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1 Introduction

The risk of sovereign default and exchange rate fluctuations are inextricably linked. The
depreciation of a country’s currency is often a reflection of poor economic conditions. De-
fault events tend to be associated with currency devaluations. Such devaluations may either
strategically support the competitiveness of the domestic economy, or penalize a country’s
growth due to increased borrowing costs or reduced access to international capital markets.

Despite the importance of studying the Twin Ds (default and devaluation), the subject has
received relatively limited attention in the literature. In our view, one reason for this is
that it is exceedingly difficult to measure the interaction between the two. Indeed, both
types of events are rare, so few data are available for researchers to use. Disagreement
over measurements are a clear manifestation of the problem. For example, Reinhart (2002)
estimates the probability of devaluation conditional on default at 84%, while Na, Schmitt-
Grohé, Uribe, and Yue (2017) find it to be 48%. Another hard-to-measure dimension of
the Twin Ds is whether default has an immediate or long-term impact on the exchange
rate. Krugman (1979) argues that default leads to a change in the expected depreciation
rate (change in exchange rate), while Na, Schmitt-Grohé, Uribe, and Yue (2017) suggest a
one-off drop in the exchange rate at default.

In this study, we are the first to take advantage of a recent development in financial markets
to offer an asset-pricing perspective on the measurement of the risk premia associated with
the Twin Ds. Specifically, sovereign credit default swap (CDS) contracts are available in
different currency denominations starting from August 2010. For example, contracts that
protect against a credit event in Germany could be denominated in euros (EUR) or U.S.
dollars (USD) (we use the terms default and credit event interchangeably). The difference
between the two respective CDS premiums of the same maturity, also known as quanto
CDS spread, reflects the market’s view about the interaction between the Twin Ds. Quanto
spreads of different maturities are informative about the interaction over different horizons.

We focus on quanto spreads in the 17 European countries that share the euro as the common
exchange rate. We find the associated CDS markets particularly interesting for two reasons.
First, despite the common currency and monetary policy, the term structures of quanto
spreads are different, suggesting intriguing implications regarding the different fiscal policies.
Second, the contractual arrangements of the European contracts make observed quanto
spreads transparent in terms of the implications for the Twin Ds. Specifically, in contrast
to contracts for emerging markets (EM), payouts on Western European sovereign CDS of
all denominations are triggered irrespective of whether a default is associated with domestic
or foreign debt.

We start by explaining the institutional arrangements behind sovereign CDS in different
currencies. We then explain how quanto spreads are related to the interaction between the
Twin Ds. Next, we develop a model that allows us to characterize the relation between
default and devaluation probabilities.
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Describing the joint behavior of 17 different term structures and an exchange rate is a
daunting task. Therefore, we limit ourselves to a no-arbitrage affine term structure model
that allows us to evaluate whether it is possible to reconcile all of this evidence within
a tractable specification. Along the way, we encounter a typical problem in the analysis
of credit-sensitive financial instruments: as the realization of credit events is rare, we can
identify only the risk-adjusted distribution of these events based on asset prices. We exploit
(i) the interaction between credit risk and currency risk, and (ii) the currency commonality
to identify the true distribution of credit events. As a bonus, our approach allows us to
identify the loss given default (LGD), which we assume to be constant and the same for all
countries. While this assumption is an oversimplification, it nevertheless offers progress on
a thorny empirical problem.

The model we propose features the following critical components: a model of the U.S.
reference interest rate curve, a model of credit risk, and a model of the spot/forward FX
curve. We use overnight indexed swap (OIS) rates as a reference curve and construct a
two-factor model to capture its dynamics.

The starting point for our credit risk model is a credit event whose arrival is controlled by
a doubly-stochastic Cox process, a popular modeling device in the literature. The default
intensity in each country is controlled by two factors – global and regional – which are
weighted differently for each country. We identify the global factor by setting the weights
on Germany’s regional factors to zero. Given that our data are from countries in the
Eurozone during the sovereign debt crisis, we derive an extension of our model to allow for
the possibility of credit contagion: the occurrence of a credit event in one country affecting
the probability of a credit event in another country.

Last but not least, we model the behavior of the spot USD/EUR FX rate and the associated
forward rates. We follow the literature on realistic modeling of the time series on FX rates.
We allow for time-varying expected changes in the depreciation rate, heteroscedastic regular
shocks to the rates, and extreme events.

We connect jumps in the FX rate to sovereign credit risk by requiring them to take place
simultaneously with credit events. This modeling feature is our identifying assumption that
helps us to establish the true distribution of credit events. To enhance the statistical relia-
bility of our estimates, we follow Bai, Collin-Dufresne, Goldstein, and Helwege (2015) and
complement our identification strategy by associating realized credit events with extreme
movements in quanto spreads.

We use joint data on the term structure of the quanto spreads of six countries, which
represent the most liquid CDS contracts across the European core and periphery, some
data on Greece prior to its credit event, the spot and forward FX rates, and a cross-section
of credit events for the six countries. We estimate the model via the Bayesian Markov
Chain Monte Carlo (MCMC) method. The model offers an accurate fit to the data. It also
fits the quanto spreads of the remaining 10 Eurozone countries that were not used in the
estimation.
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We find that a more parsimonious model without contagion fits the data just as well and
does not differ significantly from the larger model in terms of its likelihood. Therefore, we
perform the rest of the analysis using the simpler model, which features only four factors:
three credit factors (one global and two regional) and one FX variance factor.

We find a substantial cross-sectional variation in how the credit risks of countries load on
the credit factors. For instance, exposure to the global factor varies from a high of 4 times
the German level (for Spain) to a low of 1/14 times (for Finland). Finland is unambiguously
the least risky country. There are multiple candidates, primarily from Southern Europe,
for the most risky. Some countries, both core and peripheral, have significant exposure to
the global factor only.

As we conjectured earlier, a large part of this cross-sectional variation (44% to be precise)
is driven by differences in the fiscal policies as measured by a country’s debt. A fixed effects
regression of hazard rates on the debt-to-GDP ratio implies that a one percentage point
increase in the ratio of a given country is, on average, associated with an increase in its
CDS premium of approximately 8 basis points (bps).

Our setting allows for the estimation of the true distribution of credit events. As a result, we
can characterize the time-varying credit risk premium, which is typically measured by the
ratio of the risk-adjusted to the true default intensity. We find that the credit risk premium
is about 2, on average. This estimate is consistent with earlier studies of corporate credit
risk that were estimating a constant risk premium. We also find evidence for a significant
amount of variation over time, as the credit risk premium ranges between 1 and 6 during
our sample period.

Our estimated model can also inform the measurement issues highlighted earlier. For in-
stance, we find the true 1-week probability of devaluation conditional on default to be
4%, which is consistent with the view by Na, Schmitt-Grohé, Uribe, and Yue (2017) of a
large drop in the exchange rate upon default. In addition, we find that that the expected
depreciation rate is unrelated to credit factors, contradicting the view of Krugman (1979).

The risk-adjusted probability of devaluation conditional on default is 75%, suggesting a
hefty risk premium for this event. Indeed, the model-implied risk premiums for exposure
to the Twin Ds exceed the regular currency risk premiums by as much as 0.3% per week.
Thus, the default-contingent currency risk premium is significantly larger than the default
risk premium, which is suggestive of the large economic importance of that risk. All of this
evidence suggests that default-contingent devaluation, although not highly probable, occurs
during the worst states of the economy when the marginal utility of investors is particularly
high.

Related literature

This study is related to two strands of the literature. First, it is most closely related to the
literature on the relation between sovereign credit and currency risks. Della-Corte, Sarno,
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Schmeling, and Wagner (2016) empirically show that the common component in sovereign
credit risk correlates with currency depreciations and predicts currency risk premia. Carr
and Wu (2007) propose a joint valuation framework for sovereign CDS and currency options
with an empirical application to Mexico and Brazil. Du and Schreger (2016) study the
determinants of local currency risk as a distinct component of foreign default risk in EM.
Buraschi, Sener, and Menguetuerk (2014) suggest that geographical funding frictions may
be responsible for persistent mispricing of EM bonds denominated in EUR and USD. While
related, our work is conceptually different because of the aforementioned differences in the
treatment of credit events associated with domestic and foreign debt. We exploit the entire
term structure of CDS quanto spreads to pin down the time variation in the risk premia
associated with expectations of exchange rate depreciation conditional on default.

The most recent development in the joint FX-sovereign risk literature is research on CDS
quanto spreads. Mano (2013) proposes a descriptive segmented market model that is con-
sistent with nominal and real exchange rate depreciation upon an exogenous default trig-
ger. DeSantis (2015) uses quanto spreads to construct measures of redenomination risk.
No-arbitrage term structure models for quanto spreads are proposed by Ehlers and Schoen-
bucher (2004) for Japanese corporate CDS, and by Brigo, Pede, and Petrelli (2016) for
Italian CDS.

In contemporaneous and independent work, Lando and Nielsen (2017); Monfort, Pegoraro,
Renne, and Roussellet (2017) develop models of sovereign quanto CDS spreads in the Eu-
rozone. The former study is focused on the contribution of each of the normal and jump
risks to the shape of the quanto term structure. The latter study uses quanto spreads in
a modeling application of the Gamma-zero distribution, often denoted as ARG0. Both
studies estimate their models of quanto spreads on a country-by-country basis, whereas we
jointly model the exchange rate risk and quanto spreads for the entire term structure of six
countries. This distinction is important, because the dynamics of exchange rates in CDS
spreads ought to respect the common behavior of the EUR-USD exchange rate movements
in conjunction with the country-specific default risk. In addition, using an identifying as-
sumption that exploits the common currency, we estimate both the true and risk-adjusted
default intensities. As a result, we can discuss the implications for time-varying risk premia
associated with the default risk and the expected depreciation risk conditional on default.
Joint estimation is also necessary for identifying the propagation of shocks across countries,
that is, contagion, a subject of public and academic debate.

Second, our study builds on the vast literature on no-arbitrage affine term structure mod-
eling and credit-sensitive instruments, prominently summarized in Duffie and Singleton
(2003). Duffie, Pedersen, and Singleton (2003), Hoerdahl and Tristani (2012), and Monfort
and Renne (2013) study sovereign credit spreads. With respect to the valuation of sovereign
CDS, the early affine term structure models focus on country-by-country estimations such
as Turkey, Brazil, Mexico (Pan and Singleton, 2008), and Argentina (Zhang, 2008), or on
a panel of emerging (Longstaff, Pan, Pedersen, and Singleton, 2011), or developed and
emerging countries (Doshi, Jacobs, and Zurita, 2017). Ang and Longstaff (2013) extract
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a common systemic factor across Europe and the U.S. using sovereign CDS written on
European countries and U.S. states, while Ait-Sahalia, Laeven, and Pelizzon (2014) study
pairwise contagion among pairs of seven European countries during the sovereign debt crisis.

Most studies in this area do not estimate the LGD separately from the default intensity
because of a joint identification problem. Some papers are able to identify the LGD using
CDS data because of the recovery of face value assumption (Pan and Singleton, 2008;
Elkamhi, Jacobs, and Pan, 2014). Doshi, Elkamhi, and Ornthanalai (2017) exploit senior
and subordinate CDS to identify the LGD. Lastly, the most recent studies exploit the
insensitivity of equity valuation to the LGD (Kuehn, Schreindorfer, and Schulz, 2017; Li,
2017). Our approach is more closely related to the first and the last studies because we
assume recovery of face value and that a jump in exchange rate is unrelated to the LGD.

Finally, we use a model of contagion, which is an active topic in the recent credit risk
literature. Bai, Collin-Dufresne, Goldstein, and Helwege (2015) emphasize that contagion
should be an important component of credit risk pricing models in the context of a large
number of corporate names. Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015) offer
evidence of contagion risk premiums in sovereign CDS spreads in the context of ambiguity-
averse economic agents. Ait-Sahalia, Laeven, and Pelizzon (2014) find evidence of contagion
under risk-adjusted probability in sovereign CDS spreads. Azizpour, Giesecke, and Schwen-
kler (2018) find evidence of contagion in a descriptive model of realized corporate defaults.
Monfort, Pegoraro, Renne, and Roussellet (2017) reach a similar conclusion in the context
of bank CDS. We study contagion under both the risk-adjusted and true probabilities.

A table in Appendix F summarizes the specific modeling elements across the key studies with
affine intensity-based frameworks for sovereign credit spreads. The table visually highlights
the primary differences between the current study and others. Methodologically, our work
encompasses most of the existing approaches.

2 Sovereign CDS contracts and currencies

2.1 Cash flows and settlement

Sovereign CDS are contracts that pay off in case of a sovereign credit event. This section
reviews what such an event represents. Given the focus on USD/EUR quantos of Eurozone
countries, we limit the discussion to the legal details associated with European contracts.
See Appendix A.

We use St to denote the nominal USD/EUR FX rate (amount of USD per EUR) at time t.
The first row of Figure 1 depicts the cash flows associated with a EUR-denominated CDS
contract (long protection) with a premium of eCe0 established at time 0 (the time of the
contract’s maturity T is omitted for brevity). In this example, the notional is $1 = e(1/S0),
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implying an annualized payment of eCe0 /S0. For the purpose of this discussion, we ignore
the quarterly or semi-annual frequency of the premium payment settlement, and focus on the
annual amounts. The second row shows a USD-denominated contract (short protection)
with a premium of $C$

0 . Given the same notional, the annual payment is $C$
0 , which is

equivalent to eC$
0/St at the spot exchange rates on the settlement dates.

We highlight three implications of the rules that are particularly relevant for this paper.
First, a credit event that affects all CDS contracts regardless of the currency of denomination
could be triggered by a default pertaining to a subset of bonds, such as a sovereign defaulting
on domestic debt but not on bonds issued in other jurisdictions. Therefore, a CDS quanto
spread would not reflect the risk of selective default. This is in contrast to EM bonds, studied
by Du and Schreger (2016), where differences between the credit spreads denominated in
USD and local currency could reflect such a risk, and to EM CDS contracts, studied by
Mano (2013), for which a credit event is not triggered by default on domestic currency or
domestic law bonds.

Second, an obligation is deemed deliverable into the contract settlement regardless of its
currency of denomination or that of the CDS contract. This means that one and the same
bond could be delivered into the settlements of CDS contracts of different denominations.
Thus, recovery is free of any exchange rate consideration, a point also made by Ehlers and
Schoenbucher (2004). Compare this with Mano (2013), who, in the context of EM bonds
explicitly considers different currency denominations of the recovery amount.

As an extreme example, imagine a European sovereign that has 1% of all its debt issued
in EUR, and the rest issued in USD. Both EUR- and USD-denominated contracts would
be triggered in the case of selective default on the small amount of outstanding EUR-
denominated debt. Because one can deliver a bond of any denomination into a contract
of any denomination, the cash value of payments in case of a credit event could be viewed
as an identical fraction, denoted by L (LGD) in Figure 1, of a contract’s notional amount.
We fix L to be a constant, in line with the literature on CDS pricing (Pan and Singleton,
2008). This removes any uncertainty about payments in the respective currencies.

The only uncertainty that arises with a credit event is due to expressing these payments
in the same currency. For example, the EUR-denominated contract pays a certain amount
of L/S0, while the EUR value of the payment of the USD-denominated contract is L/Sτ ,
with τ denoting the time of a credit event. This comparison illustrates the impact of
devaluation. If the EUR devalues during the credit event, Sτ is lower than S0, and, as a
result, the value of the payment on the EUR-denominated contract is lower than that on
the USD-denominated one.

Third, outright default is only one of the scenarios that may trigger a credit event. A
common concern among observers of the Eurozone credit market is that a CDS payout
would be triggered by a restructuring of a Eurozone member country’s liabilities through a
redenomination of the principal or interest payments into the country’s pre-EUR currency.
There are two CDS definitions, those of 2003 and 2014, which treat this event differently.
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For contracts based on the 2003 definitions, redenomination does not trigger a credit event
as long as it involves the currencies of the G7 countries and AAA-rated OECD economies.
The newer definitions limit these currencies to the lawful currencies of Canada, Japan,
Switzerland, the United Kingdom, the United States of America, and the Eurozone.

After the 2014 definitions were introduced, CDS could be concurrently traded satisfying
either definition. We use data on the contracts guided by the 2003 definitions throughout
our full sample to ensure internal consistency. Kremens (2018) explores the differences in
premiums for the two types of contracts. Regardless of the definition used, some countries
might trigger a credit event by redenomination. Our framework automatically accounts for
that because our credit factors are designed to capture the probability of a credit event
without discerning its type.

2.2 Relation to sovereign bonds

Historically, Eurozone sovereign CDS were denominated in USD only. One point worth
emphasizing is that EUR-denominated CDS contracts that were introduced in 2010 are not
redundant securities. One might think of cash flows as similar to those of a portfolio that
consists of a USD-denominated bond and a currency swap (e.g., Du and Schreger, 2016).
However, such a strategy does not hedge the behavior of the FX rate conditional on default
– the risk that is the focus of this paper.

To see this, consider the third and fourth rows of Figure 1, which show cash flows to a
sovereign par bond and a currency swap of matching maturity. The bond is USD denomi-
nated, but the issuer prefers a EUR exposure, hence the additional swap position. The cash
flows are presented per $1 of face/notional values.

At time 0, the issuer sells the bond for $1 and swaps this amount for the equivalent value
in EUR, e1/S0. Prior to maturity, the issuer has to pay interest of $C0 on a bond, which
it receives from the swap as interest on the USD value of the notional. In exchange, the
issuer has to pay interest of eF0/S0 on the EUR value of the swap, with F0 denoting the
currency swap rate that is determined at time 0.

If there is no credit event, the last transaction takes place at maturity, where the issuer has
to repay $(1+C0) on the bond and the EUR/USD notionals combined with the last interest
payments that are exchanged in the swap transaction. As a result, the combined position
has a pure EUR exposure with pre-determined cash flows: e1/S0 at inception, −eF0/S0

thereafter (including the day of maturity), and −e1/S0 at maturity. This is conceptually
similar to cash flows on the EUR-denominated sovereign CDS if there is no credit event
(the difference is in the latter being an unfunded instrument).

If there is a credit event, then the bond-swap combination faces uncertain cash flows between
the time of the event τ and maturity T. The bond pays $(1−L) at τ and ceases to exist. In
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the meantime, the swap does not terminate (assuming no counterparty risk) and continues
the exchange of cash flows. As a result, the values of the combined cash flows in EUR
are (L + C0 − 1)/Sτ − F0/S0 at τ , and C0/St − F0/S0 for τ < t ≤ T. In contrast, the
EUR-denominated sovereign CDS has a single cash flow of eL/S0.

2.3 Interpretation of the quanto CDS spread

Figure 1 allows us to take a first step toward thinking about quanto CDS spreads. Adding
up the two positions described in the first two rows (long EUR-denominated and short USD-
denominated protection) gives an exposure to devaluation conditional on default, because
the only uncertain cash flow is the EUR value of L in the USD contract. Specifically,
by buying the EUR-denominated protection and selling the USD-denominated one, we
construct a position that benefits if there is no EUR devaluation conditional on default.
The payout eL(S−1

0 − S−1
τ ) is negative if Sτ < S0.

Because CDS contracts have a fixed time to maturity, we observe premiums for new con-
tracts in every period. In other words, we only get to see the difference between the
premiums e(C$

0 − Ce0 )/S0. Because the choice of notional is arbitrary, the quanto spread
C$

0 − Ce0 becomes the relevant premium for exposure to the Twin Ds.

To streamline the analytical interpretation of the quanto CDS spread, consider a hypo-
thetical contract that trades all points upfront, meaning that a protection buyer pays the
entire premium at time t. Further, assume that the risk-free rate is constant. Then, the
EUR-denominated CDS premium simplifies to

Ce0 = L · E0[M0,τI (τ ≤ T )Sτ∧T /S0] ≡ L · E∗0 [e−r(τ∧T )I (τ ≤ T )Sτ∧T /S0],

where M denotes the USD-denominated pricing kernel, ∗ refers to the risk-adjusted prob-
ability, and I(·) is an indicator variable. The USD-denominated premium is similar. As a
result, the relative quanto spread is

C$
0 − Ce0
C$

0

=
E∗0 [e−r(τ∧T )I (τ ≤ T ) (1− Sτ∧T /S0)]

E∗0 [e−r(τ∧T )I (τ ≤ T )]

= E∗0

[
1− Sτ∧T

S0

]
− cov∗0

[
e−r(τ∧T )I (τ ≤ T )

E∗0e
−r(τ∧T )I (τ ≤ T )

,
Sτ∧T
S0

]
, (1)

where ∧ denotes the smallest of the two variables. The first term reflects the risk-adjusted
expected currency depreciation, conditional on a credit event (a positive number corresponds
to EUR devaluation). The covariance term reflects the interaction of default and FX risks.
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2.4 Data

CDS

Sovereign CDS contracts became widely available in multiple currencies in 2010. This de-
termines the beginning of our sample, which runs from August 20, 2010 to December 30,
2016. We source daily CDS premiums denominated in USD and EUR from Markit for all
19 Eurozone countries. We require a minimum of 365 days of non-missing information on
USD/EUR quanto spreads. This requirement excludes Malta and Luxembourg. Thus, our
sample features 17 countries: Austria, Belgium, Cyprus, Estonia, Finland, France, Ger-
many, Greece, Ireland, Italy, Latvia, Lithuania, Netherlands, Portugal, Slovakia, Slovenia,
and Spain.

We work with weekly data to minimize noise due to the potential staleness of some of the
prices and to maximize the continuity in subsequently observed prices. We have continuous
information on 5-year quanto spreads throughout the sample period for all countries except
Greece, as the trading of its sovereign CDS contract halted following its official default
in 2012. In addition, we retain the maturities of 1, 3, 7, 10, and 15 years (we omit the
available 30-year contracts because they are similar to the 15-year ones; in particular the
term structures between 15 and 30 are flat). Although the 5-year contract is the most liquid,
liquidity across the term structure is less of a concern for sovereign CDS spreads than for
corporate CDS spreads, as trading is more evenly spread across the maturity spectrum (Pan
and Singleton, 2008).

Although these sovereign CDS contracts trade in multiple currencies, there might be differ-
ences in liquidity given that an insurance payment in EUR would probably be less valuable
if Germany defaulted. Consistent with this view, USD-denominated contracts tend to be
more liquid, as documented in Table 1, which reports the average number of dealers quoting
such contracts in either EUR or USD over time; that is, CDS depth (Qiu and Yu, 2012).
The average difference between the number of USD and EUR dealers ranges between 0.60
and 2.66. EUR CDS contracts are quoted by 2.73 to 6.30 dealers, on average, which is
economically meaningful given that the CDS market is largely concentrated among a hand-
ful of dealers (Giglio, 2014; Siriwardane, 2014). In relative terms, the average number of
quoting dealers for the USD contracts exceeds that for the EUR by 1. That suggests that
the difference in liquidity of the two types of contracts is not large.

Notional amounts outstanding, also reported in Table 1, offer a sense of the cross-sectional
variation in the size of the market. Regardless of the currency of denomination, the notionals
are converted into USD and reported on the gross and net basis. To facilitate comparison,
we express these numbers as a percentage of the respective quantities for Italy, which has the
largest gross and net notionals (Augustin, Sokolovski, Subrahmanyam, and Tomio, 2016).
The amounts for France, Germany, and Spain stand out as a fraction of Italy’s amounts,
followed by Austria, Belgium, and Portugal.
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To provide a first feel for the data, Figure 2A displays the time-series of one of the most liquid
and arguably the least credit-risky CDS contracts, namely the 5-year USD-denominated
contract for Germany. We highlight important events to help frame the magnitudes of CDS
premiums. The premium for such a safe country is about 20 bps during the calmest periods,
varies over time, and exceeds 100 bps during the sovereign crisis.

To further gauge the size of the market for single-name sovereign CDS, we compare the
gross notional amounts outstanding to the aggregate market size. Augustin (2014) reports
that in 2012, single-name sovereign CDS accounted for approximately 11% of the overall
market, which was then valued at $27 trillion in gross notional amounts outstanding. The
corporate CDS market accounted for about 89% of the market, with single- and multi-name
contracts amounting to $16 trillion and $11 trillion, respectively. While the CDS market
has somewhat shrunk in recent years, statistics from the Bank for International Settlements
suggest that sovereign CDS represented $1.715 trillion, about 18% of the entire market, in
2016.

Quanto spreads

Table 2 provides basic summary statistics for the quanto spreads. There is a significant
amount of both cross-sectional and time-series variation in the spreads. In the cross-section,
the average quanto spread ranges from 6 bps for Estonia to 90 bps for Greece, at the 5-year
maturity. The average quanto slope, defined as the difference between the 10-year and
1-year quanto spreads, ranges from -29 bps for Greece to 29 bps for France. Overall, both
the level and slope of CDS quanto spreads vary significantly over time in each country.

We limit the estimation of our model to data on six sovereigns because of parameter prolif-
eration. We choose the countries that exhibit the greatest market liquidity and the fewest
missing observations. In addition, we incorporate both peripheral and core countries that
feature the greatest variation in the average term structure of CDS quanto spreads. This
leads us to focus on Germany, Belgium, France, Ireland, Italy, and Spain. Figure 3A plots
the average quanto term spreads of different maturities for these countries. We also use a
limited amount of data on Greece, as described later in this section. We use data on the
remaining countries to conduct an “out-of-sample” evaluation of our model.

Exchange rate

We collect the time series of the USD/EUR FX rate from the Federal Reserve Bank of
St. Louis Economic Database (FRED) and match it with the quanto data, using weekly
exchange rates, sampled every Wednesday. Figures 2B and 3B display the exchange rate
and (log) depreciation rate, respectively. A broad devaluation of the EUR is evident in
Figure 2B.
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Figure 3B suggests that the exchange rate movements were close to being independent
and identically distributed (iid) during our sample period. Motivated by that, Appendix
B shows that the term structure of credit premia is flat if both the default intensity and
depreciation rates are iid but correlated with each other. This result establishes a useful
benchmark for interpreting the evidence summarized in Figure 3A.

CDS premiums and exchange rates are interrelated and move together over time. This is
summarized by the cross-correlogram between the first principal component of changes in
5-year CDS premiums and depreciation rates in Figure 2C. The Figure highlights that this
interaction is primarily contemporaneous, and not readily visible in leads and lags.

Figure 2D stays with Germany to show an example of time-series variation in (5-year) quanto
CDS spreads. As explained in Section 2.3, the spreads reflect the interaction between the
Twin Ds and are informative about the covariance risk and the currency jump at default
risk. A model is needed to understand the interactions over different horizons and to extract
the quanto risk premium.

Interest rates

To develop the model, we also need information on the term structure of U.S. interest rates.
Prior to the global financial crisis (GFC) of 2008/09, it was common practice to use Libor
and swap rates as the closest approximation to risk-free lending rates in the interdealer
market (Feldhutter and Lando, 2008). Since the GFC, practitioners have shifted toward
full collateralization and started using OIS rates as better proxies of risk-free rates (Hull and
White, 2013). This shift has implications for Libor-linked interest rate swaps (IRS) because
discounting is performed using the OIS-implied curves. We source daily information on
OIS and IRS rates for all available maturities from Bloomberg, focusing on OIS rates with
maturities of 3, 6, 9, 12, 36, and 60 months and IRS rates with maturities of 7, 10, 15, and
30 years.

We bootstrap zero coupon rates from all swap rates. We transform all swap rates into
par-bond yields, assuming a piece-wise constant forward curve, and then extract the zero-
coupon rates of the same maturities as the swap rates. Thus, we obtain a zero-coupon yield
estimated from OIS rates up to 5 years, and from IRS rates for maturities above 5 years.
To extend the OIS zero-curve for maturities beyond 5 years, we use the zero-coupon yield
bootstrapped from IRS rates, but adjusted daily by the differential between the IRS- and
OIS-implied zero-coupon curves. A figure in Appendix G displays the resulting rates.

Once we have a model of the joint behavior of interest rates and exchange rates, it has
implications for forward exchange rates. To discipline our model, we use weekly Thomson
Reuters data on forward exchange rates obtained from Datastream. We use the Wednesday
quotes for our analysis to match the Wednesday OIS rates and quanto spreads focusing on
the maturities of 1 week and 1 month. Our analysis does not require the European interest
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rate values, hence we can avoid addressing the important analysis of CIP violations in Du,
Tepper, and Verdelhan (2017). Covered interest parity holds in our model. Therefore,
the inferred foreign interest rate could be viewed as an implicit foreign bank funding rate.
Such an interpretation is valid in the light of research focusing on various market frictions
leading to violations of CIP in terms of true Libor rates (e.g., Borio, McCauley, McGuire,
and Sushko, 2016).

Credit events

Our last piece of evidence pertains to the true occurrence of credit events. True default
information is insufficient for estimating conditional credit event probabilities because re-
alized credit events are rare. This issue is common to the literature on credit-sensitive
instruments. When modeling corporate defaults, it is possible to infer something about
true conditional default probabilities by grouping companies by their credit rating, as done
by Driessen (2005), for instance.

We are considering high quality sovereign names, so we have only the credit event in Greece
in our sample. Formal defaults are often avoided because of bailouts, as was witnessed
multiple times during the sovereign debt crisis (Greece, Ireland, Portugal, Spain, Cyprus).
These bailouts result in large movements in credit spreads, although no formal credit event
occurred. Therefore, we associate credit events with extreme movements in quanto spreads
(see also Bai, Collin-Dufresne, Goldstein, and Helwege, 2015). Specifically, we deem a credit
event to have occurred if a weekly (Wednesday to Wednesday) change in the 5-year quanto
spread is above the 99th percentile of the country-specific distribution of quanto spread
changes.1 A figure in Appendix G displays the observed credit events identified in this way
for the 16 countries in our sample.

Although Greece experienced a formal credit event, it is difficult to use the full available
series for pragmatic reasons (see also Ait-Sahalia, Laeven, and Pelizzon, 2014). As a figure
in Appendix G shows, the Greek CDS premium jumped to 5,062 bps on September 13,
2011, long before the true declaration of the credit event on March 9, 2012. It exceeded the
10,000 bps threshold, which is equivalent to 100% of the insured face value, on February 15,
2012. Furthermore, trading of Greece CDS spreads was halted between March 8, 2012 and
June 10, 2013, so the time series exhibits a long gap in quoted premiums. Assuming the
Markit-reported aggregation of quoted spreads was tradable, Greek CDS trading restarted
on June 10, 2013, at a level of 978 bps. The corresponding quanto spreads displayed in the
same figure exhibit similar swings in magnitudes and gaps in the data. These data problems
create severe credit risk identification issues and make it difficult to study the joint behavior
of credit factors across countries.

1One concern is that such a definition may bias downwards the coincidence of large drops in the EUR
value and credit events. Changing from quanto spreads to USD CDS premiums or introducing an identicial
cut-off (two standard deviations of all CDS premiums changes across time and countries) does not materially
affect estimated probabilities of the coincidence of these two types of events.
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As a result, we designate September 7, 2011, as a credit event instead of the official one.
After that day, the available data are unusable. This period is too short to identify the
Greek default hazard rate throughout the full sample. Therefore, we also use some data
from the period when the trading resumed in June 2013. Out of concern that very large
premiums may not be reflective of true traded prices, we use only those premiums that
are within 150% of the maximum of premiums with a corresponding maturity among the
remaining GIIPS countries. The omitted premiums are so large, that the estimation results
are not sensitive to the choice of the maximum cutoff point.

3 The model

In this section, we present a no-arbitrage model of the joint dynamics of U.S. interest rates,
USD/EUR FX rate, forward FX rates, and CDS quanto spreads for Eurozone countries. In
broad strokes, the key part of the model is the connection between a devaluation of the FX
rate and a sovereign credit event. Mathematically, we model the arrival of a credit event
via a Poisson process. Credit hazard rates feature one common component that is linked
to Germany, and regional components. Furthermore, we allow for default contagion effects.
To connect devaluation to credit risk, we make the identifying assumption that jumps in
the FX rate can take place only if one of the Eurozone sovereigns experiences a credit event.
This assumption is motivated by Figure 2C and links sovereign default hazard rates to the
FX Poisson arrival rate.

3.1 Pricing kernel

Suppose, Mt,t+1 is the USD-denominated nominal pricing kernel. We can value a cash flow,
Xt+1 , using the pricing kernel via Et(Mt,t+1Xt+1), where the expectation is computed under
the true conditional probability pt,t+1. Alternatively, we can value the same cash flow using
the risk-adjusted approach

Et(Mt,t+1Xt+1) = Et(Mt,t+1)Et

(
Mt,t+1

Et(Mt,t+1)
Xt+1

)
= e−rtE∗t (Xt+1),

where the expectation is computed under the risk-adjusted conditional probability p∗t,t+1,
and rt is the risk-free rate at time t. Thus, the pricing kernel connects the two probabilities
via Mt,t+1/EtMt,t+1 = e−rtp∗t,t+1/pt,t+1. In this paper, we use both valuation approaches
interchangeably.

Implicit in this notation is the dependence of all of the objects on the state of the economy
xt. We can generically write

xt+1 = µ∗x,t + Σ∗x,tεx,t+1.

In the sequel we describe various elements of xt and their dynamics.
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3.2 CDS valuation

We start with valuation, as it allows us to introduce the key objects that we model in
subsequent sections. A CDS contract with time to maturity T has two legs. The premium
leg pays the annual CDS premium Ct,T until a default takes place at a random time τ . It
pays nothing after the default. The protection leg pays a fraction of the face value of debt
that is lost in the default and nothing if there is no default before maturity.

Accordingly, the present value of fixed payments of the USD-denominated contract that a
protection buyer pays is

πpbt = C$
t,T

(T−t)/∆∑
j=1

Et[Mt,t+j∆I (τ > t+ j∆)], (2)

where ∆ is the time interval between two successive coupon periods, and I(·) is an indicator
function that takes on the value one if the condition inside the brackets is met, and zero
otherwise . We have omitted accrual payments for notational simplicity, but take them into
account in the actual estimation of the model.

A protection seller is responsible for any losses L upon default and thus the net present
value of future payments is given by

πpst = L · Et[Mt,τI (τ ≤ T )].

The CDS premium C$
t,T is determined by equalizing the values of the two legs. The premium

of a EUR-denominated contract is, similarly,

Cet,T = L · Et[Mt,τI (τ ≤ T )Sτ∧T ]∑(T−t)/∆
j=1 Et[Mt,t+j∆I (τ > t+ j∆)St+j∆]

. (3)

It is helpful to introduce the concepts of survival probabilities and hazard rates to handle the
computation of expectations involving indicator functions. The information set Ft includes
all of the available information up to time t, excluding credit events. Let

Ht ≡ Prob (τ = t | τ ≥ t;Ft)

be the conditional instantaneous default probability of a given reference entity at day t,
also known as the hazard rate. Furthermore, let

Pt ≡ Prob (τ > t | Ft)

be the time-t survival probability, conditional on no earlier default up to and including time
t. Pt is related to the hazard rate Ht via

Pt = P0

t∏
j=1

(1−Hj) , t ≥ 1. (4)
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Applying the law of iterated expectations to both the numerator and denominator, we can
rewrite the CDS premium as

Cet,T = L ·
∑T−t

j=1 Et[Mt,t+j(Pt+j−1 − Pt+j)St+j ]∑(T−t)/∆
j=1 Et[Mt,t+j∆Pt+j∆St+j∆]

. (5)

A similar expression can be obtained for the USD-denominated contract by setting St = 1.

3.3 Credit risk

The risk-adjusted default hazard rate of each country k = 1, · · · ,Mc is

H∗kt = Prob∗(τk = t|τk ≥ t;Ft),

where τk is the time of the credit event in country k, and Mc is the number of countries.
We posit that the hazard rate is determined by the default intensity h∗kt as follows:

H∗kt = 1− e−h∗kt , h∗kt = h̄∗k + δ∗k>w wt + δ∗k>d dt−1, (6)

such that the default intensity is affine in the credit variables wt and contagion variables dt
that are elements of the state vector xt.

We assume that wt consists of G global and K regional factors, so that each intensity h∗kt
is a function of all global factors and one of the regional factors. We assume that G = 1
and K = 2 in our empirical work, implying two factors per country (one global and one
regional; by assumption, Germany is exposed to the global factor only, as in Ang and
Longstaff, 2013). This choice is motivated by a principal component analysis (PCA) that
extracts country-specific components from the quanto spreads. The procedure implies that
two factors explain around 99% of the variation in quanto spreads. Furthermore, the PCA
of the combination of the first two components across all countries implies that the first
principal component explains 58% of the variation.

To gain intuition about how our model of contagion works, consider the Poisson arrival of
credit events at a conditional rate of dt. We would like the realization from this process
to affect the conditional rate in the subsequent period. Denote the realization by P :
P|dt ∼ Poisson(dt).

In our application to Eurozone sovereigns, we expect dt to be small, implying that most of
the realizations of P will be equal to zero (the probability of such an event is e−dt). The
probability of one credit event is equal to dte

−dt . Theoretically, it is possible that P > 1
with the probability 1− e−dt − dte−dt . However, for a small dt, such an outcome is unlikely.

In this respect, such a Poisson process can be viewed as an analytically tractable approx-
imation to a Bernoulli distribution that is more appropriate for a credit event in a single
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country. For reasons of parsimony, we use this process to count all contemporaneous events
across the countries in our sample. Thus, a Poisson model is a better fit for our framework.

The next step in the contagion model is to determine how the value of P affects the subse-
quent arrival rate dt+1. First, this value has to be non-negative, so we choose a distribution
with a non-negative support. Second, we would like to achieve analytical tractability for
valuation purposes, so we choose a Gamma distribution whose shape parameter is controlled
by P : dt+1 ∼ Gamma(P, 1). The idea is that the more credit events we have at time t, the
larger the impact on dt+1. If P|dt = 0, then dt+1 = 0, by convention.

The resulting distribution of dt+1 is

φ (dt+1 | dt) =

∞∑
k=1

[
dkt
k!
e−dt × dk−1

t+1 e
−dt+1

Γ (k)

]
1[dt+1>0] + e−dt1[dt+1=0].

This expression, representing the description in words above, makes explicit what is missing.
We need to replace dt in this expression with d̄ + φdt. The constant is needed to preclude
dt = 0 from becoming an absorbing state. The coefficient 0 < φ < 1 is needed to ensure the
stationarity of dt.

In our model, the contagion factor dt interacts with other factors that control credit risk, as
described below when we specify all of the state variables explicitly. Such a model happens
to be autoregressive gamma-zero, ARG0, a process introduced by Monfort, Pegoraro, Renne,
and Roussellet (2014) for the purpose of modeling interest rates at the zero lower bound.
Monfort, Pegoraro, Renne, and Roussellet (2017) use ARG0 to model the credit contagion
of banks.

3.4 FX rate

We model the foreign exchange rate St as the amount of USD per one EUR. The idea of
our model is that the (log) depreciation rate should be a linear function of the state xt and
be exposed to two additional shocks. One is a currency-specific normal shock with varying
variance vt, and the other one is an extreme move associated with devaluation. Specifically,
we posit:

∆st+1 = s̄∗ + δ∗>s xt+1 + (v̄ + δ>v vt)
1/2 · εs,t+1 − zs,t+1. (7)

Furthermore, we assume that εs,t+1 ∼ Normal(0, 1) is independent of εx,t+1. We assume
the variance factor vt to be one-dimensional. A jump zt+1 is drawn from an independent
Poisson-Gamma mixture distribution. Specifically, the jump arrival rate jt+1 follows a
Poisson distribution with an intensity of λ∗t+1, jt+1 ∼ P(λ∗t+1), and jump size zs,t+1|jt+1 ∼
Gamma(jt+1, θ

∗). The minus sign in front of zs,t+1 emphasizes that the EUR is devalued in
the case of a Eurozone sovereign credit event. Because jump size has a distribution, some
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of the realized jumps could be severe, reflecting an outright devaluation, and some could be
quite modest and similar to the regular innovations in FX.

We link jumps in the FX to the sovereign default risk by assuming that the FX rate jumps
only in case of a credit event. Therefore, the FX jump intensity is equal to the sum of all
country-specific default intensities:

λ∗t =
∑
k

h∗kt =
∑
k

h̄∗k +
∑
k

δ∗kw · wt +
∑
k

δ∗kd · dt−1 = E∗(dt|wt, dt−1).

Our assumptions about the constant mean of the FX jump and the link of its intensity to
default intensities are likely to be oversimplifications of reality. Ideally, one would want
to separate jumps into default-related and default-unrelated components. Within the first
category, one would want to model country-specific links, both in terms of jump intensity
and jump mean. While it is certainly possible to specify a model like that, it would be
impossible to estimate such a model with any reasonable degree of precision. That is because
all these refinements pertain to rare events that are difficult to pin down empirically even
if they are identified theoretically.

This connection between jump intensity and country-specific default intensities allows us
to identify the LGD, L. The USD CDS contracts are informative only about the products
Lh∗kt and, therefore, their sum over k (e.g., Duffie and Singleton, 1999). The quanto feature
brings in information about the risk-neutral distribution of exchange rates, which does not
depend on the LGD. This allows us to identify λ∗t . Given our identification assumption that
links currency jumps to credit events, we can recover L by dividing

∑
Lh∗kt by λ∗t . This

description is offered for the development of intuition. In practice, L is estimated jointly
with the other parameters using our likelihood-based procedure.

The model of the depreciation rate in Equation (7) could be equivalently written as

∆st+1 = s̄∗ + δ∗>s µ∗x,t + δ∗>s Σ∗x,tεx,t+1 + (v̄ + δ>v vt)
1/2 · εs,t+1 − zs,t+1. (8)

This expression highlights the (risk-adjusted) expected depreciation rate, s̄∗ + δ∗>s µ∗x,t, and
that the depreciation rate can be conditionally and unconditionally correlated with states
xt. The model is more parsimonious than the most general one (loadings δ∗s control both
expectations and innovations). This expression also shows that we can explore the question
of whether regular innovations or jumps in the depreciation rate contribute the most to
the magnitude of quanto spreads (see Brigo, Pede, and Petrelli, 2016; Carr and Wu, 2007;
Ehlers and Schoenbucher, 2004; Krugman, 1979; Lando and Nielsen, 2017; Monfort, Pego-
raro, Renne, and Roussellet, 2017; Na, Schmitt-Grohé, Uribe, and Yue, 2017 for related
discussions).
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3.5 States

We assume that if investors were risk-neutral, then an N ×1-dimensional multivariate state
vector xt+1 would evolve according to

xt+1 = µ∗x + Φ∗xxt + Σ∗x,t · εx,t+1,

where Φ∗x is an N ×N matrix with positive diagonal elements, and Σ∗x,t is an N ×N matrix
that is implied by the specification described below. This implies that µ∗x,t = µ∗x + Φ∗xxt.
The state xt consists of three sub-vectors

xt = (u>t , g
>
t , d

>
t )>.

We explain the role of each of the variables as follows.

3.6 U.S. interest rate curve

The factor ut is an Mu × 1 vector that follows a Gaussian process:

ut+1 = µ∗u + Φ∗uut + Σu · εu,t+1,

and εu,t+1 ∼ N (0, I), µ∗u is an Mu × 1 vector, and Φ∗u and Σu are all Mu ×Mu matrices,
and the diagonal elements of Σu are denoted by σui , for i = 1, 2, . . . ,Mu.

The default-free U.S. dollar interest rate (OIS swap rate) is

rt = r̄ + δ>u ut. (9)

In the applications, we assume for simplicity that there are only Mr = 2 interest rate factors,
while Mu = 3 such that ut = (u1,t, u2,t, u3,t)

>. Thus, we set δu3 = 0 for the term structure
of interest rates, and use u3,t for modeling the expected depreciation rate with implications
for forward FX rates (described below).

The price of a zero-coupon bond paying one unit of the numeraire n-periods ahead from
now satisfies

Qt,T = E∗tBt,T−1, (10)

where Bt,t+j = exp(−∑j
u=0 rt+u). Given the dynamics of the interest rate defined in

Equation (9), bond prices can be solved using standard techniques. The log zero-coupon
bond prices qt are affine in the interest rate state variables ut, such that the term structure
of interest rates is given by

yt,T ≡ −(T − t)−1 logQt,T = AT−t +B>T−tut. (11)

See Appendix C.1.
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3.7 Currency forward curve

Finally, we highlight the role of the Gaussian factor u3,t, which was not used for the OIS
rate modeling. This factor allows flexibility in the model to match the forward exchange
rates, Ft,T = E∗t ST .

Given the dynamics of the exchange rate defined in Equation (7), forward exchange rates
can be solved using standard techniques such that the log ratio of the forward to the spot
exchange rate log (Ft,T /St) is affine in the state vector xt and given by

log (Ft,T /St) ≡ Ãj + B̃>j xt. (12)

See Appendix C.2.

3.8 Quanto curve

Credit factors and variance

The factor gt is an autonomous multivariate autoregressive gamma process of size Mg.
Each component i = 1, · · · ,Mg follows an autoregressive gamma process, gi,t+1 ∼
ARG(νi, φ

∗>
i gt, c

∗
i ), that can be described as

gi,t+1 = νic
∗
i + φ∗>i gt + ηi,t+1,

where φ∗i is a Mg × 1 vector, and ηi,t+1 represents a martingale difference sequence (mean
zero shock), with conditional variance given by

vartηi,t+1 = νic
∗2
i + 2c∗iφ

∗>
i gt

where c∗i > 0 and νi > 0 define the scale parameter and the degrees of freedom, respec-
tively. To ensure that the multivariate autoregressive gamma process is stationary, we
impose parameter restrictions on the persistence matrix φ∗ such that the eigenvalues have a
modulus smaller than one. See Gourieroux and Jasiak (2006), Le, Singleton, and Dai (2010)
and Monfort, Pegoraro, Renne, and Roussellet (2014). We further separate the factor gt
into factors wt and vt, which are used for modeling the credit risk and currency variance,
respectively.

Default contagion

The final factor dt is a multivariate autoregressive gamma-zero process of size Md. Each
component k = 1, · · · ,Md follows an autoregressive gamma-zero process, dkt+1 | wt+1 ∼
ARG0(h̄∗k + δ∗k>w wt+1 + δ∗k>d dkt , ρ

∗k). We add two more features to the description in
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Section 3.3. First, the contagion factor is affected by conventional credit factors wt in
addition to its own value from the previous period. Second, we allow for a scale parameter,
ρ∗k, that could be different from unity in the Gamma distribution.

Besides the explicit distribution, an ARG0 process can be described as

dkt+1 = h̄∗k + δ∗k>w wt+1 + δ∗k>d dkt + ηkt+1, (13)

where ηk,t+1 is a martingale difference sequence (mean zero shock), with conditional variance
given by

vartη
k
t+1 = 2ρ∗k

(
h̄∗k + δ∗k>w

[
νw � c∗w + φ∗>w wt

]
+ δ∗k>d dt

)
,

where � denotes the Hadamard product. As for the credit factors, we impose parameter
restrictions on the matrices δ∗kw and δ∗kd to guarantee stationarity. Specifically, δ∗kw ≥ 0 and
the eigenvalues of δ∗kd have a modulus smaller than one. Comparing expressions (6) and
(13) makes it clear that the default hazard rate and the arrival rate of Poisson events in the
contagion factors are the same process.

For parsimony, we assume the existence of one common credit event variable that may
induce contagion across the different countries and regions. This is conceptually similar to
the suggestion of Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015), that a shock to
a hidden factor may lead to an updating of the beliefs about the default probabilities of
all countries. Thus, given such a restriction, the contagion factor is a scalar, dt+1 | wt+1 ∼
ARG0(h̄∗ + δ∗>w wt+1 + δ∗>d dt, ρ

∗) with appropriate restrictions on the loadings:

h̄∗ =
∑
k

h̄∗k, δ∗w =
∑
k

δ∗kw , δ∗d =
∑
k

δ∗kd .

As a result, we may have more than one credit event per period.

CDS expressions

Now, we are in a position to express the CDS spread presented in Equation (5) using the
risk-adjusted probability as follows:

Cet,T = L ·
∑T−t

j=1 E
∗
t [Bt,t+j−1(P ∗t+j−1 − P ∗t+j)St+j ]∑(T−t)/∆

j=1 E∗t [Bt,t+j∆−1P ∗t+j∆St+j∆]
. (14)

We can use recursion techniques to derive analytical solutions for CDS premiums by solving
for the following two objects:

Ψ̃j,t = E∗t

[
Bt,t+j−1

P ∗t+j−1

P ∗t

St+j
St

]
and Ψj,t = E∗t

[
Bt,t+j−1

P ∗t+j
P ∗t

St+j
St

]
. (15)
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These expressions jointly yield the solution for the CDS premium after dividing the nu-
merator and the denominator of Equation (14) by the time-t survival probability P ∗t and
exchange rate St.

Cet,T = L ·

T−t∑
j=1

(Ψ̃j,t −Ψj,t)

(T−t)/∆∑
j=1

Ψj∆,t

. (16)

To evaluate the expressions for Ψ̃ and Ψ, we conjecture that the expressions in Equation
(15) are exponentially affine functions of the state vector xt:

Ψ̃j,t = eÃj+B̃>j xt and Ψj,t = eAj+B>j xt . (17)

See Appendix C.3 for the derivation of these loadings.

3.9 Risk prices

We have articulated all of the modeling components that are needed for security valuation.
To estimate the model, we need the behavior of state variables under the true probability
of outcomes. Appendix D demonstrates that there exists a pricing kernel that supports a
flexible change in the distribution of variables involved in the valuation of securities. Most
parameters could be different under the two probabilities. One may recover the evolution of
state variables under the objective probability by dropping the asterisks ∗ in the expressions
of Section 3.5.

Given the focus on credit events, we highlight how the prices of default risk work in our
model. All of the variables that are related to credit events have true ( hkt , λt) and risk-
adjusted (h∗kt , λ

∗
t ) versions because the event risk premium could be time varying. In

particular, the true and risk-adjusted counterparts may have a different functional form
and a different factor structure. In addition, each of these variables may have different true
and risk-adjusted distributions that are related to the respective distributions of the factors
that drive them.

The risk-adjusted and true distributions of h∗kt and λ∗t can be identified from the cross-
section and time series of quanto spreads, respectively. The true event frequencies hkt
and λt can be identified only from the realized credit events themselves – a challenge for
financial assets of high credit quality. As mentioned earlier, we circumvent this difficulty
by associating credit events with extreme movements in quanto spreads. Even in this case,
however, the empirical problem is quite challenging, so we only model common events
and assume that they are directed by the same factors as their risk-adjusted counterparts:
dt | wt ∼ ARG0(h̄+ δ>wwt + δddt−1, ρ), and λt = E(dt|wt, dt−1).
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3.10 Implementation

We jointly use data on the USD/EUR FX rate, forward FX rates, the term structure of OIS
interest rates, the term structures of CDS quanto spreads for a cross section of six countries,
a cross-section of credit events for six countries, and some data on Greece to estimate the
model. The model is estimated using Bayesian MCMC. See Appendix E. The outputs of
the procedure are the state variables and parameter estimates. We outline the parameter
restrictions that we impose.

We make the following identifying restrictions. For the model of the OIS term structure, we
follow Dai and Singleton (2000) and Hamilton and Wu (2012) and restrict µu = 0, Σu = I,
δu1 ≥ 0, Φ∗u lower triangular with real eigenvalues and φ∗u11 ≥ φ∗u22. For the credit model,
we impose the mean of the state variables gt to be equal to 1 under the true probability
to avoid scaling indeterminacy. This implies restrictions on parameters ci : ciνi = 1− φ>i ι,
where ι is a vector of ones. By the same logic, we set ρ = 1 in the true dynamics of the
contagion factor dt.

Because of the large number of parameters, we also impose over-identification restrictions.
We allow the global credit factor w1t to affect regional factors, but not vice-versa. This
restriction affects elements φi. We assume the volatility factor vt to be autonomous under
both probabilities. Both sets of restrictions translate into identical restrictions under the
risk-adjusted probability because of the functional form of the risk prices for these factors.
Furthermore, we assume that the contagion factor dt loads only on w1t under the true
probability.

4 Results

4.1 Model selection and fit

A table in Appendix F displays the estimated parameters of the OIS term structure. The
model is standard and the parameter values are in line with the literature. It is difficult
to interpret the model because there are multiple equivalent rotations of the factors. The
key for this paper, as indicated in Table 3, is that the pricing errors are reasonably small.
Therefore, we can use the model to discount cash flows using the risk-adjusted valuation
method.

We estimate two versions of the credit model: with and without contagion. We present the
estimated parameters in Appendix F. There are common traits to the parameter estimates
regardless of the model. The factors wt exhibit near unit-root dynamics under the risk-
adjusted probability, a common trait of affine models. Under the true probability, only the
global credit factor w1t is highly persistent.
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Furthermore, the peripheral countries in our sample have a much larger weight on the global
credit factor than the core countries. France has a smaller loading on the core credit factor
than Belgium (Germany’s weight is zero by assumption). Spain’s weight on the peripheral
factor is larger than that of Italy and Greece, and similar to that of Ireland.

The loss-given-default parameter, L, is estimated at 41% in the model without contagion,
with a 90% confidence interval of 35% to 50%. As a reference point, in CDS valuation, it is
commonly assumed that this value is 60% for corporate and 75% for EM sovereign bonds.
The most comparable estimated numbers are provided in Pan and Singleton (2008) at 23%
for Mexico and Turkey, and 83% for South Korea. We guess that our estimate would have
been lower for core countries, as L is affected by events in the periphery (according to the
Greek CDS settlement auction, the true loss was 78.5%).

We find that the expected depreciation rate does not load on credit factors under either
probability, and that the same goes for shocks. The loading of the expected depreciation
rate on the variance factor is positive under the true probability and negative under the
risk-adjusted one. This implies that, ignoring jumps, the EUR is expected to appreci-
ate/depreciate under the corresponding probabilities.

The FX jump magnitude is just under 1% under the true probability. This is consistent with
the visually mild observed movements in Figure 3B. Under the risk-adjusted probability, it
is 14% implying a huge risk premium associated with currency devaluation upon a sovereign
credit event.

We evaluate whether a larger model with contagion is supported by the evidence. The
parameters that are contagion-specific, δ∗kd , δd, and ρ∗ are statistically significant. The
question is whether the extra degrees of freedom associated with a larger model are justi-
fied from the statistical and economic perspectives. While we find some credence for the
contagion mechanism in our sample, the improvement in the model’s fit does not justify the
associated increase in statistical uncertainty.

Specifically, a table in Appendix F reports the distributions of the likelihoods of both
models, and the associated BICs (the negative of the likelihood plus the penalty for the
number of parameters). Both statistics indicate that the difference between the two models
is insignificant. Table 3 reports various measures of pricing errors for the model without
contagion. The same metrics for the model with contagion are similar and, therefore, are
not reported for brevity. Thus, we discuss only the model without contagion in the sequel.

Continuing with Table 3 we see that the overall fit is good, with the RMSE ranging from
2 to 12 basis points. To visualize the fit, we plot the time series of the observed and fitted
spreads in Figure 4. The overall high quality of the fit is evident.

As a final and out-of-sample test of the model’s quality, we take the estimated factors and
re-estimate only the country-specific parameters of the default intensities using data for the
remaining 10 countries. The resulting fit is displayed in Figure 5. The overall quality of the
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fit remains high, suggesting that our model is quite reasonable. The selection procedure
of the main sample implies that these countries represent less liquid markets. Therefore,
fitting these quanto spreads perfectly is not required. The observed spreads for Cyprus are
quite erratic, manifesting the illiquidity and riskiness of this sovereign, so the fit here is the
worst.

4.2 Default probabilities

Credit factors

Figure 6 displays the filtered credit factors wt. Recall that one of the identifying restrictions
is that the means of these factors are set to 1. This explains the similarity in scale. The
time-series patterns are quite different. All factors exhibit large movements in 2012, around
the height of the sovereign debt crisis. This period was marked by the downgrades of
individual sovereigns, the creation of the European Financial Stability Facility, and the
political instability in Greece. The crisis reached its peak when Greece officially defaulted
in March 2012. The sharp drop in the factors shortly thereafter is associated with the
famous speech by Mario Draghi in July 2012, vowing to do “whatever it takes” to save the
EUR. All of the factors persistently decrease thereafter.

The peripheral factor w3t, associated with Italy, Ireland, and Spain, also exhibits substantial
variation prior to 2012 and, to a lesser degree, for the rest of the sample period. The core
factor w2t, which corresponds to Belgium and France, starts to pick up shortly after the
marked increase in the periphery factor w3t, but much earlier than the pronounced increase
in the common factor w1t. Interestingly, w1t picks up again at the very end of the sample
period.

Time series of risk-adjusted default intensities

Various combinations of these factors deliver risk-adjusted default intensities for the respec-
tive countries via Equation (6). Figure 7A displays these intensities. Given the common
variation in credit factors during 2012, it is not surprising to see elevated default prob-
abilities during that period, irrespective of the country. The largest one-period default
probability is almost 2.5% (default probabilities are approximately equal to intensities for
such small numbers). Ireland, Italy, and Spain have clearly distinct patterns of intensities
in the post-2012 period, a manifestation of their exposure to the factor w3t. The same three
countries exhibit some elevation at the end of 2016 – a result of their extensive exposure to
the global factor, which also picks up. Overall, Spain is the riskiest county. Germany does
not load on the regional components at all. Hence, Germany has the lowest default risk,
and its dynamic properties are distinct from those of other countries. These differences in
dynamics manifest themselves in the differences between the average quanto curves that we
noted in Figure 3.
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Cross-section of risk-adjusted default intensities

Table 4 summarizes how the default intensities of all countries, including the 10 out-of-
samples ones, load on the factors. The countries are sorted by their loadings on the global
credit factor, δ∗kw1. Germany is roughly in the middle. Spain has the largest exposure at
four times that of Germany, and Finland the smallest at 14−1 times.

Overall, the countries exhibit large cross-sectional variation in their exposure to credit
factors. Among the core countries, Belgium and France have a sizable exposure to the core
factor, while others have nearly zero exposure. Finland appears to be the safest country
with tiny exposures to both global and core factors.

On the peripheral side, the relatively recent additions to the Eurozone, such as Estonia and
Slovakia, have a tiny exposure to region-specific risk, so they are largely indistinguishable
from some core countries, including Germany itself. The Southern European countries have
a large regional component. Spain and Greece stand out in this respect.

Eurozone quanto spreads are driven by common variation in the exchange rate and mon-
etary policy. Thus, cross-country differences in model-implied default intensities ought to
be related to cross-country differences in fiscal health. To test that conjecture, we collect
information on quarterly debt-to-GDP and FX reserves-to-debt ratios and relate them to
the model-implied hazard rates. We source these data from the Bank for International Set-
tlements and the International Monetary Fund International Financial Statistics database.
The data span is from the start of our sample, that is, the third quarter of 2010, up to the
second quarter of 2015. All data are measured in USD for comparability.

We report the relation between these fiscal variables and model-implied hazard rates in
Table 5. The relation between debt-to-GDP and hazard rates is positive and statistically
significant at the 1% level, with an R2 of 13% for this univariate regression. The coefficient
of 0.20 implies that a one percentage point increase in a country’s debt-to-GDP ratio (+0.01)
is on average associated with an 0.002 increase in intensity. This is economically meaningful.
If hazard rates are constant, CDS premiums may be approximated by L · h∗t . Given the
estimated L of 41%, this implies an increase in CDS premiums of approximately 8 bps.

For the specification in column (2), we add time fixed effects to further absorb any remaining
common variation in hazard rates. Given the strong factor structure in CDS premiums in
our model, this adjustment should absorb a significant amount of cross-sectional variation.
The R2 increases to 44%, and the regression coefficient is stable, suggesting a meaningful
cross-sectional relation between the model-implied hazard rates and each country’s fiscal
health.

As an alternative measure of fiscal health, we use a country’s foreign exchange rate reserves
to debt outstanding in columns (3) and (4). The negative regression coefficient implies that
countries that have debt that is better collateralized by foreign exchange rate reserves have
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lower hazard rates. The economic effect is smaller. With L = 0.41, the coefficient of −0.03
implies a 1 bps lower CDS premium for each additional percentage point in FX reserves
relative to debt outstanding. The coefficient is unaltered if we absorb additional common
variation through time fixed effects in column (4).

We examine the joint effect of both fiscal variables in columns (5) and (6). Debt-to-GDP
appears to be the driving variable. Its coefficient remains stable and significant at the 1%
level.

Credit risk premiums

While we cannot characterize the default risk premiums for individual countries, we can
do so for the overall credit risk. Figure 7B displays the aggregate true and risk-adjusted
default intensities λt and λ∗t , respectively. We show them on different scales because the true
default intensity is much smaller. Visually, they track each other quite closely, suggesting
a constant risk premium. However, this is not the case. To illustrate this, we characterize
the corresponding risk premium, in line with the literature, via λ∗t /λt, displayed in Figure
7C.

On average, this number is 1.95, and is drifting downward toward the end of the sam-
ple. Starting from 2014, the premium is insignificantly different from 1. As a benchmark,
Driessen (2005) assumes a constant default premium in the context of corporate debt and
estimates it to be 2.3. Combining CDS-implied default intensities with Moody’s KMV
expected default frequencies, Berndt, Douglas, Duffie, and Ferguson (2018) also find an
average default premia of around 2 for a sample of 93 firms in three industries. The ra-
tios of risk-adjusted to true default intensities, however, exhibit substantial time variation,
between 1 and 6.

Bai, Collin-Dufresne, Goldstein, and Helwege (2015) and Gouriéroux, Monfort, and Renne
(2014) emphasize that if a model of default intensity is missing the contagion effect, then
the ratio of intensities might be overstating the true premium for credit risk. In our case,
a version of the model with contagion generates an average premium of 2 and by and large
similar dynamics.

4.3 Devaluation contingent on default – the twin Ds

Probability

The estimation results allow us to weigh in on the debate about whether default has an
immediate or long-term impact on the exchange rate. Krugman (1979) suggests that default
leads to a change in the drift of the depreciation rate, with a persistent and continuous
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depreciation of the local currency. Na, Schmitt-Grohé, Uribe, and Yue (2017), in contrast,
argue that the FX rate suffers a significant one-time drop upon default. See our discussion
around Equation (8).

The aforementioned lack of a significant effect of credit factors on the expected depreciation
rate implies that default is unlikely to have a long-term effect on currencies. Thus, the
estimation results imply that changes in the FX rate are linked to credit risk only through
jumps. The jump component is significant, implying an acute and short-term interaction
between the Twin Ds.

How likely is the EUR to devalue if one of the sovereigns in the Eurozone defaults? The
answer requires a more formal definition of devaluation. We associate it with an extreme
movement in exchange rates, and rely on our model to measure the probability of such an
event. Specifically, we define the EUR devaluation as a drop in St that is larger than three
conditional standard deviations.

The model implies that the true 1-week probability of devaluation conditional on default
is 4.64%. The risk-adjusted probability of devaluation conditional on default is 76.60%,
suggesting a large risk premium for this event. We will quantify this premium directly in
the next section. The true 1-year probability is 0.02%, which is smaller than the 1-week
probability. Thus, devaluation comes primarily through a sharp, short-term decline in the
EUR. This decline in probabilities with the horizon is consistent with a one-off impact of
default on the FX rate, as discussed above. This number is also much smaller than those
reported by Na, Schmitt-Grohé, Uribe, and Yue (2017) and Reinhart (2002). Part of this
difference may be explained by the sample (developed versus emerging economies), and by
our primary use of market data, rather than realized defaults. The corresponding 1-year
risk-adjusted probability of devaluation conditional on default is 0.85%.

We also measure the sensitivity of the probability of devaluation to changes in the prob-
ability of default, which we represent by the default intensity. We can view the previous
exercise as a particular case in which the default intensity is equal to infinity. Over the
1-week horizon, the true (risk-adjusted) devaluation probability increases by 0.04% (0.73%)
for every 1% increase in the default intensity. The small sensitivity of the true probability is
a manifestation of the small jump size. Thus, a large increase in the intensity is needed for
the jump component to affect devaluation. Figure 7B shows that the largest movement in
the true (risk-adjusted) default intensity was equal to 0.5% (6.7%), which occurred between
December 2011 and June 2012 during the Eurozone debt crisis. This increase translates
into an increase of 0.02% (4.9%) in the true (risk-adjusted) probability of devaluation. Over
1 year, the devaluation sensitivities to default are 0% (under true probability) and 0.04%
(risk-adjusted probability). This decline is consistent with the aforementioned short-term
effect of default on devaluation.

Overall, the probability of devaluation related to default is modest under the true proba-
bility. Yet, the risk-adjusted counterparts are rather high. This suggests the occurrence of
currency devaluation during particularly bad states of the economy that tend to coincide
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with a high marginal utility of the representative agent. This interpretation is similar to the
equilibrium models of Augustin and Tédongap (2016) and Chernov, Schmid, and Schneider
(2017), who characterize the large risk premia demanded by risk-sensitive investors for sell-
ing CDS protection on sovereigns in developed economies. In the next section, we directly
measure the risk premiums associated with default-contingent devaluation.

Risk premiums

We start with the case that ignores the timing of default, and compute both the risk-adjusted
expectation of the depreciation rate, E∗t [ST /St], and its true counterpart, Et[ST /St]. The
first row of Figure 8 shows that the true expectations indicate expected EUR devaluation,
and the average term structure of such expectations is downward sloping (EUR is expected
to devalue more at longer horizons). The risk-adjusted expectation shows that the USD is
expected to devalue, on average, at horizons of up to 3 years.

To understand this result, consider covered interest parity, which implies E∗t [ST /St] =
Ft,T /St = exp[(T − t)(yt,T − ŷt,T )] with ŷt,T denoting the EUR benchmark yield. Thus,
the expectation is positive whenever yt,T > ŷt,T . The displayed relationship is thus pinned
down by the currency forward rates Ft,T that we used in estimation.

One implication is that we observe the standard currency premium relationship,
EtST /E

∗
t ST , often expressed as the carry trade. Borrowing in the high-interest rate USD,

converting to EUR, and then lending in this currency, leads, on average, to negative (log)
excess returns at short horizons. At long horizons (log) excess returns are not significantly
different from zero, consistent with the evidence in Lustig, Stathopoulos, and Verdelhan
(2016).

The second row of Figure 8 includes a condition on the timing τ of any credit event rather
than the one in a specific country. In this case, the arrival rate is controlled by λt, and we
can compute both the risk-adjusted expectation and its true counterpart. Default risk has
almost no impact in the short-term, so the plot for T = 1 year is similar to that for the no-
default case (it is literally identical if T = 1 week). The level of risk-adjusted expectations
moves upwards with longer maturities in this case, indicating the risk-adjusted expected
USD depreciation conditional on default. This happens because early termination leads to
a loss in the expected USD appreciation.

In risk premium terms, we observe a drastic difference in relation to the no-default case.
Carry returns to EUR are still negative in the short run, and continue to be so as the horizon
expands. That is a manifestation of the interaction with default risk. No amount of interest
earned on a long-term debt instrument can compensate for currency losses experienced in
case of default.

Indeed, we can quantify how much more risk premium is required for such a sce-
nario. Expressing risk premiums in logs, (T − t)−1 log[EtST /E

∗
t ST ] (no default) and
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(T − t)−1 log[EtSt∧T /E
∗
t St∧T ] (default), we can compute the difference between the two.

It reflects the extra compensation one earns for the currency loss in case of default, com-
pared with the compensation for the regular currency risk. The third row of Figure 8
displays these differences for T = 1 and 5 years, and the average term structure.

At short horizons this “excess risk premium” changes sign sporadically and stabilizes at zero
after the sovereign debt crisis. The average value is slightly positive and corresponds to a
negative extra premium for EUR depreciation. But, as can be seen from the third panel, that
extra premium is not significantly different from zero. The same average effects persist for
maturities of up to 4 years.2 After that, the excess premium for EUR depreciation increases
to 0.3% at the 15-year horizon and levels off at 0.5% per week at the 30-year horizon (not
shown). These numbers are large, and liquidity effects could be, in part, responsible for such
a magnitude. But even one half of these premiums would still be economically significant.

Expected devaluation and relative quanto spreads

Several authors, such as Du and Schreger (2016) and Mano (2013), use observed relative
quanto spreads, in the context of EM, to measure the anticipated currency devaluation
in case of a credit event. As we show in Equation (1), the relative spread consists of
two components: the risk-adjusted expected depreciation conditional on default and the
interaction of default and FX jump. The second term reflects the propensity of the EUR
to depreciate when the default intensity increases.

To facilitate the discussion, we switch to the ratio of the local and the foreign currency CDS
spreads, which has a more straightforward connection to the depreciation rate,

Cet,T

C$
t,T

= E∗t

[
Sτ∧T
St

]
+ cov∗t

[
e−r(τ∧T−t)I (τ ≤ T )

E∗t e
−r(τ∧T−t)I (τ ≤ T )

,
Sτ∧T
St

]
.

This expression makes it explicit that a direct reading of the data, as expected depreciation
upon default, is prone to be biased, as it may overstate the importance of the impact of
sovereign default on the local currency depreciation. Our model allows us to gauge the
relative importance of both terms, both across countries and over time. We illustrate these
decompositions in Figure 9.

As a start, focus on the last column that depicts the time-averages of relative quanto
spreads across the term structure for the six countries that we use in the main estimation.
The black-circled lines display the observed relative CDS spreads, Cet,T /C

$
t,T . If one were

to take the view that the spread reflects the risk-adjusted expectation of the depreciation

2At first blush, this result appears to be at odds with the large differences in true and risk-adjusted
1-week probabilities of devaluation conditional on default that we reported in the previous section. The risk
premiums reflect compensation for any adverse movement in EUR. In contrast, the probabilities reflect an
extreme event of at least a three-standard-deviation move.
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rate only, then the Figure would tell us that, for 1-year contracts, the Euro is expected to
depreciate on average by about 30% for Germany, 28% for France, up to about 15% for
Ireland. For longer horizon contracts, the magnitude of the expected impact is increasing.
For the 5-year maturity, for example, the expected drop in the local currency given default
is as large as 44% in the case of Germany.

The gray lines depict the model-implied default-contingent risk-adjusted expected depreci-
ation rate E∗t [Sτ∧T /St]. The gap between the two lines emphasizes that the view of that
expectation as the observed relative quanto spread is biased. Generally, the model-based
risk-adjusted expectation is above the relative quanto spread implying a negative cov∗t term
in the decomposition, on average. This is intuitive as one would expect the event of default
and the value of the EUR to move in the opposite directions. Quantitatively, the difference
ranges from a high of 27% for Germany to a low of 10% for Ireland at short horizons,
and declines at longer horizons. The decline suggests that market participants perceive the
sensitivity of the FX rate to default risk to weaken in the long-term.

The cross-country variation in the cov∗t term suggests that the impact of a credit even in
one of the core countries is more important than that in the peripheral ones. The time
series plots of relative quanto spreads and expected depreciation rates at different horizons,
in the first three columns of Figure 9, convey more detail about this observation. We focus
on the 5-year horizon in the second column. The gap between the gray and black lines is
increasing in the build-up of the European debt crisis in 2011 and 2012. This suggests that
the covariance risk became of greater importance during that period. A sharp change of
this pattern is visible in July 2012, when the gap between the two plotted lines narrows
significantly in particular for the peripheral countries (Ireland, Italy, and Spain), but not
for the core countries (Belgium, France, Germany). This episode coincides with Draghi’s
speech, vowing to do whatever it takes to save the EUR.

One interpretation of the data is that Draghi was to some extent successful in changing
the market’s perception about the interaction of FX and default risks. This perception
has nearly collapsed to zero for peripheral countries, but not so for core countries. That
difference highlights the systemic role of the core countries and the fear of the impact
of their defaults on the EUR currency, irrespectively of how unlikely that event may be.
Consequently, markets may still expect a sell-off of the EUR in the case of default. Cross-
country differences over time consistently suggest that Germany is expected to have the
greatest impact on the exchange rate if it were to default.

5 Conclusion

Sovereign CDS quanto spreads offer a market perspective on the Twin Ds. We study their
interactions and the corresponding risk premiums from an asset pricing perspective. To that
end, we propose an affine no-arbitrage model of the joint dynamics of the quanto spreads
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of 17 Eurozone countries and the USD/EUR exchange rate. Controlling for exchange rate
risk, credit risk has a parsimonious three-factor structure (global, core, and peripheral),
indicating a lot of common movement. Cross-country differences in credit risk are related
to a measure of debt, indicating the connection between cross-sectional variation in default
risk and variation in fiscal policies.

We find that the probability of devaluation conditional on default is low. But the risk
premium for this event is large, much larger than either the credit risk premium or the carry
trade return individually. These results pinpoint the economic importance of the Twin Ds,
as their occurrence coincides with the worst states of the economy when investors’ marginal
utility is high.
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Table 1
Descriptive Statistics of Sovereign CDS Liquidity - Weekly

EUR USD USD Notionals
N Mean Min p50 Max Mean Min p50 Max Gross Gross% Net Net%

Austria 329 4.50 3 4 8 6.21 3 6 9 54.37 15.51 5.04 23.35
Belgium 329 4.73 3 5 8 5.55 3 5 10 54.96 15.55 4.50 20.72
Cyprus 329 2.75 2 2 6 3.69 2 3 9 1.88 0.48 0.25 1.24
Estonia 329 3.45 2 3 8 4.02 3 4 8 2.51 0.74 0.27 1.25
Finland 329 3.15 2 3 9 5.79 2 6 9 17.48 4.98 2.17 10.28
France 329 4.77 2 5 9 5.72 2 6 9 136.17 37.96 15.72 73.51
Germany 329 3.89 2 3 8 5.19 2 5 9 121.24 33.97 14.99 70.54
Greece 255 3.12 2 3 7 3.85 2 4 7 48.75 16.97 3.43 13.89
Ireland 329 5.14 3 5 9 6.60 3 7 10 44.36 12.72 2.80 12.82
Italy 329 6.38 2 7 9 6.61 2 7 10 356.35 100.00 21.43 100.00
Latvia 329 4.02 2 4 10 5.32 3 5 10 8.96 2.58 0.50 2.34
Lithuania 329 3.68 2 4 7 4.47 2 5 9 6.53 1.86 0.48 2.24
Netherlands 326 3.60 2 3 8 5.27 2 5 9 28.38 7.94 3.00 14.28
Portugal 329 5.78 3 6 9 7.24 2 7 10 69.48 19.91 4.41 20.14
Slovakia 329 3.81 2 4 10 5.42 3 5 10 10.73 3.06 0.75 3.53
Slovenia 329 3.21 2 3 7 4.27 2 4 9 6.96 1.93 0.68 3.19
Spain 329 5.66 2 5 10 6.10 2 6 10 171.38 48.47 12.52 57.98

All 5,516 4.23 2 4 10 5.39 2 5 10 69.05 19.56 5.64 26.24

Notes. This table reports summary statistics (mean, N, min, max, median) for the depth measure,

the average number of dealers quoting a contract, of 5-year sovereign CDS spreads denominated in

EUR and USD for 17 Eurozone countries that have a minimum of 365 days of non-zero information on

USD-EUR quanto CDS spreads. A simple t-test for differences in means suggests that differences in

means are statistically significant. Depth is defined as the number of dealers used in the computation

of the daily mid market CDS quote. The sample period is August 20, 2010 until December 30, 2016.

All statistics are based on weekly (Wednesday) data. We also report the gross and net notional

amounts of CDS outstanding in billion USD, as well as the ratio of net and gross notional amounts

of CDS outstanding to the same quantities of Italy, which represents the most liquid sovereign CDS

market. This data is based on weekly information from August 20, 2010 until June 24, 2015. Sources:

Markit and Depository Trust and Clearing Corporation (DTCC).
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Table 2
Descriptive Statistics of CDS Quanto Spreads - Weekly

Maturity 1y 3y 5y 7y 10y 15y 30y 10y-1y
Country Obs Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

AT 329 8 11 14 14 21 17 25 17 29 17 33 17 34 16 21 10
BE 329 11 16 20 21 28 22 33 22 37 21 39 21 40 21 26 14
CY 329 28 81 28 52 29 41 30 40 33 40 34 41 40 56 5 73
EE 329 3 6 5 5 6 5 6 5 7 5 7 6 7 7 3 5
FI 329 3 3 5 3 8 3 11 4 13 4 14 5 14 6 10 5
FR 329 8 11 17 18 27 23 32 24 37 23 38 23 40 24 29 16
DE 329 3 5 8 8 16 13 20 14 24 14 26 14 26 15 21 12
GR 255 127 454 91 264 90 227 88 223 80 228 74 168 59 130 -29 318
IE 329 21 24 29 26 34 26 36 25 38 24 40 24 40 24 18 13
IT 329 21 20 31 23 36 24 39 24 42 24 43 24 45 24 21 9
LV 329 6 9 9 9 12 9 13 8 15 8 18 8 17 10 10 7
LT 329 6 9 10 9 13 8 16 7 17 8 19 8 20 10 11 6
NL 329 5 6 10 8 17 11 21 12 25 13 27 15 28 15 20 10
PT 329 34 36 37 27 40 24 42 22 44 21 42 21 42 25 10 24
SK 329 6 9 7 7 8 7 9 8 10 8 13 9 13 10 4 9
SI 329 10 13 14 13 17 13 19 14 21 15 24 16 25 17 10 12
ES 329 27 28 38 33 44 33 47 33 50 32 53 31 53 31 22 11

Total 5,519 13 72 18 104 21 63 25 56 28 55 30 55 33 40 32 33

Notes. This table reports summary statistics (mean, sd) for the sovereign CDS quanto spreads

(difference between the USD and EUR denominated CDS spreads) for 17 Eurozone that have a

minimum of 365 days of non-zero information on USD-EUR CDS quanto spreads. We report values

for maturities of 1y, 3y, 5y, 7y, 10y, 15y, and 30y, as well as the slope, defined as the difference

between the 10y and 1y quanto spreads. The sample period is August 20, 2010 until December 30,

2016. The data frequency is weekly, based on Wednesday quotes. Source: Markit.
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Table 3
Model fit

Bond yield Quanto spread

Germany Belgium France Ireland Italy Spain Avg across countries

1y - 2.3 5.8 4.6 11.6 9.8 9.0 7.2
3y 1.7 3.3 6.8 7.2 7.8 7.2 7.6 6.7
5y 1.1 4.1 6.1 6.2 7.6 5.9 6.7 6.1
7y - 5.3 3.8 5.1 7.8 5.6 6.4 5.7
10y 2.2 6.7 6.1 7.3 7.1 4.9 6.9 6.5
15y 2.8 7.4 7.4 8.5 7.3 5.3 8.1 7.3

Avg across maturity 2.0 4.9 6.0 6.5 8.2 6.4 7.4 -

Notes. In this table, we report results for the model fit in terms of root mean squared errors (RMSE).

For the term structure model, we do not allow for measurement errors for 1-year- and 7-year maturity

bonds in the estimation. We report the RMSE in basis points. The sample period is August 20,

2010 to December 30, 2016. The data frequency is weekly, based on Wednesday rates.
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Table 4
Credit factor loadings

Country Global, δ∗kw1 Core, δ∗kw2 Periphery, δ∗kw3

Spain 0.0059** - 0.0037**
Italy 0.0047** - 0.0013**
Cyprus 0.0035* - 0.0018*
Greece 0.0030* - 0.0057*
Slovenia 0.0028** - 0.0040**
Ireland 0.0027** - 0.0044**
Austria 0.0026** 0.0000 -
Slovakia 0.0019** - 0.0000
Germany 0.0014** - -
Netherlands 0.0012** 0.0001 -
Lithuania 0.0007** - 0.0007**
Latvia 0.0006** - 0.0007*
Portugal 0.0006** - 0.0001**
Belgium 0.0003** 0.0032** -
Estonia 0.0003** - 0.0001**
France 0.0002** 0.0031** -
Finland 0.0001* 0.0001* -

Notes. In this table, we report the hazard rate loadings of each country, sorted in the descending

order for global loadings. Notation: **p < 0.05, *p < 0.1. A dash, -, indicates a loading restricted

to zero.
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Table 5
Default intensities and fiscal health

(1) (2) (3) (4) (5) (6)

Debt/GDP 0.20*** 0.23*** 0.23*** 0.25***
(0.03) (0.02) (0.03) (0.03)

FX Res/Debt -0.03** -0.03*** 0.01 0.01
(0.01) (0.01) (0.01) (0.01)

Constant 0.13*** 0.11*** 0.30*** 0.31*** 0.12*** 0.10***
(0.03) (0.02) (0.01) (0.01) (0.03) (0.02)

Time FE X X X
N 324 324 307 307 307 307
R2 0.13 0.44 0.02 0.29 0.15 0.45

Notes. In this table, we report the regression output from the panel regression of model-implied risk-

adjusted default intensities of 17 Eurozone countries against their corresponding debt-to-GDP and

foreign exchange reserves-to-debt ratios. The data frequency is quarterly. Debt/GDP and FX-Debt

ratios are sourced from the Bank for International Settlements and the International Monetary Fund

International Financial Statistics database. We have the data from the start of our sample, i.e., 3rd

quarter of 2010, up to the 2nd quarter in 2015. All data is measured in USD for comparability.

Standard errors are reported in parentheses; ***, **, and * defines statistical significance at the

10%, 5%, or 1% level.
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Figure 1
Cash flows to various sovereign instruments
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Notes. Dashed boxes emphasize uncertainty of credit events. St is $/e rate. The notional is

$1 = e1/S0 for all instruments. Loss given default, L, is expressed as a percentage of notional.

The first row depicts a e-denominated CDS contract (long protection) with a premium of eCe0
established at time 0, implying an annual payment of eCe0 /S0. In case of a credit event, the long

position receives eL/S0. The second row shows a $-denominated CDS contract (short protection)

with a premium of $C$
0 . A quarterly payment is $C$

0 , which is equivalent to eC$
0/St at the spot

exchange rates. In case of a credit event, the short position pays out $L = eL/Sτ . The third row

shows a short position in the $-denominated par bond. It pays out coupons $C0, and in case of a

credit event it pays out recovery 1−L. The fourth row shows a currency swap with a rate F0. After

exchanging the same notional expressed in different currencies at inception, one party pays interest

on the e-denominated notional, eF0/S0, and the other party pays interest on the $-denominated

notional $C0. At maturity, the parties swap back the notionals and pay the last interest.
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Figure 2
Data: A first look
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Notes. We offer a first look at some elements of data: CDS premiums and quanto spreads, ex-

change rate, and cross-correlogram between the first principal component of changes in 5-year CDS

premiums across all countries and the depreciation rate.
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Figure 3
Quanto term spreads and exchange rate
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Notes. Panel A displays the term structure of CDS quanto spreads, defined as the difference between

the USD and EUR denominated CDS spreads, for 6 Eurozone countries: Germany , Belgium, France,

Ireland, Italy, and Spain. We compute average term spreads of maturities 3 years, 5 years, 7 years,

10 years, 15 years, and 30 years relative to the 1 year quanto spread. All spreads are expressed in

basis points. Panel B shows weekly Wednesday-to-Wednesday changes in the USD/EUR exchange

rate, expressed in percentage point changes. The sample period is August 20, 2010 to December 30,

2016.
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Figure 4
Quanto spreads: main sample
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Notes. In these figures, we plot the observed and model-implied USD/EUR quanto spreads for

Germany, Belgium, France, Ireland, Italy, and Spain. We report values for maturities of 1y, 5y, 10y,

and 15y. Gray lines represent posterior medians of quanto spreads and gray-shaded areas correspond

to 90% credible intervals. The true quanto spreads are plotted with black-circled lines. The sample

period is August 20, 2010 to December 30, 2016.
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Figure 5
Quanto spreads: auxiliary sample
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Notes. In these figures, we plot the observed and model-implied USD/EUR quanto spreads for

Austria, Cyprus, Estonia, Finland, Latvia, Lithuania, Netherlands, Portugal, Slovakia, and Slovenia.

We report values for maturities of 1y, 5y, and 10y. Black lines represent posterior medians of quanto

spreads and the true quanto spreads are plotted with white-circled lines. The sample period is

August 20, 2010 to December 30, 2016.
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Figure 6
State
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Notes. These figures depict the filtered latent credit and volatility factors implied by the model. w1t

is the global credit factor, w2t is a regional credit factor corresponding to the core countries in the

Eurozone (Belgium and France), and w3t is a regional credit factor corresponding to the peripheral

countries (Ireland, Italy, Spain). The sample period is August 20, 2010 until December 30, 2016.

The data frequency is weekly.
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Figure 7
Default intensities
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Notes. Panel A depicts the estimated risk-adjusted default intensities for Germany, Belgium, France,

Ireland, Italy, and Spain. In Panel B, we plot the aggregate true and risk-adjusted default intensities.

In Panel C, we plot the default risk premium. The dashed horizontal line indicates a zero premium

(ratio of intensities is equal to 1). The gray-shaded area represents 90% credible intervals. The

sample period is August 20, 2010 until December 30, 2016. The data frequency is weekly, based on

Wednesday quotes.
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Figure 8
True and risk-adjusted expectations of the depreciation rate
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Notes. The figures depict the true (light gray) and risk-adjusted (black) expectations of the de-

preciation rate. The first row shows the expectations ignoring default, Et[ST /St] and E∗t [ST /St].

The second row accounts for default, Et[Sτ∧T /St] and E∗t [Sτ∧T /St]. The credit event time τ is

triggered by a credit event in any of the countries. The left and middle panels show the time-series

for T = 1 year and 5 years, respectively. The right panels display time-series averages of these

quantities for a variety of T ’s. The last row computes the difference between excess log expected

returns corresponding to the two scenarios: (T − t)−1 log[EtSτ∧T /E
∗
t Sτ∧T · E∗t ST /EtST ].

48



Figure 9
Relative quanto spread and expected depreciation rate
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Notes. In this figure, we plot the observed relative quanto spreads (black-circled lines) and the

model-implied expected depreciation rate E∗t [Sτ∧T /St] for T = 1, 5, and 10 years, together with

their sample averages in the last column (gray-shaded areas correspond to 90% credible intervals).

The results are for Germany, Belgium, France, Ireland, Italy, and Spain.
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A Institutional background

CDS contracts are controlled by three documents: the Credit Derivatives Definitions
(“the Definitions”), the ISDA Credit Derivatives Physical Settlement Matrix (“the
Physical Settlement Matrix”), and the Confirmation Letter (“the Confirmation”).

The Physical Settlement Matrix is the most important document because the push for
standardization has created specific transaction types that are by convention applica-
ble to certain types of a sovereign reference entity, e.g., Standard Western European
Sovereign (SWES) or Standard Emerging European Sovereign (SEES) single-name
contracts. In total, there are nine transaction types listed in the sovereign section
of the Physical Settlement Matrix that contain details about the main contractual
provisions for transactions in CDS referencing sovereign entities.

Given the over-the-counter (OTC) nature of CDS contracts, parties are free to com-
bine features from different transaction types, which would be recognized in the Con-
firmation, i.e., the letter that designates the appropriate terms for a CDS contract.
The Confirmation, which is mutually negotiated and drafted between two counter-
parties, can thereby amend legal clauses attributed to conventional contract charac-
teristics. Hence, there may be slight variations from standard transaction types if
counterparties agree to alter the terms of conventional CDS contracts. Such changes
introduce legal risk, and potentially make the contracts less liquid, given the cus-
tomization required for efficient central clearing.

The terms used in the documentation of most credit derivatives transactions are de-
fined in the Definitions. On 22 September 2014, ISDA introduced the 2014 Credit
Derivatives Definitions, which update the 2003 Credit Derivatives Definitions. We use
contracts governed by the 2003 Definitions to guarantee internal consistency through-
out our sample period.

It is important to distinguish between the circumstances under which a CDS pay-
out/credit event could be triggered, and the restrictions on obligations eligible for
delivery in the settlement process upon the occurrence of a qualifying credit event.
The Physical Settlement matrix lays out the credit events that trigger CDS payment,
which follows the ruling by a determinations committee of the occurrence of a credit
event and a credit event auction. SWES transaction types recognize three sovereign
credit events, namely Failure to Pay, Repudiation/Moratorium, and Restructuring.
SEES contracts further list Obligation Acceleration as a valid event that could trigger
the CDS payout.

The most disputed among all credit events is the Restructuring credit event clause
related to a change to the reference obligation that is binding on all holders of the
obligation. The most controversial among such changes is the redenomination of the
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principal or interest payment into a new currency. For the credit event to be triggered
under the 2014 Definitions, this new currency must be any currency other than the
lawful currency of Canada, Japan, Switzerland, the United Kingdom, the United
States of America, and the Euro (or any successor currency to any of the currencies
listed; in the case of the Euro, the new currency must replace the Euro in whole). In
the 2003 Definitions, permitted currencies were defined as those of G7 countries and
AAA-rated OECD economies.

Another important dimension to consider is the obligation category and the associated
obligation characteristics which may trigger a credit event. For SWES contracts, the
Obligation category is defined broadly as “borrowed money,” which includes deposits
and reimbursement obligations arising from a letter of credit or qualifying guarantees.
Such contracts also feature no restrictions on the characteristics of obligations relevant
for the triggers of default payment. For SEESs, however, markets have agreed on more
specificity for the reference obligations, which encompass only “bonds,” which are not
allowed to be subordinated, denominated in domestic currency, issued domestically or
under domestic law, as indicated by the restrictions of the obligation characteristics.

The final non-trivial aspect relates to the deliverable obligation categories and the
associated characteristics. While in the presence of Credit Events for SWESs, bonds
or loans are deliverable during the auction settlement process, SEES contracts allow
only for bonds to be delivered. Several restrictions apply to the deliverable obligations,
such that for SWESs they have to be denominated in a specified currency (i.e., the
Euro or the currencies of Canada, Japan, Switzerland, the UK, or the USA), they
must be non-contingent, non-bearer and transferable, limited to a maximum maturity
of 30 years, and loans must be assignable and consent is required. SEES contracts
exclude these restrictions on loans and the maximum deliverable maturity, but impose
the additional constraints that the obligation cannot be subordinated, and issued
domestically or under domestic law.

B Term structure of quanto spreads in the iid case

We show that the term structure of quanto spreads is flat when hazard and depreci-
ation rates are iid, and the risk-free interest rate is constant. To achieve analytical
tractability, we consider that CDS contracts are fully settled upfront.

Assuming that both the default intensity, h∗t , and depreciation rate are iid and using
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the law of iterated expectations, the upfront premium for the EUR CDS is given by

Ce0 = L · E∗0
[
e−r(τ∧T ) · Sτ∧T/S0 · I (τ ≤ T )

]
= L · E∗0

[
e−r(τ∧T ) · Sτ∧T/S0 · (1− I (τ > T ))

]
= L · E∗0

[
e−rT+sT−s0

]
− L · E∗0

[
e−rT+sT−s0−

∑T
j=1 h

∗
j

]
= L · E∗0

[
e−rT

]
· E∗0

[
esT−s0

]
·
[
1− E∗0e−

∑T
j=1 h

∗
j

]
,

where st = logSt.

Similarly, the upfront premium for the USD CDS is given by

C$
0 = L · E∗0

[
e−rT

]
·
[
1− E∗0e−

∑T
j=1 h

∗
j

]
.

Therefore, the quanto spread for any maturity T , is given by

q$,e
0 = −T−1(logC$

0 − logCe0 ) = T−1 logE∗0e
sT−s0 = T−1 logE∗0e

T (s1−s0) = logE∗0e
s1−s0 .

It follows that the difference in quanto spreads of any two maturities is zero, implying
a flat term structure of quanto spreads.

C Details of asset valuation

C.1 Bonds

To derive closed-form solutions for the term structure of interest rates, we conjecture
that zero-coupon bond prices Qt,T are exponentially affine in the state vector ut

qt,T = logQt,T = −ÃT−t − B̃>T−tut.

Because the interest rate is an affine function of the state, rt = r̄ + δ>r ut, log-bond
prices are fully characterized by the cumulant-generating function of ut. The law of
iterated expectations implies that Qt,T satisfies the recursion

Qt,T = e−rtE∗tQt+1,T−1,

It can be shown that for all n = 0, 1 . . . , T − t, the scalar Ãn and components of the
column vector B̃n are given by

Ãn = Ãn−1 + r̄ + B̃>n−1µu −
1

2
B̃>n−1ΣuΣ

>
u B̃n−1

B̃>n = δ>r + B̃>n−1Φu,
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with initial conditions Ã0 = 0 and B̃0 = 0.

Then the yields are

yt,T = −(T − t)−1 logQt,T = AT−t +B>T−tut

with AT−t = −(T − t)−1ÃT−t and BT−t = −(T − t)−1B̃T−t.

C.2 Forward exchange rates

According to covered interest rate parity, a forward exchange rate with settlement
date T is equal to the expected future value of the exchange rate, i.e., Ft,T = E∗t [ST ].
Dividing each side of this equation by St, we can solve for the log ratio of the forward
to the spot exchange rate, log (Ft,T/St) = logE∗t

[
e∆st+T

]
. Thus, deriving closed-form

solutions for the log ratio of the forward to the spot exchange rates is akin to solving
for the cumulant-generating function of the depreciation rate.

We can use recursion techniques to derive analytical solutions for these expressions by
solving for log Λ̃j,t = logE∗t [St+j/St] . To evaluate the expressions for Λ̃, we conjecture
that the expression is (in the model without contagion) an affine function of the state
vector xt, i.e., log Λ̃j,t = Ãj + B̃>j xt. The law of iterated expectations implies that

Λ̃j,t satisfies the recursions Λ̃j,t = E∗t

[
(St+1/St) Λ̃j−1,t+1

]
, where the recursions start

at j = 0 for Λ̃j,t. It can be shown that for all j = 1, 2, . . . , T − t, the scalar Ãj and

components of the column vectors B̃j =
[
B̃>u,j, B̃

>
g,j

]>
are given by

Ãj = Ãj−1 + s̄∗ +
1

2
v̄∗ − h̄∗

[
θ∗

1 + θ∗

]
+
(
B̃u,j−1 + δ∗su

)>
µu

+
1

2

(
B̃u,j−1 + δ∗su

)>
Σu

(
B̃u,j−1 + δ∗su

)
−

Mg∑
l=1

νl log

(
1−

(
B̃gl,j−1 + δ∗sgl − δ

∗
wl

[
θ∗

1 + θ∗

])
c∗l

)
B̃u,j = Φ>u

[
B̃u,j−1 + δ∗su

]
B̃gi,j =

Mg∑
l=1

(
B̃gl,j−1 + δ∗sgl − δ∗wi

[
θ∗

1+θ∗

])
φ∗il

1−
(
B̃gl,j−1 + δ∗sgl − δ∗wi

[
θ∗

1+θ∗

])
c∗l

+
1

2
δ∗vi .

(D.1)

where we have indexed the sub-components of B̃g,j using an i subscript. The initial

condition for Λ̃ is given by log Λ̃0,t = A0 + B>0 xt, where the scalar A0 = 0 and the
column vector B0 = 0.
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C.3 CDS

The true implementation of CDS valuation extends Equation (14) by accounting for
accrual payments:

Cet,T = L ·

T−t∑
j=1

(Ψ̃j,t −Ψj,t)

(T−t)/∆∑
j=1

Ψj∆,t +
T−t∑
j=1

(
j
∆
− b j

∆
c
)

(Ψ̃j,t −Ψj,t)

,

where the floor function b·c rounds to the nearest lower integer. The law of iterated
expectations implies that Ψ̃j,t and Ψj,t satisfy the recursions

Ψ̃j,t = E∗t

[
Bt,t (1−Ht+1)

St+1

St
Ψ̃j−1,t+1

]
, Ψj,t = E∗t

[
Bt,t (1−Ht+1)

St+1

St
Ψj−1,t+1

]
,

starting at j = 1 for Ψ̃j,t and at j = 0 for Ψj,t. To evaluate the expressions for Ψ̃ and
Ψ, we conjecture that these expressions are exponentially affine functions of the state
vector xt. See Equation (17).

We define the column vectors B̃j =
[
B̃>u,j, B̃

>
g,j, B̃

>
d,j

]>
, with u = 1, 2, . . . ,Mu,

g = 1, 2, . . . ,Mg, and d = 1, 2, . . . ,Md. Next, the column vectors of ones with length
Mu, Mg, and Md are denoted by 1Mu , 1Mg , and 1Md

, respectively. Define the matrices

∆∗w =
[
δ∗1w , δ

∗2
w , . . . , δ

∗Mc
w

]
and ∆∗d =

[
δ∗1d , δ

∗2
d , . . . , δ

∗Mc
d

]
. Finally, we subdivide the vec-

tor δ∗s into sub-matrices δ∗>s =
[
δ∗>su , δ

∗>
sg , δ

∗>
sd

]
, for u = 1, 2, . . . ,Mu, g = 1, 2, . . . ,Mg,

and d = 1, 2, . . . ,Md. It can be shown that for each country k = 1, 2, . . . ,Mc and for
all j = 1, 2, . . . , T − t, the scalar Ãj and components of the column vectors B̃j are
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given by

Ãj = Ãj−1 − r̄ − h̄∗k + s̄∗ +
1

2
v̄∗ − h̄∗

[
θ∗

1 + θ∗

]
+
(
B̃u,j−1 + δ∗su

)>
µu

+
1

2

(
B̃u,j−1 + δ∗su

)>
ΣuΣ

>
u

(
B̃u,j−1 + δ∗su

)
+

[
B̃d,j−1 � H̄∗

1Md
− B̃d,j−1 � ρ∗

]>
· 1Md

−
(
ν � log

[
1Mg −

(
B̃g,j−1 + δ∗sg − δ∗kw − δ∗w �

[
θ∗

1 + θ∗

]
+

[
∆∗w

(
B̃d,j−1

1Md
− B̃d,j−1 � ρ∗

)])
� c∗

])>
· 1Mg

B̃u,j = Φ>u

[
B̃u,j−1 + δ∗su

]
− δr

B̃g,j = Φ∗>g

 B̃g,j−1 + δ∗sg − δ∗kw − δ∗w �
[

θ∗

1+θ∗

]
+
[
∆∗w

(
B̃d,j−1

1Md
−B̃d,j−1�ρ∗

)]
1Mg −

[
B̃g,j−1 + δ∗sg − δ∗kw − δ∗w �

[
θ∗

1+θ∗

]
+
[
∆∗w

(
B̃d,j−1

1Md
−B̃d,j−1�ρ∗

)]]
� c∗


+

1

2
δ∗v

B̃d,j = ∆∗>d

(
B̃d,j−1

1Md
− B̃d,j−1 � ρ∗

)
− δ∗kd − δ∗d �

[
θ

1 + θ

]
,

(E.1)

where � defines the Hadamard product for element-wise multiplication, and where
we slightly abuse notation as the division and log operators work element-by-element
when applied to vectors or matrices. The recursions for Ψ are identical. It is sufficient
to replace Ã· and B̃· by A· and B·, respectively.

The initial condition for Ψ̃ is given by

Ψ̃1,t = eÃ1+B̃>1 xt , (E.2)

where the scalar Ã1 and components of the column vectors B̃1 =
[
B̃>u,1, B̃

>
g,1, B̃

>
d,1

]>
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are given by

Ã1 = s̄∗ − r̄ + δ∗>su uu +
1

2
δ∗>su ΣuΣ

>
u δ
∗
su +

1

2
v̄∗

−
[
ν � log

(
1Mg −

(
δ∗sg − δ∗w �

[
θ∗

1 + θ∗

])
� c∗

)]>
· 1Mg − h̄∗

[
θ∗

1 + θ∗

]
B̃u,1 = Φ>u δ

∗
su − δr

B̃g,1 = Φ∗>g

(
δ∗sg − δ∗w �

[
θ∗

1+θ∗

]
1Mg −

(
δ∗sg − δ∗w �

[
θ∗

1+θ∗

])
� c∗

)
+

1

2
δ∗v

B̃d,1 = −δ∗d �
[

θ∗

1 + θ∗

]
.

(E.3)

The initial condition for Ψ is given by

Ψ0,t = eA0+B>0 xt , (E.4)

where the scalar A0 = 0 and the column vector B0 = 0.

The pricing equation for the USD-CDS spread is obtained in closed form by setting
St+j = 1 in all recursions.

D The affine pricing kernel

A multiperiod pricing kernel is a product of one-period ones: Mt,t+n = Mt,t+1·Mt+1,t+2·
. . . · Mt+n−1,t+n. In this section, we specify the pricing kernel and show how the
associated prices of risk modify the distribution of state xt.

The (log) pricing kernel is:

mt,t+1 = −rt − kt(−γx,t; εx,t+1)− kt(−1; zm,t+1)− γ>x,tεx,t+1 − zm,t+1,

where kt(s; et+1) = logEte
s·et+1 is the cumulant-generating function (cgf), and zm,t+1

is a jump process with intensity λt+1. The behavior of risk premiums is determined
by γx,t and the jump magnitude zm,t+1|jt+1.

In the case of factor ut, the risk premium is γu,t = Σ−1
u (γ̄u + δuut) implying

Φ∗u = Φu − δu, µ∗u = µu − γ̄u
with kt(−γu,t; εu,t+1) = γ>u,tγu,t/2. In the case of factor gt, the risk premium is γg,t = γ̄g
implying

φ∗ij = φij(1− γ̄gici)−2, c∗i = ci(1− γ̄gici)−1
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with

kt(−γg,t; ηg,t+1) = −
Mg∑
i=1

(
νi[log(1 + γgi,t)− γgi,tci] + γgi,t[(1 + γgi,tci)

−1 − 1]φ>i gt
)
.

See Le, Singleton, and Dai (2010).

In the case of jumps, the risk premium is

zm,t+1|jt+1 =
∑
k

−(hkt+1−h∗kt+1)−jkt+1 log h∗kt+1/h
k
t+1+jkt+1 log θ∗/θ+(θ∗−1−θ−1)·zs,t+1|jkt+1

implying a risk-adjusted jump zs,t+1 with Poisson arrival rate of λ∗t+1 =
∑

k h
∗k
t+1 and

magnitude zs,t+1|jt+1 ∼ Gamma (jt+1, θ
∗) . The corresponding cgf is kt(−1; zm,t+1) =

0.

Indeed, a Poisson mixture of gammas distribution implies arbitrary forms of risk
premiums without violating no-arbitrage conditions. To see this, first observe that

pt+1(zs|j) =
e−λt+1λjt+1

j!

1

Γ(j)θj
zj−1
s e−zs/θ.

Second, assume that the risk-adjusted distribution features an arbitrary arrival rate
λ∗t+1 and jump size mean θ∗ (this does not have to be a constant). Then

p∗t+1(zs|j) =
e−λ

∗
t+1λ∗jt+1

j!

1

Γ(j)θ∗j
zj−1
s e−zs/θ

∗
.

We characterize the ratio p∗t+1(z)/pt+1(z) via the moment-generating function (mgf) of
its log. First, we compute the expectation with respect to the jump-size distribution

h̃t+1(s; log p∗t+1(zs)/pt+1(zs)) = Et+1e
s log p∗t+1(zs)/pt+1(zs)

=
∞∑
j=0

e−λt+1λjt+1

j!
e(λt+1−λ∗t+1)+j log λ∗t+1/λt+1−j log θ∗/θ(1− sθ(θ−1 − θ∗−1))−j.

This functional form of the mgf reflects a Poisson mixture with intensity λt+1 and
magnitude zm|j = (λt+1−λ∗t+1) + jt+1 log λ∗t+1/λt+1− jt+1 log θ∗/θ− (θ∗−1−θ−1) · zs|j.
The expression could be simplified further:

h̃t+1(s; log p∗t+1(zs)/pt+1(zs)) =
∞∑
j=0

e−λ
∗
t+1

j!
[λ∗t+1θ/θ

∗(1− sθ(θ−1 − θ∗−1))−1]j

= eλ
∗
t+1(θ/θ∗(1−sθ(θ−1−θ∗−1))−1−1).
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Second, we obtain the mgf by computing the expectation with respect to the distri-
bution of the jump intensity:

ht(s; log p∗t+1(zs)/pt+1(zs)) = Eth̃t+1(s; log p∗t+1(zs)/pt+1(zs)) ≡ Ete
λ∗t+1f(s,θ,θ∗).

The cgf is

kt(s; log p∗t+1(zs)/pt+1(zs)) = logEte
λ∗t+1f(s,θ,θ∗) = kt(f(s, θ, θ∗), λ∗t+1).

Note that kt(−1; zm,t+1) corresponds to kt(1; log p∗t+1(zs)/pt+1(zs)), and f(1, θ, θ∗) = 0,
so kt(−1; zm,t+1) = 0.

E Details of the estimation

E.1 State-space representation

State transition equation

We consider three interest rate factors u1,t, u2,t, u3,t, three credit factors g1,t, g2,t, g3,t,
one volatility factor g4,t = vt, and one contagion factor dt u1,t+1

u2,t+1

u3,t+1


︸ ︷︷ ︸

ut+1

=

 µu1

µu2

µu3


︸ ︷︷ ︸

µu

+

 φu11 φu12 φu13

φu21 φu22 φu23

φu31 φu32 φu33


︸ ︷︷ ︸

Φu

 u1,t

u2,t

u3,t


︸ ︷︷ ︸

ut

+

 ηu1,t+1

ηu2,t+1

ηu3,t+1


︸ ︷︷ ︸

ηu,t+1
g1,t+1

g2,t+1

g3,t+1

g4,t+1


︸ ︷︷ ︸

gt+1

=


νg1cg1
νg2cg2
νg3cg3
νg4cg4


︸ ︷︷ ︸

µg

+


φg11 φg12 φg13 φg14

φg21 φg22 φg23 φg24

φg31 φg32 φg33 φg34

φg41 φg42 φg43 φg44


︸ ︷︷ ︸

Φg


g1,t

g2,t

g3,t

g4,t


︸ ︷︷ ︸

gt

+


ηg1,t+1

ηg2,t+1

ηg3,t+1

ηg4,t+1


︸ ︷︷ ︸

ηg,t+1

dt+1 = µd + δd,g

(
µg + Φggt + ηg,t+1

)
︸ ︷︷ ︸

gt+1

+Φddt + ηd,t+1
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where ηu,t ∼ N(0,ΣuΣ
′
u), ηg,t, ηd,t, ηλ,t represent a martingale difference sequence

(mean zero shock). In vector notation, the joint dynamics are ut+1

gt+1

dt+1


︸ ︷︷ ︸

xt+1

=

 µu
µg

µd + δd,gµg


︸ ︷︷ ︸

µx

+

 Φu 0 0
0 Φg 0
0 δd,gΦg Φd


︸ ︷︷ ︸

Φx

 ut
gt
dt


︸ ︷︷ ︸

xt

(G.1)

+

 1 0 0
0 1 0
0 δd,g 1


︸ ︷︷ ︸

Ωx

 ηu,t+1

ηg,t+1

ηd,t+1


︸ ︷︷ ︸

ηx,t+1

.

Here, we are assuming that we observe the sequence u1,1:T and u2,1:T . Note that
while µd, δd,g,Φd, which govern the true dynamics, are estimated freely, we impose
the following restrictions in the risk neutral dynamics.

µ∗d =
Mc∑
k=1

h̄∗,k, δ∗d,g =
[ ∑Mc

k=1 δ
∗,k
h,g1

∑Mc

k=1 δ
∗,k
h,g2

∑Mc

k=1 δ
∗,k
h,g3 0

]
, Φ∗d =

Mc∑
k=1

δ∗,kh,d.

Measurement equations

There are two forms of measurement equations. Denote observables in the first mea-
surement equation and the second measurement equation by y1,t and y2,t, respectively.
Define yt = {y1,t, y2,t} and Y1:t−1 = {y1, ..., yt−1}.

The first measurement equation consists of quanto spreads of six different maturities
for each country k

qskt =

{
qskt,1y, qs

k
t,3y, qs

k
t,5y, qs

k
t,7y, qs

k
t,10y, qs

k
t,15y

}>
,

and the log ratio of the forward to the spot exchange rate

fst =

{
fst,1w, fst,1m

}
,

and the log depreciation USD/EUR rate. To ease exposition, define

Ak1:T = {Ak1, ..., AkT}, Bk
1:T = {Bk

1 , ..., B
k
T}
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and Ãk1:T , B̃
k
1:T are defined similarly. The model-implied quanto spread is a nonlinear

function of the solution coefficients and the current and lagged states, which we
express as

qskt,T = Ξ(Ak1:T , B
k
1:T , Ã

k
1:T , B̃

k
1:T , xt).

Similarly, the model-implied log ratio of the forward to the spot exchange rate can
be expressed as

fst,T = Ξ(A1:T , B1:T , Ã1:T , B̃1:T , xt)

where the solution coefficients associated with the forward exchange rate valuation
are expressed without any superscript.

Put together, the first measurement equation becomes

y1,t =



qs1
t

...
qskt
...

qsMc
t

fst
∆st


=



Ξ(A1
1:15y, B

1
1:15y, Ã

1
1:15y, B̃

1
1:15y, xt)

...

Ξ(Ak1:15y, B
k
1:15y, Ã

k
1:15y, B̃

k
1:15y, xt)

...

Ξ(AMc
1:15y, B

Mc
1:15y, Ã

Mc
1:15y, B̃

Mc
1:15y, xt)

Ξ(A1w:1m, B1w:1m, Ã1w:1m, B̃1w:1m, xt)
s̄+ δ>s xt +

√
vt−1εs,t − zs,t


. (G.2)

The second measurement equation consists of credit events for each country ek,t

y2,t =

{
e1,t, ..., eMc,t

}
.

Instead of providing its measurement equation form, we directly express the likelihood
function below.

E.2 Implementation

Likelihood function

We exploit the conditional independence between y1,t and y2,t. We express
P (y1,t, y2,t|Y1:t−1,Θ)

=

∫
P (y1,t, y2,t|xt, Y1:t−1,Θ)P (xt|xt−1, Y1:t−1,Θ)P (xt−1|Y1:t−1,Θ)dxt−1 (G.3)

=

∫
P (y2,t|xt, Y1:t−1,Θ)︸ ︷︷ ︸

(A)

P (y1,t|xt, Y1:t−1,Θ)︸ ︷︷ ︸
(B)

P (xt|xt−1, Y1:t−1,Θ)︸ ︷︷ ︸
(C)

P (xt|Y1:t−1,Θ)dxt−1,
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where (C) can be deduced from (G.1).

The likelihood function corresponding to (A) in (G.3) can be written as

P (y1,t|xt, Y1:t−1,Θ) = (2π)−n1/2|V1|−1/2 exp

{
− 1

2
(y1,t − ŷ1,t)

>V −1
1 (y1,t − ŷ1,t)

}
(G.4)

where n1 is the dimensionality of the vector space, V1 is a measurement error variance
matrix, and ŷ1,t is from (G.2).

The likelihood function corresponding to (B) can be expressed as

P (y2,t|xt, Y1:t−1,Θ) = exp
(
−Mcλt

) Mc∏
i=k

{
ek,tλt + (1− ek,t)

}
,

following (Das, Duffie, Kapadia, and Saita, 2007).

Bayesian inference

For convenience, the parameters associated with the factors, hazard rates, exchange
rate, and defaults are collected in Θg, Θh, Θs, Θd, Θl, Θu, respectively.

Θg =

{
{φ∗g11, φ

∗
g21, φ

∗
g22, φ

∗
g31, φ

∗
g33, φ

∗
g44}, {φg11, φg21, φg22, φg31, φg33, φg44}, ...

{ν∗g1, ν∗g2, ν∗g3, ν∗g4}, {c∗g1, c∗g2, c∗g3, c∗g4}
}
,

Θh =

{
{h̄∗,1, δ∗,1h,g1, δ∗,1h,d}, {h̄∗,2, δ∗,2h,g1, δ∗,2h,g2, δ∗,2h,d}, {h̄∗,3, δ∗,3h,g1, δ∗,3h,g2, δ∗,3h,d}, ...

{h̄∗,4, δ∗,4h,g1, δ∗,4h,g3, δ∗,4h,d}, {h̄∗,5, δ∗,5h,g1, δ∗,5h,g3, δ∗,5h,d}, {h̄∗,6, δ∗,6h,g1, δ∗,6h,g3, δ∗,6h,d}, ...

{h̄∗,7, δ∗,7h,g1, δ∗,7h,g3, δ∗,7h,d}
}
,

Θs =

{
{s̄∗, δ∗s,3, δ∗s,7, θ∗}, {s̄, δs,3, δs,7, v̄, δv, θ}

}
,

Θd =

{
{µd, δd,g1}, {Φd, ρ

∗
d}
}
,

Θl =

{
L

}
,

Θu =

{
{µ∗u3, φ

∗
u33}, {φu33}

}
.

The number of parameters are as follows:
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• The model with contagion has a total of 65 parameters #Θg = 20,#Θh =
27,#Θs = 10,#Θd = 4,#Θl = 1,#Θu = 3.

• The model without contagion has a total of 56 parameters #Θg = 20,#Θh =

20,#Θs = 10,#Θd = 2,#Θl = 1,#Θu = 3. Here, we are removing δ∗,kh,d for
k ∈ {1, ..., 7} and {Φd, ρ

∗
d}.

It is important to mention that the following parameters associated with the interest
rate factors

Θu = {µ∗u1, µ
∗
u2, φ

∗
u11, φ

∗
u21, φ

∗
u22, r̄, δu1, δu2}

are not estimated and provided from the first stage interest rate estimation.
We use a Bayesian approach to make joint inference about parameters Θ =
{Θg,Θh,Θs,Θd,Θl,Θu} and the latent state vector xt in Equation (G.1). Bayesian
inference requires the specification of a prior distribution p(Θ) and the evaluation
of the likelihood function p(Y |Θ). Most of our priors are noninformative. We use
MCMC methods to generate a sequence of draws {Θ(j)}nsim

j=1 from the posterior dis-

tribution p(Θ|Y ) = p(Y |Θ)p(Θ)
p(Y )

. The numerical evaluation of the prior density and the

likelihood function p(Y |Θ) is done with the particle filter.

Given (A), (B), (C), we use a particle-filter approximation of the likelihood function
(G.3) and embed this approximation into a fairly standard random walk Metropolis
algorithm. See Herbst and Schorfheide (2016) for a review of the particle filter.

In the subsequent exposition we omit the dependence of all densities on the parameter
vector Θ. The particle filter approximates the sequence of distributions {p(xt|Y1:t)}Tt=1

by a set of pairs
{
x

(i)
t , π

(i)
t

}N
i=1

, where x
(i)
t is the ith particle vector, π

(i)
t is its weight,

and N is the number of particles. As a by-product, the filter produces a sequence of
likelihood approximations p̂(yt|Y1:t−1), t = 1, . . . , T .

• Initialization: We generate the particle values x
(i)
0 from the unconditional dis-

tribution. We set π
(i)
0 = 1/N for each i.

• Propagation of particles: We simulate (G.1) forward to generate x
(i)
t conditional

on x
(i)
t−1. We use q(xt|x(i)

t−1, yt) to represent the distribution from which we draw

x
(i)
t .

• Correction of particle weights: Define the unnormalized particle weights for
period t as

π̃
(i)
t = π

(i)
t−1 ×

p(yt|x(i)
t )p(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

t−1, yt)
.
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The term π
(i)
t−1 is the initial particle weight and the ratio

p(yt|x(i)t )p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1,yt)

is the

importance weight of the particle. The last equality follows from the fact that

we chose q(x
(i)
t |x(i)

t−1, yt) = p(x
(i)
t |x(i)

t−1).

The log likelihood function approximation is given by

log p̂(yt|Y1:t−1) = log p̂(yt−1|Y1:t−2) + log

(
N∑
i=1

π̃
(i)
t

)
.

• Resampling: Define the normalized weights

π
(i)
t =

π̃
(i)
t∑N

j=1 π̃
(j)
t

and generate N draws from the distribution {x(i)
t , π

(i)
t }Ni=1 using multinomial

resampling. In slight abuse of notation, we denote the resampled particles and

their weights also by x
(i)
t and π

(i)
t , where π

(i)
t = 1/N .

F Tables
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Table F1
Affine Term Structure Models of Sovereign Credit Spreads

Model Default Intensity FX Factors
Focus Components Components

Stu
dy

TS FX Quan
to

Hom
os

ce
das

tic

Het
er

os
ce

das
tic

Con
ta

gio
n

Hom
os

ce
das

tic

Het
er

os
ce

das
tic

Ext
r.

Evt
s

Cou
nt

ry

Com
m

on

Reg
ion

Jo
int

Est.

LGD

Monfort and Renne (2014) X X
Duffie et al. (2003) X X X
Hoerdahl and Tristani (2012) X X X X X X
Pan and Singleton (2008) X X X X
Longstaff et al. (2011) X∗ X X
Doshi et al. (2017) X X X X X
Zhang (2008) X X X X
Ang and Longstaff (2013) X∗ X X X X
Aı̈t-Sahalia et al. (2014) X∗∗ X X +

Benzoni et al. (2015) X X X X X
Carr and Wu (2007) X∗ X X X X X X X
Ehlers and Schönbucher (2004) X X X X X X
Brigo et al. (2016) X∗∗ X X X X X X
Monfort et al. (2017) X X X X X X X X X
Lando and Nielsen (2017) X X X X X X X X X

The present study X X X X X X X X X X X X X

Notes. This table summarizes the main affine term structure models proposed for the pricing of

sovereign credit spreads using intensity-based frameworks. We describe the focus of the paper,

which can encompass the term structure (TS), foreign exchange rates (FX), and CDS quantos

(Quanto). We also indicate the main model components of the default intensity, and, if applicable,

of the depreciation rate dynamics. We refer to the presence of homoscedastic or heteroscedastic

shocks, extreme events, and contagion. We further describe the type of risk factors, which can be

country-specific, regional, or common. We indicate whether the estimation is done jointly for all

countries, or on a country-by-country basis. + indicates that the estimation is done pairwise for two

countries. The ∗ refers to the fact that the estimation is performed on the short end of the term

structure, up to the 5-year maturity. ∗∗ denotes that the estimation considers only two maturity

segments, 5 and 10 years. LGD indicates whether a paper estimates the Loss Given Default.
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Table F2
Parameter estimates: Model of the OIS term structure

5% 50% 95% 5% 50% 95%

µ∗u1 0.1859 0.5208 0.8651 r̄ 0.0000 0.0001 0.0005
µ∗u2 -0.6540 -0.3636 0.0464 δu1 0.0009 0.0015 0.0022
µ∗u3 -0.2693 -0.1827 -0.1523 δu2 0.0014 0.0018 0.0027

φ∗u11 0.9985 0.9997 0.9999 φu11 0.7761 0.8928 0.9276
φ∗u12 - - - φu12 -0.1215 -0.0947 -0.0800
φ∗u21 -0.0035 -0.0026 -0.0020 φu21 0.0062 0.0098 0.0126
φ∗u22 0.9904 0.9918 0.9927 φu22 0.9780 0.9900 0.9919
φ∗u33 0.8735 0.9010 0.9324 φu33 0.8060 0.8768 0.9105

Notes. In this table, we report the parameter estimates for the OIS term structure. The model

is estimated using Bayesian MCMC. We report the posterior medians, as well as the 5th and 95th

percentiles of the posterior distribution. The sample period is August 20, 2010 to December 30,

2016. The data frequency is weekly, based on Wednesday rates.
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Table F3
Parameter estimates: Model without contagion

5% 50% 95% 5% 50% 95%

(A) factor dynamics

φ∗11 0.9989 0.9995 0.9999 φ11 0.9558 0.9881 0.9960
φ∗21 0.0045 0.0061 0.0066 φ21 -0.0506 -0.0307 0.0015
φ∗22 0.9971 0.9976 0.9990 φ22 0.9167 0.9894 0.9994
φ∗31 -0.0036 -0.0029 -0.0020 φ31 -0.0206 0.0540 0.1152
φ∗33 0.9970 0.9974 0.9986 φ33 0.8501 0.9321 0.9649
φ∗44 0.9937 0.9942 0.9949 φ44 0.9382 0.9744 0.9933

c∗1 0.0033 0.0045 0.0066 ν1 1.5963 1.7537 1.9147
c∗2 0.0119 0.0136 0.0157 ν2 1.8945 1.9870 2.1420
c∗3 0.0079 0.0096 0.0112 ν3 0.7970 0.8413 0.8918
c∗4 0.0061 0.0067 0.0073 ν4 2.5721 2.6969 2.8131

(B) hazard rates

10000× h̄∗1 0.3511 0.3841 0.4278 10000× h̄∗2 0.2451 0.3220 0.3637
δ∗1w1 0.0011 0.0014 0.0018 δ∗2w1 0.0001 0.0003 0.0005
- - - - δ∗2w2 0.0028 0.0032 0.0036

10000× h̄∗3 0.2741 0.3432 0.4029 10000× h̄∗4 0.0323 0.0950 0.1101
δ∗3w1 0.0001 0.0002 0.0005 δ∗4w1 0.0021 0.0027 0.0032
δ∗3w2 0.0019 0.0031 0.0037 δ∗4w3 0.0032 0.0044 0.0053

10000× h̄∗5 0.2134 0.2790 0.3234 10000× h̄∗6 0.1782 0.2341 0.2914
δ∗5w1 0.0041 0.0047 0.0056 δ∗6w1 0.0039 0.0059 0.0073
δ∗5w3 0.0007 0.0013 0.0020 δ∗6w3 0.0031 0.0037 0.0049

10000× h̄∗7 0.1847 0.4051 0.6735 - - - -
δ∗7w1 0.0008 0.0030 0.0058 - - - -
δ∗7w3 0.0024 0.0057 0.0083 - - - -

(C) loss given default

L 0.3504 0.4125 0.4981

(D) exchange rates

s̄∗ 0.0086 0.0090 0.0096 s̄ -0.0048 -0.0002 0.0009
δ∗s3 -0.0038 -0.0035 -0.0028 δs3 -0.0036 -0.0027 0.0003
δ∗s7 -0.0078 -0.0067 -0.0055 δs7 0.0005 0.0013 0.0015
- - - - v̄ 0.0001 0.0001 0.0002
- - - - δv 0.0000 0.0001 0.0002
θ∗ 0.1113 0.1353 0.1535 θ 0.0079 0.0093 0.0134

(E) default intensity

10000× h̄ 0.6120 0.7204 1.1729
δw1 0.0021 0.0031 0.0039

Notes. We report the parameter estimates for the CDS quanto model without contagion. We report

the posterior medians, as well as the 5th and 95th percentiles of the posterior distribution. The

superscripts in default intensity parameters 1−7 in Panel B refer to countries in the following order:

Germany, Belgium, France, Ireland, Italy, Spain, and Greece.
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Table F4
Parameter estimates: Model with contagion

5% 50% 95% 5% 50% 95%

(A) factor dynamics

φ∗11 0.9990 0.9995 0.9997 φ11 0.9672 0.9860 0.9949
φ∗21 0.0048 0.0050 0.0058 φ21 -0.0174 0.0387 0.0680
φ∗22 0.9975 0.9978 0.9983 φ22 0.8885 0.9670 0.9834
φ∗31 -0.0036 -0.0031 -0.0027 φ31 -0.0179 0.0367 0.0668
φ∗33 0.9972 0.9977 0.9984 φ33 0.8645 0.9298 0.9721
φ∗44 0.9965 0.9973 0.9991 φ44 0.9032 0.9642 0.9818

c∗1 0.0024 0.0046 0.0071 ν1 1.5750 1.7353 1.8813
c∗2 0.0091 0.0115 0.0137 ν2 1.8624 2.0072 2.1751
c∗3 0.0081 0.0091 0.0097 ν3 0.7774 0.8537 0.9423
c∗4 0.0064 0.0070 0.0076 ν4 2.4123 2.6558 2.9251

(B) hazard rates

10000× h̄∗1 0.2575 0.3161 0.4170 10000× h̄∗2 0.2230 0.3003 0.3809
δ∗1w1 0.0011 0.0014 0.0017 δ∗2w1 0.0000 0.0001 0.0002
- - - - δ∗2w2 0.0030 0.0036 0.0041
δ∗1d 0.0001 0.0018 0.0043 δ∗2d 0.0075 0.0102 0.0132

10000× h̄∗3 0.3029 0.4049 0.4739 10000× h̄∗4 0.0319 0.0859 0.1085
δ∗3w1 0.0001 0.0002 0.0005 δ∗4w1 0.0020 0.0026 0.0032
δ∗3w2 0.0020 0.0029 0.0037 δ∗4w3 0.0032 0.0043 0.0053
δ∗3d 0.0001 0.0027 0.0108 δ∗4d 0.0094 0.0122 0.0151

10000× h̄∗5 0.2074 0.2872 0.3143 10000× h̄∗6 0.1656 0.2262 0.3146
δ∗5w1 0.0037 0.0044 0.0055 δ∗6w1 0.0037 0.0048 0.0079
δ∗5w3 0.0010 0.0012 0.0019 δ∗6w3 0.0024 0.0035 0.0039
δ∗5d 0.0100 0.0144 0.0184 δ∗6d 0.0187 0.0249 0.0308
10000× h̄∗7 0.1574 0.3872 0.5543
δ∗7w1 0.0017 0.0027 0.0055
δ∗7w3 0.0020 0.0060 0.0074
δ∗7d 0.0164 0.0201 0.0233

(C) loss given default

L 0.3678 0.4352 0.5284

(D) exchange rates

s̄∗ 0.0067 0.0085 0.0089 s̄ -0.0041 -0.0002 0.0006
δ∗s3 -0.0045 -0.0033 -0.0020 δs3 -0.0035 -0.0026 0.0004
δ∗s7 -0.0105 -0.0069 -0.0050 δs7 -0.0002 0.0010 0.0014
- - - - v̄ 0.0000 0.0001 0.0002
- - - - δv 0.0001 0.0002 0.0003
θ∗ 0.0926 0.1512 0.1839 θ 0.0090 0.0102 0.0155

(E) default intensity

10000× h̄ 0.1002 0.8120 1.1222 ρ∗ 1.0619 1.4039 2.0572
δw1 0.0082 0.0094 0.0122 δd 0.0000 0.0002 0.0004

Notes. In this table, we report the parameter estimates for the CDS quanto model with contagion.

The model is estimated using Bayesian MCMC. We report the posterior medians, as well as the 5th

and 95th percentiles of the posterior distribution. In Panel A, we report estimates for the credit and

volatility factors. In Panel B we report estimates for the hazard rates. The superscripts in default

intensity parameters refer to countries in the following order: Germany, Belgium, France, Ireland,

Italy, Spain. In Panel C, we report estimates for the exchange rate dynamics. In Panel D, we report

estimates for the aggregate physical default intensity.
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Table F5
Model comparison

With contagion Without contagion
5% 50% 95% 5% 50% 95%

ln p(Y |Θ) 86014 86220 86450 85948 86198 86435
BIC -86224 -85994 -85788 -86241 -86004 -85754

Notes. In this table, we report the distributions of the likelihoods of both models, and the associated

Bayesian Information Criteria (negative of the likelihood plus penalty for the number of parameters).

The model is estimated using Bayesian MCMC. We report the posterior medians, as well as the 5th

and 95th percentiles of the posterior distribution. The model with the lowest Bayesian Information

Criterion (BIC) is preferred.
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G Figures

Figure G1
Time series of the OIS interest rates
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Notes. The Figure displays weekly zero-coupon rates bootstrapped from the term structure of

overnight indexed and interest rate swaps. The sample period is August 20, 2010 through December

30, 2016.
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Figure G2
Time series of credit events
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Notes. These figures depict the time series of credit events for 16 Eurozone countries that have a

minimum of 365 days of non-zero information on USD-EUR quanto CDS spreads. Greece is omitted

from this figure. In the absence of true credit events, we define them as occurrences when a 5-year

quanto spread is above the 99th percentile of the country-specific distribution of quanto spread

changes. The sample period is August 20, 2010 to December 30, 2016.
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Figure G3
Greece

(A) CDS premium (B) Quanto spread
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(C) Model-implied quanto spread (D) Model-implied default intensity
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Notes. In these figures, we plot the observed USD denominated CDS premium for Greece (A), the

observed and model-implied USD/EUR quanto spreads for Greece (B and C). We report values for

maturities of 5y. Gray lines represent posterior medians of quanto spreads and gray-shaded areas

correspond to 90% credible intervals. The true quanto spreads are plotted with black-circled lines.

In Panel D, we provide an illustration of the model-implied default intensity for Greece. The sample

period is August 20, 2010 to December 30, 2016.
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