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ABSTRACT

“Moore’s Law” in the semiconductor manufacturing industry is used to describe the predictable 
historical evolution of a single manufacturing technology platform that has been continuously 
reducing the costs of fabricating electronic circuits since the mid-1960s. Some features of its 
future evolution were first correctly predicted by Gordon E. Moore in 1965, and Moore’s Law 
became an industry synonym for continuous, periodic reduction in both size and cost for 
electronic circuit elements.

This paper develops develops some stylized economic facts, reviewing why and how this 
progression in manufacturing technology delivered a 20 to 30 percent annual decline in the cost 
of manufacturing a transistor, on average, as long as it continued. Other characteristics associated 
with smaller feature sizes would be expected to have additional economic value, and historical 
trends for these characteristics are reviewed. Lower manufacturing costs alone pose no special 
challenges for price and innovation measurement, but these other benefits do, and motivate 
quality adjustment methods when semiconductor product prices are measured.

Empirical evidence of recent changes to the historical Moore’s Law trajectory is analyzed, and 
shows a slowdown in Moore’s Law as measured by prices for the highest volume products: 
memory chips, custom chip designs outsourced to dedicated contract manufacturers (foundries), 
and Intel microprocessors. Evidence to the contrary, which relates primarily to Intel 
microprocessors is reviewed, as are economic reasons why Intel microprocessor prices might 
behave differently from prices for other types of semiconductor chips.

A computer architecture textbook model of how chip characteristics affect microprocessor 
performance is specified and tested in a structural econometric model of microprocessor 
computing performance. This simple econometric model, using only a small set of explanatory 
chip characteristics, explains 99% of variance across processor models in performance on 
commonly used performance benchmarks. This small set of characteristics should clearly be 
included in any hedonic model of computer or processor prices. Most of these chip characteristics 
also affect chip production cost, and therefore have an additional rationale for inclusion in a 
hedonic model that is separate from their demand-side effects on computer performance metrics 
relevant to users.
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Measuring Moore’s Law: 
Evidence from Price, Cost, and Quality Indexes 

 

Kenneth Flamm 

“Moore’s Law” in the semiconductor manufacturing industry is used to describe the predictable 
historical evolution of a single manufacturing technology platform (“silicon CMOS”) that has been 
continuously reducing the costs of fabricating electronic circuits since the mid-1960s. Some features of 
its future evolution were first correctly predicted by Gordon E. Moore (then at Fairchild Semiconductor) 
in 1965, and Moore’s Law became an industry synonym for continuous, periodic reduction in both size 
and cost for electronic circuit elements.  

Technological innovation for this manufacturing platform was coordinated and synchronized 
across a variety of different engineering fields, including materials, optical systems, ultraclean precision 
manufacturing, factory automation, electronic circuit design and simulation, and improved computer 
software for computational modelling in all of these fields. It was a self-reinforcing dynamical process, 
since the largest market for the semiconductor manufacturing industry’s products has always been the 
computer industry.1 Cheaper computing hardware meant cheaper modeling and engineering to further 
reduce the costs of the semiconductors manufactured for use in future computers.  New public-private 
institutions and organizations were developed to coordinate the simultaneous arrival of the very 
heterogeneous technological building blocks required for this increasingly complex semiconductor 
manufacturing technology platform. 

The result was an industrial dynamic that, since the mid-1960s, had effectively worked as a 
“virtual shrinking machine” for electronic circuits. On a regular basis, new “technology nodes” delivered 
30 percent reductions in the size of the smallest dimension (“critical feature size,” F) that could be 
reliably manufactured on a silicon wafer. This implied a 50 percent reduction in the area occupied by the 
smallest manufacturable electronic circuit feature (F2), and a doubling in density—the number of circuit 
elements (e.g., transistors) per area of silicon in a chip. Section 1 develops some stylized economic facts, 
reviewing why this progression in manufacturing technology delivered a 20 to 30 percent annual decline 
in the cost of manufacturing a transistor, on average, as long as it continued.  

Section 2 reviews other economically significant benefits (in addition to increased density and 
lower cost per circuit element) that would be associated with smaller feature sizes. Some of those 
characteristics would be expected to have significant economic value, and historical trends for these 
characteristics are reviewed.  Chip speed, in particular, would have major impacts on computer 
performance. Econometric analysis of software benchmark data shows rates of performance 
improvement in CPUs declining dramatically in the new millennium, a retreat from very high rates of 
increase measured in the late 1990s. Lower manufacturing costs alone pose no special challenges for 
price and innovation measurement, but these other benefits do, and motivate quality adjustment 
methods when semiconductor product prices are measured. 

                                                           
1 Defining the computer industry expansively, to include the computer systems embedded in the smart electronic 
systems and mobile devices whose sales have grown most rapidly in recent decades. 
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Section 3 analyzes empirical evidence of recent changes to the historical Moore’s Law trajectory, 
and finds corroborating evidence for a slowdown in Moore’s Law in prices for the highest volume 
products: memory chips, custom chip designs outsourced to dedicated contract manufacturers 
(foundries), and Intel microprocessors. Section 4 reviews evidence to the contrary, which also relates 
primarily to Intel microprocessors, and discusses economic reasons why Intel microprocessor prices 
might behave differently from prices for other types of semiconductor chips.  

Section 5 dives into microprocessors in greater depth, and tests the computer architecture 
textbook view of how a small set of specific chip characteristics affect performance of microprocessors 
in executing programs, by outlining a structural model of microprocessor computing performance, then 
estimating that model empirically. This simple econometric model, using only a small set of explanatory 
chip characteristics, explains 99% of variance across processor models in performance on commonly 
used CPU performance benchmarks. These characteristics, which determine benchmark scores, should 
clearly be included in any hedonic price equation. Most of these chip characteristics would also be 
expected to affect chip production cost, and would therefore have an additional rationale for inclusion 
in a hedonic price equation quite separate from their role in determining computer performance 
benchmark scores. 
 

1. Stylized Facts About Semiconductor Manufacturing Innovation 

  In 1965, five years after the integrated circuit’s invention, Gordon E. Moore (who would shortly 
move on to co-found Intel) predicted that the number of transistors (circuit elements) on a single chip 
would double every year.2 Later modifications of that early prediction—“Moore’s Law”—became 
shorthand for semiconductor manufacturing innovation. 

  Moore’s prediction requires other assumptions in order to create economically meaningful 
connections to the information age’s key economic variable: the cost (or price) of electronic 
functionality on a chip (embodied in the 20th century’s supreme electronic invention, the transistor).3 
Chip fabrication requires coordinating multiple technologies, combined in very complex manufacturing 
processes.  

  The pacing technology has been the photolithographic processes used to pattern chips. From 
the 1970s through the mid-1990s, a new “technology node”— a new generation of photolithographic 
and related equipment, and materials required for successful use—was introduced roughly every three 
years or so. Starting in the mid-1970s, this three year cycle coincided with the time interval between 
introductions of next-generation DRAM computer memory chips, storing four times the bits in the 
previous generation chip.4 This observed 18-month “doubling period” became a new, de facto, “revised” 
Moore’s law.5  

                                                           
2 G. Moore (1965).  
3 Jorgenson (2001), Flamm (2003), (2004); Aizcorbe, Flamm, and Khurshid, (2007).  
4 The DRAM memory was invented in 1968 by Robert Dennard at IBM, and first commercialized by Moore’s newly 
founded company, Intel, in 1970. 
5 A decade later, Moore himself revised his prediction to a doubling every two years. G. Moore (1975), pp. 11–13. 
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  The close early fit of DRAM product development cycles with leading edge chip manufacturing 
technology introductions was no coincidence. DRAMs at that time were the highest volume, 
standardized, commodity chip product manufactured, and a rapidly expanding computer market drove 
leading edge chip manufacturing technology development. Moore’s prediction morphed into an 
informal, and later, formal technology coordination mechanism (the International Technology Roadmap 
for Semiconductors, or ITRS) for the entire global semiconductor industry—equipment and material 
producers, chip makers, and their customers.  

Relationships between Moore’s Law and fabrication cost6 trends for integrated circuits can be 
described by the following identity, giving cost per circuit element (e.g., transistor):  

                                             $ processing cost                  x     silicon wafer area      

(1) $/element       =    area “yielded” good silicon                           chip                                         

                                                                       elements/chip  

Moore’s original “Law” described only the denominator—a prediction that elements per chip would 
quadruple every two years. Back in 1965, Moore hadn’t originally anticipated rapid future advances in 
technology nodes. Acknowledging that an IC containing 65,000 elements was implied by 1975, Moore 
wrote: “I believe that such a large circuit can be built on a single wafer. With the dimensional tolerances 
already being employed…65,000 components need occupy only about one-fourth a square inch.”7   

  Rewriting this more concisely without relying on Moore’s prediction about numbers of elements 
per chip (therefore eliminating the need for assumptions about chip size):   

                                     $ processing cost    x  silicon area           
(2) $/element          =         area yielded silicon      element  

which depends directly on the defining characteristic of a new technology node, smallest patternable 
feature size, as reflected in chip area per transistor.  This “Moore’s Law” variant came into use in the 
semiconductor industry as a way of analyzing the economic impact of new technology nodes. New 
technology nodes increased density of transistors fabricated in a given area of silicon in a readily 
predictable way. Time between new nodes—and a new node’s impact on wafer processing costs—
jointly determined decline rates in transistor fabrication cost.  
 
  Through 1995, new technology nodes were introduced at roughly three year intervals. Each new 
node reduced the smallest planar dimension (“critical feature size,” F), in circuit elements by 30%, 
implying 50% smaller silicon areas (F2) per circuit element.   

                                                           
6 Analysis of fabrication costs, which account for most chip cost, ignores assembly, packaging, and test.  
7 Moore (1965). The largest wafer sizes in use then were comparable in diameter to a modern snack mini-pizza 
appetizer. 
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Source: Holt (2005). 

Figure 1.  Wafer size conversions offset Intel’s increased wafer‐processing cost  

  Completing the economic story, cost per silicon wafer area processed, averaged over long 
periods, increased only slowly.8 At new technology nodes, processing cost per silicon wafer area indeed 
increased. But, episodically, larger wafer sizes were introduced, sharply reducing processing costs per 
area. The net effect was nearly constant long run costs, with only slight increases. Figure 1, presented in 
2005 by Intel’s chief manufacturing technologist, shows new wafer sizes “resetting” wafer-processing 
costs. Significantly, larger diameter wafer sizes (450mm) were expected at the 22 nanometer (nm) node. 
However, 450mm wafers were not introduced as Intel adopted 22nm technology in 2012, had not been 
introduced by 2017, and even future introduction now seems highly uncertain. The most recent wafer 
size “reset,” adoption of 300mm diameter wafers, occurred at the 130nm technology node, around 
2002. 

  Using these stylized trends—wafer-processing cost per area of silicon roughly constant, and 
silicon area per circuit element halved with new technology nodes introduced every three years— 
equation (2) above predicts that every three years, the cost of producing a transistor would fall by 50%, 
a 21% compound annual decline rate.   

  In reality, leading edge computer chips—like DRAM memory (the primary product originally 
produced at Intel after Moore and others founded that company, which immediately became the largest 
volume product in the semiconductor industry and the primary product driving Intel’s initial growth)—

                                                           
8 Over 1983-1998, wafer-processing cost/cm2 silicon increased 5.5 percent annually. Cunningham et. al. (2000), p. 
5.  This estimate relates to total silicon area processed (including defective chips). Since defect-free chips’ share of 
total processed area increased historically (chip fabrication yields increased), wafer-processing cost per good 
silicon area rose even more slowly, approximating constancy.  
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dropped in price substantially faster than 20% pre-1985. The steeper decline rate in part reflected 
further increases in density due to circuit design improvements (e.g., reduction in memory cell 
footprint)9, 3-D interconnect layers enabling tighter packing of circuit elements,10 and gradual 
introduction of 3-D into physical designs of transistors and other circuit elements.11 In addition, 
operating characteristics of a given circuit design—in particular, switching speed and power 
requirements—improved with new manufacturing technology, and made additional contributions to 
quality-adjusted price. Finally, smaller and cheaper transistors made it economic to add ever greater 
electronic functionality to chips, and more and more of a complete electronic system was progressively 
integrated onto a single chip, which greatly improved system reliability.12 

 In the mid-1990s, the semiconductor manufacturing industry arrived at a significant 
technological inflection point.13 New technology nodes began arriving at two-year intervals, replacing 
three-year cycles. (Intel’s perception of this trend, as of 2005, is documented in Figure 2.) The origins of 
this change lie in the early 1990s, when the U.S. SEMATECH R&D consortium sponsored a roadmap 
coordination mechanism in pursuit of an acceleration in the introduction of new manufacturing 
technology, intended to benefit the competitiveness of US chip producers. By the mid-1990s, with the 
increasing reliance of semiconductor manufacturing on a global industrial supply chain, the American 
national roadmap evolved into the international ITRS.14 Explicitly coordinating the simultaneous 
development of the many complex technologies required to enable a new manufacturing technology 
node every two years apparently succeeded in raising the tempo of semiconductor manufacturing 
innovation for over a decade.15  

                                                           
9 Flamm (2010), Figure 2, documents a 62 percent decline in minimum memory bit cell footprint between 1995 
and 2004. 
10 Anticipated by Moore back in 1965: “no space wasted for interconnection…using multilayer metallization 
patterns separated by dielectric films.” Moore (1965). 
11 Recent examples of 3-D transistor structures include RCAT (recessed cell array transistor) and FinFET (fin field 
effect transistor) structures. 3-D capacitor designs have been used in DRAM since the late 1990s.  
12 Since electrical interconnections between components have historically been the most frequent point of failure 
in electronic systems. 
13 Industry roadmaps originally dated this transition to two-year node rollouts to 1995; post-2004 roadmaps 
revised that date to 1998. Aizcorbe, Oliner, and Sichel, (2006) have persuasively argued that the turning point was 
closer to mid-1990s than late in the decade.  

The mid-1990s were also a technological inflection point for Intel’s manufacturing capabilities.  Intel had 
exited the DRAM business in 1985, which previously had been driving its leading edge manufacturing technology 
development, and refocused its R&D on logic circuit design. Burgelman (1994), pp. 32-46. As a consequence, by the 
late 1980s, Intel manufacturing capability was trailing well behind the leading edge of the manufacturing 
technology it had once pioneered. 

In order to catch up, Intel began adopting new nodes every two years, even as the rest of the industry 
continued at the historical three-year pace. Comparing launch dates for Intel processors at new technology nodes 
with initial use of those nodes by DRAM makers: Intel was 2 years behind in 1989 (at 1000nm); 3 years behind in 
1991 (800nm); 1 year behind in 1995 (350nm). Intel caught up with the DRAM makers in 1997, at 250nm, and 
remained on a roughly 2-year cycle through 2014. Author’s calculations based on Intel (2008), IC Knowledge 
(2004), http://ark.intel.com.  
14 Flamm (2009); Spencer and Seidel (2004). 
15 The last (incomplete) official roadmap prepared by ITRS was released in 2012. Intel and others reportedly 
withdrew from ITRS around this time. 
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Source: Holt (2005). 
Figure 2. Feature size scaling as observed by Intel in 2005 

 Using (2), but adopting shorter two-year cycles for new technology nodes, implies rates of 
annual decline in transistor cost accelerating to almost 30%. In short, if the historic pattern of 2-3 year 
technology node introductions, combined with a long run trend of wafer processing costs increasing 
very slowly were to have continued indefinitely, a minimum floor of perhaps a 20 to 30 percent annual 
decline in quality-adjusted costs for manufacturing electronic circuits would be predicted, due solely to 
these “Moore’s Law” fabrication cost reductions. On average, over long periods, the denser, “shrink” 
version of the same chip design fabricated year earlier would be expected to cost 20 to 30 percent less 
to manufacture, purely because of the improved manufacturing technology.  

 It now appears that this two-year cycle for technology nodes definitively ended in 2014, with 
deployment of the 14nm node. The most aggressive adopter of leading edge chip manufacturing 
technology, Intel, currently projects introduction of its next 10nm processor products no earlier than 
late 2018.16 This means that time between introductions of new technology nodes now is approaching 4 
years for Intel, a dramatic change from its two-year cadence through 201417 

                                                           
16 See http://wccftech.com/intel-delays-10nm-cannon-lake-cpus-end-2018/  . 
17 Intel chip manufacturing competitor TSMC was said in early 2017 to be manufacturing a “10nm” node in volume 
for Apple (See R. Merritt, “TSMC, Samsung Diverge at 7nm,” EE Times, Feb. 8, 2017, 
(http://www.eetimes.com/document.asp?doc_id=1331324 ), but it is widely believed in the industry that its 
current technology is physically equivalent to a half node advancement over the previous generation Intel 
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 At Intel, the post-1995 two-year technology development cycle had been explicitly incorporated 
into marketing efforts, and dubbed the Intel “tick-tock” development model in 2007.18 Every two years, 
there would be a new technology node introduced (“tick”), with the existing microprocessor computer 
architecture ported to the new node (effectively “die shrinks” using the new process), followed by an 
improved architecture fabricated with the same technology the following year (“tock”). The death of the 
“tick-tock” model was officially acknowledged by Intel in its 2016 annual report.19 

Intel publicly disclosed a version of equation (2) to its shareholders in 2015, purged of sensitive 
cost numbers by indexing all variables to equal one at the 130nm technology node, the technology node 
at which the transition to a larger wafer size occurred.20 The 2015 Intel decomposition of manufacturing 
cost per transistor, using equation (2), is shown as Figure 3, and in Table 1. Generally, Intel’s average 
silicon area per transistor did not decline by the predicted 50% between technology nodes, primarily 
because of the increasing complexity of interconnections in processor designs.21  If accurate, these 
numbers indicate average chip area per transistor shrank by 38% at each new node from 130nm 
through 22nm.22 Nor did Intel’s wafer-processing costs stay constant over the post-130nm period as a 
whole, since the adoption of 450mm wafers, and subsequent cost reset, never happened at 22nm, as 
had been predicted back in 2005. However, as long as average area per transistor declined at faster 
rates than processing costs per area increased, transistor cost would continue to decline. Intel’s cost per 
transistor estimates are revisited below. 

 
Source: Holt (2015). 
Figure 3. Intel 2015 version of equation (2)  

                                                           
technology node. See https://www.semiwiki.com/forum/f293/intel-tsmc-samsung-10nm-update-8565.html ; 
http://wccftech.com/intel-losing-process-lead-analysis-7nm-2022/ . 
18 See http://www.intel.com/pressroom/archive/releases/2007/20070918corp_a.htm  . 
19 Intel (2016), p. 14. 
20 Intel actually produced microprocessors in volume on both 200mm (8”) and 300mm (12”) wafers using its 
130nm manufacturing process technology. See Natrajan, at. al., (2002), pp. 16-17. 
21 See Flamm (2017), p. 34, for a more detailed explanation. 
22 Absolute constancy in reported decline rates for average area per transistor over five generations of new Intel 
manufacturing technology is puzzling, suggesting long-run trend-based estimates rather than actual averages 
computed from empirical manufacturing data.  
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Table 1. Decomposing Intel Transistor Cost Declines into Wafer Cost and Transistor Size Changes 
 
 In short, if the historic pattern of 2-3 year technology node introductions, combined with a long 
run trend of wafer processing costs increasing very slowly were to have continued indefinitely, a 
minimum floor of perhaps a 20 to 30 percent annual decline in quality-adjusted costs for manufacturing 
electronic circuits would be predicted, due solely to these “Moore’s Law” fabrication cost reductions. On 
average, over long periods, the denser, “shrink” version of the same chip design fabricated year earlier 
would be expected to cost 20 to 30 percent less to manufacture, purely because of the improved 
manufacturing technology. 

 How would reductions in production cost translate into price declines? One very simple way to 
think about it would be in terms of a “pass-through rate,” defined as dP/dC (incremental change in price 
per incremental change in production cost). The pass-through rate for an industry-wide decline in 
marginal cost is equal to one in a perfectly competitive industry with constant returns to scale, but can 
exceed or fall short of 1 in imperfectly competitive industries. Assuming the perfectly competitive case 
as a benchmark for long-run pass-through in “relatively competitive” semiconductor product markets, 
this would then imply an expectation of 20-30% annual declines in price, due solely to Moore’s Law.  

Historically, most semiconductor chip production ultimately seems to have migrated to more 
advanced technology nodes.23 Other kinds of innovations in semiconductor manufacturing, or 
innovations in the design and functionality going into electronic circuits, might be expected to stimulate 
even greater rates of quality-adjusted price declines. Thus, the 20-30% annual decline in manufacturing 
cost associated with Moore’s Law could be interpreted as a floor on the quality-adjusted price declines 
that we might expect to observe in the most competitive segments of the semiconductor market. 

 

                                                           
23 At SEMATECH, the US semiconductor industry consortium (with which the author worked as a consultant in the 
first decade of the 2000’s), the planning rule of thumb was that a fab would be a candidate for an upgrade to a 
new technology node no more than twice over its lifetime, and then would be shut down as uneconomic. 

Compound Annual Percentage Change:
Year Intel 1st 

Shipped New 
Product at 
Tech Node

Tech 
Node 
(nm)

Wafer 
Processin
g Cost ($ / 
mm2) X

Transistor 
size (mm2 / 
transistor) =

$ Cost / 
Transistor

Wafer 
Processing 
Cost ($ / 
mm2)  

Transistor 
size (mm2 / 
transistor) 

$ Cost / 
Transistor

2002 130 1 1 1
2004 90 1.09 0.62 0.68 5% -21% -18%
2006 65 1.24 0.38 0.47 7% -21% -16%
2008 45 1.43 0.24 0.34 7% -21% -15%
2010 32 1.64 0.15 0.24 7% -21% -16%
2012 22 1.93 0.09 0.18 8% -21% -14%
2014 14 2.49 0.04 0.11 14% -31% -22%

Source: Bill  Holt, "Advancing Moore's Law," presentation to Intel Investor Meeting, 2015, 

Santa Clara, sl ide 6, graph digitized using WebPlotDigitizer. Year node introduced from ark.intel.com .
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2. Other Benefits from “Moore’s Law” Manufacturing Innovation 

 
Impressive declines in transistor manufacturing cost, accompanying denser chips with smaller 

feature sizes at more advanced technology nodes, measure only a part of the economic benefits of the 
Moore’s Law innovation dynamic. With smaller transistor sizes also came faster switching times and 
lower power requirements.24 The complementary benefits of speed and power improvements were 
highly significant for chip consumers (like computer makers) and their customers.  

This was particularly true for chip makers manufacturing microprocessors. Existing computer 
architectures running at faster speeds run existing software faster, and enable more data processing in 
any given time. Until 2004, computer processor clock rates increased rapidly, as did performance of 
computers incorporating these faster microprocessors. Figure 4 shows clock rates for Intel desktop 
microprocessors in computers tested on industry standard benchmark programs over the last twenty 
years, as well as benchmark scores for these computers. As clock rates increased, so did performance.25 
Cheaper processors were also faster—stimulating increased demand for new computers in offices, 
homes, and workplaces. 

 

Log (Processor Speed)           Log(Performance)  

    
Figure 4. Processor clock rate and performance for Intel desktop processors running SPEC CPU 
benchmarks, by first availability date of tested hardware   
Source: Author’s analysis of SPEC submissions, SPEC.org.  
 

 The logarithmic scale used in Figure 4 obscures a fairly dramatic slowdown in improvement in 
CPU performance after the millennium. Table 2 shows compound annual growth rates in performance 

                                                           
24 The underlying theory (“Dennard scaling”) suggested that a 30% reduction in transistor length and 50% 
reduction in transistor area would be accompanied by a 30% reduction in delay (40% increase in clock frequency), 
and 50% reduction in power. Esmaeilzadeh, et.al., (2013), p. 95. 
25 For given software and computer architecture, time required for programs to execute is inversely proportional 
to processor clock rate, assuming data transfer does not constrain performance. Lower rates of performance 
improvement after 2004, as processor clock rates plateaued, were obvious to computer designers. See Fuller and 
Millett (2011), chap. 2; Hennessey and Patterson (2012), chap. 1. 
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of Intel desktop processors on standard CPU benchmark software (the SPEC benchmarks).  (See 
Appendix A1.) 

 

Three different versions of the SPEC CPU test suite were released—one around 1995, one in 
2000, and the most recent in 2006. Each suite contains a selection of “integer” application tests (e.g., 
programming and code processing, artificial intelligence, discrete-event simulation and optimization, 
gene sequence search, video compression), and a set of “floating point” math-intensive application tests 
(e.g., solution of systems modeling problems in physics, fluid dynamics, chemistry, and biology, finite 
element analysis, linear programming, ray tracing, weather prediction, speech recognition). These test 
suites are designed to test single process (programming task) performance on a CPU.26  

 

In addition, so-called “rate” versions of these test suites, which run multiple versions of the 
single process benchmarks simultaneously on a single CPU, are available. The “rate” benchmarks are 
intended to show how the CPU would perform as a server running multiple independent jobs, or 
alternatively, running an “embarrassingly parallel” programming problem—a task which could be 
divided up into multiple software processes not requiring any communication or coordination between 
processes.27 

 

Changes in trends over time in the SPEC benchmark performance scores for Intel desktop 
processors are quite dramatic. Over the 1995-2000 period, integer computing performance increased by 
about 58 percent annually, floating point performance by 64%. The suite was revised in 2000, and from 
the end of 2000 through 2004, both integer and floating point performance improvement were almost 
halved, to an increase of about 33-34% per year.28 Finally, over the most recent time period, after the 
2006 revision of the SPEC benchmarks, from 2005 through 2016, annual performance gains were 
reduced substantially again, to rates of 17% (integer) and 25% (floating point) annual improvement.29   

                                                           
26 The overall benchmark score is calculated as a geometric mean of scores on the individual programs within the 
benchmark. 
27 Unfortunately, there is no SPEC rule about how many instances of the single benchmark programs should be run 
for the rate benchmarks on a multicore CPU. It could as many as the number of cores in the CPU, or twice that 
number (the number of threads that can be run simultaneously on a CPU with additional processor hardware 
supporting symmetric multi-threading—a feature called hyperthreading by Intel), or some number of instances 
less than either of those bounds. 
28 There was a statistically significant—but substantively insignificant—additional decline of under a percent per 
year after 2004, through 2007. 
29 There was another statistically significant, but substantively insignificant, decline by a fraction of a percent in 
performance improvement rates after 2012. 
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Table 2. Annual growth in processor performance improvement over different time periods and benchmarks 
Source: Author analysis of SPEC benchmark performance of Intel desktop processors. 

 

3. An End To Moore’s Law? 

 Unfortunately, the golden age of more rapidly cheapening transistors (which were also faster and drew 
less power) that began in the late 1990s did not survive unchallenged past the new millennium.  

 2004: the end of faster. The first casualty was the “faster thrown in for free,” along with smaller, 
cheaper, and greener. Around 2003-2004, higher clock rates stalled (see Figure 4), as disproportionately 
greater power was required to run processors reliably at ever higher frequencies. With tinier transistors 
running at higher power in denser chips, dissipating heat generated by higher power density became 
impossible without expensive cooling systems. (The highest processor speed shipped by Intel until very 
recently was 4 GHz; IBM’s fastest z-series mainframe CPU, with advanced cooling, hit 5.5 GHz in 2012, 
but subsequent CPUs ran at lower frequencies.30) Intel and others abandoned architectures reliant on 
frequency scaling to achieve better processor performance after 2004. Clock rates in subsequent 
processor architectures actually fell, and processing more instructions per clock tick became the focus 
for improved computing performance.  

  Two-year node introductions continued to produce smaller and cheaper transistors, though. 
Ever cheaper transistors were utilized to create more CPUs—“cores”—per chip, thus processing more 

                                                           
30 Raley (2015), p. 23. 
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instructions per clock at lower clock frequencies. This new “multicore” strategy’s weakness was that 
application software required “parallelization” to run on multiple cores simultaneously, and software 
applications vary greatly in the extent to which they can be easily parallelized. Further, improving 
software was more costly than simply adopting the cheaper hardware delivered by new technology 
nodes: quality-adjusted prices for software historically have fallen much more slowly than quality-
adjusted prices for processors.31 

  The difficulty and cost of parallelization of software is an economic factor limiting utilization of 
cheap multicore CPUs on hard-to-parallelize applications.32 In addition, a fundamental result in 
computer architecture (Amdahl’s Law) maintains that if there is any part of a computation that cannot 
be parallelized, then there will be diminishing returns to adding more processors to the task—and in 
many applications, decreasing returns are noticeable fairly quickly. One widely used computer 
architecture textbook summarized the challenges in utilizing multicore processors: “Given the slow 
progress on parallel software in the past 30-plus years, it is likely that exploiting thread-level parallelism 
broadly will remain challenging for years to come.”33  

  2012: the end of rapid cost declines? Until roughly 2012, transistor fabrication costs continued 
falling at rapid rates. At the 22/20nm technology node, which went into volume production around 2012 
(at Intel), continuing cost declines began to look uncertain. Figure 5 shows contract chipmaker 
GlobalFoundries’ 2015 transistor manufacturing costs at recent technology nodes.34 

  Numerous fabless chip design companies, which outsource chip production to contract 
manufacturing “foundries,” began to publicly complain that transistor manufacturing costs had actually 
increased at the 20/22nm node.35  (Fabless companies accounted for 25% of world semiconductor sales 
in 2015; foundries, which also build outsourced designs for semiconductor companies with fabs, had a 
32% share of global production capacity.36) Charts like Figure 6, showing increased costs at sub-28nm 
technology nodes, were frequently published between 2012 and 2016. Figure 6 is not inconsistent with 
Figure 5, since Figure 6 likely includes the fabless customer’s non-recurring fixed costs for designing a 

                                                           
31 Economic studies of mass market, high volume packaged software prices have typically found quality adjusted 
rates of annual price decline in the 6 to 20 percent range. See for example, Neil Gandal, “Hedonic Price Indexes for 
Spreadsheets and an Empirical Test for Network Externalities,” RAND Journal of Economics, Vol. 25, No. 1 (Spring, 
1994), A. White, J. Abel, E. Berndt, and C. Monroe, “Hedonic Price Indexes for Personal Computer Operating 
Systems and Productivity Suites,” Annales D’Economie et de Statistique, No. 79/80 (2005), A. Copeland, 
“Seasonality, Consumer Heterogeneity and Price Indexes: The Case of Prepackaged Software,” Journal of 
Productivity Analysis, vol. 39, no. 1, (2013), M. Prudhomme and K. Yu, “A Price Index for Computer Software Using 
Scanner Data,” Canadian Journal of Economics, vol. 38, no. 3 (2005). 
32 The opposite--software problems easily divided up across processors and run with little or no inter-processor 
communication or management required—are described in the computer engineering literature as 
“embarrassingly parallel”. 
33 Hennessey and Patterson (2012), p. 411. 
34 Like Table 1, this figure probably does not include R&D costs. 
35 Fabless chipmakers Nvidia, AMD, Qualcomm, and Broadcom all publicly complained about a slowdown or even 
halt to historical decline rates in their manufacturing costs at foundries. Shuler(2015), Or-Bach (2012), (2014), 
Hruska (2012), Lawson (2013), Qualcomm (2014), Jones (2014), (2015). 
36 Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016).  Charts like Figure 4 should 
be viewed cautiously, as underlying assumptions about products, volumes, and costs are rarely spelled out in 
published sources. 
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chip and making a set of photolithographic masks used in fabrication, while Figure 5—the foundry’s 
processing costs—would not.37 These fixed costs have grown exponentially at recent technology nodes 
and create enormous economies of scale.38 Some foundries have publicly acknowledged that recent 
technology nodes now deliver higher density or performance at the expense of higher cost per 
transistor.39 

  
Figure 5. Global Foundries’ transistor manufacturing cost at recent technology nodes  
Source: McCann (2015).  

 

Figure 6. Cost per logic gate, with projection for 10nm technology node 
Source: Jones (2015) 

                                                           
37 Historically, a set of 10 to 30 different photomasks was typically employed in manufacturing a chip design.  For a 
low to moderate volume product, acquisition of a mask set is effectively a fixed cost.  
38 Brown and Linden (2009), chap. 3. McCann(2015) cites a Gartner study showing design costs for an advanced 
system chip design rising from under $30 million at the 90nm node in 2004, to $170 million at 32/28nm in 2010, to  
$270 million at the 16/14nm node in 2014.  
39 Samsung’s director of foundry marketing: “The cost per transistor has increased in 14nm FinFETs and will 
continue to do so.” Lipsky (2015).  “GlobalFoundries believes the 10nm node will be a disappointing repeat of 
20nm, so it will skip directly to a 7nm FinFET node that offers better density and performance compared with 
14nm.” Kanter (2016). 
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  Because of these trends, fabless graphics chip specialists Nvidia and AMD actually skipped the 
20/22nm technology node, waiting a high-tech eternity—five years—after launch of 28nm graphics 
processors in 2011 to move to a new technology node (14/16nm) for their 2016 products.  

2018: “dark silicon” and limits on green? The microprocessor industry’s response to the end of 
frequency scaling was to use ever cheaper transistors to build more cores on a chip. Though limited by 
software advances in parallelizing different kinds of applications, this strategy at first seemed effective. 
More recently, continued future improvement of CPU performance on even easy-to-parallelize 
applications has been questioned.  

As transistors get very small, power requirements to switch these transistors are not reduced at 
the same rate as transistor size. The “green” lower power benefit of smaller transistors diminishes. 
Furthermore, as the power density of chips increases, heat dissipation becomes an issue. Thus, the heat 
problem that blocked further frequency scaling returns in a new guise, and will prevent the increasing 
numbers of smaller cores squeezed into a multicore chip from simultaneously operating at a chip’s 
fastest feasible clock rate.   

  The fraction of a chip’s cores that must be powered off at all times in order for a chip to operate 
within thermal limits, dubbed “dark silicon” by researchers modeling the problem, has been projected to 
grow as large as 50% by 2018.40 Indeed, current PC users are already seeing their multicore machines 
“throttling” with attempts to use all cores for intensive computations at the highest clock rates, hitting 
thermal limits and then either falling back to lower clock rates, or idling cores. Continued reductions in 
power requirements are still feasible, but no longer are a free benefit of Moore’s Law—they now come 
at the cost of reduced speed, and additional on-chip circuitry needed to turn off power to unused 
portions of a processor chip. 

2021+: an end to smaller in conventional silicon? Even some manufacturing technologists from 
Intel now believe that the Moore’s Law cadence of technology nodes, with ever smaller feature sizes in 
conventional silicon, will end sometime in the next five years. Intel’s Bill Holt put it in these terms 
recently:  

“… Intel doesn’t yet know which new chip technology it will adopt, even though it will have to 
come into service in four or five years. He did point to two possible candidates: devices known 
as tunneling transistors and a technology called spintronics. Both would require big changes in 
how chips are designed and manufactured, and would likely be used alongside silicon 
transistors.”41 

 

Can We See A Slowing Down of Moore’s Law Cost Declines in Price Statistics? 

  If Moore’s Law has slowed or even stopped, we would expect to see it in economic metrics, like 
prices and manufacturing costs.  

Prices. An obvious place to look is in the price statistics for computer memory chips, which 
remained the mass volume semiconductor product par excellence through the end of the 20th century. 

                                                           
40 Esmaeilzadeh, et. al. (2013), pp. 93-4.  
41 Bourzac, (2016).   
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DRAMs were later superseded by flash memory as the technology driver for new memory manufacturing 
technology. After the millennium, new technology nodes were first adopted in flash memory chips 
before DRAMs; flash had become the highest volume commodity chip by sales around 2012.42  

  Table 3 shows changes in price indexes for high volume memory chips. The DRAM “composite” 
index is a matched model, chain-weighted price index based on consulting firm Dataquest’s quarterly 
average global sales price for different density (bits per chip) DRAM components available in the market 
over the years 1974-1999.43 This data has no longer been available in recent years.  

 

Table 3. Price indexes For memory chips 

  In the mid-1980s, Korean producers Samsung and Hynix entered the DRAM business, and, along 
with US producer Micron Technology, now account for the vast bulk of current DRAM sales.44 The Bank 
of Korea’s export price index (based on dollar basis contracts) and the Bank of Korea’s producer price 
index (PPI, converted to a dollar basis using quarterly average exchange rates) for DRAM and flash 
memory chips are available.45 

  Finally, since 2000, the Bank of Japan has published a chain-weighted “MOS memory PPI” with 
weights that are updated annually.  This index is likely to be predominantly a mix of DRAM and flash 
memory, tilting more toward flash in recent years. Generally, except for the period from 1985-1995, 
when a string of trade disputes (between the US and Europe, and Japanese, Korean, and Taiwanese 

                                                           
42 See http://www.icinsights.com/news/bulletins/Total-Flash-Memory-Market-Will-Surpass-DRAM-For-First-Time-
In-2012/ . 
43 The data prior to 1990 is the same data used in Flamm (1995), Figure 5-2. From 1990 on, the data are taken from 
Aizcorbe (2002). 
44 Taiwanese firms entered the DRAM market in force in the early 1990s, but have since largely exited, as have all 
Japanese producers (US producer Micron acquired Japanese DRAM fab facilities). The last remaining European 
producer (Qimonda) filed for bankruptcy in early 2009. By 2011, the top 3 producers (Samsung, Hynix, and Micron) 
accounted for between 80 and 90% of global sales. See Competition Commission of Singapore (2013). 
45 These are not well documented, but are believed to be fixed weight Laspeyres indexes, with weights updated 
every five years, that have been spliced together (2010 is the current base year). 

Compound Annual Decline Rate
Flamm-
Aizcorbe 
DRAM 
Composite

BoK $EPI 
DRAM

BoK $EPI 
Flash

BoK DRAM 
PPI

BoK 
Flash PPI

BoJ 
Chain-
Wtd MOS 
Mem PPI

1974:1-1980:1 -45.51
1980:1-1985:1 -43.45
1985:1-1990:1 -24.74
1990:1-1995:1 -17.40 -10.81
1995:1-1999:4 -46.37 -44.28 -33.26
1999:4-2005:1 -28.94 -31.28 -31.76 -24.04
2005:1-2011:4 -37.94 -26.92 -30.65 -29.28 -28.79
2011:4-2016:4 2.33 -12.70 -1.42 -5.76 -13.57
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memory chip producers) had significant impacts on global chip prices,46 prices for DRAMs and flash fell 
at average rates exceeding 20-30% annually. 

  It is notable that rates of decline in memory chip prices in the last five years generally have been 
half or less of their historical decline rates over the previous decades. Korean price indexes (which track 
the majority of the DRAM manufactured and sold) have basically been flat for the last five years. US 
memory chip manufacturer Micron (like other flash memory manufacturers) is no longer planning to 
invest in new technology nodes beyond 16nm in its leading edge flash memory production. Instead, a 
new device design built vertically (3-D NAND) using existing manufacturing process technology is more 
cost effective than the continued planar scaling of components at new technology nodes described by 
the Moore’s Law dynamic.47 In DRAM, the mantra that “technology-driven growth slows due to scaling 
limits” (“scaling limits” being industry jargon for a slowing or ending of Moore’s Law manufacturing cost 
reductions) had become a staple in Micron’s investor conferences.48  

  Another “commodity-like” price in the semiconductor industry in recent years has been the cost 
that chip design houses face in having their chips manufactured on their behalf at so-called “foundries”. 
The outsourced manufacturing of semiconductors designed at “fabless” semiconductor companies at 
foundries accounted for about 25% of world semiconductor sales in 2015. Foundries, which also build 
outsourced designs for semiconductor companies with fabs, held 32% of global production capacity in 
that year.49 

  A recent study of quality-adjusted fabricated wafer prices (the form in which manufactured 
chips are sold to the semiconductor design houses that have outsourced their production) by Byrne, 
Kovak, and Michaels (2017) portrays a slowing decline in fabricated wafer prices prior to 2012. (See 
Table 4.) While the pattern seems consistent with a slowing down of Moore’s Law prior to 2012, this 
study unfortunately ends with data from 2010, and thus cannot be used as a check against the claims of 
the most vocal US fabless designers (see above) that the prices they pay for having their transistors 
manufactured in foundries were no longer declining significantly at new technology nodes post-2012. 

 

Table 4. A quality‐adjusted price index for fabricated “foundry” wafers 

Source: Byrne, Kovak, and Michaels (2017). 

                                                           
46 See Flamm (1995). 
47 Micron 2015 Winter Analyst Conference (2015). 
48 Micron’s Raymond James Institutional Investor Conference (2016); Micron Analyst Conference (February, 2017).  
49 Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016).   

Annual 
Index

% Rate of 
Change

2004 100
2005 83.89521 -16.1048
2006 74.75891 -10.8901
2007 65.93704 -11.8004
2008 57.89118 -12.2023
2009 52.95437 -8.52774
2010 48.67003 -8.09062
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 Price Indexes for Intel Processors. Since their invention in the 1970s, microprocessor sales have 
grown rapidly, and since the 1980s have constituted another huge market segment. Official government 
statistics show a tremendous slowdown in the rate at which microprocessor prices have been falling 
after the millenium, as well as a significant attenuation in the rate at which prices of the desktop and 
laptop PCs that make use of these processors have declined. The U.S. Producer Price Indexes for 
microprocessors show annual (January-to-January) changes in microprocessor prices steadily falling 
from 60-70 percent peak rates during the “golden age” of the late 1990s and early 2000s, to a low of 
about one percent annual decline for the year ending in January 2015. (The Bureau of Labor Statistics 
stopped reporting its PPI for microprocessors in April 2015, apparently because of confidentiality 
concerns.) A parallel fall in price declines for laptop and desktop computers seems also to have 
occurred, from peak annual decline rates of 40%, in the late 1990s, to rates mainly in the 10-20% range 
in the last several years. 

 Table 5 shows compound annual decline rates in the PPI for microprocessors (including 
microcontrollers) as constructed by BLS, along with similarly defined indexes for the commodity 
“microprocessors”. Annual decline rates slow from a rate near 50% in the late 1990s and first half 
decade of the new millennium, to a little over 10% in the second half of that first decade, to about 3% 
annually in recent years. This too is consistent with a substantial slowing down in the impact of Moore’s 
Law manufacturing technology innovation.   

The Bureau of Labor Statistics had historically been somewhat opaque about its methodology in 
constructing its microprocessor price series (there is no published methodology describing precisely how 
these numbers are constructed). It is believed that these are matched model indexes based on some 
weighted selection of products appearing on Intel list price sheets (the same data source I utilize 
below),50 but this is not entirely certain. There is also some evidence that the BLS may have 
experimented with several different methodologies for measuring its microprocessor price indexes over 
the 1995-2014 periods.51 

                                                           
50 Based on a brief conversation with BLS officials, Cambridge, MA, July 2014. See also Sawyer and So (2017). 
51 The BLS web site shows three different “commodity” price indexes (as opposed to its single microprocessor 
producer price index) for microprocessors over this period. The most recent microprocessor “commodity” price 
index is based in December 2007, but is only reported on a monthly basis from September 2009 through 2015. 
There are also two discontinued microprocessor commodity price indexes, one based in December 2004, and 
running through June 2005, and another based in December 2000 and running from 1995 through December 2004. 
One might speculate that the BLS changed its methodology for measuring microprocessor prices three times 
during this period. 
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Table 5. Annualized decline rates for microprocessors per the BLS 
Author’s calculation. Middle month for quarter used, except Dec. 2007 used for 2007:4. 
 
 As an alternative to the BLS measure, I have previously constructed alternative price indexes for 
Intel desktop microprocessors, tracing the contours of change over time in microprocessor prices using a 
unique, highly detailed data set I have collected over the last two decades. Since the mid-1990s, Intel 
has periodically published, or posted on the web, current list prices for its microprocessor product line, 
in 1000-unit trays. These list prices are available at a very disaggregated level of detail, distinguishing 
between similar models manufactured with different packaging, for example, and are typically updated 
every 4 to 8 weeks—though price updates have sometimes come at much shorter or longer intervals.52 
By combining these detailed prices with detailed attributes of different processor models, it is possible 
to construct a very rich data set relating processor prices to processor characteristics, over time. 

 This permits one to construct both “matched model” price indexes, the traditional means by 
which government statistical agencies measure industrial prices, and so-called “hedonic” price indexes, 
which relate processor prices to processor characteristics. It is now well understood in the price index 
literature that there is a close relationship between matched model indexes and hedonic price indexes.  

 My Intel dataset permits measuring differences in processor characteristics down to individual 
models of processors, controlling for such things as processor speed, clock multiplier, bus speed, 
differing amounts of level 1 (“L1”), level 2 (“L2”), and level 3 (“L3”) cache memory, architectural 
changes, and particular new processor features and instructions. The latter have become particularly 
important recently—since mid-2004, Intel has dropped processor clock speed as the principle 
characteristic used to differentiate processors in its marketing, and introduced more complex 
“processor model number” systems that distinguish between very small and arguably minor differences 
between processors that proliferated at more recent product introductions.  

                                                           
52 My data initially (over the 1995-1998 period) made use of compilations of this data collected by others and 
posted on the web; since 1998-99, most of this data was collected and archived directly off the Intel web site.  

Commodity Price Producer Price
Index 
(discont)

Index 
(current) Index

1995:1-1999:4 -50.0 -50.5
1999:4-2004:4 -48.6 -49.2
1999:4-2005:1 -47.8
2005:1-2007:4 -37.7
2007:4-2011:4 -10.8 -10.8
2011:4-2015:1 -3.0 -3.0

Microprocessors (including 
microcontrollers)
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For comparison purposes, I begin by constructing a matched model price index for Intel desktop 
processors. Since I do not have sales or shipment data at the individual processor model level, I weight 
each observed model equally, by taking the geometric mean of price relatives for adjoining periods in 
which the models are observed.53 A price index based on the simple geometric mean of individual 
product price relatives (sometimes called a Jevons price index), is chained across pairs of adjoining time 
periods, and depicted in Figure 7. It has the same qualitative behavior as the official government 
producer price index for microprocessors, falling at rates exceeding 60% in the late 1990s, and slowing 
to a decline rate under 10% since 2009.  

 This geometric mean matched model index actually falls a little more slowly than the official PPI 
in recent years, which may be attributable to the fact that the geometric mean index weights all models 
equally, while the PPI probably uses a subset of the data, with some weighting scheme for models 
drawn (and replaced periodically) from subsets of processor types. The PPI also uses fixed weights from 
some base period to weight these price changes, while my geometric mean matched model index chains 
adjoining paired comparisons of models, and therefore implicitly allows weights given to different 
models over pairs of adjoining time periods to evolve over time. 

 The adjoining pairs of periods over which this regression was run were chosen to overlap. The 
time dummy variables in the above regression were used to construct an index of adjoining period price 
levels; the overlapping time period was used to link these period-to-period (on average, roughly 8-9 
monthly periods per year with reported list prices) indexes into a longer chained price index. Note that 
typical power consumption for a processor (TDP, thermal design power) was generally unavailable for 
Intel processors released prior to late 1998. I therefore estimated two versions of a hedonic index, one 
with TDP as a characteristic, and one without. TDP is statistically significant when it is available, and 
therefore the hedonic price index including TDP is the preferred index.  

 Figure 7 shows the price indexes produced using the above methods. The slowing of declines in 
price in 2004 and 2005 is quite apparent, followed by a temporary resumption of a somewhat faster rate 
of decline after 2006, followed by a marked and much more extreme slowdown after 2009. 

 The first four columns in Table 6 compare my estimated hedonic and matched model price 
indexes and the BLS PPIs. As expected, matched model index price declines are often close, but 
generally decline more slowly than those measured by the hedonic price index based on the same data.  
My estimates over comparable time periods are quite similar to the matched model index results of 
Aizcorbe, Corrado, and Doms, and to the U.S. producer price indexes. Prior to 2004, my geometric mean 
matched model and the PPI move quite closely, with my hedonic indexes showing a modestly higher 
rate of decline, as expected.  From 2004 through 2006, both my geomean and hedonic price indexes 
decline much more slowly than the PPIs, and from 2006 through 2009 my geomean falls at about the 
same rate as the PPI, while my hedonic index declines more rapidly. From 2009 to 2010 both my 
geomean and hedonic fall more slowly than the PPI. Finally, from 2010 through 2014, both my geomean 
and hedonic indexes again fall more slowly than the PPI, but all three sets of declines are in the low 
single digits. 

                                                           
53 Since there occasionally were multiple price sheets issued within a single month, I have averaged prices by 
model by month. Since Intel did not issue new prices sheets on a monthly basis, “adjoining time periods” means 
temporally adjacent observations. 
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Figure 7. Geomean matched model and hedonic price indexes for Intel desktop processors 
Green: Geometric Mean Matched Model Index; Blue: Hedonic Index with Thermal Design Power (TDP) as included 
characteristic; Brown: Hedonic Index without TDP as included characteristic. 
 

 Table 6 

Annualized compound rates of change in microprocessor price indexes 

 

Source: Author’s dataset and calculations, except Microprocessor PPI, from BLS. 

 I have also constructed a geometric mean, chained monthly price index based on retail prices for 
processors, using data from a commercial web site that reported the lowest price for a particular 
processor model across a selection of internet-based retailers, over the period from 2001 through 2010. 
These prices are actually a relatively small subset of the much larger set of list prices for all Intel 
processors, and presumably represent the models that were most popular in the retail marketplace. The 
final column of Table 6 reports changes in this retail price index for equivalent time periods. Generally, 
the pattern over time is similar (steepest declines over 2001-2004 and 2006-2009, slower declines over 
2004-2006 and 2009-2010).  

Compound Annualized Decline Rate
Intel Tray Price Producer Price Retail

Hedonic, 
no TDP

Hedonic 
with TDP

GeoMean 
Matched 
Mocel

Micropro
cessor 
PPI

GeoMean 
Matched 
Model

1998m9-2001m10 -68.3% ‐73.0% -65.0% -57.5%
2001m10-2004m2 -50.5% ‐50.1% -48.2% -46.6% -34.0%
2004m2-2006m1 -14.4% ‐13.8% -10.7% -25.2% -11.1%
2006m1-2009m1 -42.1% ‐36.9% -31.5% -29.0% -24.2%
2009m1-2010m11 -13.7% ‐13.6% -6.2% -22.7% -11.3%
2010m11-2014m7 -2.7% ‐2.9% -2.2% -3.7%
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 To summarize these results, then, though there are substantial differences in the magnitude of 
declines across different time periods and data sources, all of the various types of price indexes 
constructed concur in showing substantially higher rates of decline in microprocessor price prior to 
2004, a stop-and-start pattern after 2004, and a dramatically lower rate of decline since 2010.  

 Taken at face value, this creates a new puzzle. Even if the rate of innovation had slowed in 
general for microprocessors, if the underlying innovation in semiconductor manufacturing technology 
has continued at the late 1990s pace (i.e., a new technology node every two years and roughly constant 
wafer processing costs in the long run), then manufacturing costs would continue to decline at a 30 
percent annual rate, and the rates of decline in processor price that are being measured now fall well 
short of that mark. Either the rate of innovation in semiconductor manufacturing must also have 
declined, or the declining manufacturing costs are no longer being passed along to consumers to the 
same extent, or both. The semiconductor industry and engineering consensus seems to be that the pace 
of innovation derived from continuing feature-size scaling in semiconductor manufacturing has slowed 
markedly. 

Evidence on Manufacturing Costs. Finally, microprocessors are a semiconductor product sold in 
truly large volumes. The overwhelmingly dominant player in this market, Intel, released a slide in a 
presentation to its stockholders in 2012 that supports the narrative of a slowing down in Moore’s Law 
cost declines. (Table 7.) The figures presented by Intel at its 2012 Investor Meeting seem to show 
accelerating cost declines in the late 1990s, rapid declines near a 30 percent annual rate around the 
millennium, followed by substantially slower declines in cost per transistor after the 45nm technology 
node (introduced at the end of 2007). As discussed previously, the transition to use of a larger wafer size 
after the 130nm technology node was accompanied by a particularly large reduction in transistor cost in 
the next node, using the larger size wafers. 

 

 
Table 7. Annualized decline rates for Intel transistor manufacturing cost, 2012 
Source: Otellini (2012), digitized using WebPlotDigitizer. 
 
 

Otellini, 2012 Otellini, 2012 Otellini, 2012
Wafer Size Wafer Size Wafer Size

Intro Date Tech Node 200mm 300mm 200mm 300mm 200mm 300mm
1995q2 350 1575.35
1997q3 250 1033.14 -34.4 -17.1
1999q2 180 616.10 -40.4 -22.8
2001q1 130 311.09 -49.5 -32.3
2004q1 90 100.00 -67.9 -31.5
2006q1 65 48.87 -51.1 -30.1
2007q4 45 27.54 -43.6 -27.9
2010q1 32 17.69 -35.8 -17.9
2012q2 22 11.23 -36.5 -18.3

Intro dates: 130nm and up from http://www.intel.com/pressroom/kits/quickreffam.htm 
< 130nm from ark.intel.com 

Percent Transistor 
Cost Decline Rate 

Transistor Cost 
Index, 90nm = 100

Compound Annual 
Decline Rate



22 
 

Other Economic Evidence: Depreciation rates for semiconductor R&D. Another innovation 
metric in semiconductors is the depreciation rate for corporate investments in semiconductor R&D. As 
the rate of innovation increases (decreases), the stock of knowledge created by R&D should be 
depreciating more rapidly (less rapidly). One recent economic study estimates R&D depreciation rates in 
a number of high tech sectors, including semiconductors. The authors conclude that “the depreciation 
rate of the semiconductor industry shows a clear declining trend after 2000 in both datasets, albeit 
imprecisely measured.”54 This is consistent with a slowing rate of innovation. 

 
Semiconductor fab lives. Faster (slower) technological change in semiconductor manufacturing 

should presumably shorten (lengthen) fab lifetimes. There are no recent studies of economic 
depreciation rates for semiconductor plant and equipment, but the anecdotal evidence on the 200mm 
fab capacity “reawakening” (detailed below) strongly suggests that fab lives have increased, consistent 
with a slowing rate of innovation in semiconductor manufacturing.  

Personal computer replacement cycles. One reason for businesses and consumers replacing 
computers more frequently (less frequently) is if the rate of innovation in key components in computers, 
like microprocessors, increases (decreases), so performance improvements associated with replacement 
are more (less) economically compelling. While published studies of PC replacement cycles are scarce, 
Intel monitors replacement cycles for PCs, a major market for its desktop processors. In 2016, Intel CEO 
Brian Krzanich noted that PC replacement cycles had extended from four years, the previous average, to 
five or six years, the current average.55 This, again, is consistent with a slower rate of innovation. 

 

4. Is Moore’s Law Still Alive?  Intel’s Perspective in Microprocessors 

The most significant evidence against any current slowdown in semiconductor manufacturing 
cost reduction from Moore’s Law has come from Intel. Recent Intel statements about its manufacturing 
costs have been the primary factual evidence within the semiconductor manufacturing community 
countering the proposition that Moore’s Law is ending. Unfortunately, Intel has not been consistent in 
the data it has presented publicly on this issue. 

 The problem is illustrated by Figure 8 and Table 8, which place side by side two exhibits on 
manufacturing costs per transistor that Intel has presented at its annual investor meetings—one in 2012 
(by then-CEO Paul Otellini), and one in 2015 (by its top manufacturing executive, Bill Holt, see Figure 2). 
Some version of the right pane in Figure 8 has been the primary factual evidence in Intel assertions that 
Moore’s Law continues at its historical pace. The graphics in Figure 8 have been digitized56 and recorded 
in Table 8, then rebased to 100 at the 90nm technology node. Compound annual decline rates have 
been calculated in this table using quarterly introduction dates for the first processors manufactured by 
Intel at that technology node. 

                                                           
54 Li and Hall (2015), p. 13. 
55 Krzanich (2016). 
56 Using http://arohatgi.info/WebPlotDigitizer/. 
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Figure 8 Intel Transistor Manufacturing Costs, 2012 vs. 2015 Versions 
Source: Otellini (2012): Holt (2015). 
 

 

Table 8.    Comparison of Intel Cost per Transistor at Various Technology Nodes, 2015 vs. 2012 

 The figures presented by Intel to shareholders in 2012 seem to show rapid declines in the 30 
percent range around the millennium, then substantially slower declines in cost per transistor after the 
45nm technology node (i.e., after 2007). In contrast, a more recent presentation by Intel in 2015 

Compound Annual Decline Rate
Otellini, 2012 Holt, 2015 Otellini, 2012 Holt, 2015 Otellini, 2012 Holt, 2015
Wafer Size Wafer Size Wafer Size

Intro Date Tech Node 200mm 300mm 300mm 200mm 300mm 300mm? 200mm 300mm 300mm?
1995q2 350 1575.35
1997q3 250 1033.14 -34.4 -17.1
1999q2 180 616.10 -40.4 -22.8
2001q1 130 311.09 146.93 -49.5 -32.3
2004q1 90 100.00 100.00 -67.9 -31.9 -31.5 -12.0
2006q1 65 48.87 71.26 -51.1 -28.7 -30.1 -15.6
2007q4 45 27.54 50.30 -43.6 -29.4 -27.9 -18.1
2010q1 32 17.69 35.64 -35.8 -29.1 -17.9 -14.2
2012q2 22 11.23 26.03 -36.5 -26.9 -18.3 -13.0
2014q3 14 16.13 -38.0 -19.2
2017q4? 10 9.46 -41.4 -21.1

Intro dates: 130nm and up from http://www.intel.com/pressroom/kits/quickreffam.htm 
< 130nm from ark.intel.com 

Percent Transistor Cost Decline 
Rate Between Nodes

Transistor Cost Index, 90nm = 
100



24 
 

restates the more distant history to show very much slower declines in cost per transistor at earlier 
technology nodes. Intel has a stock disclaimer that numbers it presents are subject to revision, but in 
this case the revisions to the historical record are quite dramatic.  

The 2015 graphic substantially revises what in the semiconductor industry would be considered 
the distant historical past (i.e., five technology nodes back from the 22nm node that was in production 
at the time the earlier 2012 presentation was given). Intel’s most recent version of its history now shows 
transistors costs declining at 12-18% annual rates after the millennium, rather than the 30% annual 
declines it showed to its investors in 2012. Its transistor cost decline rate accelerates, rather than 
slowing further, at the most recent couple of technology nodes. 

It now seems likely that one important reason for the restatement by Intel of its historical cost 
declines in 2015 was a definitional change in technical information made public by Intel. Instead of 
reporting transistor density (transistors per die area) based on actual die area and the number of 
transistors processed on an actual microprocessor die (which allows one to calculate an actual average 
transistors fabricated per die area), Intel apparently began using an entirely theoretical measure of area 
per designed transistor that appears not take into account the increasingly relaxed (from design rules) 
layout of transistors in actual die designs, imposed in part by the need to allow for additional area 
between transistors needed to fabricate increasingly complex interconnections.57  (For die designs 
released prior to 2010, Intel had previously reported both actual die size, and the number of transistors 
processed on the die, for many of its chip models.) 

An Intel Exception? Interpreting the recent economic history of Moore’s Law, how can Intel’s 
most recent description of accelerating declines in manufacturing cost per transistor be consistent with 
reports from other chip manufacturers, and their customers, of stagnating cost declines, or even cost 
increases? Increasingly important scale economies provide one plausible and coherent explanation.  

  Scale economies at the company level are obvious. The cost of a production scale 
semiconductor fab has increased dramatically at recent technology nodes, and only the very largest chip 
“IDMs” (Integrated Device Manufacturers) can depend on their internal demand to justify a fab 
investment. Intel made this case quite accurately at its 2012 Investor Meeting, predicting that only 
Samsung, TSMC, and itself would have the production volumes required to economically justify 
investment in leading edge fab technology for logic chips, by 2016.58 (Intel overlooked GlobalFoundries, 
which by acquiring IBM’s semiconductor business in 2015, substantially increased its scale.)59 Both TSMC 

                                                           
57 See Flamm (2017), p. 34, for a brief explanation of this issue. Intel’s latest redefinition of its publicly disclosed 
“transistor density metric” is entirely theoretical:  .6 x (transistors in a NAND logic cell/area of a NAND logic gate) + 
.4 x (transistors in a complex scan logic flip-flop cell/area of complex scan logic flip-flop cell) = # transistors/mm2. 
Such a definition does not allow for the practical effects of relaxation (from theoretical design rules) in actual cell 
layout needed, for example, to accommodate metal interconnections between logic cells. On Intel’s new transistor 
density definition, see Mark Bohr, “Moore’s Law Leadership,” March 2017, available at 
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf 
. 
58 Krzanich (2012), slide 19. 
59 What constitutes leading edge technology in memory chips is somewhat more nebulous, and several large 
memory specialist IDMs (Hynix, Toshiba, Micron) might also arguably be categorized as being near the leading 
edge.  
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and GlobalFoundries are “pure” foundries, and achieve their volumes entirely by aggregating the 
demands of external chip design customers.  

  Many U.S.-based semiconductor companies have exited chip manufacturing (e.g. AMD, IBM) or 
stopped investing in leading edge fabrication while continuing to operate older fabs (Texas 
Instruments pioneered this so-called “fab-lite” strategy). Other “pure play” U.S. foundries (e.g., 
TowerJazz, On Semiconductor) operate mature foundry capacity that remains cost effective for lower 
volume chips. Long-established American chip companies, such as Motorola, National Semiconductor, 
and Freescale, disappeared in the course of mergers or acquisitions that continue to reshape the 
industry.   

  This consolidation in leading edge IC fabrication is global. In Europe, there are no manufacturers 
currently investing in leading edge technology.60 In Asia, there are arguably only Toshiba in Japan, 
Samsung and Hynix in Korea, and foundry TSMC in Taiwan. Firm level scale economies explain why fewer 
firms can afford leading edge fabs, but can’t explain why Intel’s cost per transistor would have declined 
much faster than at other producers still investing in leading edge fabs, particularly the foundries. It’s 
possible that Intel has unique, proprietary technological advantages. A more mundane explanation is 
that product level scale economies drive these differences.   

  In particular, there has been an exponential increase in the costs of the ever more complex 
photomasks needed to pattern wafers using lithography tools—a set of masks cost $450,000 to 
$700,000 back in 2001, at 130nm, compared with a wafer production cost of $2,500 to $4,000 per 
wafer.61 At 14nm, (updating wafer production costs using Intel costs in Table 1 implies 150% increases) 
wafer production cost would be $6,225 to $9,960. By contrast, costs for a mask set at 14nm are 
estimated to run from $10 million to $18 million, a 22- to 40-fold multiple of 130nm mask costs!27 
Lithography cost models suggest that with 5000 wafers exposed per photomask set (a relatively high 
volume product at recent technology nodes), mask costs per unit of output will exceed both average 
equipment capital cost, and average depreciation cost. With smaller production runs for a product, 
photomask costs become the overwhelmingly dominant element of silicon wafer-processing cost at 
leading edge technology nodes.62   

  Intel, with the largest production runs in the industry (perhaps 300 to 400 million processors in 
201463), has huge volumes of wafers to amortize the cost of its masks, and is certainly benefitting from 
significant economies of scale.  A single Intel processor design (and mask set) is the basis for scores of 
different processor models sold to computer makers. Processor features, on-board memory sizes, 
processor speeds, and numbers of functioning cores can be enabled or disabled in the final stages of 

                                                           
60 The last remaining leading edge chipmaker headquartered in Europe, ST Microelectronics, announced in 2015 
that it will be relying on foundries for future advance manufacturing needs.  
61 Both 130 nm mask and wafer cost estimates were presented by an engineer in Intel’s in-house Mask Operation 
unit; Yang (2001).  Mask set cost estimates at 14nm are taken from Black (2013), slide 6.  
62 Lattard (2014), slide 6.  
63 Based on the fact that Intel publicly revealed that it had shipped 100 million processors a quarter, a record-
setting event, in the third quarter of 2014.  Intel (2014), p. 1. 
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chip manufacture, and manufacturing process parameters can even be altered to shift the mix of 
functioning parts in desired ways.64   

  For Intel, this creates average manufacturing costs per chip that are vastly smaller than costs for 
fabless competitors running much smaller product volumes using the same technology node at 
foundries. Foundries recoup those much higher per unit mask costs through one-time charges, or 
through high finished wafer prices charged to its fabless designer-customers. The customer directly 
bears the much higher design costs per unit if the latest technology node is chosen for the product.  

  Exponentially growing design and mask costs at leading edge nodes now make older technology 
nodes economically attractive for lower volume products. Higher variable wafer-processing costs per 
transistor at older nodes are more than offset by much lower fixed design and photomask costs.  

  Such scale-driven cost disadvantages are increasingly pushing low volume chip production to 
older chipmaking technology running in depreciated fabs. This is reshaping the economics of chip 
production, extending the economic lives of aging fabs. Older 200mm wafer fab capacity is now growing 
rapidly, forecast to expand almost 20% by 2020!65  

  Historically, this is unprecedented. The additional 200mm capacity coming into service cannot 
use more advanced process technologies designed for 300mm wafer processing equipment. Much lower 
fixed design and photomask costs with older technology are the primary factor making it economically 
attractive for fabricating low volume products. As inexpensive computing penetrates into everyday 
appliances, “Internet of Things” chip designers are generating low volume foundry orders for chip 
designs tailored to market niches, filling these old fabs with chip orders that don’t require the greatest 
possible density.   

 Is Intel an exceptional case in the semiconductor industry? Is its portrait of recently accelerating 
manufacturing cost declines reflected in the actual behavior of its product prices? The problem is, Intel 
does not disclose data on its product pricing to either the public, or government statistical agencies, so 
analysis of what an economist would call a quality-adjusted price is quite difficult. 

 Hedonic Price Indexes for Microprocessors. Apart from Intel’s continued declarations of 
optimism, the second piece of evidence arguing against a slowdown in Moore’s Law is a study by Byrne, 
Oliner, and Sichel (BOS, 2015), which also utilizes list price data from Intel for its argument  The BOS 
study puts forward an alternative explanation for the recent behavior of the official price indexes: 
arguing that the Intel posted list prices that are being used by all analysts to measuremicroprocessor 
pricing trends are not in fact representative prices, they raise the possibility that the post-2004 
slowdown is a spurious artifact of changes in Intel pricing practices.66 Their argument is that “[b]y 2006, 

                                                           
64 When chips are tested after manufacture, the speed, power consumption, and functioning memory and feature 
characteristics are used to “bin” the processor into one of many different part numbers. As process yields improve 
over time with experience, new part numbers with faster speeds or lower power consumption, etc., are 
introduced. VanWagoner (2014) is a concise discussion by a former Intel manufacturing engineer of how a large 
variety of processor models are manufactured from a single unique processor design.   
65 Dieseldorff (2016).  
66 D.M. Byrne, S.D. Oliner, and D.E. Sichel, “How fast are semiconductor prices falling,,” AEI Economic Policy 
Working Paper 2014-06, revised 2015, available at www.aei.org/publication/how-fast-are-semiconductor-prices-
falling/ . 
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the company had moved to a business model that featured more active management of its product 
offerings below the [technological] frontier…by setting list prices that were relatively stable over a chip’s 
life cycle, Intel may have been attempting to extract more revenue from less price-sensitive buyers 
while offering discounts on a case-by-case basis.”67 Arguing that new products get little discount from 
the posted list price, while older products are heavily discounted from list, they suggest that a hedonic 
price index based only on recently introduced products is the correct measure of quality-adjusted price 
trends for Intel microprocessors. DIscarding much of their sample of Intel products, and keeping only 
recently introduced models, they run an annual time dummy hedonic price model over adjoining pairs 
of years, and find quality-adjusted prices declining at the same rate in 2000-08 as in 2008-12, at about a 
40 percent annual rate of decline.68 This is vastly higher than any of the rates shown in Table 6 for the 
equivalent time periods. 

The BOS observation that Intel seems to have changed its advertised list prices much less 
frequently after 2006 than before 2006 certainly seems true. But they also assert that actual transaction 
prices for recently introduced chips are not significantly discounted from list, while transaction prices for 
older chips after 2006 are heavily discounted, with a discount that increases with age. Unfortunately, 
this behavior is unobservable and therefore unverifiable, since no data on Intel transaction prices for its 
wholesale sales to large buyers are publicly available. We only know that evidence produced in the 
AMD-Intel antitrust investigation seems to show that even new chips sold to large customers were 
heavily discounted from list prices prior to 2006, at times with conditional rebates that were not publicly 
reported by Intel or its customers.69 

 An alternative hypothesis to the one put forth by BOS is that Intel’s diminished propensity to 
alter its list prices in fact reflects its actual pricing behavior. Figure 9 shows the fraction of incumbent 
(i.e., omitting newly introduced products) desktop processor prices that changed from one list price 
sheet to the next one issued, from 1998 through mid-2014. Through mid-2014, it is evident that while its 
propensity to alter list prices on existing processors diminished over time, Intel never entirely stopped 
adjusting list prices on its existing product line. Further, there clearly was no sharp dividing line between 
its behavior before and after 2006. In 2008 and 2009, for example, there were price sheets on which 
anywhere from 35 to 40 percent of already introduced desktop processor prices changed from the 
previous sheet. 

                                                           
67 Ibid., pp. 8. 
68 Ibid, Table 7, p. 34. Note that, with very much smaller sample sizes, the researchers use only two processor 
characteristics—average performance on a single software benchmark, and power draw—in their hedonic 
regression.  
69 See European Commission, “Non-confidential Version of the Commission Decision of 13 May 2008, 
COMP/37.990 Intel,”  available at 
http://ec.europa.eu/competition/antitrust/cases/dec_docs/37990/37990_3581_18.pdf . 
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Figure 9. Fraction of Intel desktop processor prices changing from one price list to the next. 
Source: Author’s tabulation from Intel list price dataset. 

 
Figure 10. Intel’s post‐2010 gross margin elevation objective 
Source: Smith (2015). 

 
 Indeed, if one had to choose a date based on this chart for a climacteric in Intel pricing practices, 
2010 would seem the best choice. That year also apparently coincides with the beginning of a 
determined campaign by Intel to raise its profit margins, an effort that seems to have had some success 
(aided at that point by a greatly diminished competitive threat from its historical rival, AMD). (See Figure 
10.) Raising its average sales prices (ASP) was a key element of this strategy. (See Figure 11.) 
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Figure 11. Intel’s 2015 explanation to its shareholders for success in maintaining high profit margins 
Smith (2015). 

 

 Finally, there is one public source of Intel processor price data that is real, observed, and does 
not require maintaining assumptions about unobserved behavior. Retail prices in the electronics 
industry are linked to wholesale prices, directly and indirectly. Most directly, the very largest retailers 
can purchase boxed processors directly from Intel, or like smaller retailers, from distributors. 
(Approximately 20% of Intel processors in recent years, by volume, were sold directly as boxed 
processors, primarily to small computer makers and electronic retailers.70) Computer original equipment 
manufacturers (OEMs), electronics system manufacturers, and electronic parts distributors who 
purchase processors directly from Intel can resell excess inventories to other distributors, resellers, and 
retailers, and these actually show up on the retail market labeled as “OEM package” (vs. “Retail Box” 
packaging).  

Both box and OEM-packaged processors are sold by retailers and brokers, with a price that is 
advertised publicly and directly observable in the marketplace. (The retail data use in constructing my 
matched model price index include both OEM and retail packaged chips sold by internet retailers.) The 

                                                           
70 “Although it sells microprocessors directly to the largest computer manufacturers, such as Dell, 
Hewlett Packard, and Lenovo, its Channel Supply Demand Operations (CSDO) organization is responsible for 
satisfying the branded boxed CPU demands of Intel’s vast customer network of distributors, resellers, dealers, and 
local integrators. Intel’s boxed processor shipment volume represents approximately 20 percent of its total CPU 
shipments…Processors ship from CW1 to one of four CW2 “boxing” sites, which kit the processors with cooling 
solutions (e.g., fan, heat sink) and place them in retail boxes and distribution containers. Such boxing sites are 
typically subcontracted companies that ship the boxed products to nearby Intel CW3 finished-goods warehouses 
where they are used to fulfill customer orders. Channel customers range in size and need; they are mostly low-
volume computer manufacturers and electronics retailers.” B.Wieland, P. Mastrantonio, S. P. Willems, and K. G. 
Kempf, “Optimizing Inventory Levels Within Intel’s Channel Supply Demand Operations,” Interfaces, Vol. 42, No. 6, 
Nov–Dec 2012, pp. 517–18. 
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retail data used in Table 6 seem to clearly point to a deceleration in microprocessor price declines after 
2004. 

 It is reasonable to presume that retail transaction prices (which are at least observable in the 
market), in the long run, should have some stable stochastic relationship to wholesale producer 
transactional prices. Indeed, a least one previous study found such linkages between OEM contract 
prices and retail prices for high volume chips sold in the semiconductor industry.71  

 Both semiconductor manufacturers and their OEM customers sell their excess inventories of 
chips to brokers and distributors during industry downturns, pushing small buyer spot prices down in 
distributor and retail sales channels as excess OEM inventories of chips are absorbed in those sales 
channels. In tight markets, conversely, when semiconductor manufacturers are capacity constrained, 
wholesale contract prices to large OEMs rise. To meet surging demand, OEMs may even try to purchase 
additional volumes of chips, beyond the volumes negotiated in contracts with chip manufacturers, in 
retail and distribution markets. As both large OEMs and smaller buyers compete fiercely over the 
remaining, unallocated output, upward pressure on retail and distributor prices is felt. In short, both 
direct and indirect linkages between small buyer (retail and distributor) markets, and large buyer 
(contracts with OEMs) markets, as well as arbitrage across distribution channels would lead an 
economist to expect to observe a structural relationship between observed retail processor prices, and 
unobserved large OEM wholesale prices. 

BOS hypothesize that a systematic change in the relationship between Intel list prices and 
unobserved OEM (large buyer) contract prices occurred after 2006. If true, we would then also expect to 
see a change in the relationship between movements in observed prices in the retail market, and Intel 
list prices after 2006. This is testable using observational data. 

 I explored the possibility that there was some detectable change in the relationship between 
Intel list (posted wholesale) prices and observed retail prices after 2006 by constructing a panel of a 
total 1580 monthly observations on average retail and posted list price covering 163 distinct Intel 
desktop processor models sold by Internet retailers over the years 2000 through 2010.72 The fixed 
effects regression model (which permits a particular low-end Celeron model, for example, to be related 
to Intel list price with a different retail margin than a high end Core i7 model)  that I estimated specified 
that the log of retail price for model i in month t was given by 

 

(3) ln(Rit) = ai + b ln(Iit) + c Ageit + d OEM + After2006 + e After2006 x ln(Iit)  

+ f After2006 x  Ageit  + uit , 

 

with Rit an observation on average retail price for model i in month t; Iit the average posted Intel list price 
in a month in which list price had been posted at least once; Age it the number of elapsed months since 
the month the model’s price had been first posted on a published Intel price sheet; After2006 a binary 

                                                           
71 See Flamm (1993), for a study documenting linkages between retail prices and OEM contract prices for DRAM 
memory chips. 
72 My retail price data actually end in January 2011. 
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indicator variable with value 1 in 2006 and thereafter, zero before; OEM a binary indicator for whether 
the product sold was the retail boxed version, or the bare chip in OEM packaging; and u it a random 
disturbance term. If the Byrne, Sichel, and Oliner assumption is correct, and post-2006 transaction prices 
reflect age discounts from Intel list price that pre-2006 prices did not, we would expect to find a 
statistically significant shift coefficient on the interaction of After2006 with Age.  

 Table 9 shows the results of estimating this model.73 The After2006 shift variable, and all of its 
interactions, including interactions with processor model Age, are close to zero and statistically 
insignificant individually, and jointly.74 The relatively flat Intel list prices after 2006 are mirrored in the 
behavior of equally flat retail prices for the same chips. 

 Interestingly, there does seem to be small but statistically significant age effect, with retail price 
declining by about .58 percent for every additional month after the product is first sold by Intel. But this 
relationship holds throughout the 2000-2010 period, and we cannot reject the hypothesis that there 
was no change in 2006 and after. The model also suggests that on average, products originally sold 
unboxed to OEMs were resold by retailers in OEM packaging at a 5 percent discount from the equivalent 
retail boxed product. A point estimate of the elasticity of retail price with respect to a decline in Intel list 
price was about -.77, i.e., a ten percent decline in list price was associated with about a 7.7% decline in 
retail price.75 

 Therefore, based on the only evidence on actual transaction prices that is publicly available, i.e., 
advertised retail prices from Internet-based vendors, I find no evidence to support the suggestion that 
there was some structural change after 2006 in the relationship between observed Intel list price and 
observed retail market prices. Of course, this does not directly prove that there was no change in the 
relationship between Intel list prices and (unobserved) discounted OEM contract prices for processors, 
but it certainly argues against the presumption that this must have been the case. 

SPEC scores vs. chip characteristics. It has recently become clear that the BOS results of no 
slowdown after 2006 are driven primarily by their use of SPEC benchmark scores as a substitute for a 
more extensive set of chip characteristics in a hedonic price equation.76 The plausibility of exclusion of 
chip characteristics other than SPEC scores from the hedonic price equation is simply maintained as an 
assumption, and never actually tested econometrically by BOS.  The use of SPEC scores instead of actual 
chip characteristics is based on the argument that direct performance measures are easier to get right 
than relevant chip characteristics. But this argument overlooks three fundamental reasons why chip 
characteristics are superior choices for inclusion in a hedonic price equation.  

 
 
 
 
 

                                                           
73 Robust standard errors clustered on processor model are shown in Figure 8. 
74 The Wald F(3,162)  test statistic for the joint hypothesis that all After2006 terms were zero was .82, the p-value 
.49.  
75 Very similar results are produced if a model that is linear in price, rather than the logarithm of price, is used. 
76 Sawyer and So (2017). 
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Table 9 
Fixed Effects Model of Log Retail Price For Intel Desktop Processors 
               (Full Model)   (Constrained Model)    

                   lp_ret          lp_ret    

-------------------------------------------- 
lp_tray             0.763***        0.768*** 
[log Intel        (15.37)         (17.93)    
Tray Price] 
oem               -0.0497***      -0.0496*** 
                  (-6.70)         (-6.77)    
 
age              -0.00676***     -0.00582*** 
                  (-3.70)         (-4.91)    
 
1.aft2006          0.0204                    
                   (0.13)                    
 
1.aft2006#age     0.00162                    
                   (0.83)                    
 
1.aft2006#lp_tray -0.0108                    
                  (-0.39)                    
 
_cons               1.347***        1.303*** 
                   (4.87)          (5.55)    
-------------------------------------------- 
N                    1580            1580    
R-sq                0.987           0.987    
adj. R-sq           0.986           0.986    
-------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 
 

First, there is a computer architecture literature that tells us that benchmark scores of a CPU on 
any given task should be well explained by a simple nonlinear function of a small set of chip 
characteristics, including numbers of cores and threads, computer architectural design, chip clock rate, 
and on-chip memory cache sizes.  This literature actually identifies the chip characteristics that are 
relevant, and even uses them to model computer CPU performance out of sample.77  As I next show, 
scores on various SPEC processor benchmarks are almost perfectly predicted by a linear function of the 
small set of chip characteristics that the computer design literature predicts are its determinants. 

Second, economics tells us that the characteristics that belong in a hedonic price equation show 
up there either because they affect user demand, or they affect supplier marginal cost, or they affect 
both demand and cost.78 At best, SPEC scores might correctly serve as a summary measure of quality 
perceived by users, on the demand side. But there is no reason, technological or economic, why a 
measure of chip performance relevant to demand should be perfectly collinear with the effects of these 
characteristics on chip cost. Omitting processor characteristics relevant to chip cost will induce omitted 

                                                           
77 Hennessey and Patterson(2003), in the Third Edition of their classic computer architecture textbook, pp. 59-60, 
do exactly this to compare the Pentium III with a Pentium 4 operating at the same clock rate. 
78 Pakes (2003), p. 1581, equation 3, notes that the hedonic price function can be interpreted as the sum of the 
expected marginal cost, conditional on characteristics, and expected markup (derived from the demand function), 
conditional on characteristics. The key point is that the product characteristics are arguments in the separate cost 
and demand function terms in the hedonic price equation. 
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variable bias in the hedonic coefficient estimates if the omitted characteristics’ effects on cost are 
correlated (but not perfectly collinear) with the included SPEC scores. 

That is, assume for the sake of argument that the mix of user demands for various types of 
computer applications was fixed over time, and that processor performance on this fixed weight mix of 
computer applications was correctly captured in some fixed weight mean of various SPEC benchmarks. 
Even with the heroic assumption that this aggregated index derived from SPEC benchmarks correctly 
captured everything relevant to chip quality on the demand side (and it is clear it does not79), there is no 
plausible technological or economic reason why variations across chip models in marginal production 
costs should be perfectly mirrored by variation in SPEC benchmark scores.  

Indeed, the computer architecture literature teaches us that a variety of chip characteristics can 
affect performance, and that, therefore, the same SPEC score can potentially be produced with diverse, 
non-unique combinations of numbers of cores, threads, cache memory, clock frequency, etc. But 
variation in each of these characteristics—cores, threads, on-chip memory, and clock frequencies—may 
have very different impacts on production cost for the processor than it does on SPEC scores.   

Third, if benchmark scores are determined by chip characteristics, using chip characteristics 
directly in the hedonic equation—instead of a single benchmark score —effectively allows coefficients in 
the hedonic equation to change to mirror changes in the average mix of tasks run by computer users 
over time. Use of a single benchmark or fixed-weight index of benchmarks effectively assumes the mix 
of tasks relevant to performance for users is fixed over time.80 

For all these reasons, use of the SPEC score as the sole characteristic in a hedonic price equation 
should be viewed as a highly implausible economic assumption. Recent work by economists at the 
Bureau of Labor Statistics confirms that this assumption is rejected when tested statistically. After 
reproducing the BOS results qualitatively in a similar (though not identical) sample, Sawyer and So 
(2017) show that standard statistical tests decisively reject the exclusion of processor characteristics 
from a hedonic price equation which also includes SPEC scores.81 When these other processor 
characteristics are not excluded, estimates of recent decline rates for quality-adjusted processor prices 
over time are dramatically smaller than those estimated by BOS. Consistent with other evidence, 
processor prices seem to be declining at a significantly slower pace now than in earlier epochs, when a 
more fulsome hedonic model is used. 

                                                           
79 Since power draw minimization, graphics, and hardware virtualization capabilities clearly are desirable to large 
subsets of computer users, yet will have no direct impact on SPEC scores if missing or disabled in a processor. 
80 That is, assume we have two benchmarks, b1 and b2, and two processor characteristics, c1 and c2. Assume b1 = 
a1 c1 + a2 c2, while b2 = e1 c1 + e2 c2. Assume users in the aggregate run b1 applications 50% of the time, b2 
applications the other 50%. Then we can represent performance on the “average market workload” with a 
performance index that looks like .5 b1 + .5 b2, or equivalently, .5 (a1 c1 + a2 c2) + .5 (e1 c1 + e2 c2) = [.5 (a1+e1)] 
c1 + [.5 (a2 + e2)] c2. That is, the benchmark index is equal to a simple linear function of the two characteristics. 
Now, if the weights of b1 and b2 change to 25% and 75% on the new “market workload,” workload performance 
will be incorrectly captured by the original performance index (50% weights) even if scaled by some arbitrary 
constant. However, performance on “market workload” is still correctly captured by a linear function of the two 
underlying chip characteristics (though the coefficients of the characteristics in this function change). The 
specification that is linear in the underlying characteristics is simply more flexible in representing shifts in demand. 
81 Sawyer and So (2017), p. 11. 
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Finally, because SPEC scores are only available for the subset of Intel desktop processors used by 
OEMs in servers, the use of SPEC scores in a desktop processor hedonic price regression will 
considerably reduce sample size compared with statistical models using chip characteristics but not 
SPEC scores. In the Intel list price data, the number of Intel desktop processors with SPEC scores 
available for analysis is a fraction of all Intel desktop processors with list prices available in any time 
period. When using other publicly available retail or distributor desktop processor price data, an even 
larger fraction of the available data may not have have SPEC scores available.  82 

To support this point, I next demonstrate that SPEC processor benchmark scores are almost 
perfectly predicted by a small number of underlying chip characteristics, and provide essentially no 
additional information. The role of different chip characteristics on different SPEC benchmarks, 
however, varies greatly across different types of SPEC benchmarks, which argues for direct use of the 
underlying characteristics in a hedonic equation. It is an argument for letting the data decide what the 
correct weights on processor characteristics in a hedonic price equation are, rather than adopting the 
implicit weights embedded within some particular choice of fixed weight average benchmark scores. 

5. Chip Characteristics and Computer Performance: Building Blocks for A Hedonic Analysis 

By forcing us to focus on the relationship between performance of microprocessors on 
representative software benchmarks—which all agree should be an important determinant of chip 
demand-- and chip characteristics, BOS have a done us a great service in providing focus for a discussion 
of what chip characteristics should be used when estimating a hedonic price equation for 
microprocessors. 

The theoretical computer architecture literature makes use of a processor performance equation to 
predict processor performance. Effectively, this relationship models the execution time a computer 
processing unit takes to perform some given software benchmark program (i.e., a given sequence of 
programming instructions) as the product of two parameters: average clock ticks per instruction and the 
seconds per clock tick in the processor’s clock.83 Since a processor performance benchmark score is 
proportional to the inverse of time required to run a benchmark program on a particular computer 
processor, we can invert the processor performance equation and then have  

Performance ~ IPC x clock rate , 

where IPC is processed instructions per clock tick, clock rate is measured in ticks per second, and the 
performance index basically compares benchmark instructions executed per unit time across processors. 
Indeed, given a particular computer architecture, computer engineers simply scale measured 
performance linearly by clock rate in order to model the approximate impact of raising clock rate on 
processor performance.84 

 IPC will depend on both the design (architecture) of the computer processor and the particular 
mix of instructions being executed in the benchmark software. The specified clock rate of a processor 

                                                           
82 Because the selection of processors commonly sold to consumers for use in desktop PCs may include relatively 
fewer desktop processors used in servers (the ones which would have SPEC scores available). 
83 See Hennessey and Patterson (2012), section 1.9, pp. 48-52. 
84 Hennessey and Patterson(2003), in the Third Edition of their classic computer architecture textbook, pp. 59-60, 
do exactly this to compare Pentium III performance with a Pentium 4 operating at the same clock rate. 
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model is typically fixed after testing, at the end of the chip fabrication process.85 “Binning” during testing 
of finished chips creates different speed grade bins, which are subsequently sold as different processor 
models to computer manufacturers and other consumers. The effective, yielded mix of non-defective, 
more valuable fast processors, and less valuable slow processors, on a fabricated wafer containing 
hundreds or thousands of these processors, is a determinant of processor manufacturing costs. 

 Speed is not the only chip processor characteristic that is affected by random fabrication 
process variation. There may also be random manufacturing variation affecting the voltage needed to 
run the chip properly, varying from die to die on the same wafer. Chips which require less power to 
perform correctly may be identified through testing, and sold as low power models of the processor.86  

Microprocessor chips generally have on-chip caches of fast local memory which can also affect 
the execution time for given software. The portion of on-chip cache memory which is defect-free, and 
therefore usable by the chip, can also vary with the incidence of manufacturing defects during the 
fabrication process, and testing then leads to additional binning of finished chips by usable, functional 
cache memory.  

Similarly, particular sections of chip circuitry associated with some advanced features of the chip 
may not be fully functional due to random processing defects. In order to maximize revenue from all 
usable products yielded from a finished silicon wafer, a complex system of testing “bins” based on 
speed, memory, power requirements, and working feature functionality is used to define distinct 
processor models sold as different chips to final consumers. Indeed, chips are generally designed with 
some redundant circuitry and electrical “fusing” options intended to maximize saleable product, and 
revenues, from a processed wafer with dies that may not be perfect. A dozen processor models may be 
derived from a single, artfully designed die manufactured in the thousands on a single wafer.87 

 At Intel, microprocessor designs are identified with a “microarchitecture,” which historically is 
associated with a publicly available codename. (For example, the processor microarchitecture launched 
by Intel in October 2017 was been given the codename “Coffee Lake”.88) Prior to 2010, Intel also made 
public information on its processors’ die sizes and the number of transistors on the die processed in its 
manufacture. Based on this information (which is no longer publicly released), it appears the many 
dozens of microprocessor models for each of its microarchitectures were based on somewhere between 
one and three basic die designs.89 That is, the dozens of different processor models corresponding to a 

                                                           
85 Random variation in a highly complex semiconductor manufacturing process leads to a distribution of functional 
chips by the maximum clock rate at which they can successfully execute some test suite. A “fast” processor can 
operate at a higher than average clock frequency, while a “slow” processor can only operate correctly at a slower 
than average clock rate. 
86 And processing of the wafer can be optimized to produce relatively more chips requiring less power. 
87 The design of a chip will segment the circuitry into functional blocks which can be disabled electronically (e.g., 
with programmable “fuses”) during the manufacture and testing process. Some redundant circuitry is typically 
made part of the design, to maximize yield of usable parts after test. A more capable chip can generally be made 
less capable by disabling portions of its circuitry at the final stages of manufacture. This may done deliberately by 
manufacturers to create additional supplies of lower end chips when customer demand for lower end parts 
exceeds the portion of output physically binned into low end chip models on the basis of test results.  
88  https://gizmodo.com/intels-latest-coffee-lake-processors-are-fast-as-hell-1819129322 . 
89 Prior to 2010, Intel publicly released the exact die area and number of “processing transistors” used in 
manufacturing most of its microprocessor models. All processors with exactly the same microarchitecture, die 
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single microarchitecture product family were manufactured from just one to three basic chip designs 
fabricated on silicon wafers. 

 It is straightforward to analyze the relationship between SPEC scores and microprocessor 
characteristics. Table 10 shows the results from estimating a linear regression model explaining log SPEC 
scores with a set of explanatory variables suggested by the computer engineering literature: a full set of 
microarchitecture dummy variables (since IPC is going to depend on computer microarchitecture), log of 
the base processor clock rate, log of a highest clock rate achievable by a single core on the chip (which 
will differ from the base processor clock rate if a “turbo” feature is enabled on the chip, log of on-chip 
memory cache size,90 log of number of physical processor cores on the chip, and log of additional 
multithreaded “virtual” logical cores available, if any, on a chip.91 In addition, a binary indicator variable 
for use of “autoparallelization” in compiling the SPEC benchmark software code is included, since that 
can enable a speedup on multicore processors, or on processors with multithreading.92 

 A simple log linear regression model that explains SPEC benchmark performance as a function of 
six processor characteristics (and a full set of 29 to 31 dummy variables for different Intel x86 processor 
microarchitectures)  accounts for a remarkable 96 to 98 percent of the variation in SPEC2006 benchmark 
scores for thousands of computer models using Intel x86 processors over the 2005-2017 period. (Table 
10.) Note that this regression utilizes all Intel x86 desktop, server, and mobile processors in the 
SPEC2006 database, and further, that it is estimated using every different individual computer making 
use of an included processor as the underlying set of observations used in estimating the model. 

 That is, variation in chipsets, motherboards, configured memory, and other components in the 
computer systems from different manufacturers making use of any particular chip model, which is 
reflected in the residual, accounted for no more than 2 to 4 percent of observed variation in SPEC 
scores. This analysis utilizes individual tested computer system data; i.e., on average there are 4 to 5 
different computer systems using a specific processor model. 

 We can alternatively calculate a median or mean score across all computer systems utilizing 
each processor chip model, to more closely resemble the BOS procedure for deriving a single SPEC score 
for each chip model. Using that as the basis for our SPEC2006 performance regression model, we get an 
even higher R2, of about .99.93 (Table 11.) It is clear that computer architecture dummies and five 
processor characteristics, together, essentially perfectly predict SPEC benchmark scores. 

                                                           
area, and numbers of processing transistors can be assumed to be derived from a single die design. Analysis of this 
data shows anywhere from 1 to 3 unique microarchitecture/die size/processing transistor combinations were 
being used to produce many dozens of processor models. 
90 Actually, I am using the size of the “last level cache,” since microprocessors can have a hierarchy of successively 
larger (and slower) caches onboard. 
91 Hyperthreading is Intel’s name for multithreading capability, additional circuitry added to the processor which 
creates two logical (or “virtual”) processors that can access every physical core. One logical processor can begin 
processing the next instruction while the other logical processor is actually executing an instruction in a core, thus 
allowing a form of chip-level parallelism which can speed up performance when a computer program spawns 
multiple threads. 
92 Indeed, after a short number of months at the beginning of the SPEC 2006 suite in 2006, almost all the single 
process SPEC benchmark scores have autoparallelization turned on.  
93 We drop all chips shown as underclocked or overclocked by computer system maker (having reported clock rate 
more than 10Mz slower or faster than the Intel-specified base clock rate), and ignore autoparallelization in 



37 
 

Table 10 Log of SPEC 2006 benchmark as function of processor characteristics 
Six Characteristics Model 
Dependent variable is log of 
                          SPECf06         SPECi06        SPECfr06        SPECir06    
------------------------------------------------------------------------------------ 
lproc                       0.171***        0.102**         0.366***        0.417*** 
                         (0.0313)        (0.0359)        (0.0710)        (0.0736)    
lcache                      0.103**        0.0896**         0.151**         0.126*** 
                         (0.0327)        (0.0250)        (0.0491)        (0.0332)    
lcores                      0.117**        0.0190           0.566***        0.709*** 
                         (0.0358)        (0.0321)        (0.0434)        (0.0466)    
lvcore                     0.0407***       0.0190*         0.0840***        0.132*** 
                        (0.00886)       (0.00799)        (0.0113)        (0.0105)    
lmaxmhz                     0.567***        0.750***        0.141           0.367*** 
                         (0.0593)        (0.0457)         (0.123)        (0.0685)    
autop                      0.0656*        0.00220         0.00394         -0.0175    
                         (0.0266)        (0.0538)        (0.0239)        (0.0374)   
Microarchitecture dummies Y  Y  Y  Y  
------------------------------------------------------------------------------------ 
Observations                 1160            1190            2207            2417    
R-squared                   0.965           0.960           0.981           0.973    
N_clust                        31              31              29              30    
------------------------------------------------------------------------------------ 
Cluster robust standard errors in parentheses, clustered on Intel microarchitecture. 
* p<0.05, ** p<0.01, *** p<0.001 
lproc: log base processor clock rate 
lmaxmhz: log maximum single core clock rate, not equal to base clock rate if turbo feature 
available 
lcores: log of number of physical cores in processor 
lvcore: log of additional “virtual” logical cores if multithreading available 
lcache: log of amount of last level cache memory on processor chip 
autop: autoparallelization enabled in compiler when SPEC software was compiled, dummy variable 

 

Table 11 Log of median SPEC 2006 benchmark as function of processor characteristics 
Five Characteristics Model 
Dependent variable is log of median computer system score for particular processor model 
                          SPECf06         SPECi06        SPECfr06        SPECir06    
------------------------------------------------------------------------------------ 
lproc                       0.265***        0.150***        0.497***        0.439*** 
                         (0.0351)        (0.0376)        (0.0840)        (0.0672)    
lcache                     0.0788**        0.0582**         0.164**         0.137*** 
                         (0.0254)        (0.0191)        (0.0591)        (0.0295)    
lcores                      0.143***       0.0446           0.559***        0.678*** 
                         (0.0258)        (0.0263)        (0.0527)        (0.0297)    
lvcore                     0.0603***       0.0315***       0.0963***        0.149*** 
                         (0.0152)       (0.00451)        (0.0152)       (0.00787)    
lmaxmhz                     0.453***        0.692***       0.0151           0.334*** 
                         (0.0652)        (0.0551)         (0.114)        (0.0644) 
Microarchitecture dummies Y  Y  Y  Y  
 
------------------------------------------------------------------------------------    
Observations                  331             340             449             454    
R-squared                   0.988           0.985           0.990           0.994    
N_clust                        30              30              28              28    
------------------------------------------------------------------------------------ 
Cluster robust standard errors in parentheses, clustered on Intel microarchitecture. 
* p<0.05, ** p<0.01, *** p<0.001 
 

                                                           
calculating medians or means in Table 11. Table 11 reports results using logs of medians; using logs of means 
would give almost identical results. 
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Two points are significant. First, the coefficients of (weights assigned to) different processor 
characteristics in determining SPEC scores are very different for different SPEC benchmarks. The clear 
implication is that different processor characteristics can have very different effects on performance for 
different types of workloads. A flexible hedonic price model, reflecting a changing distribution of chip 
consumers across distinct types of workloads, would best let the empirical data decide the weights users 
place on particular characteristics, rather than aggregating the characteristics into a single SPEC score 
with a time-invariant SPEC aggregator function. 

Second, these characteristics also will affect cost. Every distinct Intel microarchitecture is 
manufactured using a single fabrication technology node, so the microarchitecture dummies also 
capture variation in microprocessor manufacturing cost that is unique to both chip microarchitectures 
and manufacturing technology. As previously described, different quality grades (measured by processor 
clock rates, amounts of on-chip cache memory, and chip features) produced by testing and binning are 
also associated with cost differences. Coefficients on these characteristics in a hedonic reduced form 
price equation should be regarded as reflecting both demand and cost. 

Finally, in addition to the chip characteristics determining SPEC performance, there are a small 
set of additional chip characteristics that we would certainly want to include in a hedonic price equation 
for microprocessors. Power dissipated by a chip determines whether expensive cooling solutions are 
required, shifting demand for that processor; power requirements are also important (for battery life) in 
mobile applications. Further, power dissipation varies with random manufacturing process variations, so 
the power rating of a chip is also going to be related to chip cost. Whether or not a graphics processor is 
integrated into the microprocessor will also affect both demand and cost for that chip. Support for 
hardware virtualization will have no practical effect on processor performance on SPEC benchmarks, but 
is a valuable feature for business customers wishing to increase server efficiency by running numerous 
“virtual machines” on their servers simultaneously. 

In conclusion, we should remember that SPEC scores are maintained by organizations that sell 
servers, processors used in servers, and the largest server customers, so a SPEC-selected sample will be 
skewed toward the models of chips that perform best as server processors. The SPEC performance 
regressions in Tables 10 and 11 would then seem to tell us that desktop and server performance should 
be modelled separately, with different weights placed on different chip characteristics.  

This suggests a natural segmentation of microprocessors for purposes of price measurement.  a 
desktop segment oriented toward single software program application performance, a mobile (laptop 
and tablet) segment tilted toward both performance and low power, and a server segment with a 
greater emphasis on performance on embarrassingly parallel workloads (servers running a mix of 
uncoordinated applications with performance more like the SPEC “rate” benchmarks). In terms of 
finding public data useful in estimating a hedonic price equation, retail/distribution prices will be most 
readily observable and useful in estimating desktop microprocessor prices. Retail data will be much 
more limited and less useful for mobile processors, and even more limited and therefore least useful, for 
hedonic measurement of server processor prices. 
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6. Conclusion 

 There is considerable evidence that semiconductor manufacturing innovation has historically 
been responsible for perhaps a 20-30% annual decline in the cost of manufacturing transistors on a chip. 
One would expect that this predictable cost decline would be transformed into a similar price decline in 
a competitive industry, at least in the long run, and therefore, that a decline of this magnitude would 
serve as a floor on the long-run trajectory of semiconductor prices for high volume semiconductor 
produts. Innovations in the architecture and designs being manufactured on the chip, new kinds of chip 
designs, and superior performance characteristics of existing designs fabricated using more advanced 
fabrication technology, would be additional factors explaining even higher long run rates of decline in 
quality-adjusted semiconductor prices. 
 
 Historically, most high-volume semiconductor applications ultimately migrated to more 
advanced manufacturing technology nodes, pulled there by the simple economics of continuing declines 
in cost using more advanced fabrication technology. This pressure now seems to have lessened, in part 
the result of rapidly increasing fixed costs sunk into the design of applications using the most advanced 
manufacturing technology, and, in part due to an apparent slackening in the rate of cost decline at the 
technological frontier of semiconductor manufacturing. 
 
  The available empirical evidence, on balance, suggests that Moore’s Law-related historical 
declines in chip manufacturing cost have clearly been attenuated over the last decade. For chips where 
market price data are collected, decline rates in chip prices over time seem to have greatly diminished.  
The evidence for exceptionality in Intel microprocessor price declines is shaky, indicative primarily of 
poor quality public data, speculations about Intel pricing behavior, and most likely, omitted variables in 
hedonic price models.  

A substantial economic literature has connected faster innovation in semiconductor 
manufacturing to rapidly improving price-performance for semiconductors, to larger price declines for 
information technology, to increased uptake of IT across the economy, and higher rates of labor 
productivity growth. If correct, this implies that a slowdown in semiconductor manufacturing innovation, 
and attenuation of price declines in both chips and IT, may play an important role in current stagnation 
in labor productivity growth. 

  Finally, it is now almost an article of faith in high tech industry that an expanding cloud of 
computing and machine intelligence is in the process of transforming our economy and society. Much of 
this faith is built on projection into the future based on past experience with increasingly powerful and 
pervasive computing capability that both cost less and used less energy, year after year.  The winding 
down of Moore’s Law means that the technological scaling that drove these historical declines, and 
implicitly underlie the most optimistic assumptions about the spread of ubiquitous computing in the 
future, may no longer hold. Both cost and energy use now seem more likely to increase in lockstep with 
the scale of cloud computing in the future; they won’t decline, or even stay constant as computing 
capacity increases, as was true in the past. Investments in entirely new technologies will be needed, as 
will a renaissance of creativity and innovation in software, the neglected sibling living in the shadow of 
Moore’s Law, and dramatically cheapening hardware, for the last 50 years.  
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Appendix Table A1. 

 

   SPEC CPU  |      Coef.   Robust         z    P>|z|     [95% Conf. Interval]  N       R2 #                               
   Benchmark |     CAGR     Std. Err.           CPUs 
-------------+----------------------------------------------------------------------------------- 
1995m5-2000m3 
int95        |   .5826577   .0175146    33.27   0.000     .5483296    .6169857  152 .92 41 
fp95         |   .6397016   .0231907    27.58   0.000     .5942486    .6851546 142 .90 41 
int95_rate   |   .6241582   .0273672    22.81   0.000     .5705194     .677797  54 .87 20 
fp95_rate    |   .7227752      .0331    21.84   0.000     .6579003    .7876501  47 .83 18 

2000m11-2004m11 
int2000      |   .3304092   .0173773    19.01   0.000     .2963503    .3644681 215 .80 76 
fp2000       |   .3429411    .023522    14.58   0.000     .2968389    .3890433 203 .81 73 
int2000_rate |   .4697731   .0512966     9.16   0.000     .3692337    .5703125 160 .77 59 
fp2000_rate  |   .3989549   .0351676    11.34   0.000     .3300276    .4678822 162 .84 59 
-------------+----------------------------------------------------------------------------------- 
2005m2-2007m1 
int2000      |   .3222474    .016442    19.60   0.000     .2900217    .3544732 
fp2000       |   .3365855    .022279    15.11   0.000     .2929195    .3802515 
int2000_rate |   .4650892   .0475414     9.78   0.000     .3719098    .5582686 
fp2000_rate  |   .3986346    .032545    12.25   0.000     .3348476    .4624217 

2005m6-2012m11 
int2006      |   .1709304   .0069587    24.56   0.000     .1572916    .1845691 689  .84 254 
fp2006       |   .2467286   .0077563    31.81   0.000     .2315266    .2619306 690  .87 254 
int2006_rate |   .2472256    .013015    19.00   0.000     .2217167    .272734 728  .62 278 
fp2006_rate  |   .2537211   .0101781    24.93   0.000     .2337725    .2736698    711  .76 261 
-------------+----------------------------------------------------------------------------------- 
2013m1-2016m5 
int2006      |   .1687175   .0064265    26.25   0.000     .1561218    .1813133 
fp2006       |   .2414989   .0070952    34.04   0.000     .2275926    .2554053 
int2006_rate |   .2417978   .0119286    20.27   0.000     .2184181    .2651774 
fp2006_rate  |   .2480768   .0093352    26.57   0.000     .2297801    .2663735 
 
Notes: 
intxx and fpxx are SPEC CPU integer and floating point base scores (no special compiler optimizations used) when single instance of benchmark 
run on CPU. 
 
intxx_rate and fpxx_rate are SPEC CPU scores with multiple instances of benchmark programs run simultaneously; number of instances is 
entirely at discretion of entity running benchmark—may be as high as maximum number of threads, but may also be maximum number of 
cores, or any number less than that (on processors with symmetric multithreading capability—Intel version is branded as “hyperthreading”—
additional program execution hardware in a CPU core allows as many as two threads to simultaneously share a single core’s remaining 
hardware). 
 
Model estimated was  
ln(SPEC CPU benchmark) = a + b * monthly date of initial CPU availability in any manufacturer’s computer hardware + c * autoparallelization 
indicator + d * time shift indicator x monthly date of initial CPU availability in tested hardware.  
 
where 
autoparallelization = 1 if autoparallelization turned on at compile time for 2006 benchmark, 0 otherwise 
time shift indicator = 1 if year > 2004 for SPEC 2000 benchmarks, 0 otherwise 
                     = 1 if year > 2012 for SPEC 2006 benchmarks, 0 otherwise 
Annualized growth rate estimated as exp(b + d* timeshift indicator)^12 -1 
 
Time shift indicators were statistically significant, as were autoparallelization indicators. 
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