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1 Introduction

The question of whether to base incentives on agents’ actions or the outcomes of these actions

arises in various contexts. Perhaps most prominently, scholars and policymakers have long

debated on the merits of using instruments vs. targets for monetary policy. The US House

of Representatives and several notable economists support the use of a Taylor (1993) rule

that guides the interest rate choice of the central bank,1 whereas numerous central banks such

as the Bank of England and the Bank of Canada rely on inflation targeting rules that are

based on outcomes.2 Fiscal policy rules also vary in this dimension, with some US states

constraining instruments like tax rates and spending and others using rules contingent on tar-

gets like deficits.3 More recently, these considerations have received attention in the design

of environmental policies. Environmental regulation may focus on technology mandates—

requirements on firms’ production processes, such as the choice of equipment—or on perfor-

mance standards—requirements on output, such as maximum emission rates.4,5

In this paper, we develop a stylized model to study and compare instrument-based and

target-based rules. Using mechanism design, we present a simple theory that elucidates the

benefits of each class of rule and shows which class will be preferred as a function of the envi-

ronment. Additionally, we characterize the optimal unconstrained or hybrid rule and examine

how combining instruments and targets can improve welfare.

Our model builds on a canonical delegation framework. A principal delegates decision-

making to an agent who is biased towards higher actions. The agent’s action is observable, but

the agent has private information about its value, with a higher agent type corresponding to a

higher expected marginal benefit of the action for both the principal and the agent. We extend

this delegation setting by introducing an observable noisy outcome that is a function of the

agent’s action and his private information. For example, the agent may be a policymaker who

is biased towards expansionary monetary policy relative to society, and the outcome is inflation

which depends on the choice of policy and the realization of economic shocks about which the

1The Financial Choice Act of 2017 passed by the US House of Representatives requires the Federal Reserve
to report on a rule to Congress. For discussions for and against Taylor rules, see Svensson (2003), Appelbaum
(2014), Blinder (2014), Taylor (2014), Bernanke (2015), and the Statement on Policy Rules Legislation signed
by a number of economists, available at http://web.stanford.edu/~johntayl/2016_pdfs/Statement_on_

Policy_Rules_Legislation_2-29-2016.pdf.
2See Bernanke and Mishkin (1997), Bernanke et al. (1999), Mishkin (1999), Svensson (2003), and Mishkin

(2017) for discussions of inflation targeting regimes.
3See National Conference of State Legislatures (1999).
4See for example US Congress, Office of Technology Assessment (1995) and Goulder and Parry (2008).
5These issues are also relevant to organizations, where for example promotion and firing policies may be

informed by both workers’ decisions and their performance.
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agent has ex-ante private information. Due to his bias, the agent’s preferred outcome exceeds

that of the principal.6

As is standard in delegation settings, transfers between the parties are infeasible, but the

principal can make use of joint punishments as incentives. That is, the principal can engage

in “money burning” by taking measures that mutually harm the principal and the agent, like

imposing sanctions or firing the agent. We distinguish between different classes of rules depend-

ing on how punishments are structured: we say that the principal’s rule is instrument-based

if punishments depend only on the agent’s action, and the rule is target-based if punishments

depend only on the realized outcome. In the context of monetary policy, an instrument-based

rule conditions punishments on the choice of policy, whereas a target-based rule conditions

punishments on realized inflation.

We begin by showing that, within each class, an optimal rule takes a threshold form,

with violation of the threshold leading to the worst punishment. In the case of an optimal

instrument-based rule, the principal allows the agent to choose any action up to a threshold

and maximally punishes him for exceeding it. The logic is analogous to that in other delegation

models; since the agent prefers higher actions than the principal, this punishment structure

is optimal to deter the agent from taking actions that are excessively high. In the case of an

optimal target-based rule, the principal specifies a threshold for the outcome, maximally pun-

ishing the agent if the realized outcome is above it. This punishment structure also incentivizes

the agent to not choose excessively high actions, as these actions result in higher outcomes in

expectation. High-powered incentives of this form are common in moral hazard settings with

hidden action.7

Our main result uses this characterization of the optimal rules for each class to compare

their performance. We show that target-based rules dominate instrument-based rules if and

only if the agent’s private information is sufficiently precise. To illustrate, suppose that the

agent’s information is perfect. Then the principal guarantees her preferred action by providing

steep incentives under a target-based rule, where punishments do not occur on path because

the perfectly informed agent chooses the action that delivers the target outcome. This target-

based rule strictly dominates any instrument-based rule, as the latter cannot incentivize the

agent while giving him enough flexibility to respond to his information. At the other extreme,

suppose that the agent has no private information. Then the principal guarantees her ex-ante

preferred action with an instrument-based rule that ties the hands of the agent, namely that

6Our analysis is unchanged if the agent instead prefers lower outcomes than the principal.
7See Abreu, Pearce, and Stacchetti (1990). Here these incentives arise because punishments cannot depend

directly on the agent’s action under a target-based rule.

2



punishes the agent if any higher action is chosen. This instrument-based rule strictly dominates

any target-based rule, as the latter gives the agent unnecessary discretion and requires on-path

punishments to provide incentives.

We prove that this result holds more generally as we vary the precision of the agent’s private

information away from the extremes of perfect and no information. Furthermore, we show that

the benefit of using a target-based rule over an instrument-based rule is decreasing in the bias

of the agent and increasing in the severity of punishment. Intuitively, the less biased is the

agent, the less costly is incentive provision under a target-based rule, as the principal can deter

the agent from choosing high actions with less frequent punishments. Similarly, the harsher is

the punishment imposed on the agent for missing the target, the less often the principal needs

to exercise punishment on path to implement a target outcome. These two forces therefore

make target-based rules more appealing than instrument-based rules on the margin.

A natural question is how the principal can combine instruments and targets to improve

upon the above rules that rely exclusively on one of these tools. We study the optimal hybrid

rule, that is the optimal unconstrained rule in which punishments can depend freely on the

agent’s action and the realized outcome.8 We show that this rule admits a simple implementa-

tion: the principal sets an instrument threshold which is relaxed whenever a target threshold is

satisfied. The optimal hybrid rule dominates instrument-based rules by allowing the agent more

flexibility to choose high actions under a target-based criterion, and it dominates target-based

rules by more efficiently limiting the agent’s discretion with direct punishments. An example

of an optimal hybrid rule in the context of monetary policy would be a Taylor rule which,

whenever violated, switches to an inflation target. Notably, some policymakers and economists

advocated such an approach in the US in the aftermath of the Global Financial Crisis, when

the Federal Reserve’s policy deviated significantly from the Taylor rule but realized inflation

remained near the target.9

This paper is related to several literatures. First, the paper fits into the mechanism de-

sign literature that studies the tradeoff between commitment and flexibility in policymaking,

including Athey, Atkeson, and Kehoe (2005), Amador, Werning, and Angeletos (2006), and

Halac and Yared (2014, 2017a,b). Second, the paper contributes to an extensive literature on

delegation in principal-agent settings that builds on the insights of Holmström (1977, 1984).10

We extend the theoretical frameworks in both of these literatures by introducing an observable

outcome that partially reflects the agent’s information, and by studying incentives that condi-

8This rule yields the principal the highest welfare that she can achieve given the agent’s private information.
9See for example Yellen (2015, 2017).

10See Alonso and Matouschek (2008), Amador and Bagwell (2013), and Ambrus and Egorov (2017), among
others.
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tion on this outcome. Third, the paper relates to other theoretical literatures on optimal policy

design, including in the context of monetary policy where instruments and targets have been

analyzed.11 We contribute to this literature by characterizing rules as optimal mechanisms in

a private information setting and by contrasting incentive provision under each class of rule.12

2 Model

We consider a stylized model with a principal and an agent. The agent observes a signal

s ∈ {sL, sH}, which is the agent’s private information or type, and chooses an action µ ∈ R.

Given this action choice, an outcome π = µ− θ is realized, where θ ∈ R is a shock. A possible

interpretation is that the action µ is a policy instrument, such as the level of monetary policy

expansion; the shock θ is a stochastic macroeconomic fundamental, such as the level of economic

slack; and the outcome π is a payoff-relevant outcome, such as the level of inflation.

The agent’s signal is informative about the shock. Specifically, we assume that the condi-

tional distribution of the shock is normal with mean equal to the signal, i.e., θ|si ∼ N (si, σ2)

for i = L,H. The precision of the agent’s information is given by σ−1 > 0. We take sL = −∆

and sH = ∆ for some ∆ > 0 and assume that each signal occurs with equal probability. The

shock’s unconditional distribution is thus a mixture of two normal distributions with mean and

variance given by

E(θ) = 0 and V ar(θ) = σ2 + ∆2.

The principal observes the agent’s action µ and the realized shock θ (or equivalently the

realized outcome π). She cannot however deduce the agent’s private information si from these

observations, as the distribution of θ has full support over the entire real line for each si.

As is standard in settings of delegation, transfers between the principal and the agent are

not feasible. Instead, as a function of the action µ and the shock θ, the principal can commit

to a continuation value V (µ, θ) ∈ [V , V ], for some finite V and V . This continuation value

represents rewards and punishments such as sanctions or replacement of the agent.13

Denote by φ(z|z, σ2
z) the normal density of a variable z with mean z and variance σ2

z, and

11See for example Svensson (2010) and Giannoni and Woodford (2017). Models of monetary policy are
concerned with additional issues such as the role of inflationary expectations, which our paper does not consider.
Frankel and Kartik (2017) examine how inflationary expectations and thus equilibrium outcomes depend on
not only the amount but also the kind of information that a central bank has.

12Although the settings and analyses differ in many aspects, the paper also relates to some models of ca-
reer concerns for experts which study how the information a principal has affects reputational incentives and
efficiency. In particular, Prat (2005) distinguishes between information on actions and outcomes.

13Our assumption that the signal s is privately observed by the agent can equivalently be interpreted as a
restriction on these rewards and punishments, which cannot explicitly condition on the signal.
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by Φ(z|z, σ2
z) the corresponding normal cumulative distribution function. The agent’s expected

welfare conditional on information si and action µi, for i = L,H, is

∫ ∞
−∞

[
−(µi − θ − α)

2

2
+ V

(
µi, θ

)]
φ(θ|si, σ2)dθ, (1)

where α > 0. The principal’s expected welfare is

∑
i=L,H

1

2

∫ ∞
−∞

[
−(µi − θ)2

2
+ V

(
µi, θ

)]
φ(θ|si, σ2)dθ. (2)

The principal and the agent receive utility as a function of the observable outcome π = µ−θ
which is concave and single-peaked. For both the principal and the agent, the preferred action µ

that maximizes this utility is increasing in the shock θ. However, as captured by the parameter

α > 0, the agent is biased relative to the principal. For each signal si, the agent’s preferred

action, or flexible action, is equal to si+α (this follows from (1) since E(θ|si, σ2) = si). This level

exceeds the principal’s preferred action, or first-best action, which is equal to si. Therefore,

conditional on the signal, the agent always prefers a higher action than the principal. To

facilitate the exposition, we assume:

Assumption 1. α ≥ 2∆.

Assumption 1 is analogous to an assumption in Halac and Yared (2014), and its role is

to take agent types which are relatively “close” to each other, i.e. with ∆ relatively small.14

The implication of this assumption is that inducing the first-best action given the signal is not

incentive compatible for the agent. In particular, Assumption 1 yields

sL < sH ≤ sL + α < sH + α, (3)

so the agent’s flexible action si + α exceeds the first-best action under each signal.

As shown in (1)-(2), the principal and the agent can be jointly rewarded with a high

continuation value V (µ, θ) ∈
[
V , V

]
or jointly punished with a low such value. This common

continuation value captures the fact that incentivizing the agent is costly for the principal. We

assume that the principal has a sufficient breadth of incentives to use in her relationship with

the agent; specifically, our analysis in the next sections will assume:

Assumption 2. V − V ≥ α2

2φ(1|0, 1)
.

14In this sense, our results will not rely on a discrete distance between the types. See Section 5 for a discussion.
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We distinguish between different classes of rules according to how the principal structures

incentives. We say that a rule is instrument-based if the principal commits to a continua-

tion value V (µ, θ) which depends only on the action µ. A rule instead is target-based if the

continuation value V (µ, θ) depends only on the realized outcome π = µ − θ. Finally, if the

continuation value V (µ, θ) depends freely on µ and θ—and therefore freely on µ and π—we

say that the rule is hybrid.

We are interested in comparing the performance of these different classes of rules as the

environment changes. Our analysis will consider varying the precision of the agent’s private

information while holding fixed the mean and variance of the shock θ. At one extreme, we can

take σ →
√
V ar(θ) and ∆ → 0, so the agent is uninformed with signal sL = sH = 0. At the

other extreme, we can take σ → 0 and ∆→
√
V ar(θ), so the agent is perfectly informed with

signal si = θ.15 Note that since Assumption 1 holds for all feasible σ > 0 and ∆ > 0 given

V ar(θ) fixed, the assumption implies α ≥ 2
√
V ar(θ).

3 Instrument-Based and Target-Based Rules

3.1 Optimal Instrument-Based Rule

An instrument-based rule specifies an action µi for each agent type i = L,H and a continuation

value V (µ, θ) as a function of the action µ only. Let V i ≡ V (µi) for i = L,H. An optimal

instrument-based rule solves the following program:

max
µL,µH ,V L,V H

∑
i=L,H

1

2

∫ ∞
−∞

[
−(µi − θ)2

2
+ V i

]
φ(θ|si, σ2)dθ (4)

subject to, for i = L,H,∫ ∞
−∞

[
−(µi − θ − α)

2

2
+ V i

]
φ(θ|si, σ2)dθ ≥

∫ ∞
−∞

[
−(µ−i − θ − α)

2

2
+ V −i

]
φ(θ|si, σ2)dθ, (5)

∫ ∞
−∞

[
−(µi − θ − α)

2

2
+ V i

]
φ(θ|si, σ2)dθ ≥

∫ ∞
−∞

[
−(si − θ)2

2
+ V

]
φ(θ|si, σ2)dθ, (6)

V i ∈ [V , V ]. (7)

15In our setting, welfare under instrument-based and target-based rules depends only on the mean and vari-
ance of θ. This avoids additional complications stemming from the fact that higher moments of the distribution
of θ vary with σ and ∆.
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The constraints in (5) are the private information constraints, guaranteeing that an agent

of type i has no incentive to misrepresent his type and deviate privately to action µ−i. The

constraints in (6) are the enforcement constraints, guaranteeing that an agent of type i has

no incentive to deviate publicly to any action µ 6= µi. Without loss we specify the worst

punishment V for any such public (off-path) deviation, and thus the agent’s most profitable

deviation entails choosing his flexible action si +α, as reflected in (6). Finally, the constraints

in (7) guarantee that rewards and punishments are feasible.

Define a maximally-enforced instrument threshold µ∗ as a rule that specifies the maximal

reward V if the agent’s action is below a threshold µ∗ and the maximal punishment V if the

action exceeds this threshold. We find:

Proposition 1. The optimal instrument-based rule admits µL = µH = 0 and V L = V H = V .

This rule can be implemented with a maximally-enforced instrument threshold µ∗ = 0.

The optimal instrument-based rule assigns both agent types the action that maximizes the

principal’s ex-ante welfare. The agent is given no discretion, and punishments occur only off

path, if the agent were to publicly deviate to a different action.

To prove Proposition 1, we solve a relaxed version of (4)-(7) which ignores the private

information constraint (5) for the high type and the enforcement constraints (6) for both types.

We show that under Assumption 1, the solution to this relaxed problem entails no discretion,

and it thus satisfies (5). Moreover, Assumption 2 guarantees that (6) is also satisfied.

Proposition 1 is in line with the results of an extensive literature on delegation, which

provides conditions under which threshold delegation with no money burning is optimal. This

result extends to a continuum of agent types under some additional assumptions on the distri-

bution of types; see Amador, Werning, and Angeletos (2006) and Amador and Bagwell (2013)

among others. The analysis in Halac and Yared (2017b) is related in that it considers enforce-

ment constraints like those in (6) and shows the optimality of maximally-enforced thresholds,

where on- and off-path violations lead to the worst punishment. In our setting, enforcement

constraints are non-binding by Assumption 2, so punishments occur only off path. Halac and

Yared (2017b) study the issues that arise when the analog of this assumption is relaxed in their

context.

3.2 Optimal Target-Based Rule

A target-based rule specifies an action µi for each agent type i = L,H and a continuation value

V (µ, θ) as a function of the outcome π = µ− θ only. We denote such a continuation value by
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V (π), where note that V (π) is defined for π ∈ (−∞,∞) since θ is normally distributed. An

optimal target-based rule solves the following program:

max
µL,µH ,V (π)

∑
i=L,H

1

2

∫ ∞
−∞

[
−(µi − θ)2

2
+ V (µi − θ)

]
φ
(
θ|si, σ2

)
dθ (8)

subject to, for i = L,H,

µi ∈ arg max
µ

{∫ ∞
−∞

[
−(µ− θ − α)2

2
+ V (µ− θ)

]
φ
(
θ|si, σ2

)
dθ

}
, (9)

V (π) ∈
[
V , V

]
for all π. (10)

We restrict attention to rules in which V (π) is piecewise continuously differentiable. Note

that integration by substitution yields∫ ∞
−∞

V (µ− θ)φ
(
θ|si, σ2

)
dθ =

∫ ∞
−∞

V (π)φ
(
µ− si − π|0, σ2

)
dπ, (11)

where we have used the fact that φ (θ|s, σ2) = φ (θ − s|0, σ2) since φ (·) is the density of a

normal distribution. Using (11) to substitute in (9), action µi must satisfy the following first-

order condition of the agent:

α−
(
µi − si

)
+

∫ ∞
−∞

V (π)φ′
(
µi − si − π|0, σ2

)
dπ = 0 for i = L,H. (12)

Condition (12) is necessary for the rule to be incentive compatible. Its solution is µi =

si + κ for i = L,H and some κ R 0, where κ is independent of the agent’s type i. The

latter observation allows us to simplify the principal’s problem as welfare then also becomes

independent of i.

Define a maximally-enforced target threshold π∗ as a rule that specifies the maximal reward

V if the outcome is below a threshold π∗ and the maximal punishment V if the outcome exceeds

this threshold. We find:

Proposition 2. The optimal target-based rule admits µi = si + κ, V (π) = V if π ≤ π∗, and

V (π) = V if π > π∗, for i = L,H, some κ ∈ (0, α), and some π∗ > κ. This rule can be

implemented with a maximally-enforced target threshold π∗.

The optimal target-based rule provides incentives with a maximally-enforced target thresh-

old π∗. Since a higher action µ results in a higher outcome π in expectation, an agent of type

8



i responds to this target by choosing an action si + κ which is below his flexible action si + α.

In contrast to the optimal instrument-based rule, here punishment occurs along the equilib-

rium path whenever π > π∗, so as to appropriately incentivize the agent. Proposition 2 shows

that since punishment is costly, the principal limits its frequency by keeping the agent’s action

above the first-best action si. Moreover, it is shown that the induced average outcome is below

the target, namely E (π) = κ < π∗. A rule that yields E(π) = κ = π∗ would be suboptimal, as

it would entail punishing the agent half of the time (the frequency with which π would exceed

π∗). In the optimal rule, the realized outcome π exceeds π∗ less than half of the time so that

the principal punishes the agent less often.

To prove Proposition 2, we follow a first-order approach and solve a relaxed version of

(8)-(10) that replaces (9) with the agent’s first-order condition (12). We establish that the

solution to this relaxed problem takes the threshold form described above, and we show that

Assumption 1 and Assumption 2 are sufficient to guarantee the validity of this first-order

approach.16

High-powered incentives as those described in Proposition 2 are common in moral hazard

settings; see Abreu, Pearce, and Stacchetti (1990).17 These incentives arise here because

punishments cannot directly depend on the agent’s action under a target-based rule. We

note that the results of this section extend to a setting with a continuum of agent types: as

noted above, the agent’s first-order condition implies that the principal’s welfare is independent

of i, and hence also independent of the number of types.

3.3 Optimal Class of Rule

Our main result uses the characterizations in Proposition 1 and Proposition 2 to compare the

performance of instrument-based and target-based rules. We find that which class of rule is

optimal for the principal depends on the precision of the agent’s private information:

Proposition 3. Take instrument-based and target-based rules and consider changing σ while

keeping V ar(θ) unchanged. There exists σ∗ > 0 such that a target-based rule is strictly optimal

if σ < σ∗ and an instrument-based rule is strictly optimal if σ > σ∗. The cutoff σ∗ is decreasing

in the agent’s bias α and the worst continuation value V .

16We consider a doubly-relaxed problem that takes (12) as a weak inequality constraint (cf. Rogerson, 1985)
in order to establish the sign of the Lagrange multiplier on (12) and characterize the solution.

17Incentives are bang-bang because punishment enters the principal and agent’s welfare functions linearly
and the continuous outcome satisfies a monotone likelihood ratio condition. See Abreu, Pearce, and Stacchetti
(1990) for further discussion.
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To see the logic, consider first how the principal’s welfare under each class of rule changes as

we vary the precision of the agent’s information σ−1, while keeping the shock variance V ar(θ)

unchanged. Since the optimal instrument-based rule gives no flexibility to the agent to use

his private information, the principal’s welfare under this rule is invariant to σ. In fact, by

Proposition 1 and V ar(θ) = E(θ2) (since E(θ) = 0), the principal’s welfare under the optimal

instrument-based rule is given by

−V ar(θ)
2

+ V ,

independent of σ. In contrast, using Proposition 2, one can verify that the principal’s welfare

under the optimal target-based rule is decreasing in σ, that is increasing in the precision of

the agent’s information. Intuitively, a better informed agent can more closely tailor his action

to the shock, and is less likely to trigger punishment by overshooting the target specified by

the principal. As a result, a higher precision reduces the outcome volatility and the principal’s

cost of providing high-powered incentives under a target-based rule.

These comparative statics imply that to prove the first part of Proposition 3, it suffices to

show that a target-based rule is optimal for high enough precision of the agent’s information

whereas an instrument-based rule is optimal otherwise. Consider the extreme in which the

agent is perfectly informed, that is, σ → 0 and ∆ →
√
V ar(θ). In this case, the optimal

target-based rule sets a threshold π∗ = 0, providing steep incentives and inducing the first-best

action. Note that this rule involves no punishments along the equilibrium path, as a perfectly

informed agent of type i = L,H chooses µi = si to avoid punishment. Consequently, in this

limit case, the optimal target-based rule yields welfare

V > −V ar(θ)
2

+ V ,

and thus it dominates the optimal instrument-based rule.

Consider next the extreme in which the agent is uninformed, that is, σ →
√
V ar(θ) and

∆→ 0. In this case, the optimal instrument-based rule guarantees the principal her preferred

outcome given no information by tying the hands of the agent. Instead, the principal cannot

implement her ex-ante optimum with a target-based rule, which gives the agent unnecessary

discretion and requires punishments to provide incentives. The optimal target-based rule in

this limit case sets a threshold π∗ > 0, inducing an agent of type i = L,H to choose µi = si+κ

for κ > 0 and yielding welfare

−V ar(θ)
2

+ V − κ2

2
− Φ

(
κ− π∗|0, σ2

) (
V − V

)
< −V ar(θ)

2
+ V .
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Thus, this rule is dominated by the optimal instrument-based rule.

The second part of Proposition 3 shows that the benefit of using a target-based rule over

an instrument-based rule is decreasing in the bias of the agent and increasing in the severity

of punishment. The less biased is the agent, the less costly is incentive provision under a

target-based rule, as relatively infrequent punishments become sufficient to deter high actions.

Similarly, the harsher is the punishment experienced by the agent for missing the target, the

less often punishment needs to be used on the equilibrium path to provide incentives under a

target-based rule. In contrast, the optimal instrument-based rule is independent of the agent’s

bias and the severity of punishment. As such, target-based rules dominate instrument-based

rules for a larger range of parameters if the agent’s bias is relatively low or punishment is

relatively severe.

4 Hybrid Rules

A hybrid rule combines features of instrument-based and target-based rules, with a continuation

value V (µ, θ) that depends freely on µ and θ. For i = L,H, denote by V i (θ) the continuation

value assigned to agent type i as a function of the shock θ. An optimal hybrid rule solves the

following program:

max
µL,µH ,V L(θ),V H(θ)

∑
i=L,H

1

2

∫ ∞
−∞

[
−(µi − θ)2

2
+ V i (θ)

]
φ(θ|si, σ2)dθ (13)

subject to, for i = L,H,∫ ∞
−∞

[
−(µi − θ − α)

2

2
+ V i (θ)

]
φ(θ|si, σ2)dθ ≥

∫ ∞
−∞

[
−(µ−i − θ − α)

2

2
+ V −i (θ)

]
φ(θ|si, σ2)dθ,

(14)∫ ∞
−∞

[
−(µi − θ − α)

2

2
+ V i (θ)

]
φ(θ|si, σ2)dθ ≥

∫ ∞
−∞

[
−(si − θ)2

2
+ V

]
φ(θ|si, σ2)dθ, (15)

V i (θ) ∈ [V , V ] for all θ. (16)

The solution to this program gives the principal the highest welfare that she can achieve

given the private information of the agent. Note that constraints (14)-(15) are analogous to

(5)-(6) in the program that solves for the optimal instrument-based rule, but they now allow

the continuation value to depend on the shock θ in addition to the agent’s type i. Note also

11



that by analogous arguments as those used to solve for the optimal target-based rule, the

continuation value V i (θ) can be equivalently written as a function of the outcome, V i (π). We

use this formulation in what follows to ease the interpretation.

Define a maximally-enforced hybrid threshold {µ∗, µ∗∗, π∗ (µ)} as a rule that specifies the

maximal reward V if the outcome is below a threshold π∗(µ) and the maximal punishment V

if the outcome exceeds this threshold, where π∗(µ) is a function of the agent’s action:

π∗ (µ) =


∞
h (µ)

−∞

if µ ≤ µ∗

if µ ∈ (µ∗, µ∗∗]

if µ > µ∗∗
(17)

for some continuous function h (µ) ∈ (−∞,∞) which satisfies limµ↓µ∗ h (µ) = ∞. The cutoff

µ∗ is a soft instrument threshold, where any action µ ≤ µ∗ is rewarded independently of the

outcome with maximal reward V . The cutoff µ∗∗ > µ∗ is a hard instrument threshold, where

any action µ > µ∗∗ is punished independently of the outcome with maximal punishment V .

Intermediate actions µ ∈ (µ∗, µ∗∗] are maximally rewarded if the outcome satisfies π ≤ π∗ (µ)

and maximally punished if the outcome satisfies π > π∗ (µ). Therefore, an interior target

threshold only applies to intermediate actions.

We find:

Proposition 4. The optimal hybrid rule admits µL < µH , V L(π) = V for all π, V H(π) = V

if π ≤ π∗(µH), and V H(π) = V if π > π∗(µH), for some π∗(µH) ∈ (−∞,∞). This rule can be

implemented with a maximally-enforced hybrid threshold {µ∗, µ∗∗, π∗(µ)}, where µ∗ = µL and

µ∗∗ = µH .

The optimal hybrid rule assigns a relatively low action and the maximal reward to the low

type, while specifying a higher action and a target threshold for the high type. To prove this

result, we solve a relaxed version of (13)-(16) which ignores the information constraint (14)

for the high type and the enforcement constraints (16) for both types. We establish that the

solution to this relaxed problem takes the form described in Proposition 4 and satisfies these

constraints.

The optimal hybrid rule dominates instrument-based rules by giving the agent more flex-

ibility to respond to his private information while preserving incentives. Specifically, under a

hybrid rule, the principal can allow the agent to choose actions µ > µ∗ and still deter excessively

high actions by using a target-based criterion. Analogously, the optimal hybrid rule dominates

target-based rules by more efficiently limiting the agent’s discretion to choose actions that are

excessively high. That is, under a hybrid rule, the principal can avoid punishments under

12



actions µ ≤ µ∗ and directly punish the agent for actions µ > µ∗∗, regardless of the realized

outcome. As a result, a hybrid rule allows the principal to reduce the frequency of punishment

along the equilibrium path.

While combining instruments and targets could in principle yield rules with complicated

forms, Proposition 4 shows that the optimal hybrid rule admits an intuitive implementation.

This rule essentially consists of an instrument threshold µ∗ which is relaxed to µ∗∗ whenever

the target threshold is satisfied. As noted in the Introduction, rules of this form have been

advocated in practice in the context of monetary policy.

5 Concluding Remarks

Using mechanism design, we have characterized optimal instrument-based and target-based

rules, studied the conditions under which each class is optimal, and characterized the optimal

hybrid rule that combines instruments and targets. As discussed in the Introduction, our

results may shed light on a number of applications. For example, in the context of monetary

policy, our analysis implies that inflation targeting should be adopted if the central bank has

significantly superior information relative to the public; otherwise a Taylor rule would perform

better. We found that inflation targeting has a larger advantage over Taylor rules if the central

bank’s inflationary bias is relatively small or the sanctions that can be imposed for missing

the inflation target are relatively large. Furthermore, we have shown that an optimal hybrid

rule would guide the choice of the interest rate as in a Taylor rule but relax these requirements

when realized inflation satisfies some specified target, similar to the measures proposed by

policymakers in the aftermath of the Global Financial Crisis.

We considered a stylized model that could be extended in different directions. First, while

we have limited attention to two agent types, one can show that our main insights continue

to hold under a continuum of types. As discussed in Section 3, given certain distributional

assumptions, the optimal instrument-based and target-based rules continue to take a threshold

form, and under suitably modified versions of our Assumption 1 and Assumption 2, the analogs

of Proposition 1 and Proposition 2 continue to hold.18 Consequently, our result in Proposition 3,

on when one class of rule dominates the other, applies to a continuum of types.

A second possible extension would be to relax our assumption of a common continuation

value, capturing the fact that, in reality, sanctions may harm the agent more than the principal.

18The equivalent of Assumption 1 would guarantee that the agent’s bias is sufficiently large so that the
optimal instrument-based rule—assuming full enforcement—admits bunching. The equivalent of Assumption 2
would guarantee that enforcement constraints are non-binding in the instrument-based rule.
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Specifically, consider multiplying the continuation value V (µi, θ) in the agent’s welfare function

(1) by a finite constant c > 1, similar to the “leaky bucket” setting studied by Amador and

Bagwell (2013). We can show that for an agent bias α large enough relative to c, the optimal

instrument-based rule continues to be a maximally-enforced instrument threshold with no pun-

ishments on path, and thus the principal’s welfare under this rule is unchanged by c. Moreover,

the optimal target-based rule continues to be a maximally-enforced target threshold, and since

raising c relaxes the principal’s problem, her welfare in this case increases.19 Therefore, we find

that our main results extend, with asymmetric punishments favoring target-based rules over

instrument-based rules on the margin.

Finally, a third extension could consider an agent bias that is unknown to the principal and

may take different signs. In the application to monetary policy, central bankers may be biased

in favor or against inflation relative to society, and their preferences may not be public. Under

assumptions analogous to our Assumption 1 and Assumption 2, an instrument-based rule that

bunches all agent types regardless of their bias would be optimal, so our characterization in

Proposition 1 would remain valid. A characterization of the optimal target-based rule, on the

other hand, would have to deal with the problem that assigned actions may now depend on

the agent’s bias. We leave this question for future research.
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A Appendix

A.1 Proof of Proposition 1

We proceed in three steps.

Step 1. We solve a relaxed version of (4)-(7) which ignores (5) for i = H and (6) for i = L,H.

Step 2 verifies that the solution to this relaxed problem satisfies these constraints.

Step 1a. We show that the solution satisfies (5) for i = L as an equality. If this were not the

case, then the principal would optimally set µi = si and V i = V for i = L,H. However, (5)

for i = L would then become∫ ∞
−∞

[
−
((
sL − θ

)
− α

)2
2

]
φ
(
θ|sL, σ2

)
dθ ≥

∫ ∞
−∞

[
−
((
sL − θ

)
+
(
sH − sL − α

))2
2

]
φ
(
θ|sL, σ2

)
dθ,

which after some algebra yields

(
sH − sL

) (
sH − sL − 2α

)
≥ 0.

This inequality contradicts Assumption 1. Thus, (5) for i = L must bind.

Step 1b. We show that the solution satisfies µH ≥ µL. Suppose by contradiction that µH < µL.

Consider two perturbations, one assigning µL and V to both types, and another assigning µH

and V to both types. Since these perturbations are feasible and incentive compatible, the

contradiction assumption requires that neither of them strictly increase welfare, which requires:

sHµH − (µH)2

2
≥ sHµL − (µL)2

2
and sLµL − (µL)2

2
≥ sLµH − (µH)2

2
.

This is equivalent to

(
µH − µL

) [
sH −

(
µH + µL

)
2

]
≥ 0 and

(
µH − µL

) [
sL −

(
µH + µL

)
2

]
≤ 0.

For µH < µL, these inequalities require

sH −
(
µH + µL

)
2

≤ 0 ≤ sL −
(
µH + µL

)
2

,

which cannot hold given sH > sL. Therefore, µH ≥ µL.
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Step 1c. We show that the solution satisfies V L = V H = V . Note first that if V L < V , then an

increase in V L is feasible, relaxes constraint (5) for i = L, and strictly increases the objective.

Hence, V L = V , and therefore (5) for i = L (which binds by Step 1a) can be rewritten as:

(
sL + α

)
µL − (µL)2

2
+ V =

(
sL + α

)
µH − (µH)2

2
+ V H . (18)

This equation implies that, up to an additive constant independent of the allocation, the high

type’s welfare satisfies

(
sH + α

)
µH − (µH)2

2
+ V H =

(
sL + α

)
µL − (µL)2

2
+ V +

(
sH − sL

)
µH . (19)

Now suppose by contradiction that V H < V . Then it follows from (18) and Step 1b that

µH > µL. Substituting (19) into the objective in (4), the principal’s welfare up to an additive

constant independent of the allocation is equal to(
sL +

1

2
α

)
µL − (µL)2

2
− 1

2

(
α−

(
sH − sL

))
µH + V . (20)

Consider a perturbation that reduces µH to µL and increases V H to V . This perturbation is

feasible, satisfies (18), and strictly increases the principal’s welfare given the representation in

(20) and Assumption 1. It follows that V H < V cannot hold, and thus V H = V in the solution.

Step 1d. We show that the solution satisfies µL = µH = 0. By Step 1b, if µL 6= µH , then

µH > µL. However, a perturbation that reduces µH to µL is then feasible, satisfies (18), and

strictly increases the principal’s welfare given the representation in (20) and Assumption 1,

yielding a contradiction. It follows that µL = µH , and since E(θ) = 0, the principal’s welfare

in (4) conditional on µL = µH is maximized at µL = µH = 0.

Step 2. We verify that the solution to the relaxed problem in Step 1 satisfies the constraints

of the original problem. Since µL = µH and V L = V H , constraint (5) for i = H is satisfied. As

for the constraints in (6), given µL = µH = 0 these require, for i = L,H,

V ≥
(
si + α

) (
si + α

)
− (si + α)2

2
+ V ,

which reduces to

V − V ≥ (si + α)
2

2
.
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By Assumption 1, this inequality holds for i = L,H if

V − V ≥ α2/4 + α2 + α2

2
,

which is satisfied by Assumption 2 and the fact that 2φ(1|0, 1) < 0.5.

Step 3. We verify that a maximally-enforced instrument threshold µ∗ = 0 implements the

solution. Given (1) and (3), conditional on choosing an action µ ≤ µ∗ and receiving contin-

uation value V , the agent’s optimal action choice is µ = µ∗ regardless of his type. Moreover,

conditional on choosing an action µ > µ∗ and receiving continuation value V , the agent’s opti-

mal choice is si + α for each i = L,H. The enforcement constraints in (6) guarantee that the

agent has no incentive to deviate to µ > µ∗.

A.2 Proof of Proposition 2

We proceed in two steps.

Step 1. We follow a first-order approach by solving a relaxed version of (8)-(10) that replaces

(9) with the agent’s first-order condition (12). Step 2 verifies the validity of this approach.

As noted in the text, the solution to (12) is µi = si + κ for i = L,H and some κ R 0.

Hence, the relaxed problem can be written as:

max
κ,V (π)

{
−κ

2

2
+

∫ ∞
−∞

V (π)φ(κ− π|0, σ2)dπ

}
(21)

subject to

α− κ+

∫ ∞
−∞

V (π)φ′(κ− π|0, σ2)dπ = 0, (22)

V (π) ∈
[
V , V

]
for all π. (23)

Step 1a. Denote by λ the Lagrange multiplier on (22). We show that λ < 0. To do this,

we consider a doubly-relaxed problem in which constraint (22) is replaced with an inequality

constraint (cf. Rogerson, 1985):

α− κ+

∫ ∞
−∞

V (π)φ′(κ− π|0, σ2)dπ ≤ 0. (24)
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Since this is an inequality constraint, the multiplier satisfies λ ≤ 0. We show that (24) holds as

an equality in the solution to the doubly-relaxed problem, and thus this problem is equivalent

to (21)-(23) with λ < 0. Suppose by contradiction that (24) holds as a strict inequality. Then

to maximize (21) the principal chooses κ = 0 and V (π) = V for all π. However, substituting

back into the left-hand side of (24), using the fact that φ′(κ − π|0, σ2) = π−κ
σ2 φ (κ− π|0, σ2),

yields

α + V

∫ ∞
−∞

π

σ2
φ(−π|0, σ2)dπ = α ≤ 0,

which is a contradiction since α > 0. Therefore, (24) holds as an equality in the doubly-relaxed

problem and λ < 0.

Step 1b. We show that the solution to (21)-(23) satisfies V (π) = V if π ≤ π∗ and V (π) = V if

π > π∗, for some π∗ ∈ (−∞,∞). Denote by ψ (π) and ψ (π) the Lagrange multipliers on the

upper bounds and the lower bounds on V (π). The first-order condition with respect to V (π)

is

φ(κ− π|0, σ2) + λφ′(κ− π|0, σ2) + ψ (π)− ψ (π) = 0. (25)

Suppose that V (π) is interior with ψ (π) = ψ (π) = 0. Then (25) yields

− 1

λ
=
φ′(κ− π|0, σ2)

φ(κ− π|0, σ2)
=
π − κ
σ2

. (26)

Since the right-hand side of (26) is strictly increasing in π whereas the left-hand side is constant,

it follows that (26) holds for only one value of π ∈ (−∞,∞), which we label π∗. By (25) and

(26), the solution has V (π) = V if π ≤ π∗ and V (π) = V if π > π∗.

Step 1c. We show that π∗ > κ and κ ∈ (0, α). To show the first inequality, recall from Step

1a that λ < 0; hence, (26) yields π∗ > κ. To show κ < α, note that by Step 1b, (22) can be

rewritten as

α− κ− φ
(
κ− π∗|0, σ2

) (
V − V

)
= 0. (27)

Since φ (κ− π∗|0, σ2)
(
V − V

)
> 0, (27) requires κ < α.

We are left to show that κ > 0. By Step 1b, we can write the Lagrangian of the principal

solving for the optimal level of κ and π∗ as

−κ
2

2
+
(
1− Φ(κ− π∗|0, σ2

)
)V + Φ(κ− π∗|0, σ2)V (28)

+λ
[
α− κ− φ(κ− π∗|0, σ2)

(
V − V

)]
.
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The first-order condition with respect to κ is

− κ− φ(κ− π∗|0, σ2)
(
V − V

)
− λ

[
1 + φ′(κ− π∗|0, σ2)

(
V − V

)]
= 0, (29)

and the first-order condition with respect to π∗ is

φ(κ− π∗|0, σ2)
(
V − V

)
+ λφ′(κ− π∗|0, σ2)

(
V − V

)
= 0. (30)

Substituting (30) into (29) yields

− λ = κ. (31)

Since λ < 0 by Step 1a, (31) implies κ > 0.

Step 2. We verify the validity of the first-order approach: we establish that the choice of κ

in the relaxed problem satisfies (9) and therefore corresponds to the agent’s global optimum.

Step 2a. We begin by showing that the agent has no incentive to choose some κ′ 6= κ, κ′ ≤ π∗.

Differentiating the first-order condition (27) with respect to κ yields

− 1− φ′(κ− π∗|0, σ2)
(
V − V

)
. (32)

Note that (32) is strictly negative for all κ ≤ π∗, and thus the agent’s welfare is strictly concave

over this range. Since by Step 1c the solution to the relaxed problem sets κ < π∗, we conclude

that this κ is a maximum and dominates any other κ′ ≤ π∗.

Step 2b. We next show that the agent has no incentive to choose some κ′ 6= κ, κ′ > π∗. To

prove this, we first establish that in the solution to the relaxed problem, given π∗, κ satisfies

κ − π∗ ≤ −σ. Suppose by contradiction that κ − π∗ > −σ. Note that by (26) and (31),

κ−π∗ = −σ2

κ
. Hence, the contradiction assumption implies κ > σ. Substituting κ−π∗ = −σ2

κ

into (27) yields

α− κ− φ
(
−σ

2

κ
|0, σ2

)(
V − V

)
= 0. (33)

Since the left-hand side of (33) is decreasing in κ and (by the contradiction assumption) κ > σ,

(33) requires

α− σ − φ
(
−σ|0, σ2

) (
V − V

)
> 0.
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Multiply both sides of this equation by σ > 0 to obtain:

σ(α− σ)− σφ
(
−σ|0, σ2

) (
V − V

)
> 0. (34)

Note that since 0 < σ <
√
V ar(θ) and, by Assumption 1,

√
V ar(θ) ≤ α/2, we have

σ (α− σ) < α2/2. Hence, (34) yields

α2

2σφ (−σ|0, σ2)
> V − V . (35)

However, this inequality violates Assumption 2 since σφ (−σ|0, σ2) = φ (1|0, 1). Thus, given

π∗, κ satisfies κ− π∗ ≤ −σ.

We can now establish that the agent has no incentive to deviate to κ′ 6= κ, κ′ > π∗. Consider

some κ′ > π∗ that is a local maximum for the agent. The difference in welfare for the agent

from choosing the value of κ given by the solution to the relaxed problem versus κ′ is equal to

ακ− κ2

2
−
(
ακ′ − (κ′)2

2

)
+
(
Φ
(
κ′ − π∗|0, σ2

)
− Φ

(
κ− π∗|0, σ2

)) (
V − V

)
. (36)

Note that by the arguments in Step 1c and κ and κ′ satisfying the agent’s first-order condition,

it follows that both κ and κ′ are between 0 and α. Thus, (36) is bounded from below by

− α2

2
+
(
Φ
(
κ′ − π∗|0, σ2

)
− Φ

(
κ− π∗|0, σ2

)) (
V − V

)
. (37)

Since (27) is satisfied for both κ and κ′ and κ′ > π∗ > κ, we must have φ (κ− π∗|0, σ2) >

φ (κ′ − π∗|0, σ2). Moreover, by the symmetry of the normal distribution, φ (κ− π∗|0, σ2) =

φ (− (κ− π∗) |0, σ2) and thus Φ (− (κ− π∗) |0, σ2) < Φ (κ′ − π∗|0, σ2). Therefore, (37) is bounded

from below by

− α2

2
+
(
Φ
(
− (κ− π∗) |0, σ2

)
− Φ

(
κ− π∗|0, σ2

)) (
V − V

)
. (38)

Since, as shown above, κ− π∗ ≤ −σ, we obtain that (38) is itself bounded from below by

−α
2

2
+
(
Φ
(
σ|0, σ2

)
− Φ

(
−σ|0, σ2

)) (
V − V

)
= −α

2

2
+ (Φ (1|0, 1)− Φ (−1|0, 1))

(
V − V

)
> 0,

where the last inequality follows from Assumption 2 and the fact that φ (1|0, 1) < Φ (1|0, 1)−
Φ (−1|0, 1). Therefore, the agent strictly prefers κ over κ′.
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A.3 Proof of Proposition 3

We begin by proving the following lemma:

Lemma 1. Consider changing σ while keeping V ar(θ) unchanged. The principal’s welfare is

independent of σ under the optimal instrument-based rule and it is strictly decreasing in σ

under the optimal target-based rule.

Proof. By Proposition 1, an optimal instrument-based rule sets µi = 0 and V i = V for i = L,H.

Since V ar(θ) = E(θ2)− (E(θ))2 = E(θ2) (by E(θ) = 0), the principal’s welfare under this rule

is equal to −V ar(θ)
2

+ V , which is independent of σ.

To evaluate the principal’s welfare under an optimal target-based rule, consider the La-

grangian taking into account the conditional variance term (which is exogenous and thus ex-

cluded from (28)):

−σ
2

2
− κ2

2
+
(
1− Φ(κ− π∗|0, σ2

)
)V + Φ(κ− π∗|0, σ2)V

+λ
[
α− κ− φ(κ− π∗|0, σ2)

(
V − V

)]
.

The derivative with respect to σ is:

−σ +
(
V − V

) [∫ ∞
κ−π∗

(
−σ

2 − z2

σ3

)
φ(z|0, σ2)dz + λ

σ2 − (κ− π∗)2

σ3
φ(κ− π∗|0, σ2)

]
.

The first term is strictly negative. Using (26) and (31) to substitute in for λ and π∗, the sign

of the second term is the same as the sign of

−
∫ ∞
−σ2

κ

(
σ2 − z2

)
φ(z|0, σ2)dz − κ

[
σ2 −

(
σ2

κ

)2
]
φ

(
−σ

2

κ
|0, σ2

)
. (39)

We next show that this expression is strictly negative, which proves the claim. To show this,

consider the derivative of (39) with respect to κ:[(
σ2 −

(
σ2

κ

)2
)
σ2

κ2
−

(
σ2 −

(
σ2

κ

)2
)
− 2

(
σ2

κ

)2

−

(
σ2 −

(
σ2

κ

)2
)
σ2

κ2

]
φ

(
−σ

2

κ
|0, σ2

)
.

This derivative takes the same sign as

−

(
σ2 −

(
σ2

κ

)2
)
− 2

(
σ2

κ

)2

,
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which is strictly negative. Hence, since κ > 0, it suffices to show that the sign of (39) is weakly

negative for κ→ 0. By the definition of variance, the first term in (39) goes to zero as κ→ 0.

The second term in (39) can be rewritten as:

− σ2κφ

(
−σ

2

κ
|0, σ2

)
+
σ4

κ
φ

(
−σ

2

κ
|0, σ2

)
. (40)

As κ→ 0, the first term in (40) goes to zero. Moreover, applying L’Hopital’s Rule on

1/κ

φ
(
−σ2

κ
|0, σ2

)−1
shows that the second term also goes to zero.

We now proceed with the proof of Proposition 3. By Lemma 1, welfare under the optimal

instrument-based rule is invariant to σ, whereas welfare under the optimal target-based rule

is decreasing in σ. To prove the first part of the proposition, it thus suffices to show that a

target-based rule is optimal at one extreme, for σ → 0, and an instrument-based rule is optimal

at the other extreme, for σ →
√
V ar(θ). This is what we prove next.

Consider first the case of σ → 0. By the arguments in Step 1c and Step 2b of the proof of

Proposition 2, 0 < κ ≤ σ. Hence, κ→ 0 as σ → 0. Moreover, as σ → 0, φ (z|0, σ2) corresponds

to a Dirac’s delta function, with cumulative distribution function Φ(z|0, σ2) = 0 if z < 0 and

Φ(z|0, σ2) = 1 if z ≥ 0. Therefore, since κ− π∗ < 0 in the optimal target-based rule, the limit

of the principal’s welfare under this rule, as σ → 0, is given by

lim
σ→0

{
−κ

2

2
+
(
1− Φ

(
κ− π∗|0, σ2

))
V + Φ

(
κ− π∗|0, σ2

)
V

}
= V .

Since the principal’s welfare under the optimal instrument-based rule is −V ar(θ)
2

+V , it follows

that the optimal target-based rule dominates the optimal instrument-based rule.

Consider next the case of σ →
√
V ar (θ) and thus ∆ → 0. Since κ in the optimal target-

based rule satisfies equation (33), the solution in this case admits κ > 0. The principal’s

welfare under the optimal target-based rule is then equal to

−V ar(θ)
2

+ V − κ2

2
− Φ

(
κ− π∗|0, σ2

) (
V − V

)
.

Since this is strictly lower than −V ar(θ)
2

+ V , it follows that the optimal instrument-based rule

dominates the optimal target-based rule.
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Finally, to prove the second part of the proposition, note that the principal’s welfare under

the optimal instrument-based rule is independent of the agent’s bias α and the punishment

V . Thus, it suffices to show that the principal’s welfare under the optimal target-based rule is

decreasing in α and V . The former follows from the fact that the derivative of the Lagrangian

in (28) with respect to α is equal to λ, which is strictly negative by Step 1a in the proof of

Proposition 2. To evaluate how welfare changes with V , consider the representation of the

program in (8)-(10). A reduction in V relaxes constraint (10). Since this constraint is binding

in the solution (by Step 1b of the proof of Proposition 2), it follows that a reduction in V

strictly increases the principal’s welfare under the optimal target-based rule.

A.4 Proof of Proposition 4

We proceed in three steps.

Step 1. We solve a relaxed version of (13)-(16) which ignores (14) for i = H and (15) for

i = L,H. Step 2 verifies that the solution to this relaxed problem satisfies these constraints.

Step 1a. We show that the solution satisfies (14) for i = L as an equality. The proof of this

claim is analogous to that in Step 1a of the proof of Proposition 1 and thus omitted.

Step 1b. We show that the solution satisfies µH ≥ µL. The proof of this claim is analogous to

that in Step 1b of the proof of Proposition 1 and thus omitted.

Step 1c. We show that the solution satisfies V L (θ) = V for all θ. If V L(θ) < V for some θ,

then an increase in V L(θ) is feasible, relaxes constraint (14) for i = L, and strictly increases

the objective. The claim follows.

Step 1d. We show that the solution satisfies V H (θ) = V if θ < θ∗ and V H (θ) = V if θ ≥ θ∗,

for some θ∗ ∈ (−∞,∞). Denote by λ the Lagrange multiplier on (14) and by ψ (θ) and ψ (θ)

the Lagrange multipliers on the upper bounds and the lower bounds on V H(θ). The first-order

condition with respect to V H(θ) yields

1

2
φ(θ|sH , σ2)− 1

2
λφ(θ|sL, σ2) + ψ (θ)− ψ (θ) = 0. (41)

Suppose that V H (θ) is interior with ψ (θ) = ψ (θ) = 0. Then (41) implies

λ =
φ
(
θ − sH |0, σ2

)
φ (θ − sL|0, σ2)

. (42)
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Since the right-hand side of (42) is strictly increasing in θ whereas the left-hand side is constant,

it follows that (42) holds only for one value of θ ∈ (−∞,∞), which we label θ∗. By (41) and

(42), the solution has V (θ) = V if θ < θ∗ and V (θ) = V if θ ≥ θ∗.

Step 1e. We show that the solution satisfies µL ∈
[
sL, sH

]
and µH ∈

[
sL, sH

]
with µH > µL.

Since λ > 0, it follows that θ∗ satisfying (42) is interior. Hence, given Step 1b, the binding

constraint (14) for i = L implies µH > µL. The principal’s first-order condition with respect

to µL yields

µL = sL +
λ

1 + λ
α,

which implies that µL, and thus µH , exceed sL. The first-order condition with respect to µH

yields

µH = sH − λ

1− λ
(α− 2∆) ,

and the second-order condition yields λ < 1. Using Assumption 1, it follows that µH , and thus

µL, are below sH .

We end this step by observing that since λ < 1 and sH = −sL = ∆, (42) implies θ∗ < 0.

Step 2. We verify that the solution to the relaxed problem satisfies the constraints of the

original problem. The binding constraint (14) for i = L implies

V −
(
1− Φ

(
θ∗|sL, σ2

))
V −Φ

(
θ∗|sL, σ2

)
V =

(
sL + α

)
µH− (µH)2

2
−
(
sL + α

)
µL+

(µL)2

2
. (43)

Since sH > sL and µH > µL, the right-hand side of (43) is strictly smaller than

(
sH + α

)
µH − (µH)2

2
−
(
sH + α

)
µL +

(µL)2

2
. (44)

Moreover, the left-hand side of (43) is strictly larger than

V −
(
1− Φ

(
θ∗|sH , σ2

))
V − Φ

(
θ∗|sH , σ2

)
V . (45)

Therefore, (44) is strictly larger than (45), implying that constraint (14) for i = H is satisfied.

To verify that constraint (15) for i = L is satisfied, recall from Step 1e that µL ∈ [sL, sH ].

Given this range, the low type’s welfare in the optimal rule is no less than that under µL = sL,

and thus (15) for i = L is guaranteed to hold if

(
sL + α

)
sL − (sL)2

2
+ V ≥

(
sL + α

) (
sL + α

)
− (sL + α)2

2
+ V .
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This inequality simplifies to

V − V ≥ α2

2
,

which is guaranteed to hold by Assumption 2.

Finally, we verify that constraint (15) for i = H is also satisfied. Note that by constraint

(14) for i = H being satisfied, the high type’s welfare in the optimal rule is no less than that

achieved from mimicking the low type under µL = sL. Thus, (15) for i = H is guaranteed to

hold if (
sH + α

)
sL − (sL)2

2
+ V ≥

(
sH + α

) (
sH + α

)
− (sH + α)2

2
+ V .

This inequality simplifies to

V − V ≥ (2∆ + α)2

2
,

which is guaranteed to hold by Assumption 1 and Assumption 2.

Step 3. We verify that a maximally-enforced hybrid threshold {µ∗, µ∗∗, π∗(µ)} implements

the solution. Let µ∗ = µL and µ∗∗ = µH . Construct π∗(µ) as described in (17), with h(µ)

solving

V −
(
1− Φ

(
µ− h (µ) |sL, σ2

))
V − Φ

(
µ− h (µ) |sL, σ2

)
V (46)

=
(
sL + α

)
µ− µ2

2
−
(
sL + α

)
µL +

(µL)2

2
.

The left-hand side of (46) is increasing in µ− h (µ) and the right-hand side is increasing in

µ. Note that limµ↓µ∗ h (µ) =∞ and, by (43), h (µ∗∗) = µ∗∗ − θ∗. If follows that a solution for

h (µ) exists and µ− h (µ) is increasing in µ.

We verify that both agent types choose their prescribed actions, µL = µ∗ and µH = µ∗∗,

under this maximally-enforced hybrid threshold. By Step 2, neither type has incentives to

deviate to µ > µ∗∗, as the best such deviation entails choosing µ = si +α for i = L,H which is

suboptimal by (15). The low type has no incentive to deviate to µ = µ∗∗ by (14) for i = L, and

this type has no incentive to deviate to µ < µ∗ either as he is better off by instead choosing

µ∗ < sL + α and receiving the same continuation value. The high type has no incentive to

deviate to µ ≤ µ∗, as the best such deviation entails choosing µ∗ < sH +α which is suboptimal

by (14) for i = H. Therefore, it only remains to be shown that neither type has incentives to

deviate to µ ∈ (µ∗, µ∗∗). This follows immediately from (46) for the low type, as this equation

ensures that the low type is indifferent between choosing µ∗ and choosing any µ ∈ (µ∗, µ∗∗).
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To show that the high type has no incentive to deviate, combine (43) and (46) to obtain:

(
Φ
(
θ∗|sL, σ2

)
− Φ

(
µ− h (µ) |sL, σ2

)) (
V − V

)
=
(
sL + α

)
µH − (µH)2

2
−
(
sL + α

)
µ+

µ2

2
.

(47)

Since sH > sL and µH > µ, the right-hand side of (47) is strictly smaller than

(
sH + α

)
µH − (µH)2

2
−
(
sH + α

)
µ+

µ2

2
. (48)

Moreover, note that µ − h (µ) < θ∗ for µ ∈ (µ∗, µ∗∗), and θ∗ < 0 by Step 1e. Hence, the

left-hand side of (47) is strictly larger than

(
Φ
(
θ∗|sH , σ2

)
− Φ

(
µ− h (µ) |sH , σ2

)) (
V − V

)
. (49)

Therefore, (48) is strictly larger than (49), implying that the high type has no incentive to

deviate to µ ∈ (µ∗, µ∗∗).
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