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1 Introduction

The relationship between the number of vehicles on the road and the speed at which

they travel is fundamental to transportation and urban economics. To anyone who

has driven in traffic, it is clear that traffic congestion decreases speed. But transporta-

tion engineers go further, arguing that as demand for travel goes up, this decreases

not only speed but also the capacity of the road system, a phenomenon known as

hypercongestion. Many studies claim to document what has been called “capacity

drop”, “flow breakdown”, or the “two capacity phenomenon” (Banks, 1990, 1991;

Hall and Agyemang-Duah, 1991; Bertini and Malik, 2004; Persaud et al., 1998; Cas-

sidy and Bertini, 1999; Zhang and Levinson, 2004; Chung et al., 2007; Oh and Yeo,

2012).

Our paper revisits this idea. There is no question that road systems experience

periods in which capacity falls. However, we point out that capacity is determined

by both demand and supply. Road construction, accidents, lane closures, disabled

vehicles, weather, and other supply shocks provide an alternative explanation for

the empirical phenomenon of hypercongestion. We argue this is equivalent to the

standard problem of estimating a supply curve using market data on prices and

quantities. Economists have long used instrumental variables in these settings to

econometrically separate demand and supply (see, e.g., Angrist and Krueger, 2001).

We use the same approach here.

Our empirical analysis uses high-frequency traffic data from the Caldecott Tunnel in

Oakland, California. This bottleneck is a good location for studying traffic congestion

because traffic delays are common; indeed, transportation engineers have frequently

studied this exact location (Chin and May, 1991; Chung and Cassidy, 2002; Chung

et al., 2007). We observe traffic speed and vehicle counts at several locations before,

during, and after the bottleneck. We first show that naive regressions can recover the

standard hypercongestion result in the literature. However, once we use instruments

to isolate the effect of travel demand, this relationship disappears, and across a

variety of specifications we find no evidence that capacity decreases during periods
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of high demand.

This absence of evidence of hypercongestion calls into question long-standing con-

ventional wisdom in the transportation engineering literature. Hypercongestion has

long been, for example, the primary rationale for freeway metering lights and other

traffic interventions aimed at regulating demand (Diakaki et al., 2000; Smaragdis et

al., 2004; Cassidy and Rudjanakanoknad, 2005), but our evidence raises questions

about the applicability of these interventions. Our results also imply that the ef-

ficient “Pigouvian” congestion taxes should be substantially lower than implied by

hypercongestion models. Using a stylized simulation model we show that without

hypercongestion the marginal damages from driving are about half as large.

Previous studies by economists have tended to take hypercongestion as given. For

example, Walters (1961) takes a supply curve with hypercongestion from the trans-

portation engineering literature and uses the parameters to derive efficient congestion

prices. Similarly, Keeler and Small (1977) uses a supply curve with hypercongestion

to develop a long-run model of highway pricing and investment. A handbook chapter

titled “Hypercongestion”, Small and Chu (2003), explains that the standard “engi-

neering relationship” has a backward-bending region known as hypercongestion, and

then presents models with this feature. Most recently, Hall (forthcoming) uses a

hypercongestion model to show how highway pricing can generate a Pareto improve-

ment when agents are homogeneous, even before redistributing toll revenues.

Our paper is germane to a growing empirical literature on the economic costs of traf-

fic congestion. Couture et al. (forthcoming) develops an econometric methodology

for estimating city-level supply curves for trip travel, and constructs travel speed

indices for large U.S. cities. Akbar and Duranton (2017) uses travel surveys and

other data from Bogotá, Colombia to estimate the deadweight loss of traffic conges-

tion. Adler et al. (2017) examines the effects of public transit strikes in Rome on

arterial road congestion and concludes that hypercongestion, while rare, accounts for

approximately 30 percent of congestion-related welfare losses.1

1Farther afield, there are also a number of studies by economists that examine the effect of
building highways on traffic congestion, suburbanization, and other outcomes (see, e.g. Baum-
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2 Conceptual Framework

Panel A of Figure 1 comes from the Highway Capacity Manual, the standard reference

text in transportation engineering published by the Transportation Research Board,

a division of the U.S. National Research Council (Transportation Research Board,

2016). The figure claims to show a supply curve for travel. With few vehicles on

the road, travel is unconstrained, and average speeds are about 70 mph. Travel

continues unconstrained at low demand levels, and then speeds slowly decrease until

flow reaches a maximum capacity of about 2,000 vehicles per lane per hour. At

these high demand levels, speeds are slower, and the “price” of travel (time spent)

is higher.

What is surprising, however, is that the curve then appears to bend backward. The

manual explains that further increases in travel demand generate “flow breakdown”,

causing severe decreases in speed as well as decreases in freeway capacity, with flow

rates falling well below the observed maximum. Transportation engineers are taught

that this backward-bending supply curve is one of the “basic relationships” in traffic.

The manual attributes these low-speed, low-flow observations to “oversatuated flow”

arising from excess demand.

We have a simple alternative explanation. Without question there are periods in

which the capacity of a road system decreases. But we point out that supply shocks

provide an important alternative explanation for these low-speed, low-flow observa-

tions. Construction, lane closures, accidents, disabled vehicles, weather, and other

supply shocks represent a “shift” in the supply curve, rather than a movement along

the curve. Speed and flow are determined simultaneously through the interaction

of demand and supply. Our argument is that because both demand and supply are

shifting, data like the scatterplot above should be interpreted as a locus of possible

equilibria, rather than as a supply curve.

Snow, 2007; Duranton and Turner, 2011). Another strand of the economics literature on traffic
congestion considers “bottleneck” models in which drivers face a tradeoff between time delays and
when to leave for a trip (Vickrey, 1969; Small, 1982; Arnott et al., 1990, 1994). Mun (1999), in
particular, considers a bottleneck model with hypercongestion.
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Figure 1: Travel Supply Curves?

Panel A: Hypercongestion?

Note: Reprinted from Highway Capacity Manual, 2016, “Relationships Among Basic 
Parameters”
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Panel B of Figure 1 plots data on delays (the inverse of speed) and traffic flows using

observations from our study location when the bottleneck is in effect. The basic

pattern is very similar to Panel A; traffic delays tend to increase with traffic flow.

However, there are also low-speed, low-flow observations which make the supply

curve appear to bend backward. In the sections that follow, we show that these

observations are the result of supply shocks. Using standard econometrics, and

in particular, two stage least squares (2SLS) regressions, we empirically separate

these “shifts” in the supply curve from movements along the curve. Our instrument

is a demand shifter — a variable correlated with demand but not with supply —

which allows us to hold supply factors fixed while tracing out the causal relationship

between travel demand and freeway capacity.

Before proceeding, we note two important caveats. First, our study focuses on free-

ways, not arterial street networks. Freeways are a vital component of the road

network, accounting for the majority of vehicle miles traveled (Lomax et al., 2018).

Indeed, all of the transportation engineering papers that we cite above focus on free-

ways. Freeway geometry, however, differs fundamentally from arterial road geometry

because freeways lack intersections with conflicting cross traffic. Our results do not

speak to whether hypercongestion occurs on a dense street network with conflicting

directions of traffic. Second, our setting is a standard bottleneck in which multiple

lanes feed into a lesser number of lanes. In more esoteric settings, a queue from a

bottleneck on one route may spill over onto a different route that does not traverse

the bottleneck, creating a “triggerneck” (Vickrey, 1969). Our results do not apply

to triggernecks.
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3 Empirical Application

3.1 Caldecott Tunnel

Our empirical application examines westbound traffic along California State Route

24 (SR-24) at the Caldecott Tunnel. SR-24 connects suburban Contra Costa County,

to the east, with the urban cities of Oakland and San Francisco, to the west. This

location is a classic bottleneck, with the number of lanes decreasing as traffic ap-

proaches the tunnel. During the study period the tunnel featured two reversible

lanes that operated westbound in the morning and eastbound in the afternoon and

evening. We focus on weekday afternoons and evenings from 2005 to 2010, a pe-

riod and set of hours during which the Caldecott Tunnel was operated such that

westbound vehicles had to merge from four lanes to two as they approached the

tunnel.2

Figure 2 shows the study location. Approximately 3,000 feet before the tunnel the

number of lanes merges from four down to two. This is the key feature of our study

location and the place where the vehicle queue typically begins. The figure also

shows using small circles the location of 30 “loop detectors”, our primary source of

data on both traffic flows and average vehicle speed.3 We observe a set of two loop

2Rather than a single wide tunnel, the Caldecott consists of multiple “bores”, each with two
lanes carrying traffic in a single direction. Although the tunnel was expanded to four bores (eight
total lanes) in 2013, we study the period from 2005 to 2010 when the tunnel still had only three
bores and construction had not yet begun on the fourth bore. During the period we study, the
middle bore was operated westward during morning hours as commuters drive toward Oakland
and San Francisco, and eastward during afternoon and evening hours as commuters drive toward
suburban Contra Costa County. We focus on weekday afternoons because this is when the middle
bore was operated eastward. The middle bore also operated eastward during some weekend hours.
However, we do not have reliable documentation of these hours, so our analysis focuses on weekdays.
Afternoon westbound traffic is lighter than eastbound traffic, but with only a single bore open in
that direction, the bottleneck was more than sufficient to generate significant traffic delays. Finally,
we do not use the eastbound morning bottleneck in our analysis because it features traffic merging
from multiple directions, making it impossible to measure queue length, which we use later as a
proxy for demand.

3Loop detectors are small insulated electric circuits installed in the middle of traffic lane. Loop
detectors measure the rate at which vehicles pass, e.g. vehicles per five-minute period. In addition,
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Figure 2: Traffic Merge Heading into Caldecott Tunnel
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detectors after the merge but before the tunnel (Fish Ranch), as well as a series of

loop detectors upstream of the merge starting with Gateway, and followed by Orinda

West, Camino Pablo West, Camino Pablo East, St. Stephens West, St. Stephens,

and St. Stephens East.4

Before introducing our main empirical models we reproduce the hypercongestion and

capacity drop results from the existing literature using several “naive” regressions.

In our data there is a clear positive relationship between vehicle speed and traffic

flows. For example, when we estimate a time series regression using observations

at Gateway Blvd during weekday daytime hours, we find that a 50% reduction in

speed correlates with a 4% drop in total traffic flow across all lanes (t = 14.8). This

positive correlation between speed and traffic flow is typical of the type of evidence

that has been used in the literature to demonstrate hypercongestion. In the context

of our empirical application, however, this relationship is clearly an artifact of the

loop detectors measure average vehicle speed by sensing how long it takes each vehicle to pass over
the detector. These loop detectors are maintained by the California Department of Transportation
(Caltrans), and data are made publicly available through the Performance Measurement System
(PeMS) at http://pems.dot.ca.gov/. Subsequent to our sample dates, the Gateway Blvd exit was
renamed Wilder Rd.

4For visual clarity the figure does not include freeway exits and entrances. One of the significant
advantages of the study location is that there are relatively few exits and entrances nearby. The
last freeway entrance prior to the bottleneck is approximately 9,000 feet (1.7 miles) west of the
tunnel, near the Orinda West detectors (there are also exits and entrances at Gateway Blvd, but
they did not connect to any roads at the time). While it is possible for drivers to avoid the tunnel
completely by taking the Fish Ranch Rd exit, the drive over the hill is slow and circuitous, and,
regardless, the bottleneck has already been cleared by the time a driver reaches Fish Ranch Rd.
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daily supply shock — reversible lane closures — that simultaneously lowers traffic

flow and decreases speeds. This is a somewhat extreme case, but it illustrates how

a shifting supply curve can easily generate a positive correlation between speed and

traffic flows, causing it to appear as if the supply curve bends backwards.

Moreover, even restricting the sample to include only afternoon and evening hours

when the bottleneck is always present, there is still a pronounced positive cross-

sectional relationship between vehicle speeds and traffic flows. For this next “naive”

regression, we take speed and traffic flow measurements from six lanes – two down-

stream (Fish Ranch) and four upstream (Gateway) of the bottleneck, generating six

observations for each five-minute period. When we then regress traffic flows on speed

while including fixed effects for every five-minute period in the sample (thus isolating

cross-sectional variation), we find that a 50% reduction in speed correlates with a

21% decrease in traffic flows (t = 48.3). This relationship is nearly mechanical —

each of the four lanes upstream of the bottleneck must process fewer vehicles per

minute, at slower speeds, than each of the two lanes downstream of the bottleneck.

These results are not causal relationships, but they highlight the ease with which an

observer might conclude that hypercongestion and the capacity-drop phenomena are

present in our data.

These “naive” regressions also highlight that traffic flows and capacity are not the

same thing. Capacity is the maximum possible traffic flow, so it may differ signifi-

cantly from actual traffic flows during off-peak periods. Accordingly, in the analyses

that follow, we restrict the sample to include only observations from periods in

which a queue has formed. By definition, if there is no queue, then traffic flows have

not reached their maximum capacity, and measurements are limited by insufficient

demand rather than maximum capacity. We refer to this condition as “demand star-

vation” — the bottleneck could process more vehicles were they available. Thus, in

the regression analyses below we compare traffic flows between periods with different

lengths of non-zero queues. We refer to traffic flows during these periods as “ca-

pacity”, and ask whether, consistent with the capacity-drop hypothesis, increases in

travel demand cause capacity to decrease.
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3.2 Summary Statistics

The unit of observation in our data is a five-minute period. The sample includes all

weekday observations during which a queue is present between 4 pm and 7 pm and

June 2005 and June 2010 (Section 3.3 discusses the choice of 4 pm to 7 pm in more

detail). We determine whether or not there is a queue and measure the length of the

queue using the loop detectors upstream of the bottleneck. The first upstream loop

detector, Gateway, is 1,690 feet before the bottleneck, and we observe approximately

equidistant detectors all the way to St. Stephens East, which is 15,690 feet (about

three miles) away from the bottleneck. For each loop detector we determine whether

a queue is present by measuring whether traffic is moving at under 30 miles per hour

(mph).5 Thus, we define a queue as present if the average speed at Gateway is below

30 mph. The length of the queue is then measured using the number of consecutive

upstream detectors for which we observe a delay. For example, if the measured speed

is below 30 mph at the first detector (Gateway), but not at the second (Orinda West),

then we conclude that the queue is 1,690 feet in length. “Broken” queues (e.g. a case

in which traffic moves below 30 mph at Gateway, above 30 mph at Orinda West,

and below 30 mph at Camino Pablo West) are rare in our estimation sample, and

our results are robust to their inclusion or exclusion.

We measure speed and capacity downstream of the bottleneck using the loop detector

at Fish Ranch Road. This loop detector is after traffic has merged from four to two

lanes and cleared the bottleneck, but it is still east of the Caldecott Tunnel.6 We

measure speed upstream of the bottleneck using the loop detector at Gateway.

Appendix Table A1 reports summary statistics for our estimation sample.7 It is

5This threshold is arbitrary, but the results are robust to alternative definitions. In Appendix
Table A4 we use thresholds of 20 mph and 40 mph and find qualitatively similar results.

6In alternative specifications we use a location, Tunnel Road, which is west of the tunnel. How-
ever, the Tunnel Road data are not available prior to 2010, and in late 2010 construction began
on the Caldecott fourth bore, causing unpredictable westbound delays near Tunnel Road over the
next three years. The beginning of construction also coincided with the removal of the Fish Rand
Road detector from service.

7Appendix Table A2 reports summary statistics for the full weekday sample, including periods
with no queue.
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worth making several observations about the summary statistics. First, as expected,

average speed declines significantly at the bottleneck. Downstream of the bottleneck

the average speed is over 40 mph, but upstream the average speed is only 11 mph.

Speed downstream of bottleneck is still below the speed limit of 50 mph because the

road is two lanes, so vehicles are still densely packed, and because the downstream

loop detectors are close enough to the bottleneck that vehicles are still accelerating.

Second, the average measured queue length is about 4,000 feet (0.8 miles), but the

range is very wide, and at times the queue reaches as long as 15,700 feet. This

maximum queue length is very long, about 3 miles, and speaks to the severity of the

bottleneck. Third, there is also wide variation in capacity, ranging from zero to 408

vehicles per five minutes. The low-capacity observations are striking given that these

are all periods with a non-zero queue, and, we argue, are due primarily to supply

shocks (e.g. lane closures from accidents).8

3.3 Estimation Sample

Avoiding observations with demand starvation is a key statistical challenge — it is

impossible to measure a bottleneck’s capacity if it has not reached capacity. A simple

strategy is to condition the estimation sample on the presence of a queue, regardless

of time of day. This sample selection criterion, however, can introduce subtle but

meaningful bias into an analysis that leverages exogenous variation in demand.

Consider periods of low demand. These periods typically have no queues, and if

a queue is present it tends to be short. But if demand is low, why does a queue

form at all? One possibility is a negative supply shock, such as an accident or poor

weather. When conditioning on a queue existing, negative supply shocks will thus be

more common during periods of low demand than during periods of high demand, as

8Observations with zero vehicles in a five-minute period account for less than 0.3% of observations
in our main estimation sample. While there are valid reasons to observe zero vehicles, it is also
possible that these values are measurement errors that the PeMS data-quality algorithms failed to
catch. In Appendix Table A4 we verify that dropping these zero-vehicle observations has no impact
on our estimates.
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supply shocks are necessary for the formation of queues during periods of low demand.

This happens even if supply shocks occur with equal frequency across all periods.

The sample selection criterion itself can thus generate a positive relationship between

capacity and queue length (our indicator of demand), even when both demand shocks

and supply shocks are exogenous.

To mitigate this bias we focus on periods when demand should be sufficient to gen-

erate a queue even in the absence of a negative supply shock. Appendix Figure A1

plots the share of weekdays that a queue is present at each time of day. Visual

inspection suggests that we focus on the period from 4 pm to 7 pm, which comprises

our baseline estimation sample. To further narrow our sample, in some specifications

we focus on times of day when there is at least a 75% chance of a queue (4:30 pm

to 6:15 pm) and days of week with the highest frequency of early evening queues

(Wednesday, Thursday, and Friday).9

In our most restrictive samples we further limit the sample to include only days

predicted to be high demand using a machine-learning model. Specifically, we pre-

dict whether there is a continuous queue from 4:30 pm to 6:15 pm as a function of

month-of-sample indicators, year-by-day-of-week indicators, calendar-month-by-day-

of-week indicators, and third-order polynomials in hourly inflows (well upstream of

the bottleneck) for each hour from 12 pm to 4 pm. In total we have 105 predic-

tors.

Given the large number of predictors, overfitting is a serious concern.10 We thus

estimate our regression using LASSO, which penalizes the model for each additional

non-zero coefficient that it fits. The LASSO estimates non-zero coefficients for 17

predictors, the most important of which is, unsurprisingly, inflows at 4 pm.

Figure 3 presents a visual depiction of our empirical strategy using data from our

9At 5 pm, there is a 92% chance of observing a queue on a Wednesday, Thursday, or Friday. In
comparison, there is only a 32% chance of a queue at 5 pm on Mondays, and a 76% chance of a
queue at 5 pm on Tuesdays.

10With a sufficiently rich set of predictors, the regression could identify all days with continuous
queues from 4:30 pm to 6:15 pm and drop all other days. This strategy risks including some days
on which demand is relatively low but supply shocks occur.
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Figure 3: Queue Length and Freeway Capacity
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baseline estimation sample. The solid line plots average queue length (for non-zero

queues) by time-of-day from 4 pm to 7 pm. The sharp increase in queue length in

the early evening and the subsequent decrease later strongly suggest that demand

varies with time-of-day. The solid line is thus visual evidence of a strong “first-stage”

relationship between queue length and time-of-day. The dashed line plots average

capacity (traffic flows) by time-of-day (again conditional on a non-zero queue). Its

flat profile is evidence of no “reduced-form” relationship between capacity and time-

of-day. Taken together the two lines suggest that increases in traffic demand are

not accompanied by decreases capacity, calling into question the hypercongestion

hypothesis.

3.4 Main Regression Estimates

Table 1 reports our main results. We show estimates and standard errors from four

two stage least squares (2SLS) regressions of the following form,

capacityt = α + β · queue lengtht + εt. (1)
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The dependent variable in all regressions is capacity, measured downstream of the

bottleneck in vehicles per five minutes. The independent variable of interest is the

queue length, measured in thousands of feet. The coefficient of interest is β, which is

the change in capacity associated with a one-unit increase in queue length. Motivated

by Figure 3, we instrument for queue length using a third-order polynomial in time-

of-day. Time-of-day is highly predictive of travel demand and the instrument F -

statistics from the first-stage regression are large across the four columns — 61,

71, 87, and 23, respectively — indicating that we do not have a weak instruments

problem.

We consider four different specifications with increasingly stringent criteria for se-

lecting the sample. The main sample in Column (1) includes all five-minute periods

on weekdays with a non-zero queue between 4 pm and 7 pm and June 2005 and June

2010. In Column (2) we restrict the sample to focus on Wednesdays through Fridays

between 4:30 pm and 6:15 pm. We then further restrict the sample in Column (3)

to include only days on which our LASSO model predicts a queue that persists from

4:30 pm to 6:15 pm with greater than 95% probability. Finally, in Column (4) we

restrict the sample to summer months only, when traffic is least likely to be affected

by adverse weather and lighting conditions.

The 2SLS procedure is equivalent to first regressing queue length on a third-order

polynomial in time-of-day and then using the fitted values from that first-stage rather

than queue length itself as the independent variable. Thus, the 2SLS regression is

estimated using the predictable time-of-day variation in queue length rather than

idiosyncratic day-to-day variation. This is desirable because the predictable time-

of-day variation in queue length is mostly driven by differences in travel demand,

while the day-to-day variation is also affected by construction delays, accidents, and

other supply shocks.11 The only supply shock evident to us that might correlate with

11An alternative to this instrumental variables strategy would be to exclude observations affected
by supply shocks. This ends up being impractical, however, because not all supply shocks are ob-
served. The California Department of Transportation’s Performance Measurement System (PeMS)
tracks incidents reported by the California Highway Patrol including accidents and vehicle break-
downs. These data provide an accurate record of major accidents, but many smaller incidents are
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time-of-day is lighting conditions. To check the sensitivity of our results to lighting

conditions or inclement we restrict the sample to summer months only in the last

column. In these months sunset generally occurs after 8 pm, and total monthly

precipitation never exceeds 0.1 inches.12

Across specifications, there is no evidence of hypercongestion. If hypercongestion

were present, we would expect the estimates of β to be negative, with increased

demand leading to a decrease in capacity. Instead, all four estimates of β are positive.

In the specification in Column (1), each additional 1,000 feet of queue is associated

with a 6.1 vehicle per five minute increase in capacity. This coefficient is small

compared to mean capacity (350), but strongly statistically significant. Column (2)

focuses on periods when demand is likely to be sufficient to generate a queue. The

coefficient estimate drops to 2.7 and remains highly significant (but still modest in

comparison to mean capacity). Further restricting the sample to only include periods

when our LASSO model predicts a queue or during summer months — Columns (3)

and (4) — reduces the coefficient estimates to 1.7 and 2.3 and eliminates statistical

significance. These estimates are precise enough to rule out capacity drops of more

than 0.3% from each additional 1,000 feet of queue.

3.5 Additional Specifications and Robustness Checks

In the online appendix we present results from several alternative specifications and

robustness checks. First, when we estimate these regressions using least squares,

rather than 2SLS, the estimates are much smaller, close to zero, and not statistically

different from zero. Appendix Table A3 reports these results. This pattern is not

unreported. In addition, the PeMS incident data report the date of the incident, but not the exact
time, making this less relevant for our high-frequency analysis. Moreover, there are lane closures,
adverse weather conditions, and other types of supply shocks that are not recorded in PeMS.

12The median sunset from June to August at our location occurs at 8:26 pm, and the earliest
sunset occurs around 7:38 pm. Furthermore, the hill through which the Caldecott Tunnel bores
has a peak of 1,400 feet, which is at least 500 feet higher than the summit of SR-24. Thus drivers
never experience sunlight shining directly in their eyes, as the sun gets blocked by the hill at least
90 minutes prior to sunset.
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surprising given that queue length is driven by both demand and supply shocks.

Next we check whether large outliers, in either the positive or negative direction,

can explain our results. We are specifically concerned about outliers in the negative

direction, as these may represent accidents; if accidents occur disproportionately

around 4 pm or 7 pm, when queues are shorter, they could bias our 2SLS estimates.

To test whether outliers drive our results we estimate least absolute values (LAV)

regressions instead of least squares regressions. LAV regressions estimate the con-

ditional median of the dependent variable, whereas OLS estimates the conditional

mean. Median regressions are, by definition, insensitive to outliers. Appendix Table

A5 reports estimates from two conditional quantile instrumental variables regressions

(analogous to 2SLS) in Columns (1) and (2) and two LAV regressions in Columns

(3) and (4) (analogous to OLS). In all cases the coefficient estimates are close to

zero and statistically insignificant, implying that additional demand has no negative

effect on capacity.

In summary there is no evidence of hypercongestion in any specification. To the

contrary, longer queues are associated with slightly higher capacity. This could be

because the longer queue ensures that there is always another driver to fill small gaps

during the merge, or because drivers exert more effort to merge quickly after waiting

in a long queue, or perhaps even a composition effect in which the type of drivers

who approach the tunnel at 6 pm are drivers who merge more quickly. Regardless of

the mechanism, these regression estimates provide a striking lack of evidence of any

hypercongestion.

4 Policy Implications

Thus, across specifications we find no evidence that capacity decreases during periods

of high demand. This absence of evidence of hypercongestion calls into question

long-standing conventional wisdom in the transportation engineering literature. In

this section, we argue that this finding also has important policy implications. In
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particular, we use a stylized simulation model to show how the presence (or lack) of

hypercongestion affects the marginal damages from driving.

Traffic congestion is a negative externality (Pigou, 1920; Vickrey, 1963, 1969; New-

bery, 1990). That is, when a motorist drives on a congested road, she decreases the

average speed of all drivers on the road. Since drivers do not internalize the delays

they impose on others, the efficient “Pigouvian” tax would tax drivers an amount

equal to the value of the marginal delay they impose on other drivers.

We parameterize a stylized simulation model using data from the Caldecott Tunnel.

Our objective is to describe traffic, queuing, and marginal damages of traffic conges-

tion for a typical weekday afternoon and evening. As in the empirical analysis, we

consider five-minute periods. We take travel demand as fixed and exogenous, and we

use traffic inflows measured on a representative day well upstream of the bottleneck

at the Orinda West loop detector.13 The model determines queue lengths and delays

for all drivers based on the maximum capacity of the bottleneck. For the simula-

tion without hypercongestion, we set a maximum capacity of 352.2 vehicles per five

minutes. This value calibrates the model so that the late afternoon queue starts

around 3 pm, the maximum average queue length over a one-hour period reaches

approximately 930 vehicles, and the queue dissipates around 7 pm. These features

are consistent with the observed data for our representative day.

We then calculate marginal damages by introducing an additional 10 vehicles during

a given hour of the day.14 We calculate total delay (in minutes) both with and without

this small perturbation, so the difference gives us marginal damages in minutes. For

the simulation, we repeat this exercise for 4 pm, 5 pm, and 6 pm, and then calculate

the average marginal damages in minutes. It is a large number. For example, each

additional vehicle introduced at 5 pm increases delays for other vehicles by a total

13We choose the representative day to be as close as possible to the sample averages on three
dimensions: fraction of time that a queue was present; average length of queue (when present);
and average inflow of vehicles. This procedure selects February 7, 2006. However, our qualitative
conclusions hold for any day on which there are nontrivial, but not interminable, queues.

1410 vehicles corresponds to less than 10 seconds of traffic flow during normal conditions. We get
similar results (per vehicle) if we introduce 100 vehicles, or just one vehicle.
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of 149 minutes.

To simulate hypercongestion we rely on the literature that has tended to find a

“capacity drop” of approximately 10% during periods of high demand (see the list

of studies in the introduction as well as those summarized by Hall (forthcoming)).

In particular, we assume that capacity during each hour is approximately 366.3

multiplied by 1 − (queue/9, 000), where queue is measured in number of vehicles.

This formulation implies that capacity drops linearly in the size of the queue. The

maximum queue size that the model, so parameterized, generates over a one-hour

period is about 1,000 vehicles, which reduces the capacity to 366.3 * (0.89) = 326

vehicles per five minutes. The “intercept” of approximately 366.3 generates similar

average queue length as a model with a capacity of 352.2 and no capacity drop (our

baseline model).15 The comparison of the two models thus addresses the question

of how introducing hypercongestion affects marginal damages while holding other

features of the model approximately fixed.

Table 2 summarizes the results. In the scenario described above, in which the maxi-

mum capacity drop reaches just above 10% with hypercongestion, marginal damages

without hypercongestion are 53% smaller than marginal damages with hypercon-

gestion.16 In a scenario in which the capacity drop reaches 15% with hypercon-

gestion — a value that several transportation engineering studies have found —

marginal damages without hypercongestion are 67% smaller than marginal damages

with hypercongestion. That is, marginal damages are only about one-third as large.

These stylized simulations could be refined further. For example, one could con-

15To equate average queue length over the day, the intercept must be 366.3. If we instead wish
to equate maximum queue length over a one-hour period, the intercept must be 367.6, and if we
wish to equate queue length at 5 pm, the intercept must be 359.9. All of these parameterizations
generate qualitatively similar conclusions, however; in all three cases the marginal damages without
hypercongestion are half as large or less as marginal damages calculated under hypercongestion.

16Inserting additional vehicles at 4 pm instead of 5 pm increases the share of marginal damages
generated by hypercongestion from 53% to 64%. Inserting additional vehicles at 6 pm instead
of 5 pm reduces the share of marginal damages generated by hypercongestion from 53% to 42%.
Inserting additional vehicles earlier in the queue increases the total number of vehicles affected (i.e.
the total number of vehicles that follow the marginal vehicle), and inserting them later in the queue
decreases the total number of vehicles affected.
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sider whether drivers at the tail end of the queue might in the long run change their

departure times, which could modestly reduce damages.17 The simulation never-

theless illustrates that welfare impacts depend strongly on wehther hypercongestion

exists.

5 Conclusion

This paper revisits the idea of hypercongestion. When we naively examine aver-

age speeds and traffic flows we find evidence consistent with a large literature on

hypercongestion. But once we use standard econometric techniques to disentan-

gle demand and supply, this backward-bending supply curve disappears. Across a

variety of specifications we find no evidence of hypercongestion.

How can this be? To anyone who has been stuck in heavy traffic, it certainly feels

as if the capacity of the roadway is being restricted in these moments. We suspect,

however, that this feeling is largely about speed rather than capacity. There is no

question that as more vehicles crowd onto the road, speed decreases. But speed and

capacity are not identical. Speed is readily apparent to drivers, but capacity requires

careful measurement.

In addition, on freeways the feeling of being trapped in heavy traffic usually occurs

in a queue, waiting to pass a bottleneck. By definition the capacity per lane when

approaching a bottleneck must drop, as the number of lanes drops at the bottleneck.

Nevertheless, we find that the capacity of the bottleneck itself — the rate at which

vehicles pass through the bottleneck — does not drop with the length of the queue. In

short, no matter how much travel demand increases, the number of vehicles passing

through the bottleneck does not decrease.

17With optimal tolling the difference in marginal damages would presumably narrow since, by
definition, there would rarely be any congestion and thus no capacity drop. The optimal tolling
scenario is of limited policy relevance, however, since optimal tolling — or even suboptimal tolling
— is rare in the real world.
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Our findings imply that congestion taxes should be much lower than implied by

hypercongestion models and that tolling or other demand management strategies,

such as ramp meters, are unlikely to increase the capacity of the freeway system.

Nevertheless, congestion taxes should not be zero. To the contrary, our simula-

tion estimates show that, even without hypercongestion, the marginal damages from

traffic congestion can be very large. Starting from zero — the level at which most

roadways are currently taxed — leaves considerable headroom for increases.
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Table 1: The Effect of Travel Demand on Freeway Capacity, 2SLS

(1) (2) (3) (4)
VARIABLES Capacity Capacity Capacity Capacity

Queue length (1000s of feet) 6.051*** 2.665*** 1.212 2.253
(0.712) (0.714) (0.675) (1.201)

Observations 11,594 5,213 2,936 732
Dependent variable mean 349.7 353.5 357.1 359.4
Days 411 251 137 34
Days of week Weekdays Wed - Fri Wed - Fri Wed - Fri
Time of day 4 - 7pm 4:30 - 6:15pm 4:30 - 6:15pm 4:30 - 6:15pm
Require that queue predicted No No Yes Yes
Months All All All Jun - Aug

Notes: This table reports estimates and standard errors from four separate regres-
sions, all estimated using two stage least squares (2SLS) with a third-order polynomial
in time-of-day as the instrumental variables. The dependent variable in all regressions is
freeway capacity, measured in vehicles per five minutes downstream of the bottleneck at Fish
Ranch Road. The sample includes five-minute periods between June 2005 and June 2010
during which there is a queue. “Queue predicted” implies that the LASSO model predicted
greater than 95% probability of a continuous queue from 4:30 to 6:15 pm. Queue length is
measured in thousands of feet. Standard errors are clustered by day.
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Table 2: Simulation Model Results

Marginal damages Marginal damages Percent
w/ hypercongestion w/o hypercongestion reduction

Baseline model
w/10% capacity drop 315 mins 149 mins 53%

Alternative model
w/15% capacity drop 449 mins 149 mins 67%

Notes: This table reports the results from our stylized simulation model of the
Caldecott Tunnel. The first and second columns report the marginal damages
in minutes imposed by an additional vehicle during weekday peak hours. In the
first column the capacity of the bottleneck is assumed to be fixed and constant,
whereas in the second column the capacity is assumed to drop by up to 10%
or 15% due to hypercongestion. Finally, the last column reports the percent
reduction in damages without hypercongestion. See the text for details.
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Online Appendix

Figure A1: Queue Presence by Time of Day
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Table A3: The Effect of Travel Demand on Capacity, Least Squares

(1) (2) (3) (4)
VARIABLES Capacity Capacity Capacity Capacity

Queue length (1000s of feet) -0.435 -0.696 -0.203 0.351
(0.411) (0.374) (0.282) (0.432)

Observations 11,594 5,213 2,936 732
Dependent variable mean 349.7 353.5 357.1 359.4
Days 411 251 137 34
Days of week Weekdays Wed - Fri Wed - Fri Wed - Fri
Time of day 4 - 7pm 4:30 - 6:15pm 4:30 - 6:15pm 4:30 - 6:15pm
Require that queue predicted No No Yes Yes
Months All All All Jun - Aug

Notes: This table reports estimates and standard errors from four separate least squares
regressions. The dependent variable in all regressions is freeway capacity, measured in
vehicles per five minutes downstream of the bottleneck at Fish Ranch Road. The sample
includes five-minute periods between June 2005 and June 2010 during which there is a queue.
“Queue predicted” implies that the LASSO model predicted greater than 95% probability of
a continuous queue from 4:30 to 6:15 pm. Queue length is measured in thousands of feet.
Standard errors are clustered by day.
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Online Appendix

Table A5: The Effect of Travel Demand on Capacity, Median Regression

(1) (2) (3) (4)
VARIABLES Capacity Capacity Capacity Capacity

Queue length (1000s of feet) 0.691 0.952 -0.162 -0.324
(0.736) (0.681) (0.267) (0.249)

Observations 5,213 2,936 5,213 2,936
Dependent variable mean 353.5 357.1 353.5 357.1
Days 251 137 251 137
Model Median IV Median IV Median Reg Median Reg
Require that queue predicted No Yes No Yes

Notes: This table reports estimates and standard errors from four separate median
regressions, estimated using least absolute values (Median Reg) or conditional quantile
instrumental variables (Median IV) with a third-order polynomial in time-of-day as the
instrumental variables. The dependent variable in all regressions is freeway capacity,
measured in vehicles per five minutes downstream of the bottleneck at Fish Ranch Road.
The sample includes five-minute periods between 4:30 pm and 6:15 pm, Wednesday
and Friday, and June 2005 and June 2010 during which there is a queue (identical to
Columns (2) in Tables 1 and A3), with additional restrictions in Columns (2) and (4)
(which are analogous to Columns (3) in Tables 1 and A3)). Queue length is measured
in thousands of feet. Standard errors are clustered by day.
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