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1 Introduction

Advances in automation and robotics technology are poised to transform many aspects of the

production process (e.g., Brynjolfsson and McAfee, 2012, Autor, 2015, Ford, 2016), and have already

made important inroads in modern manufacturing (e.g., Graetz and Michaels, 2015, Acemoglu and

Restrepo, 2017a). But there are major differences in how rapidly these technologies are spreading

across countries. The number of industrial robots per thousand workers in US manufacturing stands

at 9.14 in 2014, while the same number is considerably higher in Japan (14.20), Germany (16.95)

and South Korea (20.14). Similarly, the United States lags behind Germany and Japan in the

production of robots—a single major producer of industrial robots is headquartered in the United

States, compared to six in each of Germany and Japan (Leigh and Kraft, 2017). These differences in

automation are not only notable given the central role that this and other automation technologies

are likely to play in the next several decades, but they may also be related to a puzzling fact noted

in Acemoglu and Restrepo (2017b): despite the potential negative effects of aging on productivity

and output, there is no negative relationship between aging and GDP growth across countries.

In this paper, we advance the hypothesis that cross-country differences in automation are at least

in part explained by differential demographic trends, and emphasize the productivity implications

of automation induced by demographics. Focusing on robotics where we have access to comparable

data, the United States, and to some degree the United Kingdom, are lagging behind in robotics

because they are not aging as rapidly as Germany, Japan and South Korea. This is not because

of differential demand for robots and automation in the service sector in countries undergoing

rapid aging—our focus is on the manufacturing sector. Rather, we document that this pattern

reflects the response of firms to the relative scarcity of middle-aged workers, who appear to be

most substitutable for robots.

We start with a simple model of technology adoption. Two types of workers, “middle-aged” and

“older”, are allocated across different tasks and industries. Middle-aged workers have a compara-

tive advantage in production tasks, while older workers specialize in nonproduction services. The

importance of production tasks relative to nonproduction services varies across industries. Firms

can also automate and substitute machines for labor in production tasks.

In our model technology is endogenous: firms can invest to automate additional tasks in their

industry. Using this framework, we show that demographic changes that reduce the ratio of middle-

aged to older workers induce the adoption of additional automation technologies. This effect

is particularly pronounced in industries that rely more on middle-aged workers and those that

have greater opportunities for automation. The productivity implications of demographic change

are however ambiguous: on the one hand, demographic change affects output per worker given

technology—and this effect is negative when middle-aged wage is greater than the wage of older

workers. On the other hand, the induced automation response enables the substitution of cheaper

machines for labor, increasing productivity.

The bulk of the paper investigates these issues empirically, focusing on industrial robots as well
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as a few other automation technologies. Our results point to a sizable impact of aging on the

adoption of robots and other automation technologies. We start with suggestive evidence on the

substitutability between robots and workers of different ages. We document that workers between

the ages of 31 and 55 are more likely to be employed in blue-collar occupations than in white-

collar or service occupations and in highly-robotized industries than in other industries. We also

show that the introduction of robots is associated with a relative decline of blue-collar occupations.

Finally, we find that exposure to robots has a negative impact on employment and earnings of

middle-aged workers across US commuting zones, with no corresponding negative impact on older

workers. These three pieces of evidence support our working hypothesis for the rest of the paper—

that robots are more substitutable for middle-aged workers than older workers.

We then use country-level data on the stock of robots per thousand workers between 1993 and

2014 from that International Federation of Robotics (IFR) to investigate the effects of aging of

the workforce. Our main specifications focus on long differences, where our left-hand side variable

is the change in the number of robots per thousand (industry) workers between 1993 and 2014.

Our results indicate that countries undergoing more rapid aging—measured as an increase in the

ratio of workers above 56 to those between 26 and 55—invest significantly more in robotics. The

effects we estimate are quantitatively large. Aging alone explains close to 40% of the cross-country

variation in the adoption of industrial robots. Moreover, a 10 percentage point increase in our

aging variable is associated with 0.9 more robots per thousand workers—compared to the average

increase of 3 robots per thousand workers observed during this period. This estimated magnitude

suggests, for instance, that if the United States had the same demographic trends as Germany, the

gap in robotics between the two countries would be 25% smaller.

These results are robust to a range of controls allowing for differential trends across countries in

investment in robotics. For example, they are virtually unchanged when we control for differential

trends by initial GDP per capita, population level, robot density, capital output ratio, various

human capital variables, wage levels, and unionization rates. Because age composition is potentially

endogenous due to migration patterns correlated with economic trends, we verify our baseline results

using an instrumental-variables (IV) strategy exploiting past birth rates and cohort sizes which

strongly predict aging and are unlikely to be correlated with subsequent automation decisions

through other channels. These estimates are very similar to the ordinary least squares (OLS)

estimates. We also confirm these results using an alternative estimate of investment in robotics:

imports of industrial robots computed from bilateral trade data.

The effects of demographic change on technology are not confined to robotics. Using bilateral

trade data, we also show a similar relationship between aging and a number of other automation

technologies (such as numerically controlled machines, automatic welding machines, automatic

machine tools, weaving and knitting machines, and various dedicated industrial machines), and

also verify that there is no such relationship for technologies that appear more broadly labor-

augmenting (such as manual machine tools and non-automatic machines as well as computers).

These effects are not confined to the adoption of automation technologies either. Using data
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on exports of automation technologies and patents, we provide additional evidence that countries

undergoing more rapid demographic change are developing more automation technologies.

We also estimate the effects of aging on the adoption of robots at the commuting zone level

in the United States. Though we do not have measures of investments in robots for commuting

zones, we use Leigh and Kraft’s (2016) measure of the number of integrators in an area as a proxy

for robotics-related activity. Since these integrators specialize in installation, reprogramming and

maintenance of industrial robots, their presence is indicative of significant installation of robots in

the area. Using this measure, we confirm the relationship between demographic change and the

adoption of robots.

As noted above, a sharper prediction of the directed technological change approach to automa-

tion is that the effects of demographic change should be particularly pronounced in industries that

rely more on middle-aged workers and that present greater opportunities for automation. Using

industry-level data from the IFR, we find robust support for these predictions as well.

Finally, we investigate the implications of aging on labor productivity and industry-level labor

share. Consistent with our theoretical expectations, we find a positive impact of demographic

change on labor productivity in industries that are most amenable to automation as well as a

pronounced impact on labor share in the same industries. These results suggest that the lack of a

negative relationship between aging and GDP mentioned above might be partly due to the more

rapid adoption of automation technologies in countries undergoing significant demographic change.

Our paper is related to a few recent literatures. The first is a literature estimating the impli-

cations of automation technologies on labor markets. Early work (e.g., Autor, Levy and Murnane,

2003; Goos and Manning, 2007; Michaels, Natraj and Van Reenen, 2014; Autor and Dorn, 2013;

Gregory, Salomons and Zierahn, 2016) provides evidence suggesting that automation of routine jobs

has been associated with greater wage inequality and decline of middle-skill occupations. More re-

cently, Graetz and Michaels (2015) and Acemoglu and Restrepo (2017a) estimate the effects of

the adoption of robotics technology on employment and wages (and in the former case, also on

productivity). Our work is complementary to but quite different from these papers since we focus

not on the implications of automation technologies, but on the determinants of their adoption.

Second, a growing literature focuses on the potential costs of demographic change, in some cases

seeing this as a major disruptive factor that will bring slow economic growth (e.g., Gordon, 2016)

and potentially other macroeconomic problems such as an aggregate demand-induced secular stag-

nation (see the essays in Baldwin and Teulings, 2014).1 We differ from this literature by focusing

on the effects of demographic changes on automation—an issue that does not seem to have received

much attention in this literature.2 A few works focusing on the effects of demographic change on

1A related literature explores the fiscal costs of demographic change for social security (e.g., Kotlikoff et al., 2002,
and Attanasio et al., 2007).

2As mentioned above, our short paper, Acemoglu and Restrepo (2017b), pointed out that despite these concerns,
there is no negative relationship between aging and GDP growth, and suggested that this might be because of the
effects of aging on technology adoption, but did not present any evidence on this linkage, nor did it develop the
theoretical implications of demographic change on technology adoption and productivity.
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factor prices (e.g., Poterba, 2001, Krueger and Ludwig, 2007) and human capital (e.g., Ludwig,

Schelkle and Vogel, 2012) are more related, but we are not aware of any papers studying the impact

of aging on technology, except the independent and simultaneous work by Abelianisky and Prettner

(2017). There are several important differences between our work and this paper. These authors

focus on the effect of the slowdown of population growth—rather than age composition—on differ-

ent types of capital, one of which corresponds to automation (without any directed technological

change). They also do not consider the industry-level variation. We show further that the effects

we estimate are not driven by the level of population or its slower growth, thus distinguishing our

results from theirs.

Third, our work is related to the literature on technology adoption. Within this literature,

most closely related to our conceptual approach is Zeira’s (1998) paper which develops a model

of economic growth based on the substitution of capital for labor, but does not investigate the

implications of demographic change on technology adoption. A few recent papers that study the

implications of factor prices on technology adoption are related to our work as well. Manuelli

and Seshadri (2010) use a calibrated model to show that stagnant wages mitigated the adoption of

tractors before 1940. Clemens et al. (2017) find that the exclusion of Mexican braceros—temporary

agricultural workers—induced farms to adopt mechanic harvesters and switch to crops with greater

potential for mechanization, while Lewis (2011) shows that in US metropolitan areas receiving

fewer low-skill immigrants between 1980 and 1990, equipment and fabricated metal plants adopted

more automation technologies. None of these papers investigate the implications of demographic

change on technology adoption or robotics technologies.

Finally, our conceptual approach builds on directed technological change literature (e.g., Ace-

moglu, 1998, 2002). Our model is a mixture of the setup in Acemoglu (2007, 2010), which develops

a general framework for the study of directed innovation and technology adoption, with the task-

based framework of Acemoglu and Restrepo (2016, 2018), Acemoglu and Autor (2011) and Zeira

(1998). One contribution of the theory part of our paper is to analyze the effects of demographic

changes on technology without the specific functional form restrictions (such as constant elasticity

of substitution and factor-augmenting technologies) as in the early literature or the supermodular-

ity assumptions as in Acemoglu (2007, 2010). Existing empirical works on directed technological

change (e.g., Finkelstein, 2004, Acemoglu and Linn, 2005, Hanlon, 2016) do not focus on demo-

graphic changes. Acemoglu and Linn (2005) and Costinot, Donaldson, Kyle and Williams (2017)

exploit demographic changes as a source of variation, but this is in the context of the demand for

different types of pharmaceuticals rather than for technology adoption.

The rest of the paper is organized as follows. We introduce our model of directed technology

adoption in the next section. Section 3 presents our data sources and descriptive statistics. Section 4

provides evidence that robotics technology is more highly substitutable to middle-aged workers than

older workers. Section 5 presents our cross-country evidence on the effect of demographic change

on the adoption of robots and other automation technologies. Section 6 provides evidence on the

impact of demographic change on innovation and development of automation technologies. Section 7
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investigates the relationship between demographics and robots across US commuting zones. Section

8 presents evidence that the effects of demographic change on the adoption of robotics technology

are most pronounced in industries that rely more on middle-aged workers and those with greater

opportunities for automation. Section 9 considers the relationship between demographic change

and productivity and the labor share at the industry level. Section 10 concludes, while the (online)

Appendix contains proofs omitted from the text and additional data details and empirical results.

2 Directed Technology Adoption

In this section, we introduce a simple model of directed technology adoption, which enables us to

derive the main implications of demographic change on automation technologies. In our model,

industries employ middle-aged workers, older workers and machines to perform the tasks necessary

for production, and technology monopolists invest in the development of new technologies that

automate tasks performed by middle-aged workers.3

2.1 The Environment

The economy produces a numeraire good Y by combining the output of a continuum of industries

(or varieties) through a CES aggregator:

Y =

(∫

i∈I
Y (i)

σ−1
σ di

) σ
σ−1

, with σ > 1. (1)

Here Y (i) is the net output of industry i and I denotes the set of industries.

In each industry, gross output is produced by combining production tasks, service or support

(non-production) tasks, and intermediates that embody the state of technology (in particular au-

tomation) for this industry:

Y g(i) =
η−η

1− η

[
X(i)α(i)S(i)1−α(i)

]η
q(θ(i))1−η . (2)

Firms first combine production inputs, X(i), with service inputs, S(i).4 The exponent α(i) ∈ (α,α),

with 0 < α < α < 1, designates the importance of production inputs relative to service inputs in

the production function of industry i. The aggregate of these two inputs is then combined with unit

elasticity with the quantity of intermediates for this industry, q(θ(i)). The term θ(i) designates the

extent of automation embedded in the intermediates that firms purchase. Finally, 1− η ∈ (0, 1) is

the share of intermediates required for production.5

3In our model, there is directed technological change (investment by technology monopolists in developing different
types of technologies) and endogenous adoption of these technologies. We emphasize both margins since our focus is
not just on the development but also on the adoption of the robotics technologies.

4It is straightforward to extend this production function to have non-unitary elasticity of substitution between
X(i) and S(i), but we opted for the Cobb-Douglas specification for simplicity.

5The assumption that σ > 1 is for simplicity. The model can be extended to cover the case with σ < 1 if we
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Production inputs, X(i), are an aggregate of a unit measure of industry-specific tasks,

X(i) =

(∫ 1

0
X(i, z)

ζ−1
ζ dz

) ζ
ζ−1

,

where ζ is the elasticity of substitution between tasks. We can, but do not need to, impose that

ζ ≤ 1.

Following Acemoglu and Restrepo (2016, 2018), we model automation as the substitution of

machines for labor in the production of tasks. Each production task X(i, z) is produced either by

labor or machines,

X(i, z) =

{
A(i)l(i, z) +m(i, z) if z ∈ [0, θ(i)]

A(i)l(i, z) if z ∈ (θ(i), 1],

where l(i, z) denotes the amount of production labor employed in task z in industry i, and m(i, z)

denotes machines used in industry i to produce task z. In addition, A(i) corresponds to the

productivity of labor relative to machines in production tasks in industry i. Labor and machines

are perfect substitutes in (technologically) automated tasks (those with z ≤ θ(i) in industry i).

An increase in θ(i) extends the set of tasks where machines can substitute for labor and hence

corresponds to an advance in automation technology for industry i.

Intermediates embedding automation technology θ(i), q(θ(i)), are supplied by a technology mo-

nopolist that owns the intellectual property rights over these technologies and that serves industry

i. This technology monopolist produces each unit of q(θ(i)) using 1 − η units of industry i’s out-

put.6 The net output in industry i is then obtained by subtracting the total cost of intermediates,

(1− η)q(θ(i)), from the gross output of the industry:

Y (i) = Y g(i)− (1− η)q(θ(i)). (3)

There are two types of workers: middle-aged workers and older workers. We simplify the

analysis throughout the paper by imposing:

Assumption 1 Middle-aged workers fully specialize in production inputs. Older worker fully spe-

cialize in service inputs.

This assumption starkly captures the comparative advantage of middle-aged workers for produc-

tion tasks.7 As we document in Section 4, it is reasonable in the context of robotics technologies;

make two modifications to our baseline setup: (i) introduce limit pricing rather than monopoly pricing by technology
monopolists; (ii) change equation (2) so that the elasticity of substitution between intermediates and the aggregate
of production inputs, X(i)α(i)S(i)1−α(i), is less than one.

6This formulation, linking the cost of intermediates to industry i to that industry’s output, is convenient, because it
avoids any relative price effects that would have been present if other inputs had been used for producing intermediates.

7This assumption simplifies the analysis relative to a more general setup where both types of workers can produce
both types of inputs but middle-aged workers have a comparative advantage in production tasks.
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these technologies are used mostly in industrial applications to automate tasks that used to be

performed by blue-collar workers. As such, this type of automation directly competes against

middle-aged workers who have the physical dexterity to perform such tasks.

We denote the total supply of middle-aged workers by L. For older workers, we assume that

each produces one unit of service tasks, which implies that S(i) is also the total employment of

older workers in sector i, and thus with a slight abuse of notation, we also denote the supply of

older workers by S. We denote the wage of middle-aged workers by W , the wage of older workers

by V , and the total supply of machines by M . Market clearing requires the demand for each factor

to be equal to its supply, or more explicitly,

L = Ld =

∫

i∈I

∫ 1

0
l(i, z)dzdi, M = Md =

∫

i∈I

∫ 1

0
m(i, z)dzdi, and S = Sd =

∫

i∈I
s(i)di,

where the last equality in each expression defines the demand for that factor. Finally, we assume

that machines are supplied at a fixed rental price P .

2.2 Equilibrium with exogenous technology

Denote the set of technologies adopted across all industries by Θ = {θ(i)}i∈I . We first characterize

the equilibrium with exogenous technology, where the set of technologies, Θ, is taken as given.

An equilibrium with exogenous technology is defined as an allocation in which all industries choose

the profit-maximizing levels of employment of middle-aged workers, employment of older work-

ers, machines and intermediates, all technology monopolists set profit-maximizing prices for their

intermediates, and the markets for middle-aged workers, older workers and machines clear.

Let PY (i) denote the price of output in industry i, and p(θ(i)) be the price of the intermediate

for industry i that embodies technology θ(i). The demand for q(θ(i)) is given by:

q(θ(i)) =
1

η
X(i)α(i)S(i)1−α(i)

(
p(θ(i)))

PY (i)

)−
1
η

. (4)

Faced with this demand curve with elasticity 1/η, the technology monopolist for industry i will

set a profit-maximizing price that is a constant markup of 1/(1 − η) over marginal cost. Given

our normalization of the marginal cost of intermediate production to 1− η units of the industry’s

product, the profit-maximizing price is p(θ(i)) = PY (i). Substituting this price into (4), and using

(2) and (3), we derive the net output of industry i as

Y (i) =
2− η

1− η
X(i)α(i)S(i)1−α(i).

The Cobb-Douglas production technology in equation (2) then implies

PY (i) = λ(i)PX (i)α(i)V 1−α(i),
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where PX(i) denotes the price of X(i), and λ(i) = (1− η)α(i)−α(i)(1− α(i))α(i)−1.

We next turn to the decision to adopt existing automation technologies. These decisions depend

on the cost savings from automation, which are in turn determined by factor prices. Let π(i) denote

the cost savings from automation in industry i, meaning the percent decline in costs when a task

is produced by machines rather than labor:

π(i) =
1

1− ζ

[
1−

(
A(i)P

W

)1−ζ
]
. (5)

When W
A(i) > P , the effective cost of producing with labor in industry i, W

A(i) , is greater than the cost

of using a machine, P , and as a result, π(i) > 0. Conversely, when W
A(i) < P , it is more expensive to

produce with machines in industry i and firms do not adopt the automation technologies because

it would raise their cost. Therefore, available automation technologies will be adopted if π(i) > 0.

We can then summarize automation decisions by defining an automation threshold, θA(i), which

satisfies

θA(i) =

{
θ(i) if π(i) > 0

0 if π(i) ≤ 0,
(6)

where we are assuming without loss of any generality that when indifferent, firms do not switch

to machines. Equation (6) highlights a key point in our model: firms adopt existing automation

technologies when the effective wage of middle-aged workers is high.

Using the threshold θA(i), we can express the price of X(i) as

PX(i) =

(
θA(i)P 1−ζ + (1− θA(i)(i))

(
W

A(i)

)1−ζ
)1−ζ

, (7)

and the share of middle-aged labor in the production of X(i) as:8

sL(i) = (1− θA(i))

(
W

A(i)PX (i)

)1−ζ

∈ [0, 1] (8)

Using the above expressions for prices and the share of labor in X(i), we can derive the demand

8Let L(i) =
∫ 1

0
l(i, s)dsdi and M(i) =

∫ 1

0
m(i, s)dsdi denote the amounts of middle-aged labor and machines

employed in industry i, respectively. Then total production in industry i can be written as

X(i) =
(
θA(i)

1

ζ M(i)
ζ−1

ζ + (1− θA(i))
1

ζ L(i)
ζ−1

ζ

) ζ
ζ−1

.

Thus as also suggested by (7), an increase in θ(i) (and hence θA(i)) makes the production of X(i) less labor intensive
(Acemoglu and Restrepo, 2016, 2018).
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for factors of production in the economy as:

Ld =
Y

(2− η)W

∫

i∈I
λ(i)1−σPY (i)

1−σα(i)sL(i)di (9)

Md =
Y

(2− η)P

∫

i∈I
λ(i)1−σPY (i)

1−σα(i)(1 − sL(i))di (10)

Sd =
Y

(2− η)V

∫

i∈I
λ(i)1−σPY (i)

1−σ(1− α(i))di. (11)

The next proposition establishes the existence and uniqueness of the equilibrium and charac-

terizes it. In what follows, we let φ = S
L+S denote the share of older workers in the population, and

think of aging as an increase in φ.

Proposition 1

1. An equilibrium with exogenous technology always exists and is unique. The equilibrium levels

of middle-aged and older wages, W and V are the unique solutions {WE(φ; Θ), V E(φ,Θ)} to

the system of equations given by: the ideal price index condition,

1 =

(∫

i∈I
λ(i)1−σPY (i)

1−σdi

) 1
1−σ

, (12)

and the relative demand for workers,

1− φ

φ
=

V

W

∫
i∈I PY (i)

1−σα(i)sL(i)di∫
i∈I PY (i)1−σ(1− α(i))di.

(13)

Aggregate output and machinery per worker, {yE(φ; Θ),mE(φ,Θ)}, can be then computed

using {WE(φ; Θ),V E(φ,Θ)}.

2. The middle-aged wage WE(φ,Θ) is increasing in φ, and the older worker wage V E(φ,Θ) is

decreasing in φ. On the other hand, φ has an ambiguous impact on output per capita yE(φ,Θ).

Like all other proofs, the proof of Proposition 1 is provided in the Appendix.

Panel A of Figure 1 depicts the characterization of the equilibrium with exogenous technology.

Let C(W,V, P ) denote the cost of producing one unit of the final good, which is given by the

right-hand side of equation (12). The equilibrium values for WE and V E are then given by the

tangency of the isocost curve C(W,V, P ) = 1 (condition (12)) with a line of slope −1−φ
φ (at which

point we have ∂C(W,V,P )/∂W
∂C(W,V,P )/∂V = 1−φ

φ , which is condition (13)). Aging—an increase in φ—raises WE

and lowers V E along the convex isocost curve C(W,V, P ) = 1, as shown in Panel A of Figure 1.

Proposition 1 also shows that aging has an ambiguous effect on aggregate output per worker.

In particular, in the Appendix we show that

1

2− η
yEφ (φ,Θ) = V E(φ,Θ) −WE(φ,Θ) + P ·mE

φ (φ,Θ). (14)
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This expression clarifies that the effect of aging on aggregate output depends on the wage of middle-

aged workers relative to the wage of older workers. In particular, if V E < WE, there will be a

negative effect on productivity (though mE
φ can be positive, offsetting this effect). Existing evidence

(e.g., Murphy and Welch, 1990) suggests that earnings peak when workers are in their 40s, declining

thereafter, which in our model implies V < W , and thus creates a tendency for aging to reduce

productivity. This negative effect echoes the concerns raised by Gordon (2016) on the potential for

slower growth in the next several decades because of demographic change.

The next proposition shows how demographic change affects the adoption of existing automation

technologies. For this proposition and for what follows, we denote by I+(φ,Θ) the set of industries

for which π(i) > 0 and new automation technologies are all adopted.

Proposition 2 The set I+(φ,Θ) satisfies the following properties:

• For φ ≤ φ′ we have I+(φ,Θ) ⊆ I+(φ′,Θ).

• There exists a positive threshold φ̃ < ∞ (independent of the θ(i)’s), such that for φ < φ̃, the

set I+(φ,Θ) has measure zero. For φ > φ̃, the set I+(φ,Θ) has positive measure.

The proposition shows that aging encourages the adoption of existing automation technologies.

The intuition is similar to other models of technology adoption building on Zeira (1998) and works

through the effect of higher wages on incentives to adopt automation technologies. For φ < φ̃, there

is no adoption of automation technologies because middle-aged workers are relatively abundant and

thus cheap. When φ > φ̃, the middle-aged wage is sufficiently high that automation becomes cost-

saving and profitable.

What is the effect of automation on factor prices? As in Acemoglu and Restrepo (2016, 2018),

this is determined by two competing forces. On the one hand, we have a displacement effect—when

automation technologies are adopted, they squeeze middle-aged workers into fewer tasks, reducing

the demand for middle-aged labor. On the other hand, we have a productivity effect—when au-

tomation technologies are adopted, they allow industries to reduce their costs and expand output,

raising the demand for middle-aged workers in non-automated tasks. When π(i) is small (but posi-

tive), the productivity effect is weak; available automation technologies will be adopted in industry

i, generating the displacement effect, but only a minimal productivity effect. This reasoning implies

that there exists a threshold π > 0 such that, when new automation technologies are introduced

in industry i with π(i) ∈ (0, π), the displacement effect dominates the productivity effect, and

automation reduces wages. This result is stated and some of its implications are developed in the

next proposition, where for simplicity we consider marginal changes in automation technologies,

denoted by {dθ(i)}i∈I (with dθ(i) ≥ 0).

Proposition 3 Suppose new automation technologies {dθ(i)}i∈I become available. Then:

• New automation technologies are not adopted when φ < φ̃, and are adopted in industries in

I+(φ,Θ) when φ > φ̃.
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• There exists a threshold φ(Θ) > φ̃ such that, if φ̃ < φ < φ(Θ), then π(i) < π for almost all

industries. In this region, if dθ(i) > 0 for a (positive measure) subset of I+(φ,Θ), the wage

of middle-aged workers declines and the wage of older workers increases.

Panel B of Figure 1 illustrates the comparative statics presented in this proposition. The

displacement effect corresponds to a clockwise rotation of the isocost curve C(W,V, P ) = 1 around

the equilibrium point, reducing W and increasing V . The productivity effect corresponds to an

outward shift of the isocost curve, increasing both wages.9

2.3 Equilibrium with endogenous technology

Our analysis so far took the available automation technologies, Θ = {θ(i)}i∈I , as given. We now

endogenize these technologies using an approach similar to Acemoglu (2007, 2010).

For industry i, there is a single technology monopolist who can develop new automation tech-

nologies and sell the intermediates embodying them—the q(θ(i))’s—to firms in that industry. De-

veloping an automation technology θ(i) costs the monopolists 1−η
2−ηPY (i)Y (i) · Ci(θ(i)) units of the

final good, where Ci(·) is an increasing and convex function that varies across industries. The spec-

ification imposes that the cost of introducing innovations is proportional to 1−η
2−ηPY (i)Y (i), which

is adopted to simplify the algebra.

Equation (4) shows that the monopolist in industry i earns profits 1−η
2−ηPY (i)Y (i). Using the fact

that Y (i) = PY (i)
−σY , we can write the net profits from developing automation technology θ(i) as

1−η
2−ηPY (i)

1−σY (1−Ci(θ(i))). Moreover, because monopolists, like their industries, are infinitesimal,

they take wages and aggregate output, Y , as given. Thus, we can write the profit-maximizing

problem of the technology monopolist for industry i in logs as:

max
θ(i)∈[0,1]

πM (i) = (1− σ)α(i) ln

(
θA(i)P 1−ζ + (1− θA(i))

(
W

A(i)

)1−ζ
)

+ ln(1− Ci(θ(i))) (15)

This expression clarifies that monopolists have an incentive to develop automation technologies

that reduce PX(i), which translates into greater profits for them. We further simplify the analysis

by assuming that the cost function Ci(·) takes the form

Ci(θ(i)) = 1− (1−H(θ(i)))
1

ρ(i) ,

where H is an increasing and convex function that satisfies H ′(0) = 0, limx→1H(x) = 1, and

h(x) ≥ 1/(1 − x), where h(x) = H ′(x)/(1 − H(x)). The last assumption strengthens convexity

and will ensure that (15) has a unique solution. The exponent ρ(i) > 0 captures heterogeneity

9Although the impact of automation on middle-aged wages is ambiguous when φ < φ(Θ), it is straightforward
to see that automation still reduces the demand for middle-aged workers relative to older workers in the industries
adopting the automation technologies. For example, if θ(i) increases in a single industry with π(i) > 0, we have that
L(i)/S(i) declines in that industry.
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across industries in the technological possibilities for automation; a higher ρ(i) characterizes indus-

tries in which, due to engineering reasons, monopolists can more easily develop new automation

technologies.

Given the convexity assumptions on H, the maximization problem in equation (15) yields a

unique technology choice for each industry, θRi (W ), which depends only on parameters and the

middle-aged wage, W . We define the mapping ΘR(W ) = {θRi (W )}i∈ I from the middle-aged wage

to the equilibrium technology choices.

We define an equilibrium with endogenous technology as an allocation where technology choices

ΘR(W ) maximize (15), and given technology choices ΘR(W ), Proposition 1 applies. From this

proposition, technology choices Θ determine factor prices, and in particular, the middle-age wage

W as WE(φ,Θ). Thus, an equilibrium corresponds to a middle-aged wage, W ∗, that is a solution

to the following fixed point problem:

W ∗ = WE(φ,ΘR(W ∗)). (16)

To study this fixed point problem, we first characterize the behavior of the equilibrium technol-

ogy choice θRi (W ) for industry i.

Lemma 1

1. The maximization problem in equation (15) exhibits increasing differences in W and θ(i).

Thus, θRi (W ) is nondecreasing in W .

2. If θRi (W ) > 0, then π(i) > 0.

The key result in this lemma is that the technology monopolists face stronger incentives to

develop new automation technologies when the middle-aged wage, W , is higher.10 Economically,

this is the case because automation allows firms to substitute machines for middle-aged labor, and

when this labor is more expensive, automation is more profitable.

The last part of the lemma shows that, in an equilibrium with endogenous technology in which

θA(i) > 0, we always have π(i) > 0. Thus, monopolists only introduce technologies that will be

immediately adopted, and in an equilibrium with endogenous technology, we always have θA(i) =

θ(i). An immediate corollary is that any comparative static result that applies to the innovation

margin θ(i) also applies to the adoption margin θA(i).

The next proposition establishes the existence of an equilibrium with endogenous technology.

10In the Appendix we show that equilibrium technology satisfies the complementary slackness condition,

h(θRi (W )) ≥ (σ − 1)α(i)ρ(i)
sL(i)

1− θRi (W )
π(i), (17)

and θRi (W ) ≥ 0, and that a greater W leads to higher cost savings from automation, π(i). It is this property that
implies the maximization problem of monopolists exhibits increasing differences in W and θ(i).
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Proposition 4 For any φ ∈ (0, 1), there exists an equilibrium with endogenous technology. In any

such equilibrium the middle-aged wage, W ∗, satisfies the fixed point condition in equation (16). For

each fixed point W ∗, there is a uniquely defined set of technology choices Θ∗ = {θ∗i }i∈ I given by

Θ∗ = ΘR(W ∗).

To illustrate this proposition, suppose first that the mapping WE(φ,ΘR(W )) is decreasing

in W .11 In this case, automation decisions across industries are strategic substitutes and the

equilibrium with endogenous technology is unique as shown in Panel A of Figure 2.

In general, WE(φ,ΘR(W )) need not be decreasing inW , because strong productivity gains from

automation could make the middle-aged wage increasing in automation. In this case, we could have

multiple equilibria, as automation in one sector increases the wage W and creates incentives for

further automation in other sectors. Nevertheless, there are still well-defined least and greatest

equilibria as shown in Figure 2, determined by the smallest and largest equilibrium values of the

wage W that solve the fixed point problem in equation (16). The Appendix shows that, in the least

and the greatest equilibrium, the mapping WE(φ,ΘR(W )) cuts the 45 degree line from above (as

shown in Panel B of Figure 2). Then we have:

Proposition 5 In the least and the greatest equilibrium, an increase in φ—aging—increases the

equilibrium wage W ∗, expands the set of automation technologies Θ∗, and expands the set of indus-

tries that adopt automation technologies I+(φ,Θ∗).

This proposition thus provides one of our most important results: aging always encourages the

development and use of automation technologies, and this is regardless of whether automation has a

positive or negative effect on the middle-aged wage and whether or not there are multiple equilibria

(if there are multiple equilibria, it applies for the relevant equilibria, which are those with the

least and greatest values of the middle-aged wage). Intuitively, machines compete against middle-

aged workers, and a greater scarcity of these workers always increases the relative profitability of

automation.

Finally, in the next proposition, we derive how the responsiveness of technologies to aging varies

by industry.

Proposition 6 In the least and the greatest equilibrium, θ∗i exhibits increasing differences in φ

and α(i), and φ and ρ(i).

This proposition thus implies that aging—an increase in φ—should have a more pronounced

impact on automation in industries that rely more heavily on middle-aged workers (i.e., those with

high α(i)) and that present greater technological opportunities for automation (i.e., those with high

ρ(i)). In our empirical work, we investigate both implications.

11The Appendix shows that a sufficient condition for this mapping to be decreasing is φ̃ < φ < φ(Θ = ({0}i∈I))
(so that the productivity gains from automation are positive for some industries but still smaller than π). In this

case, the mapping WE(φ,ΘR(W )) is constant for W ≤ W̃ and decreasing for W > W̃ (here, W̃ is the largest wage

such that W̃ < Ã(i)P for almost all i ∈ I). Note also that for φ ≤ φ̃ the unique equilibrium involves θ(i)∗ = 0.
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2.4 Implications for productivity

As noted in the Introduction, the endogenous response of automation technologies might fundamen-

tally alter the implications of demographic change for productivity. With exogenous technology,

Proposition 1 showed that the effects of aging for aggregate productivity are ambiguous. With

endogenous technology, aging creates a positive effect via the response of automation, and we

next show that as a result, when the workforce is aging, productivity in industries with greater

opportunities for automation tends to increase relative to others.

Proposition 7 In the least and the greatest equilibrium, equilibrium output in industry i, Y ∗(i),

exhibits increasing differences between φ and ρ(i).

From Proposition 6, the endogenous response of technology is stronger in industries with greater

α(i) and greater ρ(i), which implies that industries that have greater opportunities for automation

(a large ρ(i)) increase their relative performance in aging economies, and for the same reason, these

industries will also experience a greater decline in their labor share (recall from footnote 8 that

automation makes industry production less labor-intensive). But there are no unambiguous results

for industries that rely more heavily on middle-aged workers (i.e., those with high α(i)): on the one

hand, industries that rely more heavily on middle-aged workers are more exposed to the increase

in wages; on the other hand, as a result of this, they also have greater incentives to automate their

production process, increasing productivity.

Propositions 1 and 7 together highlight too that the aggregate productivity implications of

aging will be ambiguous in the presence of endogenous developments of automation technologies,

and as a result, demographic change may not have as significant negative effects once technology

adjusts.

2.5 Extensions

In the Appendix, we consider two extensions of this framework. First, we endogenize the industry-

level labor-augmenting technology, A(i). In this case, demographic change impacts technology not

just by encouraging automation but also by directly influencing the productivity of middle-aged

labor in the production tasks it performs. We show that the effect of aging on the endogenous

choice of A(i) is ambiguous. By increasing the share of middle-aged workers in value added (when

ζ < 1), aging encourages the development of labor-augmenting technologies. But it also fosters

automation and thus reduces the set of tasks performed by middle-aged workers, making labor-

augmenting technologies less profitable. In our empirical work, we will indeed find that there are

no positive effects of aging on non-automation technologies.

Second, we consider an extension to a global economy with multiple countries, where some of

them are ahead of others in the development of automation technologies. In this setup, not only

will we see imports and exports of automation technologies (as in our empirical work), but we also
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find that advances in automation technologies in one country are later adopted in another country

and can lead to a decline in the wages of middle-aged workers in the adopting country.

3 Data and Trends

In this section, we present our data sources and show some of the most salient trends in our data.

The Appendix contains additional description and details.

3.1 Cross-country data

We focus on demographic changes related to aging, and measure them by the change in the ratio

of older workers (56 and older) to middle-aged workers (between 21 and 55). The cutoff of 55

years of age is motivated by the patterns of substitution between robots and workers we document

in the next section. We obtained the demographic variables from the United Nations (UN) data,

which measure population by age and also provide a forecast of these variables up to 2050. As

Figure 3 shows, both our entire world sample and the OECD have experienced significant aging

starting around 1990—a trend that is expected to continue into the future. Aging is much faster

in Germany and South Korea and is slower in the United States than the OECD average. We use

the change in the ratio of older to middle-aged workers between 1990 and its expected level in 2025

as our baseline measure of aging. This latter choice is motivated by the fact that investments in

robotics and automation technologies are forward looking. The IFR estimates the average life-span

of a robot to be about 12 years, so investments in robots in the 2010s should take into account

demographic change until at least 2025. In our empirical exercises, we instrument aging using crude

birth rates between 1950 and 1985, which we also obtained from UN data.

We use four sources of data to measure the adoption and development of robots and other

automation technologies across countries: data on the use of robots from the IFR; data on imports

of robots and other types of machinery from Comtrade; data on exports of robots and other types

of machinery also from Comtrade; and patents by different countries filed at the USPTO.

The IFR provides data on the stock of robots and new robot installations by industry, country

and year. The data are compiled by surveying global robot suppliers. Table A1 in the Appendix

provides the list of countries covered by the IFR.12 In our cross-country analysis we use the change in

the stock of robots divided by industry employment as our dependent variable. The denominator is

constructed using employment data for 1990 from the International Labour Organization (ILO). To

account for differences in hours worked, we normalize the stock of robots using full-time equivalent

industry workers.13 The resulting measure of the stock of robots per thousand (industry) workers

12Although the IFR also reports numbers for Japan and Russia, the data for these countries underwent major
reclassifications. For instance, the IFR used to count dedicated machinery as part of the stock of industrial robots
in Japan, but starting in 2000, stopped doing so, making the numbers reported for Japan not comparable over time.
We thus exclude both countries from our analysis.

13ILO’s industry employment data includes employment in manufacturing, mining, construction and utility, which
cover the sectors currently using robots.
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covers 52 countries between 1993 and 2014, and is illustrated in Figure 3. The figure underscores

the pattern we noted in the Introduction—that Germany and South Korea are considerably ahead

of the United States in terms of the adoption of robotics technology. Panel A of Table 1 provides

summary statistics separately for all the countries in our sample, for OECD countries, and for

rapidly-aging countries (above the median in terms of expected aging between 1990 and 2025) and

slowly-aging countries. In our full sample, the number of robots per thousand workers increased

from 0.72 in 1993 to 3.79 in 2014.

We complement the IFR data with estimates of robot imports and exports from the bilateral

trade statistics obtained from Comtrade. When using the data on robot imports, we exclude

Japan, which mostly uses domestically produced robots (the other major producer, Germany, also

has significant imports; see Leigh and Kraft, 2016). In addition, to account for entrepôt trade, we

remove re-exports of robots and keep only countries whose imports of robots net of re-exports are

positive. Likewise, we keep only countries whose exports of robots (without including re-exports)

are positive. The resulting data cover 131 countries importing robots between 1996 and 2015,

and 105 countries exporting robots between 1996 and 2015.14 We also use the Comtrade data to

compute imports and exports of other intermediates related to industrial automation. Panel B of

Table 1 provides summary statistics for the Comtrade data.

Finally, we use data on robotics-related patents granted by the USPTO to assignees based in

each country between 1990 and 2015. We focus on patents in the USPTO 901 class, which comprises

technologies related to industrial robots, and patents that reference the 901 class. The Appendix

describes these data and our construction of other proxies for robotics-related patents, including

measures that search for robotics-related words in patent abstracts, and measures based on citation

patterns. We exclude countries with no robotics-related patents and focus on 69 countries (31 of

them in the OECD) that patented in robotics-related classes. Panel C of Table 1 shows that the

average number of robotics-related patents received by a country in our sample is 718, while the

same number is about twice as large for the OECD and for rapidly-aging countries.

We also use data on GDP per capita, population and average years of schooling obtained from

version 9.0 of the Penn World Tables (Feenstra, Inklaar and Timmer, 2015).

3.2 Data on robot integrators

For US labor markets we do not have data on the adoption or use of robots. Instead, we proxy

robotics-related activities in a commuting zone using a dichotomous measure of whether it houses

14Industrial robots are counted under the HS6 code 847950. Because this category was introduced in 1996, it is
only possible to track international trade of industrial robots after this date. For the remaining types of equipment
used in our empirical analysis, we compute imports and exports going back to 1990.

Several reasons explain why there is a large number of countries exporting robots. First, some exporting firms may
use ports located in different countries to send their robots (for example, German and Belgium robot producers can
export from Luxembourg). Second, that are likely some classification errors by custom authorities. Finally, some
countries may sell used inventory. All of these add measurement error to this variable, but should not bias our results.

16



robot integrators, obtained from Leigh and Kraft (2016).15 Integrators install, program and main-

tain robots, and tend to locate close to their customers.

For commuting zones, we measure aging by the change in the ratio of older to middle-aged

workers between 1990 and 2015, obtained from the NBER Survey of Epidemiology and End Results

dataset (we do not have forecasts of aging at the commuting-zone level). We also use various

demographic and economic characteristics of commuting zones in 1990, obtained from the NHGIS

at the county level (Manson et al., 2017), and data on exposure to robots from Acemoglu and

Restrepo (2017b) to measure the local effects of robots.

3.3 Industry-level data

In addition to the country-level data, the IFR reports data on robot installations by year separately

for 19 industries in 50 of the countries in our sample, including 13 industries at the three-digit level

within manufacturing and six non-manufacturing industries at the two-digit level. As Table A1

in the Appendix shows, these data are not available in every year for every country-industry pair,

so in our analysis, we focus on an unbalanced panel of annual data rather than long differences.

Table A2 summarizes the industry-level data. For each industry, we report the average number of

robot installations per thousand workers, using two possible denominators. The first one uses data

the ILO data described above, while the second uses from the EUKLEMS dataset, which provides

the 1995 employment levels for all 19 industries used in our analysis, but only covers 21 of the

countries in our sample (Jägger, 2016).16 In the Appendix, we further use the UNIDO dataset for

an additional robustness check and describe these data there.

From the EUKLEMS data, we also obtain information on value added per worker (in real

dollars) and the change in the share of labor in value added. These outcomes are available only

between 1995 and 2007, and cover all 19 industries included in the IFR data. The third and fourth

columns of Table A2 summarize these data.

To explore whether aging has heterogeneous impacts on different industries, we construct

industry-level measures of reliance on middle-aged workers, and opportunities for automation. We

measure an industry’s reliance on middle-aged workers with the ratio of middle-aged to older work-

ers, computed from the 1990 US Census data. Heavy manufacturing industries, construction and

utilities have significantly greater reliance on middle-aged workers. We use two proxies for the

opportunities for automation (focusing in particular on robots). The first is the “replaceability”

index constructed by Graetz and Michaels (2015), which is derived from data on the share of hours

spent by workers in the United States on tasks that can be performed by industrial robots. The

replaceability index is strongly correlated with robot adoption and explains 22% of the total vari-

ation in the installation of robots across industries. The second measure is a dummy variable for

15Commuting zones, defined in Tolbert and Sizer (1996), are groupings of counties approximating local labor
markets. We use 722 commuting zones covering the entire US continental territory except for Alaska and Hawaii.

16We use employment levels in 1995 to normalize the number of robot installations because the data are missing
for many countries before then. We also focus on the growth in value added per worker and the labor share between
1995 and 2007 because post-2007 data disaggregated by industry are unavailable for many countries in our sample.
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automobiles, electronics, metal machinery, and chemicals, plastics and pharmaceuticals, which are

are singled out by a recent report by the Boston Consulting Group (BCG, 2015) as having the

greatest technological opportunities for the use of robots, based on the type of tasks that workers

perform on the job. The data presented in Table 1 confirm that these are among the industries

experiencing the fastest growth in the adoption of robots.

4 The Substitution between Robots and Workers

The key assumption in our model is that, relative to older workers, middle-aged workers specialize

in production tasks that can be automated using industrial robots. In this section, we provide

four different pieces of evidence consistent with this assumption. First, we review the engineering

literature relevant to this question, which emphasizes that one of our key automation technologies,

industrial robots, has been since the 1980s aimed at automating labor-intensive tasks in manufac-

turing, including machining, welding, painting, palletizing, assembly, material handling, and quality

control (Ayres et al., 1987, Groover et al. 1986). A survey by the Japanese Robotics Association

cited in Ayres et al. (1987) shows that industrial robots reduce costs when they substitute for

blue-collar workers in plastic forming processes, machining, die casting, inspection, arc welding,

and loading and packaging. These tasks are typically performed by middle-aged workers with the

requisite strength and physical dexterity.

Our second strategy confirms the same notion by presenting descriptive statistics on the age

distribution of workers across different industries and occupations using data from the the 1990

US Census, the 2000 US Census, and the 2007 American Community Survey. Specifically, Panel

A of Figure 4 plots the ratio of workers employed in blue-collar jobs relative to workers employed

in white-collar and service jobs. Blue-collar jobs include production workers and machinists, and

represent about 13% of US employment. White-collar jobs include clerks, accountants, secretaries

and salespersons, and represent about 25% of US employment, while service jobs account for 15% of

US employment. The figure shows a sharp and large decline in this ratio starting around age 50 (in

the 2007 ACS) and age 55 (in the 1990 Census). This supports our presumption that middle-aged

workers are overrepresented in blue-collar jobs. Panel B of the figure, on the other hand, shows that

middle-aged workers are also overrepresented in industries that later became more robotized, and

consistent with robots replacing these middle-aged workers, their over-representation is declining

in later decades.

Our third strategy is complementary to the second and shows that as an industry adopts

more robots, the employment and wage bill shares of production workers in that industry decline.

Namely, for each industry we measure the share of wages paid to production workers employed using

data from the NBER-CES Manufacturing Industry Database. Following Acemoglu and Restrepo

(2017a), we measure the exposure to robots using the adoption of robots in the same (three-

digit) industries among comparable European countries between 1993 and 2007, which captures

the common technological developments driving the adoption of robots throughout the world.
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Figure 5 shows that US industries undergoing greater penetration of robots between 1993 and 2007

experienced significant declines in the employment and wage bill shares of production workers during

the same period. This evidence thus suggests that, consistent with our theoretical framework, robots

are substituting for production workers, which from Figure 4 tend to be the middle-aged ones.

Our final strategy is the most direct one for measuring substitution patterns as it explicitly

looks at the impact of automation on the wages and employment of workers of different ages. In

this strategy, we follow Acemoglu and Restrepo’s (2017a) approach of estimating the impact of

exposure to robots across US commuting zones. To conserve space, we refer the reader to that

paper, and here we simply use the measure of exposure to robots computed there.17 We then

estimate the following models for employment and wages by 10-year age group across commuting

zones:

∆Lz,a = βL
a

Exposure to robots

from 1993 to 2007z
+ ǫLz,aand∆ lnWz,a = βW

z,a

Exposure to robots

from 1993 to 2007z
+ ǫWz,a,

where ∆Lz,a is the change in the employment rate of age group a in commuting zone z between 1990

and 2007, and ∆ lnWz,a is the change in the average wage of workers in age group a in commuting

zone z between 1990 and 2007. Figure 6 presents the estimates of the coefficients βL
a and βW

a

(together with 95% confidence intervals based on heteroscedasticity-robust standard errors). We

report three specifications similar to those in Acemoglu and Restrepo (2017a), except that in

line with the focus here all regressions are unweighted (while given the focus there on aggregate

changes, the main specifications in Acemoglu and Restrepo, 2017a, were weighted by population).

The first one we report is the baseline specification in Acemoglu and Restrepo (2017a) and controls

for Census region fixed effects, demographic differences across commuting zones, broad industry

shares, and the impact of trade with China and Mexico, routinization, and offshoring.18 The

second specification, in addition, removes the seven commuting zones with the highest exposure to

robots, to ensure that the results are not being driven by the most exposed commuting zones. The

last specification pools the data for all age groups and forces our covariates, except the impact of

exposure to robots, to have the same impact on all workers.

17Briefly, this measure is

Exposure to robots

from 1993 to 2007z
=

∑

i∈I

ℓ1970zi

(
p30

(
Ri,2007

Li,1990

)
− p30

(
Ri,1993

Li,1990

))
,

where Ri,t/Li,t is the number of robots per thousand workers in industry i at time t, the sum runs over all the
industries in the IFR data, ℓ1970zi stands for the 1970 share of commuting zone z employment in industry i, which

we compute from the 1970 Census, and p30
(

Ri,t

Li,1990

)
denotes the 30th percentile of robot usage among European

countries in industry i and year t.
In that paper, we establish robustness to variations in the construction of this variable, and also report two-stage

least squares estimates combining this measure of exposure to robots with changes in robots in US industries.
18Specifically, we control for log population, the share of working-age population (between 16 and 65 years); the

shares of population with college degree and with high school, the share of Blacks, Hispanics and Asians, and the
baseline shares of employment in manufacturing, durable manufacturing and construction, as well as the share of
female employment in manufacturing. The variables for exposure to China trade, Mexico trade, routine jobs and
offshoring are described in detail in Acemoglu and Restrepo (2017a).
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For both employment and wages we obtain negative effects concentrated on workers between the

ages of 35 and 54, and no negative effects on those older than 55.19 In Figure A1 in the Appendix,

we report similar results by five-year age bins, confirming these age thresholds.

Overall, the results in this section support the assumption that, relative to older workers,

middle-aged workers tend to specialize in blue-collar jobs where they perform the tasks that can

be performed by industrial robots. As a result, it appears to be the middle-aged workers who

experience lower wages and employment when industrial robots are adopted.

5 Demographic Change and Automation

In this section, we present our main cross-country results, which show a robust negative association

between aging and the adoption of robots.

5.1 Main results

Table 2 starts with a flexible specification for the relationship between demographics and the

adoption of robots. Our focus throughout will be on long-differences specifications, where we

look at the relationship between various demographic change variables and the adoption of robots

between 1993 and 2014. Our first regression equation is

∆
Rc

Lc
= βM∆ lnMiddle-agedc + βO∆ lnOlderc + ΓXc,1990 + εc, (18)

where ∆Rc
Lc

is the (annualized) change in the stock of robots per thousand workers between 1993

and 2014 in country c (where we keep the denominator fixed as employment in 1990 from the

ILO, which avoids potentially endogenous changes in employment impacting our left-hand side

variable). The right-hand side variables are the (expected) changes between 1990 and 2025 in the

log population of two age groups: middle-aged workers aged 21-55 and older workers above the

age of 56 (where the change between 2017 and 2025 is based on UN population forecasts described

in Section 3). The vector Xc,1990 includes additional baseline covariates, and εc is the error term.

Unless otherwise indicated, all of our regressions are unweighted and all standard errors are robust

against heteroskedasticity.

Panel A of Table 2 presents our OLS estimates of equation (18). Columns 1-3 are for the full

sample of 52 countries. Column 1 controls only for dummies for East Asia and the Pacific, South

Asia, Middle East and North Africa, Africa, Eastern Europe and Central Asia, Latin America

and the Caribbean, and OECD countries to account for regional trends. Column 2 adds the 1993

values of log GDP per capita, log population, average schooling and the ratio of middle-aged and

older workers as covariates, which control for trends among countries with different initial levels of

19In weighted regressions, the estimates for employment are very similar, but we do see some significant negative
wage effects for older groups as well. This might reflect the downward wage pressure exerted by displaced middle-aged
workers in some large commuting zones.
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development and demographic characteristics. Column 3 also includes the stock of industrial robots

per thousand workers in 1993, which allows for the possibility that countries with more robots at

the beginning of the sample may adopt robots at differential rates. Columns 4-6 present the same

specifications for the OECD sample.

In all six columns of Panel A, we find that a decline in middle-aged population and an increase

in the older population are associated with faster robot adoption, although some of the estimates

are not precise for the OECD sample. These findings support the key prediction of our model,

where incentives to automate do not depend on the total population but on the relative scarcity of

middle-aged workers.

The quantitative magnitudes are large but plausible. For example, in column 1, the coefficient

estimate on population of the middle-aged group is -0.45 (s.e.=0.15). This estimate implies that

a 10 percent decline in the population of the middle-aged group (which is roughly the decline

expected for Germany) is associated with 0.045 additional robots per thousand workers per year,

or 0.9 additional robots per thousand workers over the whole sample period. Moreover, these

demographic shifts alone explain 30% of the variation in robot adoption across all countries and

42% of the variation in the OECD sample.

Panel B shows that we obtain very similar results when we define older workers as those between

56 and 75 years of age. The estimates in this panel show that the positive coefficient on the change

in the older population is not driven by workers above 75, who tend to have a low labor market

attachment and should not affect the incentives for automation. Finally, in Panel C we split middle-

aged workers in two groups: between 21 and 35, and between 36 and 55. We again find a negative

estimate for the change in the population of those between 36 and 55, and a positive estimate for

the change in the population of those above 56.

In line with the logic of our model, the results in Table 2 suggest that the adoption of robotics

technologies is associated with demographic changes that increase the share of older workers and

reduce the share of middle-aged workers—the aging of the population. This observation motivates a

more parsimonious specification, linking the adoption of robots to the ratio of older to middle-aged

workers, which we explore in Table 3 and focus on in the rest of the paper:

∆
Rc

Lc
= βAgingc + ΓXc,1990 + εc, (19)

where Agingc is defined as the change between 1990 and 2025 in the ratio of older workers (above 56

years of age) to middle-aged workers (those between 21 and 55), and we refer to this change simply

as “aging”. Table A3 in the Appendix shows that alternative measures of aging (with different

cutoffs for older workers) produce similar results.

Table 3 reports estimates of equation (19) for the same specifications as in Table 2. Panel

A focuses on OLS models. The estimates in Panel A confirm the positive effect of aging on the

adoption of robots. The results are now more precisely estimated and are significant at 5% in all

specifications. The quantitative effects are again substantial. The specification in column 1 has a R2
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of 0.43 (and the partial R2 of the aging variable alone is close to 0.40 as noted in the Introduction).

In our preferred specification in column 3, the coefficient estimate on the aging variable is 0.5

(s.e.=0.19). This implies that a 20 percentage point increase in our aging variable, which is roughly

the difference between Germany and the United States (0.5 vs. 0.28, respectively), leads to an

increase of 0.1 robots per thousand workers per year or two additional robots per thousand workers

over our sample period, which is about 25% of the Germany-US difference in the adoption of robots.

In line with our findings in Table 2, The results in Table A4 in the Appendix confirm that once

we control for our measure of aging there is no relationship between the change in population and

the adoption of robots—the patterns we are reporting are all about the relative size of middle-aged

and older cohorts.20

Figure 7 depicts the relationship between demographic change and the number of robots per

thousand workers in the full sample of countries and in the OECD (from the models estimated in

columns 3 and 6 in Table 3). Even though South Korea is an outlier, we can also see that this

relationship is not driven by outliers (a point formally established in Table A5 in the Appendix,

where we present several strategies to remove outliers or their influence).

Panel B presents instrumental-variables (IV) models. Our IV models are motivated by the

concern that changes in labor markets that influence the adoption of robots may also affect migra-

tion patterns, which would bias our OLS estimates. To address this concern, we instrument the

(expected) aging between 1990 and 2025 using the average birth rates over each five-year intervals

from 1950-1954 to 1980-1984. These birth rates satisfy the requisite exogeneity assumption since

past changes in birth rates are unlikely to be driven by contemporaneous wages or technologies,

and also explain a large portion of the variation in aging across countries (in column 1, the first

stage F -statistic is 25.2). Panel B shows that the IV estimates of the effect of demographic change

on the adoption of robots are slightly larger than their OLS counterparts.21

One potential concern with our IV estimates is that our first-stage is borderline weak in the

OECD sample. We address this concern in two ways. First, we report the p-value of the Anderson-

Rubin test for the coefficient β being equal to zero. Second, Panel C reports estimates where we

use a single instrument computed as the percent decline in birth rates from 1960 to 1985. Using

this single instrument we estimate a very similar effect of aging on the adoption of robots, but now

the first-stage F -statistic is above 20 in all columns except in column 4 (for the OECD sample

without any covariates).

5.2 Placebo exercises, robustness and additional results

In this subsection we first show that past demographic changes have no predictive power for the

adoption of robotics technology, and then document the robustness of the results in Table 3 to a

20These results and the similar ones in Table 2 are the basis of our claim in the Introduction that we do not find
a robust relationship between the level or change in population and automation (which contrasts with the results in
Abelianisky and Prettner, 2017).

21In this and all subsequent tables, when we have more than one instrument, we perform and report the p-value
from Hanson’s overidentification test. This test does not reject the joint validity of our instruments.

22



range of variations.

In Panel A of Table 4, we include the same aging variable on the right-hand side, but now

measured between 1950 and 1990. Past demographic changes should have no impact on the adoption

of robotics technology after 1990—unless countries that have adopted more robots since 1993 were

on different demographic trends for other reasons even before the 1990s. The results in Table 4

are reassuring in this respect, and show no correlation between our aging variable between 1950

and 1990 and the change in the number of robots since 1990. Panel B of Table 4 presents a

complementary exercise where we simultaneously include past aging and expected aging (between

1990 and 2025) as explanatory variables. The results show that only expected aging is a significant

determinant of the adoption of robots.

Panel C of Table 4 further investigates the question of whether it is contemporaneous de-

mographic change or the expectation of future aging that is more strongly associated with the

adoption of robots. We simultaneously include aging between 1990 and 2015—the contempora-

neous demographic change—and expected aging between 2015 and 2025. The results are not as

precise as before, since contemporaneous and expected aging are highly correlated. Nevertheless,

both contemporaneous aging and expected aging are positively associated with the adoption of

robots. Indeed, in no specification can we reject the null hypothesis that contemporaneous and

expected aging have the same impact on robot adoption, as shown by the test for the equality of

the two coefficients reported in the panel. Expected aging plays a particularly important role in

the OECD sample, where it is significant at the 10% level in all models. These results support our

choice of focusing on (expected) aging between 1990 and 2025 in our baseline models. (Table A6 in

the Appendix shows that our main results are very similar if we use the contemporaneous variable

in our main specifications.)

We have so far reported on long-differences specifications, focusing on the change in the stock of

robots between 1993 and 2014. This is the most transparent specification, especially in view of the

evidence that it is not just contemporaneous but future demographic changes that are impacting

the adoption of robots. However, long-difference specifications fail to exploit higher frequency

covariation between aging and the adoption of robots within subperiods. To exploit this additional

source of variation, Table 5 turns to stacked-differences models, where for each country we include

two observations on the left-hand side: the change in the stock of robots between 1993 and 2005 and

between 2005 and 2014. We then regress these changes on the aging variable between 1990 and 2005

and between 2005 and 2015, respectively. To ease the comparison with our previous estimates, we

re-scale the coefficients so that they are comparable to the estimates in Table 3. Panel A presents

our OLS estimates. Columns 1 and 4 give our most parsimonious model where we only control for

region and period dummies. Columns 2 and 5 include all the country level covariates as controls

(1993 values of log GDP per capita, local population, average schooling and ratio of older to middle-

aged workers). Panel B presents the corresponding IV estimates. The estimates confirm our main

results in Table 3. In columns 3 and 6, we go one step further relative to our earlier specifications

and also include linear country trends. These specifications thus only exploit the differential rate
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at which demographic change proceeds and additional robots are adopted in the two subperiods

for each country. The estimates in these demanding specifications are significant and in fact very

similar to our baseline estimates, bolstering our confidence in the interpretation and robustness of

our results.

Besides aging, our model suggests that other factors affecting wages, such as unionization, and

the (middle-age) wage level itself are important determinants of the adoption of robots. We explore

these issues in Table A7 in the Appendix, where in addition to estimating the impact of aging on

robot adoption, we control for the baseline union membership and the log of the average hourly

wage in 1993.22 Because the data on union membership are only available for a subset of countries,

our sample now consists of 46 countries, 30 of which are in the OECD. The results provide some

support for the idea that countries with greater unionization rates adopted more robots, presumably

because unions raise labor costs (though we lack instruments for unionization). Quantitatively, our

estimates in column 6 of Panel B imply that a 10 percentage point increase in union membership—

roughly the difference between Germany and the United States—is associated with 0.04 additional

robots per thousand workers per year, a magnitude that is about 40% of the quantitative effects

from aging reported above. The wage level, on the other hand, has a positive point estimate, but

does not seem to have a robust impact on the adoption of robots.23

Finally, we explored models in logs rather than in the number of robots per thousand workers

as in our baseline specification. In Table A9, we present estimates using either ∆ ln(1 + Rc) or

∆ lnRc as the dependent variable. The former specification is motivated by the fact that the initial

stock of robots is equal to zero for several countries. In all cases, the results are very similar to our

baseline estimates.

5.3 Other automation technologies

We next show that there is a similar relationship between demographic change and other automation

technologies using imports data from Comtrade. We first confirm the results presented so far using

imports of industrial robots. Specifically, we estimate a variant of equation (19) with the log

of robot imports relative to other intermediate imports between 1996 and 2015 as the dependent

variable.24 Because these measures are imprecise for countries with small total imports, throughout

22We use the average share of workers belonging to a union between 1990 and 1995 as our measure of unionization
(from Rama and Artecona, 2002). The data on wages are from the Penn World Tables, version 9.0 (see Feenstra,
Inklaar and Timmer, 2015). In addition, because wages partly reflect differences in labor productivity, in all these
models we control for the log of output per worker in 1993.

23This might be because high wages reflect not just greater “wage push” but also a higher marginal product of
workers, or because our measure is the average wage rather than the wage of blue-collar or middle-aged workers,
which are the ones that should matter in our model.

24There are several points to note here. First, since imports (and later exports and patents) are flow variables, our
dependent variable corresponds to the growth in the stock of these intermediates, which is similar to our baseline
specification with the growth of the stock of robots on the left-hand side in equation (19). Second, our normalization
ensures that our findings are not driven by an overall increase in imports in aging countries. Third, because data on
robot imports and exports are only available between 1996 and 2015, in these models we focus on aging between 1995
and 2025, and measure all of our controls in 1995 rather than in 1993. Finally, we choose the specification with logs as
the baseline because it turns out to be less sensitive to outliers and also focuses on the sample of countries importing
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we focus on regressions weighted by total imports between 1996 and 2015.

Panels A and B of Table 6 presents our OLS and IV estimates. The table has the same

structure as previous ones, with the exception that in columns 3 and 6 we control for the log of

intermediate imports. Moreover, because Comtrade covers more countries, our sample now includes

131 countries, 34 of which are in the OECD (recall that these models exclude Japan). We find that

aging countries tend to import more industrial robots relative to other intermediate goods. The

IV coefficient estimate in column 3, 2.234 (s.e.=0.675), implies that a 20 percentage point increase

in aging, once again corresponding to the difference between Germany and the US, leads to a 46%

increase in the imports of industrial robots relative to total intermediate imports and closes about

a third of the gap between the two countries (which is comparable to the quantitative magnitudes

for robot installations in our baseline estimates). Figure 8 provides regression plots for the full

sample (Panel A) and the OECD sample (Panel B), where the size of the markers indicate total

imports for each country.

Figure 10 turns to imports of other type of equipment—again from the Comtrade data—and

reports estimates of the IV models in columns 3 and 6 of Table 6. We chose three sets of inter-

mediates. The first set includes intermediates related to the automation of blue-collar industrial

jobs: dedicated machinery (including robots), numerically controlled machines, automatic machine

tools, automatic welding machines, weaving and knitting machines, dedicated textile machinery,

automatic conveyors, and automatic regulating instruments. The second set comprises technolo-

gies used for similar industrial tasks but that do not involve automation. This set includes manual

machine tools, manual welding machines, machines that are not numerically controlled, other regu-

lating instruments, other conveyors, and other industrial machinery. Finally, we consider interme-

diates that are not used in the automation of blue-collar tasks and thus should not become more

profitable when the population ages. This set includes vending machines, laundry machines, agri-

cultural machinery (including tractors) and computers.25 The evidence in Figure 10 is consistent

with the idea that aging is associated with the adoption of a range of technologies for industrial

automation. In particular, for the full sample of countries, aging leads to a statistically significant

and sizable increase in the relative imports of all of our (industrial) automation technologies, except

automatic conveyors. For the OECD, the pattern is more mixed. Reassuringly from the viewpoint

of our theory, in neither sample do we find a relationship between aging and imports of technologies

unrelated to automation of blue-collar jobs, including computers.26

or exporting the relevant intermediates (and later patenting), which is thus more similar to our regressions focusing
on countries installing robots. In Table A10 and Figures A3 and A4 in the Appendix, we show the robustness of our
results to different specifications and to samples that include countries with zero imports, exports or patents.

25Computers are of interest in and of themselves; they are also quite distinct from automation technologies, since
they are typically used to complement labor in existing tasks as well as automating a smaller subset of tasks (and
this non-automating role of computers is in line with the results in Acemoglu and Restrepo, 2017a).

26Figures A3 and A4 in the Appendix show that these results are robust when we use log(1 + x) or shares on the
left-and side, and when we exclude outliers.
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6 Demographic Change and Innovation

While our theory links demographic change to both the adoption and development of new automa-

tion technologies, the evidence so far has focused on adoption. We next turn to two measures of

innovation and development of new automation technologies. The first is the export of the same

measures of intermediates related to automation technologies, starting with industrial robots. The

exporting of these technologies is a sign of innovation related to this area (e.g., the introduction of

new varieties of machinery or quality improvements leading to greater exports). Motivated by this

reasoning, we investigate whether countries undergoing more rapid demographic change increase

their exports of automation technologies.27 We start with a variant of equation (19) focusing on the

log of robot exports relative to other intermediate exports between 1996 and 2015 as the dependent

variable. Similar to our strategy with imports, we weight our regressions by total exports between

1996 and 2015.

Panels C and D of Table 6 present OLS and IV estimates and have an identical structure to

Panels A and B, except that in columns 3 and 6 we control for the log of intermediate exports instead

of imports. Our sample now includes 105 countries, 35 of which are in the OECD.28 Consistent

with our theoretical expectations, the results indicate that demographic change is associated with

greater exports of industrial robots relative to other intermediate goods. The IV estimate in column

3 of 4.354 (s.e.=1.309) implies that a 20 percentage point increase in expected aging, once again

corresponding to the difference between Germany and the US, leads to an 88% increase in robotics

exports, which more than closes the gap between the two countries (which is about 63%). The two

panels of Figure 9 depict these relationships for the full sample and the OECD sample (marker size

now indicates total exports).

Panel B of Figure 10 then turns to other types of machinery and focuses on the same IV models

for the full sample and the OECD as in Panel A. We now find a strong effect of aging on the

(relative) export of intermediates embodying industrial automation technologies. This relationship

is statistically significant for all of our measures (except for automatic conveyors) both in the full

sample and in the OECD sample. Reassuringly, we again do not see a similar relationship for other

technologies.29

Our second strategy is to look at patents related to robotics as described in Section 3. We

estimate a variant of equation (19) with the log of robotics-related patents relative to other utility

patents granted between 1990 and 2015 as the dependent variable. (This normalization ensures that

our findings are not driven by an overall increase in patenting activity among countries undergoing

more rapid demographic change). As we did with imports and exports, we weight our regressions by

total patenting activity between 1990 and 2015. The weighting accounts for the sizable differences

27Costinot, Donaldson, Kyle and Williams (2017) also look at exports as a measure of the development of new
technologies, but focus on pharmaceuticals.

28Because we are looking at exporting activity, these models include Japan as well.
29Figures A3 and A4 in the Appendix show that these results are robust when we use log(1 + x) or shares on the

left-and side, and when we exclude outliers.
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across countries in their propensity to file for a patent in the United States. Panels A and B

of Table 7 present our OLS and IV estimates. Our sample now includes 69 countries active in

robotics-related patent classes, 31 of which are in the OECD. The results show a strong association

between demographic change and robotics-related patents (relative to other utility patents). The

IV estimate in column 3, for example, is 1.354 (s.e.=0.172) and implies that a 20 percentage point

increase in expected aging, once again corresponding to the difference between Germany and the

US, leads to a 27% increase in robotics-related patents relative to all utility patents, which is about

48% of the gap between the two countries. Figure 11 presents this relationship visually.

We investigated the robustness of these results in number of dimensions. Some of those are

shown in Figure 12. Specifically, we use alternative definitions of automation patents and also

verify that there is no similar positive association when we look at patents related to comput-

ers, nanotechnology or pharmaceuticals. Our alternative measures of robotics-related and other

automation patents are: just the 901 USPTO class (as opposed to our baseline measure which

also includes all patents referring to the 901 class); patent classes that tend to cite the 901 class

frequently (using two definitions); patents with abstract containing words related to robots or to

industrial robots; patents with abstract containing words related to industrial machinery; and fi-

nally patents with abstract containing words related to numerical control. In all these cases we

find a positive association between demographic change and the number of patents in these classes

(relative to all utility patents). The remaining entries in the figure show that the relationship for

computers, nanotechnology and pharmaceuticals are either zero or negative. These results bol-

ster our interpretation that demographic change encourages the development of a specific class of

technologies related to industrial automation.30

7 Demographics and Robots across US Commuting Zones

In this section, we explore the relationship between aging and the adoption of robots across US

commuting zones. As explained above, we proxy for robotics-related activity relying on Leigh and

Kraft’s (2016) data on the location of robot integrators. Panel A of Table 8 reports estimates of

the model

Integratorsz = βAgingz + ΓXz,1990 + υz

across 722 US commuting zones. Here z indexes a commuting zone, Integratorsz is a dummy

variable for whether a commuting zone has any robot integrators. Agingz now designates the

change in the ratio of workers above 56 to those between 21 and 55 between 1990 and 2015 in

commuting zone z, and Xz,1990 is a vector of additional commuting-zone characteristics measured

in 1990. As in our cross-country models for robots, we focus on unweighted regressions and the

30The construction of the various patent classes is further described in the Appendix, where we also show that our
main results for patents are robust when we use other functional forms or when we take into account the presence of
outliers.
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standard errors are robust against heteroskedasticity and spatial correlation at the state level.

Because people can migrate across commuting zones more easily than across countries, the

endogeneity of local age composition is a more important issue in this case than in our cross-

country analysis. In Panel B we instrument aging using the average birth rates of the commuting

zone over five-year intervals from 1950-1954 to 1980-1984, while in Panel C we present an alternative

IV strategy using the decline in birth rates from 1950 to 1985 as a single instrument (similar to our

single instrument models in the cross-country analysis).

Column 1 controls only for regional dummies (Midwest, Northeast, South, and West). Column

2 includes baseline characteristics of commuting zones measured in 1990—a point in time in which

the US had few industrial robots and integrators (see Ayres and Miller, 1981). These characteristics

include the log of the average income, the log of the population, the initial ratio of older to middle-

aged workers, and the share of workers with different levels of education. Column 3 includes the

exposure to robots measure already used above to capture the opportunities for the use of robots in

each commuting zone based on its industrial composition. This column also controls for the shares

of employment in manufacturing, agriculture, mining, construction, and finance and real estate in

1990. Finally, column 4 includes additional covariates to which we did not have access to in our

cross-country analysis, including the racial composition of commuting zones, the share of male and

female employment (all measured in 1990) and controls for exposure to Chinese imports, Mexican

imports, offshoring and routine jobs (see Acemoglu and Restrepo, 2017a).

For all specifications, the qualitative pattern of the estimates are similar across the three pan-

els, though the OLS estimates are considerably smaller than their IV counterparts, presumably

reflecting the endogeneity of current age composition in the local labor market. For both of our IV

specifications, we find that robot integrators tend to locate in commuting zones that are aging more

rapidly as well as those with the greatest exposure to robots (as shown by Acemoglu and Restrepo,

2017a). A 10 percentage point increase in our aging variable—which is approximately the standard

deviation among US commuting zones in this period—is associated with a 8.8 percentage points

increase in the probability of having an integrator (compared to an average probability of 22%).

These relationships are shown visually in Figures 13 and 14. The first presents a map of com-

muting zones that house robot integrators next to the predicted aging patterns across commuting

zones. The strong association between these two variables is clearly visible from these maps. The

second figure presents binned scatter plots of the relationship between aging or predicted aging and

the location of integrators.

Columns 6 and 7 explore whether the impact of aging concentrates in commuting zones with

a high share of manufacturing employment. Our theoretical mechanism should only operate when

there is significant manufacturing activity in an area. Consistent with this expectation, we find

that integrators locate in commuting zones undergoing rapid aging but only when these are above

the median in the distribution of manufacturing employment (column 6); aging does not appear

to be related to the locational choices of integrators in commuting zones with little manufacturing
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employment (column 7).31

Overall, even though the presence of integrators in an area does not fully capture the extent of

industrial automation or the use and development of robotics technologies, the evidence is broadly

supportive of the positive impact of aging on the adoption of robots.

8 Demographics and Robots: Industry-Level Results

Our theoretical analysis in Section 2 highlighted that the response of robotics technology to de-

mographic change—an increase in the ratio of older to middle-aged workers—should be more pro-

nounced in industries that rely more on middle-aged workers and also in industries in which these

middle-aged workers engage in tasks that can be more productively automated. We now investigate

these predictions using the industry-level data from IFR.

Table 9 estimates regression models similar to those reported so far, except that we now use

annual data varying by country and industry and also include interactions with industry charac-

teristics:

IRi,c,t

Li,c,1990
=βAgingc + βRAgingc ×Reliance on Middle-Aged Workersi (20)

+ βPAgingc ×Opportunities for Automationi + Γi,tXc,1990 + αi + δt + εi,c,t,

where the left-hand side variable, in contrast to equation (19), denotes the (annual) installation of

new robots per thousand workers (with the denominator still corresponding to employment in 1990).

Agingc is once again defined as the change in the ratio of the population above 56 to those between

21 and 55 between 1990 and 2025. We also allow the covariates in Xc,1990 to have time-varying

coefficients and include industry and year effects, αi and δt, in this case. Reliance on Middle-Aged

Workersi and Opportunities for Automationi were defined in Section 3 and capture the relevant

dimensions of industry heterogeneity according to our theory. Our sample for this regression covers

50 countries and runs between 1993 and 2014, but is unbalanced since, as indicated in Table

A1, data are missing for several country×industry×year combinations.32 Standard errors are now

robust against heteroscedasticity, and cross-industry and temporal correlation at the country level.

To construct the denominator of our left-hand side variable, we use several approaches. First,

in Panels A and B we use the ILO country data to normalize robot installations by Li,c,1990 =

Lc,1990/19 (recall that the IFR reports data for 19 industries). This normalization allows us to use

all 50 countries for which there are industry-level robots data. Second, in Panels C and D we use

31Table A12 in the Appendix shows that our commuting zone-level results are robust across a range of specifications,
for example, when we exclude outliers, weight the data by population, or use the log of the employment of integrators
as the dependent variable.

32In this and subsequent industry-level regressions, we weight country-industry pairs using the baseline share of
employment in each industry in that country. This weighting scheme ensures that all countries receive the same
weight—as in our unweighted country specifications—while industry weights reflect their relative importance in each
country (this is the same weighting scheme used by Graetz and Michaels, 2015 and Michaels, Natraj, and Van Reenen,
2014).
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EUKLEMS data, which cover all the industries in our sample, but only for 22 countries. Finally,

Table A13 in the Appendix uses the UNIDO data on employment by country-industry pair, which

covers manufacturing industries for 44 countries.33

Column 1 in all panels presents estimates of equation (20) without the interaction terms.

Though not reported, our covariates, Xc,1990, include region dummies, the log of GDP per capita,

log population, average years of schooling and the ratio of older to middle-aged workers in 1990.

The remaining columns include the interaction of aging with reliance on middle-aged workers

and opportunities for automation. In columns 2-4, the Opportunity for Automationi is proxied

using Graetz and Michaels’s replaceability index, while in columns 5-7, it is proxied by a dummy

for the industries identified by BCG (2015). The estimates in columns 2 and 5 show positive and

statistically significant interactions with both variables in all panels. The estimates in column 2

of Panel A, for example, indicate that a 10 percentage point increase in aging leads to an increase

of 0.15 (= 1.66 × 0.9 × 0.1) annual robot installations per thousand workers in an industry at the

75th percentile of reliance on middle-aged workers compared to an industry at the 25th percentile.

For instance, in electronics, which is at the 75th percentile of reliance on middle-aged workers, a 10

percentage point increase in aging is predicted to increase robot installations by 0.25 per thousand

workers per year, while in basic metals, which is at the 25th percentile, the same change is predicted

to lead to only 0.1 more robots per thousand workers. Similarly, a 10 percentage point increase in

aging is associated with an increase of 0.155 (= 0.27 × 5.738 × 0.1) annual robot installations per

thousand workers in an industry at the 75th percentile of the replaceability index compared to an

industry in the 25th percentile. For example, automobile manufacturing is approximately at the

75th percentile of the replaceability index, and a 10 percentage point increase in aging increases

robot installations by 0.21 per thousand workers per year in this industry, while the same change is

predicted to increase installation of robots only by about 0.05 per thousand workers in construction

or utilities, which are at the 25th percentile.

In columns 3 and 6, we control for a measure of the baseline extent of robot use in each

country-industry pair, which accounts for any unobserved industry characteristics that may be

correlated with initial investments and subsequent trends in robotics and/or for mean-reversion (or

other) dynamics.34 In columns 4 and 7 we control for a full set of country fixed effects (and we

no longer estimate the main effect of aging). In these models the interaction between aging and

industry characteristics is identified solely from within-country variation. Reassuringly, the size of

the interaction coefficients does not change much in either case.

We turn to the IV specifications in Panels B and D. As in our cross-country analysis, we

33Table A8 in the Appendix shows that if we estimate an analogue of equation (20) using yearly data on robot
installation for countries, the results are very similar to our baseline cross-country estimates in Table 3. The slight
differences are due to the depreciation of the stock of robots (if robots did not depreciate, the two models would yield
the exact same results since total installations would add up to the change in the stock of robots).

34Because we do not observe the stock of robots for all country-industry pairs in 1993, we follow Graetz and
Michales (2015) and impute these stocks when they are missing in 1993. To do so, we deflate the first observation of
the stock of robots in a country-industry pair back in time using the growth rate of the stock of total robots in the
country during the same period.
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instrument demographic change using past birth rates, and we also include interactions of these

birth rates with our measures of reliance on middle-aged workers and opportunities for automation

to generate corresponding first-stages for the interaction terms. The IV estimates are quantitatively

similar to the OLS ones.35

Overall, the cross-industry patterns provide support for the theoretical predictions of our frame-

work, and indicate that the response of investment in robots to aging is stronger in industries that

rely more on middle-aged workers and that have greater opportunities for automation.

9 Productivity and the Labor Share

We finally turn to the relationship between aging and changes in productivity (real value added

per worker) and the labor share. As highlighted in Section 2, the relationship between aging and

industry productivity is in general ambiguous. On the one hand, demographic change might reduce

the number of high-productivity middle-aged workers relative to lower-productivity older workers.

On the other hand, demographic change might increase productivity because of the technology

adoption it induces. Nevertheless, our model also makes some unambiguous predictions: because

of the induced increase in automation, industries with the greatest opportunities for automation

should increase their value added per worker relative to other industries that cannot rely on au-

tomation to substitute for middle-aged workers. For the same reason, we also expect a differential

negative impact on the labor share in industries with the greatest opportunities for automation.

Panels A and B of Table 10 estimate a version of equation (20) with the change in log (real)

added per worker in industry i in country c between 1995 and 2007 as the left-hand side variable

(instead of annual robot installations) and the same interactions on the right-hand side. Because

this productivity measure from EUKLEMS data is only available from 1995 onwards, we adjust our

aging variable to be between 1995 and 2025. We allow the baseline covariates in Xc,1995 to affect

industries differently, and we continue to include industry effects, αi, and to use the same weighting

scheme as in the previous section. The standard errors are again robust against heteroscedasticity

and correlation at the country level.36

The structure of Table 10 is similar to that of Table 9. Panel A presents OLS estimates for

productivity and Panel B reports IV estimates. Column 1 in Panel A shows that aging reduces the

average growth of value added per worker. A 10 percentage point increase in aging is associated

with a 14.5% decline in value added per worker (s.e.=5.6%) in Panel A. These results differ from

the findings in Acemoglu and Restrepo (2017b), where we showed that there was no negative effect

of aging on growth in GDP per capita. The negative estimates in column 1 here are driven by

the smaller samples in the EUKLEMS, and are not robust to using other measures of economic

activity. For instance, as reported in Table A18 in the Appendix, if we estimate the analogue of

35We also confirmed that past demographic changes have neither main effects nor interaction effects (with reliance
on middle-aged workers or opportunities for automation) and also verified that these results are robust under different
specifications and to excluding outliers. These results are presented in Tables A14, A15, and A16 in the Appendix.

36In the Appendix we also present analogous results from the OECD STAN database.
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this equation at the country level for a larger sample, there is no significant negative relationship.

Of greater interest given the theoretical predictions highlighted in Section 2 is the interaction

between aging and opportunities for automation. Here, we find a positive interaction, indicating

that in the presence of aging, industries with greater potential for automation are experiencing

relative productivity gains. The magnitudes are sizable. For example, the IV estimate in column

2 of Panel B shows that a 10 percentage points increase in aging causes an increase of 18% (=

0.4× 4.6× 0.1) in the growth of value added per worker in an industry at the 95th percentile of the

replaceability index compared to an industry at the 5th percentile. In fact, our estimates imply

that aging increases productivity in the former industry while it reduces it in the latter.37

Panels C and D of Table 10 present regressions for the labor share. Column 1 shows that, on

average, industries located in countries undergoing more rapid demographic change experienced

a decline in their labor share.38 More importantly for our focus here, we find that these effects

are more pronounced in industries that have greater opportunities for automation. We also find a

positive interaction between aging and reliance on middle-aged workers, which is consistent with

production tasks being complements (ζ < 1 in our model). The extent of heterogeneous effects on

the labor share across industries is again quantitatively significant.

Overall, consistent with our theoretical predictions, the evidence suggests that aging increases

relative productivity and reduces the labor share in industries that have the greatest opportunities

for automation—and has ambiguous effects in the aggregate.

10 Conclusion

The populations of most developed and many developing countries are aging rapidly. Many

economists see these demographic changes as major “headwinds” potentially slowing down or even

depressing economic growth in the decades to come. However, a reasoning based on directed tech-

nological change models—which highlight the effects of changing scarcity of different types of labor

on the adoption and development of technologies substituting for these factors—suggests that these

demographic changes should be associated with major technological responses.

We have documented that this is indeed the case; countries and US labor markets undergo-

ing more major demographic change have invested significantly more in new robotic and other

automation technologies. We have argued that this is because ongoing demographic changes are

increasing the scarcity of middle-aged workers and industrial automation is most substitutable with

middle-aged workers. The effects of demographic change on investment in robots are robust and

quantitatively sizable. For example, differential aging alone accounts for about 40% of the cross-

37We also find some negative estimates of the interaction between aging and reliance on middle-aged workers, but as
emphasized in Section 2, there are no tight predictions in this case, because both the direct effect (which is negative)
and the technology response effect (which can be positive) tend to be greater for industries that rely more heavily on
middle-aged workers.

38As was the case with productivity, these results do not extend beyond the sample considered here. Table A18
in the Appendix shows that, if we estimate the analogue of equation (20) at the country level for the larger sample,
there is no relationship between aging and the labor share.

32



country variation in investment in robotics. We have also shown using data on intermediate exports

and patents that demographic change not only encourages the adoption of automation technologies

but also their development.

Our directed technological change model further predicts that the effects of demographic change

should be more pronounced in industries that rely more on middle-aged workers (because the

scarcity of middle-aged workers will be felt more acutely in these industries) and in those that

present greater technological opportunities for automation. Using the industry dimension of our

data, we provide extensive support for these predictions as well.

The technology responses to aging mean that the productivity implications of demographic

changes are more complex than previously recognized. In industries most amenable to automa-

tion, aging can trigger significantly more adoption of new robots and as a result, lead to greater

productivity—even if the direct effect of aging might be negative. Using industry-level productivity

data, we find that the main effect of aging on productivity is ambiguous, but as in our theoretical

predictions, in the presence of demographic change, industries with the greatest opportunities for

automation are experiencing more rapid growth of productivity and greater declines in labor share

relative to other industries.

Several questions raised in this paper call for more research. First, it is important to study the

effects of aging on technology adoption and productivity using more disaggregated industry-level

or firm-level data, to which we do not have access in this paper. Second, it is necessary to further

investigate whether the effects of demographic change on technology adoption are being mediated

through wages and whether other factors affecting wages, such as differences in labor market in-

stitutions, also have similar effects on technology. Third, it would be interesting to investigate

technology responses to changes in the gender composition of the workforce as well (though our

data on automation technologies are too late to capture the most major changes in the developed

world). Finally, motivated by industrial automation, our focus has been on the substitution of

machines for middle-aged workers in production tasks (and mostly in manufacturing). Though it is

well-known that with the advent of artificial intelligence, a broader set of tasks can be automated,

there is currently little research on incentives for the automation of nonproduction tasks and their

productivity implications.
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Main Figures and Tables:

Panel A Panel B

Figure 1: Equilibrium wages WE and V E . The downward-slopping red curve is the isocost C(W,V, 1) = 1

(condition (12)). The equilibrium is given by the point of tangency between the isocost and a line with slope − 1−φ
φ

,

and at this point ∂C/∂W
∂C/∂V

= 1−φ
φ

(condition (13)). Panel B shows that automation rotates the isocost curve clockwise

(displacement effect) and shifts it outwards (productivity effect).

Panel A Panel B

Figure 2: Equilibrium middle-aged wage with endogenous technology. Panel A: unique equilibrium. Panel B:

multiple equilibria. Aging shifts the mapping WE up, and this increases the equilibrium wage in the least and the

greatest equilibrium.
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Figure 3: Panel A presents trends in aging—the ratio of older (56 years of age or older) to middle-aged (between

21 and 55 years of age) workers—using data and forecasts from the UN. Panel B presents trends in robot adoption.

Robot adoption is measured by the number of robots per thousand industry workers in 1990, using robot data from

the IFR and employment figures from the ILO.
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Figure 4: For each age group, Panel A plots the ratio of the number of employees in blue-collar production jobs to

the number of employees in white-collar and service jobs. For each age group, Panel B plots the share of employees

working in industries with the greatest opportunities for automation (car manufacturing, electronics, metal machinery,

and chemicals, plastics, and pharmaceuticals). Both figures present data from the 1990 and 2000 Censuses, the 2007

American Community Survey, and an average of these series.
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Figure 5: The figure presents the correlation across industries between the exposure to robots and the change

between 1993 and 2007 in the share of production workers (Panel A) and the share of wages paid to production

workers (Panel B) across three-digit US industries. Data from the NBER-CES Manufacturing Industry Database.

Marker size indicates total employment in each industry.
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Figure 6: The figure presents estimates of the impact of one additional robot per thousand workers on the

employment and wages of different age groups across US commuting zones. The three specifications and the data

used are described in the main text and in Acemoglu and Restrepo (2017a).
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Figure 7: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the increase in the number of industrial robots per thousand workers between 1993 and 2014.

The plots partial out the covariates included in the regression models in columns 2 and 5 of Table 3.
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Figure 8: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the log of imports of industrial robots between 1996 and 2015 (relative to total imports of

intermediates). Panel A is for the full sample and Panel B is for the OECD sample. The plots partial out the

covariates included in the regression models in columns 2 and 5 of Table 6. Marker size indicates total imports.

39



ALBANIA

ALGERIA

BANGLADESH

CHINA,HONG KONG S.A.R.

CONGO

GABON

JAPAN

MALAWI
MALI

NIGERIA

SINGAPORE

VIET NAM

−
15

−
10

−
5

0
R

el
at

iv
e 

ex
po

rt
s 

of
 in

du
st

ria
l r

ob
ot

s 
19

96
−

20
15

−.2 0 .2 .4 .6
Aging between 1995 and 2025

Panel A

GERMANY

GREECE

ICELAND

IRELAND

ISRAEL

JAPAN

LUXEMBOURG

MEXICO

NETHERLANDS

POLAND

SOUTH KOREASWEDEN

−
10

−
9

−
8

−
7

R
el

at
iv

e 
ex

po
rt

s 
of

 in
du

st
ria

l r
ob

ot
s 

  1
99

6−
20

15

.1 .2 .3 .4 .5
Aging between 1995 and 2025

Panel B

Figure 9: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the log of exports of industrial robots between 1996 and 2015 (relative to total exports of

intermediates). Panel A is for the full sample and Panel B is for the OECD sample. The plots partial out the

covariates included in the regression models in columns 2 and 5 of Table 6. Marker size indicates total exports.
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Figure 10: Estimates of the relationship between aging (change in the ratio of workers above 56 to workers aged

21-55 between 1990 and 2025) and the log of imports (Panel A) and exports (Panel B) of intermediate goods between

1990 and 2015. These outcomes are normalized by the total intermediate exports and imports, respectively, during

this period. The figure presents separate estimates for the full sample of countries and for the OECD sample.
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Figure 11: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the log of automation patents granted to a country between 1990 and 2016 (relative to total

patents at the USPTO). Panel A is for the full sample and Panel B is for the OECD sample. The plots partial out

the covariates included in the regression models in columns 2 and 5 of Table 7. Marker size indicates total patents.
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Figure 12: Estimates of the relationship between aging (change in the ratio of workers above 56 to workers

aged 21-55 between 1990 and 2025) and the log of patents in the indicated category between 1990 and 2015. These

outcomes are normalized by the total patents granted by the USPTO during this period. The figure presents separate

estimates for the full sample of countries with patent data and for OECD countries.
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Panel B

Figure 13: The maps present the location of commuting zones that house robot integrators (Panel A) and predicted

aging across commuting zones based on birthrates from 1950 to 1985 (Panel B).

.1
.1

5
.2

.2
5

.3
.3

5
D

um
m

y 
fo

r 
lo

ca
tio

n 
of

 in
te

gr
at

or
s 

(b
in

ne
d)

0 .1 .2 .3 .4
Aging from 1990 to 2025

Panel A

.1
5

.2
.2

5
.3

.3
5

D
um

m
y 

fo
r 

lo
ca

tio
n 

of
 in

te
gr

at
or

s 
(b

in
ne

d)

.1 .15 .2 .25 .3
Predicted aging from 1990 to 2025

Panel B

Figure 14: Binned plot of the relationship between aging (change in the ratio of workers above 56 to workers aged

21-55 between 1990 and 2015) and predicted aging (change in the ratio of workers above 56 to workers aged 21-55

between 1990 and 2015 instrumented using birthrates from 1950 to 1985) and the location of robot integrators in the

US (from Leigh and Kraft, 2016). The plots partial out the covariates included in the regression models in column 4

in Table 8.
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Table 1: Summary statistics for countries

All
countries

OECD
Rapidly-
aging

countries

Slowly-
aging

countries

Panel A: IFR data.
Robots per thousand workers in 2014 3.79 5.71 5.76 1.81

(4.60) (4.83) (5.29) (2.64)

Robots per thousand workers in 1993 0.72 1.14 1.09 0.34
(1.13) (1.22) (1.24) (0.87)

Annualized increase between 1993 and 2014 0.15 0.22 0.22 0.07
(0.18) (0.19) (0.21) (0.09)

Ratio of older to middle-aged workers 0.38 0.45 0.41 0.34
in 1990 (0.13) (0.09) (0.12) (0.14)
Change in older to middle-aged workers 0.27 0.31 0.37 0.16
between 1990 and 2025 (0.13) (0.11) (0.09) (0.07)
Change in older to middle-aged workers 0.13 0.16 0.19 0.08
between 1990 and 2015 (0.08) (0.06) (0.05) (0.08)

N = 52 N = 30 N = 26 N = 26
Panel B: Comtrade data.
Robot imports per thousand workers $37K $112K $70K $4K
between 1996 and 2015 (thousand dollars) ($89K) ($118K) ($118K) ($11K)
Robot imports per million dollars of total $272 $268 $279 $219
intermediate imports between 1996 and 2015 ($145) ($138) ($143) (%158)

N=131 N=34 N=65 N=66

Robot exports per thousand workers $42K $110K $69K $16K
between 1996 and 2015 (thousand dollars) ($115K) ($168K) ($127K) ($95K)
Robot exports per million dollars of total $292 $375 $314 $89
intermediate exports between 1996 and 2015 ($590) ($314) ($307) ($1,613)

N=105 N=35 N=52 N=53
Panel C. USPTO patents sample.
Robot-related patents granted between 718 1,578 1,406 49
1990 and 2016 by the USPTO (3,365) (4,928) (4,728) (148)
Robot-related patents granted by USPTO 13.4 13.5 13.5 12.8
for every other thousand patents (3.3) (3.0) (3.0) (8.1)

N=69 N=31 N=34 N=35

Notes: The table presents summary statistics for the main variables used in our cross-country analysis. The data
are presented separately for the full sample, the OECD sample, and countries above and below the median aging
between 1990 and 2025 in each sample. Section 3 in the main text describes the sources and data in detail.
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Table 2: OLS estimates of the impact of population change in different age groups on the adoption
of industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. Population in two age groups between 1990-2025

Change in the log of population -0.451∗∗∗ -0.510∗ -0.500∗∗ -0.756∗∗∗ -1.202∗∗ -1.066∗∗

aged 21-55 years (0.148) (0.286) (0.234) (0.213) (0.447) (0.446)
Change in the log of population 0.366∗ 0.368∗ 0.286 0.605∗∗ 0.478 0.423
≥ 56 years (0.190) (0.203) (0.173) (0.237) (0.328) (0.345)

Robots per thousand workers in 1993 0.076∗∗∗ 0.066∗∗∗

(0.011) (0.023)
Observations 52 52 52 30 30 30
R-squared 0.47 0.59 0.71 0.42 0.63 0.71

Panel B. Population in two age groups between 1990-2025

Change in the log of population -0.489∗∗∗ -0.469∗∗∗ -0.357∗∗ -0.821∗∗∗ -0.839∗∗∗ -0.652∗∗∗

aged 21-55 years (0.164) (0.162) (0.156) (0.230) (0.210) (0.210)
Change in the log of population 0.377∗ 0.495∗∗∗ 0.230∗ 0.643∗∗ 0.904∗∗∗ 0.576∗

aged 56-75 years (0.195) (0.164) (0.131) (0.243) (0.264) (0.282)
Robots per thousand workers in 1993 0.078∗∗∗ 0.068∗∗∗

(0.011) (0.017)
Observations 52 52 52 30 30 30
R-squared 0.47 0.52 0.67 0.44 0.55 0.66

Panel C. Population in three age groups between 1990-2025

Change in the log of population 0.010 0.007 -0.150 -0.160 -0.243 -0.355
aged 21-35 years (0.150) (0.152) (0.161) (0.213) (0.213) (0.230)
Change in the log of population -0.618∗∗∗ -0.582∗∗∗ -0.193 -0.753∗∗∗ -0.632∗∗ -0.265
aged 36-55 years (0.195) (0.210) (0.223) (0.247) (0.243) (0.294)
Change in the log of population 0.511∗∗ 0.646∗∗∗ 0.265∗∗ 0.773∗∗∗ 1.119∗∗∗ 0.767∗∗∗

aged 56-75 years (0.197) (0.142) (0.126) (0.262) (0.281) (0.259)
Robots per thousand workers in 1993 0.076∗∗∗ 0.068∗∗∗

(0.014) (0.021)
Observations 52 52 52 30 30 30
R-squared 0.52 0.57 0.67 0.47 0.60 0.69

Covariates included:
Country covariates in 1993 X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS estimates of the relationship between changes in population and the adoption of
robots. In all panels, the dependent variable is the change in the stock of industrial robots per thousand workers
between 1993 and 2014 (from the IFR). The explanatory variables include the expected change in the log of population
in different age groups between 1990 and 2025 (from the UN population statistics). The exact age groups used in the
analysis vary across the panels. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use
the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP
per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in
1990. Columns 3 and 6 add the 1993 value of robots per thousand workers. All regressions are unweighted, and the
standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with
∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 3: Estimates of the impact of aging on the adoption of industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 0.769∗∗∗ 0.712∗∗∗ 0.559∗∗ 1.117∗∗∗ 0.983∗∗∗ 0.777∗∗∗

(0.252) (0.237) (0.211) (0.366) (0.298) (0.275)
log of GDP per capita in 1993 0.032 -0.015 0.037 -0.024

(0.030) (0.023) (0.052) (0.055)
log of population in 1993 0.031∗∗∗ 0.015∗ 0.039∗∗∗ 0.021∗

(0.010) (0.009) (0.012) (0.012)
Robots per thousand workers in 1993 0.076∗∗∗ 0.071∗∗∗

(0.011) (0.022)
Observations 52 52 52 30 30 30
R-squared 0.47 0.59 0.70 0.38 0.54 0.63

Panel B. IV estimates

Aging between 1990 and 2025 0.874∗∗∗ 0.767∗∗∗ 0.692∗∗∗ 1.576∗∗∗ 1.018∗∗∗ 0.956∗∗∗

(0.263) (0.241) (0.217) (0.473) (0.316) (0.298)

log of GDP per capita in 1993 0.028 -0.022 0.036 -0.021
(0.028) (0.022) (0.047) (0.051)

log of population in 1993 0.031∗∗∗ 0.015∗ 0.039∗∗∗ 0.021∗

(0.009) (0.008) (0.011) (0.011)
Robots per thousand workers in 1993 0.072∗∗∗ 0.063∗∗∗

(0.013) (0.024)
Observations 52 52 52 30 30 30
First-stage F stat. 25.2 17.8 17.0 7.7 7.1 8.6
Overid p− value 0.67 0.66 0.10 0.75 0.34 0.10
Anderson-Rubin Wald test p− value 0.02 0.03 0.00 0.03 0.03 0.00

Panel C. Single-IV estimates

Aging between 1990 and 2025 1.011∗∗∗ 0.831∗∗ 0.613∗∗ 1.622∗∗∗ 1.265∗∗∗ 1.088∗∗

(0.361) (0.329) (0.310) (0.555) (0.402) (0.427)
log of GDP per capita in 1993 0.023 -0.018 0.031 -0.018

(0.031) (0.022) (0.051) (0.055)
log of population in 1993 0.030∗∗∗ 0.015∗∗ 0.035∗∗∗ 0.021∗

(0.009) (0.008) (0.012) (0.012)
Robots per thousand workers in 1993 0.074∗∗∗ 0.058∗∗

(0.013) (0.028)
Observations 52 52 52 30 30 30
First-stage F stat. 32.4 27.9 24.1 14.6 29.9 23.8

Covariates included:
Country covariates in 1993 X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56 to workers between
21 and 55 between 1990 and 2025 (from the UN Population Statistics). Panel A presents OLS estimates. Panel B
presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between 1950
and 1985. Panel C presents IV estimates where the aging variable is instrumented using the decline in birth rates
between 1960 and 1980. For our IV estimates, we report the first-stage F−statistic. When using multiple instruments,
we also report the p−value of Hansen’s overidentification test, and the p−value of Anderson and Rubin’s test for the
coefficient on aging being zero. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use
the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP
per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in
1990. Columns 3 and 6 add the 1993 value of robots per thousand workers. All regressions are unweighted, and the
standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with
∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 4: OLS estimates of the impact of past and expected aging on the adoption of industrial
robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. Placebo test

Aging between 1950 and 1990 -0.098 0.226 0.537 -0.357 0.095 0.325
(0.378) (0.411) (0.351) (0.587) (0.456) (0.355)

Observations 52 52 52 30 30 30
R-squared 0.25 0.42 0.62 0.02 0.26 0.48

Panel B. Past vs. expected aging

Aging between 1990 and 2025 0.801∗∗∗ 0.717∗∗∗ 0.524∗∗ 1.105∗∗∗ 0.988∗∗∗ 0.777∗∗

(0.263) (0.229) (0.199) (0.348) (0.306) (0.277)
Aging between 1950 and 1990 -0.304 -0.052 0.271 -0.243 0.192 0.330

(0.377) (0.329) (0.259) (0.436) (0.315) (0.301)
Observations 52 52 52 30 30 30
R-squared 0.49 0.59 0.70 0.38 0.54 0.63

Panel C. Current vs. expected aging

Aging between 1990 and 2015 0.694∗∗ 0.524∗ 0.427 0.861∗∗ 0.688∗ 0.528
(0.268) (0.288) (0.260) (0.366) (0.347) (0.339)

Aging between 2015 and 2025 0.855∗ 0.935∗ 0.719 1.398∗∗ 1.320∗∗ 1.066∗

(0.442) (0.520) (0.517) (0.527) (0.564) (0.573)
Test for equality 0.75 0.54 0.67 0.31 0.38 0.48

Observations 52 52 52 30 30 30
R-squared 0.47 0.59 0.70 0.38 0.55 0.63
Covariates included:
Country covariates in 1993 X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS estimates of the relationship between past and expected aging and the adoption of
robots. In all panels, the dependent variable is the change in the stock of industrial robots per thousand workers
between 1993 and 2014 (from the IFR). The aging variable varies across panels: Panel A presents a placebo test
using the change in the ratio of workers above 56 to workers between 21 and 55 between 1950 and 1990 (from the UN
Population Statistics). Panel B adds the expected change in the ratio of workers above 56 to workers between 21 and
55 between 1990 and 2025 (from the UN Population Statistics). Finally, Panel C separately estimates coefficients
for aging between 1990 and 2015 (current aging) and between 2015 and 2025 (expected aging). We present results
for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1 and 4 include
region dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of population, average years
of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the 1993
value of robots per thousand workers. All regressions are unweighted, and the standard errors are robust against
heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level,
and with ∗ are significant at the 10% level.

46



Table 5: Stacked-differences estimates of the impact of aging on the adoption of industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Contemporary aging 0.843∗∗∗ 0.611∗∗∗ 0.448∗∗ 0.983∗∗ 0.776∗∗∗ 0.583∗

(0.291) (0.218) (0.206) (0.440) (0.273) (0.323)
Observations 104 104 104 60 60 60
R-squared 0.28 0.48 0.13 0.15 0.39 0.13

Panel B. IV estimates

Contemporary aging 1.157∗∗∗ 0.924∗∗∗ 0.797∗ 1.752∗∗ 1.105∗∗∗ 1.122∗

(0.401) (0.311) (0.473) (0.773) (0.418) (0.647)
Observations 104 104 104 60 60 60
First-stage F stat. 10.4 6.7 4.1 6.6 4.6 4.2
Overid p− value 0.50 0.16 0.49 0.64 0.38 0.47
Anderson-Rubin Wald test p− value 0.02 0.00 0.14 0.00 0.00 0.00
Covariates included:
Country covariates in 1993 X X X X

Initial robot density in 1993 X X X X

Country trends X X

Notes: The table presents OLS and IV stacked-differences estimates of the relationship between aging and the
adoption of robots for the two periods 1993-2005 and 2005-2014. In all panels, the dependent variable is the change
in the stock of industrial robots per thousand workers (from the IFR) for two periods: between 1993 and 2005 and
between 2005 and 2014. The aging variable is the expected change in the ratio of workers above 56 to workers between
21 and 55 for both periods as well (from the UN Population Statistics). Panel A presents OLS estimates. Panel B
presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between 1950
and 1985. For our IV estimates, we report the first-stage F−statistic, the p−value of Hansen’s overidentification
test, and the p−value of Anderson and Rubin’s test for the coefficient on aging being zero. We present results for
two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1 and 4 include region
dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of population, average years of
schooling and the ratio of workers above 56 to workers aged 21-55 in 1990, and the 1993 value of robots per thousand
workers. Columns 3 and 6 include country fixed effects. All regressions are unweighted, and the standard errors are
robust against heteroscedasticity and correlation within countries. The coefficients with ∗∗∗ are significant at the 1%
level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 6: Estimates of the impact of aging on imports and exports of industrial robots.

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Dependent variable:
log of imports of industrial robots relative to intermediates

Panel A. OLS estimates

Aging between 1995 and 2025 2.055∗∗ 2.452∗∗∗ 2.181∗∗∗ 2.218∗ 2.627∗∗∗ 2.587∗∗∗

(0.994) (0.754) (0.754) (1.262) (0.887) (0.898)
Log of the GDP per capita in 1995 -0.172 -0.422 -0.354 -0.461

(0.151) (0.272) (0.295) (0.344)
Log of intermediate imports 0.256 0.164

(0.216) (0.317)
Observations 131 131 131 34 34 34
R-squared 0.29 0.50 0.52 0.13 0.62 0.62

Panel B. IV estimates

Aging between 1995 and 2025 1.646 2.693∗∗∗ 2.346∗∗∗ 1.590 2.176∗∗ 2.035∗∗

(1.015) (0.792) (0.774) (1.295) (0.865) (0.863)
Log of the GDP per capita in 1995 -0.185 -0.418 -0.334 -0.449

(0.139) (0.262) (0.276) (0.322)
Log of intermediate imports 0.243 0.181

(0.216) (0.269)
Observations 131 131 131 34 34 34
Instruments F-stat 19.77 19.49 12.99 20.82 13.64 12.75
Overid p-value 0.19 0.56 0.35 0.59 0.17 0.10

Dependent variable:
log of exports of industrial robots relative to intermediates

Panel C. OLS estimates

Aging between 1995 and 2025 5.213∗∗∗ 3.511∗∗∗ 3.916∗∗∗ 5.891∗∗∗ 4.148∗∗∗ 4.609∗∗∗

(1.391) (1.029) (1.229) (1.639) (1.154) (1.276)
Log of the GDP per capita in 1995 0.462∗ 0.565∗∗ 0.980∗ 1.002∗

(0.252) (0.261) (0.484) (0.492)
Log of intermediate exports -0.152 -0.222

(0.215) (0.262)
Observations 105 105 105 35 35 35
R-squared 0.66 0.77 0.78 0.45 0.72 0.73

Panel D. IV estimates

Aging between 1995 and 2025 5.712∗∗∗ 3.827∗∗∗ 4.389∗∗∗ 7.267∗∗∗ 4.934∗∗∗ 5.607∗∗∗

(1.518) (1.122) (1.428) (1.668) (1.100) (1.200)
Log of the GDP per capita in 1995 0.438∗ 0.576∗∗ 0.975∗∗ 1.010∗∗

(0.229) (0.248) (0.455) (0.457)
Log of intermediate exports -0.205 -0.347

(0.215) (0.249)

Observations 105 105 105 35 35 35
Instruments F-stat 20.88 19.72 12.89 15.71 15.59 9.98
Overid p-value 0.11 0.08 0.06 0.29 0.33 0.33
Covariates included:
Country covariates in 1995 X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and imports and exports of
industrial robots. In panels A and B, the dependent variable is the log of imports of industrial robots relative to
all intermediates between 1996 and 2015 (from Comtrade). In panels C and D, the dependent variable is the log
of exports of industrial robots relative to all intermediates between 1996 and 2015 (from Comtrade). The aging
variable is the expected change in the ratio of workers above 56 to workers between 21 and 55 between 1995 and 2025
(from the UN Population Statistics). Panels A and C present OLS estimates. Panels B and D present IV estimates
where the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our
IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. We present
results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1 and 4 include
region dummies. Columns 2 and 5 include the 1995 values of log GDP per capita, log of population, average years
of schooling and the ratio of workers above 56 to workers aged 21-55. Columns 3 and 6 add the log of intermediate
imports (Panels A and B) or exports (Panels C and D) as an additional covariate. All regressions are weighted by
total intermediate imports (Panels A and B) or exports (Panels C and D), and the standard errors are robust against
heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level,
and with ∗ are significant at the 10% level.
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Table 7: Estimates of the impact of aging on patents related to robotics.

Dependent variable:

log of robotics-related patents relative to utility patents
Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 1.151∗∗∗ 1.173∗∗∗ 1.396∗∗∗ 1.165∗∗∗ 1.208∗∗∗ 1.364∗∗∗

(0.239) (0.118) (0.188) (0.232) (0.122) (0.200)
Log of the GDP per capita in 1990 -0.075 0.133 -0.099 0.040

(0.099) (0.174) (0.200) (0.259)
Log of patents at USPTO -0.121∗∗ -0.103∗

(0.052) (0.056)
Observations 69 69 69 31 31 31
R-squared 0.53 0.76 0.80 0.50 0.79 0.82

Panel B. IV estimates

Aging between 1990 and 2025 1.145∗∗∗ 1.137∗∗∗ 1.347∗∗∗ 1.166∗∗∗ 1.161∗∗∗ 1.288∗∗∗

(0.215) (0.102) (0.175) (0.219) (0.132) (0.201)
Log of the GDP per capita in 1990 -0.081 0.117 -0.120 0.001

(0.094) (0.158) (0.193) (0.240)
Log of patents at USPTO -0.115∗∗ -0.095∗

(0.047) (0.049)
Observations 69 69 69 31 31 31
Instruments F-stat 106.30 41.12 24.06 180.45 53.85 62.78
Overid p-value 0.64 0.23 0.11 0.44 0.26 0.15
Covariates included:
Country covariates in 1990 X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and robotics-related patents
assigned to companies and inventors from different countries by the USPTO. In both panels, the dependent variable
is the log of robotics-related patents relative to all utility patents granted between 1990 and 2015 (from Patents
View). The aging variable is the expected change in the ratio of workers above 56 to workers between 21 and 55
between 1990 and 2025 (from the UN Population Statistics). Panel A presents OLS estimates. Panel B presents IV
estimates where the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985.
For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. We
present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1
and 4 include region dummies. Columns 2 and 5 include the 1995 values of log GDP per capita, log of population,
average years of schooling and the ratio of workers above 56 to workers aged 21-55. Columns 3 and 6 add the log
of utility patents received by each country as an additional covariate. All regressions are weighted by total utility
patents granted to each country, and the standard errors are robust against heteroscedasticity. The coefficients with
∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 8: Estimates of the impact of aging on the location of robot integrators in the US.

Dependent variable:
Dummy for presence of robot integrator

All commuting zones
Manuf.
areas

Other areas

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2015 0.058 0.335∗∗∗ 0.259∗∗ 0.350∗∗∗ 0.702∗∗∗ 0.169∗

(0.168) (0.103) (0.101) (0.099) (0.221) (0.091)
Exposure to robots 0.048∗∗ 0.049∗∗ 0.045 0.016

(0.020) (0.020) (0.028) (0.021)
Observations 722 722 722 722 361 361
R-squared 0.00 0.44 0.47 0.48 0.51 0.49

Panel B. IV estimates

Aging between 1990 and 2015 1.338∗∗ 0.642∗∗∗ 0.530∗∗ 0.879∗∗∗ 1.636∗∗∗ 0.229
(0.581) (0.224) (0.218) (0.240) (0.547) (0.235)

Exposure to robots 0.042∗∗ 0.042∗∗ 0.030 0.015
(0.021) (0.020) (0.029) (0.019)

Observations 722 722 722 722 361 361
First-stage F stat. 4.2 21.5 20.0 22.9 9.8 8.4
Overid p− value 0.00 0.52 0.19 0.65 0.54 0.33

Panel C. Single-IV estimates

Aging between 1990 and 2015 2.574∗∗∗ 0.916∗∗∗ 0.784∗∗ 1.302∗∗∗ 2.279∗∗∗ 0.359
(0.823) (0.286) (0.309) (0.372) (0.759) (0.440)

Exposure to robots 0.037∗ 0.037∗ 0.019 0.013
(0.021) (0.020) (0.029) (0.021)

Observations 722 722 722 722 361 361
First-stage F stat. 16.4 58.8 61.9 50.9 29.1 22.6
Covariates included:
Regional dummies X X X X X X

Baseline covariates X X X X X

Industry composition X X X X

Additional covariates X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the location of robot integrators
across US commuting zones. In all panels, the dependent variable is a dummy for the presence of robot integrators in
each US commuting zone (from Leigh and Kraft, 2016). The aging variable is the change in the ratio of workers above
56 to workers between 21 and 55 between 1990 and 2015 (from the NBER-SEER). Panel A presents OLS estimates.
Panel B presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts
between 1950 and 1985. Panel C presents IV estimates where the aging variable is instrumented using the decline in
birth rates between 1950 and 1980. For our IV estimates, we report the first-stage F−statistic. When using multiple
instruments, we also report the p−value of Hansen’s overidentification test. We present results for three samples:
columns 1-4 use the full sample; column 5 focuses on commuting zones with share of employment in manufacturing
above the median; and column 6 focuses on commuting zones with share of employment in manufacturing below the
median. Column 1 includes Census region dummies. Column 2 includes the 1990 values for the log of average income,
the log of the population, the initial ratio of older to middle-aged workers, and the share of workers with different
levels of education in each commuting zone. Column 3 includes the exposure to robots measure from Acemoglu and
Restrepo (2017a) and also controls for the shares of employment in manufacturing, agriculture, mining, construction,
and finance and real estate in 1990. Finally, column 4 includes additional demographic characteristics measured
in 1990, including the racial composition of commuting zones and the share of male and female employment, and
controls for other shocks affecting US markets, including offshoring, trade with China and the decline of routine jobs.
All regressions are unweighted, and in parenthesis we report standard errors that are robust against heteroscedasticity
and correlation in the error terms within states. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are
significant at the 5% level, and with ∗ are significant at the 10% level.

50



Table 9: Estimates of the impact of aging on robot installations by country-industry pairs.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Installation of robots in country-industry pairs
normalizing by average employment in an industry from ILO

Panel A. OLS estimates.

Aging between 1990 and 2025 1.560∗∗∗ 3.743∗∗∗ 2.577∗∗∗ 6.734∗∗∗ 4.850∗∗∗

(0.439) (1.033) (0.843) (1.851) (1.537)
Aging × reliance on middle-aged 0.900∗∗∗ 0.634∗∗∗ 0.635∗∗∗ 0.264∗∗∗ 0.182∗∗ 0.183∗∗

(0.252) (0.215) (0.211) (0.090) (0.086) (0.085)
Aging × opportunities for automation 5.740∗∗∗ 4.052∗∗∗ 4.056∗∗∗ 6.046∗∗∗ 4.440∗∗∗ 4.458∗∗∗

(1.752) (1.465) (1.451) (1.681) (1.356) (1.340)
Observations 10,602 10,602 10,602 10,602 10,602 10,602 10,602
Countries in sample 50 50 50 50 50 50 50

Panel B. IV estimates.

Aging between 1990 and 2025 1.430∗∗∗ 3.635∗∗∗ 2.842∗∗∗ 6.585∗∗∗ 5.246∗∗∗

(0.477) (1.192) (0.959) (2.175) (1.768)
Aging × reliance on middle-aged 0.952∗∗∗ 0.676∗∗∗ 0.674∗∗∗ 0.327∗∗∗ 0.193∗∗ 0.194∗∗

(0.312) (0.244) (0.240) (0.112) (0.094) (0.093)
Aging × opportunities for automation 5.347∗∗∗ 4.927∗∗∗ 4.891∗∗∗ 5.902∗∗∗ 4.835∗∗∗ 4.823∗∗∗

(1.935) (1.617) (1.599) (1.986) (1.594) (1.575)
Observations 10,602 10,602 10,602 10,602 10602 10,602 10,602
Countries in sample 50 50 50 50 50 50 50
Instruments F-stat 19.1 . 6.1 7.7 . 7.4 8.4
Overid p-value 0.86 0.22 0.46 0.49 0.17 0.15 0.07

Dependent variable: Installation of robots in country-industry pairs
normalizing by industry employment from KLEMS

Panel C. OLS estimates.

Aging between 1990 and 2025 0.786∗∗∗ 3.789∗∗∗ 2.013∗∗ 5.179∗∗∗ 3.455∗∗∗

(0.184) (1.002) (0.762) (1.257) (1.003)
Aging × reliance on middle-aged 0.398∗∗∗ 0.442∗∗∗ 0.403∗∗∗ 0.116∗ 0.171∗∗ 0.139∗

(0.129) (0.123) (0.126) (0.065) (0.071) (0.073)
Aging × opportunities for automation 8.320∗∗∗ 3.027 3.354∗ 4.665∗∗∗ 3.018∗∗∗ 3.070∗∗∗

(2.415) (1.793) (1.759) (1.159) (0.900) (0.885)
Observations 5,833 5,833 5,833 5,833 5,833 5,833 5,833
Countries in sample 21 21 21 21 21 21 21

Panel D. IV estimates.

Aging between 1990 and 2025 0.849∗∗∗ 4.051∗∗∗ 2.446∗∗∗ 5.817∗∗∗ 4.148∗∗∗

(0.195) (1.077) (0.847) (1.413) (1.230)
Aging × reliance on middle-aged 0.466∗∗∗ 0.380∗∗ 0.337∗ 0.182∗∗∗ 0.108 0.072

(0.134) (0.179) (0.181) (0.063) (0.107) (0.109)
Aging × opportunities for automation 8.661∗∗∗ 4.458∗∗ 4.810∗∗∗ 5.180∗∗∗ 3.752∗∗∗ 3.814∗∗∗

(2.659) (1.787) (1.748) (1.346) (1.088) (1.065)
Observations 5,833 5,833 5,833 5,833 5,833 5,833 5,833
Countries in sample 21 21 21 21 21 21 21
Instruments F-stat 32.5 60.6 116.7 23.4 57.1 89.2 19.1
Overid p-value 0.06 0.29 0.38 0.17 0.36 0.30 0.18
Covariates included:
Country covariates in 1993 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for industry-
country cells. In all panels, the dependent variable is robot installations per thousand workers in each industry-country cell for
all available years between 1993 and 2014 (from the IFR). The explanatory variables include aging (defined as the change in the
ratio of workers above 56 to workers between 21 and 55 between 1990 and 2025); the interaction between aging and industry
reliance on middle-aged workers (proxied using 1990 US Census data on the age distribution of workers in each industry); and
the interaction between aging and two measures of opportunities for automation: the replaceability index from Graetz and
Michaels (2015) in columns 2-4; and a measure of opportunities for the use of robots from the BCG in columns 5-7. Panels
A and B use data on average employment by industry from the ILO to normalize robot installations; whereas Panels C and
D use data on industry employment from KLEMS to normalize robot installations. Panels A and C present OLS estimates.
Panels B and D present IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between
1950 and 1985. For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test.
All columns include region dummies, the 1993 values of log GDP per capita, log of population, average years of schooling and
the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density in 1993 for each
industry-country cell as a control. All these covariates are allowed to affect industries differently. Columns 4 and 7 add a full
set of country dummies. All regressions weigh industries by their share of employment in a country, and the standard errors
are robust against heteroscedasticity and correlation within countries. The coefficients with ∗∗∗ are significant at the 1% level,
with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 10: Estimates of the impact of aging on the value added of country-industry pairs per year.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Change in value-added per worker between 1995 and 2007
Panel A. OLS estimates

Aging between 1995 and 2025 -1.447∗∗ 0.121 0.387 0.264 0.564
(0.552) (1.182) (1.038) (1.122) (1.019)

Aging × reliance on middle-aged -0.246 -0.304 -0.263 -0.238 -0.297 -0.263
(0.236) (0.218) (0.221) (0.231) (0.215) (0.226)

Aging × opportunities for automation 2.932∗∗ 3.166∗∗ 3.094∗∗∗ 1.119∗∗ 1.229∗∗ 1.232∗∗

(1.232) (1.180) (0.937) (0.502) (0.488) (0.464)
Observations 399 399 399 399 399 399 399

Countries in sample 21 21 21 21 21 21 21
Panel B. IV estimates

Aging between 1995 and 2025 -1.707∗∗∗ 1.318 1.634∗ 1.138 1.534

(0.595) (1.156) (0.982) (1.224) (1.059)
Aging × reliance on middle-aged -0.589∗∗ -0.669∗∗∗ -0.596∗∗ -0.538∗∗ -0.622∗∗ -0.568∗

(0.261) (0.241) (0.300) (0.263) (0.246) (0.318)
Aging × opportunities for automation 4.609∗∗∗ 4.916∗∗∗ 4.330∗∗∗ 1.450∗∗∗ 1.617∗∗∗ 1.523∗∗∗

(1.193) (1.295) (0.916) (0.430) (0.419) (0.378)
Observations 399 399 399 399 399 399 399
Countries in sample 21 21 21 21 21 21 21
Instruments F-stat 9.49 42.97 10.69 5.58 61.30 20.47 5.65
Overid p-value 0.14 0.47 0.56 0.37 0.32 0.38 0.38

Dependent variable: Change in the labor share between 1995 and 2007
Panel A. OLS estimates

Aging between 1995 and 2025 -0.335∗∗∗ -2.528∗∗∗ -2.586∗∗∗ -2.928∗∗∗ -2.997∗∗

(0.104) (0.855) (0.893) (1.025) (1.065)
Aging × reliance on middle-aged 0.651∗∗ 0.664∗∗ 0.630∗∗ 0.671∗∗ 0.685∗∗ 0.659∗∗

(0.245) (0.251) (0.260) (0.254) (0.260) (0.273)
Aging × opportunities for automation -1.057∗ -1.109∗ -0.923 -0.713∗∗ -0.739∗∗ -0.681∗∗

(0.576) (0.599) (0.563) (0.293) (0.304) (0.305)
Observations 399 399 399 399 399 399 399
Countries in sample 21 21 21 21 21 21 21

Panel B. IV estimates

Aging between 1995 and 2025 -0.323∗∗∗ -3.293∗∗∗ -3.207∗∗∗ -4.026∗∗∗ -3.982∗∗∗

(0.121) (0.864) (0.868) (1.144) (1.151)
Aging × reliance on middle-aged 0.998∗∗∗ 0.993∗∗∗ 1.038∗∗∗ 1.035∗∗∗ 1.034∗∗∗ 1.103∗∗∗

(0.289) (0.292) (0.344) (0.308) (0.311) (0.365)

Aging × opportunities for automation -0.540 -0.449 -0.395 -0.857∗∗∗ -0.859∗∗∗ -0.922∗∗∗

(0.534) (0.631) (0.547) (0.253) (0.276) (0.345)
Observations 399 399 399 399 399 399 399
Countries in sample 21 21 21 21 21 21 21
Instruments F-stat 9.49 42.97 10.69 5.58 61.30 20.47 5.65
Overid p-value 0.31 0.74 0.74 0.64 0.44 0.51 0.35
Covariates included:
Country covariates in 1995 X X X X X X X

Initial value added in 1995 X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and value added and the labor share for
industry-country cells. In Panels A and B, the dependent variable is the change in value added per worker between 1995
and 2007 for each industry-country cell (from the KLEMS data). In Panels C and D, the dependent variable is the change
in the labor share between 1995 and 2007 for each industry-country cell (from the KLEMS data). The explanatory variables
include aging (defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1995 and 2025);
the interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census data on the age
distribution of workers in each industry); and the interaction between aging and two measures of opportunities for automation:
the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a measure of opportunities for the use of robots
from the BCG in columns 5-7. Panels A and C present OLS estimates. Panels B and D present IV estimates where the aging
variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our IV estimates, we report the
first-stage F−statistic and the p−value of Hansen’s overidentification test. All columns include region dummies, the 1995 values
of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55.
All these covariates are allowed to affect industries differently. Columns 3 and 6 add the log of value added per worker in 1995
for each industry-country cell as a control. Columns 4 and 7 add a full set of country dummies. All regressions weigh industries
by their share of employment in a country, and the standard errors are robust against heteroscedasticity and correlation within
countries. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are
significant at the 10% level.
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Appendix: Omitted Proofs

Proof of Proposition 1

1. Existence and uniqueness of the equilibrium with exogenous technology.

Recall that C(W,V, P ) is the cost of producing one unit of aggregate output. The Cobb-Douglas

production function for Y (i) in equation (2) implies that

PY (i) = (1 − η)ηη × (α(i)η)−α(i)η((1 − α(i)η))−(1−α(i))η (1− η)−(1−η)PX(i)α(i)ηV (1−α(i))ηPY (i)
1−η .

Solving for PY (i) yields the formula for PY (i) given in the main text. Equation (1) then implies

C(W,V, P ) =

(∫ 1

0
PY (i)

1−σ

) 1
1−σ

=

(∫ 1

0
λ(i)1−σPX(i)α(i)(1−σ)V (1−α(i))(1−σ)

) 1
1−σ

,

where PX(i) is given in equation (7) in the main text.

The demand for middle-aged workers can then be computed as

Ld =
1

W

∫

i∈I
L(i)Wdi

=
1

W

∫

i∈I
PX(i)X(i)sL(i)di

=
1

W

∫

i∈I
PY (i)Y

g(i)ηα(i)sL(i)di

=
1

W

∫

i∈I
PY (i)Y (i)

Y g(i)

Y (i)
ηα(i)sL(i)di

=
Y

W

∫

i∈I
PY (i)

1−σ 1

η(2− η)
ηα(i)sL(i)di

=
Y

(2− η)W

∫

i∈I
PY (i)

1−σα(i)sL(i)di

=
Y

2− η
CW (W,V, P ).

This derivation uses the fact that ηα(i) is the share of production inputs in the gross production of

Y (i), and that the ratio of Y g(i)
Y (i) equals 1

η(2−η) . The last line arrives at a result similar to Shepherd’s

lemma, but now, the 2 − η in the denominator accounts for the intermediate goods, q(θ(i)), and

the cost of producing these goods.
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Likewise, the demand for older workers can be computed as

Sd =
1

V

∫

i∈I
S(i)V di

=
1

V

∫

i∈I
PY (i)Y

g(i)η(1 − α(i))di

=
1

V

∫

i∈I
PY (i)Y (i)

Y g(i)

Y (i)
η(1 − α(i))di

=
Y

V

∫

i∈I
PY (i)

1−σ 1

η(2 − η)
η(1 − α(i))di

=
Y

(2− η)V

∫

i∈I
PY (i)

1−σ(1− α(i))di

=
Y

2− η
CV (W,V, P ).

From these equations, conditions (12) and (13) can be written as

1 =C(WE(φ,Θ), V E(φ,Θ), P ), (A1)

1− φ

φ
=
CW (WE(φ,Θ), V E(φ,Θ), P )

CV (WE(φ,Θ), V E(φ,Θ), P )
, (A2)

where CW and CV denote the partial derivatives of the cost function.

We now show that, for any φ ∈ (0, 1) there is a unique pair {WE(φ,Θ), V E(φ,Θ)} that solves

(A1) and (A2). Consider the isocost C(W,V, P ) = 1. The market equilibrium occurs at a point

where the tangent to this curve has slope − φ
1−φ as shown in Figure 1.

Along this isocost, CW (W,V, P )/CV (W,V, P ) = 0 as V
W → 0. To prove this, note that

0 ≤
CW (W,V, P )

CV (W,V, P )
=

V

W

∫
α(i)sL(i)λ(i)

1−σPY (i)
1−σdi∫

(1− α(i))λ(i)1−σPY (i)1−σdi

≤
V

W

α

1− α

∫
λ(i)1−σPY (i)

1−σdi∫
λ(i)1−σPY (i)1−σdi

=
V

W

α

1− α
. (A3)

Therefore, as V
W → 0, CW (W,V,P )

CV (W,V,P ) → 0.

Likewise, along the isocost, CW (W,V, P )/CV (W,V, P ) = ∞ as V
W → ∞. To prove this, note

that

CW (W,V, P )

CV (W,V, P )
≥

V

W

α

1− α
[min
i∈I

sL(i)]

∫
λ(i)1−σPY (i)

1−σdi∫
λ(i)1−σPY (i)1−σdi

=
V

W

α

1− α
[min
i∈I

sL(i)]. (A4)

Since V
W → ∞, W → 0 (otherwise, we would have V → ∞ and W > 0, which would not satisfy

C(W,V, P ) = 1). Because W → 0, θA(i) = 0 for all tasks, which implies that sL(i) = 1 for all i.
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Therefore, as V
W → ∞, we must have CW (W,V,P )

CV (W,V,P ) → ∞.

Because CW (W,V, P )/CV (W,V, P ) = 0 as V
W → 0 and CW (W,V, P )/CV (W,V, P ) = ∞ as

V
W → ∞, the intermediate value theorem implies that there exists WE(φ,Θ), V E(φ,Θ) along the

isocost that satisfies equation (A2). This establishes existence.

To prove uniqueness, note that since C(W,V, P ) is a cost function, it is jointly concave in W,V,

and P , which implies that the isocost curve C(W,V, P ) = 1 is convex. That is, along the curve

C(W,V, P ) = 1, CW /CV is decreasing in W and is increasing in V . Thus, there is a unique pair

WE(φ,Θ), V E(φ,Θ) along the isocost that satisfies equation (A2).

Finally, aggregate output per worker is given by

yE(φ,Θ) = (2− η)
φ

CV (WE(φ,Θ), V E(φ,Θ), P )
,

while machinery per worker is given by

mE(φ,Θ) = φ
CP (W

E(φ,Θ), V E(φ,Θ), P )

CV (WE(φ,Θ), V E(φ,Θ), P )
;

and the threshold θA(i) can be computed from equation (6).�

2. Comparative statics with respect to φ.

Because the isocost curve C(W,V, P ) = 1 is convex, an increase in φ raises WE(φ,Θ) and

reduces V E(φ,Θ). To complete the proof, we derive the formula for yEφ (φ,Θ) given in the main

text. The national income accounting identity implies

1

2− η
yE(φ,Θ) = φV E(φ,Θ) + (1− φ)WE(φ,Θ) +mE(φ,Θ)P, (A5)

where the 1
2−η accounts for the cost of intermediate goods. Differentiating this expression with

respect to φ, we obtain

1

2− η
yEφ (φ,Θ) = V E(φ,Θ)−WE(φ,Θ) +mE

φ (φ,Θ)P + φV E
φ (φ,Θ) + (1− φ)WE

φ (φ,Θ).

Next differentiating C(W,V, P ) = 1 with respect to φ, and recalling that CW
CV

= 1−φ
φ , we obtain

φV E
φ (φ,Θ)+(1−φ)WE

φ (φ,Θ) = 0. Substituting this into the previous expression, we obtain (14).�

Proof of Proposition 2

Part 1: Suppose that φ ≤ φ′ and take an i ∈ I+(φ,Θ), so that WE(φ,Θ)
A(i) > P . Proposition 1

implies that WE(φ,Θ) ≤ WE(φ′,Θ), and thus WE(φ′,Θ)
A(i) > P and i′ ∈ I+(φ′, A), which implies that

I+(φ,Θ) ⊆ I+(φ′, A).

Part 2: Let WE(φ,Θ0) denote the middle-aged wage that would result if θ(i) = 0 and there were

no automation technologies. Proposition 1 implies that WE(φ,Θ0) is increasing in φ.

In addition, we have that WE(φ,Θ0) → 0 when φ → 0, and WE(φ,A) → ∞ when φ → 1. To
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prove the first claim, we use the inequality in equations (A3) and (A4) derived above, which implies

V E(φ,Θ0)

WE(φ,Θ0)

α

1− α
. ≤

1− φ

φ
≤

V E(φ,Θ0)

WE(φ,Θ0)

α

1− α
.

When φ → 0, the right-hand side of the above inequality must converge to ∞. This requires

that either WE(φ,Θ0) → 0 or V E(φ,Θ0) → ∞. Suppose it is the latter. Then C(W,V, P ) = 1

implies WE(φ,Θ0) → 0. Thus in either case we have WE(φ,Θ0) → 0 as desired.

On the other hand, when φ → 1, the left-hand side of the above inequality must converge to 0.

This requires that either WE(φ,Θ0) → ∞ or V E(φ,Θ0) → 0. Supposed again that it is the latter.

Then C(W,V, P ) = 1 once again implies WE(φ,Θ0) → ∞, and thus in either case the desired

conclusion is established.

We can therefore define φ̃ as the maximum level of φ such that WE(φ,Θ0)
A(i) ≤ P for almost all

i. For φ ≤ φ̃, we have that the unique equilibrium is given by θA(i) = 0 for almost all i and

WE(φ,Θ0) = WE(φ,Θ). Thus, for φ ≤ φ̃, the set I+(φ,A) has measure zero.

For φ > φ̃, we have WE(φ,Θ) > WE(φ̃,Θ) = WE(φ̃,Θ0). Thus, the equilibrium must involve

a positive measure of industries that are adopting automation technologies. �

Proof of Proposition 3

We start by providing a formula for d lnW following a change in technology. We then state and

prove a lemma on the conditions under which automation reduces the middle-aged wage, and then

we provide a proof of the proposition.

Let χ(i) denote the share of expenditure going to industry i, χL(i) the share of payments to

middle-aged workers going to those in industry i, and χS(i) the share of payments to older workers

going to those in industry i.

We have

dθA(i) =

{
dθ(i) if i ∈ I+(φ,Θ)

0 otherwise.

Following an increase in dθ(i) > 0, we have

d lnPX(i) = sL(i)d lnW −
sL(i)

1− θA(i)
π(i)dθA(i).

Using this expression, and taking log-derivatives of the equilibrium conditions, we obtain:

• From the ideal price condition, (12):

Λπ
W d lnW + Λπ

V d lnV = Π (A6)
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where

Λπ
V =

∫

i∈I
χ(i)(1 − α(i))di > 0,

Λπ
W =

∫

i∈I
χ(i)α(i)sL(i)di > 0,

Π =

∫

i∈I
χ(i)α(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di ≥ 0.

Here, Π ≥ 0 denotes the productivity gains from automation.

• From the demand for middle-aged workers, (9):

ΛL
Wd lnW = d ln Y − ΛL

V d lnV + TL −∆, (A7)

where

ΛL
W =ζ + (1 − ζ)

∫

i∈I
χL(i)sL(i)di + (σ − 1)

∫

i∈I
χL(i)α(i)sL(i)di,

ΛL
V =(σ − 1)

∫

i∈I
χL(i)(1 − α(i))di,

TL =(σ − 1)

∫

i∈I
χL(i)α(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di,

∆ =

∫

i∈I
χL(i)

dθA(i)

1 − θA(i)
− (1− ζ)

∫

i∈I
χL(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di.

Here, ∆ > 0 denotes the displacement effect from automation, which tends to reduce the

demand for middle-aged workers, while TL captures how sectoral shifts affect the demand for

middle-aged workers.

• From the demand for older workers, (11):

ΛS
V d lnV = d lnY − ΛS

W d lnW + T S, (A8)

where

ΛS
V =1 + (σ − 1)

∫

i∈I
χS(i)(1 − α(i))di,

ΛS
W =(σ − 1)

∫

i∈I
χS(i)α(i)sL(i)di,

T S =(σ − 1)

∫

i∈I
χS(i)α(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di.

Here, T S captures how sectoral shifts affect the demand for middle-aged workers.
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Using equations (A6), (A7) and (A8), we can solve for d lnW as:

d lnW =
1

Λπ
V (Λ

L
W − ΛS

W ) + Λπ
W (ΛS

V − ΛL
V )

[
(ΛS

V − ΛL
V )Π + Λπ

V (T
L − T S)− Λπ

V ∆
]
, (A9)

where the denominator, Λπ
V (Λ

L
W − ΛS

W ) + Λπ
W (ΛS

V − ΛL
V ), is always positive.

39

Lemma A2 Suppose that for almost all industries

π(i) < π =
1

(σ − 1)α + 1− ζ + σ
1−αα

.

Then dθ(i) > 0 for a positive measure subset of industries in I+(φ,Θ) leads to a lower W and a

larger V .

Proof. Equation (A9) implies that a sufficient condition to ensure that d lnW < 0 is

χL(i) >

(
(σ − 1)(χL(i)− χS(i))α(i)sL(i) + (1− ζ)χL(i)sL(i)

+
1 + (σ − 1)

∫
i∈I(χL(i)− χS(i))α(i)di∫

i∈Iχ(i)(1− α(i))di
χ(i)α(i)sL(i)

)
π(i)∀i ∈ I

In addition, we also have

σ > 1 + (σ − 1)

∫

i∈I
(χL(i)− χS(i))α(i)di,

and
1

1− α
>

1∫
i∈I χ(i)(1 − α(i))di

.

A sufficient condition to ensure that d lnW < 0 is

χL(i) >

(
(σ − 1)χL(i)α(i)sL(i) + (1− ζ)χL(i)sL(i) +

σ

1− α
χ(i)α(i)sL(i)

)
π(i)

for all i ∈ I. This inequality is equivalent to:

1 >

(
(σ − 1)α(i)sL(i) + (1− ζ)sL(i) +

σ

1− α

χ(i)α(i)sL(i)

χL(i)

)
π(i).

39The fact that Λπ
V (ΛL

W − ΛS
W ) + Λπ

W (ΛS
V − ΛL

V ) > 0 is equivalent to C(W,V, P ) being strictly quasi-concave in
{V,W }. In particular, Λπ

V (ΛL
W − ΛS

W ) + Λπ
W (ΛS

V − ΛL
V ) > 0 if and only if

CWWC2
V + CV V C2

W − 2CWV CV CW < 0,

which corresponds to the determinant of the bordered Hessian of C(W,V, P ) with respect to V and W ,

H =




0 CW CV

CW CWW CWV

CV CWV CV V


 ,

being positive. Since C(W,V, P ) is strictly concave in its first two arguments, we always have Λπ
V (ΛL

W − ΛS
W ) +

Λπ
W (ΛS

V − ΛL
V ) > 0.
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Finally, because sL(i) ≤ 1 and

χ(i)α(i)sL(i)

χL(i)
=

∫

i∈I
χ(i)α(i)sL(i)di < α,

we obtain that a sufficient condition to ensure that d lnW < 0 is given by:

1 >

(
(σ − 1)α + (1− ζ) +

σ

1− α
α

)
π(i) ∀i ∈ I,

which is equivalent to

1

(σ − 1)α+ 1− ζ + σ
1−αα

= π > π(i) ∀i ∈ I.

In addition, equation (A6) implies that automation must increase the price of at least one type

of labor. Thus, when π(i) < π for almost all i, d ln V > 0 and d lnV/W increases.

Proof of Proposition 3:

The definition of φ̃ implies that for φ < φ̃, we have θA(i) = 0. Therefore, changes in automation

technologies do not lead to their adoption (and there is no impact on equilibrium wages). Con-

versely, when φ > φ̃, new automation technologies will be adopted by all industries in I+(φ,Θ).

This completes the proof of the first part of the proposition.

Because WE(φ,Θ) is increasing in φ, cost savings from automation for industry i ∈ I+(φ,Θ),

π(i), are also increasing in φ. Therefore, there exists a threshold φ(Θ) > φ̃ such that π(i) < π for

almost all industries.

This definition implies that, for φ ∈ (φ̃, φ(Θ)), we have π(i) < π for almost all industries.

Lemma A2 then implies that automation reduces middle-aged wages and increases older worker

wages. �

Proof of Lemma 1

We first prove that the optimal technology choice θRi (W ) is unique and lies in [0, 1).

We start by showing that every critical point of πM (i) is a local maximum. Suppose that we

have an interior critical point, θ0 > 0. Then it satisfies the first-order condition

∂πM (i)

∂θ(i)
= 0 → (σ − 1)α(i)

sL(i)

1 − θ0
π(i) =

1

ρ(i)
h(θ0).

The second derivative of πM (i) is

∂2πM (i)

∂θ(i)∂θ(i)
=

1

ρ(i)

h(θ0)

1− θ0
(ζ − 1)sL(i)π(i) −

1

ρ(i)
h′(θ0).

Because (ζ − 1)sL(i)π(i) < 1, this expression is negative provided that h′(θ)
h(θ) ≥ 1

1−θ . This condition
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is satisfied in view of the properties of the H function in the text. In particular,

h′(θ)

h(θ)
=

H ′′(θ)

H ′(θ)
+ h(θ) ≥

1

1− θ
.

Thus, every critical point is a local maximum.

Now, suppose that πM (i) has two local maxima, θ0 and θ1 > θ0. The intermediate value

theorem then implies that πM (i) has a local minimum in (θ0, θ1), which contradicts the fact that

any critical point of πM (i) is a maximum. This contradiction establishes that πM (i) is single

peaked, and therefore has a unique global maximum. Moreover, our boundary conditions on H(x)

implies that θRi (W ) ∈ [0, 1). Thus, equation (17) is a necessary and sufficient condition for the

global maximum.

Part 1: The cross-partial derivative of πM (i) with respect to θ(i) and W is

∂2πM (i)

∂W∂θ
= (σ − 1)α(i)

1

1 − θA(i)

∂sL(i)

∂W
π(i) + (σ − 1)α(i)

1

1 − θA(i)
sL(i)

π(i)

∂W
.

When ζ ≤ 1, the equations for sL(i) (equation (8)) and π(i) (equation (5)) in the main text imply

that ∂sL(i)
∂W ≥ 0 and ∂π(i)

∂W ≥ 0.

When ζ > 1, we can group terms differently and rewrite this derivative as

∂2πM (i)

∂W∂θ
=

1

W

(
(σ − 1)α(i)

1

1 − θA(i)
sL(i) + (σ − 1)α(i)

[
P 1−ζ

P 1−ζ
X

−
(W/A)1−ζ

P 1−ζ
X

]
sL(i)

)
≥ 0.

Therefore, ∂2πM (i)
∂W∂θ ≥ 0 in all cases (and this is an equality only when π(i) = 0). This implies

that πM (i) exhibits increasing differences in W and θ(i). Increasing differences ensure that the

function θRi (W ) is nondecreasing in W (see Topkis, 1981).

Part 2: Suppose that θ(i) > 0. Then ∂πM (i)
∂θ(i) = 0, and equation (17) holds with equality. Because

h(θ(i)) > 0 (recall that H is convex), we must have π(i) > 0. �

Proof of Proposition 4

To prove the existence of an equilibrium we analyze the properties of the function WE(φ,ΘR(W ))

when W = 0 and W → ∞.

When W → 0, we have π(i) = 0. Part 2 of Lemma 1 implies θRi (W ) = 0. Thus, WE(φ,Θ =

{0}i∈I) > 0.

When W → ∞, θRi (W ) converges to a finite limit (recall that θRi (W ) is increasing in W , and

bounded above by 1). Thus, WE(φ,ΘR(W )) converges to a finite limit as well.

These observations imply that the curve WE(φ,ΘR(W )) starts above the 45 degree line and

ends below it. Thus, there exists at least one solution to W = WE(φ,ΘR(W )), establishing the

existence of an equilibrium. If there are multiple intersections, the ones with the smallest and the

largest wage give the least and the greatest equilibria in view of the results in Lemma 1.

Finally, the result that given the equilibrium middle-aged wage W ∗, the set of equilibrium
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technology choices Θ∗ is uniquely defined is an immediate consequence of the fact that by definition

Θ∗ = ΘR(W ∗) and ΘR(W ) is uniquely defined from Lemma 1. �

Recall that in the main text, we mentioned that a sufficient condition to ensure that the equi-

librium is unique is φ < φ(Θ = {0}i∈I). We now provide a formal statement and proof of this

result.

Proposition A1 1. If φ < φ̃, the mapping WE(φ,ΘR(W )) is constant at WE(φ,Θ = {0}i∈I).

In this case, the unique equilibrium involves Θ = {0}i∈I .

2. If φ̃ < φ < φ(Θ = {0}i∈I), the mapping WE(φ,ΘR(W )) is nonincreasing in W , and the

equilibrium is unique.

Proof. First suppose that φ < φ̃. The definition of φ̃ implies that for almost all industries we

will have π(i) = 0. Thus, independently of ΘR(W ), we will have that θA(i) = 0 for almost all

industries, and

WE(φ,ΘR(W )) = WE(φ,Θ = {0}i∈I),

which does not depend on W . This implies that there is a unique equilibrium given by a wage

W = WE(φ,Θ = {0}i∈I). At this wage, π(i) = 0 for almost all industries. Part 2 of Lemma 1 then

implies that there will be zero introduction and adoption of automation technologies.

Now suppose that φ̃ < φ < φ(Θ = {0}i∈I). The definition of φ(Θ = {0}i∈I) implies that

when Θ = {0}i∈I , we have that π(i) < π for almost all industries. Lemma A2 then implies that

WE(φ,Θ) is nonincreasing in Θ around Θ = {0}i∈I , which in turn implies that WE(φ,ΘR(W )) is

nonincreasing in W around W = 0.

Suppose to obtain a contradiction that WE(φ,ΘR(W )) is increasing in W at some point. Let

W0 > 0 be the first point where WE(φ,ΘR(W )) starts increasing. Because WE(φ,ΘR(W )) is

nonincreasing in [0,W0), we have

WE(φ,ΘR(W0)) ≤ WE(φ,ΘR(0)) = WE(φ,Θ = {0}i∈I).

This inequality then implies that at W0 we have π(i) ≤ π for almost all i. Lemma A2 then implies

that WE(φ,ΘR(W )) is nonincreasing in W around W0, yielding a contradiction and establishing

that WE(φ,ΘR(W )) must be nonincreasing throughout.

Proof of Proposition 5

Both parts of this proposition follow from Topkis’s monotonicity theorem (Topkis, 1998).

In particular, Proposition 1 shows that an increase in φ shifts the map WE(φ,ΘR(W )) up (as

shown in Panel A of Figure 2, which raises W ∗ in the least and the greatest equilibrium). Lemma

A2 then shows that θ∗i = θRi (W
∗) increases for i ∈ I+(φ,Θ∗), and the formula for π(i) in equation

(5) shows that the set i ∈ I+(φ,Θ∗) expands. �

A-9



Proof of Proposition 6

Recall that W ∗ is increasing in φ. Because θ∗i = θRi (W
∗), it is sufficient to show that θRi (W

∗)

exhibits increasing differences in W ∗ and α(i), and in W ∗ and ρ(i).

From Lemma 1, θRi (W
∗) satisfies the necessary and sufficient first-order condition in equation

(17). Suppose first that the first-order condition in equation (17) is slack, and θRi (W
∗) = 0. Then

clearly,
dθRi (W ∗)
d lnW ∗ = 0.

Suppose now that the first-order condition in equation (17) holds with equality. The implicit

function theorem then implies that θRi (W
∗) is continuous and differentiable, and the derivative of

θRi (W
∗) with respect to lnW ∗ is

dθRi (W
∗)

d lnW ∗
=

(σ − 1)α(i)ρ(i)sL(i)(1−sL(i))
θ∗i (1−θ∗i )

h′∗(i)) + h(θ∗i )
(1−sL(i)−θ∗i )

θ∗i (1−θ∗i )

.

This expression shows that the (semi-)elasticity of θ∗i with respect to middle-aged wages is

Γ(α(i)ρ(i)) =





(σ − 1)α(i)ρ(i)sL(i)(1 − sL(i))

h′∗(i))θ∗i (1− θ∗i ) + h(θ∗i )(1 − sL(i) − θ∗i )
d lnW ∗ > 0 if θ∗i > 0

0 otherwise.

.

The desired result then follows by observing that aging only impacts automation decisions

through the change in middle-age wages, W ∗, and that the (semi-)elasticity of θRi (W ) with respect

to W , Γ(α(i)ρ(i)), is nondecreasing in α(i)ρ(i).40 �

Proof of Proposition 7

We have Y ∗(i) = P ∗
Y (i)

−σY ∗. Taking a log-derivative of this expression we obtain

d lnY ∗(i)

dφ
=
d ln Y ∗

dφ
− σα(i)sL(i)

d lnW ∗

dφ
− σ(1− α(i))

d ln V ∗

dφ

+ σα(i)
sL(i)

1 − θ∗i
π(i)Γ(α(i)ρ(i))

d lnW ∗

dφ
.

The term σα(i) sL(i)
1−θ(i)π(i)Γ(α(i)ρ(i))

d lnW ∗

dφ captures the productivity benefits to industry i arising

from the endogenous response of automation. Because of the term Γ(α(i)ρ(i)), theses productivity

benefits are larger for industries with a larger ρ(i), which implies that aging raises output in

industries with a greater ρ(i) relative industries with lower ρ(i). �.

Extensions

Endogenous development of labor-augmenting technologies: We now sketch a version of

our model in which monopolists also invest in labor-augmenting technologies A(i). The main

40Note that the denominator in our formula for Γ(α(i)ρ(i)) is a transformed version of the negative of the second-
order condition for θRi (W ∗), and is thus positive.
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difference is that now, the monopolist problem is given by:

max
θ(i),A(i)

πM (i) =(1− σ)α(i) ln

(
θA(i)P 1−ζ + (1− θA(i))

(
W

A(i)

)1−ζ
)

+
1

ρ(i)
ln(1−H(θ(i))) +

1

υ(i)
ln(1−G(A(i))) for all i ∈ I,

where G is a cost function satisfying the same restrictions as H.

The first-order condition for A(i) is given by:

g(A(i)) =
1

A(i)
(σ − 1)υ(i)α(i)sL(i).

This first-order condition shows that the effect of aging on A(i) is ambiguous when ζ < 1. On the

one hand, aging raises W and hence the labor share sL(i). But on the other hand, aging fosters

automation, reducing sL(i).

Instead, when ζ ≥ 1, one can show that the maximization problem in equation (15) exhibits

increasing differences in W, θ(i), and −A(i). This implies that aging will reduce the development

of labor-augmenting technologies but will increase the development of automation technologies.

Multiple countries: We now sketch a version of our model that incorporates multiple coun-

tries.

Suppose that there are two countries: U—the US—and J—Japan (or Germany). We use

superscripts to distinguish variables related to these two countries, with φU and φJ denoting aging

in country U and in country J , respectively.

Relative to the previous model, the only difference is that we now assume that country U

can “import” part of the automation technologies from the more advanced country J , and as a

result, in the tasks it is importing technologies, automation becomes much easier for the technology

monopolists in country U . We capture this by positing:

ρU (i) =ρ(i; θJ(i))

ρJ(i) =ρ(i),

where ρ(i; θJ(i)) is increasing in θJ(i). This captures in a simple way the idea that advances

in automation technologies in country J , that is, increases in θJ(i), generate opportunities for

automation in country U and for imports and exports of technologies.

It is straightforward to establish that an equilibrium with endogenous technology exists in this

global economy. In particular, Proposition 4 establishes that an equilibrium exists for country J ,

and taking as given the equilibrium value of ΘJ∗, another application of this proposition charac-

terizes the equilibrium in country U . Let us also define the greatest (least) equilibrium in this

case as the equilibrium with the highest (lowest) level of automation in each country (these are

also the equilibria with the largest (smallest) values of the middle-aged wage in country J , but not
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necessarily in country U as we will see next).

The following proposition summarizes the results from this extension:

Proposition A2 Assume that φJ > φ̃J and φ
U
(Θ = {0}i∈I) > φU > φ̃U . Then there exist

well-defined greatest and least equilibria. In the least or the greatest equilibrium, an increase in φJ :

1. increases the middle-aged wage W J∗, increases automation technologies {θJ
∗
(i)}i∈I+(φJ ,ΘJ∗),

and expands the set of industries that adopt automation I+(φJ ,ΘJ∗) in country J ;

2. increases automation technologies θU
∗
(i) in a positive subset of industries and reduces the

middle-aged wage WU ∗
in country U .

Proof. The existence of greatest and least equilibria follow from applying Proposition 4 in the

main text. In particular, from this proposition we can characterize the equilibrium with endogenous

technology in country J in isolation, which leads to the existence of a least and greatest equilibrium

for this country. Then applying Proposition A1 to country U we can see immediately that the

least equilibrium in country J will lead to a unique equilibrium with the lowest possible level of

automation in country U , and likewise for the greatest equilibrium.

The comparative statics for country J follows from applying Proposition 5 in the main text.

The comparative statics for country U follows from observing that aging in J results in an

increase in ρ(i; θJ
∗
) for all i. The first-order condition for a monopolist in country U is now:

h(θRi (W )) ≥ (σ − 1)ρ(i; θJ
∗
(i))α(i)

sUL(i)

1 − θRi (W )
πU (i),

with equality if θRi (W ) > 0. As a result, when θJ
∗
(i) increases, the optimal choice of technology

in country U , θRi (W ), shifts up for any given wage level. Because we have assumed that φ
U
(Θ =

{0}i∈I) > φU > φ̃U , country U is in the region in which automation reduces W . This implies

that for U , the mapping WE(φU ,ΘR(W )) shifts down, bringing down the equilibrium wage, but

increasing automation in a positive measure of industries.

Additional References:

Donald M. Topkis (1998) Supermodularity and Complementarity, Princeton University Press.

Appendix: Data Description

This Appendix describes in detail some of the sources of data used in our analysis.

Comtrade data

As explained in the text, we complement the IFR data with estimates of robot imports and exports

from the bilateral trade statistics obtained from Comtrade.
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We focus on trade in intermediate goods, defined as products whose two-digit HS code is given

by 82 (Tools), 84 (Mechanical machinery and appliances), 85 (Electrical machinery and equipment),

87 (Tractors and work trucks), and 90 (Instruments and apparatus). We partitioned all interme-

diates into the categories reported in Figures 10, A3, and A4. We defined the categories using

the HS-2012 classification, and mapped them to the HS-1992 classification using the crosswalks

available at https://unstats.un.org/unsd/trade/classifications/. The 1992 classification allows us

to track our categories consistently over time and compute the total value of imports and exports

of intermediates between 1990 and 2016 in constant 2007 dollars.

The categories used in the paper are defined as follows:

• Industrial robots: This category includes industrial robots. It is defined by the six-digit HS

code 847950. This category was introduced to the HS-1996 classification, and so we only

compute data on imports of robots between 1996 and 2016.

• Dedicated machinery (including robots): This category includes machinery and mechanical

appliances with individual functions. It is defined by the six-digit HS code 847989. This

category was introduced in the HS-1992 classification. It is a superset of industrial robots

and in addition to industrial robots, it contains dedicated (automatic) machinery. It can be

tracked consistently over time between 1990 and 2016.

• Numerically controlled machines: For a wide class of metal-working machines (lathes, milling

machines), the HS classification distinguishes “numerically controlled” vintages from “other

than numerically controlled” vintages. Based on this distinction we create two separate

categories: numerically controlled machines and not-numerically controlled machines. Both

can be tracked consistently over time between 1990 and 2016.

• Machine tools: For a wide class of machine tools (six-digit HS codes 845600 to 846899, 845700

to 845799, and 851500 to 851599), the HS classification distinguishes those that are for “work-

ing with hands” from the rest. Based on this distinction we create two separate categories:

automatic machine tools and manual machine tools. Both can be tracked consistently over

time between 1990 and 2016.

• Tools for industrial work: This category includes tools (not machines or machine tools) used

in industrial applications. It is defined by the six-digit HS codes between 820200 and 821299.

This category can be tracked consistently over time between 1990 and 2016.

• Welding machines: For welding machines (six-digit HS codes 851521 to 851590), the HS

classification distinguishes those that are automatic from those that are not. Based on this

distinction we create two separate categories: automatic welding machines and manual weld-

ing machines. Both can be tracked consistently over time between 1990 and 2016.

• Weaving and knitting machines: This category includes weaving and knitting machines used

in the textile industry. It is defined by the six-digit HS codes 844600-844699 (weaving ma-

chines) and 844700-844799 (knitting machines). We grouped the remaining dedicated machin-
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ery used in textiles (six-digit HS codes 844400-845399) into Other textile dedicated machinery.

Both can be tracked consistently over time between 1990 and 2016.

• Conveyors: For conveyors (six-digit HS codes 842511-842839), the HS classification distin-

guishes those that are “continuous action” and therefore automatic from other machinery

that transfer or move materials with human operation (like work trucks). Based on this dis-

tinction we create two separate categories: automatic conveyors and other conveyors. Both

can be tracked consistently over time between 1990 and 2016.

• Regulating instruments: For regulating instruments (six-digit HS codes 902500-903299), the

HS classification distinguishes those that are “automatic” from the rest. Based on this distinc-

tion we create two separate categories: automatic regulating instruments and other regulating

instruments. Both can be tracked consistently over time between 1990 and 2016.

• Other industrial machinery : This is defined as a residual category that includes all industrial

machinery that were not otherwise classified as related (or unrelated) to industrial automa-

tion.

• Vending machines: This category includes vending machines and their parts. It is defined by

the six-digit HS codes 847621-847690. This category can be tracked consistently over time

between 1990 and 2016.

• Laundry machines: This category includes laundry machines and their parts. It is defined by

the six-digit HS codes 845100-845199. This category can be tracked consistently over time

between 1990 and 2016.

• Agricultural machinery: This category includes agricultural machinery (six-digit HS codes

843200-843799) and tractors (six-digit HS codes 843200-843799). This category can be tracked

consistently over time between 1990 and 2016.

• Computers: This category includes computers and their parts. It is defined by the six-digit

HS codes 847100-847199. This category can be tracked consistently over time between 1990

and 2016.

As a final check on the Comtrade data on robot imports and exports, we explore the relationship

between robot imports and robot use from the IFR. This measure of the change in the value of

imports of industrial robots is highly correlated with our IFR measure of the change in the stock

of robots per thousand workers, both in levels and in logs, as shown in Figure A6. In the level

specification, the bivariate regression coefficient is 48,722 (standard error=11,873). This coefficient

is reasonable in view of the fact that the cost of a typical robot ranges between $50,000 and $100,000

(This excludes the costs of installation and programming, which often add about $300,000 to the

cost of a robot, but since these services are typically provided by local integrators, they do not

show up in import statistics).
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USPTO patent data

Finally, we use data on robotics-related patents granted by the USPTO between 1990 and 2015,

and allocate them across countries according to the last recorded location of the assignee of the

patent. The assignee of the patent is the company, foundation, partnership, holding company or

individual that owns the patent. The latter could be an “independent inventor”, meaning that

the assignee is the same person as the inventor of the patent. In a small fraction of cases (about

3% of our sample), patents have multiple assignees, and we allocate them proportionately to the

countries of all of the assignees.

We use several measures of robotics-related patents. First, we use patents in the USPTO class

901, which includes inventions related to industrial robots. This category is labeled as 901 USPTO

class in our figures. We then construct a category containing patents in classes referenced by the

901 class. These classes contain technologies that are related to robotics, even if the patent itself is

not for a different type of robot. This category is labeled as Classes related to 901 in our figures,

and it is the category we use in our baseline estimates for patents.

We also used patent citations to define classes related to industrial robots. We created two

categories, one including all classes with at least 25% of their citations referencing class 901, and

another one including all classes with at least 10% of their citations referencing class 901.

In another approach, we used the words in the abstracts of patents to define robotics-related

patents. In a first category, labeled words related to robots, we count patents including the words

“robot.” In the category words related to industrial robots, we count patents including the words

“robot” and “industrial.” The category words related to robots and manipulators expands the pre-

vious one by also including patents with the the words “robot arm” and “robot machine” or “robot

manipulator.” Finally, the category words related to numerical control includes patents whose ab-

stracts include the words “numeric” and “control.” When computing these categories, we exclude

patents related to prosthetic arms, which tend to share several of the same keywords.

We also counted patents related to computers, software, nanotechnology, and pharmaceuticals.

For computers, we have classes related to computers, which includes the USPTO classes 708, 709,

710, 711, 712, 713, 718 and 719, and words related to computers, which includes patents whose

abstract includes the word “computer.” For software, we have classes related to software, which

includes the USPTO classes 717, and words related to software, which includes patents whose asb-

tract includes the words “software.” For nanotechnology, we have classes related to nanotechnology,

which includes the USPTO class 977, and words related to nanotechnology, which includes patents

whose abstract includes the words “nano” and “technology.” For pharmaceuticals, we have classes

related to pharmaceuticals, which includes the USPTO classes 514 and 424, and words related to

pharmaceuticals, which includes patents whose asbtract includes the words “pharma.”
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Appendix Figures and Tables
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Figure A1: The figure presents estimates of the impact of one additional robot per thousand
workers on the employment and wages of people in different age groups. These estimates are
computed by exploiting differences in the exposure to robots across US commuting zones. The
three specifications and the data used are described in the main text and in Acemolgu and Restrepo
(2017a).
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Figure A2: Residual plots of the relationship between aging (change in the ratio of workers above
56 to workers aged 21-55 between 1990 and 2025) and the increase in the number of industrial
robots per thousand workers between 1993 and 2014. The plots partial out the covariates included
in the regression models in columns 2 and 5 of Table A9.
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Figure A3: Estimates of the relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between 1990 and 2025) and exports
(left panel) and imports (right panel) of different intermediate goods between 1990 and 2015. These outcomes are normalized by the total intermediate exports
and imports, respectively, during this period. The figure presents several estimates, including our baseline, a specification using the log of one plus the imports (or
exports) of industrial robots per million dollars of intermediate goods imported (exported), a specification using the share of robot imports (or exports), and a version
of our baseline specification where we exclude outliers manually (observations with a standardized residual outside the ±1.96 range).
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Figure A4: OECD estimates of the relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between 1990 and 2025) and exports
(left panel) and imports (right panel) of different intermediate goods between 1990 and 2015. These outcomes are normalized by the total intermediate exports
and imports, respectively, during this period. The figure presents several estimates, including our baseline, a specification using the log of one plus the imports (or
exports) of industrial robots per million dollars of intermediate goods imported (exported), a specification using the share of robot imports (or exports), and a version
of our baseline specification where we exclude outliers manually (observations with a standardized residual outside the ±1.96 range).
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Figure A5: Estimates of the relationship between aging (change in the ratio of workers above 56 to
workers aged 21-55 between 1990 and 2025) and the log of patents with different characteristics be-
tween 1990 and 2015. These outcomes are normalized by the total patents granted by the USPTO
during this period. The figure presents several estimates, including our baseline, a specification
using the log of one plus the imports (or exports) of industrial robots per million dollars of inter-
mediate goods imported (exported), a specification using the share of robot imports (or exports),
and a version of our baseline specification where we exclude outliers manually (observations with
a standardized residual outside the ±1.96 range).
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Figure A6: Scatter plots of the relationship between imports of robots per thousand workers (in
2007 dollars, from Comtrade) and the increase in the number of industrial robots per thousand
workers between 1993 and 2014, both in levels and in logs.
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Table A1: Set of countries in our sample and availability of robot installations by industry.

OECD sample Other countries

Country name Industry data since Country name Industry data since
Australia 2006 Argentina 2004
Austria 2003 Brazil 2004
Belgium 2004 Bulgaria 2006
Chile 2006 China 2006
Czech Republic 2004 Colombia 2007
Denmark 1996 Egypt 2005
Estonia 2004 Hong Kong 2006
Finland 1993 India 2006
France 1993 Indonesia 2006
Germany 1993 Malaysia 2006
Greece 2006 Moldova 2010

Hungary 2004 Morocco 2005
Iceland 2006 Peru 2006
Ireland 2006 Philippines 2006
Israel 2005 Romania 2004
Italy 1993 Singapore 2005
Netherlands 2004 Thailand 2005
New Zealand 2006 Ukraine 2004
Norway 1993 Venezuela 2007
Poland 2004 Vietnam 2005
Portugal 2004
Rep. of Korea 2001 Countries with no industry data

Slovakia 2004 Pakistan .
Slovenia 2005 Macau .
Spain 1993
Sweden 1993
Switzerland 2004
Turkey 2005
United Kingdom 1993
United States 2004

Notes: The table presents a list of the countries in our sample as well as the years for which industry-level data are
available from the IFR.
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Table A2: Summary statistics for industries

Robot installations per thousand
workers

Normalized
using

average
employment

Normalized
using

KLEMS
employment

Normalized
using

UNIDO
employment

Percent
increase in
value added

Change in
labor share

(p.p.)

Reliance on
middle-aged
workers

Share of
replaceable

tasks

Share of
KLEMS

employment

Prone to the use of robots
Automotive 2.94 7.69 5.52 46.0% -5.93 7.78 0.35 1.2%

Chemicals, plastics, and pharmaceuticals 1.27 1.32 1.25 38.4% -3.86 8.15 0.30 2.1%
Electronics 1.07 0.76 0.74 54.0% -6.84 8.10 0.33 2.4%
Metal machinery 0.43 0.44 0.46 48.3% -4.19 6.79 0.34 1.9%

Other industries
Metal products 0.84 1.14 0.92 44.1% -7.25 6.44 0.37 1.8%
Basic metals 0.15 0.49 0.32 51.6% -9.77 6.13 0.37 0.7%
Food and beverages 0.54 0.46 0.33 33.0% -1.24 7.80 0.30 2.2%
Wood and furniture 0.11 0.39 0.10 37.6% -0.82 7.78 0.35 0.6%
Other vehicles 0.06 0.31 0.17 58.8% -13.64 6.48 0.35 0.6%
Glass and non-metals 0.09 0.26 0.14 49.1% -5.48 6.94 0.34 0.8%
Textiles 0.03 0.08 0.03 32.9% 0.39 5.88 0.31 2.2%
Paper and printing 0.04 0.06 0.03 33.1% -0.96 7.10 0.21 1.7%
Miscellaneous manufacturing 0.15 0.37 34.5% -0.71 6.34 0.39 1.1%
Research and education 0.09 0.04 30.3% 0.82 5.94 0.01 6.1%
Mining 0.01 0.09 56.3% -10.58 8.52 0.14 0.6%
Agriculture 0.02 0.02 19.9% 11.80 3.85 0.01 5.7%
Construction 0.03 0.01 38.7% -4.46 8.08 0.08 7.1%

Utilities 0.00 0.01 53.3% -5.14 8.04 0.07 0.8%
Services 0.01 0.00 36.7% -0.16 6.91 0.03 60.5%

Summary statistics
Average 0.42 0.20 0.81 36.7% -0.55 6.82 0.09
Unweighted Average 0.42 0.73 0.83 41.9% -3.40 7.00 0.24
Countries covered 50 21 44 21 21 US US

Notes: The table presents summary statistics for each of the 19 industries covered in the IFR data. The bottom rows present summary statistics for each variable.
We follow the Boston Consulting Group in labeling the automotive, chemicals, plastics, pharmaceuticals, electronics, and metal machinery industries as being prone
for the use of industrial robots (Boston Consulting Group, 2015). We compute the reliance on middle-aged workers using the 1990 US Census. The measure is
defined as the share of middle-aged (21 to 55 years) to older (56 years or more) workers employed in each industry. The share of replaceable tasks comes from Graetz
and Michaels (2015). Section 3 in the main text describes the sources of the data.
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Table A3: Estimates of the impact of aging on the adoption of industrial robots using different
definitions of middle-aged and older workers.

Dependent variable:
Change in the stock of industrial robots

per thousand workers (annualized)
OLS estimates IV estimates

All countries OECD All countries OECD
(1) (2) (3) (4)

Panel A. Middle-aged from 21-50; Older from 51 onwards

Aging between 1990 and 2025 0.497∗∗ 0.777∗∗∗ 0.567∗∗∗ 0.944∗∗∗

(0.193) (0.269) (0.194) (0.277)
Observations 52 30 52 30
First-stage F stat. 18.1 11.3
Overid p− value 0.79 0.50

Panel B. Middle-aged from 21-60; Older from 61 onwards

Aging between 1990 and 2025 0.911∗∗∗ 1.237∗∗∗ 1.023∗∗∗ 1.245∗∗∗

(0.323) (0.414) (0.333) (0.425)
Observations 52 30 52 30
First-stage F stat. 19.8 8.1
Overid p− value 0.62 0.36

Panel C. Middle-aged from 21-55; Older from 56-65

Aging between 1990 and 2025 1.975∗∗∗ 2.860∗∗∗ 1.854∗∗ 2.812∗∗∗

(0.721) (0.823) (0.748) (0.968)
Observations 52 30 52 30
First-stage F stat. 29.1 21.7
Overid p− value 0.24 0.26

Panel D. Middle-aged from 21-55; Older from 56-75

Aging between 1990 and 2025 1.024∗∗∗ 1.527∗∗∗ 1.130∗∗∗ 1.680∗∗∗

(0.349) (0.445) (0.349) (0.482)
Observations 52 30 52 30

First-stage F stat. 21.3 12.5
Overid p− value 0.41 0.39

Panel E. Middle-aged from 35-55; Older from 56 onwards

Aging between 1990 and 2025 1.975∗∗∗ 2.860∗∗∗ 1.854∗∗ 2.812∗∗∗

(0.721) (0.823) (0.748) (0.968)
Observations 52 30 52 30
First-stage F stat. 29.1 21.7
Overid p− value 0.24 0.26
Covariates included:
Country covariates in 1993 X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots using
different measures of aging. In all panels, the dependent variable is the change in the stock of industrial robots per
thousand workers between 1993 and 2014 (from the IFR). The aging variable varies by panel. In panel A, it is is
the expected change in the ratio of workers above 51 to workers aged 21-50 between 1990 and 2025 (from the UN
Population Statistics). In panel B, it is is the expected change in the ratio of workers above 61 to workers aged 21-60
between 1990 and 2025 (from the UN Population Statistics). In panel C, it is is the expected change in the ratio of
workers aged 56-65 to workers aged 21-55 between 1990 and 2025 (from the UN Population Statistics). In panel D, it
is is the expected change in the ratio of workers aged 56-75 to workers aged 21-55 between 1990 and 2025 (from the
UN Population Statistics). In panel E, it is is the expected change in the ratio of workers aged 56-65 to workers aged
35-55 between 1990 and 2025 (from the UN Population Statistics). Columns 1-2 present OLS estimates. Columns 3-4
present IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between 1950
and 1985. For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification
test. We present results for two samples: columns 1 and 3 use the full sample; columns 2 and 4 use the OECD sample.
All models control for region dummies and the 1993 values of log GDP per capita, log of population, average years of
schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. All regressions are unweighted, and the
standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with
∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A4: Estimates of the impact of aging on the adoption of industrial robots controlling for
the change in overall population.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 0.810∗∗∗ 0.745∗∗∗ 0.452∗∗ 1.181∗∗ 0.775∗∗∗ 0.587∗∗

(0.271) (0.239) (0.201) (0.431) (0.265) (0.279)
Change in population 0.141 0.063 -0.190 0.143 -0.392 -0.361
between 1990 and 2015 (0.172) (0.291) (0.261) (0.245) (0.442) (0.449)
Observations 52 52 52 30 30 30
R-squared 0.48 0.59 0.70 0.38 0.55 0.64

Panel B. IV estimates

Aging between 1990 and 2025 0.899∗∗∗ 0.851∗∗ 0.705∗∗ 1.573∗∗∗ 0.771∗ 0.890∗∗

(0.297) (0.331) (0.290) (0.522) (0.424) (0.420)
Change in population 0.168 0.158 0.036 0.278 -0.395 -0.104
between 1990 and 2015 (0.170) (0.346) (0.288) (0.289) (0.502) (0.471)

Observations 52 52 52 30 30 30
First-stage F stat. 19.1 7.1 6.7 4.1 5.1 6.0
Overid p− value 0.28 0.60 0.10 0.56 0.31 0.12
Anderson-Rubin Wald test p− value 0.01 0.06 0.00 0.04 0.05 0.00

Panel C. Single-IV estimates

Aging between 1990 and 2025 1.009∗∗∗ 0.921∗∗ 0.579 1.549∗∗∗ 1.327∗∗ 1.156∗

(0.349) (0.427) (0.412) (0.477) (0.644) (0.646)
Change in population 0.201 0.220 -0.077 0.269 0.111 0.123
between 1990 and 2015 (0.173) (0.358) (0.334) (0.270) (0.607) (0.548)
Observations 52 52 52 30 30 30
First-stage F stat. 38.0 26.4 24.3 26.6 11.2 10.0
Covariates included:
Country covariates in 1993 X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56 to workers aged 21-55
between 1990 and 2025 (from the UN Population Statistics). In addition, all specifications control for the change in
the log of population between 1990 and 2015. Panel A presents OLS estimates. Panel B presents IV estimates where
the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. Panel C presents
IV estimates where the aging variable is instrumented using the decline in birth rates between 1960 and 1980. For our
IV estimates, we report the first-stage F−statistic. When using multiple instruments, we also report the p−value of
Hansen’s overidentification test, and the p−value of Anderson and Rubin’s test for the coefficient on aging being zero.
We present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1
and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of population,
average years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add
the 1993 value of robots per thousand workers. All regressions are unweighted, and the standard errors are robust
against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5%
level, and with ∗ are significant at the 10% level.
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Table A5: Estimates of the impact of aging on the adoption of industrial robots controlling for
the influence of outliers.

All Countries OECD sample

(1) (2) (3) (4)

Panel A. Removing Korea

Aging between 1990 and 2025 0.457∗∗ 0.311∗∗∗ 0.590∗∗ 0.419∗∗∗

(0.172) (0.104) (0.210) (0.135)
Observations 51 51 29 29

Panel B. Removing outliers based on residuals

Aging between 1990 and 2025 0.502∗∗∗ 0.336∗∗∗ 0.679∗∗∗ 0.432∗∗∗

(0.166) (0.098) (0.194) (0.118)
Observations 50 49 28 27

Panel C. Quantile (median) regression

Aging between 1990 and 2025 0.544∗∗ 0.295∗∗ 0.684∗∗∗ 0.427
(0.214) (0.127) (0.240) (0.268)

Observations 52 52 30 30
Panel D. Huber M-regression

Aging between 1990 and 2025 0.498∗∗∗ 0.369∗∗∗ 0.796∗∗∗ 0.511∗∗

(0.170) (0.129) (0.267) (0.238)
Observations 52 52 30 30

Panel E. Robust regression

Aging between 1990 and 2025 0.312∗∗ 0.297∗∗ 0.578∗∗ 0.402∗

(0.139) (0.113) (0.237) (0.208)
Observations 52 52 29 29

Panel F. Reweighting by employment in industry

Aging between 1990 and 2025 0.931∗∗∗ 0.683∗∗∗ 1.508∗∗∗ 1.301∗∗∗

(0.231) (0.202) (0.176) (0.315)
Observations 52 52 30 30
Country covariates in 1993 X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots
controlling for the influence of outliers. In all panels, the dependent variable is the change in the stock of industrial
robots per thousand workers between 1993 and 2014 (from the IFR). The aging variable is the expected change in the
ratio of workers above 56 to workers aged 21-55 between 1990 and 2025 (from the UN Population Statistics). Panel A
presents OLS estimates excluding South Korea from the sample. Panel B presents estimates weighted by employment
in industry. Panel C presents quantile (median) regressions. Panel D presents a Huber-M estimator. Panel E presents
a robust regression. We present results for two samples: columns 1-2 use the full sample; columns 2-3 use the OECD
sample. Columns 1 and 3 include region dummies, the 1993 values of log GDP per capita, log of population, average
years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 2 and 4 add the 1993
value of robots per thousand workers. The standard errors are robust against heteroscedasticity. The coefficients
with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10%
level.
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Table A6: Estimates of the impact of aging between 1990 and 2015 on the adoption of industrial
robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2015 1.162∗∗∗ 1.005∗∗∗ 0.780∗∗ 1.463∗∗ 1.295∗∗ 0.964∗∗

(0.393) (0.351) (0.298) (0.616) (0.478) (0.417)
log of GDP per capita in 1993 0.053∗ -0.002 0.076 -0.006

(0.030) (0.024) (0.057) (0.054)
Robots per thousand workers in 1993 0.081∗∗∗ 0.083∗∗∗

(0.011) (0.021)
Observations 52 52 52 30 30 30
R-squared 0.43 0.54 0.67 0.24 0.44 0.56

Panel B. IV estimates

Aging between 1990 and 2015 1.409∗∗∗ 1.192∗∗∗ 1.087∗∗∗ 2.574∗∗∗ 1.305∗∗∗ 1.086∗∗∗

(0.393) (0.363) (0.304) (0.941) (0.450) (0.387)
log of GDP per capita in 1993 0.046∗ -0.010 0.076 -0.001

(0.027) (0.023) (0.050) (0.048)
Robots per thousand workers in 1993 0.077∗∗∗ 0.081∗∗∗

(0.013) (0.021)
Observations 52 52 52 30 30 30
First-stage F stat. 16.8 10.4 10.3 3.2 3.9 4.3
Overid p− value 0.45 0.73 0.12 0.68 0.45 0.17
Anderson-Rubin Wald test p− value 0.02 0.03 0.00 0.03 0.03 0.00

Panel C. Single-IV estimates

Aging between 1990 and 2015 2.435∗∗∗ 2.067∗∗ 1.561∗ 5.110∗∗ 3.101∗∗∗ 2.756∗∗

(0.943) (0.895) (0.842) (2.391) (1.156) (1.277)
log of GDP per capita in 1993 0.015 -0.021 0.103 0.056

(0.042) (0.032) (0.079) (0.092)
Robots per thousand workers in 1993 0.069∗∗∗ 0.046

(0.019) (0.047)
Observations 52 52 52 30 30 30
First-stage F stat. 13.4 12.4 10.2 3.6 12.8 7.8
Covariates included:

Country covariates in 1993 X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56 to workers between
21 and 55 between 1990 and 2015 (from the UN Population Statistics). Panel A presents OLS estimates. Panel B
presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between 1950
and 1985. Panel C presents IV estimates where the aging variable is instrumented using the decline in birth rates
between 1960 and 1980. For our IV estimates, we report the first-stage F−statistic. When using multiple instruments,
we also report the p−value of Hansen’s overidentification test, and the p−value of Anderson and Rubin’s test for the
coefficient on aging being zero. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use
the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP
per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in
1990. Columns 3 and 6 add the 1993 value of robots per thousand workers. All regressions are unweighted, and the
standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with
∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.

A-27



Table A7: Estimates of the impact of aging, unions, and the wage level on the adoption of
industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 0.955∗∗∗ 0.980∗∗∗ 0.783∗∗∗ 1.167∗∗∗ 1.067∗∗∗ 0.891∗∗

(0.275) (0.275) (0.259) (0.304) (0.338) (0.336)
Baseline union density 0.243∗∗ 0.260∗∗ 0.179 0.435∗∗∗ 0.431∗∗∗ 0.348∗∗

(0.094) (0.101) (0.111) (0.125) (0.126) (0.138)
log of hourly wages in 1993 0.129 0.071 0.186 0.152

(0.104) (0.102) (0.182) (0.194)
Observations 46 46 46 30 30 30
R-squared 0.63 0.65 0.71 0.67 0.68 0.71

Panel B. IV estimates

Aging between 1990 and 2025 0.922∗∗∗ 0.980∗∗∗ 0.913∗∗∗ 1.232∗∗∗ 1.231∗∗∗ 1.188∗∗∗

(0.279) (0.263) (0.227) (0.296) (0.329) (0.333)
Baseline union density 0.237∗∗∗ 0.260∗∗∗ 0.207∗∗ 0.446∗∗∗ 0.455∗∗∗ 0.407∗∗∗

(0.073) (0.081) (0.091) (0.109) (0.112) (0.119)
log of hourly wages in 1993 0.129 0.083 0.142 0.094

(0.087) (0.087) (0.153) (0.166)

Observations 46 46 46 30 30 30
First-stage F stat. 11.6 11.0 10.9 5.0 5.7 6.5
Overid p− value 0.13 0.15 0.05 0.59 0.55 0.40

Panel C. Single-IV estimates

Aging between 1990 and 2025 1.146∗∗ 1.187∗∗∗ 1.003∗∗ 1.645∗∗∗ 1.635∗∗∗ 1.543∗∗∗

(0.447) (0.439) (0.459) (0.425) (0.453) (0.501)
Baseline union density 0.278∗∗∗ 0.299∗∗∗ 0.227∗ 0.514∗∗∗ 0.515∗∗∗ 0.479∗∗∗

(0.103) (0.109) (0.121) (0.145) (0.144) (0.144)
log of hourly wages in 1993 0.141 0.091 0.034 0.026

(0.097) (0.097) (0.209) (0.206)
Observations 46 46 46 30 30 30
First-stage F stat. 15.0 15.0 13.6 16.1 13.4 13.1
Covariates included:
Country covariates in 1993 X X X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56 to workers between
21 and 55 between 1990 and 2025 (from the UN Population Statistics). In addition, we also estimate the impact of
the baseline unionization rate (from Rama and Artecona, 2002) and wage level (from the Penn World Tables) in a
country. Panel A presents OLS estimates. Panel B presents IV estimates where the aging variable is instrumented
using the size of five-year birth cohorts between 1950 and 1985. Panel C presents IV estimates where the aging
variable is instrumented using the decline in birth rates between 1960 and 1980. For our IV estimates, we report the
first-stage F−statistic. When using multiple instruments, we also report the p−value of Hansen’s overidentification
test. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample.
Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of
population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3
and 6 add the 1993 value of robots per thousand workers. All regressions are unweighted, and the standard errors
are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant
at the 5% level, and with ∗ are significant at the 10% level.
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Table A8: Estimates of the impact of aging on robot installations per year.

Dependent variable:

Installations of industrial robots per thousand workers per year
Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 1.275∗∗∗ 1.067∗∗∗ 0.640∗∗ 1.785∗∗∗ 1.519∗∗∗ 0.949∗∗∗

(0.405) (0.385) (0.244) (0.482) (0.427) (0.312)
Robots per thousand workers in 1993 0.317∗∗∗ 0.253∗∗∗

(0.072) (0.091)
Observations 1,144 1,144 1,144 660 660 660
Countries 52 52 52 30 30 30
R-squared 0.40 0.53 0.73 0.20 0.55 0.71

Panel B. IV estimates

Aging between 1990 and 2025 1.540∗∗∗ 1.050∗∗∗ 0.795∗∗∗ 2.619∗∗∗ 1.472∗∗∗ 1.169∗∗∗

(0.435) (0.375) (0.251) (0.533) (0.459) (0.345)
Robots per thousand workers in 1993 0.312∗∗∗ 0.244∗∗∗

(0.064) (0.082)

Observations 1,144 1,144 1,144 660 660 660
Countries 52 52 52 30 30 30
First-stage F stat. 29.0 20.8 19.9 10.0 9.4 11.6
Overid p− value 0.60 0.86 0.12 0.89 0.75 0.10
Anderson-Rubin Wald test p− value 0.01 0.02 0.00 0.01 0.08 0.00

Panel C. Single-IV estimates

Aging between 1990 and 2025 1.775∗∗∗ 1.294∗∗ 0.671∗ 2.840∗∗∗ 1.865∗∗∗ 1.314∗∗∗

(0.541) (0.531) (0.366) (0.721) (0.509) (0.489)
Robots per thousand workers in 1993 0.316∗∗∗ 0.238∗∗∗

(0.064) (0.083)
Observations 1,144 1,144 1,144 660 660 660
Countries 52 52 52 30 30 30
First-stage F stat. 32.5 28.0 24.3 15.1 30.1 24.0
Covariates included:
Country covariates in 1993 X X X X

Initial robot density in 1993 X X

Notes: The table presents OLS and IV estimates of the relationship between aging and yearly installations of industrial
robots. The dependent variable is installations of industrial robots per thousand workers for each country-year pair
between 1993 and 2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56
to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). Panel A presents OLS
estimates. Panel B presents IV estimates where the aging variable is instrumented using the size of five-year birth
cohorts between 1950 and 1985. Panel C presents IV estimates where the aging variable is instrumented using the
decline in birth rates between 1960 and 1980. For our IV estimates, we report the first-stage F−statistic. When using
multiple instruments, we also report the p−value of Hansen’s overidentification test, and the p−value of Anderson
and Rubin’s test for the coefficient on aging being zero. We present results for two samples: columns 1-3 use the full
sample; columns 4-6 use the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include the
1993 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56
to workers aged 21-55 in 1990. Columns 3 and 6 add the 1993 value of robots per thousand workers. All regressions
are unweighted and the standard errors are robust against heteroscedasticity and correlation within countries. The
coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant
at the 10% level.
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Table A9: Estimates of the impact of aging on the percent increase in robots by country.

Increase in the log of
Robots

Increase in the log of
1+ Robots

(1) (2) (3) (4)

Panel A. OLS estimates

Aging between 1990 and 2025 2.170∗∗ 1.929∗∗ 3.268∗∗ 3.382∗∗

(0.910) (0.782) (1.428) (1.466)
Robots per thousand workers in 1993 -0.619∗∗∗ -0.527∗∗∗ -1.103∗∗∗ -1.091∗∗∗

(0.119) (0.148) (0.135) (0.136)
log of GDP per capita in 1993 -0.337 0.322

(0.229) (0.335)
Observations 23 23 52 52
R-squared 0.70 0.75 0.85 0.87

Panel B. IV estimates

Aging between 1990 and 2025 2.422∗ 2.554∗∗ 3.728∗ 4.479∗∗

(1.296) (1.050) (2.125) (2.214)
Robots per thousand workers in 1993 -0.628∗∗∗ -0.557∗∗∗ -1.110∗∗∗ -1.099∗∗∗

(0.112) (0.117) (0.131) (0.122)
log of GDP per capita in 1993 -0.318 0.261

(0.196) (0.319)
Observations 23 23 52 52
First-stage F stat. 6.4 3.6 23.4 14.7
Overid p− value 0.03 0.09 0.14 0.03

Panel C. Single-IV estimates

Aging between 1990 and 2025 2.280 4.451∗∗ 6.806∗∗∗ 5.676∗∗

(1.563) (2.025) (2.565) (2.585)
Robots per thousand workers in 1993 -0.623∗∗∗ -0.648∗∗∗ -0.993∗∗∗ -1.190∗∗∗

(0.114) (0.148) (0.122) (0.151)
log of GDP per capita in 1993 -0.261 0.682

(0.248) (0.474)
Observations 23 23 53 52
First-stage F stat. 16.8 9.7 28.2 44.9
Country covariates in 1993 X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. The
dependent variable varies by column. In columns 1-2, it is the change in the log of the stock of industrial robots
between 1993 and 2014 (from the IFR). In columns 1-2, it is the change in the log of one plus the stock of industrial
robots between 1993 and 2014 (from the IFR). The aging variable is the expected change in the ratio of workers
above 56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). Panel A presents
OLS estimates. Panel B presents IV estimates where the aging variable is instrumented using the size of five-year
birth cohorts between 1950 and 1985. Panel C presents IV estimates where the aging variable is instrumented using
the decline in birth rates between 1960 and 1980. For our IV estimates, we report the first-stage F−statistic. When
using multiple instruments, we also report the p−value of Hansen’s overidentification test. Columns 2 and 4 include
region dummies, the 1993 values of log GDP per capita, log of population, average years of schooling and the ratio of
workers above 56 to workers aged 21-55 in 1990, and the 1993 value of robots per thousand workers. All regressions
are unweighted, and the standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant
at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A10: Robustness analysis of the impact of aging on imports and exports of robots.

Baseline log of one plus share Share of robots Exclude outliers

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Imports of robots for the full sample

Aging between 1995 and 2025 2.181∗∗∗ 2.346∗∗∗ 2.172∗∗∗ 2.312∗∗∗ 5.172∗∗∗ 5.225∗∗∗ 2.212∗∗∗ 2.259∗∗∗

(0.754) (0.774) (0.747) (0.764) (1.680) (1.439) (0.748) (0.762)
Observations 131 131 136 136 136 136 119 119
R-squared 0.52 0.52 0.53 0.53 0.52 0.52 0.54 0.54
Instruments F-stat 13.0 13.1 13.1 12.7
Overid p-value 0.35 0.35 0.46 0.49

Panel B. Imports of robots for the OECD sample
Aging between 1995 and 2025 2.587∗∗∗ 2.035∗∗ 2.574∗∗∗ 2.024∗∗ 1.969∗∗ 1.470∗∗ 2.603∗∗∗ 2.132∗∗

(0.898) (0.863) (0.894) (0.859) (0.762) (0.663) (0.877) (0.831)
Observations 34 34 34 34 34 34 31 31
R-squared 0.62 0.62 0.62 0.62 0.56 0.55 0.68 0.67
Instruments F-stat 12.8 12.8 12.8 12.6
Overid p-value 0.10 0.10 0.12 0.12

Panel C. Exports of robots for the full sample
Aging between 1995 and 2025 3.916∗∗∗ 4.389∗∗∗ 3.833∗∗∗ 4.317∗∗∗ 2.266∗ 1.811 3.939∗∗∗ 4.419∗∗∗

(1.229) (1.428) (1.194) (1.392) (1.188) (1.163) (1.239) (1.432)
Observations 105 105 138 138 138 138 96 96
R-squared 0.78 0.78 0.78 0.78 0.15 0.15 0.78 0.78
Instruments F-stat 12.9 13.9 13.9 12.5

Overid p-value 0.06 0.07 0.23 0.06
Panel D. Exports of robots for the OECD sample

Aging between 1995 and 2025 4.609∗∗∗ 5.607∗∗∗ 4.563∗∗∗ 5.544∗∗∗ 4.563∗ 5.285∗∗ 4.697∗∗∗ 5.673∗∗∗

(1.276) (1.200) (1.268) (1.192) (2.476) (2.486) (1.278) (1.181)
Observations 35 35 35 35 35 35 33 33
R-squared 0.73 0.72 0.73 0.72 0.47 0.47 0.74 0.73
Instruments F-stat 10.0 10.0 10.0 9.5
Overid p-value 0.33 0.32 0.39 0.33
Country covariates in 1995 X X X X X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and imports and exports of industrial robots. Columns 1 and 2 present our
baseline estimates. Columns 3 and 4 present results using the log of one plus robot imports (or exports) per million dollars imported (exported). Columns 5 and
6 present results using the share of robot imports (or exports) per million dollars imported (exported), and normalizes the estimates relative to the mean of this
variable. Finally, columns 7 and 8 return to our baseline estimates, but exclude outliers—countries with a standardized residual above 1.96 or below -1.96. The aging
variable is the expected change in the ratio of workers above 56 to workers between 21 and 55 between 1995 and 2025 (from the UN Population Statistics). The
sample used varies by panel: Panels A and C present estimates for the full set of countries. Panels B and D present estimates for the OECD. In even columns, the
aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our IV estimates, we report the first-stage F−statistic and the
p−value of Hansen’s overidentification test. All columns include region dummies, the 1995 values of log GDP per capita, log of population, average years of schooling
and the ratio of workers above 56 to workers aged 21-55, and the log of intermediate imports (Panels A and B) or exports (Panels C and D). All regressions are
weighted by total intermediate imports (Panels A and B) or exports (Panels C and D), and the standard errors are robust against heteroscedasticity. The coefficients
with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A11: Robustness analysis of the impact of aging on robotics-related patents.

Baseline log of one plus share Share of robots Exclude outliers

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Robotics-related patents for the full sample

Aging between 1990 and 2025 1.396∗∗∗ 1.347∗∗∗ 1.300∗∗∗ 1.274∗∗∗ 1.422∗∗∗ 1.381∗∗∗ 1.402∗∗∗ 1.353∗∗∗

(0.188) (0.175) (0.160) (0.159) (0.158) (0.177) (0.192) (0.178)
Observations 69 69 126 126 126 126 64 64
R-squared 0.80 0.80 0.75 0.75 0.68 0.68 0.81 0.81
Instruments F-stat 24.1 29.7 29.7 23.3
Overid p-value 0.11 0.11 0.12 0.10

Panel B. Robotics related patents for the OECD sample
Aging between 1990 and 2025 1.364∗∗∗ 1.288∗∗∗ 1.269∗∗∗ 1.204∗∗∗ 1.662∗∗∗ 1.577∗∗∗ 1.365∗∗∗ 1.289∗∗∗

(0.200) (0.201) (0.178) (0.183) (0.222) (0.235) (0.204) (0.202)
Observations 31 31 35 35 35 35 29 29
R-squared 0.82 0.82 0.79 0.79 0.82 0.82 0.82 0.82
Instruments F-stat 62.8 66.3 66.3 59.8
Overid p-value 0.15 0.10 0.29 0.13
Country covariates in 1990 X X X X X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and robotics-related patents. Columns 1 and 2 present our baseline estimates.
Columns 3 and 4 present results using the log of one plus robotics-related patents per thousand utility patents. Columns 5 and 6 present results using the share
of robotics-related patents per thousand utility patents, and normalizes the estimates relative to the mean of this variable. Finally, columns 7 and 8 return to our
baseline estimates, but exclude outliers—countries with a standardized residual above 1.96 or below -1.96. The aging variable is the expected change in the ratio of
workers above 56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). The sample used varies by panel: Panel A presents
estimates for the full set of countries. Panel B presents estimates for the OECD. In even columns, the aging variable is instrumented using the size of five-year birth
cohorts between 1950 and 1985. For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. All columns include
region dummies, the 1990 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55, and
the log of total utility patents. All regressions are weighted by total utility patents, and the standard errors are robust against heteroscedasticity. The coefficients
with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A12: Robustness analysis for the IV estimates of aging on the location of robot integrators
in the US.

Dependent variable:
Location of robot integrator

All commuting zones
Manuf.
areas

Other areas

(1) (2) (3) (4) (5) (6)

Panel A. Log of one plus size of integrators

Aging between 1990 and 2015 4.334∗ 1.271 0.534 2.380∗∗ 3.891∗ 1.436
(2.454) (1.020) (1.047) (1.060) (2.158) (1.174)

Observations 722 722 722 722 361 361
First-stage F stat. 4.2 21.5 20.0 22.9 9.8 8.4
Overid p− value 0.00 0.40 0.13 0.65 0.71 0.36

Panel B. Baseline specification removing outliers

Aging between 1990 and 2015 1.765∗∗∗ 0.657∗∗∗ 0.468∗ 0.993∗∗∗ 1.541∗∗∗ 0.256
(0.568) (0.211) (0.246) (0.231) (0.424) (0.173)

Observations 703 688 682 686 342 339
First-stage F stat. 5.4 21.4 18.6 25.3 9.2 8.1
Overid p− value 0.00 0.17 0.14 0.89 0.10 0.74

Panel C. Baseline specification weighting by population

Aging between 1990 and 2015 -2.683∗ 2.404∗∗∗ 2.449∗∗ 1.435 2.380∗∗∗ -0.618
(1.621) (0.843) (1.028) (1.046) (0.678) (1.520)

Observations 722 722 722 722 361 361
First-stage F stat. 4.6 8.2 4.8 10.7 9.9 9.2
Overid p− value 0.00 0.20 0.25 0.10 0.30 0.07
Covariates included:
Regional dummies X X X X X X

Baseline covariates X X X X X

Industry composition X X X X

Additional covariates X X X

Notes: The table presents IV estimates of the relationship between aging and the location of robot integrators across
US commuting zones. The dependent variable varies by panel. In panel A, the dependent variable is the log of one
plus the number of employees in robot integrators (from Leigh and Kraft, 2016). In panels B and C, the dependent
variable is a dummy for the presence of robot integrators in each US commuting zone (from Leigh and Kraft, 2016).
The aging variable is the change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and
2015 (from the NBER-SEER). All panels present IV estimates, where the aging variable is instrumented using the
size of five-year birth cohorts between 1950 and 1985. For all estimates, we report the first-stage F−statistic and the
p−value of Hansen’s overidentification test. We present results for three samples: columns 1-4 use the full sample;
column 5 focuses on commuting zones with share of employment in manufacturing above the median; and column
6 focuses on commuting zones with share of employment in manufacturing below the median. Column 1 includes
Census region dummies. Column 2 includes the 1990 values for the log of average income, the log of the population,
the initial ratio of older to middle-aged workers, and the share of workers with different levels of education in each
commuting zone. Column 3 includes the exposure to robots measure from Acemoglu and Restrepo (2017a) and
also controls for the shares of employment in manufacturing, agriculture, mining, construction, and finance and real
estate in 1990. Finally, column 4 includes additional demographic characteristics measured in 1990, including the
racial composition of commuting zones and the share of male and female employment, and controls for other shocks
affecting US markets, including offshoring, trade with China and the decline of routine jobs. The regressions in panel
B are weighted by population, and all other regressions are unweighted. In parenthesis we report standard errors
that are robust against heteroscedasticity and correlation in the error terms within states. The coefficients with ∗∗∗

are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A13: Estimates of the impact of aging on robot installations by country-industry pairs per
year for manufacturing industries.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Installation of robots in country-industry pairs
normalizing by industry employment from UNIDO

Panel A. OLS estimates
Aging between 1990 and 2025 3.765∗∗ 11.395∗∗ 8.624∗∗ 10.232∗∗∗ 7.739∗∗

(1.425) (4.427) (3.434) (3.703) (3.052)
Aging × reliance on middle-aged 3.814∗∗ 2.934∗∗ 3.023∗∗ 0.984∗∗ 0.848∗ 1.028∗

(1.421) (1.187) (1.169) (0.383) (0.457) (0.511)
Aging × opportunities for automation 35.509∗∗ 28.337∗∗ 26.000∗∗ 7.871∗∗ 5.895∗∗ 5.649∗∗

(16.850) (13.007) (11.962) (2.965) (2.335) (2.194)
Observations 5,866 5,866 5,866 5,866 5866 5,866 5,866
Countries in sample 44 44 44 44 44 44 44

Panel B. IV estimates
Aging between 1990 and 2025 4.032∗∗∗ 13.055∗∗∗ 10.438∗∗∗ 11.924∗∗∗ 9.250∗∗∗

(1.524) (4.823) (3.949) (4.102) (3.550)
Aging × reliance on middle-aged 4.538∗∗∗ 3.465∗∗∗ 3.538∗∗∗ 1.065∗∗ 0.755∗ 1.019∗∗

(1.556) (1.316) (1.318) (0.421) (0.421) (0.501)
Aging × opportunities for automation 40.220∗∗ 38.568∗∗ 33.033∗∗ 9.731∗∗∗ 7.728∗∗∗ 7.239∗∗∗

(18.711) (15.356) (13.906) (3.492) (2.962) (2.750)
Observations 5,866 5,866 5,866 5,866 5866 5,866 5,866
Countries in sample 44 44 44 44 44 44 44
Instruments F-stat 17.9 11.5 8.8 13.4 8.7 10.7 7.7
Overid p-value 0.57 0.22 0.04 0.68 0.25 0.10 0.35
Covariates included:
Country covariates in 1993 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for
industry-country cells. In all panels, the dependent variable is robot installations per thousand workers in each
industry-country cell for all available years between 1993 and 2014 (from the IFR). The explanatory variables include
aging (defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and 2025); the
interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census data on the
age distribution of workers in each industry); and the interaction between aging and two measures of opportunities for
automation: the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a measure of opportunities
for the use of robots from the BCG in columns 5-7. Panel A presents OLS estimates. Panel B presents IV estimates
where the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our
IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test All columns
include region dummies, the 1993 values of log GDP per capita, log of population, average years of schooling and the
ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density in 1993 for
each industry-country cell as a control. All these covariates are allowed to affect industries differently. Columns 4
and 7 add a full set of country dummies. All regressions weigh industries by their share of employment in a country,
and the standard errors are robust against heteroscedasticity and correlation within countries. The coefficients with
∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A14: Estimates of the impact of aging and past aging on robot installations by country-
industry pairs per year.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Installation of robots in country-industry pairs
normalizing by average employment in an industry from ILO

Panel A. Placebo test
Past aging between 1950 and 1990 -0.053 0.368 1.643 1.342 3.648

(0.743) (1.788) (1.305) (3.115) (2.432)
Past aging × reliance on middle-aged 0.316 0.472 0.467 0.123 0.055 0.057

(0.445) (0.334) (0.336) (0.171) (0.121) (0.121)
Past aging × opportunities for automation -0.404 2.912 2.822 1.532 3.857 3.797

(3.209) (2.362) (2.384) (2.808) (2.308) (2.328)
Observations 10,602 10,602 10,602 10,602 10,602 10,602 10,602
Countries in sample 50 50 50 50 50 50 50

Panel B. Past vs. expected aging
Aging between 1990 and 2025 1.598∗∗∗ 3.801∗∗∗ 2.527∗∗∗ 6.794∗∗∗ 4.712∗∗∗

(0.421) (0.989) (0.796) (1.776) (1.448)
Aging × reliance on middle-aged 0.899∗∗∗ 0.617∗∗∗ 0.618∗∗∗ 0.262∗∗∗ 0.181∗∗ 0.182∗∗

(0.240) (0.203) (0.200) (0.085) (0.084) (0.083)
Aging × opportunities for automation 5.889∗∗∗ 3.957∗∗∗ 3.964∗∗∗ 6.078∗∗∗ 4.285∗∗∗ 4.303∗∗∗

(1.681) (1.400) (1.387) (1.617) (1.273) (1.257)
Past aging between 1950 and 1990 -0.573 -0.892 0.743 -0.923 1.833

(0.739) (1.712) (1.242) (2.915) (2.260)
Past aging × reliance on middle-aged 0.014 0.257 0.256 0.035 0.002 0.002

(0.400) (0.303) (0.307) (0.155) (0.114) (0.114)
Past aging × opportunities for automation -2.382 1.422 1.410 -0.510 2.171 2.144

(3.104) (2.256) (2.304) (2.573) (2.115) (2.149)
Observations 10,602 10,602 10,602 10,602 10,602 10,602 10,602
Countries in sample 50 50 50 50 50 50 50
R-squared 0.36 0.37 0.45 0.47 0.39 0.47 0.48
Covariates included:
Country covariates in 1993 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The table presents OLS estimates of the relationship between aging and the adoption of robots for industry-
country cells. In all panels, the dependent variable is robot installations per thousand workers in each industry-country
cell for all available years between 1993 and 2014 (from the IFR). The explanatory variables include past aging (defined
as the change in the ratio of workers above 56 to workers between 21 and 55 between 1950 and 1990); current aging
(defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and 2015); the
interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census data on the
age distribution of workers in each industry); and the interaction between aging and two measures of opportunities for
automation: the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a measure of opportunities
for the use of robots from the BCG in columns 5-7. All columns include region dummies, the 1993 values of log GDP
per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55
in 1990. Columns 3 and 6 add the initial robot density in 1993 for each industry-country cell as a control. All
these covariates are allowed to affect industries differently. Columns 4 and 7 add a full set of country dummies. All
regressions weigh industries by their share of employment in a country, and the standard errors are robust against
heteroscedasticity and correlation within countries. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗

are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A15: Estimates of the impact of aging on the log of one plus robot installations per worker
in each country-industry cell.

Dependent variable:
log of one plus installation of robots in country-industry pairs

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. OLS estimates
Aging between 1990 and 2025 0.426∗∗∗ 0.909∗∗∗ 0.534∗∗∗ 1.589∗∗∗ 1.038∗∗∗

(0.111) (0.219) (0.174) (0.356) (0.273)
Aging × reliance on middle-aged 0.174∗∗∗ 0.113∗∗∗ 0.114∗∗∗ 0.028 0.013 0.014

(0.042) (0.035) (0.034) (0.018) (0.020) (0.019)
Aging × opportunities for automation 1.545∗∗∗ 0.816∗ 0.828∗ 1.419∗∗∗ 0.968∗∗∗ 0.982∗∗∗

(0.488) (0.464) (0.456) (0.325) (0.232) (0.229)
Observations 10,602 10,602 10,602 10,602 10,602 10,602 10,602
Countries in sample 50 50 50 50 50 50 50

Panel B. IV estimates
Aging between 1990 and 2025 0.329∗∗∗ 0.761∗∗∗ 0.544∗∗∗ 1.372∗∗∗ 1.017∗∗∗

(0.111) (0.235) (0.191) (0.396) (0.313)
Aging × reliance on middle-aged 0.170∗∗∗ 0.111∗∗∗ 0.111∗∗∗ 0.040∗∗ 0.014 0.015

(0.050) (0.040) (0.039) (0.020) (0.021) (0.020)
Aging × opportunities for automation 1.222∗∗ 0.975∗∗ 0.957∗∗ 1.244∗∗∗ 0.956∗∗∗ 0.954∗∗∗

(0.504) (0.444) (0.434) (0.366) (0.277) (0.273)
Observations 10,602 10,602 10,602 10,602 10,602 10,602 10,602
Countries in sample 50 50 50 50 50 50 50
Instruments F-stat 19.1 . 6.7 7.9 . 6.4 8.9
Overid p-value 0.63 0.08 0.34 0.38 0.11 0.15 0.06
Covariates included:
Country covariates in 1993 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for
industry-country cells. In all panels, the dependent variable is robot installations per thousand workers in each
industry-country cell for all available years between 1993 and 2014 (from the IFR). The explanatory variables include
aging (defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and 2025); the
interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census data on the
age distribution of workers in each industry); and the interaction between aging and two measures of opportunities for
automation: the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a measure of opportunities
for the use of robots from the BCG in columns 5-7. Panel A presents OLS estimates. Panel B presents IV estimates
where the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our
IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. All columns
include region dummies, the 1993 values of log GDP per capita, log of population, average years of schooling and the
ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density in 1993 for
each industry-country cell as a control. All these covariates are allowed to affect industries differently. Columns 4
and 7 add a full set of country dummies. The standard errors are robust against heteroscedasticity and correlation
within countries. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and
with ∗ are significant at the 10% level.
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Table A16: Estimates of the impact of aging on robot installations by country-industry pairs per
year removing outliers.

Dependent variable:
Installation of robots in country-industry pairs

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. OLS estimates
Aging between 1990 and 2025 0.561∗∗∗ 1.342∗∗∗ 0.757∗∗∗ 3.615∗∗∗ 1.948∗∗∗

(0.162) (0.315) (0.236) (0.501) (0.371)
Aging × reliance on middle-aged 0.243∗∗∗ 0.153∗∗∗ 0.151∗∗∗ 0.082∗∗ 0.032 0.036

(0.060) (0.045) (0.050) (0.032) (0.032) (0.035)
Aging × opportunities for automation 2.304∗∗∗ 1.280∗ 1.257∗ 3.283∗∗∗ 1.827∗∗∗ 1.973∗∗∗

(0.691) (0.697) (0.727) (0.469) (0.322) (0.429)
Observations 10290 10282 10336 10348 10260 10330 10345
Countries in sample 50 50 50 50 50 50 50

Panel B. IV estimates
Aging between 1990 and 2025 0.410∗∗∗ 1.294∗∗∗ 0.782∗∗∗ 3.487∗∗∗ 1.953∗∗∗

(0.151) (0.304) (0.222) (0.529) (0.390)

Aging × reliance on middle-aged 0.249∗∗∗ 0.150∗∗∗ 0.145∗∗∗ 0.100∗∗∗ 0.039 0.044
(0.059) (0.044) (0.048) (0.038) (0.037) (0.039)

Aging × opportunities for automation 1.916∗∗∗ 1.490∗∗ 1.587∗∗ 3.094∗∗∗ 1.810∗∗∗ 1.968∗∗∗

(0.707) (0.631) (0.672) (0.534) (0.380) (0.522)
Observations 10287 10282 10336 10351 10260 10331 10345
Countries in sample 50 50 50 50 50 50 50
Instruments F-stat 28.6 26.0 10.5 12.8 16.9 13.0 13.5
Overid p-value 0.14 0.24 0.43 0.28 0.17 0.52 0.19
Covariates included:
Country covariates in 1993 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for
industry-country cells removing observations with standardized residuals above 1.96 or below -1.96. In all panels, the
dependent variable is robot installations per thousand workers in each industry-country cell for all available years
between 1993 and 2014 (from the IFR). The explanatory variables include aging (defined as the change in the ratio of
workers above 56 to workers between 21 and 55 between 1990 and 2025); the interaction between aging and industry
reliance on middle-aged workers (proxied using 1990 US Census data on the age distribution of workers in each
industry); and the interaction between aging and two measures of opportunities for automation: the replaceability
index from Graetz and Michaels (2015) in columns 2-4; and a measure of opportunities for the use of robots from
the BCG in columns 5-7. Panel A presents OLS estimates. Panel B presents IV estimates where the aging variable
is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our IV estimates, we report
the first-stage F−statistic and the p−value of Hansen’s overidentification test. All columns include region dummies,
the 1993 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above
56 to workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density in 1993 for each industry-country
cell as a control. All these covariates are allowed to affect industries differently. Columns 4 and 7 add a full set of
country dummies. The standard errors are robust against heteroscedasticity and correlation within countries. The
coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant
at the 10% level.
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Table A17: IV estimates of the impact of aging on value added and the labor share for country-
industry pairs using STAN data.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Change in value added between 1995 and 2007
Aging between 1995 and 2025 -2.072∗∗∗ 0.572 0.982 0.619 0.873

(0.480) (0.970) (0.828) (1.043) (0.913)
Aging × reliance on middle-aged -0.499∗∗ -0.462∗∗ -0.383∗ -0.457∗∗ -0.417∗ -0.347

(0.228) (0.230) (0.227) (0.230) (0.235) (0.234)

Aging × opportunities for automation 3.970∗∗∗ 3.877∗∗∗ 3.080∗∗∗ 1.481∗∗∗ 1.297∗∗∗ 1.062∗∗∗

(1.310) (1.159) (0.758) (0.502) (0.432) (0.407)
Observations 462 462 462 462 462 462 462
Countries in sample 27 27 27 27 27 27 27
Instruments F-stat 16.66 17.34 12.37 11.11 10.68 9.32 11.53
Overid p-value 0.99 0.43 0.48 0.30 0.41 0.40 0.27

Dependent variable: Change in labor share between 1995 and 2007
Aging between 1995 and 2025 0.037 -0.245 -0.254 -0.368 -0.379

(0.131) (0.290) (0.287) (0.339) (0.338)
Aging × reliance on middle-aged 0.067 0.070 0.043 0.071 0.074 0.049

(0.067) (0.070) (0.075) (0.067) (0.070) (0.077)
Aging × opportunities for automation -0.292 -0.307 -0.056 -0.212 -0.219 -0.116

(0.573) (0.589) (0.408) (0.242) (0.254) (0.206)
Observations 448 448 448 448 448 448 448
Countries in sample 26 26 26 26 26 26 26
Instruments F-stat 16.15 14.08 9.63 9.54 12.97 10.90 13.74
Overid p-value 0.44 0.20 0.21 0.15 0.18 0.18 0.06
Covariates included:

Country covariates in 1995 X X X X X X X

Initial value added in 1995 X X X X

Country fixed effects X X

Notes: The table presents IV estimates of the relationship between aging and value added and the labor share for
industry-country cells. In Panel A, the dependent variable is the change in value added per worker between 1995
and 2007 for each industry-country cell (from the STAN data). In Panel B, the dependent variable is the change
in the labor share between 1995 and 2007 for each industry-country cell (from the STAN data). The explanatory
variables include aging (defined as the change in the ratio of workers above 56 to workers between 21 and 55 between
1995 and 2025); the interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US
Census data on the age distribution of workers in each industry); and the interaction between aging and two measures
of opportunities for automation: the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a
measure of opportunities for the use of robots from the BCG in columns 5-7. In all panels, we present IV estimates
where the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our
IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. All columns
include region dummies, the 1995 values of log GDP per capita, log of population, average years of schooling and
the ratio of workers above 56 to workers aged 21-55. All these covariates are allowed to affect industries differently.
Columns 3 and 6 add the log of value added per worker in 1995 for each industry-country cell as a control. Columns 4
and 7 add a full set of country dummies. All regressions weigh industries by their share of employment in a country,
and the standard errors are robust against heteroscedasticity and correlation within countries. The coefficients with
∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.

A-38



Table A18: Estimates of the impact of aging using EUKLEMS and Penn World tables data on output and the share of labor.

OLS estimates IV estimates

EUKLEMS
data

Penn World tables data
EUKLEMS

data
Penn World tables data

EUKLEMS sample OECD
Baseline
sample

EUKLEMS sample OECD
Baseline
sample

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Change in GDP (or value added) between 1995 and 2007
Aging between 1995 and 2025 -1.407∗∗ -0.311 0.031 0.344∗ -1.668∗∗ -0.718∗ -0.049 0.321

(0.569) (0.275) (0.232) (0.204) (0.655) (0.367) (0.379) (0.296)
Observations 21 21 30 52 21 21 30 52
First-stage F stat. 5.5 5.5 9.4 17.9
Overid p− value 0.13 0.26 0.11 0.00

Panel B. Change in labor share between 1995 and 2007
Aging between 1995 and 2025 -0.360∗∗ -0.173∗∗ -0.090 -0.110∗ -0.343 -0.013 0.070 -0.061

(0.156) (0.075) (0.072) (0.062) (0.222) (0.080) (0.069) (0.057)
Observations 21 21 30 50 21 21 30 50
First-stage F stat. 5.5 5.5 9.4 17.2
Overid p− value 0.29 0.48 0.63 0.32

Notes: The table presents OLS and IV estimates of the relationship between aging and the change in GDP (panel A) and the labor share (panel B) across countries.
The aging variable is the expected change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics).
Columns 1-4 present OLS estimates. Columns 5-8 present IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between
1950 and 1985. For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. We present results for several samples:
columns 1-2 and 5-6 use the EUKLEMS sample; columns 3 and 7 use the OECD sample, and columns 4 and 8 use the sample of all countries with IFR data. In
columns 1 and 5 we use data from EUKLEMS aggregated to the country level. In the remaining tables, we use data from the Penn World Tables, version 9.0
(Feenstra, Inklaar and Timmer, 2015). All models control for regional dummies, the 1995 values of log GDP per capita, log of population, average years of schooling
and the ratio of workers above 56 to workers aged 21-55 in 1995. All regressions are unweighted, and the standard errors are robust against heteroscedasticity. The
coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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