (0.004) (—) (—) (—) (—) (—)

y120,12
t -0.008 -0.001 0.010 -0.002 0.068 0 0 0 0

(0.037) (0.003) (0.003) (0.003) (0.002) (—) (—) (—) (—)
ct 0.248 -0.008 -0.003 0.039 0.006 0.100 0 0 0

(0.155) (0.006) (0.005) (0.005) (0.005) (0.004) (—) (—) (—)
∆c`t -0.070 0.016 0.007 0.030 -0.002 0.025 0.141 0 0

(0.029) (0.008) (0.008) (0.013) (0.008) (0.008) (0.005) (—) (—)

∆cy
120,12
t -0.016 -0.006 3.02e-04 0.021 0.034 0.002 -0.038 0.058 0

(0.050) (0.004) (0.004) (0.007) (0.004) (0.004) (0.003) (0.002) (—)

∆c`
12,1
t -0.281 -0.010 -0.008 -0.039 -0.010 -0.021 -0.072 -0.047 0.074

(0.072) (0.006) (0.007) (0.011) (0.007) (0.007) (0.005) (0.004) (0.003)
et 1.99e-04 7.240 -1.062 0 0 0 0 0 0

(9.72e-05) (0.267) (0.039) (—) (—) (—) (—) (—) (—)

xt µ̄∗x × 1200 Φ∗x

∆st 24.581 0 0 0 0 0 1 0 0 0
(3.139) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆cπt 24.581 0.067 0.158 1.913 -2.807 0.557 -1.457 -2.819 -1.241 0.006
(3.139) (0.033) (0.039) (0.351) (0.640) (0.255) (0.285) (0.656) (0.601) (8.01e-04)

`t 22.181 -2.13e-04 -0.006 1.018 0.040 -0.008 -0.008 -0.019 -0.008 4.03e-05
(1.232) (6.88e-04) (0.003) (0.008) (0.012) (0.006) (0.005) (0.013) (0.010) (2.38e-05)

y120,12
t -0.524 4.51e-05 4.59e-04 7.41e-04 0.977 -0.073 0.011 0.018 0.009 -7.04e-06

(0.030) (5.73e-05) (2.78e-04) (8.82e-04) (0.002) (7.27e-04) (0.002) (0.003) (0.002) (3.36e-06)
ct 4.898 2.33e-04 -0.020 0.095 0.039 0.395 0.055 0.062 0.050 1.12e-04

(0.890) (8.70e-04) (0.003) (0.013) (0.021) (0.026) (0.016) (0.030) (0.030) (3.20e-05)
∆c`t 24.844 8.20e-04 1.00e-03 -0.008 0.010 0.032 0.999 -0.094 0.461 -2.41e-05

(3.138) (6.21e-04) (0.001) (0.005) (0.005) (0.019) (0.002) (0.008) (0.019) (1.16e-05)

∆cy
120,12
t 0.182 5.47e-05 -1.68e-04 0.005 0.010 -0.057 0.008 1.005 -0.106 -5.45e-06

(0.065) (2.87e-04) (0.001) (0.004) (0.003) (0.012) (0.002) (0.004) (0.005) (7.57e-06)

∆c`
12,1
t 0.009 -8.37e-04 -9.71e-04 0.009 -0.012 -0.035 6.11e-04 0.117 0.642 2.79e-05

(0.004) (6.37e-04) (0.001) (0.005) (0.005) (0.020) (0.002) (0.009) (0.020) (1.22e-05)
et −0.168† -0.067 -0.158 -1.913 2.807 -0.557 2.457 2.819 1.241 0.994

(0.435) (0.033) (0.039) (0.351) (0.640) (0.255) (0.285) (0.656) (0.601) (8.01e-04)

Posterior mean and standard deviation for a two country model of the U.S. and Canada. We report
unconditional means µ̄∗x, µ̄x, autocovariances matrices Φ∗x,Φx, scale matrix Σx and the vector of loadings
δĉ,x. The symbol † indicates that the unconditional means of the real exchange rates are not multiplied by
1200 (annualization and conversion to percent is not applicable).

51



Table 3: Posterior mean and stand. dev. of a two country model with the U.S.-Euro

xt ∆st ∆cπt `t y120,12
t ct ∆c`t ∆cy

120,12
t ∆c`

12,1
t et

µ̄x × 1200 Φx

∆st 0.917 0.133 0.097 0.039 1.640 3.423 -4.143 -3.786 -8.059 -0.037
(0.330) (0.049) (0.191) (0.840) (2.194) (3.151) (1.583) (2.537) (2.844) (0.011)

∆cπt 0.917 0.022 0.103 0.248 0.128 -1.303 0.585 0.473 -0.186 0.003
(0.330) (0.007) (0.044) (0.132) (0.365) (0.539) (0.261) (0.435) (0.455) (0.002)

`t 4.391 1.74e-04 0.006 0.981 -0.059 -0.138 0.035 -0.001 0.109 4.94e-05
(0.624) (7.69e-04) (0.005) (0.013) (0.035) (0.052) (0.026) (0.042) (0.046) (1.79e-04)

y120,12
t 1.651 -3.33e-05 -6.93e-04 5.56e-05 0.974 0.020 -0.084 -0.087 -0.121 -4.38e-04

(0.211) (3.48e-04) (0.003) (0.007) (0.018) (0.027) (0.014) (0.022) (0.024) (8.62e-05)
ct 0.651 4.01e-04 0.004 0.054 0.010 0.536 0.048 0.054 0.017 3.26e-04

(0.094) (5.53e-04) (0.004) (0.010) (0.027) (0.041) (0.021) (0.033) (0.036) (1.35e-04)
∆c`t 0.651 0.001 0.014 -0.011 0.034 0.039 0.959 -0.251 0.698 -1.05e-04

(0.435) (0.001) (0.007) (0.017) (0.043) (0.060) (0.030) (0.048) (0.055) (2.35e-04)

∆cy
120,12
t 0.397 -8.58e-05 0.004 0.007 -0.011 -0.011 -0.056 0.927 -0.097 -2.77e-04

(0.272) (4.35e-04) (0.003) (0.008) (0.022) (0.033) (0.017) (0.027) (0.029) (1.06e-04)

∆c`
12,1
t 0.149 -0.002 -0.009 -0.003 0.027 0.020 -0.012 0.117 0.375 -9.71e-06

(0.080) (8.59e-04) (0.006) (0.015) (0.037) (0.052) (0.026) (0.042) (0.047) (1.96e-04)
et 0.221† 0.111 -0.006 -0.209 1.513 4.726 -4.728 -4.259 -7.872 0.960

(0.042) (0.049) (0.195) (0.848) (2.217) (3.187) (1.600) (2.565) (2.869) (0.011)

xt δĉ,x Σx ×
√

12× 100

∆st -5.63e-04 9.777 0 0 0 0 0 0 0
(0.003) (0.352) (—) (—) (—) (—) (—) (—) (—)

∆cπt -0.019 0.031 1.347 0 0 0 0 0 0
(0.003) (0.069) (0.049) (—) (—) (—) (—) (—) (—)

`t 0.113 0.003 -8.41e-04 0.149 0 0 0 0 0
(0.016) (0.007) (0.007) (0.005) (—) (—) (—) (—) (—)

y120,12
t 0.158 -0.002 -0.001 0.005 0.067 0 0 0 0

(0.032) (0.003) (0.003) (0.003) (0.002) (—) (—) (—) (—)
ct 0.261 0.008 -0.004 0.038 0.008 0.099 0 0 0

(0.105) (0.005) (0.005) (0.005) (0.005) (0.004) (—) (—) (—)
∆c`t -0.185 4.36e-04 -0.005 0.092 0.002 0.004 0.176 0 0

(0.016) (0.010) (0.010) (0.013) (0.009) (0.009) (0.007) (—) (—)

∆cy
120,12
t -0.291 -0.007 -4.11e-04 -0.013 0.060 9.02e-04 -0.004 0.056 0

(0.049) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.002) (—)

∆c`
12,1
t 0.323 -0.012 0.008 -0.023 -0.006 -0.010 -0.144 -0.015 0.068

(0.114) (0.008) (0.008) (0.011) (0.008) (0.008) (0.007) (0.004) (0.002)
et -1.49e-04 9.746 -1.347 0 0 0 0 0 0

(3.90e-05) (0.356) (0.049) (—) (—) (—) (—) (—) (—)

xt µ̄∗x × 1200 Φ∗x

∆st 9.658 0 0 0 0 0 1 0 0 0
(1.394) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆cπt 9.658 -0.068 0.315 3.581 0.095 -0.308 1.144 1.757 -1.271 0.004
(1.394) (0.028) (0.038) (0.453) (0.936) (0.811) (0.207) (0.683) (0.631) (3.77e-04)

`t 20.695 -2.14e-04 0.007 0.968 0.064 -0.041 -0.017 -0.062 0.125 -2.69e-05
(0.989) (4.51e-04) (0.001) (0.009) (0.011) (0.025) (0.003) (0.012) (0.025) (1.11e-05)

y120,12
t -0.634 6.30e-05 -7.50e-04 -0.001 0.973 -0.068 -0.002 0.007 -0.017 2.02e-05

(0.036) (4.31e-05) (1.23e-04) (0.001) (0.002) (0.003) (0.001) (0.003) (0.004) (2.66e-06)
ct 0.175 -0.002 0.004 -0.024 0.061 0.535 -0.033 -0.038 0.064 8.26e-05

(0.325) (6.03e-04) (7.27e-04) (0.010) (0.018) (0.024) (0.009) (0.021) (0.029) (1.69e-05)
∆c`t 10.137 5.29e-04 1.30e-05 0.011 0.023 -0.069 0.983 -0.163 0.660 3.05e-05

(1.394) (4.44e-04) (2.60e-04) (0.002) (0.007) (0.023) (0.002) (0.012) (0.026) (5.24e-06)

∆cy
120,12
t -0.324 -3.14e-05 -0.001 0.008 0.012 -0.058 -0.005 0.976 -0.054 2.23e-05

(0.045) (2.55e-04) (2.17e-04) (0.001) (0.003) (0.008) (0.001) (0.004) (0.009) (2.73e-06)

∆c`
12,1
t -0.004 -5.36e-04 -6.23e-05 -0.012 -0.025 0.069 0.019 0.188 0.437 -3.27e-05

(0.004) (4.48e-04) (2.68e-04) (0.002) (0.008) (0.023) (0.002) (0.012) (0.026) (5.47e-06)
et 0.438† 0.068 -0.315 -3.581 -0.095 0.308 -0.144 -1.757 1.271 0.996

(0.411) (0.028) (0.038) (0.453) (0.936) (0.811) (0.207) (0.683) (0.631) (3.77e-04)

Posterior mean and standard deviation for a two country model of the U.S. and Euro. We report
unconditional means µ̄∗x, µ̄x, autocovariances matrices Φ∗x,Φx, scale matrix Σx and the vector of loadings
δĉ,x. The symbol † indicates that the unconditional means of the real exchange rates are not multiplied by
1200 (annualization and conversion to percent is not applicable).
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Table 4: Posterior mean and stand. dev. of a two country model with the U.S.-Japan

xt ∆st ∆cπt `t y120,12
t ct ∆c`t ∆cy

120,12
t ∆c`

12,1
t et

µ̄x × 1200 Φx

∆st 2.082 -0.011 -0.161 0.984 5.222 5.030 -1.396 -1.846 1.014 -0.014
(0.374) (0.050) (0.187) (0.885) (2.950) (3.368) (1.691) (3.222) (2.968) (0.010)

∆cπt 2.082 -0.002 0.162 -0.161 -0.131 0.973 0.111 -0.141 0.583 0.002
(0.374) (0.008) (0.043) (0.149) (0.689) (0.558) (0.355) (0.812) (0.605) (0.002)

`t 4.425 0.001 0.002 0.984 -0.040 -0.088 -0.059 -0.136 0.096 -2.66e-04
(0.673) (7.25e-04) (0.005) (0.013) (0.048) (0.053) (0.026) (0.054) (0.046) (1.48e-04)

y120,12
t 1.650 -1.48e-05 -0.001 0.001 0.942 -0.021 -0.041 -0.021 -0.068 -1.53e-04

(0.199) (3.30e-04) (0.002) (0.006) (0.027) (0.028) (0.014) (0.032) (0.025) (7.45e-05)
ct 0.652 1.76e-04 -0.010 0.057 -0.004 0.557 0.009 0.025 -0.008 9.10e-05

(0.096) (5.06e-04) (0.003) (0.010) (0.038) (0.041) (0.021) (0.045) (0.036) (1.11e-04)
∆c`t 2.547 0.002 -0.002 -0.047 -0.053 0.117 0.916 -0.283 0.807 -2.68e-04

(0.401) (8.74e-04) (0.006) (0.016) (0.050) (0.056) (0.029) (0.055) (0.051) (1.80e-04)

∆cy
120,12
t 0.597 2.58e-04 -0.002 0.007 0.004 -0.017 -0.054 0.903 -0.103 -3.06e-04

(0.235) (3.56e-04) (0.002) (0.007) (0.029) (0.030) (0.015) (0.034) (0.027) (7.98e-05)

∆c`
12,1
t 0.153 -8.42e-04 0.008 0.046 0.153 -0.090 0.003 0.078 0.258 9.11e-05

(0.060) (7.51e-04) (0.005) (0.014) (0.045) (0.050) (0.026) (0.050) (0.046) (1.56e-04)
et −5365.387† -0.009 -0.324 1.145 5.353 4.057 -1.508 -1.705 0.432 0.983

(51.106) (0.051) (0.193) (0.904) (3.054) (3.432) (1.741) (3.351) (3.055) (0.010)

xt δĉ,x Σx ×
√

12× 100

∆st 0.002 10.966 0 0 0 0 0 0 0
(0.003) (0.399) (—) (—) (—) (—) (—) (—) (—)

∆cπt 0.007 -0.103 1.623 0 0 0 0 0 0
(0.004) (0.084) (0.059) (—) (—) (—) (—) (—) (—)

`t 0.144 -0.009 0.008 0.153 0 0 0 0 0
(0.014) (0.008) (0.008) (0.005) (—) (—) (—) (—) (—)

y120,12
t 0.274 0.001 0.002 0.003 0.069 0 0 0 0

(0.048) (0.003) (0.003) (0.003) (0.002) (—) (—) (—) (—)
ct -0.073 0.014 0.003 0.042 0.003 0.097 0 0 0

(0.080) (0.005) (0.005) (0.005) (0.005) (0.004) (—) (—) (—)
∆c`t -0.171 -0.009 0.009 0.066 0.002 0.016 0.170 0 0

(0.021) (0.009) (0.009) (0.012) (0.009) (0.009) (0.006) (—) (—)

∆cy
120,12
t -0.459 0.003 -0.002 -0.002 0.057 0.005 -0.003 0.046 0

(0.063) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.002) (—)

∆c`
12,1
t 0.478 -0.002 -0.003 -0.016 -0.016 -0.009 -0.139 -0.014 0.070

(0.167) (0.008) (0.008) (0.011) (0.008) (0.008) (0.006) (0.004) (0.003)
et -2.36e-04 11.070 -1.623 0 0 0 0 0 0

(9.18e-05) (0.412) (0.059) (—) (—) (—) (—) (—) (—)

xt µ̄∗x × 1200 Φ∗x

∆st 7.678 0 0 0 0 0 1 0 0 0
(1.630) (—) (—) (—) (—) (—) (—) (—) (—) (—)

∆cπt 7.678 0.020 0.294 -2.182 -1.196 0.482 0.362 -1.191 -0.072 0.003
(1.630) (0.055) (0.031) (0.389) (1.153) (0.288) (0.383) (1.086) (0.984) (6.23e-04)

`t 25.052 1.98e-04 -0.002 0.999 0.044 -0.023 -0.006 -0.046 0.169 -7.41e-06
(1.528) (3.91e-04) (9.14e-04) (0.003) (0.005) (0.010) (0.002) (0.008) (0.023) (5.62e-06)

y120,12
t -0.644 1.10e-05 1.49e-04 1.02e-04 0.975 -0.069 -0.003 -0.002 -0.018 -3.30e-05

(0.039) (3.14e-05) (8.94e-05) (7.94e-04) (0.003) (0.001) (0.001) (0.003) (0.002) (3.60e-06)
ct 0.939 -2.98e-04 -0.003 0.013 0.070 0.513 -0.018 -0.048 0.001 -1.96e-04

(0.275) (5.56e-04) (6.95e-04) (0.006) (0.015) (0.019) (0.007) (0.020) (0.032) (2.36e-05)
∆c`t 8.280 0.002 6.74e-05 0.002 -0.059 -0.004 0.973 -0.176 0.900 -4.50e-05

(1.629) (4.88e-04) (3.89e-04) (0.002) (0.010) (0.017) (0.003) (0.010) (0.030) (9.99e-06)

∆cy
120,12
t -0.281 1.36e-04 5.12e-04 0.005 0.002 -0.080 -0.011 0.971 -0.046 -4.57e-05

(0.055) (2.04e-04) (3.06e-04) (0.001) (0.004) (0.006) (0.002) (0.005) (0.013) (5.03e-06)

∆c`
12,1
t -5.77e-04 -0.002 -4.38e-05 -0.002 0.065 0.001 0.029 0.195 0.195 4.78e-05

(0.005) (4.92e-04) (3.95e-04) (0.002) (0.011) (0.017) (0.003) (0.010) (0.031) (1.04e-05)
et −5891.507† -0.020 -0.294 2.182 1.196 -0.482 0.638 1.191 0.072 0.997

(494.508) (0.055) (0.031) (0.389) (1.153) (0.288) (0.383) (1.086) (0.984) (6.23e-04)

Posterior mean and standard deviation for a two country model of the U.S. and Japan. We report
unconditional means µ̄∗x, µ̄x, autocovariances matrices Φ∗x,Φx, scale matrix Σx and the vector of loadings
δĉ,x. The symbol † indicates that the unconditional means of the real exchange rates are not multiplied by
1200 (annualization and conversion to percent is not applicable).
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Table 5: Pricing errors across countries

U.K. CAN EURO JPN

`1t − `3t + ̂̀3 0.045 0.049 0.048 0.058

`1t − `6t + ̂̀6 0.035 0.035 0.038 0.040
y3
t 0.061 0.049 0.052 0.045

y12
t 0.113 0.109 0.097 0.098
y24
t 0.150 0.146 0.132 0.139
y36
t 0.160 0.157 0.142 0.151
y48
t 0.158 0.155 0.140 0.149
y60
t 0.150 0.148 0.132 0.141
y84
t 0.131 0.129 0.115 0.120
ŷ3
t 0.109 - - -

ŷ24
t 0.155 0.154 0.146 0.130
ŷ36
t 0.165 0.155 0.152 0.142
ŷ48
t 0.163 0.150 0.150 0.151
ŷ60
t 0.155 0.145 0.145 0.154
ŷ84
t 0.138 0.138 0.134 0.151

ŷ120
t 0.118 0.128 0.122 0.125

Posterior mean estimates of the pricing errors in annualized percentage points, 100
√

diag
(
ΣyΣ′y

)
× 12, for

the U.K., Canada, Euro, and Japan. These are reported for yields of different maturity that enter Y
(2)
t .
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Table 6: Estimates of the speed of mean reversion coefficients

U.K. CAN EURO JPN
αf α∗f αf α∗f αf α∗f αf α∗f

∆st -0.261 0 -0.130 0 -0.272 0 -0.097 0
(0.180) (—) (0.156) (—) (0.209) (—) (0.092) (—)

∆cπt 0.218 0.432 0.146 0.323 0.155 0.207 0.100 0.212
(0.144) (0.232) (0.162) (0.297) (0.147) (0.139) (0.105) (0.118)

`t 0.006 0.014 0.005 0.002 0.003 -0.002 -0.020 1.38e-04
(0.012) (0.006) (0.013) (0.001) (0.013) (0.001) (0.014) (5.94e-05)

y120,12
t -0.042 -0.011 -0.006 -5.80e-04 -0.082 0.003 -0.032 -0.007

(0.022) (0.004) (0.017) (3.54e-04) (0.046) (0.002) (0.019) (0.003)
ct 0.115 0.003 0.044 0.036 0.120 0.027 0.038 -0.080

(0.066) (0.001) (0.058) (0.023) (0.082) (0.014) (0.052) (0.032)
∆c`t 0.072 0.009 -0.012 -0.004 -0.008 0.002 -0.029 -0.004

(0.033) (0.003) (0.023) (0.002) (0.021) (8.84e-04) (0.025) (0.002)

∆cy
120,12
t -0.032 0.002 0.027 -7.28e-04 -0.042 0.003 -0.054 -0.008

(0.022) (6.42e-04) (0.023) (3.53e-04) (0.028) (0.002) (0.021) (0.003)

∆c`
12,1
t -0.145 -0.030 0.009 0.013 -0.006 -0.008 0.039 0.017

(0.087) (0.013) (0.067) (0.008) (0.075) (0.005) (0.077) (0.008)

Posterior mean and standard deviation estimates of α and α∗ for the U.K., Canada, Euro, and Japan. The
factors have been re-scaled to have unit variance.

Table 7: Log-predictive scores for VECM and VAR models across countries

U.K. CAN EURO JPN

VAR -183.59 -166.88 -175.92 -170.23
VECM -183.99 -169.28 -175.98 -170.12

Log-predictive scores for the U.K., Canada, Euro, and Japan for the VECM and VAR models.

LPS = −T−1∑T
t=1 p

(
yt|y1:t−1; θ̂

)
where θ̂ is the posterior median. Lower values of the LPS are preferred.
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