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1 Introduction

In the last few years, the United States has become more polarized than ever. A recent survey

conducted by The Pew Research Center indicates that Republicans and Democrats are further

apart ideologically than at any point since 1994 (see Figure (1)).

Figure 1: Political Polarization in the American Public (2014, Pew Research Center)

Traditional theories in economics and political science typically model disagreement as aris-

ing from one of two sources: (i) di�erences in preferences and (ii) informational frictions. In the

�rst case, agents may disagree on the optimal level of a given policy because they bene�t di�er-

ently from it. This happens when their income or wealth levels are di�erent (such as in the case of

redistributive policies) or when they have di�erent preferences over public goods (e.g. defense vs

education or health-care, etc.). In the case of informational frictions, there may exist an optimal

action, but society may not know exactly what it is. Examples are the need for environmen-

tal policy, mandatory vaccination, restrictions on certain groups of immigrants, unconventional

monetary policy, or simply choosing one political candidate over another. Individuals may learn

about the desirability of the policy by acquiring information, but to the extent that they are ex-

posed to biased sources of information, their beliefs may di�er at the time in which decisions

must be taken.

There is a large literature trying to explain how slanted news and media bias may a�ect vot-

ers’ opinions by generating misinformation and exacerbating polarization (see Della Vigna and

Kaplan, 2007 or Martin and Yurukoglu, 2015). While this literature has been mostly focused on

traditional media, such as newspapers, radio, and cable TV—broadly covered under the umbrella

of ‘broadcasting’—recent interest has shifted towards social media. There are several reasons for

this shift. First, because individuals are increasingly obtaining information from social media
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networks. According to a 2016 study by the Pew Research Center and the John S. and James L.

Knight Foundation, 62% of adults get their news from social media (a sharp increase from the 49%

observed in 2012).
1

Among these, two-thirds of Facebook users (66%) get news on the site, nearly

six-in-ten Twitter users (59%) get news on Twitter, and seven-in-ten Reddit users get news on

that platform.

Second, the technology of communication in social media is signi�cantly di�erent. In the

world of broadcasting, agents are mostly consumers of information. There is a small number

of news outlets that reach a large (and relatively passive) audience. In the world of Web 2.0, or

‘social media,’ individuals are not only consuming information, but they are also producing it.

This technological change is less well understood. A key aspect of social media communication

is that one given message can reach a large audience almost immediately. Another important

change is that it is much more di�cult for individuals to back out the reliability of a piece of

information, as they observe a distilled signal from a friend in their network without necessarily

knowing its source.

This is relevant when coupled with another phenomena that became prevalent particularly

around 2016 presidential election: the massive spread of fake news (also referred to as disinfor-

mation campaigns, cyber propaganda, cognitive hacking, and information warfare) through the

internet. As de�ned by Gu, Kropotov, and Yarochkin (2016), ‘Fake news is the promotion and

propagation of news articles via social media. These articles are promoted in such a way that

they appear to be spread by other users, as opposed to being paid-for advertising. The news sto-

ries distributed are designed to in�uence or manipulate users’ opinions on a certain topic towards

certain objectives.’ While the concept of propaganda is not new, social media apparently has made

the spreading of ideas faster and more scalable, making it potentially easier for propaganda ma-

terial to reach a wider set of people. Relative to more traditional ways of spreading propaganda,

fake news are extremely di�cult to detect posing a challenge for social media users, moderators,

and governmental agencies trying control their dissemination. A December 2016 Pew Research

Center study found that ‘about two-in-three U.S. adults (64%) say fabricated news stories cause a

great deal of confusion about the basic facts of current issues and events.’ Moreover, 23% admit

to having shared a made-up news story (knowingly or not) on social media. Understanding how

fake news spread and a�ect opinions in a networked environment is at the core of our work.

With the dispersion of news through social media, and more generally the internet, and given

1
The distribution of social media users is similar across education levels, race, party a�liation and age. About

22% of 18-29 year olds are social media users, 34% are aged 30-49, 26% are aged 50-64, and 19% 65 and older.
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that a growing proportion of individuals, politicians, and media outlets are relying more inten-

sively on this networked environment to get information and to spread their world-views, it is

natural to ask whether and to what extent misinformation and polarization might be exacerbated

by social media communication.

In this context, we study a dynamic model of opinion formation in which individuals who

are connected through a social network have imperfect information about the true state of the

world, denoted by θ. For instance, the true state of the world can be interpreted as the relative

quality of two candidates competing for o�ce, the optimality of a speci�c government policy or

regulation, the degree of government intervention in speci�c markets, etc.

Individuals can obtain information about the true state of the world from unbiased sources

external to the network, like scienti�c studies, unbiased news media, reports from non-partisan

research centers such as the Congressional Budget O�ce, etc. This is modeled as an informative

and unbiased private signal received by each agent. Due to limited observability of the structure

of the network and the probability distribution of signals observed by others, individuals are as-

sumed to be incapable of learning in a fully Bayesian way. Moreover, we assume that individuals

are unable to process all the available information and for that they can also rely on the informa-

tion from their social neighbors (i.e. individuals connected to them through the network) who are

potentially exposed to other sources. In this sense, individuals in our network update their beliefs

as a convex combination of the Bayesian posterior belief conditioned on their private signals and

the opinion of their neighbors, as per the update rule proposed by Jadbabaie, Molavi, Sandroni,

and Tahbaz-Salehi (2012) (JMST (2012) henceforth).

There are three types of agents in this society: Sophisticated agents, unsophisticated agents

and Internet bots. Their characterization is to some extent interrelated because it depends not

only on signals observed, but also on their network connectivities. In terms of signals received,

both sophisticated and unsophisticated agents receive informative private signals every period

of time. Internet bots, on the other hand, rely only on biased information and produce a stream

of fake news. In terms of connectivities, Internet bots do not relay in the information of others

(they are sinks in a Markov chain sense), but have a positive mass of followers. More speci�cally,

bots’ followers are exclusively composed by unsophisticated agents. These agents are unable to

identify the bot as a source of misinformation, implying that they cannot detect and disregard

fake news, which are incorporated when updating beliefs (therefore the adjective unsophisticated).

The opinions generated from the exchange of information forms an inhomogeneous Markov

process which may never lead to consensus among sophisticated agents since they are exposed
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to unsophisticated agents. In such environment, it can be shown that society’s beliefs fail to

converge. Moreover, under some conditions, the belief pro�le can �uctuate in an ergodic fashion

leading to misinformation and polarization cycles.

The structure of the graph representing the social media network and the degree of in�u-

ence of unsophisticated agents shape the dynamics of opinion and the degree of misinformation

and polarization in the long-run. More speci�cally, long-run misinformation and polarization

depends on three factors: behavioral assumptions (e.g. the updating rule), communication tech-

nology (e.g. the speed at which network connections are active and creation of fake news), and

the network topology (e.g. the degree of clustering, the share of unsophisticated agents on the

population, how central they are, and the ability of bots to �ood the network with fake news).

Because a theoretical characterization of the relationship between the topology of the network

and the degrees of misinformation and polarization is not trivial, we create a large set of random

graphs with di�erent behavioral assumptions, communication technologies and topologies. We

then quantify how fake news, the degrees of centrality, and in�uence a�ect misinformation (e.g.

how far agents beliefs are from the true state of the world) and long-run polarization, de�ned as

in Esteban and Ray (1994).

We �nd that misinformation and polarization have an inverted u-shape relationship. This

is to be expected: when individuals are able to e�ectively aggregate information and learn the

true state of the world, polarization vanishes. At the other extreme, there are situations where

there is no polarization because most individuals in the network converge to the wrong value

of θ. This involves maximal misinformation with no polarization. Finally, there are cases in

which individuals are on average correct but distributed symmetrically around the true state of

the world, with large mass at the extremes of the belief distribution. Here, there are intermediate

levels of misinformation and extreme polarization. Even though this implies somewhat better

aggregation of information, it may lead to ine�cient gridlock due to inaction. We �nd that when

unsophisticated agents have a large number of followers in social media, misinformation rises

but polarization is hardly a�ected. On the other hand, the clustering coe�cient (i.e. a network

statistics that says the extent through which friends of friends are also direct friends) is important

for polarization (it actually reduces it) but irrelevant for misinformation. When unsophisticated

agents are relatively more in�uential (because they manage to a�ect the opinions of in�uential

followers), information is more e�ciently aggregated. However, to the extent that agents do not

fully learn the true state of the world, there is a signi�cant amount of networks in which opinions

become extreme. These are networks in which a bot with views at one extreme targets relatively
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more in�uential unsophisticated agents than the bot with opposing views. This makes the bot

more more e�cient at spreading fake-news, since the speed at which each given piece of fake-

news travels through the network rises, pulling opinions towards an extreme. We show that,

for speci�c network topologies, signi�cant levels of misinformation and polarization are possible

in network in which as little as 10% of agents believe fake news. This is relevant, because it

shows that the network externality e�ects are quantitatively important. In other words, only a

relevant small number of unsophisticated agents is able to generate signi�cant misinformation

and polarization in our simulated networks.

Related Literature Our paper is related to a growing number of articles studying social learn-

ing with bounded rational agents and the spread of misinformation in networks.

The strand of literature focusing on social learning with bounded rational agents assumes

that individuals use simple heuristic rules to update beliefs, like taking repeated averages of ob-

served opinions. Examples are DeGroot (1974), Ellison and Fundenberg (1993, 1995), Bala and

Goyal (1998,2001), De Marzo, Vayanos and Zwiebel (2003) and Golub and Jackson (2010). In most

of these environments, under standard assumptions about the connectivity of the network and

the bounded prominence of groups in growing societies, the dynamics of the system reaches an

equilibrium and consensus emerges. In this sense, long-run polarization or misinformation would

only arise in such models if those assumptions are relaxed. Common to most of these models is

the fact that there is no new �ow of information entering into the network. Agents are typically

assumed to be bounded rational (naive) and do not observe private signals from external sources

(and hence do not use standard Bayesian update rules). JMST (2012) extends these environments

to allow for a constant arrival of new information over time in an environment in which agents

also learn from their neighbors in a naive way. This feature allows agents to e�ciently aggre-

gate information even when some standard assumptions that ensure consensus are relaxed. Our

paper uses an update rule based on JMST (2012) for gents, but introduces internet bots which

break the connectivity of the network by basing their information exclusively on biased sources

and disregard the information provided by others. The latter is a feature that we borrow from

the literature on misinformation. More particularly, from the work by Acemoglu, Ozdaglar and

ParandehGheibi (2010) (AOP henceforth) and Acemoglu, Como, Fagnani, and Ozdaglar (2013)

(ACFO henceforth)

AOP (2010) focuses on understanding the conditions under which agents fail to reach consen-

sus or reach wrong consensus. In their model, agents exchange opinion in a naive way conditional
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on being pair-wise matched. Crucial to the emergence of misinformation in is the presence of

forceful agents whose roles are to exert disproportional in�uence over regular agents and force

them to conform with their opinions. ACFO (2013) consider the same naive learning model with

random meetings dictated by a Poisson process, but allow for the existence of stubborn agents

instead. These agents never update their opinions (they are sinks in a Markov chain sense) but

in�uence other agents. Therefore, the information exchange dynamics never reaches a steady

state and opinions �uctuate in a stochastic fashion. Both papers abstract from Bayesian learning.

In our paper, we consider simultaneously the possibility that regular agents learn from unbiased

sources while being exposed to fake news spread by Internet bots. Our learning rule follows

JMST (2012) in the sense that agents learn from private signals in a a fully Bayesian fashion but

also incorporate friends’ opinions naively. The �nal belief is basically a convex combination of

the Bayesian posterior and friends’ posteriors. Moreover, we add the feature that agents meet

randomly in the spirit of of AOP (2010) and ACFO (2013). Therefore, the main extensions with

respect to JMST (2012) are i) the presence of Internet bots (sinks) seeded with biased information

that spread fake news, which becomes the main source of misinformation in the system and ii)

the fact that we allow for random meetings (inhomogeneous Markov chain). On the other hand,

the main extension relative to ACFO (2013) is that we introduce Bayesian learning features. Our

Internet bots can be understood as stubborn agents endowed with the capacity to countervail the

�ow of informative private signals that reaches regular agents every period of time. We call this

feature �ooding capacity and it basically consists in allowing these bots to spread a larger stream

of fake news (signals) as other agents in the network.
2

Hence, our paper contributes to the social

learning and spread of misinformation literatures by studying misinformation in an environment

with informative signals.

Our main contribution relative to the existing literature, however, is that we simulate a large

set of complex social networks and quantify the relative importance of behavioral assumptions,

technological characteristics, and network topology on long-run polarization and misinforma-

tion. To the best of our knowledge, this is the �rst paper to quantify the relative importance of

network characteristics on long-run misinformation and polarization.

Finally, there is a growing empirical literature analyzing the e�ects of social media in opinion

formation and voting behavior (Halberstam and Knight, 2016). Because individual opinions are

unobservable from real network data, these papers typically use indirect measures of ideology to

2
Our model considers a Bernoulli rather than a Poisson process and restrict attention to a particular class of

beliefs (Beta distributions) though.
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back-out characteristics of the network structure (such as homophily) potentially biasing their

impact. By creating a large number arti�cial networks, we can directly measure how homophily

and other network characteristics a�ect opinion. Finally, our paper complements the literature

on the role of biased media such as Campante and Hojman (2013), Gentzkow and Shapiro (2006,

2010, and 2011), and Flaxman et al. (2013) and the e�ects of social media on political polarization,

such as Boxell et al (2017), Barbera (2016), and Weber at al (2013).

Basic notation: The notation and terminology introduced here is mostly employed in the ap-

pendix of this work but also serves as an important guide for the next sections. All vectors are

viewed as column vectors, unless stated to the contrarily. Given a vector v ∈ Rn
, we denote by vi

its i-th entry. When vi ≥ 0 for all entries, we write v ≥ 0. To avoid potential burden of notation,

the summation

∑
v without index represents the sum of all entries of vector v. Moreover, we

de�ne v> as the transpose of the vector v and for that, the inner-product of two vectors x, y ∈ Rn

is denoted by x>y. Similarly for the product of conforming vectors and matrices. We denote by

1 the vector with all entries equal to 1. Finally, a vector v is said to be a stochastic vector when

v ≥ 0 and

∑
i vi = 1. In terms of matrices, a square matrix M is said to be row stochastic when

each row of M is a stochastic vector. A matrix M is said to be a square matrix of size n when the

number of rows and columns is n. The identity matrix of size n is denoted by In. For any matrix

M , we write Mij or [M ]ij to denote the matrix entry in the i-th row and j-th column. The sym-

bols Mi∗ and [M ]i∗ are used to denote the i-th row of matrix M , while M∗j and [M ]∗j denote the

j-th column of the matrix. Finally, the transpose of a matrix M is denoted by M>
and represents

a new matrix whose rows are the columns of the original matrix M , i.e.

[
M>]

ij
= [M ]ji.

2 Baseline Model

Agents, social bots and information structure The economy is composed by a �nite number

of agents i ∈ N = {1, 2, . . . , n} who interact in a social network over time for a large number

T of periods (which need not be �nite), date at which a one-dimensional policy needs to be

determined. Individuals have imperfect information about θ ∈ Θ = [0, 1], the optimal value of

the policy. This parameter can be interpreted as the degree of government intervention in private

markets (e.g. environmental control, enforcement of property rights, restrictions on the use of

public land, gun control, etc.), as optimal �scal or monetary policy (e.g. the in�ation rate, tax rates

on capital or labor income, tari�s, etc.), or as the best response to an unexpected shock (e.g. the
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size of a bailout during a �nancial crisis, the response to a national security threat, the amount

of aid given to a region that su�ered a natural disaster, etc.). In period 0 individuals have a prior

about θ and update their beliefs from private signals obtained up to period T , where the policy

needs to be implemented.
3

Agents obtain information from: (i) an unbiased source, (ii) other agents connected to them

in a social network, and (iii) a bot spreading fake news. There are two types of bots, L− bot and

R− bot with opposing agendas. Their objective is to manipulate opinions by sending extremely

biased signals (e.g. close to 0 or 1). We assume that a majority of the population is sophisticated,

meaning that they can identify bots and disregard fake news in their update process. There is

small proportion µu of individuals, on the other hand, that can be in�uenced by fake news. We

refer to them as unsophisticated. A key assumption is that individuals cannot back out the sources

of information of other agents. As a result, sophisticated agents may be in�uenced by fake news

indirectly through their social media friends.

To the extent that policy is chosen democratically (via direct voting or through representa-

tives), the implemented policy may di�er from the optimal one when bots are present. If a large

number of voters have homogeneous beliefs but are misinformed (that is, have beliefs far away

from θ), implemented policies will be ine�cient. If, in addition, voters are polarized, then sub-

optimal delays in the response to shocks may arise. These result from gridlock or stalemate among

policymakers representing individuals with opposing views. The welfare losses arising from in-

formational frictions can be captured by a social welfare function S(MI, P ), which is decreasing

in the aggregate degree of misinformation MI and the societal level of polarization in beliefs,

denoted by P . Both MI and P depend critically on the distribution of voters’ opinions. We will

�rst describe how opinions evolve over time and then de�ne how statistics obtained from this

distribution can be used to compute misinformation and polarization, and hence quantify welfare

losses associated to them.

Each agent starts with a prior belief θi,0 assumed to follow a Beta distribution,

θi,0 ∼ Be
(
αi,0, βi,0

)
.

This distribution or world-view is characterized by initial parameters αi,0 > 0 and βi,0 > 0.

Note that individuals agree upon the parameter space Θ and the functional form of the probability

distribution, but have di�erent world-views as they disagree on αi,0 and βi,0. Given prior beliefs,

3
In most of the analysis we will focus on the limiting case T →∞ to allow for convergence.
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we de�ne the initial opinion of agent i yi,0 about the true state of the world as her best guess of θ

given the available information,
4

yi,0 = E[θ|Σ0] =
αi,0

αi,0 + βi,0

where Σ0 = {αi,0, βi,0} denotes the information set available at time 0.

Example 1. In the Figure below, we depict the world-views of two individuals (distributions) and

their associated opinions (vertical lines). The world-view that is skewed to the right is represented

by the distribution Be(α = 2, β = 8). The one skewed to the left is represented by the distribution

Be(α = 8, β = 2). The opinions are, respectively, 0.2 and 0.8.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

f
(θ

)

We formalize the information obtained from unbiased sources as a draw si,t from a Bernoulli

distribution centered around the true state of the world θ,

si,t ∼ Bernoulli(θ).

Through this channel, a majority of the population may learn θ in the limit. However, agents

update their world-views and opinions based not only on si,t, but also through the in�uence of

individuals connected to them in a social network, which may introduce misinformation. Social

media thus generates an externality on the information aggregation process. To the extent that

the social media externality is important, the true state of the world may not be uncovered by

enough individuals and ine�cient policies may be enacted or gridlock may arise. The network

structure, and in particular the location of unsophisticated agents in it, will be important to de-

4
Note that E[θ|Σ0] is the Bayesian estimator of θ that minimizes the mean squared error given a Beta distribution.
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termine the quality of information and the degree of polarization in society. We formalize the

social network structure next.

Social Network The connectivity among agents in the network at each point in time t is de-

scribed by a directed graphGt = (N, gt), where gt is a real-valued n × n adjacency matrix. Each

regular element [gt]ij in the directed-graph represents the connection between agents i and j at

time t. More precisely, [gt]ij = 1 if i is paying attention to j (i.e. receiving information from) at

time t, and 0 otherwise. Since the graph is directed, it is possible that some agents pay attention to

others who are not necessarily paying attention to them, i.e. [gt]ij 6= [gt]ji. The out-neighborhood

of any agent i at any time t represents the set of agents that i is receiving information from, and

is denoted by N out
i,t = {j | [gt]ij = 1}. Similarly, the in-neighborhood of any agent i at any time

t, denoted by N in
i,t = {j | [gt]ji = 1}, represents the set of agents that are receiving information

from i (e.g. i’s audience or followers). We de�ne a directed path in Gt from agent i to agent j

as a sequence of agents starting with i and ending with j such that each agent is a neighbour of

the next agent in the sequence. We say that a social network is strongly connected if there exists

a directed path from each agent to any other agent.

In the spirit of AOP (2010) and ACFO (2012), we allow the connectivity of the network to

change stochastically over time. This structure captures rational inattention, incapacity of pro-

cessing all information, or impossibility to pay attention to all individuals in the agent’s social

clique. More speci�cally, for all t ≥ 1, we associate a clock to every directed link of the form (i,j)

in the initial adjacency matrix g0 to determine whether the link is activated or not at time t. The

ticking of all clocks at any time is dictated by i.i.d. samples from a Bernoulli Distribution with

�xed and common parameter ρ ∈ (0, 1], meaning that if the (i,j)-clock ticks at time t (realization

1 in the Bernoulli draw), then agent i receives information from agent j. Hence, the parameter ρ

measures the speed of communication in the network. The Bernoulli draws are represented by the

n× n matrix ct, with regular element [ct]ij ∈ {0, 1}. Thus, the adjacency matrix of the network

evolves stochastically across time according to the equation

gt = g0 ◦ ct, (1)

where the initial structure of the network, represented by the initial adjacency matrix g0, remains

unchanged.
5

5
The notation ◦ denotes the Hadamard Product, or equivalently, the element-wise multiplication of the matrices.
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Example 2 (Bernoulli Clock). Panel (2a) represents the original network and its adjacency matrix,

whereas Panel (2b) depicts a realization such that agent 1 does not pay attention to agents 2 and 4

in period 1. Agents 2 and 3, on the other hand, pay attention to agent 1 in both periods.

1

2 3

4

g0 =


0 1 0 1

1 0 0 0

1 0 0 0

0 0 0 0


(a) Original Network at t = 0

1

2 3

4

g1 =


0 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0


(b) Potential Network at t = 1

Figure 2: Bernoulli Clock and Network Dynamics

Evolution of Beliefs Before the beginning of each period, both sophisticated and unsophisti-

cated agents receive information from individuals in their out-neighbourhood, a set determined

by the realization of the clock in period t and the initial network. All agents share their opinions

and precisions, summarized by the shape parameters αi,t and βi,t. This representation aims at

capturing communication exchanges through social media feeds. At the beginning of every pe-

riod t, a signal pro�le is realized and an unbiased signal is privately observed by every regular

agent, whereas bots observe a biased signal (see details below). In this way, part of the information

obtained by unsophisticated agents from biased sources will be transmitted through the network

in the following period, as it is incorporated during the belief updating process and shared with

other agents in the network that naively internalize them.

We now explain the update rule of regular agents (sophisticated and unsophisticated) and

bots. The full characterization of the update rules can be found in Appendix A.

Internet bots (Fake News source)

We assume that there are two types of Internet bots, a left wing bot (or L-bot) and right wing

bot (or R-bot), both with extreme views. Internet bot i produces a stream of fake news κspi,t, for

p ∈ {L,R}, where sLi,t = 0 for type L-bot and sRi,t = 1 for type R-bot for every t. The parameter
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κ ∈ N+
measures the ability of bots to spread more than one fake-news article per period, which

can be interpreted as their �ooding capacity (i.e. how fast they can produce fake news compared

to the regular �ow of informative signals received by agents). Bots transmit the whole stream of

information to agents paying attention to them. Hence, a value of κ > 1 gives them more de-facto

weight in the updating rule of unsophisticated agents, emphasizing their degree of in�uence on

the network. We can model the bot update as

αpi,t+1 = αpi,t + κspi,t (2)

βpi,t+1 = βpi,t + κ− κspi,t. (3)

Regular agents: sophisticated and unsophisticated

Sophisticated and unsophisticated agents share the same update rule. The only thing that

distinguishes these agents is the composition of their neighborhood: while sophisticated agents

only pay attention to regular agents, unsophisticated agents devote some share of their atten-

tion to bots and for that will be exposed to fake news. After observing the signal from unbiased

sources, agents compute their Bayesian posteriors conditional on the observed signals. We as-

sume that parameters αi,t+1 and βi,t+1 are convex combinations between their Bayesian posterior

parameters and the weighted average of the neighbors’ parameters. In mathematical terms we

have that

αi,t+1 = (1− ωi,t)[αi,t + si,t+1] + ωi,t
∑
j

[ĝt]ij αj,t (4)

βi,t+1 = (1− ωi,t)[βi,t + 1− si,t+1] + ωi,t
∑
j

[ĝ]ij βj,t, (5)

where ωi,t = ω when

∑
j [gt]ij > 0, and ωi,t = 0 otherwise.

Note that this rule assumes that agents exchange information (i.e. αj,t and βj,t) before pro-

cessing new signals si,t+1.

A regular agent’s full attention span is split between processing information from unbiased

sources, (1−ωi,t), and that provided by their friends in the network, ωi,t (e.g. reading a Facebook

or Twitter feed). If no friends are found in the neighborhood of agent i,
∑

j [ĝt]ij = 0, then

the agent attaches weight 1 to the unbiased signal, behaving like a standard Bayesian agent.

Conversely, if at least one friend is found, this agent uses a common weight ω ∈ (0, 1). The term

[ĝt]ij =
[gt]ij
|Nout
i,t |

represents the weight given to the information received from her out-neighbor
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j. As ωi,t approaches 1, the agent only incorporates information from social media, making her

update process closer to a DeGrootian in which individuals are purely conformists. In general, ω

can be interpreted as the degree of in�uence of social media friends.

Finally, note we are assuming that the posterior distribution determining world-views of

agents will also be a Beta distribution with parametersαi,t+1 and βi,t+1. Hence, an agent’s opinion

regarding the true state of the world at t can be computed as

yi,t =
αi,t

αi,t + βi,t
.

Our heuristic rules resembles the one in JMST (2012), but there are three important distinc-

tions. First, their adjacency matrix is �xed over time (homogeneous Markov chain), whereas

ours is stochastic (inhomogeneous Markov chain), an element we borrowed mainly from ACFO

(2013). Second, we restrict attention to a speci�c conjugated family (Beta-Bernoulli) and assume

that individuals exchange shape parameters αi,t and βi,t that characterize this distribution. So

the heuristic rule involves updating two real valued parameters, whereas JMST (2012)’s heuris-

tic rule involves a convex combination of the whole distribution function. Given their rule, the

posterior distribution may not belong to the same family as the prior distribution, as the con-

vex combination of two Beta distributions is not a Beta distribution. That is not the case in our

environment, as the posterior will also belong to the Beta distribution family. Finally, we are

considering the in�uence of fake news spread by bots and this feature is the main source of mis-

information. Therefore, to the extent that bots reach unsophisticated agents who are in�uential,

their presence will a�ect the existence and persistence of misinformation and polarization over

time. This is due to the fact that they will consistently communicate fake news (biased signals)

to some unsophisticated agents pushing them to extremes of the belief spectrum.
6

3 Misinformation, Polarization, and Network Structure

An agent is misinformed when her beliefs are not close enough to the true state of the world θ.

We can de�ne the degree of ‘misinformation’ in society as the average distance between opinions

6
We believe, even though we have not proved it, that the choice of modeling bots as agents in the network instead

of simply biased signals reaching a subset of agents comes without any costs to our �ndings. Moreover, the decision

of modeling bots as agents is similar to the idea of fanatics or stubborn agents in the spread of misinformation

literature. Thus, the potential bene�t of modeling in this way is the possibility of making direct comparisons to the

current results in the literature. Finally, as pointed out by Gu, Kropotov, and Yarochkin (2016), fake news articles

sometimes are promoted in such a way that they appear to be spread by other users. In this sense, modeling bots as

agents seems to be a fair natural starting point. We get back to the resulting technical challenges later.
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and the true state of the world θ.

De�nition 1 (Misinformation). The degree of misinformation is given by

MIt =
1

n

n∑
i=1

(
yi,t − θ

)2

. (6)

Given an arbitrarily small value ε > 0, the proportion of misinformed agents in the population is

given by

#MIt =
1

n

n∑
i=1

1{|yi,t−θ|≥ε}. (7)

The degree of misinformation grows when a large number of agents are far from the true

state of the world. It is important to note that this is not measuring polarization. Moreover, it

is not even capturing the variance of opinions, as the average opinion in a given society may

be di�erent from θ. For example, consider a network in which all agents believe that yi,t =

1 in period t. Then the variance of opinions is null (there is no polarization either), yet the

degree of misinformation MIt will be large (at its maximum theoretical value). This variable

measures the ‘intensive margin’ of misinformation (e.g. how far society is from the truth). The

‘extensive margin’ is represented by #MIt which considers the percentage of individuals who

are misinformed. In eq. (7), 1{·} represents an indicator function that returns 1 whenever the

condition within braces is met and 0 otherwise. These two de�nitions are related, as #MIt = 0

implies no misinformation.

We de�ne a ‘wise society’ as one where there is no misinformation in the limit. Equivalently,

when the maximum distance between the limiting opinion of agents and θ is arbitrarily small, as

stated below.

De�nition 2 (Wise society). We say that a society is wise, for a �xed ε > 0, if

lim
t→∞

P

(
max
i≤n
|yi,t − θ| ≥ ε

)
= 0.

We base our notion of polarization on the seminal work by Esteban and Ray (1994), adapted

to the context of this environment. At each point in time, we partition the [0, 1] interval into

K ≤ n segments. Each segment represents signi�cantly-sized groups of individuals with similar

opinions. We let the share of agents in each group k ∈ {1, ..., K} be denoted by πk,t, with∑
k πk,t = 1.

Esteban and Ray (1994)’s polarization measure aggregates both ‘identi�cation’ and ‘alien-

ation’ across agents in the network. Identi�cation between agents captures a sense of ideological

15



alignment: an individual feels a greater sense of identi�cation if a large number of agents in so-

ciety shares his or her opinion about the true state of the world. In this sense, identi�cation of

a citizen at any point in time is an increasing function of the share of individuals with a similar

opinion. The concept of identi�cation captures the fact that intra-group opinion homogeneity

accentuates polarization. On the other hand, an individual feels alienated from other citizens

if their opinions diverge. The concept of alienation captures the fact that inter-group opinion

heterogeneity |ỹk,t − ỹl,t| ampli�es polarization. Mathematically, we have the following repre-

sentation.

De�nition 3 (Polarization). Polarization Pt aggregates the degrees of ‘identi�cation’ and ‘alien-

ation’ across groups at each point in time.

Pt =
K∑
k=1

K∑
l=1

π1+ς
k,t πl,t |ỹk,t − ỹl,t| (8)

where ς ∈ [0, 1.6] and ỹk,t is the average opinion of agents in group k and πk,t is the share of

agents in group k at time t.

Clearly, a society with no polarization may be very misinformed, as described above. On the

other hand, we may observe a society in which there is a high degree of polarization but where

opinions are centered around θ, so their degree of misinformation may be relatively small. In the

latter case, individuals may be deadlocked on a policy choice despite relatively small di�erences in

opinion. In terms of welfare, both variables capture di�erent dimensions of ine�ciency. Because

of that, we are interested in characterizing both, misinformation and polarization in the limit,

MI = plim
t→T

MIt and P̄ = plim
t→T

Pt.

We can think of long-run misinformation and polarization as functions of: (i) the updating

process (clock speed ρ and in�uence of friends ω), (ii) the initial network structure g0, and (iii)

the degree of in�uence of bots (�ooding parameter κ, share µu and location of unsophisticated

agents on the network). More formally,

MI = MI(ρ, ω, µu, κ, g0) and P̄ = P(ρ, ω, µu, κ, g0).

We aim at characterizing the properties of the functions P and MI. We will �rst show theoretical

results for the limiting case T →∞ and then those obtained via computer simulations.
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Non-in�uential Bots The following two results show conditions under which misinformation

and polarization vanish in the limit. The �rst one is analogous to Sandroni et al (2012), whereas

the second one extends it to a network with dynamic link formation as in Acemoglu et al (2010).

Proposition 1. If the networkG0 is strongly connected, the directed links are activated every period

(e.g., ρ = 1) and bots exert no in�uence, then the society is wise (i.e., all agents eventually learn the

true θ). As a consequence, both polarization and misinformation converge in probability to zero.

When the network is strongly connected all opinions and signals eventually travel through the

network allowing agents to perfectly aggregate information. Since bots exert no in�uence (either

because there are no bots or because all agents are sophisticated), individuals share their private

signals who are jointly informative and eventually reach consensus (e.g. there is no polarization)

uncovering the true state of the world, θ.

The result in Proposition (1) is in line with the �ndings in JMST (2012) despite the di�erence

in heuristic rules being used. Proposition (2) shows that the assumption of a �xed listening matrix

can be relaxed. In other words, even whenGt is not constant, the society is wise and polarization

vanishes in the long run in strongly connected networks.

Proposition 2. If the network G0 is strongly connected, bots exert no in�uence, then even when

the edges are not activated every period (i.e. ρ ∈ (0, 1)) society is wise. As a consequence, both

polarization and misinformation converge in probability to zero.

In�uential Bots In�uential bots cause misinformation by spreading fake news. This does not,

however, necessarily imply that the society will exhibit polarization. The following example de-

picts two networks with three agents each: a sophisticated one (node 3) and two unsophisticated

ones (nodes 1 and 2) who are in�uenced by only one bot—L-bot in panel (3a) and R-bot in the

panel (3b)—.

L

21

3

(a) Society in�uenced by L-bot

R

21

3

(b) Society in�uenced by R-bot

Figure 3: Two societies with internet bots
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Polarization in both societies converges to zero in the long-run. However, neither society is

wise. This illustrates that the in�uence of bots may generate misinformation in the long run,

preventing agents from uncovering θ, but does not necessarily create polarization. This insight

is formalized in Proposition (3).

Proposition 3. If a society is wise, then it experiences no social polarization in the long run. The

converse is not true.

More generally, when the relative in�uence of one type of bot is signi�cantly larger than the

other, it is possible for a society to reach consensus (i.e. experience no polarization of opinions) to

a value of θ that is incorrect. This can happen when there is a su�cient amount of unsophisticated

agents or when these unsophisticated agents, even if few, reach a large part of the network (i.e.

when they are themselves in�uential). It is also necessary that one of the bots can reach a larger

number of unsophisticated agents than the other; the example presented in Figure (3) is extreme

in that one bot is in�uential whereas the other one is not. But, as we will see in Section (5), a

society may converge to the wrong θ under less extreme assumptions. In order for a society to

be polarized, individuals need to be su�ciently exposed to bots with opposing views.

L 1 2 R

(a) Society with both L-bot and R-bot
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(b) Cycles

Figure 4: Two societies with internet bots

Consider the social network of two agents depicted in Figure (4a), in which both bot-types

are present: agent 1 is in�uenced by the L-bot whereas agent 2 is in�uenced by the R-bot. Even

though unsophisticated agents 1 and 2 receive unbiased signals and communicate with each other,

this society exhibits polarization in the long run. This happens because bots subject to di�erent

biases are in�uential. The degree of misinformation may be lower than in the previous example
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(as opinions end up being averaged out and potentially closer to the true state of the world), but to

the extent policy is chosen by majority voting may still lead to inaction and hence ine�ciencies.

A noticeable characteristic of the evolution of Pt over time, depicted in Panel (4b) of Figure

(4), is that rather than settling at a constant positive value, it �uctuates in the interval [0.2,0.4].

The example illustrates that polarization cycles are possible in this environment.
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Figure 5: Di�erent polarization levels

Finally, we want to point out that whether misinformation and polarization increase, decrease,

or �uctuate over time depend importantly on the topology of the network, the number and degree

of in�uence of bots, the frequency of meetings between individuals (e.g. the clock) and the degree

of rationality of agents. Figure (5) depicts the behavior ofPt over time for a series of larger random

networks (e.g. there are 100 nodes, an arbitrary number of bots, and di�erent rationality levels).

The next section is devoted to uncovering what drives these di�erent dynamics.

4 Numerical Simulation

One of the biggest challenges when using network analysis is to ascertain analytical closed forms

and tractability for our objects of interest, namely MI and P. The combinatorial nature of social

networks that exhibit a high degree of heterogeneity makes them very complex objects, imposing

a natural challenge for theoretical analysis. In our work, limiting properties can be characterized

only when we assume strong connectivity and absence of internet bots’ in�uence. As we drop

these assumptions, we observe that di�erent networks might experience di�erent limiting mis-

information and polarization levels, even if departing from the very same belief distribution.
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To understand such di�erences, we resort to numerical methods where a large number M

of random networks is generated and limiting properties of the distribution of beliefs, namely

long run average misinformation and polarization, are computed through simulations. In Section

(4.1) we describe the algorithm used to generate the initial network g0 from a combination of

the Barabasi-Albert and the Erdos-Renyi random graph models. In Section (4.2) we describe the

simulation exercise in which key parameters determining the initial network, the location of

unsophisticated agents in it, the communication technology, the in�uence of bots, and update

process are drawn to generate a synthetic sample of social media networks. In each network

j ∈ {1, ...,M}, we simulate the evolution of beliefs and compute the limiting misinformation

and polarization measures, MIj and P j . In Section (5) we characterize how MI and P depend

on key statistics of the social network topology and parameters determining the learning process

by estimating the conditional expectation of MIj and P j conditional on the parameters.

4.1 Network Algorithm

Here we describe the algorithm used to create and populate each initial networkG0
j in our sample,

and de�ne a series of statistics which characterize its topology.

Generating g0: Social networks have two important characteristics. First, there is reciprocity

in the sense that the exchange of information among individuals is bi-directional. Second, some

agents are more in�uential than others (that is, they have a larger in-neighborhood). Barabasi

and Albert’s (1999) random graph model has the preferential attachment property, generating a

few nodes in the network which are very popular relative to others. This is illustrated in Figure

(6a) for a network with n = 21 nodes. Unfortunately, it exhibits no reciprocity. Their algorithm

better captures characteristics of broadcasting, where newspapers, tv, or radio stations (e.g. nodes

1, 3, and 8) send a signal received by a large—and passive—audience. The Erdos-Renyi’s random

graph model, on the other hand, allows for reciprocity but presumes that all agents have similar

degrees of in�uence, as can be seen in Figure (6b).

Because we want our exercise to incorporate both characteristics, the initial network is con-

structed as the union of these two random graph models. More speci�cally, we �rst create a

random graph with n nodes using the Barabasi-Albert algorithm. We then create another one

(also with n nodes) following Erdos-Renyi’s algorithm. Finally, we combine them into a “BAUER

network,” which is simply the union of these two graphs. The resulting network is illustrated in
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Figure (6c). We can see that information �ows in both directions (e.g. there is reciprocity) and

that some agents are more in�uential than others (e.g. there is preferential attachment).
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(b) Erdos-Renyi
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(c) BAUER

Figure 6: Random graph models

There are �ve key parameters a�ecting the topology of g0 in the BAUER model, de�ned by

the set Ω = {m,α, a, p, n}. Three of them are associated to the construction of the Barabasi-

Albert network, namely, the number of meetings of incoming nodes m, the power of preferential

attachment α, and the attractiveness of nodes with no adjacent edges a. The last two de�ne

P [i] = k[i]α + a, the probability that an old node i is chosen to be linked to a new node at each

iteration of the network formation algorithm of Barabasi and Albert. The parameter p represents

the probability of drawing an edge between two arbitrary nodes in the Erdos-Renyi algorithm.

Finally, n denotes the number of nodes which determines the size of the network. When creating

our dataset, we �x n and vary the remaining four parameters.

Populating g0: We populate each network with two types of agents, sophisticated and unso-

phisticated, and de�ne which unsophisticated agent is in�uenced by the L-bot and theR-bot. We

do this in two steps. First, using a uniform distribution we randomly select a number u = µun

of agents. This de�nes the location of unsophisticated agents in g0. Note that from an ex-ante

perspective, every node in the network has the same probability of being populated by an unso-

phisticated agent. Second, we assign a probability 0.5 to each unsophisticated agent to receive

signals from L-bot (exclusively). The remaining unsophisticated agents are assumed to receive

signals from the R-bot. This ensures that, on average, bots’ messages reach the same number of

unsophisticated agents.
7

This does not imply, however, that bots will have the same degree of

7
We experimented allowing some unsophisticated agents to follow both bots at the same time but it proved to be

too complicated compared to the little gain of resulting insights.
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in�uence, as the audience of unsophisticated agents may di�er depending on their location in the

network. The remaining individuals, n− u, are assigned the update rule in eq. ((5)).

4.2 Generating the dataset

We �x the number of agents (or nodes) to n = 37 and the true state of the world at θ = 0.5.

We also �x the initial distribution of beliefs so that the same mass of the total population lies

in the middle point of each one of 7 groups. This rule basically distributes our agents evenly

over the political spectrum [0, 1] such that each of the 7 groups contains exactly
1
7

of the total

mass of agents. Moreover, we set the same variance for each agent world-view to be σ2 = 0.03.

With both opinion and variance, we are able to compute the initial parameter vector (α0 , β0).

8
Given these parameters, we draw and populate a large number M = 8, 248 of initial random

networks g0 following the BAUER model described in Section (4.1). To generate heterogeneity,

we consider values for m (number of meetings) in the set {1, .., 5}, the preferential attachment α

in [0.5, 1.5], the attractiveness of nodes with no adjacent edges a ∈ {1, ...4}, and the probability

p ∈ [0.01, 0.1].

Characteristics of g0: Since the process of generating g0 and populating it with unsophisti-

cated agents involves randomness, a given set of parameters Ω may lead to signi�cantly di�erent

network graphs g0. These graphs can be characterized by a series of standard network statistics,

such as diameter, average clustering, and reciprocity. Average values across the M networks are

reported in Table (1), which contrasts them to those observed on real-life social media networks

such as Twitter, Facebook and Google +.

Table 1: Network Topology

Simulation Twitter Facebook Google +

Diameter 6.5 7 6 8

Reciprocity 0.04 0.03

Avg Clustering 0.36 0.57 0.49 0.6

Diameter captures the shortest distance between the two most distant nodes in the network.

The average diameter in our network is 6.5, very much in line with the values observed in real-life

8
In this case, we only need to use the relationships µ = α

α+β and σ2 = αβ
(α+β)2(α+β+1) to fully determine α and

β. Algebraic manipulation yields α = −µ(σ
2+µ2−µ)
σ2 and β = (σ2+µ2−µ)(µ−1)

σ2 .
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networks. Reciprocity is the proportion of all possible pairs (i, j) which are reciprocal (e.g. have

edges between them in both directions), provided there is at least one edge between i and j,

R(g0) =

∑
i

∑
j

(
g0 ◦ g>0

)
ij∑

i

∑
j gij

Our synthetic sample mean of 0.04 is similar to that observed in Twitter (reciprocity cannot be

computed in Facebook and Google + because it is impossible to back out who is following whom).

Average clustering captures the tendency to form circles in which one’s friends are friends with

each other. We use an extension to directed graphs of the clustering coe�cient proposed by

Fagiolo (2007), de�ned as the average, over all nodes i, of the nodes-speci�c clustering coe�cients

cl(g0) =
1

n

∑
i

(
g0 + g>0

)3

ii

2 (Dtot

i (Dtot

i − 1)− 2 (g2
0)ii)

,

where Dtot

i is the total degree, i.e. in-degree plus out-degree, of agent i. Average clustering

across networks is 0.36, somewhat smaller than values observed in real-life networks as seen in

Table (1). Finally, we can also compute the initial homophily of opinions of agents, measured by

an assortativity coe�cient, as in Newman (2003), which takes positive values (maximum 1) if

nodes with similar opinion tend to connect to each other, and negative (minimum−1) otherwise.

In the sample, initial homophily ranges from −0.4 and 0.5, with an average value of −0.03.

Notice though, that the degree of homophily in the long-run is endogenously determined. In an

environment with no bots, for example, all agents converge to the same opinion (in which case

limiting homophily is 1).

In�uence of unsophisticated agents: The amount and location of unsophisticated agents in

g0 are important determinants of limiting MI and P , as it is through them that fake news spread

in the network. If the bot manages to manipulate an unsophisticated agent who is very in�u-

ential (e.g. central), it may be able to e�ectively a�ect the opinion of others. We vary the share

of unsophisticated agents by drawing µu from a uniform distribution in the interval [0.1, 0.4].

The average share on the sample is 0.25 as shown in Table (2) with a maximum percentage of

unsophisticated agents of 40% and a minimum of 10%.
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Table 2: Centrality of unsophisticated agents

Mean Std Dev. Min Max

Share of unsophisticated 0.250 0.100 0.1 0.4

in-Degree 0.12 0.06 0 0.54

out-Degree 0.15 0.05 0.03 0.3

PageRank 0.03 0.01 0.01 0.11

in-Closeness 0.18 0.06 0.01 0.29

out-Closeness 0.22 0.14 0.01 0.56

Betweenness 0.05 0.02 0 0.24

There are several statistics in the literature that can proxy for the degree of in�uence or cen-

trality of an unsophisticated agent. Degree is the simplest centrality measure, which consists

on counting the number of neighbors an agent has. The in-degree is de�ned as the number of

incoming links to a given unsophisticated agent,

Din

i =
1

n− 1

∑
j

[g0]ji .

The out-degree is de�ned analogously. Table (2) reports the average in-Degree and out-Degree

of all unsophisticated agents in the network (regardless of which type of bot in�uences them).

The average in-degree is 0.12. There is a large dispersion across networks, with cases in which

unsophisticated agents are followed by about 54% of agents in the network. Out-degree of these

agents is on average 0.15. A larger value of this measure increases the in�uence of friends in the

network for each given unsophisticated agent, reducing the in�uence of bots.

While this measure of in�uence is intuitive, it is not necessarily the only way in which a bot

can be e�cient at manipulating opinion, and hence a�ecting misinformation and polarization.

There are networks in which unsophisticated agents have very few followers (and hence a low

in-degree) but each of their followers is very in�uential. An alternative measure of centrality

that incorporates these indirect e�ects is Google’s PageRank centrality.
9

PageRank tries to ac-

count not only by quantity (e.g. a node with more incoming links is more in�uential) but also by

quality (a node with a link from a node which is known to be very in�uential is also in�uential).

9
This measure is a variant of eigenvector centrality, also commonly used in network analysis.
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Mathematically, the PageRank centrality PRi of a node i is represented by

PRi = α
∑
j

[g0]ji
Dout

j

PRj +
1− ν
n

,

whereDout

j is the out-degree of node j if such degree is positive and ν is the damping factor.
10

Note that the PageRank of agent i depends on the PageRank of its followers in the recursion above.

Summary statistics for the average PageRank of unsophisticated agents are shown in Table (2).

An alternative measure of centrality is given by closeness centrality. This measure keeps track

of how close a given agent is to each other node in the network. High proximity of the unsophis-

ticated agent to all other agents in the network makes the bot more e�cient in spreading fake

news, as they reach their targeted audience more quickly. To compute closeness, we �rst mea-

sure the mean distance between the unsophisticated agent and every other agent in the network.

De�ne dji as the length of the shortest path from agent j to unsophisticated i in the network

G0.
11 In-closeness centrality is de�ned as the inverse of the mean distance dji across agents to

reach unsophisticated agent i,

C in

i =
n∑
j dji

.

Out-closeness is similarly de�ned. Finally, betweenness centrality measures the frequency at

which a node acts as a bridge along the shortest path between two other nodes. Statistics for

these measures can be found in the last two rows of Table (2).

Table 3: Correlation across centrality measures

in-Degree out-Degree in-Closeness out-Closeness PageRank Betweenness

in-Degree 1

out-Degree 0.54 1

in-Closeness 0.63 0.65 1

out-Closeness 0.43 0.66 0.78 1

PageRank 0.64 −0.005 0.33 0.06 1

Betweenness 0.18 0.004 0.33 0.09 0.41 1

10
The damping factor tries to mitigate two natural limitations of this centrality measure. First, an agent can get

“stuck” at the nodes that have no outgoing links (bots) and, second, nodes with no incoming links are never visited.

The value of ν = 0.85 is standard in the literature and it is the one we will use in the simulations.

11
In many networks sometimes one agent may �nd more than one path to reach the unsophisticated agent). In

such case, the shortest path is the minimum distance among all possible distances.
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It is worth noticing that even though all of these are alternative measures of centrality, they

capture slightly di�erent concepts. An unsophisticated agent is central according to in-degree

when it has a large number of followers, whereas she is central according betweenness if she

is in the information path of many agents. The correlation between these two variables is just

0.18, as seen in Table (3) which reports the correlation coe�cient across centrality measures in

our sample. Moreover, the correlation of betweeness and almost all other centrality measures is

relatively low. Note that even though the relationship between in-degree and PageRank is 64%

and the correlation between in-degree and in-closeness is 63%, PageRank and in-closeness have

a relatively low correlation of 0.33. This illustrates the challenges in �nding a minimum set of

measures to characterize in�uence in a random graph model.

Belief heterogeneity: The variability in the behavioral dimension is given by changes in the

parameter ω, capturing the degree to which agents rely more or less heavily on the opinion of

others. We draw ω from a Uniform distribution on the interval (0.1, 1] with band-with 0.05. The

average value og ω is 0.54, with a standard deviation of 0.29 in our sample. These are reported

in Table (4).

Table 4: Belief heterogeneity and bot in�uence

Mean Std Dev. Min Max

In�uence of friends ω 0.55 0.29 0.10 1

Speed of communication ρ 0.54 0.26 0.10 1

Flooding capacity κ 92 109 1 300

The two parameters capturing communication technology are ρ, which controls the speed at

which links are activated and κ, which determines the ability of bots to �ood the network with

fake news. We draw ρ from a uniform distribution in (0, 1]. Its average value is 0.54. A standard

deviation of 0.29 ensures that there is signi�cant variability in the arti�cial dataset. Note that we

are excluding cases in which nodes are never activated, ρ = 0, as the network would exhibit no

dynamics.

We consider alternative values for the �ooding parameter, κ ∈ {1, 10, 50, 100, 300}. The av-

erage number of signals sent by each bot in our sample is 92, with a minimum of one (which is

the number of signals sent by unsophisticated agents per encounter) and a maximum of 300, indi-
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cating that bots can place fake news 300 times faster than an unbiased source of news per period.

Note that increasing κ is analogous to increasing the number of bots in the model (assuming the

number and location of unsophisticated agents does not change).

4.3 Simulation

We simulate communication in each social media network for a large number of periods (T =

2000) and use the resulting opinions to compute misinformation and polarization. For each net-

work j, we draw a signal sji,t for individual i ∈ N at time t ≤ T from a Bernoulli distribution with

parameter θ = 0.5. We also draw the n×nmatrix ct at each period t from a Bernoulli distribution

with parameter ρj , which determines the evolution of the network structure according to eq. (1).

Together, the signals and the clock determine the evolution of world-views according to eqs. (4)

and (5). With these, for each network j, we compute a time series for opinions yi,t,j for individual

i at period t. Figure (7) displays the distribution of average opinions yj across networks. We

de�ne yj as

yj =
1

500

1

n

∑
t≥1500

n∑
i=1

yi,t,j,

We choose this threshold because simulations converge after about 500 periods to an ergodic set

(most statistics and results are unchanged when using the last 200 periods instead).
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Figure 7: Average opinions

There is a large number of networks in which individuals are on average correct (e.g. close

to θ = 0.5), but there exists dispersion around this value (the standard deviation of yj across

networks is reported in Table (5)). Moreover, there is a non-trivial amount of networks in which

agents’ opinions become extreme implying that bots are successful at manipulating options to-
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wards their own.

Our variables of interest are the long-run degree of misinformation MIj , the share of misin-

formed agents #MIj , and limiting polarization P̄j in each network.

The degree of misinformation is simply,

MIj ≡
1

n

∑
i

(yi,j,T − θ)2 .

where yi,j,T is the opinion of agent i at the last period T = 2000. The average degree of long-run

misinformation across all networks, reported in Table (5), is 0.09, with a standard deviation of 0.07.

The distribution of misinformation across networks is depicted in Figure (8). It is skewed to the

left, indicating that there is a signi�cant amount of networks with low degrees of misinformation.

However, there is some mass around 0.25, which constitutes the theoretical upper bound for this

measure. There are 147 networks in which MIj ∼ 0.25, so individuals are fully misinformed.

Table 5: Simulation results

Mean Std Dev. Min Max

Average opinion yj 0.50 0.28 0 1

Misinformation MIj 0.09 0.07 0.0006 0.25

% Misinformed #MIj 0.97 0.045 0.26 1

Polarization P j 0.11 0.09 0 0.64

Computing the proportion of misinformed individuals is challenging in this environment. The

reason being that there are very few informed individuals at any given point in time. Moreover,

small shocks (e.g. signals from either biased or unbiased sources) can easily move opinions ε

away from the true θ. Instead of simply computing the average percentage of individuals in the

last period (as we did with misinformation), we compute the smallest proportion of misinformed

individuals over an interval [1500, 2000]. Mathematically,

#MIj ≡ max
t
{#MIj,t},

where #Mj,t is calculated from eq. ((6)) assuming ε = 0.00025 (we do not assume ε = 0 to al-

low for computational rounding error). In other words, we restrict attention to an interval in the

long-run and look for the lowest number of individuals who are misinformed in that period (or
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equivalently, the largest percentage of wise agents). Even under this very generous de�nition,

the proportion of misinformed agents is on average 0.97 across simulations, implying that most

individuals in the network have opinions which are ε away from θ = 0.5. In 30% of our networks

all individuals are misinformed, whereas in about 40% of the cases only one or two agents learn

the true θ. The lowest value for #MIj in our sample is 0.26 (i.e. only 26% of agents are misin-

formed). The result is not driven by high values of the �ood parameter or a high proportion of

unsophisticated agents in the network, as #MI ∼ 0.96 when κ = 1 and µu = 0.1. These values

are likely to result from the fact that we are considering small networks (there are only 37 nodes

in them), in which at least 4 agents are unsophisticated, so misinformation is bound to be large

by construction. In addition, we are ignoring cases in which agents are fairly Bayesian, as the

smallest value of ω is 0.1 in the simulations.
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For each network j, and given ς = 0.5, we compute

P j ≡
1

500p̂

∑
t≥1500

Pj,t,

which is normalized by p̂ to belong to the interval [0, 1]. 12
About 98% of our sample exhibits pos-

itive polarization in the long run. Figure (9) depicts the distribution of polarization resulting from

our simulation exercise. There is a signi�cant degree of variability in our sample, even though

the polarization levels are relatively small, with most P̄j observations lying below 0.5 (recall that

maximum polarization has been normalized to 1, yet the maximum polarization level observed

in our sample is just 0.64). The average value of P̄j across networks is 0.11, with a standard

12
With ς = 0.5 the maximum possible level of polarization (theoretically) is p̂ = 0.707. We divide all values of

polarization by this number to normalize the upper bound to 1. This is without loss of generality and aims at easing

interpretation.
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deviation of 0.09. Interestingly, we also observe some mass near 0, indicating that agents reach

quasi-consensus. Unfortunately, most of these cases involves consensus around extreme values

of θ rather than e�cient aggregation of information to the true θ. Figure (10) shows a scatterplot

of misinformation and polarization in networks with a small number of unsophisticated agents

µu = 0.1. We see that there is an inverted U-shape relationship between these variables. Polar-

ization can be low either because individuals learned the true (e.g low misinformation) or because

they converged to the wrong value of θ. There are, however, situations where misinformation is

relatively low but polarization is extremely high.
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Figure 10: Relationship between misinformation and polarization (with 4 unsophisticated agents)

5 Regression Analysis

We are interested in estimating the e�ect of network characteristics on limiting misinformation

and polarization. To assess the quantitative importance of each explanatory variable, we estimate

the coe�cients of an OLS model,

Yj = Xjβ + εj. (9)

where the M × 1 vector Yj denotes either long-run misinformation MIj or polarization Pj

obtained from simulation j ∈ {1 . . .M}, Xj denotes the matrix of network characteristics per

simulation j, and εj is the error term.

5.1 Benchmark case

The set of explanatory variables includes BAUER parameters in Ω, parameters of the heuristic

update rule and the technology of communication (see Table (4)), as well as those characterizing
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the network topology (see Table (1)) and the average centrality of unsophisticated agents (see

Table (2)). In addition, we also consider the relative in�uence of bots. An R-bot may create more

misinformation if it is more e�ective at manipulating in�uential individuals than the L-bot. We

compute ‘relative centrality’ as the absolute value of the di�erence in the centrality measure of

individuals who are in�uenced by bots of di�erent types. For example, in the case of PageRank,

we compute

Relative PageRank = |PageRank(L)− PageRank(R)|.

Other relative measures of centrality are computed analogously.

The results are summarized in Table (6), where we omit the estimated coe�cients on reci-

procity and homophily as they are statistically insigni�cant across regressions models. In the

�rst two columns, variables have been normalized by their sample standard deviation in order

to simplify the interpretation of coe�cients and ease comparison across covariates. Hence, each

estimated coe�cient represents by how many standard deviations (st devs) misinformation or

polarization change when the respective independent variable increases by one standard devia-

tion.

The positive coe�cient on ω implies that as agents place more weight on the opinions of

their social media friends (and less on the unbiased signal), both misinformation (column 1) and

polarization (column 2) rise. This is expected as higher values of this variable increases (indirectly)

the in�uence of bots. The e�ect on polarization is larger, as it rises by 0.14 st devs, whereas

misinformation only rises by 0.08 standard deviations.

The overall e�ect of a higher clock parameter ρ is a priori ambiguous: on the one hand, it is

more likely that a sophisticated agent will incorporate fake news from those paying attention to

the extreme views of bots as the speed of communication rises; on the other hand, a faster �ow of

information allows agents to incorporate unbiased private signals obtained by friends at a faster

rate. Under the current speci�cation, we �nd that misinformation declines with ρ, suggesting

that the e�ect of internalizing a larger number of opinions outweighs the e�ect of higher fake

news exposure. Clearly, this result would change in larger networks or those with a smaller share

of unsophisticated agents in them. The e�ect of the clock on polarization is much stronger, as P̄

declines by 0.15 st devs when ρ rises by one st deviation.

In terms of the network topology, we �nd that larger networks (measured by their diameter)

are associated with higher misinformation and polarization, whereas high clustering is important
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Table 6: Regression results: Benchmark case

Misinformation Polarization Average opinion

(1) (2) (3)

Communication technology

In�uence of friends ω 0.08*** 0.14*** 0.002

(0.009) (0.007) (0.007)

Speed of communication ρ -0.05*** -0.15*** -0.004

(0.008) (0.007) (0.007)

Network Topology

Diameter 0.05*** 0.006 -0.003

(0.01) (0.01) (0.01)

Clustering 0.01 -0.16*** -0.006

(0.02) (0.02) (0.02)

Ω yes yes yes

Bot in�uence

Share of unsophisticated µ 0 + 0

Flooding κ + + 0

in-Degree 0.13*** -0.003

(0.023) (0.018)

PageRank -0.44*** 0.26***

(0.02) (0.02)

in-Closeness -0.10*** -0.70***

(0.02) (0.02)

Betweeness 0.05*** 0.02*

(0.016) (0.013)

out-Degree -0.08*** -0.03

(0.024) (0.019)

Out-Closeness -0.002 0.06***

(0.019) (0.015)

Relative PageRank 0.62*** -0.21*** 31***

(0.017) (0.014) (0.61)

Relative in-Degree -0.05*** 0.09*** 0.22*

(0.016) (0.013) (0.12)

Relative Betweeness -0.10*** 0.02* -6.4***

(0.01) (0.01) (0.24)

Relative in-Closeness 0.14*** -0.24*** 3.8***

(0.013) (0.01) (0.19)

Observations 8,248 8,248 8,248

R-squared 0.39 0.60 0.57

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

for polarization (it actually reduces it) but irrelevant for misinformation. The negative coe�cient

on clustering suggests that the implied higher connectivity reached with higher clustering coun-

tervails the bias reinforcement associated with echo-chambers (Sunstein 2002, 2009). The e�ects

of initial homophily on misinformation and polarization vanish over time, as their coe�cient is

statistically insigni�cant (result omitted from the table).

The coe�cients associated with the parameters Ω are not reported to make the exposition
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of the regression results clearer, but are available upon request. It is worth mentioning that

once centrality measures and network topology statistics are included, most of these parameters

become statistically insigni�cant.
13

The most interesting results are those related to measures of centrality. When unsophisticated

agents have a large number of followers in social media, misinformation rises: the coe�cient of

in-Degree, reported on Table (6), is 0.13 and statistically di�erent from zero. The e�ect on polar-

ization is statistically insigni�cant. Keeping the number of followers constant, we can consider

how unsophisticated agents who are followed by in�uential agents a�ect our variables of inter-

est through the coe�cient of PageRank (see de�nition on Section (4.2)). Interestingly, a higher

PageRank is associated with less misinformation but more polarization. A one st dev increase

in PageRank is associated with a reduction of 0.44 st devs in misinformation and an increase of

0.26 st devs in polarization, both quantitatively more important than in-Degree. This suggests

that when unsophisticated agents are relatively more in�uential (because they manage to a�ect

the opinions of in�uential followers), information is more e�ciently aggregated. However, to

the extent that agents do not fully learn the true θ, there is a signi�cant amount of networks in

which opinions become extreme. This is illustrated in the left panel of Figure (11), which depicts

the distribution of average opinions across networks for PageRank below average. We see that

this is basically a three point distribution (e.g., yj = 0, yj = 0.5, and yj = 1) with small mass in

intermediate values. The right panel of that �gure shows yj for PageRank above average. The

distribution is much more uniform in that case. There is a signi�cantly smaller mass at θ (e.g.

more misinformation) but also at the extremes (indicating less polarization).
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Figure 11: Average opinion for di�erent PageRank

13
Only a and α, determining the preferential attachment (and hence in�uence of any given node), are signi�cant

for polarization. This would suggest that our set of centrality measures may not be su�cient to capture in�uence in

a network.
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It is useful to analyze this coe�cient together with that of Relative PageRank, which is positive

for misinformation and negative for polarization. As unsophisticated agents following the R-bot

become relatively more in�uential (e.g. PageRank(R) rises) they tend to pull opinions towards

1. This is clearly seen in �rst panel in Figure (12) which depicts limiting values of average opinion

for networks in which PageRank(R) > PageRank(L). The distribution is clearly skewed to

the right (analogously, when PageRank(R) < PageRank(L) the distribution is skewed to the

left). In column 3 of Table (6) we present the results of an estimated regression equation similar

to eq. ((9)), in which the dependent variable is average opinions, ȳj , and we consider relative

centrality as the di�erence between unsophisticated agents followingR vs those followingL (nor

in absolute value neither normalized by its standard deviation, so that a higher centrality of R

would be associated with ȳj closer to 1). Interestingly, the only coe�cients which are statistically

signi�cant are those related to relative centrality.
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Figure 12: Average opinion for alternative measures of relative centrality

This phenomenon is also observed when considering relative in-Closeness instead, as evi-

dent from analyzing the right panel of Figure (12). As an R-bot gets relatively closer to the rest of

the network through their in�uence on unsophisticated agents (with high in-Closeness scores),

it becomes more e�cient at spreading fake-news, since the speed at which each given piece of

fake-news travels through the network rises, pulling opinions towards 1. This increases misin-

formation and decreases polarization. The e�ects of relative in-Closeness are much smaller than

those of relative PageRank, as they increase misinformation by 0.64 and 0.14 st devs, respectively.

Interestingly, when in-Closeness increases on average both misinformation and polarization de-

cline. The e�ect on polarization is opposite to that of PageRank (a coe�cient of −0.7 st devs in

the former vs 0.26 st devs in the latter), indicating that higher in-closeness allows for better ag-

gregation of information without having to incur the cost of greater disagreement. This happens
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because higher in-Closeness is associated with smaller distance between each node in the net-

work and that of the unsophisticated agent. A larger average value is then proxying for a more

connected network in which information travels faster. As we have seen from the analysis of ρ, as

speed of communication rises, it is easier for agents to learn the true θ (which implies both lower

misinformation and polarization). The e�ects of Betweenness, out-Degree, and out-Closeness are

quantitatively smaller and in some cases statistically insigni�cant.
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Figure 13: Estimated coe�cient on the indicator I(κ).

Through our simulations, we consider networks in which bots can send multiple fake-news

articles each period (e.g. by allowing κ > 1). We control for this greater ability to spread fake-

news by introducing a set of dummy variables I(κ), one for each κ in the regression equation.

To ease readability, we plot the resulting coe�cients in Figure ((13)). The solid bars represent

the e�ects of κ on misinformation, whereas the dashed pattern their e�ect on polarization (these

variables are not normalized by the standard deviations). As evident from the graph, all coef-

�cients are positive (and signi�cant with p-values lower than 1%. ), indicating that the greater

ability to spread fake news by each bot, keeping everything else constant, results in less infor-

mation aggregation and more variability of opinions in the long run. In addition, note that the

larger e�ects on misinformation are observed for relatively small values of κ, with the e�ects

remaining more or less stable for κ ≥ 50. This suggests decreasing marginal returns to the intro-

duction of fake-news on misinformation levels. In contrast to the �ooding parameter, increases

in the proportion of unsophisticated agents µu do not signi�cantly a�ect misinformation in our

estimation. They do, on the other hand, increase polarization (results omitted).
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5.2 No �ooding: κ = 1

We restrict the �ooding technology of bots such that they can only send one signal each pe-

riod. Because this signi�cantly reduces their ability to spread fake news, average misinformation

declines by 17% (from 0.09 to 0.075) and average polarization is 22% lower (from 0.11 to about

0.08). We re-estimated eq. ((9)) by restricting attention to networks with κ = 1, which lowers

the number of observations from 8,248 to 1,651. The resulting coe�cients for misinformation are

presented in Speci�cation (2) and for polarization in Speci�cation (5) of Table (7). Columns (1)

and (4) replicate estimated coe�cient under the benchmark (e.g. unrestricted) case for reference.

All variables are normalized by their standard deviations, as in the previous section. Note, how-

ever, that the normalizing st devs in the benchmark and restricted cases need not be the same, as

the volatility of some variables (particularly the dependent variables) may change when bots are

constrained.

We have omitted coe�cients on Betweeness, Out-Closeness, and Out-Degree as they are sta-

tistically insigni�cant for the restricted sample. The in�uence of friends, ω is now much more

important in increasing polarization. This is intuitive: if a bot can only spread one fake news per

period, the only way in which this would in�uence opinions is if individuals pay more attention

to it and relatively less attention to unbiased signals. A similar pattern is observed for polariza-

tion. The e�ects of ρ are also larger, on bothMI and P , when bots’ technology of spreading fake

news is slower. Information aggregation becomes more e�cient when the speed of communica-

tion rises, as bots are less likely to clutter signals received by unsophisticated agents.

Relative PageRank, average in-Closeness and relative in-Closeness are all signi�cantly less

important in reducing polarization (their coe�cients are more than halved) when compared to the

benchmark case. This is probably happening because bots are less e�ective into pulling opinions

towards their preferred value when the volume of fake news they are able to broadcast declines.

5.3 Small share of uninformed: µu < 0.1

Figure (14) depicts the distribution of misinformation (top) polarization (bottom) across networks

for two cases: a small share of unsophisticated agents µu < 0.1 (left) and a high share of unso-

phisticated agents µu > 0.1. As expected, there is a larger number of networks in which agents

aggregate information better when µu is relatively low. This can be seen by the fact that the mass

near zero MI and P is higher in the left panels. Despite of this, misinformation is 22% higher

and polarization 35% smaller than in the benchmark case.
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Table 7: Regression results: κ = 1 and µu < 0.1 cases

Misinformation Polarization

Benchmark κ = 1 µu = 0.1 Benchmark κ = 1 µu = 0.1

(1) (2) (3) (4) (5) (6)

Communication technology

In�uence of friends ω 0.08*** 0.14*** 0.04 0.14*** 0.23*** 0.04

-0.01 -0.02 -0.02 -0.01 -0.01 -0.02

Speed of communication ρ -0.05*** -0.06** -0.03 -0.15*** -0.21*** -0.08***

-0.01 -0.02 -0.02 -0.01 -0.01 -0.02

Network Topology

Diameter 0.05*** 0.07* 0.05 0.01 0.09*** 0.05

-0.01 -0.03 -0.03 -0.01 -0.02 -0.03

Clustering 0 -0.04 -0.06 -0.16*** -0.18*** -0.13*

-0.02 -0.05 -0.05 -0.02 -0.04 -0.05

Ω yes yes yes yes yes yes

Bot in�uence

in-Degree 0.13*** 0.09 0.14* 0 -0.03 0.06

-0.02 -0.05 -0.06 -0.02 -0.04 -0.05

PageRank -0.44*** -0.32*** -0.51*** 0.26*** 0.32*** 0.35***

-0.02 -0.05 -0.06 -0.02 -0.03 -0.05

in-Closeness -0.10*** 0.22*** 0.15** -0.70*** -0.21*** -0.83***

-0.02 -0.05 -0.05 -0.02 -0.03 -0.05

Relative PageRank 0.61*** 0.59*** 0.58*** -0.21*** -0.11*** -0.24***

-0.02 -0.04 -0.05 -0.01 -0.03 -0.04

Relative in-Degree -0.04** -0.08* -0.06 0.09*** 0 0.08*

-0.02 -0.04 -0.04 -0.01 -0.03 -0.04

Relative Betweeness -0.10*** -0.03 -0.11** 0.02 0.01 -0.02

-0.01 -0.03 -0.04 -0.01 -0.02 -0.03

Relative in-Closeness 0.15*** 0.20*** 0.40*** -0.23*** -0.09*** -0.44***

-0.01 -0.03 -0.04 -0.01 -0.02 -0.03

Observations 8248 1651 1147 8248 1651 1147

R-squared 0.392 0.338 0.444 0.596 0.677 0.528

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This is potentially driven by the non-trivial number of networks in which misinformation

becomes extreme with opinions converging to either 0 or 1. This is surprising given the smaller

share of uninformed agents. A potential explanation is that when a large proportion of agents

are targeted by bots in a symmetric way (in a relatively small network such as ours), agents av-

erage out opposing views from their friends muting the impact of extreme signals. Alternatively,

an unsophisticated agent is very likely to receive both types of extreme signals (directly or indi-

rectly), and hence not be susceptive to modifying their own views to a large extent. When the

share of unsophisticated agents is small, each one of them is more likely to receive only one type

of extreme signal: the one sent by the bot targeting them. Because of this, their views become

more extreme (as there is no counterbalancing information received), particularly if the bot can
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Figure 14: Misinformation and polarization for µu ≤ 0.1 (left) and µu ≥ 0.1 (right)

�ood them. To the extent that one bot manages to manipulate a relatively more in�uential set

of agents, it will be signi�cantly more likely to succeed in modifying average opinions. Hence, a

bot may be more e�ective by targeting a small set of in�uential agents, rather than by targeting

the whole population.

In Speci�cations (3) and (6) we re-estimate our regression restricting analysis to networks

with a small share of uninformed agents µu < 0.1. Interestingly, both ρ and ω do not a�ect

misinformation in this case, whereas polarization is only marginally reduced when the speed of

communication rises (a considerable di�erence relative to the benchmark case). As suggested

by the previous analysis, a one standard deviation increase in relative Page-Rank, relative in-

Closeness, and even average in-Closeness create signi�cantly more misinformation than in the

benchmark case.

5.4 Welfare analysis

Misinformation and polarization may introduce ine�ciencies in the decision-making process

through di�erent channels. A highly misinformed society will agree on selecting the wrong

policy. A polarized society—which is on average correct—may not react fast enough to shocks
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due to ine�cient gridlock. A micro-founded political-economy model would dictate how much

individuals would be willing to trade-o� polarization for misinformation when opinions do not

converge to the true θ. Because elaborating such model is beyond the scope of our paper, we now

take a reduced-form approach and consider instead the following social welfare function

SW (MIj, Pj) = − [λMIj + (1− λ)Pj] ,

which is decreasing in MI and P , with λ capturing the relative importance of misinformation

in society j. Given this ad-hoc function, we can analyze how our explanatory variables a�ect

societal welfare for alternative values of λ. The results are presented in Table (8), with variables

normalized by their standard deviations (similarly to the procedure followed in Table (6)).

Regardless of the values of λ considered, a higher degree of in�uence of bots resulting from

higher weight on opinions of social media friends (ω), the ability of bots to �ood the network (κ),

or the fact that they manage to in�uence agents with a large number of followers (in-Degree)

decreases societal welfare. By comparing the size of di�erent coe�cients in Table (8), we can

observe that the largest e�ects on welfare are caused by PageRank scores. To the extent that bots

are symmetric, higher average PageRank results in higher welfare as it allows more information

aggregation. However, when one bot is relatively more in�uential (through their targeting of

agents with high PageRank scores), the negative e�ects on welfare are extremely large. This has

policy implications: a society that is successful in eliminating a source of fake news promoting

one extreme of the political spectrum may end up worse o� due to the unintended consequences

of making the other extreme relatively more powerful. This, in the end, would generate greater

misinformation and lower welfare, despite e�ectively reducing polarization.

5.5 Robustness

There were a few statistics measuring network topology and centrality of unsophisticated agents

who were either statistically insigni�cant in the analysis above, or have very small e�ects on po-

larization and misinformation. These are Diameter, out-Degree, out-Closeness, Initial homophily,

and Reciprocity. In Speci�cations (2) and (5) of Table (9) we re-estimate the model excluding these

variables. It is evident that the results are basically unchanged: the goodness of �t is identical to

the second decimal and the size of the coe�cients are basically unchanged relative to the Bench-

mark case (replicated in columns (1) and (4)).

It may also be of interest to consider how the results change when we do not include the pa-
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Table 8: Regression results: Welfare

λ = 1 λ = 0.8 λ = 0.5

Communication technology

In�uence of friends ω -0.08*** -0.12*** -0.17***

(0.009) (0.008) (0.007)

Speed of communication ρ 0.05*** 0.10*** 0.16***

(0.009) (0.008) (0.007)

Network Topology

Diameter -0.05*** -0.05*** -0.04***

(0.01) (0.01) (0.01)

Clustering -0.01 0.04* 0.12***

(0.02) (0.02) (0.02)

Ω yes yes yes

Bot in�uence

Share of unsophisticated µ 0 - -

Flooding κ - - -

in-Degree -0.13*** -0.13*** -0.08***

(0.02) (0.02) (0.02)

PageRank 0.44*** 0.35*** 0.08***

(0.02) (0.02) (0.02)

in-Closeness 0.10*** 0.30*** 0.63***

(0.02) (0.02) (0.02)

Betweeness -0.05*** -0.05*** -0.05***

(0.02) (0.02) (0.01)

out-Degree 0.08*** 0.08*** 0.07***

(0.02) (0.02) (0.02)

Out-Closeness 0.002 -0.02 -0.05***

(0.02) (0.02) (0.02)

Relative PageRank -0.62*** -0.54*** -0.24***

(0.02) (0.02) (0.01)

Relative in-Degree 0.04*** 0.02 -0.05***

(0.02) (0.02) (0.01)

Relative Betweeness 0.10*** 0.10*** 0.05***

(0.01) (0.01) (0.01)

Relative in-Closeness -0.14*** -0.07*** 0.10***

(0.01) (0.01) (0.01)

Observations 8,248 8,248 8,248

R-squared 0.392 0.436 0.572

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

rameters in Ω as regressors. This is useful to know because when considering real-life networks, it

is typically impossible to back out the parameters in Ω (which determine how the initial network

is created). A statistician may only be able to compute statistics from observable variables, such

links determining centrality and clustering. As in the previous case, estimated coe�cients and

the R-squared are unchanged when Ω is excluded from the regression model. This suggests that

the set of network statistics in columns (3) and (6) are su�cient to describe how misinformation
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Table 9: Robustness Exercises

Misinformation Polarization

Benchmark Less regressors No Ω Benchmark Less regressors No Ω

(1) (2) (3) (4) (5) (6)

Communication technology

In�uence of friends ω 0.08*** 0.08*** 0.08*** 0.14*** 0.14*** 0.14***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Speed of communication ρ -0.05*** -0.05*** -0.05*** -0.15*** -0.15*** -0.15***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Network Topology

Diameter 0.05*** 0.01

(0.01) (0.01)

Clustering 0.01 -0.00 0.01 -0.16*** -0.17*** -0.16***

(0.02) (0.02) (0.01) (0.02) (0.02) (0.01)

Ω yes yes no yes yes no

Bot in�uence

in-Degree 0.13*** 0.14*** 0.13*** -0.00 -0.00 -0.04*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

PageRank -0.44*** -0.44*** -0.43*** 0.26*** 0.25*** 0.28***

(0.02) (0.02) (0.02) (0.02) (0.02) (0.01)

in-Closeness -0.10*** -0.12*** -0.18*** -0.70*** -0.68*** -0.69***

(0.02) (0.02) (0.01) (0.02) (0.02) (0.01)

Betweeness 0.05** 0.06*** 0.07*** 0.02 0.02 0.03*

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Out-Degree -0.08** -0.03

(0.02) (0.02)

Out-Closeness -0.00 0.06***

(0.02) (0.02)

Relative PageRank 0.62*** 0.62*** 0.62*** -0.21*** -0.20*** -0.21***

(0.02) (0.02) (0.02) (0.01) (0.01) (0.01)

Relative in-Degree -0.04** -0.05** -0.04** 0.09*** 0.10*** 0.11***

(0.02) (0.02) (0.02) (0.01) (0.01) (0.01)

Relative Betweeness -0.10*** -0.10*** -0.10*** 0.02 0.02 0.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Relative in-Closeness 0.14*** 0.16*** 0.15*** -0.24*** -0.24*** -0.25***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 8248 8248 8248 8248 8248 8248

R-squared 0.392 0.390 0.389 0.597 0.596 0.593

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

and polarization react to changes in the environment.

6 Conclusions

We created a large sample of synthetic social media networks by varying their characteristics

through simulations in order to understand what the most important drivers of misinformation

and polarization are. A premise in all of them is the ability of bots (with opposite extreme views)
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who purposely spread fake news in order to manipulate the opinion of a small share of agents in

the network. To the extent that agents can be partially in�uenced by these signals—directly by

not �ltering out fake news, or indirectly by following friends who are themselves in�uenced by

bots—, this can generate misinformation and polarization in the long run. In other words, fake

news prevent information aggregation and consensus in the population. We �nd that when bots

at one extreme are relatively more e�cient at manipulating news (by targeting a small number

of in�uential agents), the may be able to generate full misinformation in the long run, where

beliefs are at one end of the political spectrum. There would be no polarization in that case, but

at the expense of agents converging to the wrong value of θ, the parameter of interest. There are

other situations where agents are on average correct, but have nonetheless very heterogeneous

opinions. These cases would still be sub-optimal, as they may result in ine�cient gridlock and

inaction.

An important assumption is that the links in the network evolve stochastically. It would be

interesting to extend the model to consider a case in which links are endogenously determined.

This could achieved by allowing agents to place a higher weight on individuals who share similar

priors and choose to ‘unfollow’ (e.g. break links) agents who have views which are relatively far

from their own.

Having identi�ed the main determinants of polarization, it would be interesting to parame-

terize a real-life social media network (e.g. calibrate it) in order to back out the amount of fake

news necessary to produce the observed increase in polarization between two periods of time. It

would also be possible to carry forward a key-player analysis on the location of internet bots to

better understand what is the most e�cient way to reduce polarization.

Finally, we do observe polarization cycles in some of our networks. Analyzing their determi-

nants could be a fruitful avenue for future research.
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Appendix A: Beta-Bernoulli model and the update rule

At any time t, the belief of agent i is represented by the Beta probability distribution with param-

eters αi,t and βi,t

µi,t (θ) =


Γ (αi,t + βi,t)

Γ (αi,t) Γ (βi,t)
θαi,t−1(1− θ)βi,t−1

, for 0 < θ < 1

0 , otherwise,

where Γ(·) is a Gamma function and the ratio of Gamma functions in the expression above is a

normalization constant that ensures that the total probability integrates to 1. In this sense,

µi,t (θ) ∝ θαi,t−1(1− θ)βi,t−1.

The idiosyncratic likelihood induced by the vector of length K of observed signals si,t+1 is

`(si,t+1|θ) = θ
∑
si,t+1(1− θ)K−

∑
si,t+1 ,

and therefore the standard Bayesian posterior is computed as

µi,t+1(θ|si,t+1) =
`(si,t+1|θ)µi,t (θ)∫

Θ

`(si,t+1|θ)µi,t (θ) dθ
.

Since the denominator of the expression above is just a normalizing constant, the posterior dis-

tribution is said to be proportional to the product of the prior distribution and the likelihood

function as

µi,t+1(θ|si,t+1) ∝ `(si,t+1|θ)µi,t (θ)

∝ θαi,t+
∑
si,t+1−1 (1− θ)βi,t+K−

∑
si,t+1−1 .

Therefore, the posterior distribution is

µi,t+1 (θ|si,t+1) =


Γ (αi,t+1 + βi,t+1)

Γ (αi,t+1) Γ (βi,t+1)
θαi,t+1−1(1− θ)βi,t+1−1

, for 0 < θ < 1

0 , otherwise,
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where

αi,t+1 = αi,t +
∑

si,t+1 (10)

βi,t+1 = βi,t +K −
∑

si,t+1. (11)

Equations (10) and (11) are used to update the shape parameters of both regular agents (so-

phisticated and unsophisticated, by setting K = 1) and bots (left and right, by setting K = κ) as

per Equations (4), (5), (2) and (3) in subsection Evolution of beliefs in section 2.
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Appendix B: Auxiliary lemmas and propositions regarding

the properties of the sequence {Wt}∞t=1 and the averageweight

matrix W̄

Before proceeding, we implement here a slight change of notation: we let 1−ωi,t = bi,t. Then, as

explained in section (2), the weight given by agent i to the bayesian update at any time t depends

on whether agent i �nds any other agent j in his neighborhood. In algebraic terms

bi,t = 1{∑j [ĝt]ij=0}1 +
(

1− 1{∑j [ĝt]ij=0}
)
b. (12)

Lemma 1. The adjacency matrix g0 is an irreducible matrix if and only ifG0 is strongly connected.

Proof. By assumption, g0 is strongly connected, for the completeness of the argument see ? (Ch.

8, page 671).

Lemma 2. For all t ≥ 0, the matrixWt is row-stochastic.

Proof. It is su�cient to show that Wt111 = Bt111 + (In −Bt) ĝt111 = 111. For that we can show that for

every period t the vector Wt111 has all entries equal to

bi,t + (1− bi,t)
∑
j

[ĝt]ij =

bi,t = 1{∑j [ĝt]ij=0}1 +
(

1− 1{∑j [ĝt]ij=0}
)
b = 1 , if

∑
j[ĝt]ij = 0

1 , if

∑
j[ĝt]ij = 1,

as per the equation (12).

Lemma 3. The matrix W̄ has diagonal entries
[
W̄
]
ii

= b + (1 − b)(1 − ρ)|N
out
i,0 | for all i and

o�-diagonal entries[
W̄
]
ij

= 0 when [g0]ij = 0 and[
W̄
]
ij

=
(

1− b− (1− b)(1− ρ)|N
out
i,0 |
)

[ĝ0]ij when [g0]ij 6= 0.

Proof. For any agent i ∈ N , the number of neighbors met at time t is a binomial random variable

with parameters |N out
i,0 | and ρ. Therefore, the probability that agent i �nds no other agent in his

neighborhood at time t (denoted as p0
it) is

p0
it =

(
|N out

i,0 |
0

)
ρ0(1− ρ)|N

out
i,0 | = (1− ρ)|N

out
i,0 |.
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Notice that the right hand side of the expression above does not depend on time t, thus, we can

establish that p0
it = p0

i .

Therefore, according to equation (12), we conclude that the elements in the main diagonal of

the matrix W̄ are [
W̄
]
ii

= E(bi,t)

= 1p0
i + b(1− p0

i )

= (1− ρ)|N
out
i,0 | + b

(
1− (1− ρ)|N

out
i,0 |
)

= b+ (1− b)(1− ρ)|N
out
i,0 |

In contrast, the elements o�-diagonal can be written as[
W̄
]
ij

= E ((1− bi,t)[ĝt]ij)

= E (1− bi,t)E ([ĝt]ij)

= (1− E (bi,t))E

(
[gt]ij∑
j[gt]ij

)

=
(

1−
(
b+ (1− b)(1− ρ)|N

out
i,0 |
))

E

(
[g0]ij[ct]ij∑
j ([g0]ij[ct]ij)

)

=


0 , if [g0]ij = 0(

1− b− (1− b)(1− ρ)|N
out
i,0 |
) [g0]ijρ

ρ
(∑

j[g0]ij

) , if [g0]ij 6= 0

=


0 , if [g0]ij = 0

(1− b)
(

1− (1− ρ)|Nout
i,0 |
)

1

|Nout
i,0 |

, if [g0]ij 6= 0

The next Lemma shows that the matrix W̄ is primitive, i.e. there is a positive integer m such

that W̄m > 0.

Lemma 4. The average weight matrix W̄ is irreducible and primitive.

Proof. The irreducibility of W̄ comes from the fact that g0 is irreducible by the Assumption 1

(strongly connectedness and aperiodicity). By the Perron-Frobenius theorem, the largest eigen-

value of W̄ in absolute terms is 1 and it has algebraic multiplicity of 1 (i.e. it is the only eigenvalue

in the spectral circle of W̄ ). By the Frobenius’ test for primitivity (see Meyer (2000), ch. 8, page
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678) it can be shown that any nonnegative irreducible matrix having only one unity eigenvalue

on its spectral circle is said to be a primitive matrix. The converse is always true.

Before introducing the next lemma, we will introduce two de�nitions. First, the distance

between any two agents i and j is de�ned as the number of connections in the shortest path

connecting them, i.e. the minimum number of “steps” that agent i should take to reach agent j.

The diameter of the network is the largest distance between any two agents in the network, i.e.

the maximum shortest path length in the network.

The next lemma provides a positive uniform lower bound on the entries of the matrix W̄ d
as

a function of the diameter of the network d induced by W̄ and the minimum (non-zero) expected

share of attention received by an agent i from any other agent j ∈ N (i.e. including i himself),

ω, de�ned as

ω =
+

min
i,j

[
W̄
]
ij

= min

{
min
i∈N

(
b+ (1− b)(1− ρ)|N

out
i,0 |
)
, min

i∈N

(
(1− b)

(
1− (1− ρ)|Nout

i,0 |
) 1∣∣N out

i,0

∣∣
)}

.

Lemma 5. Let d denote the diameter of the network induced by the social interaction matrix W̄

and ω > 0 be the scalar de�ned above. Then the entries of the matrix W̄ d are bounded below by the

scalar ωd.

We will omit the proof of Lemma (5). For further details, the reader can refer to Theorems 1.3

and 1.4 in Seneta (2006, pgs. 18 and 21, respectively) and its related Lemmas.

Consider the update process described in the equation (4) of Section (2) in its matrix form

αt+1 = Bt(αt + st+1) + (In −Bt)ĝtαt

= [Bt + (In −Bt)ĝt]αt +Btst+1.

Notice that Bt is not �xed over time as it depends on the realization of encounters in every

period t. The stochastic matrix (see Lemma (2)) inside the squared bracket is denoted byWt from

now on and we re-write the previous update process as

αt+1 = Wtαt +Btst+1.

By forward iteration, we have that when t = 0,

α1 = W0α0 +B0s1.
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When t = 1,

α2 = W1α1 +B1s2

= W1 (W0α0 +B0s1) +B1s2

= W1W0α0 +W1B0s1 +B1s2.

When t = 2,

α3 = W2α2 +B2s3

= W2(W1W0α0 +W1B0s1 +B1s2) +B2s3

= W2W1W0α0 +W2W1B0s1 +W2B1s2 +B2s3,

so on and so forth and similarly for the shape parameter vector β.

Following Chaterjee and Seneta (1977), Seneta (2006) and Tahbaz-Salehi and Jadbabaie (2008),

we let {Wt}, for t ≥ 0, be a �xed sequence of stochastic matrices, and let Ur,k be the stochastic

matrix de�ned by the backward product of matrices

Ur,k = Wr+k ·Wr+(k−1) . . .Wr+2Wr+1Wr.
14

(13)

With this de�nition in hand, we show some important properties of the expected backward

product that will help us to prove convergence of opinions in probability to θ.

Proposition 4. Let d be the diameter of the network induced by the matrix W̄ and ω be the min-

imum expected share of attention received by some agent i from any other agent j ∈ N . Then, for

all r ≥ 1, i and j, and given d

pij = P

(
[Ur,d]ij ≥

ωd

2

)
≥ ωd

2
> 0.

Proof.

P

(
[Ur,d]ij ≥

ωd

2

)
= P

(
1− [Ur,d]ij ≤ 1− ωd

2

)
= 1− P

(
1− [Ur,d]ij ≥ 1− ωd

2

)
(14)

14
Our backward product has last term equals toWr , rather thanWr+1. This is because our �rst period is 0, rather

than 1. This notation comes without costs or loss of generality.
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By the Markov inequality, the probability in the right hand side of the equation (14) can be

written as

P

(
1− [Ur,d]ij ≥ 1− ωd

2

)
≤
E
(

1− [Ur,d]ij

)
1− ωd

2

,

and therefore,

1− P
(

1− [Ur,d]ij ≥ 1− ωd

2

)
≥ 1−

E
(

1− [Ur,d]ij

)
1− ωd

2

. (15)

Using equation (15), I rewrite equation (14) as

P

(
[Ur,d]ij ≥

ωd

2

)
≥ 1−

E
(

1− [Ur,d]ij

)
1− ωd

2

. (16)

From the functional form of the backward product (see eq. (13)) and given that {Wt}∞t=1 is a

sequence of independent matrices over all t (see eq. (1)), the expectation above can be written as

E (Ur,d) = E (Wr+d−1Wr+d−2 · · ·Wr) = W̄ d,

thus, from Lemma (5), this implies that for all i and j

E
(

[Ur,d]ij

)
≥ ωd.

Therefore, eq. (16) becomes

P

(
[Ur,d]ij ≥

ωd

2

)
≥ 1− 1− ωd

1− ωd

2

=
ωd

2− ωd
≥ ωd

2
,

proving that the (i, j) entry of the matrix represented by the backward product Ur,d is positive

with non-zero probability, i.e pij > 0.

Therefore, Proposition (4), together with the assumption that the sequence of matrices {Wt}∞t=1

are i.i.d. and have positive diagonals (see Lemma (3)), ensures that the matrix represented by the

backward product U1,n2d+1 of length n2d is positive with at least probability Πi,jpij > 0. The

choice n2d is a conservative one as in AOP (2010) and Tahbaz-Salehi and Jadbabaie (2008).

Lemma 6. Consider ρ = 1, i.e. Wt = W for every t. The iteration of the row-stochastic matrix

W is convergent and therefore there exists a threshold τ̄ ∈ N such that |W τ+1
ij −W τ

ij| < ε for any

τ ≥ τ̄ and ε > 0
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Proof. In order to see how W τ
behaves as τ grows large, it is convenient to rewrite W using

its diagonal decomposition. In particular, let v be the squared matrix of left-hand eigenvectors

of W and D = (d1, d2, . . . , dn)> the eigenvector of size n associated to the unity eigenvalue

λ1 = 1.
15

Without loss of generality, we assume the following normalization 111>D = 1. Therefore,

W = v−1Λv, where Λ = diag(λ1, λ2, . . . , λn) is the squared matrix with eigenvalues on its

diagonal, ranked in terms of absolute values. More generally, for any time τ we write

W τ = v−1Λτv.

Noting that v−1
has ones in all entries of its �rst column, it follows that

[W τ ]ij = dj +
∑
r

λτrv
−1
ir vrj,

for each r, where λr is the r-th largest eigenvalue of W . Therefore, limτ→∞ [W τ ]ij = D111>, i.e.

each row of W τ
for all τ ≥ τ̄ converge to D, which coincides with the stationary distribution.

Moreover, if the eigenvalues are ordered the way we have assumed, then ‖W τ−D111>‖ = o(|λ2|τ ),

i.e. the convergence rate will be dictated by the second largest eigenvalue, as the others converge

to zero more quickly as τ grows.

15
This is a feature shared by all stochastic matrices because having row sums equal to 1 means that ‖W‖∞ = 1

or, equivalently, W111 = 111, where 111 is the unity n-vector.
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Appendix C: Backward product ergodicity

Our main concern in order to prove that agents’ opinions converge in probability to θ is the

behavior of Ur,k when k → ∞ for each r ≥ 0. For that, we need to de�ne two concepts of

ergodicity. The sequence {Wt}∞t=1 is said to be weakly ergodic if for all i, j, s = 1, 2, . . . , n and

r ≥ 0, ∣∣∣[Ur,k]is − [Ur,k]js

∣∣∣→ 0

as k →∞.

On the other hand, we say that this very same sequence is strongly ergodic for all r ≥ 0, and

element-wise if

lim
k→∞

Ur,k = 1P>r ,

where 1 is a vector of ones of size n and Pr is a probability vector in which Pr ≥ 0 and P>r 1 = 1

for all r ≥ 0.

Both weak and strong ergodicity (in the backward direction) describe a tendency to consensus.

In the strong ergodicity case, all rows of the stochastic matrix Ur,k are becoming the same as k

grows large and reaching a stable limiting vector, whereas in the weak ergodicity case, every row

is converging to the same vector, but each entry not necessarily converges to a limit. In our case,

we can show that there is an equivalence between both concepts since each row of Ur,k+1 is a

weighted average of the rows of Ur,k.

Lemma 7. For the backward product (13), weak and strong ergodicity are equivalent.

Proof. Following Theorem 1 in Chatterjee and Seneta (1977), it su�ces to show that weak ergod-

icity implies strong ergodicity. For that, we �x an arbitrary r ≥ 0 and a small ε > 0 and assume

that there is a k = k̄ such that Wk has the form 1P>, where P is a probability vector. Then by

the de�nition of weak ergodicity we have that

−ε ≤ [Ur,k]is − [Ur,k]js ≤ ε⇐⇒ [Ur,k]is − ε ≤ [Ur,k]js ≤ [Ur,k]is + ε

for k ≥ k̄ and for all i, h, s = 1, . . . , n. Since each row of Ur,k+1 is a weighted average of the rows
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of Ur,k, we have

n∑
j=1

[Wr+k+1]hj
(
[Ur,k]is − ε

)
≤

n∑
j=1

[Wr+k+1]hj [Ur,k]js

≤
n∑
j=1

[Wr+k+1]hj
(
[Ur,k]is + ε

)
.

The inequality above shows that for any h and k ≥ k̄

[Ur,k]is − ε ≤ [Ur,k+1]hs ≤ [Ur,k]is + ε.

Thus, by induction, for any i, h, s = 1, 2, . . . , n, for any k ≥ k̄ and for any integer q ≥ 1∣∣∣[Ur,k+q]js − [Ur,k]is

∣∣∣ ≤ ε.

By setting i = j in the expression above and taking k ≥ k̄, we see that [Uk,r]i,s converges to a

limit as k →∞ for all s.

De�nition 4. The scalar function τ(·) continuous on the set of n× n stochastic matrices and satis-

fying 0 ≤ τ(·) ≤ 1 is called coe�cient of ergodicity. It is said to be proper if τ(W ) = 0 if and only

if W = 111v>, where v> is any probability vector (i.e. whenever W is a row-stochastic matrix with

unit rank), and improper otherwise.

Two examples of coe�cients of ergodicity, in terms of W , drawn from Seneta (2006) p. 137

are

a(W ) = max
j

(
max
i,i′

∣∣∣[W ]ij − [W ]i′j

∣∣∣)
c(W ) = 1−max

j

(
min
i

[W ]ij

)
,

where the �rst coe�cient is proper and the second improper. Moreover, it can be shown that, i)

for any stochastic matrixW , a(W ) ≤ c(W ) and ii) if τ(·) is a proper coe�cient of ergodicity, the

inequality

τ (WmWm−1 · · ·W2W1) ≤
m∏
t=1

τ (Wt) (17)

is satis�ed for any m ≥ 1.
16

In this sense, for a proper coe�cient of ergodicity τ(·), weak ergod-

icity is equivalent to τ(Ur,k)→ 0 as k →∞ and r ≥ 0.

16
More speci�cally, it can be shown that for any two proper coe�cients of ergodicity τi(·) ≤ τj(·), the inequality

holds with τi (WmWm−1 · · ·W2W1) ≤
∏m
t=1 τj (Wt).
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Lemma 8. The sequence {Wt}∞t=1 is weakly ergodic if there exists a strictly increasing subsequence

of the positive integers {ix}, x = 1, 2, . . . such that

∞∑
x=1

(
1− τ(Wix+1 · · ·Wix+1)

)
(18)

diverges.

Proof. Let θx = τ(Wix+1 · · ·Wix+1). The standard inequality z − 1 ≥ log z (or equivalently

1 − z ≤ − log z) implies that 1 − θx ≤ − log θx, for any x. Summing up across index x in both

sides yields

∞∑
x=1

(1− θx) ≤ −
∞∑
x=1

log θx

≤ − log

(
∞∏
x=1

θx

)
. (19)

Since equation (17) holds, the sum in the left hand side of equation (19) diverges, implying

that log (
∏∞

x=1 θx) = −∞. For that, it must be the case that

∏∞
x=1 θx → 0 as x → ∞. Because

τ(·) is a proper coe�cient of ergodicity, equation (17) ensures weak ergodicity of the sequence

{Wt}∞t=1
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Appendix D: Proofs of propositions

Proof of proposition (1)

Proof. We start by considering the parameter update process described in eq. (5) of section (2).

Since the network’s edges are activated every single period (i.e. ρ = 1), ĝt = ĝ and Bt =

B = diag(b, b, . . . , b), where b ∈ (0, 1). Moreover, since we are assuming strong connectivity,∑
j[g]ij 6= 0 for any i. Thus, the update process for the parameter vector α (of size n) in its matrix

form is

αt+1 = B(αt + st+1) + (In −B)ĝαt

= [B + (In −B)ĝ]αt +Bst+1.

We de�ne the matrix inside the squared bracket as W for any t. We re-write the update

process above as follows

αt+1 = Wαt +Bst+1

When t = 0,

α1 = Wα0 +Bs1

When t = 1,

α2 = Wα1 +Bs2

= W (Wα0 +Bs1) +Bs2

= W 2α0 +WBs1 +Bs2

When t = 3,

α3 = Wα2 +Bs3

= W
(
W 2α0 +WBs1 +Bs2

)
+Bs3

= W 3α0 +W 2Bs1 +WBs2 +Bs3

So on and so forth, resulting in the following expression for any particular period τ

ατ = W τα0 +
τ−1∑
t=0

W tBsτ−t (20)
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Similarly for the parameter β, we have

βτ = W τβ0 +
τ−1∑
t=0

W tB(1− sτ−t). (21)

where 1 is the vector of ones of size n. From Equations (20) and (21), the sum of this two

parameter-vectors is given by the following expression

ατ + βτ = W τ (α0 + β0) +
τ−1∑
t=0

W tB1

= W τ (α0 + β0) +
τ−1∑
t=0

W tb

= W τ (α0 + β0) + τb. (22)

Therefore, at any point in time τ , the opinion of any agent i is given by yi,τ =
αi,τ

αi,τ + βi,τ
.

From equation (20), we write

αi,τ = W τ
i∗α0 +

τ−1∑
t=0

W t
i∗bsτ−t

= W τ
i∗α0 + τb

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= W τ
i∗α0 + τbθ̃i(τ), (23)

where the symbol W τ
i∗ is used to denote the i-th row of matrix W τ

and W 0 = In. From

equations (23) and (22), we write yi,τ as

yi,τ =
W τ
i∗α0 + τbθ̃i(τ)

W τ
i∗(α0 + β0) + τb

=
τ

τ

(
1
τ
W τ
i∗α0 + bθ̃i(τ)

1
τ
W τ
i∗(α0 + β0) + b

)
, (24)

From Equation (24), we have that the limiting opinion (in probability) of any agent i, at any
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point in time τ , is described as

plim
τ→∞

yi,τ = plim
τ→∞

θ̃i(τ)

= plim
τ→∞

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ̄∑
t=0

W t
i∗sτ−t + plim

τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t. (25)

From Lemma (6), we can split the series in Equation (26) into two parts. The �rst term de-

scribes a series of τ̄ terms that represent the “most recent” signals coming in to the network.

Notice that every weight-matrix W t
in the interval from t = 0 to t = τ̄ is di�erent from one

another, since the matrix W t
does not converge to a row-stochastic matrix with unity rank for

low t. It is straight-forward to see that this term converges to zero as τ → ∞. The second term

represents describes a series of τ − τ̄ terms that represent the“older signals” that entered in the

network and fully reached all agents. As τ →∞, this term becomes a series with in�nite terms.

From the i.i.d. property of the Bernoulli signals, we can conclude that

plim
τ→∞

yi,τ = plim
τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ∑
t=τ̄+1

WWW i∗sτ−t

= plim
τ→∞

WWW i∗
1

τ

τ∑
t=τ̄+1

sτ−t

asy
= plim

τ→∞
WWW i∗

1

τ − τ̄

τ∑
t=τ̄+1

sτ−t

asy
= WWW i∗θθθ

∗ = θ∗, (i.i.d. Bernoulli signals) (26)

where WWW = D111>. From equation (26), we conclude that society is wise and because of that,

plimt→∞ |ỹk,t− ỹl,t| = 0, i.e. the K groups reach consensus, impliying plimt→∞ Pt = |θ∗− θ∗| =
0.
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Proof of proposition (2)

Proof. The update process of both shape parameters can be represented in their matrix form for

any period τ as

ατ = U0,τ−1α0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1sr

)
+Bτ−1sτ , (27)

βτ = U0,τ−1β0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1 (111− sr)

)
+Bτ−1 (111− sτ ) . (28)

To reduce the burden of notation, consider [Ur,k]ij = u
(r,k)
ij for any r and k. Therefore, from

equation (27), we write its entries as

αi,τ =
∑
j

u
(0,τ−1)
ij αj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

=
∑
j

u
(0,τ−1)
ij αj,0 + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

]
=
∑
j

u
(0,τ−1)
ij αj,0 + τ θ̃i,1(τ). (29)

Each entry of the parameter vector β is written in a similar way

βi,τ =
∑
j

u
(0,τ−1)
ij βj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1(1− sj,r)

)
+ bi,τ−1(1− si,τ ).

The sum of both parameters αi,τ and βi,τ yields

αi,τ + βi,τ =
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

=
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

]
=

∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ). (30)

In which

∑
j u

(r,(τ−1))
ij = 1, for all r ≥ 0 since Ur,k is a stochastic matrix. Therefore, the

opinion of each agent i in this society, at some particular time τ , is yi,τ =
αi,τ

αi,τ+βi,τ
, where each
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entry of the parameter vectors can be written as follows:

yi,τ =

∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)

Asymptotically we have:

plim
τ→∞

yi,τ = plim
τ→∞

( ∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)

)

= plim
τ→∞

τ

τ

 ∑
j u

(0,τ−1)
ij αj,0

τ
+ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0+βj,0)

τ
+ θ̃i,2(τ)


= plim

τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
(31)

With the results of Lemmas in Appendices B and C, weak law of large numbers and the

assumption of independence between bt and st we can can show that

plim
τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
= plim

τ→∞

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1sj,r

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1

= plim
τ→∞

∑
j ūij

1
τ

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1
τ

∑τ−τ̄
r=1 bj,r−1

asy
≡ plim

τ→∞

∑
j ūij

1
τ−τ̄

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1

τ−τ̄
∑τ−τ̄

r=1 bj,r−1

=

∑
j ūijE(bjsj)∑
j ūijE(bj)

=

∑
j ūijE(bj)E(sj)∑

j ūijE(bj)

=
θ∗
∑

j ūijE(bj)∑
j ūijE(bj)

= θ∗ (32)

Proof of proposition (3)

Proof. If perfect information aggregation is reached at any particular time t̄, then we know that

yi,t̄ = θ for all i ∈ G, thus all alienation terms in the polarization function are zero because

|yi,t̄− yj,t̄| = |θ− θ| = 0, for all i and j in N . Therefore, Polarization Pt̄ is zero for any particular
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choice of parameter a. Conversely, if polarization at time t̄ is zero, then all alienation terms are

necessarily zero, since the measure of groups is non-negative. This means that |yi,t̄ − yj,t̄| = 0

implies yi,t̄ = yj,t̄ and, therefore, any opinion consensus of the form yi,t̄ = yj,t̄ = θ̃, such that

θ̃ ∈ Θ = [0, 1] and θ̃ 6= θ, meets this requirement.
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