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1 Introduction

Cryptocurrencies, in particular Bitcoin, have received a large amount of at-

tention in the news as of late. Indeed, the price movements have been quite

spectacular, see figure 1. Bitcoins were valued below 5$ in September 2011,

with an intermittent peak near 1000$ in December 2013, and were still trading

below 240$ in October 2015 and below 1000$ in January 2017, before reaching

a peak of more than 19000$ in December 2017 and then falling drastically

below 7000$ in February 2018.
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Figure 1: The Bitcoin Price since 2011-09-13 and “zooming in” only since
2017-01-01. BitStamp data per quandl.com.

These developments have given rise to a number of questions by the public

and policy makers alike. How do Bitcoin prices evolve? What are the conse-

quences for monetary policy? The purpose of this paper is to shed light on

some of these questions, using a rather simple model framework, described in

section 3 and analyzed in section 4. One may think of the model as a simplified

version of the Bewley model, see Bewley (1977), the turnpike model of money

as in Townsend (1980) or the new monetarist view of money as a medium of

exchange as in Kiyotaki-Wright (1989) or Lagos-Wright (2005). With these

models as well as with Samuelson (1958), we share the perspective that money

is an intrinsically worthless asset, useful for executing trades between people

who do not share a double-coincidence of wants. Our aim here is decidedly

not to provide a new microfoundation for the use of money, but to provide a

simple starting point for our analysis.

That said, our model is new, relative to the existing literature. We assume



that there are two types of infinitely-lived agents, who alternate in the periods,

in which they produce and in which they wish to consume. This lack of the

double-coincidence of wants then provides a role for a medium of exchange.

We assume that there are two types of money: Bitcoins and Dollars. A cen-

tral bank keeps the real value of Dollars constant via appropriate monetary

injections, while Bitcoin production is decentralized via proof-of-work. Both

monies can be used for transactions.

The key perspective for much of the analysis is the celebrated exchange-

rate indeterminacy result in Kareken-Wallace (1981). We therefore obtain

a version of their result, and show that the Bitcoin price in Dollar follows

a martingale, adjusted for the pricing kernel, under a certain “fundamental

condition”.However, and in contrast to the two-period OLG-based results in

Kareken-Wallace (1981), we also find that there is a “speculative condition”,

in which the Dollar price for the Bitcoin is expected to rise, and some agents

start hoarding Bitcoin in anticipation of the price increase. We then provide

conditions, so that this speculation in Bitcoins does not arise in equilibrium.

Under some conditions, we show that Bitcoin prices form convergent super-

martingales or convergent submartingales.

In section 5 we discuss how the presence of Bitcoins affect monetary pol-

icy. We discuss two different scenarios. In a first scenario, we assume that the

Bitcoin price evolves independently of the central bank’s policy. The central

bank then sets transfers for price stabilization depending on the Bitcoin price.

Under this ’conventional’ view, we can show that under some conditions, the

Bitcoin price is a bounded martingale and thus converges. Therefore, up or

downward trends in the Bitcoin price are unlikely in the long run. In the second

scenario we adapt the view that the central bank can set her transfers indepen-

dently of the Bitcoin price and production in the economy, but still achieves

price stability. In that case, the market clearing Bitcoin price is driven by the

central bank’s policy and we can characterize the Bitcoin price distribution as

function of the Dollar quantity, the Bitcoin quantity and the distribution of

production. We show that high Bitcoin price realizations become less likely

as the central bank increases the Dollar quantity or as the Bitcoin quantity
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grows over time. Also the Bitcoin price is higher in expectation if the economy

becomes more productive.

Section 6 provides a general method for constructing equilibria, as well

as specific examples, illustrating the key results. In section A we extend our

analysis allowing for inflation. We finally draw our conclusions in section 7.

The most closely related contribution in the literature to our paper is

Garratt-Wallace (2017). Like us, they adopt the Kareken-Wallace (1981) per-

spective to study the behavior of the Bitcoin-to-Dollar exchange rate. How-

ever, there are a number of differences. They utilize a two-period OLG model:

the speculative condition does not arise there. They focus on fixed stocks

of Bitcoins and Dollar (or “government issued monies”), while we allow for

Bitcoin production and monetary policy. Production is random here and con-

stant there. There is a carrying cost for Dollars, which we do not feature here.

They focus on particular processes for the Bitcoin price. The analysis and key

results are very different from ours. We discuss further related literature in

section 2.

2 Some background and literature

The original Bitcoin idea and the key elements of its construction and trad-

ing system are described by the mysterious author Nakamoto (2008). They

can perhaps be summarized and contrasted with traditional central-bank is-

sued money as follows: this will be useful for our analysis. While there are

many currencies, each currency is traditionally issued by a single monopolist,

the central bank, which is typically a government organization. Most cur-

rencies are fiat currencies, i.e. can be produced at near-zero marginal costs.

Central banks conduct their monetary operations typically with the primary

objective of maintaining price stability as well as a number of perhaps sec-

ondary economic objectives. Private intermediaries can offer inside money,

but in doing so are regulated and constrained by central banks or other bank

regulators, and often need to obtain central bank money to do so. By con-

trast, Bitcoin is issued in a decentralized manner. A Bitcoin is an entry in
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an electronic, publicly available ledger or blockchain. Issuing or creating (or

“mining”) a Bitcoin requires solving a changing mathematical problem. Any-

one who solves the problem can broadcast the solution to the Bitcoin-using

community. Obtaining a solution is hard and becoming increasingly harder,

while checking the correctness of the solution is relatively easy. This ”proof of

work” for creating a Bitcoin thus limits the inflow of new Bitcoins. Bitcoins

and fractions of Bitcoins can be transferred from one owner to the next, per

broadcasting the transaction to the community, and adding that transaction

to the ledger information or blockchain. Transaction costs may be charged by

the community, which keeps track of these ledgers.

There is an increasing number of surveys or primers on the phenomenon,

its technical issues or its regulatory implications, often provided by economists

working for central banks or related agencies and intended to inform and

educate the public as well as policy makers. Velde (2013) as well as Brito

and Castillo (2013) provide early and excellent primers on Bitcoin. Weber

(2013) assesses the potential of the Bitcoin system to become a useful pay-

ment system, in comparison to current practice. Badev and Chen (2014)

provide an in-depth account of the technical background. Digital Currencies

have received a handbook treatment by Lee (2015), collecting contributions

by authors from various fields and angles. Böhme et al (2015) provide an

introduction to the economics, technology and governance of Bitcoin in their

Journal-of-Economics-Perspective contribution. There is now a journal called

Ledger, available per ledgerjournal.org, devoted to publishing papers on cryp-

tocurrencies and blockchain since its inaugural issue in 2016. Bech and Garratt

(2017) discuss, whether central banks should introduce cryptocurrencies, find-

ing its echo in the lecture by Carstens (2018). Borgonovo et al (2017) examine

this issue from a financial and political economics approach. Chohan (2017)

provides a history of Bitcoin.

The phenomenon of virtual currencies such as Bitcoin is increasingly at-

tracting the attention of serious academic study by economists. Rather than

an exhaustive literature overview, we shall only provide a sample. Some of the

pieces cited above contain data analysis or modeling as well. Yermack (2015),
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a chapter in the aforementioned handbook, concludes that Bitcoin appears

to behave more like a speculative investment than a currency. Brandvold et

al (2015) examine the price discovery on Bitcoin exchanges. Fantazzini et al

(2016, 2017) provide a survey of econometric methods and studies, examin-

ing the behavior of Bitcoin prices, and list a number of the publications on

the topic so far. Fernández-Villaverde and Sanches (2016) examine the scope

of currency competition in an extended Lagos-Wright model, and argue that

there can be equilibria with price stability as well as a continuum of equilibrium

trajectories with the property that the value of private currencies monotoni-

cally converges to zero. Bolt and Oordt (2016) examine the value of virtual

currencies, predicting that increased adoption will imply that the exchange

rate will become less sensitive to the impact of shocks to speculators’ beliefs.

This accords with Athey et al (2016), who develop a model of user adoption and

use of a virtual currency such as Bitcoin in order to analyze how market funda-

mentals determine the exchange rate of fiat currency to Bitcoin, focussing their

attention on an eventual steady state expected exchange rate. They further

analyze its usage empirically, exploiting the fact that all individual transac-

tions get recorded on Bitcoin’s public ledgers. They argue that a large share

of transactions are related to illegal activities, thus agreeing with Foley et al

(2018), who investigate this issue in additional detail. Trimborn and Härdle

(2016) propose an index called CRIX for the overall cryptocurrency market.

Catallini and Gans (2016) provide ”some simple economics of the blockchain”,

a key technological component of Bitcoin, but which has much broader usages.

Schnabel and Shin (2018) draw lessons from monetary history regarding the

role of banks for establishing trust and current debates about cryptocurren-

cies. Cong and He (2018) examine the role of the blockchain technology, a key

component of the Bitcoin technology, for “smart contracts”. The most closely

related contribution in the literature to our paper is Garratt-Wallace (2017),

as we discussed at the end of the introduction.

It is hard not to think of bubbles in the context of Bitcoin. There is a large

literature on bubbles, that should prove useful in that regard. In the original

analysis of Samuelson (1958), money is a bubble, as it is intrinsically worthless.
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We share that perspective here for both the Dollar and the Bitcoin. It might be

tempting to think that prices for Bitcoin could rise forever, as agents speculate

to receive even higher prices in the future. Tirole (1982) has shown that this

is ruled out in an economy with infinite-lived, rational agents, a perspective

which we share, whereas Burnside-Eichenbaum-Rebelo (2015) have analyzed

how bubbles may arise from agents catching the “disease” of being overly

optimistic. Our model shares some similarity with the bubbles perspective

in Scheinkman-Xiong (2003), where a bubble component for an asset arises

due to a sequence of agents, each valuing the asset for intermittent periods.

Guerrieri-Uhlig (2016) provides some overview of the bubble literature. The

Bitcoin price evolution can also be thought about in the context of currency

speculation and carry trades, analyzed e.g. by Burnside-Eichenbaum-Rebelo

(2012): the three perspectives given there may well be relevant to thinking

about the Bitcoin price evolution, but we have refrained from pursuing that

here.

3 The model

Time is discrete, t = 0, 1, . . .. In each period, a publicly observable, aggregate

random shock θt ∈ Θ ⊂ IR is realized. All random events in period t are

assumed to be functions of the history θt = (θ0, . . . , θt) of these shocks, i.e.

measurable with respect to the filtration generated by the stochastic sequence

(θt)t∈{0,1,...}. Note that the length of the vector θt encodes the period t: thus,

functions of θt are allowed to be functions of t itself.

There is a continuum of mass 2 of two types of agents. We shall call the

first type of agents “red”, and the other type “green”. Red agents j ∈ [0, 1)

inelastically produce (or: are endowed with) yt units of a consumption good in

even periods t, while green agents j ∈ [1, 2] do so in odd periods. We assume

that yt = y(θt) is stochastic with support yt ∈ [y, ȳ], where 0 < y ≤ ȳ. As

a special case, we consider the case, where yt is constant, y = ȳ and yt ≡ ȳ

for all t. The consumption good is not storable across periods. Both types

of agents j enjoy utility from consumption ct,j at time t per u(ct,j), as well as
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loathe providing effort et,j , all discounted at rate 0 < β < 1 to yield life-time

utility

U = E

[

∞
∑

t=0

βt (ξt,ju(ct,j)− et,j)

]

(1)

where u(·) is strictly increasing and concave. Note that effort units are counted

here in units of disutility, as it does not have some other natural scale. We

assume that red agents only enjoy consuming the good in odd periods, while

green agents only enjoy consuming in even periods. Formally, we impose this

per ξt,j = 1
t is odd for j ∈ [0, 1) and ξt,j = 1

t is even for j ∈ [1, 2]. This

creates the absence of the double-coincidence of wants, and thereby reasons to

trade.

Trade is carried out, using money. More precisely, we assume that there

are two forms of money. The first shall be called Bitcoins and its aggregate

stock at time t shall be denoted with Bt. The second shall be called Dollar,

and its aggregate stock at time t shall be denoted with Dt. These labels are

surely suggestive, but hopefully not overly so, given our further assumptions.

In particular, we shall assume that there is a central bank, which governs the

aggregate stock of Dollars Dt, while Bitcoins can be produced privately.

The sequence of events in each period is as follows. First, θt is drawn. Next,

given the information on θt, the central bank issues or withdraws Dollars, per

“helicopter drops” or lump-sum transfers and taxes on the agents ready to

consume that particular period. The central bank can produce Dollars at zero

cost. Consider a green agent entering an even period t, holding some Dollar

amount D̃t,j from the previous period. The agent will receive a Dollar transfer

τt = τ(θt) from the central bank, resulting in

Dt,j = D̃t,j + τt (2)

We allow τt to be negative, while we shall insist, that Dt,j ≥ 0: we therefore

have to make sure in the analysis below, that the central bank chooses wisely

enough so as to not withdraw more money than any particular green agent

has at hand in even periods. Red agents do not receive (or pay) τt in even
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period. Conversely, the receive transfers (or pay taxes) in odd periods, while

green agents do not. The aggregate stock of Dollars changes to

Dt = Dt−1 + τt (3)

The green agent then enters the consumption good market holding Bt,j

Bitcoins from the previous period and Dt,j Dollars, after the helicopter drop.

The green agent will seek to purchase the consumption good from red agents.

As is conventional, let Pt = P (θt) be the price of the consumption good in

terms of Dollars. We could likewise express the price of goods in terms of

Bitcoins, but it will turn out to be more intuitive (at the price of some initial

asymmetry) to use the inverse and to let Qt = Q(θt) denote the price of a

Bitcoin in terms of the consumption good. Let bt,j be the amount of the

consumption good purchased with Bitcoins and dt,j be the amount of the

consumption good purchased with Dollars. The green agent cannot spend

more of each money than she owns, but may choose to not spend all of it.

This implies the constraints

0 ≤ bt,j ≤ QtBt,j (4)

0 ≤ Ptdt,j ≤ Dt,j (5)

The green agent then consumes

ct,j = bt,j + dt,j (6)

and leaves the even period, carrying

Bt+1,j = Bt,j − bt,j/Qt ≥ 0 (7)

Dt+1,j = Dt,j − Ptdt,j ≥ 0 (8)

Bitcoins and Dollars into the next and odd period t + 1.

At the beginning of that odd period t+1, the aggregate shock θt+1 is drawn

and added to the history θt+1.
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The green agent produces yt+1 units of the consumption good. The agent

expands effort et+1,j ≥ 0 to produce additional Bitcoins according to the pro-

duction function

At+1,j = f(et+1,j ;Bt+1) (9)

where we assume that f(·; ·) satisfies f(0; ·) ≡ 0, is strictly increasing and

strictly concave in the first argument, is strictly decreasing in the second ar-

gument and twice differentiable. This specification captures the idea that

individual agents can produce Bitcoins at a cost or per “proof-of-work”, and

that these costs are rising, as the entire stock of Bitcoins increases. As an

example, one may think of

f(e;B) = φ
( e

B

)α

(10)

for some 0 < φ and 0 < α < 1. As a benchmark, we shall consider the limiting

case of φ → 0, implying a fixed stock of Bitcoins, due to prohibitively high

effort production costs of new Bitcoins. In odd periods, only green agents

may produce Bitcoins, while only red agents get to produce Bitcoins in even

periods.

The green agent sells the consumption goods to red agents. Given market

prices Qt+1 and Pt+1, he decides on the fraction xt+1,j ≥ 0 sold for Bitcoins

and zt+1,j ≥ 0 sold for Dollars, where

xt+1,j + zt+1,j = yt+1

as the green agent has no other use for the good. After these transactions, the

green agent holds

D̃t+2,j = Dt+1,j + Pt+1zt+1,j

Dollars, which then may be augmented per central bank lump-sum transfers at

the beginning of the next period t+2 as described above. As for the Bitcoins,

the green agent carries the total of

Bt+2,j = At+1,j +Bt+1,j + xt+1,j/Qt+1
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to the next period.

The aggregate stock of Bitcoins has increased to

Bt+2 = Bt+1 +

∫ 2

j=0

At+1,jdj

noting that red agents do not produce Bitcoins in even periods.

The role of red agents and their budget constraints is entirely symmetric

to green agents, per simply swapping the role of even and odd periods. There

is one difference, though, and it concerns the initial endowments with money.

Since green agents are first in period t = 0 to purchase goods from red agents,

we assume that green agents initially have all the Dollars and all the Bitcoins

and red agents have none.

While there is a single and central consumption good market in each period,

payments can be made with the two different monies. We therefore get the

two market clearing conditions

∫ 2

j=0

bt,jdj =

∫ 2

j=0

xt,jdj (11)

∫ 2

j=0

dt,jdj =

∫ 2

j=0

zt,jdj (12)

where we adopt the convention that xt,j = zt,j = 0 for green agents in even

periods and red agents in odd periods as well as bt,j = dt,j = 0 for red agents

in even periods and green agents in odd periods.

We finally need to make an assumption regarding the monetary policy of

the central bank. For that, it is important that the central bank can predict

the effect of its transfers on the resulting price levels. Note that we have

assumed that the random shock θt is known by the time the central bank

picks its transfer payments τt. The central bank therefore can pick among the

resulting equilibria, which are now functions of τt.

For the main part of the analysis, we assume that the central bank aims

at keeping Dollar prices stable, and seeks to achieve
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Pt ≡ 1 (A1)

We assume further, that the central bank can find a transfer amount τt to

do so, among the potential equilibria. We therefore instead turn around and

impose (A1) as part of the equilibrium definition. Note that we are imposing

that the Dollar has a nonzero value. As is well known, it is generally not

hard to generate equilibria, in which the Dollar has no value. These equilibria

seem understood sufficiently well in the literature, however. It therefore seems

appropriate to restrict attention here to equilibria with a nonzero Dollar value.

A few remarks are in order. First, one could easily introduce another

random shock within the period, but after the central bank has chosen the

transfer amount, and thereby allow Pt to be a function of that random shock

as well. Our assumptions above exclude such a second shock, and should thus

be seen as a somewhat special case. Second, it is not a priori clear, that the

restriction to equilibria with Pt ≡ 1 is justified. We show in section 4 that this

is so per calculating equilibria with that property, and thereby demonstrating

their existence. In the course of that analysis, we also calculate the monetary

transfers, that achieve such equilibria. Finally, price stability is unlikely to

be the welfare-maximizing objective for a central bank. Aside from potential

stabilization concerns due to the random shocks, it is seems a priori likely that

a Friedman-type rule and an ensuing deflation close to the time discount factor

will maximize welfare. This is not a novel insight, of course, and this paper

is not about optimal monetary policy per se, though. We thus take the more

widely adopted policy objective in practice of price stability as our benchmark

for the analysis. We return to this issue in the extension section 5.

So far, we have allowed individual green agents and individual red agents

to make different choices. We shall restrict attention to symmetric equilibria,

in which all agents of the same type end up making the same choice. Thus,

instead of subscript j and in slight abuse of the notation, we shall use subscript

g to indicate a choice by a green agent and r to indicate a choice by a red

agent. With these caveats and remarks, we arrive at the following definition.

11



Definition 1 An equilibrium is a stochastic sequence

(At, Bt, Bt,r, Bt,g, Dt, Dt,r, Dt,g, τt, Pt, Qt, bt, ct, dt, et, xt, yt, zt)t∈{0,1,2,...}

which is measurable1 with respect to the filtration generated by (θt)t∈{0,1,...},

such that

1. Green agents optimize: given aggregate money quantities (Bt, Dt, τt),

production yt, prices (Pt, Qt) and initial money holdings B0,g = B0 and

D0,g = D0, a green agent j ∈ [1, 2] chooses consumption quantities

bt, ct, dt in even periods and xt, zt, effort et and Bitcoin production At

in odd periods as well as individual money holdings Bt,g, Dt,g, all non-

negative, so as to maximize

U = E

[

∞
∑

t=0

βt (ξt,gu(ct)− et)

]

where ξt,g = 1 in even periods, ξt,g = 0 in odd periods, subject to the

budget constraints

0 ≤ bt ≤ QtBt,g (13)

0 ≤ Ptdt ≤ Dt,g (14)

ct = bt + dt (15)

Bt+1,g = Bt,g − bt/Qt (16)

Dt+1,g = Dt,g − Ptdt (17)

1More precisely, Bt, Bt,g and Bt,r are “predetermined”, i.e. are measurable with respect
to the σ−-algebra generated by θt−1
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in even periods t and

At = f(et;Bt), with et ≥ 0 (18)

yt = xt + zt (19)

Bt+1,g = At +Bt,g + xt/Qt (20)

Dt+1,g = Dt,g + Ptzt + τt+1 (21)

in odd periods t.

2. Red agents optimize: given aggregate money quantities (Bt, Dt, τt),

production yt, prices (Pt, Qt) and initial money holdings B0,r = 0 and

D0,r = 0, a red agent j ∈ [0, 1) chooses consumption quantities bt, ct, dt

in odd periods and xt, zt, effort et and Bitcoin production At in even pe-

riods as well as individual money holdings Bt,r, Dt,r, all non-negative,

so as to maximize

U = E

[

∞
∑

t=0

βtξt,ru(ct)

]

where ξt,r = 1 in odd periods, ξt,r = 0 in even periods, subject to the

budget constraints

Dt,r = Dt−1,r + τt (22)

0 ≤ bt ≤ Bt,r/Qt (23)

0 ≤ Ptdt ≤ Dt,r (24)

ct = bt + dt (25)

Bt+1,r = Bt,r − bt/Qt (26)

Dt+1,r = Dt,r − Ptdt (27)
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in odd periods t and

At = f(et;Bt), with et ≥ 0 (28)

yt = xt + zt (29)

Bt+1,r = At +Bt,r + xt/Qt (30)

Dt+1,r = Dt,r + Ptzt + τt+1 (31)

in even periods t.

3. The central bank achieves Pt ≡ 1, per choosing suitable transfers τt.

4. Markets clear:

Bitcoin market: Bt = Bt,r +Bt,g (32)

Dollar market: Dt = Dt,r +Dt,g (33)

Bitcoin denom. cons. market: bt = xt (34)

Dollar denom. cons. market: dt = zt (35)

4 Analysis

The equilibrium definition quickly generates the following accounting identi-

ties. The aggregate evolution for the stock of Bitcoins follows from the Bitcoin

market clearing condition and the bitcoin production budget constraint,

Bt+1 = Bt + f(et) (36)

The aggregate evolution for the stock of Dollars follows from the Dollar mar-

ket clearing constraint and the beginning-of-period transfer of Dollar budget

constraint for the agents,

Dt = Dt−1 + τt (37)
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The two consumption markets as well as the production budget constraint

yt = xt + zt

delivers that consumption is equal to production2

ct = yt (38)

It will be convenient to bound the degree of consumption fluctuations. The

following somewhat restrictive assumption will turn out to simplify the analysis

of the Dollar holdings. In a more generalized setting, across-time insurance

motives might arise, which however seem to have little to do with the analysis

of our core issue, the analysis of Bitcoin pricing. We therefore impose this

assumption throughout the rest of the analysis.

Assumption A. 1 For all t,

u′(yt)− β2Et[u
′(yt+2)] > 0 (39)

The following is a consequence of a central bank policy aimed at price

stability, inducing an opportunity cost for holding money. This contrasts with

a monetary policy implementing the Friedman rule. Note that assumption

(39) holds.

Proposition 1 (All Dollars are spent:) Agents will always spend all Dol-

lars. Thus, Dt = Dt,g and Dt,r = 0 in even periods and Dt = Dt,r and Dt,g = 0

in odd periods.

Proof: Let D∞,g = lim inft→∞ Dt,g. It is clear, that D∞,g = 0. By as-

sumption it cannot undercut zero. Also it cannot be strictly positive, since

otherwise a green agent could improve his utility per spending D∞,g on con-

sumption goods in some even period, without adjusting anything else except

2Note that the analysis here abstracts from price rigidities and unemployment equilibria,
which are the hallmarks of Keynesian analysis, and which could be interesting to consider
in extensions of the analysis presented here.
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reducing Dollar holdings subsequently by D∞,g in all periods. Note that Dol-

lar holdings for green agents in odd periods are never higher than the Dollar

holdings in the previous even period, since at best, they can choose to not

spend any Dollars in the even periods. Consider then some odd period, such

that Dt,g > 0, i.e. suppose the green agent has not spent all her Dollars in the

previous even period t − 1. The agent can then increase his consumption in

t− 1 at the cost of reducing his consumption in t+1 by the same amount, for

a marginal utility gain of

βt−1
(

u′(ct−1)− β2Et−1[u
′(ct+1)]

)

given θt−1. Since ct = yt in all periods, this gain is strictly positive per as-

sumption 1, a contradiction. For red agents, this argument likewise works for

all even periods t ≥ 2. •

Proposition 2 (Dollar Injections:) In equilibrium, the post-transfer amount

of total Dollars is

Dt = zt

and the transfers are

τt = zt − zt−1

Proof: Assume, t + 1 is even. The Dollar-denominated consumption

market clearing condition implies

Dt+1 = Dt+1,g +Dt+1,r = Dt+1,g = Ptzt + τt+1 (40)

where we used Dt+1,r = 0 = Dt,g. If t + 1 is odd, then analogously Dt+1,g =

0 = Dt,r. The evolution of the amount of Dollar is given as

Dt+1 = Dt + τt+1 (41)
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Comparing (40) and (41) and using Pt = 1, we have

Dt = zt (42)

Likewise, Dt+1 = zt+1. Plugging Dt+1 = zt+1 into (40) and using that equation

for t rather than t+ 1 delivers

τt = zt − zt−1 (43)

•

Note that we can have zt = 0, in principle. This is a situation, in which

goods are sold at Pt = 1 Dollar, but where no transactions at that price

happen. We shall typically consider the more conventional situation, where

zt > 0 and at least parts of the transactions are carried out with Dollars. We

are interested in the question, whether transactions are also carried out in

Bitcoin or not, and what that implies.

As for the production of Bitcoins, we obtain the following result.

Proposition 3 (Bitcoin Production Condition:) Suppose that Dollar sales

are nonzero, zt > 0 in period t. Then

1 ≥ βEt

[

u′(ct+1)
∂f(et;Bt)

∂et
Qt+1

]

(44)

This inequality is an equality, if there is positive production At > 0 of Bitcoins

and associated positive effort et > 0 at time t as well as positive spending of

Bitcoins bt+1 > 0 in t+ 1.

Proof: This is a standard comparison of costs to benefits, and can be derived

formally, using the usual Kuhn-Tucker conditions and some tedious calcula-

tions. Briefly, providing effort causes disutility of −1 at time t at the margin.

Likewise, at the margin, this effort generates ∂f(et;Bt)
∂et

Bitcoins. A Bitcoin buys

Qt+1 units of the consumption good at time t+1, to be evaluated at marginal
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utility u′(ct+1). This gives rise to condition (44) with equality, when Bitcoin

production is positive as well as bt+1 > 0. For that latter condition, note that

the agent may value Bitcoins more highly than Qt+1 at t+1, if she chooses to

keep them all, i.e. bt+1 = 0. •

Keep in mind that we are assuming in the proposition above, that Bitcoin

production can happen right away, if this turns out to be profitable. In prac-

tice, capacity such as computing farms together with programmers capable of

writing the appropriate code may need to build up gradually over time. One

could extend the model to allow for such time-to-build of capacity, and it may

interesting to do so.

The following proposition establishes properties of the Bitcoin goods price

Qt in the “fundamental” case, where Bitcoins are used in transactions. The

following is a version of the celebrated result in Kareken-Wallace (1981).

Proposition 4 (Fundamental Condition:)

Suppose that sales happen both in the Bitcoin-denominated consumption mar-

ket as well as the Dollar-denominated consumption market at time t as well

as at time t+1, i.e. suppose that xt > 0, zt > 0, xt+1 > 0 and zt+1 > 0. Then

Et [u
′(ct+1)] = Et

[

u′(ct+1)
Qt+1

Qt

]

(45)

In particular, if consumption and production is constant at t+1, ct+1 = yt+1 ≡

ȳ = y, then

Qt = Et [Qt+1] (46)

i.e., the price of a Bitcoin in Dollar is a martingale.

Proof: If xt > 0 and zt > 0, selling agents at time t must be marginally

indifferent between accepting Dollars and accepting Bitcoins. If they sell one

marginal unit of the consumption good for Dollars, they receive one Dollar

per Pt = 1 and can buy one unit of the consumption good at date t + 1 at

price Pt+1 = 1 and evaluating the extra consumption at the marginal utility

u′(ct+1). If they sell one marginal unit of the consumption good for Bitcoin,
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they receive 1/Qt Bitcoins and can thus buy Qt+1/Qt units of the consumption

good at date t + 1, evaluating the extra consumption at the marginal utility

u′(ct+1). Indifference implies (45). •

Equation (45) can be understood from a standard asset pricing perspective.

As a slight and temporary detour for illuminating that connection, consider

some extension of the current model, in which the selling agent enjoys date

t consumption with utility v(ct). The agent would have to give up current

consumption, marginally valued at v′(ct) to obtain an asset, yielding a real

return Rt+1 at date t + 1 for a real unit of consumption invested at date

t. Consumption at date t + 1 is evaluated at the margin with u′(ct+1) and

discounted back to t with β. The well-known Lucas asset pricing equation

then implies that

1 = Et

[

β
u′(ct+1)

v′(ct)
Rt+1

]

(47)

One such asset are Dollars. They yield a safe return of RD,t+1 = 1, due to

constant price level Pt ≡ 1. The asset pricing equation (47) then yields

1 = Et

[

β
u′(ct+1)

v′(ct)

]

(48)

Likewise, Bitcoins provide the real returnRB,t+1 =
Qt+1

Qt

, resulting in the asset

pricing equation

1 = Et

[

β
u′(ct+1)

v′(ct)

Qt+1

Qt

]

(49)

One can now solve (49) for v′(ct) and substitute it into (49), giving rise to

equation (45). The difference to the model at hand is the absence of the

marginal disutility v′(ct).

The next proposition establishes properties of the Bitcoin goods price Qt, if

potential good buyers prefer to keep some or all of their Bitcoins in possession,

rather than using them in transaction, effectively speculating on lower Bitcoin

goods prices or, equivalently, higher Dollar prices for a Bitcoin in the future.
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Proposition 5 (Speculative Condition:)

Suppose that Bt > 0, Qt > 0, zt > 0 and that bt < QtBt. Then,

u′(ct) ≤ β2Et

[

u′(ct+2)
Qt+2

Qt

]

(50)

where this equation furthermore holds with equality, if xt > 0 and xt+2 > 0.

Proof: Market clearing implies that demand equals supply in the Bitcoin-

denominated consumption market. Therefore, bt < QtBt implies that buyers

choose not to use some of their Bitcoins in purchasing consumption goods.

For a (marginal) Bitcoin, they could obtain Qt units of the consumption good,

evaluated at marginal utility u′(ct) at time t. Instead, they weakly prefer to

hold on to the Bitcoin. The earliest period, at which they can contemplate

purchasing goods is t + 2, where they would then obtain Qt+2 units of the

consumption good, evaluated at marginal utility u′(ct+2), discounted with β2

to time t. As this is the weakly better option, equation (50) results. If good

buyers use Bitcoins both for purchases as well as for speculative reasons, both

uses of the Bitcoin must generate equal utility, giving rise to equality in (50).

•

Proposition 6 (Zero-Bitcoin-Transactions Condition:)

Suppose that Bt > 0, Qt > 0, zt > 0 and that there is absence of goods

transactions against Bitcoins xt = bt = 0 at date t. Then

Et [u
′(ct+1)] ≥ Et

[

u′(ct+1)
Qt+1

Qt

]

(51)

If consumption and production is constant at t and t + 1, i.e. if ct = ct+1 ≡

ȳ = y, absence of goods transactions against Bitcoins at date t implies

Qt ≥ Et [Qt+1] (52)

Proof: If xt = bt = 0, it must be the case, that sellers do not seek to
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sell positive amounts of goods against Bitcoin at the current price in Bitcoin

Qt, and at least weakly prefer to sell using Dollars instead. This gives rise to

equation (51). •

A few remarks regarding that last two propositions are in order. To understand

the logical reasoning applied here, it is good to remember that we impose mar-

ket clearing. Consider a (possibly off-equilibrium) case instead, where sellers

do not wish to sell for Bitcoin, i.e. xt = 0, because the Bitcoin price Qt is too

high, but where buyers do not wish to hold on to all their Bitcoin, and instead

offering them in trades. This is a non-market clearing situation: demand for

consumption goods exceeds supply in the Bitcoin-denominated market at the

stated price. Thus, that price cannot be an equilibrium price. Heuristically,

the pressure from buyers seeking to purchase goods with Bitcoins should drive

the Bitcoin price down until either sellers are willing to sell or potential buyers

are willing to hold. One can, of course, make the converse case too. Suppose

that potential good buyers prefer to hold on to their Bitcoins rather than use

them in goods transactions, and thus demand bt = 0 at the current price. Sup-

pose, though, that sellers wish to sell goods at that price. Again, this would be

a non-market clearing situation, and the price pressure from the sellers would

force the Bitcoin price upwards.

We also wish to point out the subtlety of the right hand side of equations

(45) as well as (50): these are expected utilities of the next usage possibility

for Bitcoins only if transactions actually happen at that date for that price.

However, as equation (50) shows, Bitcoins may be more valuable than indi-

cated by the right hand side of (45) states, if Bitcoins are then entirely kept

for speculative reasons. These considerations can be turned into more general

versions of (45) as well as (50), which take into account the stopping time

of the first future date with positive transactions on the Bitcoin-denominated

goods market. The interplay of the various scenarios and inequalities in the

preceding three propositions gives rise to potentially rich dynamics, which we

explore and illustrate further in the next section.

For consumption and production constant at t, t+1 and t+2, ct = ct+1 =
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ct+2 ≡ ȳ = y, absence of goods transactions against Bitcoins xt = 0 at t

requires

Et [Qt+1] ≤ Qt ≤ β2Et [Qt+2] (53)

We next show that this can never be the case. Indeed, even with non-constant

consumption, all Bitcoins are always spent, provided we impose a slightly

sharper version of assumption 1.

Assumption A. 2 For all t,

u′(yt)− βEt[u
′(yt+1)] > 0 (54)

With the law of iterated expectations, it is easy to see that assumption 2

implies assumption 1. Further, assumption 1 implies that (54) cannot be

violated two periods in a row.

Theorem 1 (No-Bitcoin-Speculation Theorem.) Suppose that Bt > 0

and Qt > 0 for all t. Impose assumption 2. Then in every period, all Bitcoins

are spent.

Proof: Since all Dollars are spent in all periods, we have zt > 0 in all

periods. Observe that then either inequality (51) holds, in case no Bitcoins

are spent at date t, or equation (45) holds, if some Bitcoins are spent. Since

equation (45) implies inequality (51), (51) holds for all t. Calculate that

β2
Et[u

′(ct+2)Qt+2] = β2
Et[Et+1[u

′(ct+2)Qt+2]] (law of iterated expect.)

≤ β2
Et[Et+1[u

′(ct+2)] ·Qt+1] (per equ. (51) at t+ 1)

< βEt[u
′(ct+1)Qt+1] (per ass. 2 at t+ 1)

≤ βEt[u
′(ct+1)]Qt (per equ. (51) at t)

< u′(ct)Qt (per ass. 2 at t)

Thus, the speculative condition, i.e. equation (50) cannot hold in t. Conse-

quently, bt = QtBt, i.e. all Bitcoins are spent in t. Since t is arbitrary, all

Bitcoins are spent in every period. •
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Corollary 1 (Bitcoin price bound) Suppose that Bt > 0 and Qt > 0 for

all t. The Bitcoin price is bounded by

0 ≤ Qt ≤ Q̄

where

Q̄ =
ȳ

B0

(55)

Proof: It is clear that Qt ≥ 0. Per theorem 1, all Bitcoins are spent in every

periods. Therefore, the Bitcoin price satisfies

Qt =
bt
Bt

≤
bt
B0

≤
ȳ

B0

= Q̄

•

Obviously, the current Bitcoin price is far from that upper bound. The bound

may therefore not seem to matter much in practice. However, it is conceivable

that Bitcoin or digital currencies start playing a substantial transaction role in

the future. The purpose here is to think ahead towards these potential future

times, rather than restrict itself to the rather limited role of digital currencies

so far.

Heuristically, assume agents sacrifice consumption today to keep some Bit-

coins as investment in order to increase consumption the day after tomorrow.

Tomorrow, these agents produce goods which they will need to sell. Since all

Dollars change hands in every period, sellers always weakly prefer receiving

Dollars over Bitcoins as payment. The Bitcoin price tomorrow can therefore

not be too low. But with a high Bitcoin price tomorrow, sellers today will

weakly prefer receiving Dollars only, if the Bitcoin price today is high as well.

But at such a high Bitcoin price today, it cannot be worth it for buyers today

to hold back Bitcoins for speculative purposes, a contradiction.
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We can rewrite equation (45) as

Qt =
covt(u

′(ct+1), Qt+1)

Et[u′(ct+1)]
+ Et[Qt+1] (56)

With that, we obtain the following corollary to theorem 1.

Corollary 2 (Bitcoin Correlation Pricing Formula:)

Suppose that Bt > 0 and Qt > 0 for all t. Impose assumption 2. In equilib-

rium,

Qt = κt · corrt(u
′(ct+1), Qt+1) + Et[Qt+1] (57)

where

κt =
σu′(c)|t σQt+1|t

Et[u′(ct+1)]
> 0 (58)

where σu′(c)|t is the standard deviation of marginal utility of consumption,

σQt+1|t is the standard deviation of the Bitcoin price and corrt(u
′(ct+1), Qt+1)

is the correlation between the Bitcoin price and marginal utility, all conditional

on time t information.

Proof: With theorem 1, the fundamental condition, i.e. proposition 4 and

equation (45) always applies in equilibrium. Equation (45) implies equation

(56), which in turn implies (57). •

Corollary 3 (Martingale Properties of Equilibrium Bitcoin Prices:)

Suppose that Bt > 0 and Qt > 0 for all t. Impose assumption 2. If and only if

in equilibrium and for all t, marginal utility of consumption and Bitcoin price

at t+1 are positively correlated, given date-t information, the Bitcoin price is

a supermartingale and strictly falls in expectation.

Qt > Et[Qt+1] (59)

If and only if marginal utility and the Bitcoin price are always negatively corre-
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lated, the Bitcoin price is a submartingale and strictly increases in expectation,

Qt < Et[Qt+1] (60)

The Bitcoin price is a martingale,

Qt = Et[Qt+1] (61)

if and only if the Bitcoin price and marginal utility are uncorrelated.

Proof: This is an immediate consequence of corollary 2, since all terms,

production, marginal utility and prices are positive there. •

If the Bitcoin price is a martingale, today’s price is the best forecast of to-

morrow’s price. However, if Bitcoin prices and marginal utility of consumption

are positively correlated, then Bitcoins depreciate over time. Essentially, hold-

ing Bitcoins offers insurance against the consumption fluctuations, for which

the agents are willing to pay an insurance premium in the form of Bitcoin de-

preciation. Conversely, for negative correlation of Bitcoin prices and marginal

utility, the risk premium in form of expected Bitcoin appreciation induces the

agents to hold them.

Theorem 2 (Bitcoin Price Convergence Theorem.) Suppose that Bt >

0 and Qt > 0 for all t. Impose assumption 2. For all t and conditional on

information at date t, suppose that marginal utility u′(ct+1) and the Bitcoin

price Qt+1 are either always nonnegatively correlated or always non-positively

correlated. Then the Bitcoin price Qt converges almost surely pointwise as well

as in L1 norm to a (random) limit Q∞,

Qt → Q∞ a.s. and E [| Qt −Q∞ |] → 0 (62)

Proof: With corollary 1, the price process for Qt is bounded. With

corollary 3, Qt is thus a bounded supermartingale or a bounded submartin-
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gale. The Bitcoin price is a uniformly integrable random variable since the set

{θ ∈ Θ : Qt(θ) > C} has measure zero for C > Q1. Doob’s first and second

martingale convergence theorem then imply (62). •

The following result shows that Bitcoins cannot loose their value com-

pletely, with certainty. This may provide some solace to those that have pur-

chased Bitcoins already. It is easy to find generalizations of this result, but we

skip them, in the interest of space.

Corollary 4 Suppose Qt is a martingale. Then it cannot be the case that Qt

converges to zero in probability, Qt
P
→ 0.

Proof: Suppose to the contrary, that Qt
P
→ 0. For any probability level

0 ≤ p < 1 and any ǫ > 0, there is then a T , so that P0(Qt ≤ ǫ) ≥ p for all

t ≥ T , where P0 is the probability, given information at date t = 0. Pick p

and ǫ such that
Q0 − ǫ

1− p
> Q̄

For t ≥ T , calculate

Q0 = E0[Qt]

= E0[Qt | Qt > ǫ]P0(Qt > ǫ) + E0[Qt | Qt ≤ ǫ]P0(Qt ≤ ǫ)

≤ E0[Qt | Qt > ǫ]P0(Qt > ǫ) + ǫ

Thus,

E0[Qt | Qt > ǫ] ≥
Q0 − ǫ

1− P0(Qt ≤ ǫ)
≥

Q0 − ǫ

1− p
> Q̄

a contradiction to corollary 1. •

It is important to note that corollary 3 as well as theorem 2 make an

assumption about the price sequence Qt of the Bitcoin price, which is an
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equilibrium object. There is no guarantee (so far), that these assumptions

hold, given the fundamentals of the environment.

5 Bitcoins and Monetary Policy

In the following we discuss two scenarios and its consequences for monetary

policy. Throughout the section we impose assumption 2.

5.1 Scenario 1 - Conventional approach

Assume that Bitcoin prices move independently of central bank policies. Then,

we can explicitly characterize the impact of the Bitcoin price on policy.

Proposition 7 (Conventional Monetary Policy:)

The equilibrium Dollar quantity is given as

Dt = yt −QtBt (63)

The central bank’s transfers are

τt = yt −Qt Bt − zt−1 (64)

Proof: [Proposition 7]

Dt = yt − bt = yt − BtQt

since all agents spend all their Bitcoins and using proposition 2. •

The Dollar quantity is pinned down through the central bank’s transfer pol-

icy to maintain price stability for given production realization, Bitcoin price

realization, and Bitcoin quantity.

Proposition 8 (Dollar Stock Evolution:)

Tomorrow’s expected Dollar quantity equals today’s Dollar quantity corrected
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for deviation from expected production, purchasing power of newly produced

Bitcoin and correlation

Et[Dt+1] = Dt − (yt − Et[yt+1])− AtQt + κt Bt+1 · corrt(u
′(ct+1), Qt+1) (65)

Likewise, the central bank’s expected transfers satisfy

Et[τt+1] = − (yt − Et[yt+1])−AtQt + κt Bt+1 · corrt(u
′(ct+1), Qt+1) (66)

If the Bitcoin price is a martingale, then

Et[Dt+1] = Dt − (yt − Et[yt+1])− AtQt (67)

Et[τt+1] = − (yt − Et[yt+1])−AtQt (68)

Proof: Since Bt+1 is known at time t, using Corollary 2 and Bt+1 = Bt +At

we obtain

Et[Dt+1] = Et[yt+1]− Bt+1Et[Qt+1] (69)

= Et[yt+1]− Bt Qt − AtQt + κt Bt+1 · corrt(u
′(ct+1), Qt+1) (70)

= Dt − (yt − Et[yt+1])− AtQt + κt Bt+1 · corrt(u
′(ct+1), Qt+1) (71)

where

κt =
σu′(c)|t σQt+1|t

Et[u′(ct+1)]
> 0 (72)

Similarly, with Dt = zt,

Et[τt+1] = Et[yt+1]− Bt+1Et[Qt+1]− Et[zt]

= Dt − (yt − Et[yt+1])− AtQt + κt Bt+1 · corrt(u
′(ct+1), Qt+1)− zt

= − (yt − Et[yt+1])− AtQt + κt Bt+1 · corrt(u
′(ct+1), Qt+1)

If the Bitcoin price is a martingale, then corrt(u
′(ct+1), Qt+1) = 0, and corre-

sponding terms drop. •
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5.2 Scenario 2 - Unconventional approach

We now adapt the less standard view that the central bank can maintain

the price level Pt ≡ 1 independently of the transfers she sets. Further we

assume that she sets transfers independently of production. This may surely

appear to be an unconventional perspective. The key here is, however, that

these assumptions are not inconsistent with our definition of an equilibrium.

The analysis would then be incomplete without the consideration of such an

unconvential perspective.

Note that the market clearing condition implies that the Bitcoin price

satisfies

Qt =
yt −Dt

Bt

(73)

Intuitively, the causality is in reverse compared to scenario 1: now central

bank policy drives Bitcoin prices. However, the process for the Dollar stock

cannot be arbitrary. To see this, suppose that yt ≡ ȳ is constant. We already

know that Qt must then be a martingale. Suppose Bt is constant as well.

Equation (73) now implies that Dt must be a martingale too. Intuitively, the

central bank has been freed from concerns regarding the price level, and is

capable to steer the Bitcoin price this way or that, per equation (73). But in

doing so, the equilibrium asset pricing conditions imply that the central bank

is constrained in its policy choice.

Proposition 9 (Submartingale Implication:)

If the Dollar quantity is set independently of production, the Bitcoin price

process is a submartingale, Et[Qt+1] ≥ Qt.

Proof: Conditional on time t information, and combined with corollary 2,
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we obtain

Et[Qt+1] = Qt − κt corrt (u
′(ct+1), Qt+1)

= Qt − κt corrt

(

u′(ct+1),
yt+1 −Dt+1

Bt+1

)

= Qt −
κt

Bt+1

corrt (u
′(yt+1), yt+1)

since the Dollar quantity is uncorrelated with production. Note that we have

covt (u
′(yt+1), yt+1) ≤ 0 since marginal utility is a decreasing function of con-

sumption. Therefore, Et[Qt+1] > Qt. •

Suppose that production yt is iid. Let F denote the distribution of yt,

yt ∼ F . The distribution Gt of the Bitcoin price is then given by

Gt(s) = P(Qt ≤ s) = F (Bt s+Dt). (74)

As a consequence, changes in expected production or production volatility

translate directly to changes in the expected Bitcoin price or price volatility.

Proposition 10 (Bitcoin Price Distribution:)

If Bitcoin quantity or Dollar quantity is higher, high Bitcoin price realizations

are less likely in the sense of first order stochastic dominance.

Proof: Note that F (Bt s+Dt) is increasing in Bt and increasing in Dt. •

Intuitively, by setting the Dollar quantity, the central bank can control the

Bitcoin price. Further, a growing quantity of Bitcoins calms down the Bitcoin

price.

Compare two economies which differ only in terms of their productivity

distributions, F1 vs F2. We say economy 2 is more productive than econ-

omy 1, if the productivity distribution of economy 2 first order stochastically

dominates the productivity distribution of economy 1. We say economy 2

30



has more predictable production than economy 1, if the productivity distri-

bution of economy 2 second order stochastically dominates the productivity

distribution of economy 1.

Proposition 11 (Bitcoins and Productivity)

In more productive economies or economies with higher predictability of pro-

duction, the Bitcoin price is higher in expectation.

Proof: First order stochastic dominance implies second order stochastic

dominance. We therefore have to show the result only if F2 second-order

stochastically dominates F1. Let G2,t and G1,t be the resulting distributions

for Bitcoin prices. Since the Bitcoin price is positive,

E[Qt,2] =

∫ ∞

0

x dG2,t(x)

=

∫ ∞

0

(1−G2,t(x)) dx

=

∫ ∞

0

(1− F2(Btx+Dt)) dx

≥

∫ ∞

0

(1− F1(Btx+Dt)) dx

= E[Qt,1]

•

6 Examples

6.1 General construction

One can generally construct equilibria as follows. First, pick a process for the

iid θt: they provide the probabilistic “canvas” on which to draw everything

else. Next, pick a stochastic process of marginal utilities u′(ct) = u′(c(θt)) in

such a way, that assumption 1 or even assumption 2 is satisfied. Since we start
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with these marginal utilities as primitives for this construction, denote them

as mt = u′(ct), noting that mt = m(θt). Pick a sequence of random shocks3

ǫt = ǫ(θt), such that Et[ǫt+1] = 0 and such that their infinite sum is bounded,

|
∑

t ǫt |≤ ξ < ∞ for some ξ. Pick an initial Bitcoin value Q0. Q0 should

be large enough, see equation (75) below, in order to achieve Qt ≥ 0 for all

t. That formula may sometimes not be very practical, however. Instead, one

can always start from some Q0 and increase it later towards the end of the

construction, adding some fixed amount to all Qt. Given Qt, let

Qt+1 = Qt + ǫt+1 −
covt(mt+1, ǫt+1)

Et[mt+1]

Note that the conditional covariance of mt+1 and ǫt+1 equals the conditional

covariance of mt+1 and Qt+1. It is now easy to see that (56) is satisfied. Q0

needs to be large enough, so that Qt ≥ 0 always. To achieve that, set

Q0 > ξ +
∞
∑

t=0

covt(mt+1, ǫt+1)

Et[mt+1]
(75)

In order to complete the construction and to examine allocations, postulate

some strictly concave utility function u(·). The process for marginal utilities

mt then generates a sequence of outputs yt = (u′)−1(mt). Start with some

initial amount of Bitcoins B0. Suppose Bt is known. With Qt, proposition 3

and equation (44) deliver the amount of new Bitcoin production At and thus

Bt+1. If assumption 2 has been imposed, theorem 1 now implies the amount

of purchases xt = bt = Qt/Bt with Bitcoins and the Dollar-financed purchases

zt = dt = yt − bt. One needs to be careful in picking B0 such that bt ≤ yt for

all t. One can achieve this “ex post” either by reducing B0 or by rescaling the

utility function and thereby the yt’s.

3Note that θt encodes the date t per the length of the vector θt. Therefore, we are
formally allowed to change the distributions of the ǫt as a function of the date as well as
the past history.
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6.2 Specific examples

For a more specific example, suppose that θt ∈ {L,H}, achieving each value

with probability 1/2. Let mt be iid, mt = m(θt), with m(L) ≤ m(H) and

E[mt] = (mL + mH)/2 = 1. Pick 0 < β < 1 such that m(L) > β, thereby

implying assumption 2. At date t and for ǫ(θt) = ǫt(θt), consider two cases

Case A: ǫt(H) = 2−t, ǫt(L) = −2−t

Case B: ǫt(H) = −2−t, ǫt(L) = 2−t

The absolute value of the sum of the ǫt is bounded by ξ = 2. Note that

covt(mt+1, ǫt+1)

Et[mt+1]
=

{

2−(t+2)(m(H)−m(L)) if case A at t + 1

−2−(t+2)(m(H)−m(L)) if case B at t+ 1

With equation (75), pick

Q0 > ξ + (m(H)−m(L))/2

Consider three constructions,

Always A: Always impose case A, i.e. ǫt(H) = 2−t, ǫt(L) = −2−t.

Always B: Always impose case B, i.e. ǫt(H) = −2−t, ǫt(L) = 2−t

Alternate: In even periods, impose case A, i.e. ǫt(H) = 2−t, ǫt(L) = −2−t.

In odd periods, impose case B, i.e. ǫt(H) = −2−t, ǫt(L) = 2−t

For each of these, complete the calculations of the Qt sequences as generally

described above. If m(L) = m(H) = 1, then all three constructions result

in a martingale for Qt = Et[Qt+1]. Suppose that m(L) < m(H). The “Al-

ways A” construction results in Qt > Et[Qt+1] and Qt is a supermartingale.

The “Always B” construction results in a submartingale Qt < Et[Qt+1]. The

“Alternate” construction results in a price process that is neither a super-

martingale nor a submartingale, but which one still show to converge almost

surely and in L1 norm. One can vary the “Alternate” construction and impose
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the case switch after possibly increasing stretches of adjacent periods: conver-

gence still obtains. We therefore conjecture that the convergence results in

theorem 2 always hold, provided assumption 2 is satisfied.

These examples were meant to illustrate the possibility, that supermartin-

gales, submartingales as well mixed constructions can all arise, starting from

the same assumptions about the fundamentals. Sample paths of these price

processes are unlikely to look like the saw tooth pattern shown in figure 1,

however. To get somewhat closer to that, the following construction may

help. Once again, let θt ∈ {L,H}, but assume now that P (θt = L) = p < 0.5.

Suppose that m(L) = m(H) = 1. Pick some Q > 0 as well as some Q∗ > Q.

Pick some Q0 ∈ [Q,Q∗]. If Qt < Q∗, let

Qt+1 =

{

Qt−pQ

1−p
if θt = H

Q if θt = L

If Qt ≥ Q∗, let Qt+1 = Qt. Therefore Qt will be a martingale and satisfies

(56). If Q0 is sufficiently far above Q̄ and if p is reasonably small, then typical

sample paths will feature a reasonably quickly rising Bitcoin price Qt, which

crashes eventually to Q and stays there, unless it reaches the upper bound Q∗

first. Further modifications of this example can generated generate repeated

sequences of rising prices and crashes.

For the relationship between output and marginal utilities as well as the

covariance of output with Bitcoin prices, consider some specific cases for utility

functions.

1. Suppose that utility is linear or that consumption is constant. In that

case, u′(ct) is constant. Assumption 2 is satisfied, since 0 < β < 1.

Consequently, all Bitcoins are spent every period and Qt is a bounded

martingale, converging to a limit Q∞.

2. Suppose that utility is quadratic, u(c) = αc2+βc+γ, with α < 0. Then,

marginal utility of consumption at date t equals 2αyt + β = 2αyt + β,

exploiting ct = yt. The correlation between marginal utility and the

Bitcoin price is then equal to the negative of the correlation of production
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and the Bitcoin price.

3. Suppose that utility is logarithmic, u(c) = log(ct). The correlation be-

tween marginal utility and the Bitcoin price is then equal to the correla-

tion of inverse of production and the Bitcoin price. With CRRA utility

u(c) = (c1−η − 1)/(1− η), that inverse of production has to be taken to

the power of η.

7 Conclusions

This paper has analyzed the evolution of Bitcoin prices and the consequences

for monetary policy in a model, in which two groups of infinitely lived agents

alternate in their production and consumption possibilities. A central bank

keeps the real value of Dollars constant via appropriate monetary injections,

while Bitcoin production is decentralized via proof-of-work. Both monies can

be used for transactions. We have shown a “fundamental” condition and

a “speculative” condition for Bitcoin prices. We have provided conditions,

under which no speculation in Bitcoins arises. Under some conditions, we have

shown that Bitcoin prices form convergent supermartingales or convergent

submartingales. We have studied the implications for monetary policy under

a “conventional” as well an “unconventional” scenario. We have provided a

general method for constructing equilibria, as well as specific examples, and

extended our analysis allowing for inflation.

The simple model environment considered here already gives rise to a rich

set of insights and results. Future research may examine the robustness of the

results obtained here as well as their general applicability to the market of

digital currencies.
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[5] Böhme, Rainer, Nicolas Christin, Benjaimin Edelman and Tyler Moore

(2015), “Bitcoin: Economics, Technology and Governance,” Journal of

Ecoomic Perspectives (Spring), vol. 29, no. 2, pp. 213-238.

[6] Bolt, Wilko and Maarten R.C. van Oordt (2016), “On the Value of Virtual

Currencies,” Financial Stability Department, Bank of Canada, draft.

[7] Borgonovo, Emanuele, Stefano Caselli, Alessandra Cillo and Donato Mas-

ciandaro (2017), “Beyond Bitcoin and Cash: do we would like a central

bank digital currency? A financial and political economics approach,”

Bocconi WP 65.

[8] Brito, Jerry and Andrea Castillo (2013), “Bitcoin. A Primer for Policy-

makers,” Mercatus Center, George Mason University, draft.

[9] Brandvold, Morten, Peter Molnár, Kristian Vagstad, Ole Christian AN-

dreas Valstad, “Price discovery on Bitcoin exchanges,” Journal of Inter-

national Financial Markets, Instiutions & Money, vol. 36 (2015), 18-35.

[10] Burnside, Craig, Martin Eichenbaum and Sergio Rebelo (2011), “Carry

Trade and Momentum in Currency Market,” Annual Review of Financial

Economics, vol. 3, pp. 511-535

36



[11] Burnside, Craig, Martin Eichenbaum and Sergio Rebelo (2015), “Under-

standing Booms and Busts in Housing Markets,” draft, Northewestern

University.

[12] Catalini, Christian and Joshua S. Gans (2016), “Some Simple Economics

of the BLockchain,” NBER WP 22952.

[13] Carstens, Augustin (2018), “Money in the digital age: what role for cen-

tral banks?”, Lecture at the House of Finance, Goethe University Frank-

furt February 6th, 2018, available as draft from BIS.

[14] Cole, Harold L. and Narayana Kocherlakota (1998), “Zero Nominal Inter-

est Rates: Why They’re Good and How to Get Them,” Federal Reserva

Bank of Minneapolis, Quarterly Review (Spring).

[15] Cong, Lin William and Zhiguo He (2018), “Blockchain Disruption and

Smart Contracts,” draft, Booth School of Business, University of Chicago.

[16] Chohan, Usman W. (2017), “A History of Bitcoin,” School of Business

and Economics, University of New South Wales (draft).

[17] Fantazzini, Dean, Erik Nigmatullin, Vera Sukhanovskaya and Sergey

Ivliev (2016), “Everything you always wanted to know about Bitcoin

modelling but were afraid to ask,” draft (in English), Moscow School

of Economics, published (in Russian) in Applied Econometrics (2016),

vol. 44, 5-24 as part I and Applied Econometrics,vol. 45, pp. 5-28 as part

2.
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FOR ONLINE PUBLICATION

A Extension: Inflation

So far, we have imposed that the Dollar price level stays constant. In this

section, we modify our analysis, allowing for possibly random inflation,

πt+1 =
Pt+1

Pt

∈ R (76)

Proposition 12 ( Constant Inflation Targeting:)

Suppose the central bank targets a constant inflation πt ≡ π > 1. Then all

Dollars are spent in each period.

Proof: Following the proof of Proposition 1 and without constant prices,

agents spend all Dollars if

u′(ct−1) > β2
Et−1

[

u′(ct+1)
Pt−1

Pt+1

]

(77)

With constant inflation, this becomes

u′(ct−1) >

(

β

π

)2

Et−1[u
′(ct+1)] (78)

With π > 1, this is implied by assumption 1. •

With deflation, agents may either possibly hoard Dollars or a stronger as-

sumption than assumption 1 is required. For constant consumption and with

deflation π = β, there no longer is a cost to holding money.

Proposition 13 (Modified Fundamental Condition:)

Suppose that inflation πt is random. Suppose that sales happen both in the

Bitcoin-denominated consumption market as well as the Dollar-denominated

1



consumption market at time t as well as at time t+1, i.e. suppose that xt > 0,

zt > 0, xt+1 > 0 and zt+1 > 0. Then

Et

[

u′(ct+1)
Qt+1

Qt

]

= Et

[

u′(ct+1)
1

πt+1

]

(79)

In particular, if consumption and production is constant at t+1, ct+1 = yt+1 ≡

ȳ = y, then

Qt Et

[

1

πt+1

]

= Et [Qt+1] (80)

Proof: Under a general Dollar price level, indifference between investment

in Dollars or Bitcoin now requires (79). •

Interestingly, the speculative condition of proposition 5 remains unchanged,

as it only compares the real purchasing power of Bitcoins in t to their real

purchasing power in t+2. The Zero-Bitcoin-Transactions Condition of propo-

sition 6 requires modification, though, since it concerns the choice between

accepting Dollars versus accepting Bitcoins, when selling goods.

Proposition 14 (Modified Zero-Bitcoin-Transactions Condition:)

Suppose that Bt > 0, Qt > 0, zt > 0 and that there is absence of goods

transactions against Bitcoins xt = bt = 0 at date t. Then

Et

[

u′(ct+1)
1

πt+1

]

≥ Et

[

u′(ct+1)
Qt+1

Qt

]

(81)

Proof: Direct. •

If the central bank follows a constant inflation target, theorem 1 continues

to hold:

Theorem 3 (No Bitcoin Speculation) Suppose that Bt > 0 and Qt > 0 for

all t. Impose assumption 2. With constant inflation πt = π > 1, all Bitcoins

are spent in every period.
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Proof: As in the proof of theorem 1,

β2
Et[u

′(ct+2)Qt+2] = β2
Et[Et+1[u

′(ct+2)Qt+2]] (law of iterated expectation)

≤ β2
Et[Et+1[u

′(ct+2)
Qt+1

π
]] (equation (81))

< β2
Et[Et+1[u

′(ct+2)] Qt+1] (inflation)

< βEt[u
′(ct+1)Qt+1] (per ass. 2 in t+1)

≤ βEt[u
′(ct+1)

Qt

π
] (equation (81))

≤ βEt[u
′(ct+1)Qt] (inflation)

≤ u′(ct)Qt (per ass. 2 in t)

•
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