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1 Introduction

A major characteristic of leading integrated assessment models (IAMs) such as
RICE-2010 (Nordhaus, 2010) or DICE-2016 (Nordhaus, 2017) is that the geo-
physical sector of the model determines the mean surface temperature through
the carbon cycle, which in turn determines the damage function. Thus dam-
ages are related to the mean surface temperature of the planet.

A well-established fact in the science of climate change, however, is that
when the climate cools or warms, high latitude regions tend to exaggerate the
changes seen at lower latitudes (e.g., Langen and Alexeev, 2007; IPCC, 2013).
This effect is called polar amplification (PA) and indicates that, under global
warming, the temperature at the latitudes closer to the Poles will increase
faster than at latitudes nearer to the Equator. PA is especially strong in the
Arctic and is sometimes called “Arctic amplification”. For example, Bekryaev,
Polyakov, and Alexeev (2010) document a high-latitude (greater than 60 °N)
warming rate of 1.36 degrees centigrade per century from 1875 to 2008. This
trend is almost twice that of the Northern Hemisphere trend of 0.79 degrees
centigrade per century.

Spatial heat and moisture transport, and the resulting PA, suggest that a
better representation of the climate science underlying IAMs would be a geo-
physical sector structure which accounts for these phenomena. This implies
that, in the IAM output, the surface temperature anomaly will be differenti-
ated across spatial zones of the globe. The spatial temperature differentiation
is important for the economics of climate change because it provides the im-
pact of PA on the structure of the economic damages. PA will accelerate the
loss of Arctic sea ice, which in turn has consequences for melting land ice that
is associated with a potential meltdown of the Greenland and West Antarctica
ice sheets which could cause serious global sea level rise (SLR).

Another source of damage associated with PA relates to the thawing of the
permafrost, which is expected to bring about widespread changes in ecosystems
and damage to infrastructure, along with release of greenhouse gases (GHGs)
which exist in permafrost carbon stocks (see, e.g., IPCC, 2013; Schuur et al.,
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2015). Furthermore, recent studies suggest that Arctic amplification might
increase the frequency of extreme weather events (Cohen, Pfeiffer, and Francis,
2018), although this remains a controversial issue (Overland and Wang, 2018).

The well-known “burning embers” diagram in Lenton and Schellnhuber
(2007) shows the ranking of tipping elements by order of proximity to the
present time. The “nearest” three potential tipping points are located in the
high latitudes of the Northern Hemisphere (Arctic summer sea ice loss, Green-
land ice sheet melt and boreal forest loss). Because of PA in the Arctic, each
degree increase in planetary yearly mean temperature leads to approximately
two degrees increase in the Arctic latitudes. Thus natural phenomena occur-
ring in high latitudes, due to spatial heat and moisture transport, can cause
economic damages in lower latitudes. These spatial impacts, which could have
important implications for climate change policies, are not embodied in the
current generation of IAMs. The RICE model (Nordhaus, 2010) – the regional
version of DICE (Nordhaus, 2017) – still treats the climate system by using
the globally averaged measure of temperature and neglects heat and moisture
transport and especially PA.

Hassler and Krusell (2012) extend Golosov et al. (2014) to multi-regions.
While their work is elegant, as is that of Golosov et al. (2014), they do not
deal with poleward heat transport, multi-layer carbon cycles, separation of
atmospheric and oceanic layers, and regional tipping points, as we do here.
van der Ploeg and de Zeeuw (2016) develop an interesting two-region model
with tipping points that deals explicitly with non-cooperative and cooperative
institutional structures. While their model is richer than ours in the compar-
ison of institutional structures, they do not include poleward heat transport,
recursive preferences, and the more realistic multi-layer modeling of the car-
bon cycle and the temperature response to anthropogenic forcing as we have.
Thus neither they nor Golosov et al. (2014) and Hassler and Krusell (2012)
are able to produce “fan charts” of uncertainty growth over time and effects of
different values of the intertemporal elasticity of substitution (IES) and risk
aversion parameters as we are able to do. They are also not able to study the
effects of neglecting poleward heat transport on regional social cost of carbon
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(SCC) as we are able to do with our richer and more realistic modeling of the
interaction between climate dynamics and economic dynamics.

Another very recent IAM model of Krusell and Smith (2017) deals with
space at a much finer scale than the present paper and contrasts market struc-
tures, including autarky and full borrowing and lending. However, their model
does not address issues related to heat and moisture transport, SLR, per-
mafrost thaw and the impacts of tipping points, as we do here. Thus we feel
that our work is complementary to that of Krusell and Smith (2017) and not
competitive. As mentioned above, one novel contribution of the present pa-
per is to develop an IAM which incorporates spatial impacts associated with
heat and moisture transport, along with treatment of uncertainty and tipping
points. As far as we know, no other IAM treats these issues as we do here.

The stochastic IAM developed in this paper is a complex two-regional
model with a more realistic – relative to existing models – geophysical sector
and its solution requires the use of advanced numerical methods. Thus we
adapt computational methods related to the DSICE model of Cai, Judd, and
Lontzek (2015). The DSICE framework is a stochastic generalization of DICE,
which does not take into account the heat and moisture transport dynamics
of the climate system. We adapt DSICE by disaggregating the globe into
regions and incorporating Negishi weights (Negishi, 1972), which implement
competitive equilibrium by respecting initial endowments, in order to solve
the dynamic stochastic problems with various degrees of competition between
regions in our model. Since our model is dynamic, its Negishi weights are also
time-variant and are solved numerically with an iterative method.

This approach enables us to produce fan charts which quantify the effects
of realistic parameter and modeling uncertainties on key endogenous variables
and show how these uncertainties grow over future projections. In particular
we quantify the impact of heat and moisture transport upon these fan charts,
produce distributions of the SCC, and quantify the importance on SCC dis-
tributions of adding heat and moisture transport. In this way, the impacts of
realistic uncertainties on the SCC may be properly assessed. We stress that
policy analysis must take into account higher moments of the uncertainty dis-
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tribution of the SCC – and not just the mean – because most of the serious
damages are due to higher moments. To put it another way, the SCC must
be treated as a stochastic process in order to properly assess the uncertainty
in the SCC which is required for risk and uncertainty management, and this
treatment is accomplished in this paper.

We call our model a Dynamic Integration of Regional Economy and Spatial
Climate under Uncertainty (DIRESCU).1 In comparing the predictions of the
standard DICE with the predictions of DIRESCU, using the same economic
parameters, our purpose is to explore the impacts on the design of climate pol-
icy of ignoring the existing spatial transport phenomena and the associated
feedbacks. An important policy relevant question is whether – by ignoring
spatial transport – we overestimate or underestimate optimal emission paths,
the SCC, and what the impact on the general shape of the uncertainty bands
around these paths is when heat and moisture transport are neglected. In de-
veloping DIRESCU, we follow the two-region approach of Langen and Alexeev
(2007) but change their regions as follows: region 1 is the region north of lati-
tude 30°N to 90°N (called the North), while region 2 is the region from latitude
90°S (the South Pole) to 30°N (called the Tropic-South). Heat and moisture
transport take place northbound from the tropical belt of latitudes north of
the Equator which are included in the Tropic-South toward the North.2

The interaction of the geophysical sector of DIRESCU with the economic
1Brock and Xepapadeas (2017) considered a simple deterministic model and showed that,

by ignoring spatial heat and moisture transport and the resulting PA, the regulator may
overestimate or underestimate the tax on GHG emissions. The structure of their economic
model is, however, simplified and this makes it difficult to discuss realistic policy options.

2There is transport toward the South Pole from all latitudes south of the Equator in
the Tropic-South which we do not take into account in order to ease the computational
burden by reducing the number of dimensions in our model and at the same time include
the Southern Hemisphere economies. Scientific evidence suggests that PA in Antarctica is
weaker than in the Arctic, because of weaker surface albedo feedback and more efficient
ocean uptake in the Southern Ocean, in combination with Antarctic ozone depletion.

Thus, for the time horizon of 100 years in which our solutions are focused, the majority of
the effects of heat transfer should be associated with heat transfer toward the North Pole.
In view of the above, and aiming at reducing the dimensionality of the model while incorpo-
rating the Southern Hemisphere economies, we adopted the approximation of unifying the
Southern Hemisphere with the 0°-30°N belt and northbound heat transfer. Future research
with more computational resources will explore whether this approximation matters.
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sector is reflected in the damage function. We introduce separate damage
functions in each region and allow for damages in the Tropic-South to be
caused by an increase in temperature (i.e., PA) in the North. For example, the
increased amplification of the temperature anomaly in the high north latitudes
increases the hazard rate of tipping events in the high north latitudes toward
earlier arrival times. Hence any associated damages caused to lower latitudes
by warming in the higher north latitudes, e.g., increased melting of land ice
leading to SLR damages in the lower latitudes, will be increased by PA, even
though the high northern latitudes may benefit from additional warming.

The rest of the economic module is based on a two-region differentiation of
DICE-2016 (Nordhaus, 2017). We model the economic interactions between
the regions with an adjustment cost function, and we allow for adaptation
expenses in each region. Krusell and Smith (2017) compare the two market
structures of complete autarky and full international borrowing and lending
and find that the market structures do not have a large impact on their results.
While we can study autarky as Krusell and Smith (2017) do by raising the
cost of interaction to induce autarky, our formulation of economic interactions
does not include the case of full borrowing and lending as in their model.
We have ignored serious modeling of market structure in order to focus on
elements of geophysics that are ignored in other contributions, including that
of Krusell and Smith (2017), so that we may provide new insights regarding
the importance of spatial phenomena in climate change policy.

The present paper innovates relative to popular IAMs at the tractable level
of complexity in the literature (e.g., Nordhaus’s DICE and RICE models, the
even more complex DSICE model and many others) in a number of ways and
in particular by: (i) incorporating an endogenous SLR module, an endogenous
permafrost melt module and, especially, adding the more realistic geophysics
of spatial heat and moisture transport from low latitudes to high latitudes,
while keeping the three-layer carbon cycle and two-layer temperature module
of DICE and RICE; (ii) introducing recursive preferences and considering a
wide range of parameter values of risk aversion and IES; (iii) going beyond
the single-region DSICE model by adding a set of regional welfare weights
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ranging from egalitarian (equal weighting) to Negishi weights; (iv) adding a
parameterization of cross border frictions ranging from autarky (very high
cross border frictions) to low cross border frictions; and finally (v) allowing for
adaptation to regional damage from SLR and temperature increase.3

We calibrate our many parameter values to match history as well as to
fit the representative concentration pathway (RCP) scenarios (Meinshausen
et al., 2011). The main results of this paper are summarized below.

First, regional SCC stochastic processes are derived and various uncer-
tainty fan charts with and without tipping points are presented and compared
with and without heat and moisture transport as well as for a range of risk
aversion, IESs and welfare weights. Our figures and tables provide a much
more thorough quantification of the multitude of types of uncertainties than
the received regional IAM literature at the DICE/RICE level of complexity.

Second, neglecting heat and moisture transport as in RICE and other re-
gional IAMs that do not account for this added geophysics leads to many
biases, including inaccurate forecasting of the first time of arrival of potential
tipping points located in the high latitudes of the Northern Hemisphere. The
low (high) latitude regions would be hotter (colder) if poleward heat transport
were absent, hence damages in the low latitude regions would be higher, since
they are already under heat stress and transporting some of that heat poleward
helps relieve this heat stress. For example, solutions without heat transport
will underestimate what actual heat-related damage there is in the North, and
overestimate the actual heat-related damage in the Tropic-South. Without
heat transport, the adaptation rates in the North will be underestimated as
its corresponding atmospheric temperature anomaly is underestimated, and

3The importance of relating damages from temperature increase to adaptation has been
emphasized by, for example, Barreca et al. (2016) who showed remarkable reduction of
damages to morbidity and mortality due to heat stress in the U.S. after the introduction of
technologies such as air conditioning. Another example is Burgess et al. (2014) who showed
large negative effects of extreme heat days in India, especially in rural areas. Since lack of
access to air conditioning is a difference between India and the U.S., these results suggest
that because many areas in the Tropic-South are poorer than the North, we might expect
adaptation such as introduction of air conditioning to be slower in the Tropic-South than
in the wealthier parts of the North.
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the adaptation rates in the Tropic-South will be overestimated as its corre-
sponding atmospheric temperature anomaly is overestimated.

Third, endogenous SLR is an important new contribution of our modeling.
In this way we capture the projected increased diversion into adapting to SLR
(e.g., spending resources on SLR-protective infrastructure). The projected
earlier arrival of increased melting of land ice in the Northern Hemisphere high
latitudes due to our inclusion of heat transport means a potential increase in
SLR damages in coastal low latitude areas relative to the projections when
heat transport is ignored.

Fourth, when welfare weights are more egalitarian, the SCC of the North
increases relative to the Tropic-South and investments from the North to the
Tropic-South are larger compared to the non-egalitarian Negishi weights case
(i.e., competitive equilibrium).

Fifth, SCCs for both regions tend to be larger for larger IES values for
climate tipping risks. This is consistent with empirical findings in finance
that greater IESs in Epstein–Zin recursive preferences (Epstein and Zin, 1989)
imply that long-term risk matters and SCCs are larger.4 This result is also
consistent with the findings in the DSICE model (Cai, Judd, and Lontzek,
2015).

Optimal SCC paths for both regions from ignoring heat transport are
higher than those with heat transport in the deterministic model. However, if
we allow for stochastic tipping points, ignoring PA leads to underestimation
of the SCC in both regions. This result can be regarded as supporting the
case for taking action regarding climate change now rather than later. It also
indicates that our approach addresses issues related to the inability of most
IAMs to formulate policies when catastrophic events may arrive.

The paper is organized as follows. Section 2 builds a deterministic version of
DIRESCU. We calibrate our spatial climate system and the economic system
using DICE and RICE, as well as data from other literature such as IPCC
(2013). Section 3 analyzes results of the deterministic version of DIRESCU.

4See Bansal and Yaron (2004) for financial risks, and Bansal, Kiku, and Ochoa (2016)
for climate risks.

9



Figure 1: The DIRESCU model

Section 4 extends the deterministic model to a stochastic one, using a tipping
point as one representative risk and Epstein–Zin preferences to address the
smoothness of consumption across time and risk aversion following DSICE.
Section 5 discusses the results of the DIRESCU model and Section 6 concludes.

2 Deterministic Model

Our deterministic model follows DICE-2016 (Nordhaus, 2017), which maxi-
mizes social welfare with trade-offs between carbon dioxide (CO2) abatement,
consumption and investment. Our model has been augmented with an ad-
ditional control, relative to DICE-2016, by including adaptation to climate
change following de Bruin et al. (2009). DIRESCU has two regions: the
first one (indexed with i = 1) is the North from latitude 30°N to 90°N and
the second one (indexed with i = 2) is the Tropic-South from latitude 90°S to
30°N. We model it as a social planner problem with both economic and climate
interaction between two regions, SLR, permafrost thaw and climate tipping
risks (in the deterministic model, the risks are ignored). The big picture of
the model setup is depicted in Figure 1 and its details are described below.
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2.1 The Climate System

The climate system contains four modules: the carbon cycle, the temperature
system, SLR and permafrost thaw. In our calibration of the climate system,
we use the four RCP scenarios (i.e., RCP2.6, RCP4.5, RCP6, and RCP8.5)
(Meinshausen et al., 2011) and DICE/RICE optimal scenarios (i.e., the opti-
mal solutions of DICE-2016 and RICE-2010 with optimal mitigation policy),
where we define each scenario as a combination of pathways of global emis-
sions, atmospheric carbon concentration, global radiative forcing, and globally
averaged surface temperature relative to 1900 levels. For the RCP scenarios,
the pathways of atmospheric carbon concentration, global radiative forcing,
and globally averaged surface temperature are generated from the software
MAGICC (Meinshausen, Raper, and Wigley, 2011), using the corresponding
pathways of global emissions as the input to the software. The pathways of
global emissions are provided by MAGICC too. Appendix A.2 shows that
our calibrated system fits these scenarios, history, as well as other data in the
literature such as regional temperature projections reported in IPCC (2013).

2.1.1 Carbon Cycle

We follow DICE-2016 in using three-layer carbon concentrations: atmospheric
carbon, carbon in the upper ocean and carbon in the deep ocean. Let Mt =

(MAT

t ,MUO

t ,MDO

t )> represent the carbon concentration in the atmosphere, the
upper ocean and the deep ocean. Then the three-layer carbon cycle system
can be represented as:

Mt+1 = �MMt + (Et, 0, 0)
> , (1)

where Et is global carbon emissions (billions of metric tons) and

�M =

2

64
1� �12 �21

�12 1� �21 � �32 �32

�23 1� �32

3

75 . (2)
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The parameters �ij are calibrated against the four RCP scenarios and the
DICE-2016 optimal scenario. For every scenario, we can use its pathway of
emissions as the input Et to our carbon cycle system (1). Our carbon cycle
provides as output a pathway of atmospheric carbon concentration for each
scenario. We calibrate a unique set of values for �ij so that the pathways
of atmospheric carbon concentration are close to the scenarios’ pathways of
atmospheric carbon concentration, for all scenarios.

2.1.2 Temperature Subsystem

The global radiative forcing representing the impact of CO2 concentrations on
the surface temperature of the globe (watts per square meter from 1900) is

Ft = ⌘ log
2

�
MAT

t /MAT

⇤
�
+ FEX

t , (3)

where ⌘ = 3.68 as in DICE-2016 and FEX

t is the global exogenous radiative
forcing.

We use Tt = (TAT

t,1 , T
AT

t,2 , T
OC

t )> to represent the temperature anomaly (rel-
ative to 1900 levels) in the atmosphere (two regions) and the global ocean.
Thus, the temperature system is

Tt+1 = �TTt + ⇠1 (Ft, Ft, 0)
> , (4)

where we assume that the global radiative forcing has the same effect on both
regions, and

�T =

2

64
1� ⇠2 � ⇠4 � ⇠6 ⇠4 + ⇠5 ⇠2

⇠4 1� ⇠2 � ⇠4 � ⇠5 � ⇠6 ⇠2

⇠3 ⇠3 1� 2⇠3

3

75 .

In transition equation (4) and transition matrix �T, the parameter ⇠1 is the
temperature increase for each unit of radiative forcing, ⇠2 and ⇠3 represent
transport between atmosphere and ocean, ⇠4 and ⇠5 are used to capture spatial
heat and moisture transport, and ⇠6 represents the sensitivity of the outgoing
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long-wave radiation to atmospheric temperature changes.
Similarly to the calibration of the carbon cycle, we calibrate ⇠1, ..., ⇠6 against

the RCP scenarios, the DICE-2016 optimal scenario, and the historical spa-
tial temperatures in 1900-2015 from the Goddard Institute for Space Studies
(GISTEMP Team, 2018). For each scenario, we use its pathway of radiative
forcing as the input Ft to our temperature system (4), which provides as out-
put two regional pathways of atmospheric temperatures in the regions. Then
we average the regional pathways to generate a globally averaged atmospheric
temperature pathway. We calibrate a unique set of values for ⇠1, ..., ⇠6 so that
the generated globally averaged atmospheric temperature pathways from our
temperature system are close to the pathways of globally averaged atmospheric
temperature for all scenarios and, at the same time, our regional temperatures
in 2081-2100 are also close to the projected regional temperatures in 2081-2100
provided in IPCC (2013).

2.1.3 Sea Level Rise

Sea level rise is a serious problem caused by global warming. Table 4.1 of
IPCC (2013) shows that, if the whole Greenland ice sheet melts, it will cause
more than 7 meters (m) global mean SLR, and if the whole Antarctic ice
sheet melts, it will lead to about 58 m global mean SLR. Moreover, once an
ice sheet collapses, it is irreversible for millennia even if forcing is reversed
(IPCC 2013, Table 12.4). Nerem et al. (2018) adduce evidence that SLR is
accelerating from the historical data. Table 13.5 of IPCC (2013) shows SLR
in 2100 ranging from about 0.44 m for RCP2.6 to about 0.74 m for RCP8.5.
Figure 13.14 of IPCC (2013) shows that the likely range of SLR is from 1 to 3
m per degree Celsius of globally averaged surface temperature increase if the
warming is sustained for millennia.

There are four main sources of SLR: thermal expansion, and melting of
glaciers and ice cap, the Greenland ice sheet, and the Antarctic ice sheet. The
west Antarctic ice sheet (WAIS) is vulnerable to ocean warming as most of it
is below sea level and extensively exposed to the ocean. The contribution of a
complete collapse of the marine WAIS is estimated at 3.3 m of SLR (Bamber
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et al., 2009). Thermal expansion is also due to ocean warming. The melting
of glaciers and the Greenland ice sheet is due to atmospheric warming in the
North. Therefore, we assume that the rate of SLR is dependent on north
atmospheric temperature TTA

t,1 and ocean temperature TOC

t , and that a higher
temperature implies a higher rate of SLR. We also assume that SLR, St, is
irreversible. Thus, we let

St+1 = St + ⇣SLR
1

�
TTA

t,1

�⇣SLR
2 + ⇣SLR

3
TOC

t , (5)

where ⇣SLR
1

, ⇣SLR
2

and ⇣SLR
3

are calibrated using the SLR data for four RCP
scenarios in Table 13.5 of IPCC (2013) and Table 1 of Kopp et al. (2014).

2.1.4 Permafrost Thaw

With global warming, and in particular with PA, a large amount of CO2 and
CH4 could be emitted from thawing permafrost in the Arctic and sub-Arctic
regions, which contain about 1,700 GtC (gigaton of carbon) in permafrost soils,
while about 1,035 GtC are stored in the surface permafrost (0-3 m depth) and
could easily be emitted when they are thawed (Schuur et al., 2015). Schuur
et al. (2015) show that an average carbon release from the permafrost zone
by 2100 across models is about 92 GtC with a standard deviation of 17 GtC
under RCP8.5. A higher atmospheric temperature in the North implies a
higher emission rate. Thus, we assume that carbon emission from thawing
permafrost is

EPerm

t = ⇣Perm
1

 
1� 1

1 + ⇣Perm
2

TAT

t,1 + ⇣Perm
3

�
TAT

t,1

�2

!
. (6)

Hope and Schaefer (2016) give a mean carbon emission path from thawing
permafrost for the A1B scenario in IPCC (2007), so we use its annual time
series5 to calibrate ⇣Perm

1
, ⇣Perm

2
and ⇣Perm

3
.

5We thank Kevin Schaefer for providing the annual time series data.
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2.2 The Economic System

We calibrate our regional economic system to match RICE projections over our
regions. Appendix A.3 shows that our calibrated system fits RICE projections.

2.2.1 Production

The gross output at time t in each region is determined by a Cobb-Douglas
production function,

Yt,i ⌘ At,iK
↵
t,iL

1�↵
t,i , (7)

with ↵ = 0.3 and Lt,i the exogenous population at time t and region i aggre-
gated from RICE.6

We use region-specific total factor productivity (TFP) At,i. Sachs (2001)
stresses ecological specific technical progress and lists five reasons why TFPs in
low latitude zones tend to be smaller than temperate latitude zones. Of course
there are exceptions, as Sachs points out (e.g., Hong Kong and Singapore and,
now, lower latitude parts of China and parallel parts of “Asian Tigers”). How-
ever, theory suggests that the economies that are “behind” should grow faster
than the leaders because the leaders have already done the “heavy lifting” of
the TFP R&D which the followers could presumably copy. For example, Sachs
and McArthur (2002) discuss the transition from “adopter” to “innovator” for
countries.

We let

At,i = A0,i exp
�
↵TFP

i

�
1� exp

�
�dTFP

i t
��

/dTFP

i

�
,

where A0,i, ↵TFP

i and dTFP

i are calibrated to match the TFP path in region i

which is computed from RICE by aggregating across the RICE subregions in
region i.7

6For region i and time t, we sum up population over the RICE subregions located in
region i (if one RICE subregion is located across our border line 30°N, then we give a rough
estimate with the ratio of land of the subregion located in the region i).

7We first estimate Kt,i, Lt,i and Yt,i by summing over those in RICE subregions located
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2.2.2 Damages

In the deterministic case of DIRESCU, we consider two types of damages:
damages to output from SLR and damages to output directly from temperature
increase.

We follow RICE to let

DSLR

t,i = ⇡1,iSt + ⇡2,iS
2

t (8)

reflect the damage from SLR, St, as a fraction of output. We calibrate ⇡1,i
and ⇡2,i to match the damage from SLR which is computed from RICE.8

We follow DICE and RICE to assume a quadratic damage function for
temperature increase

DT

t,i = ⇡3,iT
AT

t,i + ⇡4,i(T
AT

t,i )2, (9)

where ⇡3,i and ⇡4,i are calibrated to fit the aggregated projected damage from
surface temperature change over RICE subregions.9

With the quadratic damage function (9) for the Tropic-South, this region
has damage of only 9% of its output if its regional surface temperature increase
is the same as the global mean surface temperature in 2100 under RCP8.5, i.e.,
4.7°C, as RICE does not take into account catastrophic damages. However,
Burke, Hsiang, and Miguel (2015) show that damages from high temperature
increase in low- and mid-latitude regions are much higher, reducing projected
global output by 23% in 2100 under RCP8.5, with the poorest 40% of countries

in our region i for each time t, and then compute the TFP paths At,i = Yt,i/(K↵
t,iL

1�↵
t,i ) for

region i.
8We estimate Yt,i and DSLR

t,i = DSLR
t,i Yt,i by summing over those in RICE regions located

in our region i for each time t, and then compute DSLR
t,i = DSLR

t,i /Yt,i for region i. With the
data on the SLR path in RICE and DSLR

t,i , we then calibrate ⇡1,i and ⇡2,i so that equation
(8) holds approximately.

9We use the radiative forcing path in RICE to estimate TAT
t,i using our calibrated climate

equation (4). We also estimate Yt,i and DT
t,i = DT

t,iYt,i by summing over those in RICE
regions located in our region i for each time t, and then compute DT

t,i = DT
t,i/Yt,i for region

i. With the data on TAT
t,i and DT

t,i, we then calibrate ⇡1,i and ⇡2,i so that equation (9) holds
approximately.
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(most being in our Tropic-South) having 75% reduction relative to a world
without climate change. Dell, Jones, and Olken (2012) show that there are
large and negative effects of higher temperatures on growth in poor countries,
with about 1.3% economic growth reduction for a 1°C increase. Burke, Hsiang,
and Miguel (2015) show that climate change may lead to negative economic
growth for some countries. Our estimate of damages follows DICE and RICE,
that is, damages are proportional to instantaneous output, not to growth of
TFP, so they may be underestimated for the Tropic-South and overestimated
for the North. However, our estimate of damages to the high-latitude regions
may also be underestimated, as we ignored potential damages from inequality
between the regions (Hsiang et al., 2017).

2.2.3 Emissions, Adaptation, and Mitigation

Global carbon emissions at time t are defined as

Et ⌘
2X

i=1

EInd

t,i + EPerm

t + ELand

t ,

where ELand

t is exogenous global carbon emissions from biological processes,
EPerm

t is emissions from permafrost thawing estimated by equation (6), and

EInd

t,i = �t,i(1� µt,i)Yt,i

is industrial emissions, where µt,i 2 [0, 1] is an emission control rate and �t,i is
the carbon intensity in region i. We let

�t,i = �0,i exp (�↵�i (1� exp (�d�i t)) /d
�
i ) , (10)

where �0,i, ↵�i and d�i are calibrated to match the carbon intensity paths in
region i which are computed from RICE by aggregating across the RICE sub-
regions in region i.10

10We use the business-as-usual (BAU) results (i.e., with µt,i ⌘ 0) of RICE to estimate the
carbon intensity paths. We first estimate EInd

t,i and Yt,i under BAU by summing over those
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We include an adaptation choice variable Pt,i for each region in our model
as in de Bruin, Dellink, and Tol (2009). Adaptation reduces damages to output
from SLR and temperature increase. In the deterministic case of DIRESCU,
with adaptation the output net of climate damages becomes

Yt,i ⌘
Yt,i

1 + (1� Pt,i)(DSLR

t,i +DT

t,i)
, (11)

where Pt,i 2 [0, 1] is the adaptation rate. We follow de Bruin, Dellink, and Tol
(2009) to assume that adaptation expenditure is

⌥t,i ⌘ ⌘1P
⌘2
t,i Yt,i,

with ⌘1 = 0.115 and ⌘2 = 3.6.
We follow DICE to assume that mitigation expenditure is

 t,i ⌘ ✓1,t,iµ
✓2
t,iYt,i,

where ✓1,t,i is the abatement cost as a fraction of output in region i at time t.
We use the DICE/RICE form to define

✓1,t,i = b0,i exp
�
�↵b

i t
�
�t,i/✓2,

where ↵b
i and ✓2 are parameters given by RICE, and b0,i is the initial backstop

price in region i.
Let bYt,i denote the output net of climate damage, mitigation expenditure

and adaptation cost, that is,

bYt,i = Yt,i � t,i �⌥t,i.

in RICE subregions located in our region i for each time t, and then compute the carbon
intensity paths �t,i = EInd

t,i /Yt,i for region i.
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2.2.4 Economic Interactions between Regions

In the economic system, each region’s stock of capital is the state variable Kt,i.
Its law of motion is:

Kt+1,i = (1� �)Kt,i + It,i, (12)

where � = 0.1 is the depreciation rate and It,i is investment in region i. We
model the economic interactions between two regions with the following ad-
justment cost function:

�t,i ⌘
B

2
bYt,i

 
It,i + ct,iLt,i

bYt,i

� 1

!2

, (13)

where B is the intensity of the friction, and ct,i is per capita consumption in
region i. The open economy situation corresponds to B = 0, while a large B

approximates the closed economy with bYt,i = It,i + ct,iLt,i (note that �t,i = 0

could be caused by either the open economy or the closed economy, so we use
B = 0 and large B to distinguish the two cases). Anderson and van Wincoop
(2003) discuss border barriers and how costly they are. Similar adjustment
cost functions have been used in Goulder, Hafstead, and Williams (2016). The
economic interaction cost also includes the cost of avoiding carbon leakage
between two regions. Eaton and Kortum (2002) find that if all countries (in
their data set) collectively remove tariffs, then most countries will gain around
1% of output with mobile labor, and less than 0.5% with immobile labor. Since
we assume mobile labor within each region but immobile between two regions,
we estimate the economic interaction cost to be roughly 0.5% of output for
each region and use this to calibrate B.

The market clearing condition with adjustment costs becomes

2X

i=1

(It,i + ct,iLt,i + �t,i) =
2X

i=1

bYt,i. (14)
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2.2.5 Social Welfare

In the deterministic case of the DIRESCU model, the total social welfare is
defined as

1X

t=0

�t
2X

i=1

⌧t,iu(ct,i)Lt,i,

where � is the discount factor, ⌧t,i are weights for i = 1, 2, and u is a per capita
utility function:

u(c) =
c1�

1
 

1� 1

 

, (15)

where  is the IES whose inverse is also the elasticity of marginal utility.
Therefore, the social planner’s problem is

max
It,i,ct,i,µt,i,Pt,i

1X

t=0

�t
2X

i=1

⌧t,iu(ct,i)Lt,i, (16)

subject to transition laws (1), (4), (5), (12), and the market clearing constraint
(14). The planner’s problem has nine state variables: Kt,1, Kt,2, St, Mt (three-
dimensional vector), and Tt (three-dimensional vector), as well as eight control
variables (It,1, It,2, ct,1, ct,2, µt,1, µt,2, Pt,1, Pt,2) at each time t.

The egalitarian welfare criterion (i.e., ⌧t,i ⌘ 1) and competitive welfare
criterion (i.e., ⌧t,i are Negishi weights) are employed to study the impact of
either full cooperation or full competition between regions. However, in the
real world there exist both cooperation and competition at the same time (i.e.,
partial cooperation and partial competition), so we let

⌧t,i = 1 + �
⇣
⌧Negishi

t,i � 1
⌘
,

where ⌧Negishi

t,i are Negishi weights and the parameter � 2 [0, 1] represents
the level of competition between the regions. When � = 0, it implies that
there is no competition so it is a completely cooperative world (⌧t,i = 1),
while � = 1 implies that this world is fully competitive (⌧t,i = ⌧Negishi

t,i ). We
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calibrate � so that the consumption paths in each region of the model are
close to the corresponding aggregated consumption paths in the RICE model.
We compute Negishi weights by using an iterative numerical method with the
following steps: (i) set the initial guess ⌧ (0)t,i = 1; (ii) for k = 0, 1, 2, ..., we solve
model (16) with ⌧ (k)t,i as the welfare weights to obtain the optimal per capita
consumption paths c(k)t,i , and let

⌧ (k+1)

t,i =
2
⇣
u0(c(k)t,i )

⌘�1

P
2

j=1

⇣
u0(c(k)t,j )

⌘�1
;

and (iii) we stop the iteration if the difference between ⌧ (k)t,i and ⌧ (k+1)

t,i is small
for all t and i. In our examples, the stopping criterion is maxt,i

���⌧ (k+1)

t,i � ⌧ (k)t,i

��� <
0.001; we find that under this criterion, numerically the model has reached
competitive equilibrium, which can be indicated by zero economic interaction
and the same SCC between the regions obtained by the optimal solutions.

3 Results for the Deterministic Model

Since the choice of discount factor � = 0.985 means that welfare after 500
years has little impact on the solutions of the first 100 years, we approximate
infinite-horizon problem (16) by an 800-year finite-horizon problem, assuming
that: the last 300 years have fixed policy with µt,i ⌘ 1, Pt,i ⌘ Pt,500; both
ct,iLt,i/Yt,i and It,i/Yt,i are constant; and �t,i = 0 for t � 501. We then solve
this finite-horizon optimal control problem with CONOPT in GAMS.

For the baseline deterministic model, we follow DICE-2016 to choose an
IES of 0.69 and then calibrate � to be 0.6. Figure 2 shows the optimal policy
paths in this century. The top-left panel shows that the North always has a
higher SCC than the Tropic-South. The initial SCC is $53 per ton of carbon
(/tC) for the North and $42/tC for the Tropic-South, as the North is more de-
veloped and there exists partial cooperation between the two regions (the level
of competition is � = 0.6). However, the top-right panel shows a reverse direc-
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tion for the adaption rate, implying that there are many more benefits from
adaptation in the already hot Tropic-South, as the marginal damage as a frac-
tion of regional output from 1� warming is much higher in the Tropic-South
than in the North. The middle-left panel shows that the ratio of investment to
regional output (i.e., It,i/bYt,i) is lower in the North than in the Tropic-South,
as the Tropic-South has larger TFP growth. The middle-right panel displays
the PA pattern: the atmospheric temperature in the North reaches 5.2� at
the end of this century, which is 2.3� higher than in the Tropic-South. Figure
2 clearly indicates that, under this simulation, the globally averaged surface
temperature increase will be more than 3� in 2100, exceeding the 2� target
set by the 2015 United Nations Climate Change Conference held in Paris. This
temperature increase can be implied from the bottom-left panel showing that
global industrial cumulative emissions in 2100 is 1000 GtC. The bottom-right
panel shows that industrial emissions start to decline in the North after 2045,
but continue growing in the Tropic-South and exceed those of the North after
2060. This is because most countries in the Tropic-South are developing and
want to use cheaper fossil fuel to achieve faster economic growth. The baseline
model indicates high industrial emissions because we follow the low-damage
functions of DICE/RICE for the deterministic model.

To better identify the impacts of adaptation, SLR and permafrost thawing
in the baseline deterministic model, we run it three times, leaving out one of
them each time. We find that ignoring adaptation causes significant overes-
timation of the SCCs: the initial SCC is $115/tC for the North and $90/tC
for the Tropic-South, more than twice the corresponding initial SCCs with
adaptation. In contrast, ignoring SLR causes significant underestimation of
the SCCs: the initial SCC is $32/tC for the North and $26/tC for the Tropic-
South, about 60% of the corresponding initial SCCs with SLR. We find that
permafrost thawing has little impact on the SCCs: the initial SCC without
permafrost thawing is only one dollar less than the initial SCC with permafrost
thawing in each region. These results indicate that adaptation and SLR are
important in IAMs and in calculation of the SCC, while permafrost thawing
may not be.
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Figure 2: Optimal Policy for the Baseline Deterministic Model
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3.1 Bias from Ignoring Heat Transport and PA

In order to take into account the PA effects in our model, we chose ⇠4 = 0.6557

and ⇠5 = 0.5565 as well as other related parameter values in the temperature
subsystem. These parameters were chosen to match the data of the four RCP
scenarios (after aggregation over the two regions), the DICE optimal scenario,
the RICE optimal scenario (after aggregation over the RICE subregions for
each of our regions), historical spatial data and predictive spatial data in
IPCC (2013).

Figure 3 compares the optimal solutions using ⇠4 = ⇠5 = 0 (i.e., ignoring
PA) to the solutions with PA. In the panels of Figure 3, the black and red lines
represent solutions in the North and Tropic-South respectively. The solid lines
show the default case with PA while the dashed lines show paths without PA.
The top-left panel shows that the optimal SCC paths from ignoring heat trans-
port are higher than those with heat transport for each region. By ignoring
the heat and moisture transport, the paths of the North and Tropic-South
atmospheric temperature anomaly merge after 2050 (top-right panel). The
merged paths are between the temperature anomaly paths of the two regions
with heat transport. That is, without the transport phenomena, we cannot
detect PA in the model, and the temperature anomaly is underestimated in
the North and overestimated in the Tropic-South. This implies that the so-
lutions without heat transport will underestimate the damage in the North,
and overestimate it in the Tropic-South (bottom-left panel). The bias also
exists in the optimal adaptation rates in the bottom-right panel: without heat
transport, the adaptation rates in the North will be underestimated, as its
corresponding atmospheric temperature anomaly is underestimated, and over-
estimated in the Tropic-South, as its corresponding atmospheric temperature
anomaly is overestimated.

3.2 Sensitivity to Welfare Criteria

The baseline results are based on the model with partial cooperation between
the two regions, with a competition level � = 0.6. The literature usually just
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Figure 3: Bias of Optimal Solutions from Ignoring Heat Transport and PA

discusses two extreme cases: completely cooperative (� = 0) and completely
competitive (� = 1). Figure 4 compares solutions of the SCC and economic
interaction costs under three welfare criteria: partial cooperation with � =

0.6; full cooperation with � = 0; and no cooperation with � = 1. Figure 4
shows that, under full cooperation, the North has the highest SCC and the
Tropic-South has the lowest SCC, while both regions have the highest economic
interaction costs. This pattern appears because, under full cooperation, the
more developed North would invest more in mitigation and also transfer more
investment to the Tropic-South, in order to increase the total welfare of the
world. Under no cooperation, both regions have the same SCC and zero
economic interaction costs, as neither region would be willing to have more
mitigation for the common good – the slowing down of global warming – and
neither region would be willing to transfer any investment to the other region.
Under partial cooperation, the results are between the two extreme cases.
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Figure 4: Solutions with Different Welfare Criteria

3.3 Sensitivity to the IES

The above discussion assumes, following DICE-2016, that the IES (i.e.,  ) is
equal to 0.69; however the value of the IES is debatable. For example, in the
earlier versions of DICE (e.g., DICE-2007 (Nordhaus, 2008)), Nordhaus set
the IES at 0.5. DSICE (Cai, Judd, and Lontzek, 2015) used a wide range of
IESs from 0.5 to 2. In particular, for stochastic models, the IES is often larger
than 1. This paper also discusses a case with  = 1.5. With different IESs, the
model has different Negishi weights, so we recalibrate the level of competition
at � = 0.4 to match the per capita consumption growth under RICE. Figure
5 compares solutions of the deterministic model with different IESs ( = 0.69

with � = 0.6, versus  = 1.5 with � = 0.4). The left panel of Figure 5 shows
that the higher IES leads to a higher SCC. For example, in the initial year, the
SCC under  = 1.5 is about three times that of the SCC under  = 0.69 for
each region. Under the higher IES, paths of per capita consumption growth
(the right panel) are higher in the initial periods. The Tropic-South’s growth
under  = 1.5 is closer to the corresponding growth in RICE than it is under
 = 0.69, but the reverse is true for the North’s growth. However, under
either  = 0.69 or  = 1.5, our model’s growth paths are close to the RICE’s
growth path after 2040 in the North and the Tropic-South. The differences
between the two cases are small for adaptation, economic interaction costs,
damage and the atmospheric temperature (see Appendix A.4).
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Figure 5: Solutions of the Deterministic Model with Different IES

4 The Stochastic Model

There are many uncertainties in the economic and climate system. For ex-
ample, DSICE (Cai, Judd, and Lontzek, 2015) discusses business cycle shocks
in productivity and climate risks, and also deals with parameter uncertainty
over the IES and risk aversion using uncertainty quantification. Lemoine and
Traeger (2014) use a stylized model to study the impact of climate tipping
points. Cai, Lenton, and Lontzek (2016) use DSICE to study the impact of
multiple interacting tipping points on the carbon tax policy. In this paper we
introduce uncertainty regarding the emergence of endogenous tipping elements
in the North into the spatial model with heat and moisture transport.

4.1 The Impact of Tipping Points

We assume that there is a representative tipping element that will take D

years to fully unfold its damage after it occurs. The final damage level is J

as a fraction of output, and the tipping probability depends on the contempo-
raneous atmospheric temperature in the North. Let Jt represent the damage
level of the tipping element, and let �t be the indicator representing whether
the tipping event has happened or not before time t, so �t = 0 means that
the tipping event has not happened, and �t = 1 means that it has happened
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before time t. Thus, the transition law of Jt is

Jt+1 = min(J, Jt +�)�t, (17)

where � = J/D is the annual increment of damage level after the tipping
happens, and �t is a Markov chain with the probability transition matrix

"
1� pt pt

0 1

#
,

where pt is the tipping probability from state �t = 0 to �t = 1. We let

pt = exp
�
%max

�
0, TAT

t,1 � 1
��

,

where % is the hazard rate, so a higher atmospheric temperature in the North
implies a higher tipping probability.

We use the Atlantic Meridional Overturning Circulation as the represen-
tative tipping element, and employ its default setup as in Cai, Lenton, and
Lontzek (2016), that is, D = 50, J = 0.15 and % = 0.00063. To introduce a
general model, we let

�t+1 = g(�t,Tt,!t) (18)

denote the transition law for �t. The output net of all damages including SLR,
temperature anomaly and tipping becomes

Yt,i ⌘
(1� Jt)Yt,i

1 + (1� Pt,i)
�
DS

t,i +DT

t,i

� . (19)

4.2 Recursive Preferences

We use Epstein–Zin (1989) preferences to isolate the IES and risk aversion for
the stochastic model. With a transformation similar to that in Cai, Judd, and
Lontzek (2015), we solve the Bellman equation:

28



Vt(xt) = max
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2X

i=1
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1� 1
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9
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(20)
subject to (1), (4), (5), (12), (14), (17), (18) and (19), where

xt = (Kt,1, Kt,2,M
AT

t ,MUO

t ,MDO

t , TAT

t,1 , T
AT

t,2 , T
OC

t , St, Jt,�t)

is the vector of state variables (ten continuous variables and one binary vari-
able), at = (It,1, It,2, ct,1, ct,2, µt,1, µt,2, Pt,1, Pt,2) is the vector of decision vari-
ables (all are continuous), Et is the expectation operator conditional on the
time-t information, and ⇥ = (1 � �)/(1 � 1/ ) where  is the IES and � is
the risk aversion parameter. We use annual time steps, where the initial year
(t = 0) is 2015, and the terminal time (t = T = 500) is the year 2515. The
terminal value function VT (xT ) is computed as shown in Appendix A.5. When
there is no risk, equation (20) is equivalent to the deterministic model (16).

We use  = 1.5 and � = 3.066 as in Pindyck and Wang (2013) as well
as ⌧t,i = 1 + �

⇣
⌧Negishi

t,i � 1
⌘

with � = 0.4 for our benchmark stochastic case,

where ⌧Negishi

t,i are the Negishi weights for the deterministic model with  = 1.5.

5 Results from the Stochastic Model

We solve the Bellman equation (20) using parallel dynamic programming (Cai,
Judd, and Lontzek, 2015) via backward induction on the Blue Waters super-
computer. After we solve the Bellman equation, we use the optimal policy
functions to generate 10,000 simulation paths forward. That is, each simula-
tion path starts at the observed initial states, we simulate one sample of the
shock for the tipping point at time t, and then with the realized sample and
the optimal control policy at t, we obtain the optimal states at t+ 1.

The two top panels of Figure 6 show the distributions of the simulated
optimal SCC for both regions. All the panels in Figure 6, as well as in Figure
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Figure 6: Optimal SCC, Tipping Damage Level, and Atmospheric Carbon for
the Stochastic Model

7, include a line representing the deterministic case derived with the same IES
used in the stochastic model. The shaded area represents the range of the
10,000 sample paths, along with the average, 1%, 2% and 5% quantile paths
(that is, at each point in time, we compute the average and these quantiles of
10,000 values). The initial SCC increases significantly from the deterministic
case to the stochastic case, as the initial SCC for the stochastic case is $416/tC
for the North and $339/tC for the Tropic-South, about 2.3 times that of the
corresponding deterministic case (with  = 1.5 and � = 0.4) in each region.
The cumulative probability that the tipping event will occur before 2100 is
only 9.5%, while the 1%, 2% and 5% cumulative probability of tipping occurs
in years 2035, 2050, and 2074 respectively. Once the tipping event happens,
the SCC immediately falls significantly, but damages unfold over a 50-year pe-
riod, as shown in the bottom-left panel for the tipping damage level Jt. This
happens because the high SCC before tipping is intended to prevent or delay
the tipping point as its occurrence depends on the contemporaneous temper-
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ature. However, after the tipping event happens, this incentive disappears as
the damage will unfold in a deterministic way. This result is consistent with
the finding in DSICE. The bottom-right panel shows that, with the stricter
mitigation policy, the stochastic model has smaller carbon concentration in the
atmosphere and in 2100 it is on average 200 GtC less than the corresponding
deterministic simulation (with  = 1.5 and � = 0.4). If the tipping event
occurs, then the carbon concentration has a higher rate of increase as the
corresponding mitigation policy is less strict.

Figure 7 shows the distributions of the optimal simulation paths for atmo-
spheric temperatures and adaptation rates in both regions for the stochastic
model. By comparing the two top panels, we see that the North has a much
higher temperature anomaly than the Tropic-South for the stochastic solu-
tions. Moreover, the atmospheric temperature anomaly in the North is about
2� higher than in the Tropic-South in 2100. The two bottom panels show
the optimal adaptation rates. Again we see that the North has lower adap-
tation rates than the Tropic-South for the stochastic solutions, and that the
stochastic results have lower adaptation rates than the corresponding deter-
ministic case, since with the stricter mitigation policy and the resulting lower
temperatures in the stochastic case, there is less need to adapt.

5.1 Bias from Ignoring Heat Transport and PA

We examine the bias from ignoring heat and moisture transport and PA (i.e.,
⇠4 = ⇠5 = 0) again for the stochastic case, shown in Figure 8. In each panel
of the figure, the black lines represent the average paths and the red lines
represent the 1% quantile paths. The solid lines show the case with heat and
moisture transport and PA, while the dashed lines show the case without it.

The top panels of Figure 8 show that ignoring heat transport and PA un-
derestimates the SCCs for both regions in the early periods. For example,
the initial SCC with ⇠4 = ⇠5 = 0 is about 10% less than in the case with
PA for both regions. Note that this is in the opposite direction to the de-
terministic case shown in the top-left panel of Figure 3, where ignoring heat
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Figure 7: Temperature and Adaptation Rate for the Stochastic Model

transport overestimates the SCC. This is because ignoring heat transport leads
to a lower temperature in the North (see bottom-left panel of Figure 8) and
then underestimates the tipping probability which depends on the atmospheric
temperature in the North. This is also reflected in the 1% quantile paths: the
case ignoring PA has a 1% cumulative probability of tipping in year 2044, nine
years later than in the case with PA. This lower tipping probability means a
less risky tipping element which leads to smaller SCCs. The middle and bot-
tom panels of Figure 8 show that ignoring heat transport and PA significantly
underestimates the atmospheric temperature anomaly and adaptation rates in
the North, and significantly overestimates them in the Tropic-South.
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Figure 8: Bias of Solutions from Ignoring Heat Transport and PA for the
Stochastic Model
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5.2 Sensitivity on the IES, Risk Aversion and Welfare

Criterion

As shown in Section 3, results depend on values of the IES and the wel-
fare criterion. For the stochastic model, they also depend on risk aversion.
Different values of risk aversion are used in the literature (e.g., � = 3.066

in Pindyck and Wang (2013) and � = 10 in Bansal and Yaron (2004) and
Cai, Judd, and Lontzek (2015)). Table 1 lists the initial SCC for various
IESs ( 2 {0.69, 1.5}), welfare criterion according to the level of competition
(� 2 {0, 0.4, 0.6, 1}) and risk aversion (� 2 {3.066, 10}). Note that the stochas-
tic model with � = 1 is just an approximation of real competitive equilibrium,
so the initial SCC of the North is not equal to that of the Tropic-South for
the stochastic cases, but they are still close to each other for every case (with
� = 1). Moreover, when � = 1, the simulated SCC paths in the North are
close to those in the Tropic-South, and the simulated economic interaction
costs (in ratios of regional output) are close to zero. These imply that the
Negishi weights from the deterministic model (i.e., � = 1) are appropriate
for approximating the competitive equilibrium in the stochastic cases in this
paper.

Table 1 shows that a higher IES leads to a higher SCC in both regions;
that a higher risk aversion leads to a higher SCC in both regions; and that
stochastic cases have a higher SCC than deterministic cases for the same IES
and �. This finding is consistent with Cai, Judd, and Lontzek (2015). Table
1 also shows that a higher level of competition leads to a smaller SCC in the
North and a larger SCC in the Tropic-South. Moreover, Table 1 shows that the
North has a higher SCC than the Tropic-South for all cases, except that the
North has a slightly smaller SCC than the Tropic-South for the stochastic cases
with � = 1 due to approximation errors for the competitive equilibrium. This
finding is consistent with our findings for the deterministic model in Section
3.
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Table 1: Initial SCC under various IESs ( ), welfare criterion (level of com-
petition �), and risk aversion (�)

IES � Deterministic Stochastic
( ) North Tropic North Tropic-South

-South � = 3.066 � = 10 � = 3.066 � = 10
0.69 0 59 35 111 130 68 79

0.4 55 39 104 121 75 88
0.6 53 42 101 118 81 94
1 50 50 96 112 97 114

1.5 0 193 135 446 510 316 361
0.4 180 144 416 477 339 387
0.6 174 150 403 460 352 402
1 163 163 378 431 384 438

6 Conclusion

This paper has taken a first step toward adding a heretofore neglected element
– dynamic heat and moisture transport from the lower latitudes toward the
Poles – into computational IAMs used in policy-relevant climate economics.
We divided the world into the North and the Tropic-South where the North is
the region from 30°N latitude to the North Pole and the Tropic-South is the
rest of the world. Our temperature anomaly dynamics for the North and the
Tropic-South has two key positive parameters (⇠4, ⇠5) which were calibrated
using historical and projection data. The impact of neglecting heat and mois-
ture transport on the optimal paths of key quantities – temperature, the SCC,
emissions, adaptation and damages – can be assessed in our model by setting
⇠4 = ⇠5 = 0 and observing how the optimal paths change.

When our model is calibrated to data, we find substantial biases in key
quantities such as temperature anomalies, adaptation rates, the SCC and dam-
ages, relative to the case where a social planner neglects poleward heat and
moisture transport. We also show how potential arrival times of tipping ele-
ments in the high latitudes are affected by the transport phenomena and, most
importantly, how these tipping elements can affect the SCC between the two
regions.
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As indicated in Sections 3.1 and 5.1 (and Figures 3 and 8), the biases from
neglecting heat and moisture transport are quite substantial. Note that in
this paper we have abstracted from the nonlinearity caused by surface albedo
feedback which is likely to add even larger effects than what we see in Figure
3 because its effects are in the same direction.

In this paper the directional heat and moisture transport from regions
closer to the Equator toward regions closer to the Poles is combined, in the
same model, with endogenous SLR, permafrost thawing, stochastic arrival of
tipping points, cooperation and different levels of competition between the
North and Tropic-South, and recursive preferences which distinguish between
risk aversion and the IES. We believe that these aspects of our model constitute
an important step forward in calibrated IAMs at the “coarse grained” level of
aggregation, which can improve the development of scientifically-informed and
scientifically-disciplined climate change policies.

We expect that future research and extensions in the context of our model
– which would involve a finer regional disaggregation, nonlinear surface albedo
feedbacks, and better approximations of damages from sources such as SLR,
permafrost thawing or tipping points – could provide additional and improved
insights.
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Appendices

A.1 Definition of Parameters and Exogenous Paths

In DIRESCU, we approximate the exogenous paths of DICE-2016 in five-year
time steps by their annual analogs. The land carbon emissions ELand

t and
exogenous radiative forcing FEX

t are defined below:

ELand

t = 0.95e�0.115t (A.1)

FEX

t =

(
0.5 + 0.00588t, if t  85

1, otherwise.
(A.2)

Tables A.1-A.3 list the values and/or definition of all parameters, variables
and symbols.
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Table A.1: Parameters, Variables and Symbols in the Deterministic Climate System

t time in years (t = 0 represents year 2015)
i2 {1, 2} region i (North or Tropic-South)

MAT
t carbon concentration in the atmosphere (billion

tons); MAT
0

= 851
MUO

t carbon concentration in upper ocean (billion

tons); MUO
0

= 460
MDO

t carbon concentration in deep ocean (billion tons);

MDO
0

= 1740

Mt =
�
MAT

t ,MUO
t ,MDO

t

�>
carbon concentration vector

TAT
t,i average surface temperature (Celsius);

TAT
0,1 = 1.36, TAT

0,2 = 0.765

TOC
t average ocean temperature (Celsius);

TOC
0

= 0.0068

Tt =
�
TAT
t,1 , TAT

t,2 , TOC
t

�>
temperature vector

St sea level rise (SLR); S0 = 0.14
Ft global radiative forcing

FEX
t exogenous radiative forcing

⌘ = 3.68 radiative forcing parameter

�M transition matrix of carbon cycle

�T transition matrix of temperature system

�1,2 = 0.0237, �2,1 = 0.0388 parameters in transition matrix of carbon cycle

�2,3 = 0.00136, �3,2 = 0.00284 parameters in transition matrix of carbon cycle

⇠1 = 0.0526, ⇠2 = 0.08987 parameters in transition matrix of temperature

system

⇠3 = 0.0022, ⇠4 = 0.6557 parameters in transition matrix of temperature

system

⇠5 = 0.5565, ⇠6 = 0.0 parameters in transition matrix of temperature

system

⇣SLR
1

= 0.00073, ⇣SLR
2

= 1.4 parameters in SLR by warming

⇣SLR
3

= 0.007 parameters in SLR by warming

⇣Perm
1

= 1.951, ⇣Perm
2

= �0.0858 parameters in emission from permafrost thawing

by warming

⇣Perm
3

= 0.2257 parameters in emission from permafrost thawing

by warming

MAT
⇤ = 588 equilibrium atmospheric carbon concentration
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Table A.2: Parameters, Variables and Symbols in the Economic System

Yt,i gross output

Yt,i output net of damage

bYt,i output net of damage, abatement and adaptation cost

At,i total productivity factor (TFP); A0,1 = 7.331, A0,2 = 3.582
↵TFP
1

= 0.013, ↵TFP
2

= 0.0184 initial growth of TFP

dTFP
1

= 0.0053, dTFP
2

= 0.0061 change rate of growth of TFP

Lt,i population (in billions)

Kt,i capital (in $ trillions); K0,1 = 146, K0,2 = 77
↵ = 0.3 output elasticity of capital

DS
t,i damage (in fraction of output) from sea level rise

⇡1,1 = 0.00447, ⇡1,2 = 0.00408 SLR damage parameter

⇡2,1 = 0.01146, ⇡2,2 = 0.00646 SLR damage parameter

DT
t,i damage (in fraction of output) from surface temperature

anomaly

⇡3,1 = 0.00094, ⇡3,2 = 0.00322 non-SLR damage parameter

⇡4,1 = 0.0002, ⇡2,2 = 0.00074 non-SLR damage parameter

 t,i mitigation expenditure

⌥t,i adaptation expenditure

µt,i emission control rate

Et, EInd
t,i , ELand

t global emission; regional industrial emission; land emission

Pt,i adaptation rate

�t,i carbon intensity; �0,1 = 0.094, �0,2 = 0.104
↵�
1
= 0.0156, ↵�

2
= 0.0181 initial declining rate of carbon intensity

d�
1
= 0.0063, d�

2
= 0.007 change rate of growth of carbon intensity

✓2 = 2.6 mitigation cost parameter

✓1,t,i adjusted cost for backstop

b0,1 = 1.71, b0,2 = 2.19 initial backstop price

↵b
1
= ↵b

2
= 0.005 declining rate of backstop price

⌘1 = 0.115, ⌘2 = 3.6 parameters for adaptation cost

� = 0.1 annual depreciation rate

ct,i per capita consumption

It,i investment

�t,i adjustment cost for economic interaction between regions

B = 1 parameter for economic interaction cost

 2 {0.69, 1.5} IES

u per capita utility function

⌧t,i weights

� level of competition between two regions

� = 0.985 discount factor
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Table A.3: Additional Parameters, Variables and Symbols in the Stochastic Model

D = 50 duration of tipping process

Jt damage level; J0 = 0
J = 0.15 final damage level

� annual increment of damage level

�t 2 {0, 1} indicator for whether tipping has happened;

�0 = 0
pt tipping probability

% = 0.00063 hazard rate for tipping

� 2 {3.066, 10} risk aversion parameter

xt vector of state variables

Vt value function

A.2 Calibration of the Climate System

Figure A.1 shows that our calibrated carbon cycle can approximate well for all
scenarios except RCP8.5. Since RCP8.5 is the business-as-usual scenario, and
our model is solving problems with optimal mitigation policy, the deviation of
approximation for RCP8.5 has little impact on our solutions.

Figure A.1: Fitting Atmospheric Carbon Concentration

Figure A.2 shows that our calibrated temperature system can approximate
well for all these scenarios. Figure A.3 displays the corresponding spatial sur-
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Figure A.2: Fitting Surface Temperature

face temperature and ocean temperature pathways from the calibrated tem-
perature system, for the RCP scenarios and the DICE-2016 optimal scenario.
It also shows that the spatial surface temperatures in 2081-2100 are close to
the ones given in IPCC (2013).

Figure A.4 shows that our fitted paths of SLR (above the level in 2000) for
RCP2.6, RCP4.5 and RCP6 are quite close to the mean projections in IPCC
(2013) and Kopp et al. (2014).

The left panel of Figure A.5 shows that our function (6) for estimating
emissions from thawing permafrost fits data well, and the right panel of Fig-
ure A.5 shows projected future cumulative emission paths from thawing per-
mafrost since 2010 for four RCP scenarios. We see that the cumulative carbon
emission under RCP8.5 is also inside the likely range given in Schuur et al.
(2015).11

11Since the amount of GHGs in permafrost is finite, we can have an upper bound constraint
on cumulative emissions from permafrost. But since our model solution never hits the upper
bound, numerically this constraint does not matter.
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Figure A.3: Spatial Temperature Using RCP or DICE Radiative Forcing Sce-
narios
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Figure A.4: Fitting SLR

Figure A.5: Fitting the Carbon Emission Data from Thawing Permafrost and
Projecting Future Cumulative Emission Paths from Thawing Permafrost since
2010
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Figure A.6: Fitting Total Factor Productivity

A.3 Calibration of the Economic System

Figure A.6 shows that our calibrated TFP paths match RICE projections over
both the North and the Tropic-South.

Figure A.7 shows that our estimate of SLR damage function (8) is close to
the RICE projection of SLR damage for both the North and the Tropic-South.

Figure A.8 shows that our non-SLR damage functions (9) fit the RICE
projection of non-SLR damage in fraction of output.

Figure A.9 shows that our carbon intensity estimate (10) closely approxi-
mates the corresponding RICE projections.

A.4 Supplementary Results

Figure A.10 shows the optimal emission control rate paths and SLR for the
baseline deterministic case. The left panel shows that the North has higher
emission control rates than the Tropic-South. The right panel shows that SLR
increases at an increasing rate over time and reaches about 0.69 m (above
the pre-indsutrial level) in 2100. This happens because in the simulation the
surface and ocean temperatures continue to rise in this century, and therefore
ice sheets (e.g., Greenland ice sheet and Antarctic ice sheet) melt at higher
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Figure A.7: Fitting SLR Damage to Output

Figure A.8: Fitting Non-SLR Damage to Output
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Figure A.9: Fitting Carbon Intensity

rates.
The left panel of Figure A.11 shows that, for the baseline deterministic case

( = 0.69 and � = 0.6), per capita consumption growth in the Tropic-South
starts at around 2% in the initial year and ends at 1.5% at the end of this
century, while the North has lower growth, starting at 1.8% and ending at
1.2% in 2100. The difference between the two growth paths is caused by the
spillover effect of technology from the North to the Tropic-South. The eco-
nomic interaction cost between the two regions for the baseline deterministic
case is shown in the right panel of Figure A.11: both regions have declining
economic interaction cost in ratios to regional output, while the North declines
from 0.42% in the initial year to 0.21% in 2100, and the Tropic-South starts
at 1.2% and drops to 0.14% in 2100.

Figure A.12 shows that, for the baseline deterministic case, changes in
the IES have little impact on optimal adaptation, economic interaction cost,
damages and atmospheric temperature.
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Figure A.10: Solutions in the Climate System of the Deterministic Model

Figure A.11: Solutions in the Economic System of the Deterministic Model
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Figure A.12: Comparison between Solutions of the Deterministic Model with
Different IESs
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A.5 Terminal Value Function

The terminal value function at terminal time T = 500 is computed as

VT (xT ) = ⌧T,iLT,i

800X

t=500

�t�500u(ct,i),

where we assume that for all t > T , all exogenous paths stop changing and fix
their values at terminal time T . Emission control rates are always 1 (i.e., µt,i =

1), adaptation rates are fixed at the optimal levels of the deterministic model
at the terminal time, there are no economic interaction costs (i.e., �t,i = 0),
both ct,iLt,i/Yt,i and It,i/Yt,i are given constant values and, if the tipping event
has not happened before T , then it never happens; or if the tipping event has
happened, then its damage will unfold until its maximum level.
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