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1 Introduction

In a seminal paper, Imbens and Angrist (1994) studied conditions under which the instrumental variables (IV)

estimator is consistent for the Local Average Treatment Effect (LATE) – an average effect for a subpopulation of

“compliers” compelled to change treatment status by an external instrument. The plausibility and transparency

of these conditions is often cited as an argument for preferring IV to nonlinear estimators based on parametric

models (Angrist and Pischke, 2009, 2010). On the other hand, LATE itself has been criticized as difficult

to interpret, lacking in policy relevance, and problematic for generalization (Heckman, 1997; Deaton, 2009;

Heckman and Urzua, 2010). Adherents of this view favor estimators motivated by joint models of treatment

choice and outcomes with structural parameters defined independently of the instrument at hand.

This note develops some connections between IV and structural estimators intended to clarify how the choice

of estimator affects the conclusions researchers obtain in practice. Our primary result is that, in the familiar

binary instrument/binary treatment setting with imperfect compliance, a wide array of structural “control

function” estimators derived from parametric threshold-crossing models yield LATE estimates numerically

identical to IV. Notably, this equivalence applies to appropriately parameterized variants of Heckman’s (1976;

1979) classic two-step (“Heckit”) estimator that are nominally predicated on bivariate normality. Differences

between structural and IV estimates therefore stem in canonical cases entirely from disagreements about the

target parameter rather than from functional form assumptions.

After considering how our results extend to settings with instruments taking multiple values, we briefly

probe the limits of our findings by examining some estimation strategies where equivalence fails. First, we

revisit a control function estimator considered by LaLonde (1986) and show that it produces results identical

to IV only under a symmetry condition on the estimated probability of treatment. Next, we study an estimator

motivated by a selection model that violates the monotonicity condition of Imbens and Angrist (1994) and

establish that it yields a LATE estimate different from IV, despite fitting the same sample moments. Standard

methods of introducing observed covariates also break the equivalence of control function and IV estimators,

but we discuss a reweighting approach that ensures equivalence is restored. We then consider full information

maximum likelihood (FIML) estimation of some generalizations of the textbook bivariate probit model and

show that this yields LATE estimates that coincide with IV at interior solutions. However, FIML diverges from

IV when the likelihood is maximized on the boundary of the structural parameter space, which serves as the

basis of recent proposals for testing instrument validity in just-identified settings (Huber and Mellace, 2015;

Kitagawa, 2015). Finally, we discuss why estimation of over-identified models generally yields LATE estimates

different from IV.

The equivalence results developed here provide a natural benchmark for assessing the credibility of structural

estimators, which typically employ a number of over-identifying restrictions in practice. As Angrist and Pischke

(2010) note: “A good structural model might tell us something about economic mechanisms as well as causal

effects. But if the information about mechanisms is to be worth anything, the structural estimates should line

up with those derived under weaker assumptions.” Comparing the model-based LATEs implied by structural
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estimators with unrestricted IV estimates provides a transparent assessment of how conclusions regarding a

common set of behavioral parameters are influenced by the choice of estimator. A parsimonious structural

estimator that rationalizes a variety of IV estimates may reasonably be deemed to have survived a “trial by

fire,” lending some credibility to its predictions.

2 Two views of LATE

We begin with a review of the LATE concept and its link to IV estimation. Let Yi represent an outcome of

interest for individual i, with potential values Yi1 and Yi0 indexed against a binary treatment Di. Similarly,

let Di1 and Di0 denote potential values of the treatment indexed against a binary instrument Zi. Realized

treatments and outcomes are linked to their potential values by the relations Di = ZiDi1 + (1− Zi)Di0 and

Yi = DiYi1 + (1−Di)Yi0. Imbens and Angrist (1994) consider instrumental variables estimation under the

following assumptions:

IA.1 Independence/Exclusion: (Yi1, Yi0, Di1, Di0) ⊥⊥ Zi.

IA.2 First Stage: Pr [Di = 1|Zi = 1] > Pr [Di = 1|Zi = 0].

IA.3 Monotonicity: Pr [Di1 ≥ Di0] = 1.

Assumption IA.1 requires the instrument to be as good as randomly assigned and to influence outcomes only

through its effect on Di. Assumption IA.2 requires the instrument to increase the probability of treatment,

and assumption IA.3 requires the instrument to weakly increase treatment for all individuals.

Imbens and Angrist (1994) define LATE as the average treatment effect for “compliers” induced into treat-

ment by the instrument (for whom Di1 > Di0). Assumptions IA.1-IA.3 imply that the population Wald (1940)

ratio identifies LATE:

E [Yi|Zi = 1]− E [Yi|Zi = 0]

E [Di|Zi = 1]− E [Di|Zi = 0]
= E [Yi1 − Yi0|Di1 > Di0] ≡ LATE.

Suppose we have access to an iid vector of sample realizations {Yi, Di, Zi}ni=1 obeying the following assump-

tion:

Assumption 1. 1∑
i Zi

∑
i ZiDi 6= 1∑

i(1−Zi)

∑
i(1− Zi)Di.

When IA.2 is satisfied the probability of Assumption 1 being violated approaches zero at an exponential rate

in n. The analogy principle suggests estimating LATE with:

L̂ATE
IV

=

1∑
i Zi

∑
i ZiYi −

1∑
i(1−Zi)

∑
i(1− Zi)Yi

1∑
i Zi

∑
i ZiDi − 1∑

i(1−Zi)

∑
i(1− Zi)Di

.

This IV estimator is well-defined under Assumption 1, and is consistent for LATE under assumptions IA.1-IA.3

and standard regularity conditions.
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Threshold-crossing representation

Vytlacil (2002) showed that the LATE model can be written as a joint model of potential outcomes and self-

selection in which treatment is determined by a latent index crossing a threshold. Suppose treatment status is

generated by the equation

Di = 1 {ψ(Zi) ≥ Vi},

where the latent variable Vi is independently and identically distributed according to some continuous distri-

bution with cumulative distribution function FV (.) : R → [0, 1], and ψ (.) : {0, 1} → R defines instrument-

dependent thresholds below which treatment ensues. Typically FV (.) is treated as a structural primitive

describing a stable distribution of latent costs and benefits influencing program participation that exists inde-

pendently of a particular instrument, as in the classic selection models of Roy (1951) and Heckman (1974). We

follow Heckman and Vytlacil (2005) and work with the equivalent transformed model

Di = 1 {P (Zi) ≥ Ui} , (1)

where Ui ≡ FV (Vi) follows a uniform distribution and P (Zi) ≡ FV (ψ(Zi)) is the propensity score. The

instrument Zi is presumed to increase the likelihood of treatment (P (1) > P (0)), and to be independent of Ui

and potential outcomes:

(Yi1, Yi0, Ui) ⊥⊥ Zi. (2)

The selection model defined by (1) and (2) is equivalent to the treatment effects model described by assump-

tions IA.1-IA.3. Equation (1) merely translates the behavioral responses that are permitted in the LATE model

into a partition of the unit interval. In the terminology of Angrist et al. (1996), assumption IA.3 implies that

the population consists of compliers with Di1 > Di0, “always takers” with Di1 = Di0 = 1, and “never takers”

with Di1 = Di0 = 0. The latent variable Ui is defined such that always takers have Ui ∈ [0, P (0)], compliers

have Ui ∈ (P (0), P (1)], and never takers have Ui ∈ (P (1), 1]. Condition (2) implies that potential outcomes and

treatment choices are independent of the instrument and imposes no further restrictions on the joint distribution

of these quantities. It follows that we can equivalently define LATE = E [Yi1 − Yi0|P (0) < Ui ≤ P (1)].

Though Vytlacil’s (2002) results establish equivalence between a non-parametric latent index model and

the LATE model, the fully non-parametric model is typically not used for estimation. Rather, to motivate

alternatives to IV estimation, it is conventional to make additional assumptions regarding the joint distribution

of the latent cost Ui and the potential outcomes (Yi1, Yi0). The goal of this note is to investigate the consequences

of such assumptions for empirical work.

3 Control function estimation

We begin by considering estimators predicated on the existence of a parametric “control function” capturing

the endogeneity in the relationship between outcomes and treatment (Heckman and Robb, 1985; Blundell and
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Matzkin, 2014; Wooldridge, 2015). The workhorse models in this literature obey the following semi-parametric

restriction:

E [Yid|Ui] = αd + γd × (J(Ui)− µJ) , d ∈ {0, 1} , (3)

where J(·) : [0, 1]→ R is a strictly increasing continuous function and µJ ≡ E [J(Ui)]. Lee (1982) studied this

dependence structure in the context of classic “one-sided” selection problems where outcomes are only observed

when Di = 1. Setting J(·) equal to the inverse normal CDF yields the canonical Heckman (1976; 1979) sample

selection (“Heckit”) model, while choosing J(u) = u yields the linear selection model studied by Olsen (1980),

and choosing the inverse logistic CDF for J (.) yields the logit selection model considered by Mroz (1987).

Subsequent work applies versions of (3) to policy evaluation by modeling program participation as a “two-

sided” sample selection problem with coefficients indexed by the treatment state d. For example, Bjorklund and

Moffitt (1987) build on the Heckit framework by assuming J(·) is the inverse normal CDF and allowing α1 6= α0,

γ1 6= γ0. Likewise, the estimator of Brinch et al. (2017) is a two-sided variant of Olsen’s (1980) approach that

imposes an identity J(·) function with coefficients indexed by d. Interestingly, Dubin and McFadden’s (1984)

classic multinomial selection model collapses in the binary treatment effects case to a two-sided version of

Mroz’s (1987) logit model.

Assumption (3) nullifies Vytlacil’s (2002) equivalence result by imposing restrictions on the relationships

between mean potential outcomes of subgroups that respond differently to the instrument Zi. Let µdg denote

the mean of Yid for group g ∈ {at, nt, c}, representing always takers, never takers and compliers. For any

strictly increasing J(·), equation (3) implies sgn(µdat − µdc) = sgn(µdc − µdnt) for d ∈ {0, 1}. In contrast, the

nonparametric model defined by assumptions IA.1-IA.3 is compatible with any arrangement of differences in

mean potential outcomes for the three subgroups. We next consider whether these additional restrictions are

consequential for estimation of LATE.

LATE

Equation (3) implies that mean outcomes conditional on treatment status are

E [Yi|Zi, Di = d] = αd + γdλd (P (Zi)),

where λ1(p) and λ0(p) are control functions giving the means of (J (Ui)− µJ) when Ui is truncated from above

and below at p:

λ1(p) = E [J(Ui)− µJ |Ui ≤ p] , λ0(p) = E [J(Ui)− µJ |Ui > p].

While attention in parametric selection models often focuses on the population average treatment effect

α1 − α0 (Garen, 1984; Heckman, 1990; Wooldridge, 2015), equation (3) can also be used to compute

treatment effects for other subgroups. The average effect on compliers can be written

LATE = α1 − α0 + (γ1 − γ0) Γ (P (0), P (1)) , (4)
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where Γ(p, p′) gives the mean of J(Ui)− µJ truncated between p and p′:

Γ(p, p′) = E [J(Ui)− µJ |p < Ui ≤ p′] =
p′λ1(p′)− pλ1(p)

p′ − p
.

The last term in (4) adjusts the average treatment effect to account for non-random selection into compliance

with the instrument; this quantity is well-defined when IA.2 holds and non-compliance is “two-sided” so that

0 < P (0) < P (1) < 1.

Estimation

To motivate control function estimation, suppose that the sample exhibits two-sided non-compliance as follows:

Assumption 2. 0 <
∑
i 1{Di = d}Zi <

∑
i 1 {Di = d} for d ∈ {0, 1}.

This condition requires at least one observation with every combination of Zi and Di. Assumption 2 is

satisfied with probability approaching one at an exponential rate in n whenever 0 < Pr[Zi = 1] < 1 and

0 < P (z) < 1 for z ∈ {0, 1}.

Control function estimation typically proceeds in two steps, both for computational reasons and because of

the conceptual clarity of plug-in estimation strategies (Heckman, 1979; Smith and Blundell, 1986). Deferring

a discussion of one-step estimation approaches to later sections, we define the control function estimator as a

procedure which first fits the choice model in equation (1) by maximum likelihood, then builds estimates of

λ1(·) and λ0(·) to include in second-step ordinary least squares (OLS) regressions for each treatment category.

The first step estimates can be written

(
P̂ (0), P̂ (1)

)
= arg max

P (0),P (1)

∑
i

Di logP (Zi) +
∑
i

(1−Di) log (1− P (Zi)). (5)

The second step OLS estimates are

(α̂d, γ̂d) = arg min
αd,γd

∑
i

1 {Di = d}
[
Yi − αd − γdλd(P̂ (Zi))

]2
, d ∈ {0, 1}. (6)

Under Assumption 2, α̂d and γ̂d can be computed for each value of d. The analogy principle then suggests the

following plug-in estimator of LATE:

L̂ATE
CF

= (α̂1 − α̂0) + (γ̂1 − γ̂0) Γ(P̂ (0), P̂ (1)).

4 Equivalence results

Compared to L̂ATE
IV

, L̂ATE
CF

would seem to be highly dependent upon the functional form assumed for

J(·) and the linearity of equation (3). Our first result shows that this is not the case.
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Theorem 1. If Assumptions 1 and 2 hold then L̂ATE
CF

= L̂ATE
IV

.

Proof: The maximum likelihood procedure in (5) yields the empirical treatment rates P̂ (z) =
∑

i 1{Zi=z}Di∑
i 1{Zi=z}

for z ∈ {0, 1}. The second-step OLS regressions can be rewritten

(α̂d, γ̂d) = arg min
αd,γd

∑
i 1 {Di = d}

(
Yi −

[
αd + γdλd(P̂ (0))

]
− γd

[
λd(P̂ (1))− λd(P̂ (0))

]
Zi

)2

.

This is a least squares fit of Yi on an intercept and the indicator Zi in the subsample with Di = d. Such

regressions can be estimated as long as there is two-sided non-compliance with the instrument Zi, which

follows from Assumption 2. Defining Ȳ zd ≡
∑

i 1{Di=d}1{Zi=z}Yi∑
i 1{Di=d}1{Zi=z} , we have

Ȳ 0
d = α̂d + γ̂dλd(P̂ (0)), Ȳ 1

d − Ȳ 0
d = γ̂d

[
λd(P̂ (1))− λd(P̂ (0))

]
.

Under Assumption 1, we have λd(P̂ (1)) 6= λd(P̂ (0)), and this pair of equations can be solved for γ̂d and α̂d as

γ̂d =
Ȳ 1
d −Ȳ

0
d

λd(P̂ (1))−λd(P̂ (0))
, α̂d =

λd(P̂ (1))Ȳ 0
d −λd(P̂ (0))Ȳ 1

d

λd(P̂ (1))−λd(P̂ (0))
.

We can therefore rewrite the control function estimate of LATE as

L̂ATE
CF

=
([

λ1(P̂ (1))Ȳ 0
1 −λ1(P̂ (0))Ȳ 1

1

λ1(P̂ (1))−λ1(P̂ (0))

]
−
[
λ0(P̂ (1))Ȳ 0

0 −λ0(P̂ (0))Ȳ 1
0

λ0(P̂ (1))−λ0(P̂ (0))

])
+
([

Ȳ 1
1 −Ȳ

0
1

λ1(P̂ (1))−λ1(P̂ (0))

]
−
[

Ȳ 1
0 −Ȳ

0
0

λ0(P̂ (1))−λ0(P̂ (0))

])
×
(
P̂ (1)λ1(P̂ (1))−P̂ (0)λ1(P̂ (0))

P̂ (1)−P̂ (0)

)
.

Using the fact that λ0(p) = −λ1(p)p/(1− p), this simplifies to

L̂ATE
CF

=

[
P̂ (1)Ȳ 1

1 + (1− P̂ (1))Ȳ 1
0

]
−
[
P̂ (0)Ȳ 0

1 + (1− P̂ (0))Ȳ 0
0

]
P̂ (1)− P̂ (0)

,

which is L̂ATE
IV

. �

Remark 1. An immediate consequence of Theorem 1 is that L̂ATE
CF

is also equivalent to the coefficient on

Di associated with a least squares fit of Yi to Di and a first stage residual Di − P̂ (Zi). Blundell and Matzkin

(2014) attribute the first proof of the equivalence between this estimator and IV to Telser (1964).

Remark 2. Theorem 1 extends the analysis of Brinch et al. (2017) who observe that an attractive feature of

their linear control function estimator is that it produces a LATE estimate numerically equivalent to IV. In

fact, a wide class of non-linear control function estimators yield LATE estimates numerically equivalent to

IV. With a binary treatment and instrument, an instrumental variables estimate can always be viewed as the

numerical output of a variety of parametric control function estimators.

Potential outcome means

Corresponding equivalence results hold for estimators of other parameters identified in the LATE framework.

Imbens and Rubin (1997) and Abadie (2002) discuss identification and estimation of the treated outcome

distribution for always takers, the untreated distribution for never takers, and both marginal distributions for

compliers. Nonparametric estimators of the four identified marginal mean potential outcomes are given by
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µ̂IV1at = Ȳ 0
1 , µ̂IV0nt = Ȳ 1

0 ,

µ̂IV1c =
P̂ (1)Ȳ 1

1 −P̂ (0)Ȳ 0
1

P̂ (1)−P̂ (0)
, µ̂IV0c =

(1−P̂ (0))Ȳ 0
0 −(1−P̂ (1))Ȳ 1

0

P̂ (1)−P̂ (0)
.

The corresponding control function estimators are:

µ̂CF1at = α̂1 + γ̂1λ1(P̂ (0)), µ̂CF0nt = α̂0 + γ̂0λ0(P̂ (1)),

µ̂CFdc = α̂d + γ̂dΓ(P̂ (0), P̂ (1)), d ∈ {0, 1}.

The following proposition shows that these two estimation strategies produce algebraically identical results.

Proposition 1. If Assumptions 1 and 2 hold then

µ̂CFdg = µ̂IVdg for (d, g) ∈ {(1, at), (0, nt), (1, c), (0, c)}.

Proof: Using the formulas from the proof of Theorem 1, the control function estimate of µ1at is

µ̂CF1at =
(
λ1(P̂ (1))Ȳ 0

1 −λ1(P̂ (0))Ȳ 1
1

λ1(P̂ (1))−λ1(P̂ (0))

)
+
(

Ȳ 1
1 −Ȳ

0
1

λ1(P̂ (1))−λ1(P̂ (0))

)
λ1(P̂ (0)) = Ȳ 0

1 ,

which is µ̂IV1at. Likewise,

µ̂CF0nt =
(
λ0(P̂ (1))Ȳ 0

0 −λ0(P̂ (0))Ȳ 1
1

λ0(P̂ (1))−λ0(P̂ (0))

)
+
(

Ȳ 1
0 −Ȳ

0
0

λ0(P̂ (1))−λ0(P̂ (0))

)
λ0(P̂ (1)) = Ȳ 1

0 ,

which is µ̂IV0nt. The treated complier mean estimate is

µ̂CF1c =
(
λ1(P̂ (1))Ȳ 0

1 −λ1(P̂ (0))Ȳ 1
1

λ1(P̂ (1))−λ1(P̂ (0))

)
+
(

Ȳ 1
1 −Ȳ

0
1

λ1(P̂ (1))−λ1(P̂ (0))

)
×
(
P̂ (1)λ1(P̂ (1))−P̂ (0)λ1(P̂ (0))

P̂ (1)−P̂ (0)

)
=

(λ1(P̂ (1))−λ1(P̂ (0)))P̂ (1)Ȳ 1
1 −(λ1(P̂ (1))−λ1(P̂ (0)))P̂ (0)Ȳ 0

1

(λ1(P̂ (1))−λ1(P̂ (0)))(P̂ (1)−P̂ (0))
=

P̂ (1)Ȳ 1
1 −P̂ (0)Ȳ 0

1

P̂ (1)−P̂ (0)
,

which is µ̂IV1c . Noting that L̂ATE
IV

= µ̂IV1c − µ̂IV0c and L̂ATE
CF

= µ̂CF1c − µ̂CF0c , it then follows by Theorem 1

that µ̂CF0c = µ̂IV0c . �

5 Equivalence and extrapolation

Proposition 1 establishes that all control function estimators based on equation (3) produce identical estimates of

the potential outcome means that are nonparametrically identified in the LATE framework. Different functional

form assumptions generate different estimates of quantities that are under-identified, however. For example,

the choice of J(·) in equation (3) determines the shapes of the curves that the model uses to extrapolate from

estimates of the four identified average potential outcome means (µ1at, µ0nt, µ1c, µ0c) to the two under-identified

potential outcome means (µ0at, µ1nt).
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Figure 1: "Heckit" extrapolation
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Figures 1 and 2 illustrate this extrapolation in a hypothetical example. The horizontal axis plots values u of

the unobserved treatment cost Ui, while the vertical axis plots mean potential outcomes md(u) = E [Yid|Ui = u]

as functions of this cost. Estimates of these functions are denoted m̂d(u) = α̂d + γ̂d × (J(u) − µJ) and their

difference m̂1 (u)− m̂0 (u) provides an estimate of the marginal treatment effect (Bjorklund and Moffitt, 1987;

Heckman and Vytlacil, 2005; Heckman et al., 2006) for an individual with latent cost u.

Assumptions IA.1-IA3 ensure two averages of md (Ui) are identified for each potential outcome: the treated

means for always takers and compliers, and the untreated means for never takers and compliers. The control

function estimator chooses α̂d and γ̂d so that averages of m̂d(Ui) over the relevant ranges match the correspond-

ing nonparametric estimates for each compliance group. The coefficient γ̂1 parameterizes the difference in mean

treated outcomes between compliers and always takers, while γ̂0 measures the difference in mean untreated

outcomes between compliers and never takers. Several tests of endogeneous treatment assignment (see, e.g.,

Angrist, 2004; Battistin and Rettore, 2008; Bertanha and Imbens, 2014; and Kowalski, 2016) amount to testing

whether (γ̂0, γ̂1) are significantly different from zero.
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Figure 2: Linear extrapolation
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Figure 1 depicts the results of parametric extrapolation based on the Heckit model, while Figure 2 shows

results for the linear control function model discussed by Brinch et al. (2017). Both models match the same four

estimated mean potential outcomes, thereby generating identical estimates of LATE. Note that by Jensen’s

inequality, the nonlinear m̂d(u) curves in Figure 1 do not pass directly through the group mean potential

outcomes. The two models yield different imputations for the missing potential outcomes of always takers and

never takers, and therefore also different estimates of the ATE, which averages over all three subpopulations.

This sensitivity to functional form is intuitive: treatment effects for always and never takers are fundamentally

under-identified, an insight that has led to consideration of worst case bounds on these quantities (Manski,

1990; Balke and Pearl, 1997; Mogstad et al., 2016).

6 Multi-valued instruments

Consider an instrument Zi taking values in {0, 1, ..,K}, and suppose that 0 < P̂ (z − 1) < P̂ (z) < 1 for z ∈

{1, 2, ...,K}. Let Diz denote i’s treatment choice when Zi = z. If assumptions IA.1-IA.3 hold for every pair of

instrument values, Wald ratios of the form E[Yi|Zi=z]−E[Yi|Zi=z−1]
E[Di|Zi=z]−E[Di|Zi=z−1] identify the average treatment effect among

10



compliers indexed by a unit increment in the instrument, which we denote LATEz ≡ E [Yi1 − Yi0|Diz > Diz−1].

Analog estimators of LATEz are given by the following pairwise IV estimator:

L̂ATE
IV

z =

1∑
i 1{Zi=z}

∑
i 1{Zi = z}Yi − 1∑

i 1{Zi=z−1}
∑
i 1{Zi = z − 1}Yi

1∑
i 1{Zi=z}

∑
i 1{Zi = z}Di − 1∑

i 1{Zi=z−1}
∑
i 1{Zi = z − 1}Di

.

From Theorem 1, L̂ATE
IV

z is numerically equivalent to the corresponding pairwise control function estimator

of LATEz. However, to improve precision, it is common to impose additional restrictions on the LATEz.

Consider the following restriction on potential outcomes:

E [Yid|Ui] = αd +
L∑
`=1

γd` × (J(Ui)− µJ)
`
, d ∈ {0, 1}. (7)

Polynomial models of this sort were considered by Brinch et al. (2017) with J (.) restricted to be the identity

function. Letting λ1`(p) = E
[
(J(Ui)− µJ)`|Ui ≤ p

]
and λ0`(p) = E

[
(J(Ui)− µJ)`|Ui > p

]
, a two-step control

function estimator of the parameters of equation (7) is

(α̂d, γ̂d1, ..., γ̂dL) = arg min
αd,γd1,...,γdL

∑
i 1 {Di = d}

[
Yi − αd −

∑L
`=1 γd`λd`(P̂ (Zi))

]2
.

The resulting control function estimator of LATEz is then

L̂ATE
CF

z = (α̂1 − α̂0) +
L∑
`=1

(γ̂1` − γ̂0`)Γ`(P̂ (z − 1), P̂ (z)), (8)

where Γ`(p, p
′) = [p′λ1`(p

′) − pλ1`(p)]/[p
′ − p]. The following proposition establishes that this estimator is

identical to L̂ATE
IV

z when L = K.

Proposition 2. If Assumptions 1 and 2 hold for every pair of instrument values and the polynomial order L

equals K then L̂ATE
CF

z = L̂ATE
IV

z ∀z ∈ {1, 2, ...,K}.

Proof: See the Appendix. �

Remark 3. Instrumenting Di with a scalar function g(Zi) generates an IV estimate equal to a convex weighted

average of the L̂ATE
IV

z (Imbens and Angrist, 1994). From Proposition 2, applying these weights to the

L̂ATE
CF

z when L = K will yield an identical result. By contrast, the set of L̂ATE
CF

z that result from

imposing L < K need not correspond to weighted averages of the L̂ATE
IV

z , but are likely to exhibit reduced

sampling variability.

Remark 4. When L < K − 1, the restriction in (7) can be used to motivate estimators of particular LATEs

that are convex combinations of IV estimators. In the case where K = 3 and L = 1, one can show that:

LATE2 =
(

Γ(P (1),P (2))−Γ(P (0),P (1))
Γ(P (2),P (3))−Γ(P (0),P (1))

)
LATE3 +

(
Γ(P (2),P (3))−Γ(P (1),P (2))
Γ(P (2),P (3))−Γ(P (0),P (1))

)
LATE1.

This representation suggests combination estimators of the form

11



L̂ATEξ2 = ξL̂ATE
IV

2 + (1− ξ)
[(

Γ(P̂ (1),P̂ (2))−Γ(P̂ (0),P̂ (1))

Γ(P̂ (2),P̂ (3))−Γ(P̂ (0),P̂ (1))

)
L̂ATE

IV

3 +
(

Γ(P̂ (2),P̂ (3))−Γ(P̂ (1),P̂ (2))

Γ(P̂ (2),P̂ (3))−Γ(P̂ (0),P̂ (1))

)
L̂ATE

IV

1

]
,

for ξ ∈ (0, 1). To maximize precision, one can set ξ = [v̂2− v̂12]/[v̂1 + v̂2− 2v̂12] , where v̂1 and v̂2 are estimated

variances of L̂ATE
IV

2 and the term in brackets, respectively, and v̂12 is their covariance. By construction,

L̂ATEξ2 provides an estimate of LATE2 more precise than L̂ATE
IV

2 . Though L̂ATE
ξ

2 will tend to be less

precise than L̂ATE
CF

2 when restriction (7) is true, the probability limit of L̂ATE
ξ

2 retains an interpretation

as a weighted average of causal effects for complier subpopulations when (7) is violated, a robustness property

emphasized elsewhere by Angrist and Pischke (2009).

7 Equivalence failures

Though Theorem 1 establishes equivalence between IV and a wide class of control function estimates of LATE,

other control function estimators fail to match IV even with a single binary instrument. LaLonde (1986)

considered OLS estimation of the following model:

Yi = α+ βDi + γ
[
Di ×

(
−φ(Φ−1(P̂ (Zi))

P̂ (Zi)

)
+ (1−Di)×

(
φ(Φ−1(P̂ (Zi))

1−P̂ (Zi)

)]
+ εi. (9)

By imposing a common coefficient γ on the Mills ratio terms for the treatment and control groups, this

specification allows for selection on levels but rules out selection on treatment effects.

The term in brackets in equation (9) simplifies to (Di − P̂ (Zi)) × {−φ(Φ−1(P̂ (Zi)))/[P̂ (Zi)(1 − P̂ (Zi))]}.

When P̂ (1) = 1− P̂ (0) this term is proportional to the first stage residual and least squares estimation of (9)

yields an estimate of β numerically identical to IV. This is a finite sample analogue of Heckman and Vytlacil’s

(2000) observation (elaborated upon in Angrist, 2004) that LATE equals ATE when both the first stage and

the error distribution are symmetric. When P̂ (1) 6= 1 − P̂ (0), however, the control function in equation (9)

differs from the first stage residual and the estimate of β will not match IV.

Remark 5. When P̂ (1) = 1 − P̂ (0), the ATE estimate α̂1 − α̂0 from a control function estimator of the form

given in (6) coincides with IV whenever J(Ui) is presumed to follow a symmetric distribution.

Moments and monotonicity

Theorem 1 relied upon the fact that equation (3) includes enough free parameters to allow the control function

estimator to match the sample mean of Yi for every combination of Di and Zi. One might be tempted to

conclude that any structural estimator that fits these moments will produce a corresponding LATE estimate

equal to IV. We now show that this is not the case.

Suppose that treatment status is generated by a heterogeneous threshold crossing model:

Di = 1 {κ+ δiZi ≥ Ui} , (10)
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where Ui is uniformly distributed and the random coefficient δi is a mixture taking values in {−η, η} for some

known positive constant η. Define υ ≡ Pr [δi = η], and suppose that δi is independent of (Yi1, Yi0, Ui, Zi). Note

that this model does not admit a representation of the form of equation (1) as it allows Di1 < Di0.

Model (10) has two unknown parameters, κ and υ, and can therefore rationalize the two observed choice

probabilities by choosing κ̂ = P̂ (0) and υ̂ = (η + P̂ (1)− P̂ (0))/2η. Equations (3) and (10) imply

E [Yi|Di = d, Zi] = αd + γd × [υλd (κ+ ηZi) + (1− υ)λd(κ− ηZi)].

As before, we can use κ̂ and υ̂ to construct control functions to include in a second-step regression, producing

estimates α̂d and γ̂d that exactly fit Ȳ 1
d and Ȳ 0

d .

Though this estimator matches all choice probabilities and conditional mean outcomes, it produces an

estimate of LATE different from IV. The model’s implied LATE is

E [Yi1 − Yi0|Di1 > Di0] = (α1 − α0) + (γ1 − γ0)× E [J(Ui)− µJ |δi = η, κ < Ui ≤ κ+ η].

The corresponding control function estimator of this quantity is

L̂ATE
∗

= (α̂1 − α̂0) + (γ̂1 − γ̂0)×
(

(κ̂+η)λ1(κ̂+η)−κ̂λ1(κ̂)
η

)
. (11)

It is straightforward to verify that L̂ATE
∗
is not equal to L̂ATE

IV
. Equivalence fails here because the selection

model implies the presence of “defiers” with Di1 < Di0. IV does not identify LATE when there are defiers;

hence, the model suggests using a different function of the data to estimate the LATE.

Covariates

It is common to condition on a vector of covariates Xi either to account for possible violations of the exclusion

restriction or to increase precision. Theorem 1 implies that IV and control function estimates of LATE coincide

if computed separately for each value of the covariates, but this may be impractical or impossible when Xi can

take on many values.

A standard approach to introducing covariates is to enter them additively into the potential outcomes model

(see, e.g., Cornelissen et al., 2016; Kline and Walters, 2016; and Brinch et al., 2017). Suppose treatment choice

is given by Di = 1{P (Xi, Zi) ≥ Ui} with Ui independent of (Xi, Zi), and assume

E [Yid|Ui, Xi] = αd + γd × (J(Ui)− µJ) +X ′iτ, d ∈ {0, 1}. (12)

Letting P̂ (Xi, Zi) denote an estimate of Pr[Di = 1|Xi, Zi], the control function estimates for this model are

(α̂1, γ̂1, α̂0, γ̂0, τ̂) = arg min
α1,γ1,α0,γ0,τ

∑
i

∑
d∈{0,1}

1 {Di = d}
[
Yi − αd − γdλd(P̂ (Xi, Zi))−X ′iτ

]2
. (13)

To ease exposition, we will study the special case of a single binary covariateXi ∈ {0, 1}. Define LATE(x) ≡

E[Yi1 − Yi0|P (x, 0) < Ui ≤ P (x, 1), Xi = x] as the average treatment effect for compliers with Xi = x, and let
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α̂d(x) and γ̂d(x) denote estimates from unrestricted control function estimation among the observations with

Xi = x. The additive separability restriction in (12) suggests the following two estimators of LATE(1):

L̂ATE
CF

x (1) = (α̂1(x)− α̂0(x)) + (γ̂1(x)− γ̂0(x)) Γ(P̂ (1, 0), P̂ (1, 1)), x ∈ {0, 1}.

By Theorem 1 L̂ATE
CF

1 (1) is a Wald estimate for the Xi = 1 sample. L̂ATE
CF

0 (1) gives an estimated effect

for compliers with Xi = 1 based upon control function estimates for observations with Xi = 0. The following

proposition describes the relationship between these two estimators and the restricted estimator of LATE (1)

based upon (13).

Proposition 3. Suppose Assumptions 1 and 2 hold for each value of Xi ∈ {0, 1} and let L̂ATE
CF

r (1) =

(α̂1 − α̂0) + (γ̂1 − γ̂0)Γ(P̂ (1, 0), P̂ (1, 1)) denote an estimate of LATE(1) based on (13). Then

L̂ATE
CF

r (1) = wL̂ATE
CF

1 (1) + (1− w)L̂ATE
CF

0 (1) + b1 (γ̂1(1)− γ̂1(0)) + b0 (γ̂0(1)− γ̂0(0)).

The coefficients w, b1, and b0 depend only on the joint empirical distribution of Di, Xi, and P̂ (Xi, Zi).

Proof: See the Appendix. �

Remark 6. Proposition 3 demonstrates that control function estimation under additive separability gives a

linear combination of covariate-specific estimates plus terms that equal zero when the separability restrictions

hold exactly in the sample. One can show that the coefficient w need not lie between 0 and 1. By contrast,

two-stage least squares estimation of a linear model with an additive binary covariate using all interactions of

Xi and Zi as instruments generates a weighted average of covariate-specific IV estimates (Angrist and Pischke,

2009).

Remark 7. Consider the following extension of equation (12):

E [Yid|Ui, Xi] = αd + γd × (J(Ui)− µJ) +X ′iτdc + 1{Ui ≤ P (Xi, 0)}X ′iτat + 1{Ui > P (Xi, 1)}X ′iτnt, d ∈ {0, 1}.

This equation allows different coefficients on Xi for always takers, never takers, and compliers by interacting Xi

with indicators for thresholds of Ui, and also allows the complier coefficients to differ for treated and untreated

outcomes. WhenXi includes a mutually exclusive and exhaustive set of indicator variables and P̂ (Xi, Zi) equals

the sample mean of Di for each (Xi, Zi), control function estimation of this model produces the same estimate

of E[Yi|Xi, Di, Di1 > Di0] as the semi-parametric procedure of Abadie (2003). Otherwise the estimates may

differ even asymptotically as the control function estimator employs a different set of approximation weights

when the model is misspecified.

Remark 8. A convenient means of adjusting for covariates that maintains the numerical equivalence of IV

and control function estimates is to weight each observation by ωi = Zi/ê(Xi) + (1 − Zi)/(1 − ê(Xi)) where

ê(x) ∈ (0, 1) is a first step estimate of Pr [Zi = 1|Xi = x]. It is straightforward to show that the ωi−weighted

IV and control function estimates of the unconditional LATE will be identical, regardless of the propensity score

estimator ê(Xi) employed. See Hull (2016) for a recent application of this approach to covariate adjustment of

a selection model.
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8 Maximum likelihood

A fully parametric alternative to two-step control function estimation is to specify a joint distribution for

the model’s unobservables and estimate the parameters in one step via full information maximum likelihood

(FIML). Consider a model that combines (1) and (2) with the distributional assumption

Yid|Ui ∼ FY |U (y|Ui; θd) , (14)

where FY |U (y|u; θ) is a conditional CDF indexed by a finite dimensional parameter vector θ. For example, a fully

parametric version of the Heckit model is Yid|Ui ∼ N
(
αd + γdΦ

−1(Ui), σ
2
d

)
. Since the marginal distribution

of Ui is also known, this model provides a complete description of the joint distribution of (Yid, Ui). FIML

exploits this distributional knowledge, estimating the model’s parameters as

(
P̂ (0)ML, P̂ (1)ML, θ̂ML

0 , θ̂ML
1

)
= arg max

(P (0),P (1),θ0,θ1)

∑
i

Di log

(∫ P (Zi)

0

fY |U (Yi|u; θ1) du

)

+
∑
i

(1−Di) log

(∫ 1

P (Zi)

fY |U (Yi|u; θ0)du

)
,

(15)

where fY |U (·|u; θd) ≡ dFY |U (.|u; θd) denotes the density (or probability mass function) of Yid given Ui = u.

The corresponding FIML estimates of treated and untreated complier means are

µ̂ML
dc =

∫ P̂ (1)ML

P̂ (0)ML

∫∞
−∞ yfY |U (y|u; θd)dydu

P̂ (1)ML − P̂ (0)ML
,

and the FIML estimate of LATE is L̂ATE
ML

= µ̂ML
1c − µ̂ML

0c .

Binary outcomes

We illustrate the relationship between FIML and IV estimates of LATE with the special case of a binary Yi.

A parametric model for this setting is given by

Yid =1 {αd ≥ εid} ,

εid|Ui ∼ Fε|U (ε|Ui; ρd) ,
(16)

where Fε|U (ε|u; ρ) is a conditional CDF characterized by the single parameter ρ. Equations (1) and (16)

include six parameters, which matches the number of observed linearly independent probabilities (two values

of Pr [Di = 1|Zi], and four values of Pr [Yi = 1|Di, Zi]). The model is therefore “saturated” in the sense that a

model with more parameters would be under-identified.

The following result establishes the conditions under which maximum likelihood estimates of complier means

(and therefore LATE) coincide with IV.
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Proposition 4. Consider the model defined by (1), (2) and (16). Suppose that Assumptions 1 and 2 hold, and

that the maximum likelihood problem (15) has a unique solution. Then µ̂ML
dc = µ̂IVdc for d ∈ {0, 1} if and only

if µ̂IVdc ∈ [0, 1] for d ∈ {0, 1}.

Proof: See the Appendix. �

Remark 9. The intuition for Proposition 4 is that the maximum likelihood estimation problem can be rewritten

in terms of the six identified parameters of the LATE model: (µ1at, µ0nt, µ1c, µ0c, πat, πc), where πg is the

population share of group g. Unlike the IV and control function estimators, the FIML estimator accounts for

the binary nature of Yid by constraining all probabilities to lie in the unit interval. When these constraints

do not bind the FIML estimates coincide with nonparametric IV estimates, but the estimates differ when the

nonparametric approach produces complier mean potential outcomes outside the logically possible bounds.

Logical violations of this sort have been proposed elsewhere as a sign of failure of instrument validity (Balke

and Pearl, 1997; Imbens and Rubin, 1997; Huber and Mellace, 2015; Kitagawa, 2015).

Remark 10. A simple “limited information” approach to maximum likelihood estimation is to estimate P (0)

and P (1) in a first step and then maximize the plug-in conditional log-likelihood function∑
i

Di log
(∫ P̂ (Zi)

0
fY |U (Yi|u; θ1) du

)
+
∑
i

(1−Di) log
(∫ 1

P̂ (Zi)
fY |U (Yi|u; θ0)du

)
with respect to (θ0, θ1) in a second stage. One can show that applying this less efficient estimator to a saturated

model will produce an estimate of LATE equivalent to IV under Assumptions 1 and 2. This broader domain of

equivalence results from some cross-equation parameter restrictions being ignored by the two-step procedure.

For example, the FIML estimator may choose an estimate of πc other than P̂ (1)− P̂ (0) in order to enforce the

constraint that (µ1c, µ0c) ∈ [0, 1]2.

Overidentified models

Equivalence of FIML and IV estimates at interior solutions in our binary example follows from the fact that

the model satisfies monotonicity and includes enough parameters to match all observed choice probabilities.

Similar arguments apply to FIML estimators of sufficiently flexible models for multi-valued outcomes. When

the model includes fewer parameters than observed choice probabilities, overidentification ensues. For example,

the standard bivariate probit model is a special case of (16) that uses a normal distribution for Fε|U (·) and

imposes εi1 = εi0 and therefore ρ1 = ρ0 (see Greene, 2007). Hence, only five parameters are available to

rationalize six linearly independent probabilities.

Maximum likelihood estimation of this more parsimonious model may yield an estimate of LATE that differs

from IV even at interior solutions. This divergence stems from the model’s overidentifying restrictions which,

if correct, may yield efficiency gains but if wrong can compromise consistency. Though maximum likelihood

estimation of misspecified models yields a global best approximation to the choice probabilities (White, 1982),

there is no guarantee that it will deliver a particularly good approximation to the LATE.
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9 Model evaluation

In practice researchers often estimate selection models that impose additive separability assumptions on exoge-

nous covariates, combine multiple instruments, and employ additional smoothness restrictions that break the

algebraic equivalence of structural LATE estimates with IV. The equivalence results developed above provide

a useful conceptual benchmark for assessing the performance of structural models in such applications. An

estimator derived from a properly specified model of treatment assignment and potential outcomes should come

close to matching a nonparametric IV estimate of the same parameter. Significant divergence between these

estimates would signal that the restrictions imposed by the structural model are violated.

Figure 3: Model-based and IV estimates of LATE

Notes: This figure reproduces Figure A.III from Kline and Walters (2016). The figure is constructed by 
splitting the Head Start Impact Study sample into vingtiles of the predicted LATE based on the control 
function estimates reported in Section VIII of the paper. The horizontal axis displays the average 
predicted LATE in each group, and the vertical axis shows corresponding IV estimates. The dashed line 
is the 45-degree line. The chi-squared statistic and p -value come from a bootstrap Wald test of the 
hypothesis that the 45 degree line fits all points up to sampling error. See Appendix F of Kline and 
Walters (2016) for more details.

χ2(20) = 23.6
p = 0.26
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Figure 3 shows an example of this approach to model assessment from Kline and Walters’ (2016) reanalysis

of the Head Start Impact Study (HSIS) – a randomized experiment with two-sided non-compliance (Puma

et al., 2012). On the vertical axis are non-parametric IV estimates of the LATE associated with participating

in the Head Start program relative to a next best alternative for various subgroups in the HSIS defined by

experimental sites and baseline child and parent characteristics. On the horizontal axis are two-step control

function estimates of the same parameters derived from a heavily over-identified selection model involving
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multiple endogenous variables, baseline covariates, and excluded instruments. Had this model been saturated,

all of the points would lie on the 45 degree line. In fact, a Wald test indicates these deviations from the 45 degree

line cannot be distinguished from noise at conventional significance levels, suggesting that the approximating

model is not too far from the truth.

Passing a specification test does not obviate the fundamental identification issues inherent in interpolation

and extrapolation exercises. As philosophers of science have long argued, however, models that survive empirical

scrutiny deserve greater consideration then those that do not (Popper, 1959; Lakatos, 1976). Demonstrating

that a tightly restricted model yields a good fit to IV estimates not only bolsters the credibility of the model’s

counterfactual predictions, but serves to clarify what the estimated structural parameters have to say about the

effects of a research design as implemented. Here the control function estimates reveal that Head Start had very

different effects on different sorts of complying households, a finding rationalized by estimated heterogeneity in

both patterns of selection into treatment and potential outcome distributions.

10 Conclusion

This paper shows that two-step control function estimators of LATE derived from a wide class of parametric

selection models coincide with the instrumental variables estimator. Control function and IV estimates of mean

potential outcomes for compliers, always takers, and never takers are also equivalent. While many parametric

estimators produce the same estimate of LATE, different parameterizations can produce dramatically different

estimates of population average treatment effects and other under-identified quantities. The sensitivity of

average treatment effect estimates to the choice of functional form may be the source of the folk wisdom that

structural estimators are less robust than instrumental variables estimators. Our results show that this view

confuses robustness for a given target parameter with the choice of target parameter.

Structural estimators that impose overidentifying restrictions may generate LATE estimates different from

IV. Reporting the LATEs implied by such estimators facilitates comparisons with unrestricted IV estimates and

is analogous to the standard practice of reporting average marginal effects in binary choice models (Wooldridge,

2001). Such comparisons provide a convenient tool for assessing the behavioral restrictions imposed by struc-

tural models. Model-based estimators that cannot rationalize unrestricted IV estimates of LATE are unlikely

to fare much better at extrapolating to fundamentally under-identified quantities. On the other hand, a tightly

constrained structural estimator that fits a collection of disparate IV estimates enjoys some degree of validation

that bolsters the credibility of its counterfactual predictions.
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Appendix

Proof of Proposition 2

We begin by rewriting the IV and control function estimates of LATEz in matrix form. The IV estimator is

given by

L̂ATE
IV

z =

[
P̂ (z)Ȳ z1 + (1− P̂ (z))Ȳ z0

]
−
[
P̂ (z − 1)Ȳ z−1

1 + (1− P̂ (z − 1))Ȳ z−1
0

]
P̂ (z)− P̂ (z − 1)

= Ψz
1(P̂ )′Ȳ1 −Ψz

0(P̂ )′Ȳ0,

where Ȳd ≡ (Ȳ 0
d , Ȳ

1
d , ...., Ȳ

K
d )′ is the (K + 1) × 1 vector of sample average outcomes for each value of z

conditional on Di = d and P̂ is the vector of propensity score estimates. The (K + 1) × 1 vector Ψz
1(P̂ ) has

−P̂ (z − 1)/[P̂ (z) − P̂ (z − 1)] at entry z − 1, P̂ (z)/[P̂ (z) − P̂ (z − 1)] at entry z, and zeros elsewhere, and the

(K + 1)× 1 vector Ψz
0(P̂ ) has (1− P̂ (z − 1))/[P̂ (z)− P̂ (z − 1)] at entry z − 1, −(1− P̂ (z))/[P̂ (z)− P̂ (z − 1)]

at entry z, and zeros elsewhere:

Ψz
1(P̂ ) =

(
0, ..0, −P̂ (z−1)

P̂ (z)−P̂ (z−1)
, P̂ (z)

P̂ (z)−P̂ (z−1)
, 0, ..., 0

)′
,

Ψz
0(P̂ ) =

(
0, ..0, (1−P̂ (z−1))

P̂ (z)−P̂ (z−1)
, −(1−P̂ (z))

P̂ (z)−P̂ (z−1)
, 0, ..., 0

)′
.

The second-step control function estimates with L = K can be rewritten

(α̂d, γ̂d1, ..., γ̂dK) = arg min
αd,γd1,...,γdK

∑
i 1{Di = d}

[
Yi − αd −

∑K
`=1 1{Zi = z}γd`λd`(P̂ (z))

]2
.

This is a saturated OLS regression of Yi on Zi for each treatment category. The coefficient estimates satisfy

α̂d +
∑K

`=1
γ̂d`λd`(P̂ (z)) = Ȳ zd , d ∈ {0, 1}, z ∈ {0, 1, ...K}.

Letting ∆̂d = (α̂d, γ̂d1, ..., γ̂dK)′ denote the control function estimates for treatment value d, we can write this

system in matrix form as

Λd(P̂ )∆̂d = Ȳd,

where the matrix Λd(P̂ ) has ones in its first column and λdj−1(P̂ (k)) in row k and column j > 1:

Λd(P̂ ) =


1 λd1(P̂ (1)) · · · λdK(P̂ (1))

1 λd1(P̂ (2)) · · · λdK(P̂ (2))
...

...
. . .

...

1 λd1(P̂ (K)) · · · λdK(P̂ (K))

 .

The control function estimates are therefore given by

∆̂d = Λd(P̂ )−1Ȳd.
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The values of λdk(P̂ (z)) are well-defined for all (k, z) whenever 0 < P̂ (z) < 1 ∀z, and Λd(P̂ ) is full rank

if P̂ (z) 6= P̂ (z′) whenever z 6= z′. These conditions hold if Assumptions 1 and 2 are true for every pair of

instrument values, so the matrix Λd(P̂ ) is invertible under the conditions of Proposition 2 and the control

function estimate ∆̂d exists.

In matrix form, the control function estimate of LATEz is given by

L̂ATE
CF

z = Υz(P̂ )′
(

∆̂1 − ∆̂0

)
,

where the (K+ 1)×1 vector Υz(P̂ ) has first entry equal to unity and kth entry Γk−1(P̂ (z−1), P̂ (z)) for k > 1:

Υz(P̂ ) =
(

1, P̂ (z)λ11(P̂ (z))−P̂ (z−1)λ11(P̂ (z−1))

P̂ (z)−P̂ (z−1)
, ..., P̂ (z)λ1K(P̂ (z))−P̂ (z−1)λ1K(P̂ (z−1))

P̂ (z)−P̂ (z−1)

)′
.

Plugging in the formulas for ∆̂1 and ∆̂0 yields

L̂ATE
CF

z = Υz(P̂ )′Λ1(P̂ )−1Ȳ1 −Υz(P̂ )′Λ0(P̂ )−1Ȳ0.

The IV and control functions are therefore identical if Ψz
d(P̂ )′ = Υz(P̂ )′Λd(P̂ )−1 for d ∈ {0, 1}, or equivalently,

if Λd(P̂ )′Ψz
d(P̂ ) = Υz(P̂ ) for d ∈ {0, 1}.

For d = 1, we have

Λ1(P̂ )′Ψz
1(P̂ ) =

(
1, P̂ (z)λ11(P̂ (z))−P̂ (z−1)λ11(P̂ (z−1))

P̂ (z)−P̂ (z−1)
, ..., P̂ (z)λ1K(P̂ (z))−P̂ (z−1)λ1K(P̂ (z−1))

P̂ (z)−P̂ (z−1)

)′
= Υz(P̂ ).

For d = 0, we have

Λ0(P̂ )′Ψz
0(P̂ ) =

(
1, λ01(P̂ (z−1))(1−P̂ (z−1))−λ01(P̂ (z))(1−P̂ (z))

P̂ (z)−P̂ (z−1)
, ..., λ01(P̂ (z−1))(1−P̂ (z−1))−λ01(P̂ (z))(1−P̂ (z))

P̂ (z)−P̂ (z−1)

)′
=
(

1, λ11(P̂ (z))P̂ (z)−λ11(P̂ (z−1))P̂ (z−1)

P̂ (z)−P̂ (z−1)
, ..., λ1K(P̂ (z))P̂ (z)−λ1K(P̂ (z−1))P̂ (z−1)

P̂ (z)−P̂ (z−1)

)′
= Υz(P̂ ),

where the second equality follows from the fact that p′λ1`(p
′)− pλ1`(p) = (1− p)λ0`(p)− (1− p′)λ0`(p

′) for any

p, p′ and `. This implies that L̂ATE
IV

z and L̂ATE
CF

z are equal to the same linear combination of Ȳ1 and Ȳ0,

so these estimates are identical for any z.

Proof of Proposition 3

The unrestricted control function estimates come from the regression

Yi = α0(0)(1−Di)(1−Xi) + γ0(0)(1−Di)(1−Xi)λ0(P̂ (0, Zi))

+α0(1)(1−Di)Xi + γ0(1)(1−Di)Xiλ0(P̂ (1, Zi))

+α1(0)Di(1−Xi) + γ1(0)Di(1−Xi)λ1(P̂ (0, Zi))
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+α1(1)DiXi + γ1(1)DiXiλ1(P̂ (1, Zi)) + εi.

We can write this equation in matrix form as

Y = W∆ + ε,

where W is the matrix of regressors and ∆ = (α0(0), γ0(0), α0(1), γ0(1), α1(0), γ1(0), α1(1), γ1(1))′ collects the

control function coefficients. Under the conditions of Proposition 3, W ′W has full rank and the unrestricted

control function estimates are

∆̂u = (W ′W )−1W ′Y .

The estimator in equation (13) imposes three restrictions: α1(1) − α1(0) = α0(1) − α0(0), γ1(1) = γ1(0),

and γ0(1) = γ0(0). The resulting estimates can be written

(∆̂r, %̂) = arg min
∆,%

(Y −W∆)′(Y −W∆)− %C∆,

where

C =


−1 0 1 0 1 0 −1 0

0 0 0 0 0 −1 0 1

0 −1 0 1 0 0 0 0


and % is a Lagrange multiplier. Then

∆̂r = ∆̂u + (W ′W )−1C ′%̂,

%̂ = −(C(W ′W )−1C ′)−1C∆̂u.

For any estimate ∆̂, the corresponding estimate of LATE for compliers with Xi = 1 is Υ(P̂ )′∆̂, with

Υ(P̂ ) = (0, 0,−1,−Γ(P̂ (1, 0), P̂ (1, 1)), 0, 0, 1,Γ(P̂ (1, 0), P̂ (1, 1)))′.

The restricted estimate of LATE(1) is therefore

L̂ATE
CF

r (1) = Υ(P̂ )′
(

∆̂u + (W ′W )−1C ′%̂
)

= L̂ATE
CF

1 (1) + Υ(P̂ )′(W ′W )−1C ′
(
C(W ′W )−1C ′

)−1
ζ,

where ζ = −C∆̂u is the constraint vector evaluated at the unrestricted estimates:

ζ = ([α̂0(0)− α̂0(1)]− [α̂1(0)− α̂1(1)], γ̂1(0)− γ̂1(1), γ̂0(0)− γ̂0(1))
′.

Write Ω = (W ′W )−1C ′
(
C(W ′W )−1C ′

)−1, and let νk denote the 3× 1 vector equal to the transpose of the

kth row of Ω. Using the fact that a scalar is equal to its trace, we can then write the difference in restricted

and unrestricted LATE estimates as
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L̂ATE
CF

r (1)− L̂ATE
CF

1 (1) = tr
(

Υ(P̂ )′Ωζ
)

= tr
(

ΩζΥ(P̂ )′
)

= ϕ′ζ,

where ϕ = ν7 − ν3 + Γ(P̂ (1, 0), P̂ (1, 1))(ν8 − ν4) ≡ (ϕ1, ϕ2, ϕ3)′. Then

L̂ATE
CF

r (1)− L̂ATE
CF

1 (1) = ϕ1 ([α̂0(0)− α̂0(1)]− [α̂1(0)− α̂1(1)]) + ϕ2 (γ̂1(0)− γ̂1(1)) + ϕ3 (γ̂0(0)− γ̂0(1))

= ϕ1

(
L̂ATE

CF

1 (1)− L̂ATE
CF

0 (1)

)
+ (γ̂1(0)− γ̂1(1))

(
ϕ2 + ϕ1Γ(P̂ (1, 0), P̂ (1, 1))

)
+(γ̂0(0)− γ̂0(1))

(
ϕ3 − ϕ1Γ(P̂ (1, 0), P̂ (1, 1))

)
.

This implies

L̂ATE
CF

r (1) = wL̂ATE
CF

1 (1) + (1− w)L̂ATE
CF

0 (1) + b1 (γ̂1(1)− γ̂1(0)) + b0 (γ̂0(1)− γ̂0(0)),

where w = 1 + ϕ1, b1 = −(ϕ2 + ϕ1Γ(P̂ (1, 0), P̂ (1, 1))), and b0 = ϕ1Γ(P̂ (1, 0), P̂ (1, 1))− ϕ3. Furthermore, note

that the elements of ϕ only depend on sample moments of Di, Xi, and P̂ (Xi, Zi), so the proposition follows.

Proof of Proposition 4

The log likelihood function for model (16) is

logL (P (0), P (1), α0, α1, ρ0, ρ1) =
∑
i

Di log

(∫ P (Zi)

0

[
YiFε|U (α1|u; ρ1) + (1− Yi)(1− Fε|U (α1|u; ρ1))

]
du

)

+
∑
i

(1−Di) log

(∫ 1

P (Zi)

[
YiFε|U (α0|u; ρ0) + (1− Yi)(1− Fε|U (α0|u; ρ0))

]
du

)
.

We first rewrite this likelihood in terms of the six identified parameters of the LATE model, which are given

by

πat = P (0),

πc = P (1)− P (0),

µ1at =

∫ P (0)

0
Fε|U (α1|u; ρ1)du

P (0)
,

µ0nt =

∫ 1

P (1)
Fε|U (α0|u; ρ0) du

1− P (1)
,

µdc =

∫ P (1)

P (0)
Fε|U (αd|u; ρd)du

P (1)− P (0)
, d ∈ {0, 1}.
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Note that since Fε|U (·|u; ρ) is a CDF, we have µdg ∈ [0, 1] ∀(d, g). Substituting these parameters into the

likelihood function yields

logL(πat, πc, µ1at, µ0nt, µ1c, µ0c) =
∑
i

DiZi log (πat [Yiµ1at + (1− Yi)(1− µ1at)] + πc [Yiµ1c + (1− Yi)(1− µ1c)])

+
∑
i

Di(1− Zi) log (πat [Yiµ1at + (1− Yi)(1− µ1at)])

+
∑
i

(1−Di)Zi log ((1− πat − πc) [Yiµ0nt + (1− Yi)(1− µ0nt)])

+
∑
i

(1−Di)(1− Zi) log ((1− πat − πc) [Yiµ0nt + (1− Yi)(1− µ0nt)] + πc [Yiµ0c + (1− Yi)(1− µ0c)]).

We first consider interior solutions. The first-order conditions are

[µ1at] :
∑
i

(
Di(2Yi−1)Ziπat

πat[Yiµ1at+(1−Yi)(1−µ1at)]+πc[Yiµ1c+(1−Yi)(1−µ1c)] + Di(2Yi−1)(1−Zi)πat

πat[Yiµ1at+(1−Yi)(1−µ1at)]

)
= 0,

[µ0nt] :
∑
i

(
(1−Di)(2Yi−1)Zi(1−πat−πc)

(1−πat−πc)[Yiµ0nt+(1−Yi)(1−µ0nt)]
+ (1−Di)(2Yi−1)(1−Zi)(1−πat−πc)

(1−πat−πc)[Yiµ0nt+(1−Yi)(1−µ0nt)]+πc[Yiµ0c+(1−Yi)(1−µ0c)]

)
= 0,

[µ1c] :
∑
i

DiZi(2Yi−1)πc

πat[Yiµ1at+(1−Yi)(1−µ1at)]+πc[Yiµ1c+(1−Yi)(1−µ1c)] = 0,

[µ0c] :
∑
i

(1−Di)(1−Zi)(2Yi−1)πc

(1−πat−πc)[Yiµ0nt+(1−Yi)(1−µ0nt)]+πc[Yiµ0c+(1−Yi)(1−µ0c)] = 0,

[πat] :
∑
i

DiZi[Yiµ1at+(1−Yi)(1−µ1at)]
πat[Yiµ1at+(1−Yi)(1−µ1at)]+πc[Yiµ1c+(1−Yi)(1−µ1c)] +

∑
i

Di(1−Zi)
πat

−
∑
i

(1−Di)Zi[Yiµ0nt+(1−Yi)(1−µ0nt)]
(1−πat−πc)[Yiµ0nt+(1−Yi)(1−µ0nt)]

−
∑
i

(1−Di)(1−Zi)[Yiµ0nt+(1−Yi)(1−µ0nt)]
(1−πat−πc)[Yiµ0nt+(1−Yi)(1−µ0nt)]+πc[Yiµ0c+(1−Yi)(1−µ0c)] = 0,

[πc] :
∑
i

DiZi[Yiµ1c+(1−Yi)(1−µ1c)]
[πat[Yiµ1at+(1−Yi)(1−µ1at)]+πc[Yiµ1c+(1−Yi)(1−µ1c)]] −

∑
i

(1−Di)Zi[Yiµ0nt+(1−Yi)(1−µ0nt)]
(1−πat−πc)[Yiµ0nt+(1−Yi)(1−µ0nt)]

−
∑
i

(1−Di)(1−Zi)(2Yi−1)(µ0nt−µ0c)
(1−πat−πc)[Yiµ0nt+(1−Yi)(1−µ0nt)]+πc[Yiµ0c+(1−Yi)(1−µ0c)] = 0.

Under Assumptions 1 and 2 we can compute µ̂IV1at, µ̂IV0nt, µ̂IV1c , and µ̂IV0c . Setting π̂IVc = P̂ (1)− P̂ (0) and

π̂IVat = P̂ (0) and plugging the IV parameter estimates into the FIML first order conditions, we see that these

conditions are satisfied. Thus at interior solutions maximum likelihood and IV estimators of all parameters

are equal, and it follows that µ̂ML
dc = µ̂IVdc for d ∈ {0, 1}.

Next, we consider corner solutions, which occur when at least one parameter lies outside [0,1] at the

unconstrained solution to the first order conditions. Note that µ̂IV1at, µ̂IV0nt, and π̂IVat are sample means of binary

variables, so these estimates are always in the unit interval. π̂IVc is the difference in empirical treatment rates

between the two values of Zi; without loss of generality we assume that Zi = 1 refers to the group with the

higher treatment rate, so π̂IVc ∈ (0, 1). Thus a constraint binds if and only if µ̂IVdc is outside [0,1] for d = 0,

d = 1, or both. In these cases at least one of the maximum likelihood complier means fails to match the

corresponding IV estimate because the IV estimate is outside the FIML parameter space. This establishes that

the FIML and IV estimates match if and only if both µ̂IV1c and µ̂IV0c are in [0,1], which completes the proof.
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