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1 Introduction

Perhaps the most complicated node of health delivery in any modern health care system

is the emergency department (ED). Patients arrive at the ED with a wide array of different

problems. ED nurses and physicians must quickly assess where patients should slot in what

can be a very large queue, deciding almost instantly who needs to be treated right away and

who can wait. And ultimately these providers need to decide whether those going to the ED

are to be admitted to the hospital or sent back to their homes – a decision that can, in many

instances, have life or death consequences.

Despite its critical role, EDs often face budgetary pressures and a shortfall in resources.

These pressures have been especially acute in recent years, with ED performance having been

described as an international crisis in several developed economies (Hoot and Aronsky, 2008).

Practising doctors are especially vocal, referring to ‘battlefield medicine’ and ‘third world condi-

tions’ caused by ED overcrowding in England.1 Alongside these tensions, EDs are increasingly

facing public pressure to advertise and reduce their wait times. U.S. cities are replete with

digital billboards highlighting wait times at local EDs. And other nations use regulatory and

financial tools to reward reductions, or penalize increases, in wait times.

Many are concerned that external pressures on wait times could reduce the ability of EDs to

maximize the quality of the care that they provide. At the same time, however, it is not clear

that ED personnel would maximize patient quality in the absence of such pressures. Emer-

gency rooms are not compensated on the margin based on wait times. Moreover, while health-

maximizing ED personnel will internalize the costs of waiting to the extent that they impact

patient outcomes, this will be imperfect in the presence of uncertainty and may not account for

patient well-being beyond health outcomes. Theoretical ambiguities such as this have motivated

a growing number of empirical studies of hospital production in the ED setting (Chan, 2016,

2017; Gowrisankaran et al., 2017; Silver, 2016).

The ‘four-hour wait’ policy in the England provides a natural environment in which to

address this critical question. This policy was first announced in 2000 as part of a wide ranging

set of government pledges to decrease wait times for different types of care, and came into

force in all English public hospitals in 2004.2 The policy set arbitrary targets for wait times,

1https://www.nytimes.com/2018/01/03/world/europe/uk-national-health-service.html?smid=tw-
share& r=0

2Other targets included maximum limits on wait times for elective surgery.
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initially requiring that 98% of all patients be treated within four hours of arrival. The ability

of hospitals to meet this target became an important part of overall hospital evaluation in

England, with managers in some cases losing their jobs because of poor wait time performance.

In addition, there were strong financial penalties associated with breaching the target – hospitals

were penalized by an amount that was more than twice the average revenue of an ED patient,

and total fines for missing ED and elective wait time targets were equivalent to a third of

hospital deficits.

This policy has been controversial. Some stakeholders have argued that the focus on patient

wait times has improved patient care. As one ED nurse quoted in Mortimore and Cooper (2007)

said, “it was worse [before the targets were introduced], definitely it just seemed to be more

hectic, there were people on trolleys for 12 hours and you’d leave here at 8pm and come back

in the morning and there would still be some patients here”. Others have argued that care

quality has been sacrificed. One medical student stated, “patients are no longer known by their

names or by their conditions, they’re not even known by a number, patients are referred to by

their time. By this I mean how long they’ve been in the department, as soon as a patient ticks

past 3 hours their name lights up like a Christmas tree. If their stay approaches 3 hours 30,

the managers start to appear, they don’t actually care about Mr Jones who is having a heart

attack. He’s got to go, wherever it may be, as long as it’s not ED”.

Despite the controversy, there is little consistent evidence from either the UK or other

nations that have introduced wait time targets on the impact of those targets on patient costs

and health outcomes. This is because the policies are generally introduced nation-wide, with

no ‘hold-out’ or control populations, making it impossible to apply quasi-experimental methods

such as difference-in-difference estimation. An additional challenge in the case of the English

wait time policy is that no systematic data on wait times are available before the policy was

introduced in 2004.

In this paper we take a different approach. We apply the bunching techniques that have

been used widely in other contexts (see Kleven, 2016) to analyze wait times and outcomes. This

approach allows us to model how the four-hour target impacts wait times, costs and outcomes,

conditional on the underlying hospital technology in place to monitor patient wait times. That

is, we estimate here the short term impact of changing wait times, but hold constant the

underlying technological changes that might be associated with the introduction or removal of

a wait time target. This counterfactual focuses attention on the impact of incentives rather
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than technology adoption.

We initially examine the distribution of wait times around the four-hour target, finding a

very large spike right at four hours. We then turn to estimating counterfactual distributions of

wait times in order to measure the effect of the four-hour policy. We estimate that, relative to

the counterfactual, the four-hour target led wait times to be 19 minutes (8%) lower for patients

affected by the policy.

We then use these data to study the impact of the policy on patient treatment and outcomes.

Without pre-period data and exogenous variation in policy effects across hospitals, we cannot

directly use data on treatments and outcomes to identify policy effects. But we argue that

under a set of minimal and testable assumptions we can directly identify policy effects from

bunching at the four-hour target.

In particular, to assess the impact of the target on outcomes such as hospital admissions

and mortality, we need to separate a ‘composition effect’ (because some patients are moved

from after to before four hours of wait time due to the target, and they may not be randomly

chosen) and a ‘distortion effect’ (the target itself may have a direct distortion on the treat-

ment of randomly chosen patients). To separately identify the distortion effect, we estimate a

‘composition-adjusted counterfactual outcome’ by imposing a ‘no-selection’ assumption on the

distribution of patients that obtain shorter wait times because of the policy. We can test this

assumption directly using patient observables, showing that along multiple dimensions there is

no difference between these and other patients.

We estimate that there is a significant distortion effect of the English policy. We find that

there is more intensive testing of patients in the ED, leading to a modest rise in ED costs. We also

find that there is a significant increase in hospital admissions as a means of meeting the target,

with corresponding reductions in those discharged to home. Among those marginal admits,

inpatient resource use is insignificant, suggesting that such admissions were just placeholders to

meet the four-hour target. These admissions were not costless, however, and we estimate that

inpatient payments from the government to hospitals rose by roughly 5% due to the target.

Most interestingly, we find significant improvements in patient outcomes associated with the

four hour policy. We estimate that 30-day patient mortality falls by 14% among patients who

are impacted by the wait time change, a very sizeable positive effect. This effect falls slightly

over time while baseline mortality rises, so that by one year after ED admission this amounts

to a 3% mortality reduction, which is still quite large.
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We then turn to understanding the mechanism behind the outcome improvement that we

observe. To do so we exploit heterogeneity across patient groups that are affected along different

margins. The first is patients of different severity: across severity groups, the four-hour policy is

associated with differential impacts on wait times, but not admission probabilities. The second

is patients facing different levels of crowding of the inpatient department when they arrive at

the ED: across different levels of crowding, the four-hour policy is associated with differential

impacts on admission probabilities but little variation in the wait times impacts. We then

show that the mortality effect we estimate varies strongly across patient severity, but not across

inpatient crowding. Taken together, this evidence suggests that it is the wait time mechanism,

and not the admissions mechanism, that is driving our mortality effect.

We contribute to two literatures. First, there is a growing literature that has begun doc-

umenting features of hospital production relevant for incentive setting (Chan, 2016, 2017;

Gowrisankaran et al., 2017; Silver, 2016). Chan (2016) and Chan (2017), for example, study

how ED physicians respond to team environments and work schedules, while Silver (2016) stud-

ies peer effects in the ED. Gowrisankaran et al. (2017) also study the ED and estimate different

measures of physician skill. Adjacent to these studies, a medical literature has documented

robust correlations between mortality rates and measures of ED crowding and wait times (Hoot

and Aronsky, 2008). Our contribution is to show how ED production is affected when doctors

are put under pressure to make decisions quicker. We find that the wait time policy generated

cost-effective mortality improvements through reduced wait times but at the expense of distort-

ing medical decisions. These findings are consistent with the medical literature and highlight

that ED wait times are an important input to the health production process. The findings also

illustrate how constraining healthcare providers through regulatory interventions can improve

health outcomes even in the presence of significant distortions.

The second contribution we make is to the literature using bunching estimators. From

its origins in the tax setting (Saez, 2010; Chetty et al., 2013; Kleven and Waseem, 2013),

these estimators have now been deployed in other settings such as health insurance (Einav

et al., 2015, 2017, 2018), mortgage markets (Best et al., 2017; Best and Kleven, 2018) and

education (Diamond and Persson, 2016). We apply these estimators in a healthcare provision

setting, adapting them to study outcomes indirectly affected by a discontinuity in the incentives

associated with the running variable, and devise new empirical tests to evaluate the credibility

of the bunching assumptions required in our context.
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Our paper proceeds as follows. Section 2 provides background information on emergency

care in England and on the four-hour target policy. Section 3 describes the data. Section 4 sets

out our methodology, beginning with an overview and followed by the details of our analysis

of wait times, treatment decisions, and health outcomes. Section 5 describes our results for

wait times, treatment decisions and health outcomes. Section 6 explores heterogeneity and

mechanisms. Section 7 concludes.

2 Background

2.1 Emergency care in England

Emergency care in England is publicly funded and is available free at the point of use for

all residents. There is no private market for emergency care. The majority of care is provided

at emergency departments (EDs) attached to large, publicly owned hospitals. These major

emergency departments are physician-led providers of 24-hour services, based in specifically

built facilities to treat emergency patients that contain full resuscitation facilities. In 2011/12,

9.2 million patients made 13.6 million visits to 174 emergency departments. In addition, 2.1

million patients made an additional 2.7 million visits to specialist emergency clinics and ‘walk

in’ or minor injury centres where simple treatment is provided for less serious diagnoses; as

discussed below, we exclude patients from these centres due to the minor nature of their injuries

and our results are unaffected if they are included.

EDs provide immediate care to patients. Hospitals are reimbursed by the government for the

care they provide, receiving a nationally fixed payment for providing certain types of treatment.3

In 2015/16, there were 11 separate tariffs for ED treatment depending on the severity of the

patient and the type of treatments administered.4 These tariffs ranged from $77 to $272 per

visit.5 Revenue from the ED accounted for 5.3% of total hospital income in 2015/16.6

Treatment in the ED follows one of two pathways depending upon the method of arrival.

Non-ambulance patients register at reception upon arrival, where they must identify themselves

3Treatments are assigned to a Healthcare Resource Group (HRG), similar to DRGs in the US, with a set of
national tariffs for each HRG announced each year by the Department of Health.

4https://www.gov.uk/government/publications/confirmation-of-payment-by-results-pbr-arrangements-for-
2012-13

5All cost figures in 2017/18 US Dollars. Figures are deflated using the UK GDP deflator, and then
converted from sterling to dollars using an exchange rate of 1GBP:1.35USD (US Treasury, 31st Dec 2017,
https : //www.fiscal.treasury.gov/fsreports/rpt/treasRptRateExch/currentRates.htm).

6Figures calculated from the 2015/16 UK Department of Health Reference Costs. See:
https://www.gov.uk/government/publications/nhs-reference-costs-2015-to-2016
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and provide basic details of their condition. Patients then undergo an initial assessment to

establish the seriousness of their condition. This triage process is carried our either by a spe-

cialist triage nurse or doctor, and includes taking a medical history, and, where appropriate,

conducting a basic physical examination of the patient. Patients are then prioritized according

to severity.

Alternatively, patients can arrive at the ED by ambulance following an emergency call out.

In 2011/12, 29.4% of ED patients arrived by ambulance. For these patients, ambulance staff

collect medical details en route, and report these details to hospital staff upon arrival.7 This

information feeds into a separate triage process, where patients will be categorized by their

severity.

These triage processes sort patients into ‘minor’ and ‘major’ cases. Minor cases require

relatively simple treatment, and can often be treated in a short space of time. Major cases are

often those who arrive by ambulance, although there are some exceptions to this (for example,

a patient with chest pain may arrive independently at the hospital). Major cases will receive

treatment more quickly, as they often present with more severe symptoms, but will usually

require more treatment and investigations within the ED, and are therefore likely to spend

longer in the ED. Treatment of the two types often requires the use of different resources

(including staff and machines), and in most large hospitals, treatment for minor conditions will

take place in a separate part of the emergency department (for example, in the hospital’s ‘urgent

care centre’).

Following triage, patients are placed into a queue on the basis of their severity and time of

arrival. Patients are not aware of their position in the queue. Patients are assigned to individual

doctors as they become available. These doctors will carry out a series of further examinations

and tests. The nature of these investigations depend on the symptoms presented by the patients,

and range from physical examinations to tests such as x-rays or MRI scans. Patients can also

receive treatment in the ED, ranging from sutures to resuscitation, before being admitted for

further treatment in an inpatient ward, or discharged from the hospital.

2.2 The 4-hour target

All public hospitals with EDs in England are subject to a wait time target. This target

specifies that 95% of ED patients must be admitted for further inpatient treatment, discharged

7Ambulance staff also provide emergency treatment in the ambulance to patients where required.
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or transferred to another hospital within four hours of their arrival. The target level was initially

set at 98% when it was first introduced in December 2004, before being relaxed to its current

level in November 2010.8

This target is important to hospitals in two ways. First, the target is widely used by policy

makers and the media as a measure for the wider performance of the public health service in

England.9 Hospital managers who consistently fail to meet this target are likely to be fired,

and therefore have a strong incentive to organise emergency care in a way that minimises the

number of patients who take more than four hours to treat.

Second, hospitals face significant financial incentives to meet the target. As the target came

into force between March 2004 and March 2005, hospitals were offered payments (to be used

only for hospital investment) if they met the target level early (National Audit Office, 2004).

In recent years, significant financial penalties have been imposed for missing the target. In

2011/12, hospitals were fined $300 for every patient who failed to be treated within 4 hours if

the hospital missed the overall 95% target during that week.10 This compares to an average

payment of $140 per patient in the same year. In 2015, a report commissioned by a number of

hospitals indicated that public hospitals paid $325 million in fines due to missed performance

targets (including the 4 hour target), with total penalties equal to around a third of the average

deficit of public hospitals in that year.11

Hospital staff therefore face pressure from hospital management to meet the target. As

a result, the organisation of EDs has changed significantly since the target was introduced.12

Changes include the use of new IT systems, which track patient wait times in real time. The ex-

act systems vary by hospital, but will indicate when patients reach particular waiting thresholds

(e.g. 3 hours) and alert physicians (for example through changing the colour of the computer

screen).13 Most departments also now employ specific members of staff to monitor the progress

8Interviews with hospital managers, doctors and regulators suggest that it is the ‘four-hour’ component of
the target that matter to hospitals rather than the absolute level of the target. Hospitals attempt to meet the
target on a daily basis, and aim to achieve the highest proportion possible. This suggests that certain behaviours,
such as relaxing or improving performance in later parts of the reporting period, are unlikely. Consistent with
this, we do not find any systematic evidence of differences in our results by time period or at different points of
the reporting period.

9For example, see http://www.mirror.co.uk/news/uk-news/ae-crisis-exposed-only-three-9801509.
10This penalty was decreased to $170 in 2015.
11https://www.theguardian.com/society/2016/mar/29/nhs-bosses-slam-600m-hospital-fines-over-patient-

targets
12Interviews with senior member of the Emergency Care Improvement Programme (ECIP), a clinically led

programme intended to improve the performance of EDs, clearly describe significant changes to the technology
used in EDs since the target was introduced. One manager in the programme claimed that ”This [the target] is
the most monitored part of the entire healthcare system with software specifically designed for it”.

13One medical student in an ED describes the IT system in the following way: ”Displayed prominently
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of all patients against the clock, and to alert physicians that an admission decision is required

soon.

3 Data

3.1 Hospital Episodes Statistics

Our primary source of data are the Hospital Episode Statistics (HES). These contain the

administrative records of all visits to public hospitals between April 2011 and March 2013, and

include information on both ED visits and inpatient admissions.14

The ED data record treatment at the visit level, and include information on the precise time

of arrival, initial treatment and the admission decision. We define ED ‘wait times’ as total time

spent in the ED, consistent with the definition of the policy. This includes time being examined

and treated. We calculate ED wait times as the time elapsed between arrival and the admission

decision.

The data also include a hospital identifier, whether the patient is admitted or discharged,

details of basic diagnoses, the number and types of ED investigations and treatments, whether

the patient arrived by ambulance, and some basic patient characteristics such as age, sex and

local area of residence.

Patients are identified by a psuedo-anonymized identifier that allows patients to be followed

over time and across hospitals, and enable linkage between ED and inpatient records. Inpatient

records contain detailed information on treatment undergone in the hospital. The data contain

the dates of admission and discharge, and information on up to twenty diagnoses and procedures

undertaken. Treatment is recorded at the episode level, defined as a period of treatment under

the care of a single senior doctor.15 We combine information across all episodes within the

same admission to create visit-level variables for total length of stay (in days) and number of

inpatient procedures. Each episode also contains a Healthcare Resource Group (HRG) code,

similar to Diagnosis Related Groups (DRGs) in the US. English hospitals are compensated by

the government through a system of national tariffs for each HRG.16 We calculate ‘costs’ for

on an electronic whiteboard is a list of all the patients currently in A&E and waiting to be seen, and the
second a patient ticks past a 3 hour wait, their name lights up like a Christmas tree in bright red”. See:
https://imamedicalstudentgetmeoutofhere.blogspot.co.uk/2008/03/there-is-338-in-bay-5.html

14Data on EDs is available prior to 2011, covering 2008 and 2010, although data from the earlier period is less
complete than in the years we study.

15Senior doctors in England are known as ‘consultants’, and are equivalent to attending physicians in the US.
16National tariffs are calculated for each HRG on the basis of annual cost reports submitted by hospitals to

the UK Department of Health. These tariffs are meant to reflect the average cost of providing the procedure.
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each episode by matching tariffs to the appropriate HRG, which gives us a measure of the cost

to the government, and revenue received by the hospital, associated with each visit. We then

sum all treatment costs over a 30 day period to estimate the cost associated with each ED visit

and any follow-up treatment.

Mortality outcomes are recorded in administrative records made available by the UK Office

for National Statistics (ONS). These records are linked to HES through anonymized identifiers

based on patient National Insurance (Social Security) numbers. The data include the date of

death for all individuals who died in the UK, or UK citizens who died abroad, between April

2010 and March 2014. We create indicators of whether a patient dies within 30, 90 and 365

days of an ED visit. An indicator of in-hospital mortality is also calculated using HES.

3.1.1 Sample construction

Our analysis focuses on a sample of emergency patients treated in ‘major’ emergency depart-

ments.17 We exclude patients treated at specialist clinics that treat only particular diagnoses

(e.g. dental) and minor injury (‘walk in’) centres. Patients treated by these units typically have

simple diagnoses and short wait times, and are therefore unlikely to be affected by the target.

This excludes 18% of emergency visits.

We keep all patients with full information relating to the timing of treatment and their exit

route from the ED, in addition to their age, gender and whether they arrived by ambulance.

Dropping patients with some missing information reduces the number of visits in the sample by

14.5%.18 This yields an analysis sample of 14.7 million patients, who made 24.7 million visits

to 184 EDs between April 2011 and March 2013.

3.1.2 Summary statistics

Table 1 reports summary statistics. The first two columns present the mean and standard

deviation for a range of patient characteristics, treatments and outcomes for all ED patients in

the sample. Mean ED patient age was 39 years, and 51% of patients were male. 29% of patients

arrived by ambulance. 5.8 million visits, or 24% of all ED episodes, resulted in an inpatient

Payments are then adjusted for unavoidable regional differences in providing care, and unusually long hospital
stays.

17Major emergency departments are defined as consultant-led providers of 24-hour services, based in specifi-
cally built facilities to treat emergency patients that contain full resuscitation facilities.

18Results are unaffected by the inclusion of patients with full information relating to treatment times and
decisions, but who are missing demographic information.
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admission at the same hospital. 58% of visits did not require further hospital treatment and

led to a patient being discharged. The remaining visits resulted in a transfer to an outpatient

clinic or another hospital for further treatment. Mean 30-day treatment costs were $1,676, of

which 89% was accounted for by subsequent inpatient treatment. In the short term, mortality

among ED patients is relatively rare. 2% of patients died within 30 days of visiting the ED.

This increases to 3% over a 90 day period, and 5% during the following year.

Table 1 also shows summary statistics separately for visits that result in an inpatient admis-

sion. As expected, these case are typically more severe, with an older average age (55 years) and

twice the likelihood of arriving in an ambulance (60%). Mortality rates (5% over 30 days, 16%

over a year) are substantially higher than in the main sample. ED treatment is more intense

for this sample, with a higher mean number of treatments and investigations than in the main

sample. Their treatment is also more expensive, with an average total cost over a 30-day period

of $4,762.

Inpatients also experienced longer mean wait times in the ED than those who are not

admitted. Mean wait times were 223 minutes for patients who were eventually admitted as

inpatients, compared to a mean of 155 minutes for all ED patients. This demonstrates that the

level of patient complexity, and the intensity of treatment for these patients, is likely to vary by

wait time. This variation is important to account for when analysing the impact of the target.

Figure 1 shows the distribution of ED wait times. There is a noticeable discontinuity in

the proportion of patients who exit the ED in the period immeditely prior to 4 hours. This

spike is unlikely to naturally occur, and is instead induced by the target. We cannot illustrate

the absence of this spike prior to the wait times target, since we do not have systematic data

available from that period. But it is worth noting, as we do in Online Appendix Figure 1, that

such a spike is not present in data on ED wait times from a major U.S. hospital.19

One possibility is that this spike in wait times simply reflects recoding and is not a real

change in patient wait times. Two features suggest that this is not the case. First of all, a

sizeable share of hospitals pay large penalties and are publicly criticized as a result. Indeed,

a substantial number of hospitals only just miss the target, with 23% of hospitals missing the

target by less than two percentage points in 2011/12. If recoding explained the spike then those

hospitals should do more recoding to avoid the penalty altogether. Second, we show below that

19Of course, different ED objectives and technologies across countries means that the U.S. data does not
provide a natural comparison group, but the lack of any spike confirms our conclusion that the large spike here
is particular to the wait time policy.
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there are comparable spikes in a number of real outcomes, such as hospital admissions, costs,

and mortality, which are inconsistent with this simply being a coding response.

4 Empirical methodology

We now set out our empirical methodology. We begin with an outline of our approach and

then describe our analysis of wait times followed by our analysis of treatment decisions and

health outcomes.

4.1 Overview

A key challenge when analysing the four-hour target is that without pre-policy data or a

control sample, quasi-experimental methods cannot be used to construct the counterfactual

outcome. To address this issue we use and extend bunching estimators that were developed

in the tax literature (Saez 2010, Chetty et al. 2013). We argue that these methods can be

used in our setting to estimate the counterfactual outcomes that would occur if the target were

removed but other aspects of hospital production were held constant. This allows us to quantify

the short-run impact of the policy.

We first apply a bunching estimator to the distribution of wait time outcomes. This involves

interpolating how the wait time distribution would look in the absence of the target. As is

typical in other bunching settings, we make a ‘local effects’ assumption; namely, that the target

only affects the wait time distribution within a certain segment of the distribution. We argue

that this assumption holds if hospitals do not substitute resources between patients located in

different segments of the wait time distribution, and present empirical evidence that supports

this assumption. The estimated counterfactual distribution from the bunching estimator allows

us to quantify the impact of the target on wait times.

We then turn to an analysis of treatment decisions and health outcomes. Plotting these

outcomes conditional on the wait time shows that they also exhibit ‘bunching’ at the four-hour

discontinuity point. Figure 2 gives an example for the likelihood of inpatient admission. The

plot shows that admission odds are generally increasing with wait times, and there is a clear

spike in admission odds at 240 minutes. Our analysis decomposes this spike into two channels.

The first channel is the ‘composition effect’. As Figure 1 suggests, the target causes a

substantial number of patients to be moved from later to earlier in the distribution of wait times
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(a group we refer to as ‘post-threshold movers’). Since admission probabilities are increasing

with wait time, this movement of patients would increase the observed pre-threshold admission

probability even if the target led to no additional admissions. This effect arises purely because

the target changes the composition of patients observed at each wait time.

There is also potential for a ‘distortion effect’ if the target has a direct effect on treatment

decisions and health outcomes. The distortion effect implies identical patients receive different

treatment depending on whether or not the target is in place. In the case of admissions, for

example, it would imply that part of the spike in observed outcomes is because the target causes

additional admissions, in addition to the composition effect shifting some admissions from after

to before the target.

To decompose these two effects we construct a ‘composition-adjusted counterfactual’ (CAC).

This is the outcome that would occur in the presence of composition effects but the absence

of distortion effects. Since the observed data contains both effects, the difference between the

observed data and the CAC identifies the distortion effect. Estimates of the distortion effects

and tests of whether these are significantly different from zero are the central results of this

paper.

We construct estimates of the CAC by first showing it can be written as a weighted average of

counterfactual outcomes for patients situated in different parts of the wait time distribution. We

then argue that the required counterfactual outcomes can be constructed by applying bunching

techniques to the expected outcomes conditional on the wait time.20 This relies on a ‘no-selection’

assumption about the distribution of post-threshold movers: that those patients moved forward

in time are representative of all post-threshold patients.

To evaluate the validity of the no-selection assumption, we devise a test based on observable

patient characteristics such as age. These variables, conditional on the wait time, also exhibit

bunching at the four-hour point but in these cases the spike can only be explained by a com-

position effect since there is no distortion effect by definition. If the no-selection assumption

is valid then for these variables the observed data and the CAC should be equal. Tests of this

hypothesis therefore act as a placebo test, where rejection of the null hypothesis would suggest

that the no-selection assumption has been violated. We pass these placebo tests for a range of

demographic variables.

20This is in contrast to a typical bunching application that would work with the distribution of a variable that
is subject to a discontinuity in incentives. Here we work with outcomes conditional on a variable that is subject
to a discontinuity in incentives.
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We proceed by outlining each of these steps and assumptions more formally.

4.2 Wait times

Let w be the wait time in minutes, where w∗ = 240 (the target threshold). Denote the

density function of w in the targeted regime as ft(w) where t = {0, 1} signifies whether the

function relates to the targeted or non-targeted regime. We observe data on f1(w) and use a

bunching estimator to obtain f0(w).

To implement the bunching estimator we aggregate the data to 10-minute wait time bins

and then interpolate parts of the distribution using a polynomial regression. Following Kleven

(2016) we define f̂0(w) ≡
∑p

i=0 β̂iw
i and obtain the estimates β̂i from the following regression

cj =

p∑
i=0

βi(wj)
i +

w+∑
i=w−

γi1[wj = i] + uj , (1)

where cj is the number of individuals in wait time bin j, wj is the maximum wait time in bin

j (e.g. wj = 10 for the 1-10 minute wait time bin, wj = 20 for the 11-20 minute wait time bin,

etc), p is the order of the polynomial, and [w−, w+] is an ‘exclusion window’ that contains w∗

and is the period during which we assume that the target may have had local effects on the

wait time.

Equation (1) makes the following assumption in relation to the exclusion window.

Assumption 1 (Local wait time effects). Wait times of patients outside of an ‘exclusion win-

dow’, defined locally around the threshold w∗, are unaffected by the target:

f0(w) = f1(w) ∀w /∈ [w−, w+]. (2)

As we explain shortly, this assumption will hold if hospitals do not respond to the target by

substituting resources between patients that are inside and outside of the exclusion window.21

To establish the bounds of the exclusion window, we follow Kleven and Waseem (2013) and

set w− visually by examining when the distribution changes sharply and determine w+ using

21A comparable assumption is required when using bunching techniques to study taxable income responses.
In that setting the local effects assumption is often innocuous because the income distribution is the result of
optimization decisions of many unrelated individuals, with those situated far from the tax scheme discontinuity
having no incentive to adjust their behaviour. In our setting, the distribution of patient wait times is not
determined by patients’ decisions but by the decisions of doctors and nurses, and this raises the concern that
there may be an incentive to substitute wait times between patients across different parts of the wait time
distribution.

14



an iterative procedure that equates the excess mass in the period [w−, w∗] with the missing

mass in the period (w∗, w+].22 In the baseline analysis we use a polynomial of order 10 and set

w− = 180. After applying the iterative procedure this produces an upper cut-off of w+ = 400.

The observed data and our estimated counterfactual distribution are shown in Figure 3,

which indicates that the target moves a number of patients from the post-threshold period to

the pre-threshold period (‘post-threshold movers’). We later use these distributions to estimate

the impact of the target on wait times.

4.2.1 Testing for substitution effects

If hospitals respond to the target by substituting time or resources between patients inside

the exclusion window and those outside the window then Assumption 1 will not hold. A

particular concern is that the target may induce doctors to substitute time or resources from

patients typically discharged early in the wait time distribution (often high severity patients with

unambiguous symptoms, e.g. knife attack victims) to patients that might be at risk of breaching

the four-hour target (often high severity patients with uncertain diagnoses, e.g. headaches). By

making this type of substitution, doctors would extend some shorter wait times in order to

treat a greater proportion of patients within four-hours and thus perform better relative to the

target. The wait time distributions, with and without the target, would then differ outside of

the exclusion window and violate Assumption 1.

We test for two types of substitution effects. The first is ‘planned substitution’, where the

target causes a permanent change in the priority given to certain types of patients. The second is

‘temporary substitution’, where the target causes short-term deviations from planned priorities

when the ED is momentarily overrun with patients.

To test for planned substitution effects we exploit variation in expected volumes of ED

arrivals. This variation changes how tightly the target binds since when there are higher volumes

of arrivals the target is more challenging to meet in relative terms. With planned substitution

effects we anticipate that hospitals would change patient prioritisation across periods that are

expected to be more or less busy. While the volume of arrivals may be correlated with other

factors, such as the number of doctors scheduled to be on shift, this would not necessarily

impact the patient prioritisation that we compare in this test.23

22This implicitly assumes that the target does not affect patient demand for ED care in the short-term.
23One potential concern could be that any increase in scheduled doctors may offset any increase in expected

arrivals. If we repeat the same test but use shocks to ED arrivals then we find similar results.
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Figure 4 plots average wait times for each percentile of predicted mortality (as a measure of

severity) for patients that arrive during ‘busy’ and ‘non-busy’ periods. We define busy periods

by first predicting the number of patients present in the ED during each hour in our data, using

a regression with hospital-specific week-of-year, day-of-week, and hour-of-day fixed effects. We

then divide periods into the top-third of predicted volumes (busy) and bottom-third of predicted

volumes (non-busy).

The plot shows that higher severity patients typically have longer wait times, and that

busier periods have longer wait times for patients of all severity. Most importantly for our

purposes, the relative wait times of high and low severity patients are very similar in both types

of period. This suggests that as the target binds more or less tightly, hospitals maintain the

same prioritisation of patients and there are no planned substitution effects.

To test for temporary substitution effects, we examine whether there is any evidence that

hospitals substitute resources away from patients that we would expect to exit in the early part

of the distribution in order to ensure that patients approaching the target do not wait over 4

hours. Intuitively, we compare the wait times of newly arrived patients on the basis of how

many patients in the ED have waited almost four hours. If there are temporary substitution

effects between these individuals, we would anticipate large effects of the presence of existing

patients near the four-hour threshold on the wait times of new patients.

We examine two groups of newly arriving patients. We first focus on ‘early exit’ patients

(those predicted to have wait times below 180 minutes, such that they exit prior to the exclusion

window) and regress their wait times on the volume of existing patients wait ahead of them at

each 10-minute interval of the queue. We then compare these results to an equivalent analysis

of ‘late exit’ patients (those predicted to have wait times above 180 minutes). The late exit

group act as a control group in the sense that Assumption 1 allows for temporary substitution

effects to occur for this group (inside the exclusion window) but not for the early exit group

(outside the exclusion window). We predict early or late exit using a regression of wait times

on age, gender, diagnosis fixed effects and an ambulance indicator.

To implement the test we aggregate the data to the hospital-period level, where periods are

defined at 10-minute intervals, and estimate the following equation

wg
ht =

∑
k

βkqh,t−k + µhw + δhd + γhp + eht (3)

16



where wg
ht is the mean wait time for newly arriving patients of type g (early or late exit) at

hospital h in period t (e.g. between 12:01 and 12:10), qh,t−k is the number of existing patients

waiting ahead in the queue at horizon t−k (e.g. the number of patients that have been waiting

1-10 minutes, 11-20 minutes, and so on), and µhw, δhd and γhp are hospital-specific week-of-year,

day-of-week, and period-of-day fixed effects.

Figure 5 presents the estimated βk coefficients from Equation (3). We normalise coefficients

so they can be interpreted as the impact of a one standard deviation increase in the queue length

at each horizon on newly arriving patients’ wait times. Looking first at the early exit group, the

plot shows that longer queues increase wait times and the impacts decline with the time horizon.

There is no evidence of disproportionate impacts around the four-hour threshold. Looking now

at the late exit group, there is again evidence of longer queues increasing wait times but for this

group there is clear evidence of a discontinuity at the four-hour threshold. This indicates that,

for the late exit group, doctors actively substitute resources away from newly arriving patients

towards those patients that are at risk of breaching the target. These results suggest that there

are temporary substitution responses for patients predicted to be within the exclusion window

(late exits) but not for those predicted to be in the earlier part of the distribution (early exits).

Taken together, Figures 4 and 5 suggest that there are no planned substitution responses,

and temporary substitution responses do not occur outside of the exclusion window. This is

consistent with Assumption 1.

4.2.2 Interpreting the counterfactual

The counterfactual that the bunching estimator delivers in our context is the short-run

outcome that would occur if the four-hour discontinuity in incentives were removed. The coun-

terfactual holds constant other aspects of hospital production, such as patient prioritisation,

capital and labour inputs, and government funding. As a benchmark, the counterfactual fo-

cuses attention on the role of incentives in determining outcomes rather than the specifics of

the production function in our setting. We see it as a logical benchmark for understanding how

wait time incentives affect outcomes.

Our counterfactual differs from the pre-policy or long-run outcomes. To give an example

of the difference, we know from anecdotal evidence that the pre-policy outcome had different

production inputs (particularly the volume of staff) and different production technology (e.g.

IT systems). The full policy impact relative to the pre-policy situation would include the impact
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of these changes as well as the discontinuity in incentives introduced by the target.

We refer to our results as the ‘impact of the target’ for brevity but with the above under-

standing in mind. This interpretation applies to the results for wait times and other outcomes.

4.3 Treatment decisions and mortality outcomes

We now extend the analysis to consider outcomes other than the wait time, such as treatment

decisions (e.g. inpatient admission) and mortality outcomes. We first introduce some notation

to define the different channels through which the target can affect outcomes and then show

how we identify and estimate the ‘distortion effects’ of the target.

4.3.1 Composition and distortion effects

Letting yt be an outcome (treatment decision or mortality outcome) and wt be the wait time

in regime t ∈ {0, 1}, we define two conditional expectation functions. The first is E[yt | wt],

which is the expected outcome conditional on the wait time. This allows us to express average

outcomes (either in the targeted or non-targeted regime) for groups of patients located in

different parts of the wait time distribution (either in the targeted or non-targeted regime). For

example, the observed data can be written as E[y1 | w1]. It is also possible to think about

E[y0 | w0], outcomes in the absence of the target, and combinations such as E[y0 | w1] which

are the outcomes in the non-targeted regime for patients at certain points of the wait time

distribution in the targeted regime.

We also define E[yt | w1, w0], which is the expected outcome for patients with wait time w1

in the targeted regime and wait time w0 in the non-targeted regime. This notation allows us to

denote outcomes for groups of individuals that have had a change in wait time due to the target.

For example, E[yt | w− < w1 ≤ w∗, w∗ < w0 < w+] is the expected outcome for post-threshold

movers. Since we will repeatedly refer to this and other related groups, we abbreviate these

conditioning inequalities in the following way: E[yt | w−
1 , w

+
0 ].

Using this notation we can decompose the observed outcomes in the pre-threshold period.

Note that, from the wait time analysis, we know that the target causes a number of patients

to shift from the post-threshold to the pre-threshold period (‘post-threshold movers’). So with

the target, outcomes in the pre-threshold period are a weighted-average of pre-threshold non-

movers and post-threshold movers. Abbreviating the pre-threshold period as w−
1 , outcomes can
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be written as

E[y1 | w−
1 ] = ρE[y1 | w−

1 , w
−
0 ] + (1− ρ)E[y1 | w−

1 , w
+
0 ], (4)

where ρ ≡
[
F0(w∗)−F0(w−)

]
/
[
F1(w∗)−F1(w−)

]
and Ft is the cdf of wait times. The parameter

ρ is defined by the observed and counterfactual wait time distributions, where ρ is the proportion

of pre-threshold non-movers and 1− ρ is the proportion of post-threshold movers.

The composition and distortion effects are then defined as follows.

Definition 1 (Composition effect). The composition effect is the change in expected outcomes

conditional on the wait time that occurs in the pre-threshold period because the target shifts some

patients into this period from the post-threshold period:

∆C ≡ ρ
(
E[y0 | w−

1 , w
−
0 ]− E[y0 | w−

1 , w
−
0 ]
)

+ (1− ρ)
(
E[y0 | w−

1 , w
+
0 ]− E[y0 | w−

1 , w
−
0 ]
)

(5)

= (1− ρ)
(
E[y0 | w−

1 , w
+
0 ]− E[y0 | w−

1 , w
−
0 ]
)
. (6)

Definition 2 (Distortion effect). The distortion effect is the change in expected outcomes con-

ditional on the wait time that occurs in the pre-threshold period because the target has a direct

effect on the outcomes in each regime:

∆D ≡ ρ
(
E[y1 | w−

1 , w
−
0 ]− E[y0 | w−

1 , w
−
0 ]
)

+ (1− ρ)
(
E[y1 | w−

1 , w
+
0 ]− E[y0 | w−

1 , w
+
0 ]
)
. (7)

With these definitions the observed outcomes in the pre-threshold period can be written as

E[y1 | w−
1 ]︸ ︷︷ ︸

Targeted regime (observed)

= E[y0 | w−
0 ]︸ ︷︷ ︸

Non-targeted regime

+ ∆C︸︷︷︸
Composition effect

+ ∆D︸︷︷︸
Distortion effect

(8)

which can be verified by substituting in Equations (4), (6) and (7) and rewriting the non-targeted

regime outcome as E[y0 | w−
1 , w

−
0 ].

4.3.2 Identification of the distortion effect

To identify the distortion effect we make use of the following definition.

Definition 3 (Composition-adjusted counterfactual). The composition-adjusted counterfactual

(CAC) is the outcomes from the non-targeted regime in the pre-threshold period that would occur
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in the presence of the composition effect only:

E[y0 | w−
1 ] ≡ E[y0 | w−

0 ] + ∆C (9)

= ρE[y0 | w−
1 , w

−
0 ] + (1− ρ)E[y0 | w−

1 , w
+
0 ]. (10)

where the second line follows from the definition of ∆C .

With this definition it is straightforward to show that the distortion effect is identified as the

difference between the observed data and the CAC: ∆D = E[y1 | w−
1 ]− E[y0 | w−

1 ]. Moreover,

Equation (10) shows the CAC can be constructed as a weighted average of the counterfactual

outcomes for two groups, the pre-threshold non-movers and the post-threshold movers, where

the weights can be constructed from the observed and counterfactual wait time distributions.

4.3.3 Estimating counterfactual outcomes

We now revisit the bunching estimator and show it can be used to obtain the counterfactual

outcomes in Equation (10). We require two assumptions for this purpose.

Assumption 2 (Local outcome effects). Outcomes outside of an ‘exclusion window’, defined

locally around the threshold w∗, are unaffected by the target:

E[y1 | wt] = E[y0 | wt] ∀w /∈ [w−, w∗ + ε]. (11)

Assumption 2 rules out distortion effects outside of the pre-threshold period. It is the parallel

of Assumption 1 for the conditional expectation function. In this case the exclusion window

ends at w∗ + ε, where ε is a small ‘overhang period’ that extends past the four-hour threshold.

The overhang period allows for the empirical fact that the bunching in outcomes extends

slightly past the threshold (see Figure 2). We interpret the overhang as being a case of distortion

effects for patients that are narrowly discharged or admitted after the threshold. For example,

it may be that doctors admit additional patients in attempts to meet the target but not all of

the excess admits occur prior to the threshold as some patients may be delayed for unexpected

reasons. We determine the size of the overhang period visually, setting ε = 20 in the baseline

analysis, and note that our findings are robust to more conservative (larger) overhang periods.24

24Our estimates of the distortion effect, which relate to the pre-threshold period, do not capture distortions
in the overhang period. These omitted effects are small: the number of patients in the overhang period is 1.3%
of the number of patients in the pre-threshold period.
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Assumption 3 (No-selection). Non-targeted regime outcomes conditional on the wait time are

comparable for post-threshold movers and post-threshold non-movers:

E[y0 | w−
1 , w

+
0 ] = E[y0 | w+

1 , w
+
0 ] (12)

Assumption 3 rules out composition effects in the post-threshold period. It states that

after conditioning on the wait time, there is no selection when the post-threshold movers are

assigned. This assumption is consistent with doctors randomly selecting which patients get a

shorter wait time in response to the target. While this is strong assumption we believe it is

plausible. For example, doctors routinely work with incomplete information and this will be

exacerbated when they are forced to make earlier admission or discharge decisions (e.g. they

may not yet have conducted all tests, or received all test results) and, as a result, may not be

able to systematically select which patients to move forward. Importantly, we are also able to

evaluate this assumption empirically using placebo tests and discuss this further below.

Together Assumptions 2 and 3 imply that there are no composition or distortion effects

outside of the exclusion window [w−, w∗ +ε]. We can therefore apply the bunching estimator in

the same way as before but to the conditional expectation function E[y1 | w1]. The estimated

counterfactual delivered by the bunching estimator is then E[y0 | w0]. This directly gives us

E[y0 | w−
1 , w

−
0 ] and, given Assumption 3, also provides us with E[y0 | w−

1 , w
+
0 ], which are the

two terms required to construct Equation (10).

Figure 6 presents an example showing the observed data and our estimated counterfactual

for the likelihood of inpatient admission, where the exclusion window is highlighted in grey and

we have set ε = 20.

4.3.4 Testing for distortion effects

Recalling the definition ∆D = E[y1 | w−
1 ] − E[y0 | w−

1 ], and noting that this can now be

constructed from the observed data and Equation (10), the test for distortion effects is simply

a hypothesis test that ∆D = 0. Estimates of this difference and tests of this null hypothesis

form the central results of this paper. We compute statistical significance for the test using

non-parametric bootstrapped standard errors clustered at the hospital organisation level.25

25Throughout the analysis we cluster results at the trust (organisation) level. NHS trusts include groups of
one or more hospitals in close geographical proximitiy that share common management. We do not use hospital
site codes due to some organisations entering data only at the trust level. All results are robust to clustering at
the site level.
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Figure 7 provides a visual example of how we construct the CAC and the test of distortion

effects for the probability of inpatient admission. The pre- and post-threshold periods are

shown in different shades of grey. In each of these periods the horizontal thin dashed line gives

the conditional expectation in Equation (10). The CAC, which is a weighted average of these

two conditional expectations, is shown in the horizontal thick dashed line in the pre-threshold

period.26 In comparison, the horizontal thick solid line in the pre-threshold period is the mean

observed outcome in the pre-threshold period. Finally, the difference between the thick solid and

dashed line is the distortion effect, ∆D, which shows that the observed admission probability

in the pre-threshold period is too high to be explained by the composition effect alone. In this

case we can reject the null hypothesis that ∆D = 0.

4.3.5 Testing the no-selection assumption

In Assumption 3 we rule out the possibility of non-random selection of post-threshold movers.

By adapting our test for distortion effects, it is straightforward to generate placebo tests of this

assumption based on observable patient characteristics. The key insight that motivates this is

that observed demographics, such as age or gender, are by definition subject to composition

effects but not distortion effects. Testing the hypothesis that ∆D = 0 for any demographic

variable is therefore equivalent to testing the no-selection assumption.

This ‘demographic test’ acts as a placebo test, since we are testing for effects in situations

where it is known that none should exist. To the extent that these tests indicate that the

no-selection assumption does not hold, our estimated distortion effects will be a combination of

distortion and composition effects.

Figure 8 provides a visual example of the demographic test using age, which follows the

same format as Figure 7. There is again bunching at the four-hour threshold but in this case

it cannot be explained by any distortion effects because patient age is unaffected by hospital

treatment decisions. Comparing the observed data and the CAC shows that these now lie very

close to one another and indeed a hypothesis test cannot reject the null hypothesis that ∆D = 0.

This is consistent with the no-selection assumption: the mean age of post-threshold movers is

comparable to the mean age of all post-threshold patients.

26The weights are obtained from the wait time distributions shown in Figure 3.
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5 Results

We begin this section by first presenting the wait time results. We then present results

from the placebo tests of the no-selection assumption, and finally turn to the results concerning

treatment decisions and mortality outcomes. We explore the mechanisms behind the mortality

outcomes in Section 6.

5.1 Wait times

Figure 3 shows the observed wait time distribution and our estimated counterfactual distri-

bution. The shaded panel is the exclusion window where we estimate the effects of the policy,

covering the period between 180 and 400 minutes. The solid line is the observed distribution

of patients that exit at each interval and the dashed line is the estimated counterfactual dis-

tribution. The effect of the target on exit times is clear: a large proportion of patients from

the post-threshold period (240 to 400 minutes) are moved to the pre-target period (180 to 240

minutes); these are the patients we refer to as post-thresholder movers. By comparing the ob-

served wait time distribution with our counterfacutal we can compute the impact of the target

on average wait times.

The results indicate that the target is successful in achieving its primary aim of reducing wait

times. We estimate that the target reduces mean wait times by 7 minutes. This is equivalent

to 4% of the estimated counterfactual mean. For patients affected by the target (i.e. in the

exclusion window), we estimate that the target reduces wait times by 19 minutes, or 8% of their

estimated counterfactual mean.

5.2 Demographic tests

Table 2 presents the results of the demographic tests. Column (1) presents estimates of

the distortion effect and column (2) presents estimates of the distortion effect as a proportion

of the counterfactual mean. Panel A presents results using individual demographic variables,

where we test using age, a male indicator, and an indicator for whether the patient arrived

via ambulance. We cannot reject the hypothesis of no distortions for age and ambulance-

arrival, which supports the plausibility of the no-selection assumption. In contrast, we reject

the hypothesis of no distortions for the male indicator. This result indicates that post-threshold

movers are more likely to be female than the post-threshold non-movers. However, the extent
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of this selection effect is small: the difference between the observed and composition-adjusted

counterfactual proportion of females in the pre-target period is 0.5 percentage points (1.1% of

the baseline).

Panel B in Table 2 presents results for variables that are linear combinations of the three

individual demographic variables. We use predicted admission and predicted mortality, where

the predictions are obtained from linear regressions of the outcome on a fully interacted set of

male, age-category, and ambulance indicators. The R2 statistic from these predicted regressions

is 0.21 and 0.06. The demographic tests for these predicted variables cannot reject the hypothesis

of no distortion. The implication of these tests is that even though the gender test rejects the

hypothesis, the contribution of gender to salient medical outcomes, as measured by predicted

admission and mortality, is low.

Together these results indicate that, with only gender as a minor exception, the demographic

tests support the no selection assumption. In practice this means that patients observed with

wait times in excess of 240 minutes (post-threshold non-movers) are comparable to those pa-

tients that would have had wait times in excess of 240 minutes in the absence of the target

(post-threshold movers), and we can therefore use these post-threshold non-movers as the coun-

terfactual for the post-threshold movers.

5.3 Treatments and mortality outcomes

Table 3 presents results of the distortion test for a range of treatment decisions and costs.

Each row shows results for a separate outcome. Column (1) presents estimates of the distor-

tion effect and column (2) presents estimates of the distortion effect as a proportion of the

counterfactual mean.

Panel A presents estimates for treatment decisions in the ED. We find that, controlling for

compositional changes, there is an increase in the odds of admission of 4.6%. This is 12.2%

of the baseline composition-adjusted counterfactual value, which is sizeable. The results for

discharges and referrals out of the ED to specialist clinics or hospitals offset these admission

effects, with roughly three-quarters of the effect coming from decreased discharges, and one-

quarter from decreased referrals, although as a percentage of the baseline these responses are

of comparable magnitude.

We also show target affects on the number of investigations performed in the ED, such as

x-rays, blood-test and CT scans. We find that investigations rose by 0.1 per patient, or 4.6%
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of the baseline. We do not, however, find any effect on the number of treatments performed

in the ED. This suggests that doctors perform more tests in order to speed up the admission

decision for individuals (i.e. they perform an extra test instead of monitoring the patient for a

longer period of time) but has little effect on the treatments that they provide in the ED.

Panel B examines inpatient treatment decisions. For inpatient treatments, in order to avoid

selection, we include all ED patients, even those who did not end up being admitted. As a result,

the coefficient represents the incremental amount of treatment due to the four-hour target. We

find no evidence of any statistically significant increases in length of stay or the number of

procedures. This suggests that the extra admissions do not receive substantial amounts of care

in the hospital. That is, these admissions appear to be largely placeholders in order to avoid

the four-hour target.

Nevertheless, the additional admits are costly. Panel C of Table 2 examines the impact of

the four-hour target on 30-day patient costs. There is a small rise in ED costs of $3, or two

percent of ED costs. But there is a significant increase in inpatient costs of $126, which is 5%

of inpatient costs. That is, even though most patients appear to be only housed in inpatient

departments as a way of avoiding the four-hour target, these admissions generate transfers from

the government to hospitals. Total costs rise by roughly 5% relative to the baseline.

Table 4 then extends our analysis to look at patient mortality outcomes. We consider

mortality at a variety of time frames, ranging from 30 days after entering the ED to 1 year

later. We find significant short term declines in mortality. Mortality over 30 days declines by

0.4 percent, or 14% of baseline. This effect fades slightly over time and falls as a share of the

baseline, so that at one year it is only 3.1% of baseline. This pattern suggests that the health

benefits of the four-hour policy are seen in the short term.

This is a sizeable mortality decline given the modest increase in costs documented in Table

2. We find that total costs over 30 days from admission to the ER rise by 5%, while mortality

falls by 3.1% over a year. Calculating the cost per year of life saved by the policy requires

assumptions on how long-lasting is the impact on mortality and on any subsequent costs past

30 days. Assuming no subsequent costs, but also assuming that the mortality impact only lasts

one year, this implies a cost per year of life saved of $43,000.27 This is low relative to standard

valuations of a life-year in the U.S., where typical benchmarks are around $100,000 (Cutler,

27This reflects the cost to the government of the policy due to the increase in HRG transfers to hospitals.
The actual cost in terms of resource-use will be even lower if the marginal admissions due to the policy use fewer
resources than the average HRG cost.
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2003), and at the upper end of valuations in the U.K., where the national benchmarks are set

at $28,000 to $42,000 (McCabe et al., 2008).

In summary, then, our analysis of the four-hour target shows that it led to shorter wait

times, more admission, only marginal additional costs (due to little use of inpatient care for

those admitted), and significant reductions in mortality. That is, it appears that constraining

hospitals did save lives.

6 Using Patient Heterogeneity to Identify Mechanisms

Our results so far show a number of effects of the wait time target on patient treatment

– on wait times, admission probabilities, and treatment costs more generally. We also show a

significant effect on patient mortality. Ideally we would like to uncover the mechanism through

which the four-hour target impacts patient mortality. This is difficult since we essentially have

one instrument (the target) and multiple changes in patient treatment.

To address this issue we turn to considering heterogeneous impacts across types of patients.

That is, we examine whether there are groups of patients where there are differential effects of

the four-hour target. If those groups have effects that are focused along one channel (e.g. wait

times) but not another (e.g. admits), then we can use this to separate the effect of the two

channels on outcomes.

In particular, we consider two natural sources of heterogeneity. The first is differences

across diagnosis. In particular, we divide patients into 36 diagnosis groups.28 It seems likely

that the largest wait time impacts of the target will show up for those who have the most severe

diagnoses, since they are the most likely to hit the wait time target. Indeed, Figure 9 graphs the

proportion of patients hitting the wait time target (in the counterfactual wait time distribution)

against the severity of the diagnosis. Severity is measured by mean predicted 30-day mortality

for patients within each diagnosis. In fact, we see that the odds of hitting 240 minutes are much

higher for the most severe diagnoses.

We therefore separately compute the wait time reduction effects, and distortion effects for

admissions and 30-day mortality for each diagnosis group. We then assess how the heterogeneity

across diagnosis groups translates to each of these outcomes.

28The data assign patients to 40 diagnosis categories, including a ‘missing’ category. We exclude four diagnoses
(nerve injuries, electric shock, near drowning and visceral injury) as small samples do not allow us to separately
estimate the impact of the target for these groups.

26



The results of this exercise are shown in Figure 10. Panel A shows that higher severity

diagnoses have larger wait time effects. This is sensible since they are most likely to wait

the longest without the four-hour policy. But Panel B shows that the effects of the target on

hospital admissions is no higher for more severe diagnoses. That is, the more severe diagnoses

are getting treated sooner, but are no more likely than others to have that treatment resolve in

an extra hospital admission.

Panel C shows the differential treatment effect on mortality by diagnosis category, where

black circles correspond to actual mortality outcomes and red triangles correspond to predicted

mortality outcomes. The y-axis shows absolute value of mortality reduction, so that a larger

value means a larger mortality reduction. Looking at the black circles, there is a clear upward

slope showing that the mortality effect of the four-hour target is strongest for the most severe

diagnoses. To ensure that selection is not driving our result, the graph also repeats this exercise

for predicted mortality. If our assumption of no-selection (Assumption 3) holds, these effects

should not be statistically different from zero. The red triangles shows that this is indeed the

case, with all estimates clustered around zero and no systematic relationship between the effects

of the target on predicted mortality and the severity of the diagnosis.

Given that there is an effect on wait times, but not admissions, this suggests that it is wait

time reductions and not increased admissions that are driving the results. Of course, this set

of corresponding facts do not prove this causal mechanism because there may be other factors

that cause the effects to differ by diagnosis. So to further test this conclusion we consider a

second source of heterogeneity.

We next turn to heterogeneity by the degree of inpatient crowding. In times where the

inpatient department is more crowded, EDs may be less able to address their wait time targets

by admitting patients because the inpatient wards have less spare capacity for these patients

to be sent. But it is unclear that inpatient crowding would much affect the marginal wait time

impacts of the target. Inpatient crowding therefore provides an opposite test of the diagnosis

heterogeneity: an opportunity to observe heterogeneity that drives admission probabilities but

not wait times.

To assess this, we divide the data into 50 quantiles depending on how busy the hospital

inpatient department is on the day of admission. For each hospital-day, we calculate the daily

number of inpatients treated by the hospital, and use this to assign each hospital-day to one of

50 groups in the hospital-specific distribution of inpatient crowding. Patients are then assigned
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to each of these groups depending on their day of arrival.29 To address differences in casemix

during busy and quiet periods, we also split patients into two severity groups. ‘Major’ diagnoses

are defined as those with a 30-day mortality rate above the overall 30-day mortality rate (1.6%).

Interacting the 50 inpatient crowding groups with severity yields 100 groups. For 95 of these

groups we have sufficient sample size to independently compute the effects of the target, and

therefore across which to examine heterogeneity in effects.

Figure 11 presents the results of this second heterogeneity test. The figure shows the results

for these observations, ranked from least crowded to most crowded. Panel A shows that inpatient

crowding has a weak, positive relationship with wait times. Panel B shows a strong, negative

relationship between crowded inpatient departments and smaller increases in admission. So this

source of heterogeneity gives the opposite results of what we saw for severity: a small effect

on wait times and a large effect on admissions. Therefore, if our earlier supposition is correct

that it is wait times and not admissions that drives our mortality effects, we should see little

differential impact on mortality across these groups.

In fact, that is exactly what we see in Panel C in the black circles: there is no significant

relationship between the degree of inpatient crowding and the estimated mortality effect. As

in Figure 10c, we repeat this analysis with estimated reductions in predicted mortality (which

should be unaffected by the target once we adjust for the composition of patients) to show that

these results are not driven by selection. The red triangles show that the predicted mortality

effects are again all close to zero, with no significant relationship between predicted mortality

reductions and inpatient crowding.

We formalize these graphical results in Table 5. The unit of analysis in this table is either

diagnosis groups (columns 1-3) or inpatient crowding by severity (columns 4-6). The dependent

variable is the distortion effect on mortality in absolute value for each group. The indepen-

dent variables are the estimated wait time reduction and the distortion effect for admission

probability. Essentially, these regressions report associations between the estimated impact on

mortality and the estimated impact on wait times and admissions, using a grouping estimator

with groups defined by severity or inpatient crowding. A positive coefficient in these regres-

sions can be interpreted as that margin being associated with a larger policy effect on 30-day

mortality.

29We calculate the inpatient census at the daily level as the data do not contain information on time of arrival
at, or discharge from, the inpatient department.
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Column 1 shows that across the 36 diagnosis groups, those groups with larger wait time

effects have larger mortality effects. The estimated coefficient suggests that each additional

minute of wait time reduction increases the mortality reduction by 0.001 percentage points.

Earlier, we estimated that wait times fell by 19 minutes on average. This suggests a mortality

reduction of 2.2 percentage points. This is of a similar magnitude to our reduced form estimate

in Table 4 of 3-4 percentage points. Column 2, however, shows that there is no impact of the

increase in admissions on mortality. And column 3 shows it is still the case that groups with

larger wait time effects, but not larger admit effects, have larger mortality effects when we

consider both variables together.

Columns 4-6 repeat this exercise using the estimates by inpatient crowding and patient

severity. Once again, we have a highly significantly relationship between the wait time reduction

and mortality reduction, which a coefficient that is similar to column 1. In this case, in column

5, we do see a significant effect of the admissions effect on mortality, albeit with a wrong signed

coefficient suggesting that a larger admissions effect leads to a smaller mortality effect. But

when both are included in column 6 only the wait time effect persists.

These results are not surprising given the graphical evidence shown above. The bottom line

is that heterogeneity associated with wait time variation appears associated with mortality vari-

ation, while heterogeneity associated with admissions variation does not. This does not prove

that the wait time reductions are driving our mortality reductions, but it is highly suggestive.

7 Conclusion

The Emergency Department is a central node of health care delivery in developed countries

around the world. It is the entry point into the hospital for a large share of patients and decisions

made rapidly by ED staff have fundamental impacts on the entire course of care. Despite the

complicated nature of these decisions, there remains dissatisfaction in most health care systems

with the level of crowding in EDs and the speed with which cases are resolved. This has led

in recent years to both open competition on ED wait times and to regulatory interventions to

reduce those times.

We study one type of regulatory intervention, the four-hour wait target policy enacted in

England. We find that this target had an enormous effect on wait times, as illustrated vividly

by the spike in the wait times distribution at the four-hour mark. We use well-established

29



bunching methodologies to estimate that this represents a significant reduction of almost 20

minutes, or 8%, in the average wait time of impacted ED patients.

We then turn to assessing how this change in wait times impacted patient care and outcomes.

We do so by introducing an econometric framework that allows us to separate the compositional

impacts of individuals shifting from after to before the four-hour target from the distortionary

effect of the four-hour target on medical decisions. We find this target led to a significant

rise in hospital admissions. These admissions do not appear to involve much new treatment,

suggesting that they may just be ‘placeholders’ to meet the target. But there is nonetheless a

significant rise in inpatient spending of about 5% of baseline.

At the same time, we find striking evidence that the target is associated with lower patient

mortality. There is a 0.4 percentage point reduction in patient mortality that emerges within the

first 30 days, amounting to a large 14% reduction in mortality in that interval. This reduction

fades slightly over time, so that after one year it amounts to a 3.1% mortality reduction. While

modest, this effect is large relative to the extra spending, suggesting a cost of extending life by

one year of $43,000. Finally, we exploit heterogeneity across patient types to show that this

effect arises through reduced wait times, not through increased inpatient admissions.

The implications of our finding is that, unconstrained, EDs in England are not making

optimal decisions on patient wait times. By reducing wait times, the four-hour target induced

cost-effective mortality reductions. This is of likely a lower bound on the welfare gains due

to the target, as it does not value the other benefits to consumers from waiting shorter times,

although there may be welfare costs from the extra admissions (Hoe, 2017).

Of course, this result only applies to the specific target studied here, and does not necessarily

imply that other limits would have equal effects. It is also unclear how this result applies to

other nations with different means of rewarding or incentivizing EDs. More work is clearly

needed to understand the proper set of rules and incentives for delivering cost-effective ED

care.
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Figures and Tables

Figure 1: Distribution of wait times
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy.
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Figure 2: Inpatient admission probability conditional on wait time
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy.
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Figure 3: Estimated counterfactual wait time distribution
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy; (4) The estimated counterfactual is obtained from a polynomial regression that omits the exclusion
window shown in grey.
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Figure 4: Mean wait times by patient severity and expected volumes of ED arrivals
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Notes: (1) Wait times defined as the time from arrival in the ED to leaving the ED; (2) Predicted mortality
defined using a regression of 30-day in-hospital mortality on a fully interacted set of age, gender, ambulance
arrival fixed effects and diagnosis fixed effects; (3) Busy and non-busy periods defined by predicting the volume
of ED arrivals during each hour in our data, using a regression with hospital-specific week-of-year, day-of-week,
and hour-of-day fixed effects, and then dividing periods into the top-third of predicted volumes (busy) and
bottom-third of predicted volumes (non-busy).
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Figure 5: Impact of queues on wait times for arriving patients by early- and late-exit groups
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Notes: (1) Wait times defined as the time from arrival in the ED to leaving the ED; (2) We normalise
coefficients so they can be interpreted as the impact of a one standard deviation increase in the queue length at
each horizon on newly arriving patients’ wait times; (3) Early or late exit is defined using a regression of wait
times on age, gender, diagnosis fixed effects and an ambulance indicator, from which we predict wait times and
group individuals into early (below 180 minutes) and late (above 180 minutes) exit groups.
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Figure 6: Estimated counterfactual admission probability conditional on wait times
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving
the ED; (2) Wait times over 600 minutes not shown; (3) 240 minutes is the four-hour threshold specified in the
policy; (4) The estimated counterfactual is obtained from a polynomial regression that omits the exclusion
window shown in grey.
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Figure 7: Constructing the composition-adjusted counterfactual for admission probability
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving the ED; (2) Wait times over 600 minutes not shown; (3) 240
minutes is the four-hour threshold specified in the policy; (4) The horizontal thin dashed lines in the light grey (dark grey) region give the counterfactual outcome in the
pre-threshold (post-threshold) period, E[y0 | w0]; (5) The horizontal thick dashed line in the pre-threshold period is the composition-adjusted counterfactual, E[y0 | w−

1 ]; (6)
The horizontal thick solid line in the pre-threshold period is the observed observed admission probability, E[y1 | w−

1 ]; (7) The distortion effect is the gap between the thick
solid and dashed line, ∆D = E[y1 | w−

1 ]− E[y0 | w−
1 ].
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Figure 8: Demographic test of the no-selection assumption using age
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Notes: (1) Wait time intervals are 10-minute periods and defined as the time from arrival in the ED to leaving the ED; (2) Wait times over 600 minutes not shown; (3) 240
minutes is the four-hour threshold specified in the policy; (4) The horizontal thin dashed lines in the light grey (dark grey) region give the counterfactual outcome in the
pre-threshold (post-threshold) period, E[y0 | w−

0 ]; (5) The horizontal thick dashed line in the pre-threshold period is the composition-adjusted counterfactual, E[y0 | w−
1 ]; (6)

The horizontal thick solid line in the pre-threshold period is the observed observed admission probability, E[y1 | w−
1 ]; (7) The distortion effect is the gap between the thick

solid and dashed line, ∆D = E[y1 | w−
1 ]− E[y0 | w−

1 ].
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Figure 9: Proportion wait beyond the threshold vs. predicted mortality by diagnosis groups
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Notes: (1) Each data point corresponds to a diagnosis group average; (2) Proportion waiting beyond the
threshold defined using the counterfactual distribution of wait times; (3) Predicted mortality defined using a
regression of 30-day in-hospital mortality on a fully interacted set of age, gender, ambulance arrival fixed effects
and diagnosis fixed effects.
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Figure 10: Estimated effects of the target vs. predicted mortality by diagnosis groups
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Notes: (1) Each data point corresponds to a diagnosis group average; (2) Predicted mortality defined using a
regression of 30-day in-hospital mortality on a fully interacted set of age, gender, ambulance arrival fixed effects
and diagnosis fixed effects.
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Figure 11: Estimated effects of the target vs. inpatient crowding by crowding-severity groups
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Notes: (1) Each data point corresponds to an inpatient crowding-severity group average; (2) Inpatient crowding
groups defined according to the number of inpatients treated per hospital-day, which we then use to split into
50 quantiles; (3) Severity is defined as diagnoses with a mean 30-day mortality rate above the mean overall
30-day mortality rate; (4) Predicted mortality defined using a regression of 30-day in-hospital mortality on a
fully interacted set of age, gender, ambulance arrival fixed effects and diagnosis fixed effects.
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Table 1: Summary statistics

All patients Admitted inpatients

Mean Std. dev. Mean Std. dev.

Patient characteristics
Age 38.99 26.22 54.64 27.84
Male 0.51 0.50 0.48 0.50
Ambulance arrival 0.29 0.45 0.60 0.49

Treatment decisions
Inpatient admission 0.24 0.42 1.00 0.00
ED discharge 0.58 0.49 0.00 0.00
ED referral 0.19 0.39 0.00 0.00
Wait time (mins) 154.56 100.20 222.50 120.46
ED treatment count 1.81 1.38 2.22 1.68
ED investigation count 1.54 2.03 3.18 2.50
Inpatient length of stay (days) 1.28 5.63 5.41 10.58
Inpatient procedure count 0.16 0.64 0.69 1.18

Costs
30-day ED cost 172.35 117.21 203.98 114.98
30-day inpatient cost 1, 503.58 5, 321.99 4, 558.00 8, 524.53
30-day total cost 1, 675.93 5, 358.37 4, 761.98 8, 559.73

Mortality outcomes
30-day in-hospital mortality 0.01 0.11 0.04 0.20
30-day mortality 0.02 0.13 0.05 0.23
60-day mortality 0.03 0.16 0.09 0.29
365-day mortality 0.05 0.22 0.16 0.37

Notes: (1) Costs reported in 2018 USD and refer to payments from the government to hospitals based on the
prospective payment system; (2) All inpatient variables (e.g. length of stay, costs) take on the value zero for
patients that are not admitted.
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Table 2: Demographic tests of the no-selection assumption

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

Panel A: Individual characteristics
Age 0.417 0.009 46.468

(0.284) (0.006)
Male −0.005∗∗∗ −0.011∗∗∗ 0.487

(0.001) (0.003)
Ambulance −0.002 −0.005 0.440

(0.004) (0.010)

Panel B: Predicted characteristics
Predicted admission 0.002 0.006 0.323

(0.002) (0.007)
Predicted mortality 0.000 0.015 0.019

(0.000) (0.015)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−
1 ]; (2) Predicted admissions and

mortality use regressions with fully interacted variables from Panel A; (3) Bootstrapped standard errors
clustered at the hospital trust level (199 repetitions).
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Table 3: Estimated distortion effects of the target on treatment decisions and costs

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

Panel A: ED treatment decisions
Pr(admission) 0.046∗∗∗ 0.122∗∗∗ 0.379

(0.008) (0.022)
Pr(discharge) −0.033∗∗∗ −0.070∗∗∗ 0.472

(0.007) (0.014)
Pr(referral) −0.013∗∗∗ −0.089∗∗∗ 0.150

(0.003) (0.020)
ED investigation count 0.108∗∗ 0.046∗∗ 2.369

(0.048) (0.021)
ED treatment count −0.033 −0.016 2.070

(0.028) (0.014)

Panel B: Inpatient treatment decisions
Length of stay (days) 0.035 0.015 2.302

(0.048) (0.021)
Inpatient procedure count 0.000 0.001 0.290

(0.006) (0.020)

Panel C: Hospital costs
30-day ED cost 3.040∗∗∗ 0.016∗∗∗ 192.950

(0.911) (0.005)
30-day inpatient cost 125.793∗∗∗ 0.052∗∗∗ 2, 414.087

(33.992) (0.015)
30-day total cost 128.833∗∗∗ 0.049∗∗∗ 2, 607.037

(34.389) (0.014)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−
1 ]; (2) Predicted admissions and

mortality use regressions with fully interacted variables from Panel A; (3) All inpatient variables (e.g. length of
stay, costs) take on the value zero for patients that are not admitted; (4) Bootstrapped standard errors
clustered at the hospital trust level (199 repetitions).
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Table 4: Estimated distortion effects of the target on mortality

Distortion effect (∆D) CAC mean

Level % Level
(1) (2) (3)

30-day mortality −0.004∗∗∗ −0.138∗∗∗ 0.029
(0.001) (0.019)

90-day mortality −0.004∗∗∗ −0.079∗∗∗ 0.048
(0.001) (0.019)

1-year mortality −0.003∗ −0.031∗ 0.090
(0.002) (0.017)

Notes: (1) CAC mean is measured over the pre-threshold period, E[y0 | w−
1 ]; (2) Bootstrapped standard errors

clustered at the hospital trust level (199 repetitions).
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Table 5: OLS regressions of the estimated 30-day mortality reductions on other effects of the
target

Diagnosis groups Crowding-severity groups

(1) (2) (3) (4) (5) (6)

Wait time 0.118∗∗∗ 0.115∗∗∗ 0.083∗∗∗ 0.066∗∗∗

(0.034) (0.034) (0.018) (0.022)
Admission probability −0.059 −0.029 −0.088∗∗∗ −0.037

(0.065) (0.058) (0.024) (0.028)

N 36 36 36 95 95 95

Notes: (1) Dependent variable is the absolute value of the target impact on 30-day mortality measured as % of
the CAC mean over the pre-threshold period; (2) Independent variables are the absolute value of the target
impact on the respective variable, measured as a % of the CAC mean over the pre-threshold period.
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Online Appendix: Additional Figures and Tables

Figure 1: Distribution of wait times at a large hospital in California
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Notes: (1) The English data displays a sharp discontinuity in the wait time distribution at four hours (see
Figure 1). Here we present the wait time distribution from a large hospital in California to illustrate that the
discontinuty in the English data is unlikely to naturally occur, and is instead induced by the target; (2) We
thank David Chan for providing the data for this chart.
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