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The Bartik instrument is named after Bartik (1991), and popularized in Blanchard and
Katz (1992)EI These papers define the instrument as the local employment growth rate
predicted by interacting local industry employment shares with national industry employ-
ment growth rates. The Bartik approach and its variants have since been used across many
fields in economics, including labor, public, development, macroeconomics, international
trade, and finance. Indeed, as we discuss at the end of the introduction, numerous instru-
ments have the same formal structure, including simulated instruments (Currie and Gruber
(1996a) and |Currie and Gruber| (1996b)).

Our goal is to open the black box of the Bartik instrument by formalizing its struc-
ture and unpacking the variation that the instrument uses. In our exposition, we focus
on the canonical setting of estimating the labor supply elasticity, but our results apply
more broadly wherever Bartik-like instruments are used. For simplicity, consider the cross-

sectional structural equation linking wage growth to employment growth
yi = a+ Pox; + €,

where y; is wage growth in location /, x; is the employment growth rate, and ¢; is a struc-
tural error term that is correlated with x;. Our estimand of interest is B, the inverse elas-
ticity of labor supply. We use the Bartik instrument to estimate By. The Bartik instrument
combines two accounting identities. The first is that employment growth is the inner prod-
uct of industry shares and local industry growth rates:

X; = Zzlkglk/
k

where zj; is the share of location I’s employment in industry k, and gy is the growth rate of

industry k in location /. The second is that we can decompose the industry-growth rates as

Sik = &+ &1 + Siks

where gy is the industry growth rate, g; is the location growth rate and gy is the idiosyn-
cratic industry-location growth rate. The Bartik instrument is the inner product of the
industry-location shares and the industry component of the growth rates; formally, B, =

Lk ZIk8k-
We first show that using the Bartik instrument is equivalent to using local industry

IThe intellectual history of the Bartik instrument is complicated. The earliest use of a shift-share type de-
composition we have found is|Perloff| (1957, Table 6), which shows that industrial structure predicts the level of
income. |[Freeman| (1980) is one of the earliest uses of a shift-share decomposition interpreted as an instrument:
it uses the change in industry composition (rather than differential growth rates of industries) as an instrument
for labor demand. What is distinctive about Bartik| (1991) is that the book not only treats it as an instrument,
but also, in the appendix, explicitly discusses the logic in terms of the national component of the growth rates.



shares as instruments, with variation in the common industry component of growth only
contributing to instrument relevance. More precisely, using the Bartik instrument in just-
identified two-stage least squares is numerically equivalent to a generalized methods of
moments (GMM) estimator with the local industry shares as instruments and a weight ma-
trix constructed from the national industry growth rates. The intuition is that the variation
in outcomes is at the location () level, and the only component of the instrument that varies
at the local level is the industry shares. This result suggests that the identifying assumption
for the Bartik instrument is best stated in terms of local industry composition. Moreover, it
means that the Bartik instrument is not an instrument; instead, it is an overidentified GMM
estimator.

While the industry shares are the instruments, the Bartik functional form is not arbitrary
because the national growth rates are important for relevance. Economically, the Bartik
combination of instruments can be derived from models in which there are industry-level
shocks (e.g., (Galle, Rodriguez-Clare, and Yi (2017) and [Beaudry, Green, and Sand| (Forth-
coming)). Econometrically, the Bartik functional form is a set of restrictions on the first-
stage coefficients in a two stage least squares (TSLS) estimator with the industry shares as
instruments: specifically, it imposes that the first-stage coefficients are proportional to the
national growth rates. While replacing the national growth rates with a random vector
would not affect the validity of the exclusion restriction, it would be unlikely to generate a
relevant instrument.

We next show how to measure the relative importance of each industry share in de-
termining parameter estimates. We build on Rotemberg (1983) and decompose the Bartik
estimator into a weighted sum of the just-identified instrumental variable (IV) estimators
using each industry share (zj;) as a separate instrument. The weights, which we refer to as
Rotemberg weights, are simple to compute, sum to 1, and can be negative. They are a scaled
version of the Andrews, Gentzkow, and Shapiro| (2017) sensitivity-to-misspecification pa-
rameter, and tell us how sensitive the overidentified estimate of By is to misspecification
(i.e., endogeneity) in any given instrument. The weights depend on the covariance be-
tween the k' instrument’s fitted value of the endogenous variable and the endogenous
variable itself. Empirically, the national growth rate plays a small role in determining this
covariance.

We suggest researchers perform two relatively standard tests of the identifying assump-
tions. First, while there are many industries, the identifying variation is typically driven by
a smaller number of industries. Reseachers should look at these high Rotemberg weight
industries directly, and test how balanced the high-weight instruments are across potential
confounders. This dimension-reduction focuses researchers” argument for their identify-

ing assumption to instruments that matter in their estimate. Naturally, it is always possible



to control for observable confounders, but following the logic of |Altonji, Elder, and Taber
(2005) and |Oster; (Forthcoming), movements in point estimates when conditioning on ob-
servable confounders suggest the potential importance of unobserved confounders.

Second, researchers can also perform overidentification tests. Under the null of con-
stant effects, a rejection implies that some of the instruments are endogenous. While a
rejection of the null of exogeneity is sometimes interpreted as evidence of heterogeneous
treatment effects, without additional assumptions that are typically context specific, overi-
dentified linear IV with unordered treatments has no obvious local average treatment ef-
fect (LATE) interpretation (e.g., Kirkeboen, Leuven, and Mogstad (2016) and Hull (2018)).
Moreover, some papers using Bartik instruments test overidentifying restrictions and thus
explicitly embrace the constant effects interpretation (e.g.,[Beaudry, Green, and Sand|(2012)
and [Hornbeck and Moretti| (2018)).

We illustrate our results through three applications. In our first application, we look
at the canonical example of estimating the inverse elasticity of labor supply in US Census
data using decadal differences from 1980-2010 and instrumenting for labor demand with
the Bartik instrument. We first show that the national growth rates explain less than one
percent of the variance of the Rotemberg weights. Second, we show that the weights are
skewed, with about a third of the weight on the top five industry-time periods (out of 678
total industry-time periods). The top instrument is oil and gas extraction with a weight
of 0.16. Hence, a concrete example of the comparisons being made by the estimator is
comparing changes in employment growth and wage growth in places with more and less
oil and gas extraction. Moreover, the empirical strategy is sensitive to any innovations
in labor supply that are correlated with a location’s oil and gas extraction employment
share. Third, industry shares, including oil and gas extraction, are correlated with many
observables, including the immigrant share. Controlling for these observables attenuates
estimates (though not in a statistically significant way). Fourth, an overidentification test
rejects the null of exogeneity.

In our second application, we estimate the effect of Chinese imports on manufactur-
ing employment in the United States (using the China shock of |Autor, Dorn, and Hanson
(2013)). We first show that the growth rates of imports from China to other high-income
countries explain about 30% of the variance in the Rotemberg weights. Second, we show
that the highest-weight instrument is electronic computers in the 2000s with a weight 0.14.
Hence, a concrete example of the comparisons being made by the estimator is comparing
outcomes in locations with high and low shares of the electronic computers industry. In-
terestingly, |Autor, Dorn, and Hanson| (2013, pg. 2138) discuss that one might be worried
that computer share is correlated with demand shocks and so would not be a valid instru-

ment, and report sensitivity to dropping the instrument. Our weights allow the reader to



do this calculation for themselves. Third, the industries that get the most weight tend to
be in more educated areas, and controlling for observables attenuates estimates (though
not in a statistically significant way). Fourth, an overidentification test rejects the null of
exogeneity.

In our final application, we extend our set-up to the simulated instruments framework
of Currie and Gruber| (1996a) and Currie and Gruber| (1996b). The key idea is that the
variation is at the level of the eligibility type, where an eligibility type is a unique pattern
of Medicaid eligibility across state-years among the households in the fixed population
used to build the simulated instrument (in this case, the 1986 Current Population Survey).
To map to the Bartik setting, the equivalent of the industry shares is state-year indicators of
Medicaid eligibility for different eligibility types, and the equivalent of the national growth
rates are the national population shares of each eligibility type.

We consider estimating the effect of Medicaid eligibility on schooling attainment as in
(Cohodes et al., 2016). We use the Rotemberg weights to show which state-year Medicaid
eligibility changes—and which household characteristics—drive the estimates. We find
that the expansions between 1980 and 1997 had the largest effect for low-income house-
holds (less than 10,000 dollars in 1986 USD), while post-1996 expansions had the largest
effect for higher-income households (greater than 10,000 dollars in 1986 USD). These pol-
icy changes were concentrated in Missouri, Minnesota, New Jersey and Washington, DC. In
terms of household characteristics, we find that most weight is on households below twelve
thousand dollars in household income, and in households with between two to four kids.
Moreover, changes during school age receives the largest weight.

Besides the three examples discussed in the paper, a much broader set of instruments is
Bartik-like. We define a Bartik-like instrument as one that uses the inner product structure
of the endogenous variable to construct an instrument. This encompasses at least three
instruments, which are not always labelled as Bartik instruments. First, the “immigrant en-
clave” instrument introduced by |Altonji and Card| (1991) interacts initial immigrant com-
position of a place with immigration flows from origin countries. Second, researchers, such
as (Greenstone, Mas, and Nguyen (2015), interact pre-existing bank lending shares with
changes in bank lending volumes to instrument for credit supply. Third, Acemoglu and
Linn! (2004) interact age-group spending patterns with demographic changes to instrument
for market size. We discuss these examples in greater detail in Appendix

We note three limitations to our analysis. First, we assume locations are independent
and so ignore the possibility of spatial spillovers or correlationﬁ Second, we assume that

the data consist of a series of steady statesﬁ Third, we assume that the number of locations

2Monte, Redding, and Rossi-Hansberg| (2017) document the presence and economic importance of spatial
spillovers through changes in commuting patterns in response to local labor demand shocks.
3Gee Jaeger, Ruist, and Stuhler|(2018) for discussion of out-of-steady-state dynamics in the context of immi-



grows large, but fix the number of instruments (locations and industries)ﬁ Fixing the num-
ber of instruments means that we do not consider asymptotics in the spirit of Kolesar et al.
(2015) where each instrument is potentially misspecified, but the misspecification averages
out in the limit. In such a setting, the results of this paper are still important in highlighting
that the researcher is using industry shares as (invalid) instruments.

Beyond the vast literature of papers using Bartik-like instruments, this paper is also
related to a growing literature that comments on specific papers (or literatures) that use
Bartik-like instruments. This literature includes at least three papers: Christian and Bar-
rett (2017), which comments on Nunn and Qian| (2014), [Jaeger, Joyce, and Kaestner|(2017),
which comments on Kearney and Levine| (2015), and [Jaeger, Ruist, and Stuhler| (2018),
which comments on the use of the immigrant enclave instrument. Relative to this liter-
ature, our goal is to develop a formal econometric understanding of the Bartik instrument
and provide methods to increase transparency in its use.

To summarize, we view our contribution as explaining identification in the context of
Bartik instruments in two senses. First, our GMM result shows that Bartik is numerically
equivalent to using industry shares as instruments. Hence, we argue that the identify-
ing assumption is best stated in terms of industry shares. Second, we build on /Andrews,
Gentzkow, and Shapiro| (2017) to provide tools to measure the “identifying variation,” and
formalize how to use Rotemberg weights to highlight the subset of instruments to which
the estimated parameter is most sensitive to endogeneity.

Roadmap: Section [I| shows that the Bartik instrument is equivalent to using industry
shares as instruments. Section [2]shows how to open the black box of the Bartik instrument
and show which estimation moments the parameter estimate is most sensitive to. Section
discusses the implementation of the balance and overidentification tests. Section[d] presents
an application to the canonical setting of estimating the inverse elasticity of labor supply.
Section [f| presents our application to the China Shock. Section [f] discusses the simulated

instrument application.

1 Equivalence between Bartik and industry shares

We first show that the Bartik instrument is equivalent to using industry shares as instru-
ments. This result suggests that the identifying assumption is best stated in terms of in-
dustry shares. We begin this section by setting up the most general case: panel data with
K industries, T time periods, and controls. Through a series of special cases, we then build
up to the main result that Bartik is (numerically) equivalent to using local industry shares

gration.
“See Borusyak and Jaravel|(2017) for discussion of the setting where the number of industries grows.



as instruments. To focus on identification issues, we discuss infeasible Bartik, where we

assume that we know the common national component of industry growth rates.

1.1 Full panel setup

We begin by setting up the general panel data case with K industries and T time periods.
This set-up most closely matches that used in empirical work. It allows for the inclusion of
both location and time fixed effects as well as other controls.

We are interested in the following structural equation:

Vit = Dyp + xp¢Bo + €.

We consider {{x;, Dy, €;}/_;}-, to be independent and identically distributed with T
fixed and L growing to infinity. In the canonical setting, [ indexes a location, ¢ a time
period, y;; is wage growth, Dy, is a vector of Q controls which could include location and
time fixed effects, x;; is employment growth and €y, is a structural error term. We allow for
E[x;€1¢|Dyy] # 0. The estimand of interest is By, typically assumed to be the inverse elas-
ticity of labor supply. However, the ordinary least squares (OLS) estimator for B is biased
and we need an instrument to estimate fy.
The Bartik instrument exploits the inner product structure of employment growth. Specif-

ically, employment growth is the inner product of industry shares and industry-location

growth rates

K
X =ZuGi = Y _ Zie Gkt
k=1

where Zj; is a 1 X K row vector of industry-location-time period shares, ZkK:1 Ziee = 1,
and Gy; is a K x 1 vector of industry-location-time period growth rates where the k" en-
try is gt We decompose the industry-location-period growth rate into industry-period,

location-period and idiosyncratic industry-location-period components:

Skt = Skt + 81t + Sike-

Let the location-period and idiosyncratic industry-location-period components (g;; and
$1xt) be mean zero random variables. Since K and T are fixed, g; is assumed to be non-
stochastic and fixed. We fix industry shares to an initial time period, so that the Bartik in-
strument is the inner product of the initial industry-location shares and the industry-period



growth ratesﬂ

Bt = ZioGt = Y _ Ziko8kt»
k

where G; is a K x 1 vector of the industry growth rates in period ¢ (the kth entry is gi),
and Zj is the 1 x K vector of industry shares in location [. Define Z; to be the L x K
matrix of industry-location shares (we suppress L subscripts for notational simplicity, but
the dimension of these matrices grows with the number of locations).

Hence, we have a standard two-stage least squares set-up where the first-stage is a

regression of employment growth on the set of controls and the Bartik instrument:
Xy = Dyt + Byey + 1.

The two assumptions for the validity of the TSLS estimator are that the Bartik instrument
is exogenous, E (B |Dj;) = 0, and that it is relevant: v # 0.
1.2 Equivalence in three special cases

We build up to the result that the Bartik instrument is equivalent to using industry shares
as instruments through three special cases which each cleanly illustrate one aspect of the
general result.

Two industries and one time period

With two industries and one time period, it is clear that the Bartik instrument is identical

to industry shares as instruments. To see this, write the Bartik instrument explicitly:

By =zng1 + 2082,

where ¢ and g, are the industry components of growth. Since the shares sum to one,
with only two industries, we can write the second industry share in terms of the first,

z1p = 1 — zj1, and simplify the Bartik instrument to depend only on the first industry share:

B =g+ (31— $)zn-

5 If €} are correlated with growth rates, and the ¢); are serially correlated, then future shares will be en-
dogenous. This potential for serial correlation motivates fixing industry shares to some initial period. Beaudry,
Green, and Sand| (Forthcoming), pg. 18-19) discuss Bartik instruments and advocate updating the shares under
the assumption that the error term is not serially correlated.



Because the only term on the right hand side with a location subscript is the first industry
share, the cross-sectional variation in the instrument comes from the first industry share.
Substitute into the first-stage:

xr=v+vBi+m=v+v2+7(81—8)zn+ 1.
| SEEE— N ———  —

constant coefficient

This equation shows that the difference between using the first industry share and Bartik
as the instrument is to rescale the first stage coefficients by the difference in the growth
rates between the two industries (1/g,-g,). But whether we use the Bartik instrument or
the first industry share as an instrument, the predicted employment growth (and hence
the estimate of the inverse elasticity of labor supply) would be the same. Hence, with two
industries, using the Bartik instrument in TSLS is numerically identical to using z;; (or z»)
as an instrument.

Two industries and two time periods

In a panel with two time periods, if we interact the time-invariant industry shares with
time, then Bartik is equivalent to using industry shares as instruments. To see this result,

we specialize to two industries, and define the Bartik instrument so that it varies over time:

By = guezino + §2¢Zi0 = g2t + (g1t — 82¢)Z110,

where g1; and go are the industry-by-time growth rate for industry 1 and 2. Because we
tix the shares to an initial time-period, denoted by zj, the time variation in Bj; comes from
the difference between g1; and g

To see the relationship between the cross-sectional and the panel estimating equations,
restrict our panel setup to have the vector of controls consist solely of location and time

tixed effects. Then the first-stage is
Xip = T + T + By + 1.
Now substitute in the Bartik instrument and rearrange the first stage:

xip =T+ (T + g2Y) +2no0 (16 — §2t)Y H111e- (1.1)

=T =t

This first-stage is more complicated than in the cross-sectional case because there is a time-
varying growth rate multiplying the time-invariant industry share.

To recover the equivalence between Bartik and using shares as instruments in the panel



setting, write g1; — g2t = (g1 — g21) + (Ag1 — Ag2)1(t = 2), where Agy = g12 — g1 and
Ag> = g2 — g21- Then, rewrite the first stage as

X =T+ zno(g1 — 821)7 + (T + g7) +zno Ut = 2)(Ag1 — Ag2)y +mi. - (1.2)

=7 =T =9

We can now see the equivalence between Bartik and using the shares as instruments:

xip =T+ T +znoll(t = 2)(Ag1 — Ag2)y + 1t (Bartik)
xip =T+ T+ zinol(f = 2)F + 111 (Industry Shares)

In this case, ¥ = 7/(Ag1 — Ag2). If we view zj1g as the effect of exposure to a policy,
then 4 captures the “unscaled” effect on x;;, while 7 is rescaled by the size of the policy,
where the size of the policy is the dispersion in national industry growth rates, Ag1; — Ago;.

K industries and one time period

Finally, we show that with K industries as instruments in a generalized method of moments
(GMM) set-up with a specific weight matrix, Bartik is identical to using the set of industry
shares as instruments.

To prove this result, we introduce some additional notation. Let G be the K x 1 vector
of industry growth rates, let Z be the L x K matrix of industry shares, let Y be the L x 1
vector of outcomes, let X be the L x 1 vector of endogenous variables, let B = ZG be the
L x 1 vector of Bartik instruments, and let W be an arbitrary K x K matrix. Finally, let
Mp = I — D(D'D)~'D denote the annhilator matrix for D, the L x Q matrix of controls.
We denote X+ = MpX and Y+ = MpY to be the residualized X and Y. We define the
Bartik and the GMM estimator using industry shares as instruments:

s _BYL . XUzwzy!
Prarix = grer and Pomm = 77T

The following proposition says that Bartik and GMM are equivalent for a particular
choice of weight matrix.

PROPOSITION 1.1. If W = GG/, then Bcaim = Brartik-
Proof. See appendix[B| O

Hence, the Bartik instrument and industry shares as instruments are numerically equiv-
alent for a particular choice of weight matrix. The decision of what growth rates to use is
about how to weight a set of instruments, and not about the identification assumption.



1.3 Equivalence with K industries and T time periods

We now have the ideas necessary to show the equivalence between Bartik and industry
shares as instruments in the general set-up of Section [1.1} which includes arbitrary controls
including location and time fixed effectsE] With K industries and T time periods, the equiv-
alence involves creating K x T instruments (industry shares interacted with time periods).
Then an identical GMM result holds as we proved in the cross-section with K industries.

Extending the result is notationally cumbersome so we leave the formal details to Appendix

a

2 Opening the black box of the Bartik estimator

The previous section showed that Bartik is equivalent to using industry shares (interacted
with time) as instruments. Thus, the Bartik estimator combines many instruments using a
particular weight matrix.

While empirical work using a single instrument is quite transparent because there is a
clear set (and a small number) of variances and covariances that enter the estimator, with
many instruments it is not clear how the estimator combines the different instruments.
Hence, empirical work using Bartik instruments often feels like a black box, in that it is
hard to explain what variation in the data drives estimates.

In this section, we show how to open the black box of the Bartik estimator. We first
decompose the Bartik estimator into a weighted combination of just-identified estimates.
We view this decomposition as increasing the transparency of the estimator because the
weights highlight the industries whose variation in the data drives the estimate. Building
on Andrews, Gentzkow, and Shapiro| (2017), we show that in the limit, these weights can
be interpreted as sensitivity-to-misspecification elasticities. High-weight instruments are
more sensitive to misspecification, and hence are the instruments that are most important

for researchers to defend.

2.1 Decomposing the Bartik estimator

We first present an exact finite sample decomposition of the linear overidentified GMM es-
timator due to/Rotemberg (1983)[] For expositional simplicity, we use a single cross-section,
though it is straightforward to extend results to the panel by multiplying the dimensions

®The identification condition strengthens when moving from the Bartik instrument to industry shares as
instruments. Specifically it moves from Y ¢ E[zjx€5¢| Djs] = 0to E[zjis€54|Dys] = 0, Vk, t. It is logically possible
for the first to hold but not the second if the gy; are “special.” We view this case as a knife-edge case.

7 Andrews| (2017, Section 3.1) reports this decomposition for constant-effect linear instrumental variables.

10



of vectors by TE]

Consider the GMM problem of estimating a scalar By, using K empirical moment con-
ditions ¢(B) = Z'(Y+ — X1 B), where we have residualized for a matrix of control variables
D, and a K x K weight matrix W:

N A

B = argmin 8(B) W3 (B). 1)

Define a K x 1 vector, C(W), which also depends on the instrument set, Z, and the endoge-
nous variable X=:

DEFINITION 2.1. Let
C(W) = WZ'X* and 6.(W) = W,.Z' X+, (2.2)
where Wy is the k™ row of W.
We index a solution for 3 by W:

o C(R)YZYE

W)= x> —. 2.3
The following result (which is a special case of Rotemberg| (1983, Proposition 1)) shows how
to decompose B(W) into the contribution from each of the K just-identified regressions.

PROPOSITION 2.1. Let

soa C(W)Z'vt R G(W)zZx+ R N
W) = = , W = , and By = (Z, X Z. Y. 24
Then:
~ A K A~ ~
BW) = ), a(W)py, (2.5)
k=1
where YK | & (W) = 1.
Proof. See appendix[B| O

Proposition has three important implications. First, mirroring our results from Sec-
tion the validity of each just-identified B, estimate depends on the exogeneity of a given
Z, and is not related to the choice of W. Second, the &;(W) weights sum to 1, and differ
depending on the choice of W. Finally, for some k, & (W) can be negative, which means that

the overidentified IV estimate can lie outside of the range of the just-identified estimates.

8For example, Z becomes LT x 1, and X becomes LT x Q.

11



We now look at Bartik’s Rotemberg weights.
REMARK 2.1. The Rotemberg weights for the Bartik instrument are given by:

SZiXt  qgzpxt  Rpartiexl
25:1ng£Xi  4B'XL  XBartiki L’

ax(GG') = (2.6)

where gy is the k" entry in G, and XP"'% is the L x 1 vector of the fitted values from the first-stage
regression using the full Bartik instrument, but applying the coefficient to the k™ industry.

To see the specific restrictions imposed by Bartik, we contrast Bartik’s Rotemberg weights

with the weights that arise from TSLS using the industry shares as instruments:
REMARK 2.2. The Rotemberg weights from TSLS are given by:

~ STSLSI y L
& ((ZJle)—l) — nkZ]I(XL — Xk /X (2 7)
k T YK mzixt o XTSIl '

where 7y is the k™ entry in (Z+' Z1)~12' X+, which is the first stage regression when using all K
industries as instruments, and 7y Zy = XT°LS is the L x 1 vector of fitted values based on the k'

industry.

This comparison lets us see two points. First, the Bartik and TSLS estimators are identi-
cal when the TSLS first-stage coefficients are proportional to g (the national growth rates)ﬂ
Second, the weights reflect the covariance between the k" instrument’s fitted value of the
endogenous variable and the endogenous variable itself. To understand this covariance,
let X; be a first stage fitted value using the k" instrument (e.g., gxZ; or #;Z;) so that
Cov(Xi, X) = Var(Xy) + Yizk Cov(Xy, Xj) + Cov(Xy, €), where &é = X — YK Xk If the
instruments are mutually orthogonal, then all the covariance terms are zero. If, in addition,
the coefficients on the instruments come from a regression (i.e., in TSLS), then the covari-
ance with the error term is also zero. Under these two assumptions, the weights measure
the share of first-stage partial R? that is attributable to each instrument and all weights are

positiveE] If we relax these two assumptions, then negative weights are possibleErI

2.2 Interpreting the weights

To interpret these weights, we move from finite samples to population limits. We first state

the standard assumptions such that GMM estimators are consistent for all sequences of

9In the limit, this occurs when E[G|Z] = E[G]. This assumption also implies that the first stage coefficient
is 1. See Appendix|D]for details.
19Angrist and Imbens| (1995, Theorem 2) present a related result where the instruments are mutually orthog-
onal and they study TSLS so the weights are all positive.
T, generate mutually orthogonal instruments, we could take the PCA components of the industry shares.
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W matrices. We then consider local-to-zero asymptotics (e.g., Conley, Hansen, and Rossi
(2012)) to interpret the Rotemberg weights in terms of sensitivity-to-misspecification as
discussed in |Andrews, Gentzkow, and Shapiro| (2017) (AGS). As such, the results in this
section largely follow as special cases of AGS'’s results.

The Rotemberg weights depend on the choice of weight matrix, W. Given standard as-
sumptions, the choice of weight matrix does not affect consistency or bias of the estimates,
and only affects the asymptotic variance of the estimator (there is a rich literature studying
how to optimize this choice).

When some of the instruments are not exogeneous, however, the population version of
the Rotemberg weights measures how much the estimate of By is affected by this moment
misspecification. To allow for this misspecification interpretation, we modify our estimat-

ing equation:

Yir = Dup + x11o + €t
€ = Vi + €y,

where we assume that for some k, E[Z;V};|Dy;] # 0. We follow Conley, Hansen, and Rossi
(2012, Section II.C) and AGS (pg. 1569) and allow « to be proportional to L~!/2 such that

we have local misspecification. We make the following standard regularity assumptions:

ASSUMPTION 1 (Identification and Regularity). (i) the data {{xy, Z;, Dy, Vir, e} 54
are independent and identically distributed with K and T fixed, and L going to infinity;

(ii) Eley] =0, E[V}] = 0and Var(€) < oo;

(iii) E[zje€1t|Dyy] = 0 for all values of k; E[z; V)] = Ezy, where L7y is a 1 x K covariance
vector with at least one non-zero entry; and ]E[thxlﬂ = X y1 isa 1l x K covariance vector

with all non-zero entries (xy; is a scalar), and X7 x1 | is the kKt entry; and

(iv) Var(zje) < oo, Var(zj Vi) < oo and Var(zyyxjr) < oo for all values of k.

We first establish the population version of a;(W):

LEMMA 2.1. If Assumption (1| holds and plim, ,. Wi = W where W is a positive semi-definite
matrix, then
. N N szL WkZZXL k
plim &, (W) = ap (W) = 20— ==,
L—o0 Tzxe Wiy

Proof. See appendix[B| O

We now present results about the asymptotic behavior of our estimators with and with-

out misspecification.
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PROPOSITION 2.2. We assume that Assumption |1| holds and plim; , W, = W where W is a
positive semi-definite matrix.

(i) If x = 0, then standard GMM results apply

K K
plim Y & (W)Bx = Y ar(W)Bo = Bo (2.8)
k=1

L—o0 =1
and /L(B — Bo) converges in distribution to a random variable p, with E[B] = 0.
(ii) If x = L=Y2 then
K o K
plim Z @k(W),Bk = Z ak(W)ﬁo = 50 (29)
L—o0 k=1 k=1

and

(a) VL(Bx — Bo) converges in distribution to a random variable By, with E[Bi] = Zzzivf
ZX+k

and

(b) VL(B— Bo) converges in distribution to a random variable B, with E[f] = Yr_, ax(W)E[Bi] =

K Xzvk
Lik=1 ax (W) Tk

Proof. See appendix[Bl O

The first part of the proposition is the standard result that in the absence of misspecifi-
cation the estimator is consistent and asymptotically unbiased. The second part shows that
in the presence of misspecification while the estimator is consistent (because the misspeci-
fication disappears in the limit), it is asymptotically biased.

Two useful corollaries follow:

COROLLARY 2.1. Suppose that By # 0. Then the percentage bias can be written in terms of the
Rotemberg weights:

E[B] _ E[B]
= D (2.10)

COROLLARY 2.2. Under the Bartik weight matrix (W = GG'),

Bo 4 GT,. Bo

E[f] y 8kEzx 1k E[Bi] (2.11)

The first corollary interprets the a (W) as a sensitivity-to-misspecification elasticity. Be-
cause of the linear nature of the estimator, it rescales the Andrews, Gentzkow, and Shapiro
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(2017) sensitivity parameter to be unit-invariant, and is hence comparable across instru-
mentslT_ZI Specifically, ax (W) is the percentage point shift in the bias of the over-identified
estimator given a percentage point change in the bias from a single industry. The second
corollary gives the population version of Bartik’s Rotemberg weights.

We can also use these weights to understand an alternative approach to measuring sen-
sitivity which is to drop an instrument and then re-estimate the model. Let (W _;) be the

same estimator as (W), except excluding the k' instrument. Then, define the bias term

for B(W_x) as (W) = B(W_¢) - B.

PROPOSITION 2.3. The difference in the bias from the full estimator and the estimator that leaves
out the k' industry is:

E [B(W) - BW_i)] _ EBd (W) E(By]
'B - le(W) 'B 1— DCk(W) kgk “k’(w> ‘B :

IfE[Br] = 0 for k' # k, then we get a simpler expression:

Proof. See appendix[B| O

As emphasized by AGS (Appendix A.1), dropping an instrument and seeing how es-
timates change does not directly measure sensitivity. Instead, this measure combines two
forces: the sensitivity of the instrument to misspecification, and how misspecificed the in-
strument is relative to the remaining instruments.

The implications for practice is that researchers should report the instruments associ-
ated with the largest values of a;. The reason is twofold: first, reporting the instruments
with the largest a; provides the researcher a way to describe their empirical strategy in a
way that reflects what variation they are using. Second, to the extent that the researcher is
concerned about misspecification, these are the instruments that are most worth probing.

3 Testing the plausibility of the identifying assumption

In the context of the canonical setting of using Bartik to estimate the inverse elasticity of
labor supply, the identifying assumption is that industry composition does not predict in-

12 AGS (pg. 1558) write: “The second limitation is that the units of [our sensitivity vector] are contingent
on the units of [the moment condition]. Changing the measurement of an element [j of the moment condi-
tion] from, say, dollars to euros, changes the corresponding elements of [the sensitivity vector]. This does not
affect the bias a reader would estimate for specific alternative assumptions, but it does matter for qualitative
conclusions about the relative importance of different moments.”
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novations to labor supplyr—_gl While this exclusion restriction is not directly testable, we
discuss two tests of its plausibilityE]

3.1 Empirical Test 1: Correlates of industry composition

It is helpful to explore the relationship between industry composition and location char-
acteristics that may be correlated with innovations to supply shocks. This relationship
provides descriptive evidence both of what the variation is correlated with, and the types
of mechanisms that would be problematic for the exclusion restriction.

Since we argued in footnote 5| that it is typically desirable to fix industry shares to an
initial time period (Zjy), it is useful to consider the correlation with initial period char-
acteristics, as this reflects the cross-sectional variation that the instrument uses. If a re-
searcher finds that Zj is correlated with potential confounding factors, this can imply that
there are omitted variables influencing estimation. Naturally, it is always possible to con-
trol for observable confounders, but following the logic of |Altonji, Elder, and Taber (2005)
and Oster (Forthcoming), movements in point estimates when conditioning on observable
confounders suggest the potential importance of unobserved confounders. Looking at in-
dustries with the largest Rotemberg weights focuses attention on the instruments where
confounding variables are most problematic because the estimator is most sensitive to mis-

specification of these instruments.

3.2 Empirical Test 2: Overidentification tests

Under the assumption of constant effects in Sy, we can use an overidentification test to
test the null hypothesis that all of the industry shares are uncorrelated with innovations to
supply shocks. Conceptually, the test asks whether the instruments are correlated with the
error term beyond what would be expected by chance.

To implement the overidentification test, we run into the problem that there are many
instruments, and standard overidentification tests perform poorly (in Monte Carlo exper-
iments, they overreject). To address this problem, we use estimators and tests that are
designed to have good finite sample performance in the presence of many instruments and
heteroskedasticity. In particular, we use the HFUL estimator from Hausman et al.|(2012),
which is a heteroskedasticity robust version of the |Fuller| (1977) estimator (hence, H-FUL).
This estimator is a jackknife estimator. See Hausman et al|(2012) for further discussion

13In Appendixwe write down an economic model which allows us to derive this statement more precisely.

14Tn general, it is not possible to test for pre-trends without additional assumptions because the instrument
is industry times time and so there is no pre-period. An example of an additional assumption would be that a
given industry has no predictive power for employment growth in some pre-period.
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of the properties of this estimatorE] We implement the overidentification test from Chao
et al. (2014). Under the assumption of constant effects, this tests for whether all instruments
are exogenous. While the constant effects assumption might seem unappealing, as we dis-
cussed in the introduction there are not currently results in the literature that define a LATE
in our setting. Hence, a weaker interpretation of the rejection of the null is simply that it
suggests a lack of clarity in what the estimates mean.

These overidentification tests test whether each instrument is estimating the same pa-
rameter. Beaudry, Green, and Sand| (2012) and others test overidentifying restrictions in
Bartik settings by using different vectors of national growth rates to weight the industry
shares and testing whether these different weighted combinations of instruments estimate
the same parameter. We show in Appendix [Fthat it is possible to fail to reject the null using
this test, even if a more traditional overidentification test would reject.

4 Empirical example I: Canonical Setting

So far we have emphasized that Bartik is equivalent to using industry shares (interacted
with time) as instruments and hence that the identifying assumption is best viewed in
terms of the industry shares. We have also shown how to open the black box of the Bartik
estimator and show which industries drive the results.

We now present empirical examples to make these ideas concrete. Our first example
is the canonical setting of estimating the inverse elasticity of labor supply. We begin by
reporting the main estimates and then report the industries with the highest Rotemberg
weight. We then probe the plausibility of the identifying assumption for these instruments.

4.1 Dataset

We use the 5% sample of IPUMS of U.S. Census Data (Ruggles et al|(2015)) for 1980, 1990
and 2000 and we pool the 2009-2011 ACSs for 2010. We look at continental US commuting
zones and 3-digit IND1990 industries@ In the notation given above, our y variable is earn-
ings growth, and x is employment growth. We use people aged 18 and older who report
usually working at least 30 hours per week in the previous year. We fix industry shares at
the 1980 values, and then construct the Bartik instrument using 1980 to 1990, 1990 to 2000
and 2000 to 2010 leave-one-out growth rates. To construct the industry growth rates, we
weight by employment. We weight all regressions by 1980 population.

15 Arguably, researchers use the Bartik instrument to address the problem of having many weak instruments.
Under this argument, researchers should instead be drawing on the large econometrics literature that addresses
this issue and using an estimator like HFUL.

16There are 228 non-missing 3-digit IND1990 industries in 1980. There are 722 continental US commuting
zones.
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Why do we use leave-one-out means to construct the national growth rates? The rea-
son is that a leave-one-out estimator addresses the finite sample bias that comes from using
own-observation information to fit the first stage. Specifically, using own-observation in-
formation allows the first-stage to load on the idiosyncratic industry-location component
of the growth rate, which is why OLS is biased. This finite sample bias is generic to overi-
dentified instrumental variable estimators and is the motivation for jackknife instrument
variable estimators (e.g. |Angrist, Imbens, and Krueger (1999)). Hence, the desirability of
using a leave-one-out estimator of the national growth rate should not be interpreted as
evidence that identification “comes from” the national growth rates. In practice, because
we have 722 locations, using leave-one-out to estimate the national growth rates matters
little in point estimates

4.2 Parameter estimates

Table 1} reports OLS and IV estimates with and without controlling for the 1980 covariates
(we discuss these covariates below) and makes two main points. First, the IV estimates
in columns (5) and (6) are bigger than the OLS estimates in columns (1) and (2). Second,
the Bartik results are sensitive to the inclusion of controls. Adding controls moves the
parameter estimate from 1.75 to 1.28, though these are not statistically distinguishable.

4.3 Rotemberg weights

We compute the Rotemberg weights on the IV estimates with controls. Despite the very
large number of instruments (684 = 228 x 3), the distribution of sensitivity is skewed so
that in practice a small number of instruments get a large share of the weight: Table2]shows
that the top five instruments account for almost a third (0-507/1.877) of the positive weight in
the estimator. These top five instruments are: oil and gas extraction in the 2000s, other in
the 199OSH motor vehicles in the 2000s, guided missiles in the 1980s, and motor vehicles
in the 1990s. (Recall that we measure industry shares in 1980, so the dates refer to the time
span of the outcomes).

These weights give a way of describing the research design in a way that reflects the
variation in the data that the estimator is using, and hence makes more concrete for the
reader what types of deviations from the identifying assumption are likely to be important.
In this canonical setting, one of the important comparisons is of outcomes in places from

2000 to 2010 with greater and smaller shares of oil and gas extraction. This single industry

n Appendix we show that with a leave-one-out estimator of the g, component, the Rotemberg weights
do not sum to one. In our applications below, when we compute the Rotemberg weights we use simple aver-
ages so that the weights sum to one.

18 The “Other” industry is the “N/A" code in the IND1990 classification system.
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has a sensitivity elasticity of 0.16. So the estimate is very sensitive to deviations from the
identifying assumption related to geographic variation in employment share in oil and gas
extraction.

Interestingly, a common short-hand to talk about Bartik is to discuss the fate of the
automobile industry (e.g. Bound and Holzer| (2000, pg. 24)), and this analysis confirms
that the motor vehicle industry plays a large role in the Bartik instrument. Relative to the
conventional story where the instrument uses the common decline in the U.S. auto industry
in the 1980s, this analysis shows that it is driven more by events in these places in the 1990s
and 2000s. More generally, however, the estimator does place more weight on the 1980s:
Panel C sums the weights across years and shows that the Bartik estimator is most sensitive
to misspecification in the 1980s.

Negative weights are quantitatively important. Panel A shows that that there are sub-
stantial negative weights—they sum to —0.8.

Finally, Panel B shows the determinants of the sensitivity to misspecification elastici-
ties. Because the national growth rates—the gy—enter the formula for the elasticities (see
Remark one might think that these would be the primary determinants of the weights.
Instead, the Table shows that the national growth rates are weakly correlated with the elas-
ticities. In contrast, the elasticities are quite related to the variation in the industry shares
across locations—Var(z;). Mechanically, efficient estimators place more weight on the in-
struments that vary more, and Var(z;) measures how much the instrument varies across
locations. This observation also explains why the industries with high weight tend to be
tradables: almost by definition, tradables have industry shares that vary across locations,
while non-tradables do not[]

4.4 Testing the plausibility of the identifying assumption

Test #1: Correlates of 1980 industry shares Table 3|shows the relationship between 1980
characteristics and the 4 industries that appear among the top 5 instruments in Table
(recall that motor vehicles appear in two time periods) It also shows the relationship
between these characteristics and the Bartik instrument. The first point to notice is that the
R? in these regressions are quite high: for example, we can explain 43% of the variation in
share of the “other” industry via male, white, native-born share, education composition,
veteran status, and number of children. For the remaining three industries the R? is also
high: 11% for motor vehicles, 22% for oil and gas extraction and 25% for guided missiles.
Using the 1980-1990 growth rates, the Bartik instrument is even more strongly explained

19This logic is the basis of Jensen and Kletzer|(2005)’s measure of the offshorability of services; as Jensen and
Kletzer|(2005) recognize, there are other reasons for concentration besides tradability.
“UWe compute the Rotemberg weights in a regression that includes the controls.
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by these correlates. The second thing to note is that “other,” oil and gas extraction, and the
overall Bartik instrument are statistically significantly correlated with share native born. In
the immigrant enclave literature, share native born (immigrant share) is thought to predict

labor supply shocks.

Test #2: Overidentification tests Columns (7) and (8) of Table[I|shows the point estimates
from the[Hausman et al|(2012) HFUL estimator and the|Chao et al.|(2014) overidentification
tests. Relative to the TSLS estimates using the Bartik instrument in columns (5) and (6),
the HFUL estimator produces substantively larger point estimates. The key punchline of
the overidentification tests (which can be approximately anticipated from looking at the
dispersion in the f; in Panels D and E of Table [2) is that the tests rejects the null that all

instruments are exogenous under the assumption of constant treatment effects.

5 Empirical example II: China shock

For our second empirical example, we estimate the effect of Chinese imports on manufac-
turing employment in the United States using the China shock of Autor, Dorn, and Hanson
(2013) (ADH).

5.1 Specification

It is helpful to write ADH’s main regression specification in our notation. ADH are in-
terested in a regression (where we omit covariates for simplicity, but include them in the

regressions):

yir = Bo+ BXi + €, (5.1)

where y}; is the percentage point change in manufacturing employment rate, and Xj; =
Yk Zikt gtu Sis import exposure, where zj;; is contemporaneous start-of-period industry-location
shares, and ¢!° is a normalized measure of the growth of imports from China to the US. The
tirst stage is:

Xit = vo+ 1B + 11, (5.2)
where By = Y i Ziki—1 g?igh*inmme, the z are lagged, and g?lgh*mwme is a normalized measure

of the growth of imports from China to other high-income countries (mainly in Europe).
The fact that B, and Xj; differ primarily in the ¢ makes it tempting to explain the em-
pirical strategy as instrumenting “for growth in Chinese imports to the United States us-
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ing the contemporaneous composition and growth of Chinese imports in eight other de-
veloped countries” (ADH (pg, 2128)). Our analytical results in Section 1| show that the
ghigh—income are a particular way of weighting the moment conditions implied by the instru-
ments {zj;_1}5 ;.

We focus on the TSLS estimate in column (6) of Table 3 of ADH, which reports that a
$1,000 increase in import exposure per worker led to a decline in manufacturing employ-
ment of 0.60 percentage points. Our replication produces a coefficient of 0.62

5.2 Rotemberg weights

As in the canonical setting, despite a very large number of instruments (794 = 397 x 2)
the distribution of sensitivity is skewed so that in practice a small number of instruments
get a large share of the weight: Table 5|shows that the top five instruments get just over a
third of the absolute weight in the estimator (0-391/1.116). These instruments are electronic
computers, games and toys, household audio and video, telephone apparatus and com-
puter equipment (all in the 2000s) (recall that ADH update the shares but use shares that
are lagged by one period so that the 2000 to 2007 changes are instrumented using industry
shares measured in 1990).

The Table shows that one of the important comparisons in the estimator is differences
in outcomes from 2000 to 2007 of places with high and low shares of electronic computer
manufacturing (measured in 1990). So the estimate is sensitive to deviations from the iden-
tifying assumption in terms of the electronic computer industry (the sensitivity elasticity is
0.14).

Interestingly, the identifying assumption related to the computer industry is precisely
one that ADH worry about. They write (pg. 2138) “Computers are another sector in which
demand shocks may be correlated [across countries], owing to common innovations in the
use of information technology,” and so movements in manufacturing employment from
2000 to 2007 that are predicted by the 1990 employment share in electronic computers
might not reflect the economic rise of China. To address this concern, the paper reports
that dropping the industry entirely has minimal effects on their estimates. From our ta-
ble, we can see that dropping the instrument “electronic computers in the 2000s” would
have minimal effects on the point estimates because the ﬁk for the instrument (—0.62) is

21Column (1) of Tablereproduces ADH Table 3 column (6), and column (2) reports our replication. ADH
update their industry shares over time which we argued in footnote [f|is undesirable. Column (3) shows that
when we fix industry shares to the base period but let the controls be time-varying that the coefficient estimate
dramatically attenuates and becomes a statistically insignificant —0.16. Column (4) also fixes the controls to
1980, but interacts the fixed controls with time. This specification produces a coefficient of —0.60, which is
substantively nearly identical to our replication in column (2), but becomes statistically insignificant. The
specification in column (4) is the one we use in Section (and we used this specification in the July 2017 draft
of this paper before we replicated ADH).
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identical to the overall B (—0.62). This observation highlights the distinction, discussed for-
mally in Proposition 2.3} between the sensitivity elasticity, which measures how responsive
point estimates are to changes in misspecification, and the dropping instrument measure of
sensitivity, which also depends on how far the j; is from the overall j.

More generally, our sensitivity elasticities allow us to formalize which industries “drive”
the estimates. ADH (pg. 2138) write, “one may worry that the results are being driven by
a handful of consumer goods industries in which China has assumed a commanding role.
Dropping apparel, footwear, and textiles...” Our table shows precisely which industries—
and in which time periods—are most important in driving the results.

Relative to the canonical setting, negative weights are less prominent and the variation
in the national growth rates (or, imports from China to other high-income countries) ex-
plains more of the variation in the sensitivity elasticities. Even so, the gy component only
explains about thirty percent (0.545%) of the variance of the Rotemberg weights.

5.3 Testing the plausibility of the identifying assumption

Test #1: Correlates of 1980 industry shares Table [p| shows the relationship between the
covariates (used by ADH) and the top industries reported in Table |5 First, relative to the
canonical setting and those controls, the controls explain less of the variation in shares.
Second, the share of employment in manufacturing is never significant. By controlling for
overall manufacturing share, the most “typical” manufacturing industries (i.e., those that
covary the most with overall manufacturing share), get less weight. Third, electronic com-
puters and computer equipment manufacturing are both concentrated in more educated
areas with less routine employment (note that Table 4 shows that the inclusion of controls

does not generate a statistically significant attenuation of coefficients).

Test #2: Overidentification tests Columns (7) and (8) of Table |4/ show the point estimates
from the Hausman et al.|(2012) HFUL estimator and the|Chao et al.|(2014) overidentification
tests. The results are similar to the canonical setting. Relative to the TSLS estimates using
the Bartik instrument in columns (5) and (6), the HFUL estimator produces substantively
larger point estimates. The key punchline of the overidentification tests (which can be ap-
proximately anticipated from looking at the dispersion in the f3; in Panels D and E of Table
is that the tests rejects the null that all instruments are exogenous under the assumption

of constant treatment effects.
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6 Empirical example III: simulated instruments

We now look at a simulated instrument (Currie and Gruber|(1996a) and |Currie and Gruber
(1996b)) application. These papers are interested in understanding the effects of Medicaid
expansions on various outcomes. We begin by discussing how to map the simulated in-
strument example to our setting. We then compute the sensitivity elasticities in the context

of Cohodes et al.|(2016), where the outcome is educational attainment.

6.1 A simulated instrument as a Bartik instrument

To make the discussion concrete, we begin by outlining the empirical approach in{Cohodes
et al. (2016), and discuss how we map their empirical specification into our notation.

To simplify their empirical strategy, they are interested in:

yi = Bx; + €

where y; is the educational attainment of people living in location /, and x; is the average
Medicaid eligibility of people living in location /. They are concerned that x; is endogenous
to the population’s other characteristics (e.g., a poor state will have a high share of its pop-
ulation eligible for Medicaid), and so want to instrument for eligibility using just variation
in the laws across states and time.

To write the simulated instrument in our notation, we first write the endogenous vari-
able, x;, as an inner product. Specifically, suppose that that there are K eligibility “types”
indexed by k, zj; is an indicator for whether eligibility type k is eligible in location /, and g«
is the share of people living in location I who are of eligibility type k. Then {zj }X , is a de-
scription of the legal environment in location / and we can write the endogenous variable
in inner product form: x; =} szgsz_ZI

The instrument is built by replacing the gjx—the location shares of eligibility types—
with gr—the national shares of the eligibility types. The simulated instrument is then

Si =Y zikgi
k

and measures the share of people in location / who would be eligible if each location had
the national distribution of eligibility types. The instrument only varies across locations
based on laws, and not on the population characteristics. Thus, the results in Section
imply that the instrument is the cross-state differences in eligibility for each eligibility type.

22Relative to the examples so far there are a couple differences. First, } ; zjx # 1, whereas previously the zj;
have summed to one. Second, } x gjx = 1, whereas previously the gj; have not summed to one.
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How do we determine the set of eligibility types? The laws for Medicaid eligibility
across states take into account numerous factors including family income and household
structure. We take a top-down approach to defining eligibility types. An eligibility type is
a unique combination of eligibility across all 51 states (and 28 years used in the estimates)
among the individuals in the 1986 CPS. Among the 48,036 children in the 1986 CPS, we
find 18,881 distinct eligibility types, which vastly exceeds the number of observations. This
explains why [Currie and Gruber| (1996b, pg. 446) describe a simulated instrument as “a
convenient parameterization of legislative differences.”

Cohodes et al.| (2016) use 11 birth cohorts (born from 1980 to 1990) and the average
eligibility of each cohort from age 0 to 17. They also separate whites and non-whites. So
the instrument is defined at the level of eligibility type x cohort x age x white. Hence,

there are 7,476,876 distinct instruments.

6.2 Rotemberg weights

Whereas in the canonical and ADH settings the top five instruments receive a quantitatively
large share of the weight, here, because they account for a small share of the instruments,
the top five instruments receive a small share of the weight. As a result, to understand what
variation matters in point estimates, we project the instruments into lower-dimensional
space along two dimensions. The first dimension is the state-year variation in laws that
underlies the instruments| The second dimension is the characteristics of households
affected by the different instruments@

Figure [1| summarizes the state-year eligibility changes that drive estimates, and hence
the state-years a researcher should be looking for potential confounds. Because we are in
changes, the first bar in the figure is for 1981. There are several things to note in the figure.
First, the empirical strategy leverages variation that is spread throughout time: there is
variation in eligibility that matters in the instrument throughout the 1980s and 1990s. Sec-
ond, there are a few large spikes. The notable spike is in 1990, which generated changes in
eligibility in all 51 states (and DC). This law change is the 1990 Federal budget which man-
dated coverage of children ages 6 through 18 in families with income at or below 100% of

23First, we sum the weights across birth-cohort x age x race, to have the weight for each eligibility type.
Second, for each eligibility type we code the state-years in which Medicaid eligibility changed. (There are 1,372
distinct state-years (out of a total of 51 x 27 = 1377 possible state-years) where some eligibility type has a
change in eligibility.) Third, so that the weights continue to sum to one, we divide the Rotemberg weight for
the eligibility type by the number of state-year policy changes experienced by that eligibility type. Finally, we
sum up the these normalized weights at the state-year level.

24First, we sum the weights across birth-cohort x age x race, to have the weight for each eligibility type.
Second, we compute the average of various characteristics of the households in the 1986 CPS that make up
each eligibility type. Finally, we sort eligibility types based on the characteristics and compute the sum of the
Rotemberg weights within bins defined by the characteristics.
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the federal poverty line (whether or not they were receiving AFDC assistance)F_SI Third, the
tigure highlights the six largest state-law changes in terms of sensitivity to misspecification
elasticity. These occur later in the sample. The bottom panels decompose the weights into
those applying to lower- and “higher”-income families (where the cutoff is $10,000 1986
dollars). This decomposition shows that later law changes affect higher income house-
holds. A researcher should be interested if there are other things affecting higher-income
families in Minnesota in 1997, Missouri in 1998, or New Jersey in 1999 as the estimates are
sensitive to any confounding changes in these state-years.

Figure 2| summarizes which types of households get more weight in estimates. Hence,
researchers should be concerned if there are other policies or trends in this period that
differentially affect households with the characteristics that get weight. Panel A shows
that the estimator places the most weight on families with 3 children. Panel B shows that
the estimator generally weights lower income households more, except that there is some
non-monotonicity: the poorest households are always eligible and so get no weight in esti-
mates, and there are some higher-income households where variation matters more. Panel
C shows the estimator places the most weight on variation that occurs at schooling ages
(e.g. 5-16), with less weight in early childhood. This analysis complements the analysis in
Cohodes et al. (2016, Table 5 and 6). The paper splits the sample based on age. It also com-
plements the paper’s controls for a natural confounder that would have a similar temporal
pattern: the paper shows the robustness of their main estimates to controlling for school
spending and the EITC.

7 Summary

The central contribution of this paper revolves around understanding identification and
the Bartik instrument. Our first set of formal results relate to identification in the sense
typically used by econometricians: we show that Bartik is formally equivalent to a GMM
estimator with the industry shares as instruments. Hence, we argue that the identifying
assumption is best stated in terms of the industry shares—the national growth rates are
simply a weight matrix. Our second set of formal results relate to identification in the sense
often used by practitioners: we show how to compute which of the many instruments
“drive” the estimates. Building on|Andrews, Gentzkow, and Shapiro| (2017) we show that
these weights can be interpreted as sensitivity-to-misspecification elasticities and so high-
light which identifying assumptions are most worth discussing and probing.

We then pursued a number of applications to illustrate what can be learned from our

25Gee https://kaiserfamilyfoundation.files.wordpress.com/2008/04/
5-02-13-medicaid-timeline.pdf for a description of Medicaid law changes. Last accessed January 26,
2018.
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results. While none of our applications produces a smoking gun that the particular use
of a Bartik instrument is wrong, our results do clarify the set of reasonable concerns a
consumer of the Bartik literature should have. We hope that researchers will use the results
and tools in this paper to be clearer about how identification works in their papers: both in
the econometric sense of stating the identifying assumption, and in the practical sense of

showing what variation drives estimates.
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Table 1: OLS and IV estimates: canonical setting

OLS First Stage Second Stage Second Stage
(Bartik) (Bartik) (HFUL)

AWage A Wage AEmp AEmp A Wage A Wage A Wage A Wage
(1) (2) 3) 4) ®) (6) ) (8)

A Emp 0.71 0.63 1.75 1.28 2.85 2.63

0.06)  (0.07) (034)  (0.15)  (0.12)  (0.14)
Bartik (1980 shares) 0.90 0.94

(0.15)  (0.12)

Year and CZone FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes
1980 Population Weighted Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,166 2,166 2,166 2,166 2,166 2,166 2,166 2,166
R-squared 0.91 0.94 0.40 0.59 0.80 0.91
Coefficient Equal p-value 0.09 0.80 0.14
J-Statistic 697.16 861.44
P-value of J-Statistic 0.00 0.00

Notes: This table reports OLS and TSLS estimates of the inverse elasticity of labor supply. The regression are at the CZ level
and the instruments are 3-digit industry-time periods (1980-1990, 1990-2000, and 2000-2010). The odd columns do not contain
controls, while the even-numbered columns contain controls. Column (1) and (2) show the OLS estimates. Columns (3) and (4)
show the first stage using the Bartik instruments. Columns (5) and (6) show the TSLS estimates using the Bartik instruments.
Column (7) and (8) report estimates using the HFUL estimator of Hausman et al.|(2012). The J-statistic comes from [Chao et al.
(2014). The R? is partial after absorbing location and time fixed effects. The p-value for the equality of coefficients compares the
adjacent columns with and without controls. The controls are the 1980 characteristics (interacted with time) displayed in Table
Results are weighted by 1980 population. Standard errors are in parentheses.



Table 2: Summary of Rotemberg weights: canonical setting

Panel A: Negative and positive weights

Sum Mean Share
Negative -0.874  -0.003 0.412
Positive 1.874 0.005 0.588
Panel B: Correlations

A Sk Br Var(zx)

Qy 1
Sk 0.022 1
Bx -0.002  0.043 1
Var(z;) 0.418 -0.100 -0.012 1

Panel C: Variation across years in «j
Sum  Mean

1980 0.457  0.002

1990 0.182  0.001

2000 0.360  0.002

Panel D: Top five Rotemberg weight industries

&y 9k By B 95% CI Ind Share

QOil + Gas Extraction, 2000  0.156 0.080 1.169 (0.75, 2.20) 1.590
Other, 1990 0.098 -0.033 0.752 (0.40, 1.55) 4.808
Motor Vehicles, 2000 0.093  -0.030 1.351 (1.20, 1.55) 4,973
Guided Missiles, 1980 0.081 0.100 0.174 (-0.30, 0.55) 1.067
Motor Vehicles, 1990 0.077  0.031 1.607 (1.35,2.20) 4973

Panel E: Summary of f;
Mean Median 25th perc. 75th perc. Share Negative

Bx 1.637  0.775 2.181 -0.609 0.349

Notes: This table reports statistics about the Rotemberg weights. Panel A reports the share
and sum of negative weights. Panel B reports correlations between the weights, as well
as the national component of growth (gx), the just-identified coefficient estimates, and the
variation in the industry shares across locations (Var(zy)). Panel C reports variation in the
weights across years. Panel D reports the top five industries according to the Rotemberg
weights. The g is the national industry growth rate, B is the coefficient from the just-
identified regression, the 95% confidence interval is the weak instrument robust confidence
interval using the method from (Chernozhukhov and Hansen| (2008) over a range from -10
to 10, and Ind Share is the industry share (multiplied by 100 for legibility). Panel E reports
statistics about the dispersion in the B;. The “Other” industry is the “N/A" code in the
IND1990 classification system.
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Table 3: Relationship between industry shares and characteristics: canonical setting

Other Oil + gas Extraction Motor Vehicles Guided Missiles Bartik (1980-1990)

Male 98.73 40.94 -25.86 36.14 -0.64
(14.91) (8.39) (7.61) (18.38) (0.05)
White -34.41 1.07 -23.61 14.85 -0.08
(7.66) (3.09) (28.37) (14.84) (0.06)
Native Born 21.25 10.96 -3.92 -42.83 -0.19
(6.95) (2.94) (5.38) (41.64) (0.04)
12th Grade Only 26.75 -32.51 64.36 -68.41 0.35
(8.88) (7.53) (17.72) (27.39) (0.06)
Some College 2412 -9.51 23.24 28.93 0.63
(7.12) (4.63) (22.71) (25.74) (0.07)
Veteran -142.65 -10.57 19.09 86.93 0.55
(22.65) (7.05) (41.04) (43.69) (0.12)
# of Children -57.66 -2.75 45.35 11.33 0.27
(13.46) (4.62) (23.48) (21.27) (0.06)
1980 Population Weighted  Yes Yes Yes Yes Yes
N 722 722 722 722 722
R? 0.43 0.22 0.11 0.25 0.58
F 8.16 5.40 8.50 2.93 71.00
p 0.00 0.00 0.00 0.00 0.00

Notes: Each column reports results of a single regression of a 1980 industry share on 1980 characteristics. Each characteristic is
standardized to have unit standard deviation. The final column is the Bartik instrument constructed using the growth rates from
1980 to 1990. Results are weighted by 1980 population. Standard errors in parentheses. The “Other” industry is the “N/A" code
in the IND1990 classification system.
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Table 4: OLS and IV estimates: |Autor, Dorn, and Hanson|(2013)

OLS First Stage Second Stage  Second Stage
(Bartik) (Bartik) (HFUL)

AMfg AMfg ChinatoUS ChinatoUS AMfg AMfg AMfg AMifg
1) (2) ) (4) ©) (6) ) ®)

China to US -0.38 -0.08 -0.68 -0.62 -1.14 -1.12

(0.06) (0.03) (0.10) (0.13) (0.05) (0.04)
China to Other 0.49 0.39

(0.05) (0.04)

Year and Census Division FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes
Observations 1,444 1,444 1,444 1,444 1,444 1,444 1,444 1,444
R-squared 0.25 0.55 0.46 0.55 0.18 0.33
Coefficient Equal p-value 0.00 0.00 0.26
J-Statistic 967.82  969.34
P-value of J-Statistic 0.00 0.00

Notes: This table reports OLS and TSLS estimates of the inverse elasticity of labor supply. The regression are at the CZ level.
The odd-numbered columns show estimates without controls and the even-numbered columns show estimates with controls
Column (1) and (2) show the OLS estimates. Columns (3) and (4) show the first stage using the Bartik instrument. Columns (5)
and (6) show the TSLS estimates using the Bartik instrument. Column (7) and (8) report estimates using the HFUL estimator
of Hausman et al.|(2012). The J-statistic comes from (Chao et al.|(2014). The R? is partial after absorbing location and time fixed
effects. The p-value for the equality of coefficients compares the adjacent columns with and without controls. The controls are
the contemporaneous characteristics displayed in Table [6] Results are weighted by start of period population. Standard errors
are in parentheses.



Table 5: Summary of Rotemberg weights: |Autor, Dorn, and Hanson/(2013)

Panel A: Negative and positive weights

Sum  Mean Share
Negative -0.116  -0.000 0.381
Positive 1.116 0.002 0.619
Panel B: Correlations

a Sk B Var(zx)

K 1
Sk 0.545 1
Bx 0.002  0.007 1
Var(zy) -0.023  -0.073 0.013 1
Panel C: Variation across years in «;

Sum  Mean
1990 0.239  0.001
2000 0.761  0.002
Panel D: Top five Rotemberg weight industries

QX Sk Bx B 95% CI Ind Share

Electronic Computers, 2000 0.140 189.12 -0.620 (-1.59, -0.02) 1.091
Games and Toys, 2000 0.098  320.64 -0.179 (-4.00, 3.00) 0.270
Household Audio and Video, 2000 0.055  218.22 -0.147 (-0.68, 0.13) 0.378
Telephone Apparatus, 2000 0.051  94.58 -0.308 (-4.00, 3.00) 0.920
Computer Equipment, 2000 0.047  41.68 -0.232 (-4.00, 3.00) 0.519
Panel E: Summary of f;

Mean Median 25thperc. 75thperc. Share Negative
B -0909 -0.514 0.734 -1.687 0.633

Notes: This table reports statistics about the Rotemberg weights. Panel A reports the share
and sum of negative Rotemberg weights. Panel B reports correlations between the weights,
as well as the national component of growth (gx), the just-identified coefficient estimates,
and the variation in the industry shares across locations (Var(zx)). Panel C reports variation
in the weights across years. Panel D reports the top five industries according to the Rotem-
berg weights. The g is the national industry growth rate, j is the coefficient from the
just-identified regression, the 95% confidence interval is the weak instrument robust con-
fidence interval using the method from |Chernozhukhov and Hansen| (2008) over a range
from -4 to 3, and Ind Share is the industry share (multiplied by 100 for legibility). Panel E
reports statistics about the dispersion in the f;.

34



Table 6: Relationship between industry shares and characteristics: /Autor, Dorn, and Hanson|(2013)

1%

Electronic = Computer Household Audio Telephone  Games
Computers Equipment and Video Apparatus and Toys
Share Empl in Manufacturing 0.21 0.21 0.08 -0.07 0.01
(0.18) (0.15) (0.08) (0.06) (0.03)
Share College Educated 0.20 0.22 0.01 -0.07 -0.08
(0.11) (0.10) (0.04) (0.06) (0.03)
Share Foreign Born -0.01 -0.01 -0.02 -0.08 0.01
(0.04) (0.04) (0.01) (0.03) (0.01)
Share Empl of Women -0.04 -0.02 -0.08 -0.02 0.05
(0.12) (0.12) (0.05) (0.07) (0.03)
Share Empl in Routine -0.37 -0.36 0.06 -0.01 0.04
(0.14) (0.12) (0.05) (0.07) (0.03)
Avg Offshorability 0.33 0.29 0.00 0.23 0.02
(0.10) (0.08) (0.05) (0.04) (0.02)
N 1,444 1,444 1,444 1,444 1,444
R? 0.08 0.08 0.01 0.05 0.02
F 3.36 3.57 0.99 5.80 3.53
P 0.01 0.01 0.44 0.00 0.01

Notes: Each column reports a separate regression. The regressions are two pooled cross-sections, where one cross section is 1980
shares on 1990 characteristics, and one is 1990 shares on 2000 characteristics. Each characteristic is standardized to have unit
standard deviation. Results are weighted by the population in the period the characteristics are measured. Standard errors in
parentheses.



Figure 1: Rotemberg weights by state-year policy changes and income
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Notes: These figures report the state-year policy changes to which the estimates are most
sensitive to misspecification. The figure is constructed by weighting the state-year Medi-
caid eligibility changes that go into the definition of eligibility types. The state-year Medi-
caid eligibility changes are weighted by the number of such changes experienced by each
eligibility type so that the bars in Panel (a) sum to one (if an eligibility type experiences
more state-year eligibility changes, then each state-year eligibility change it experiences re-
ceives less weight in the figure). Because the figures represent policy changes the first year
is 1981. Within each year, each of the rectangles indicates a single state. In Panel (a), the
bars sum to one. Panels (b) and (c) split the eligibilility types by their mean income and so
the combination of Panels (b) and (c) sum to Panel (a).



Figure 2: Rotemberg weights by charactestics
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Notes: These figures report the characteristics of the eligibility types to which the estimates
are most sensitive to misspecification. Each of the three panels reports computing the av-
erage characteristics of each eligibility type, sorting the eligibility types according to the
characteristic, and then reporting bin sums of the Rotemberg weights. Thus, in each figure
the weights sum to one.
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A Instruments encompassed by our structure

We now discuss three other instruments that our encompassed by our framework. This list
cannot be exhaustive, but illustrates the widespread applicability of our results.

A1 Immigrant enclave instrument

Altonji and Card|(1991) are interested in the effects of immigration on native wages, but are
concerned that the correlation between immigrant inflows and local economic conditions
may confound their estimates. To fit our notation, let x; denote the number of newly arriv-
ing immigrants in location [ in a given interval. Let k denote one of K countries of origin
and let z;; denote the share of people arriving from origin country k living in location /.
Hence, Zlel zjr = 1,Vk. In contrast, in the industry-location setting it is the sum over k that
sums to one. Let g; denote the number of people arriving from origin k. The instrument
comes from lagging the z;.. Once we lag z, say zjx in some initial period, then let ij; be the
number of immigrants from origin country k arriving in destination /. Then define g = Z%
to be the hypothetical flow of immigrants from k that would have to have occurred to have
generated the extent of flows; this allows us to write x; = ) zjx0gik- Then rather than us-
ing the gj; that makes this an identity, the researcher uses gy = Y ijx = Y §ikZiko- (This is
analogous to in the industry-location setting weighting the gj, by the zj; to compute the gy,
rather than equal-weighting across locations).

A.2 Bank lending relationships

Greenstone, Mas, and Nguyen|(2015) are interested in the effects of changes in bank lending
on economic activity during the Great Recession. They observe county-level outcomes and
loan origination by bank to each county. In our notation, let x; be credit growth in a county;,
let zj; be the share of loan origination in county / from bank k in some initial period, and
let gjx be the growth in loan origination in county / by bank k over some period. Then
X1 = Yk Zik§lk-

The most straightforward Bartik estimator would compute §_;x = 5 Y21 Sk How-
ever, Greenstone, Mas, and Nguyen| (2015) are concerned that there is spatial correlation in
the economic shocks and so leave-one-out is not enough to remove mechanical correlations.
One approach would be to instead leave out regions. Instead, they pursue a generalization
of this approach and regress:

Sik = &1+ 8k + €1k (A1)

where the g; and g are indicator variables for location and bank. Then the §; captures the
change in bank lending that is common to a county, while g, captures the change in bank
lending that is common to a bank. To construct their instrument, they use B; = Y zjx$x,
where the g, comes from equation (A1).
A.3 Market size and demography

Acemoglu and Linn|(2004) are interested in the effects of market size on innovation. Natu-
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rally, the concern is that the size of the market reflects both supply and demand factors: a
good drug will increase consumption of that drug. To construct an instrument, their basic
observation is that there is an age structure to demand for different types of pharmaceuti-
cals and there are large shifts in the age structure in the U.S. in any sample. They use this
observation to construct an instrument for the change in market size.

In our notation, zj is the share of spending on drug category I that comes from age
group k. Hence, } ; zjx = 1. Then gy is the growth in spending of age group k on drug
category I. Hence, x; = Y, zjxgik- To construct an instrument, they use the fact that there
are large shifts in the age distribution. Hence, they estimate §; as the increase in the number
of people in age group k, and sometimes as the total income (people times incomes) in age
group k. This instrument is similar to the “China shock” setting where for both conceptual
and data limitation issues g is fundamentally unobserved and so the researcher constructs
8k using other information.

B Omitted proofs

Proposition

Proof. Let a bar over a vector denote the mean of the vector times the all ones vector of the
appropriate dimension

. XY Z-2)(G-G)G-C)(Z-2)Y"
Bomm = XT(Z—-7)(G-G)(G—G)(Z—Z)XL
X' (B—B)(B-B)Y

= BBai’tikl

where B— B = (Z—Z2)(G — G) because (Z—2)G=2ZG—-2G=B—B,(Z—72)G=0(an

L x 1 vector of zeros), and X' (B — B) is a scalar and so cancels. O
Proposition
Proof. The proof is algebra:
N &(W)Zi X+ (W) ZL Y
Wl Wp = VB (g = JHDEL )
&(W)Z X YK & (W)ziX
K s Z Ck Z/yj_
Y a (W) By = =51 (W) - (A2)
k=1 Yot (W )Z X
L
_ cwyziyr (A3)
C(W)yz'x+
O

26Tn the case of Z, which is a matrix, these are the column means (i.e., the mean share of industry k across
locations).
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Proof of Lemma
Proof. Note that

o XYZWeZI X+
W) = Sizwzxs Y
_ (S0 35 Zit) Wi (S0 zike i) (A5)

(Zl,t xf{th) W (Zl,t thxf;)

Since our data isi.i.d. and the variance of xlit Zj; is bounded, the law of large numbers holds
as L — oo. O

Proof of Proposition

Proof. (i) Notethat Y~ | &;(W)pB; = jis the standard GMM estimator using weight ma-
trix W. Since the standard GMM estimator is a consistent estimator for any positive
semi-definite matrix given Assumptionand k=0, YK ax(W)Bir = Bo.

Next, note that
_ X WE [thYlﬂ
T W
_ Zyxl WklE[Zlthlﬂ
k szL WZ,ZXL

szL WkZZXi,k E [ZlthI%]
ZZXLWZ/ZXL szL,k

Finally, since the standard necessary assumptions for asymptotic normality of the
GMM estimator are satisfied (e.g., [Hall (2005, Theorem 3.2, pg. 71)), B is normally
distributed with mean zero. Hence, E[f] = 0.

(ii) First, note that

s YoiZiVi Yz (L2 Vi + )
Pe= o et POt Yt 2 X
Y1t ZIke X 1t ZIkt X1t
8 1ol ZkeVie | Y Zike€l
k—Po=1L

Yo ZikeXie  Xpr ZikeXie

The second term goes to zero because E[zj€;] = 0. The first term goes to zero as
L — oo. Finally, since our summand terms have bounded variance, the law of large
numbers holds. A similar argument holds for the broader summand.

The asymptotic bias of f; follows from Proposition 3 of AGS. A sketch of the proof

40



for this case follows:

5 V
\/Z(ﬁk . ,BO) _ Zl,t Zikt Vit + \/ZZl’t Z1kt€1t

Y1t Zike X1 Y1t Zike Xt
A Y1t Zike Vit L1t ZIkt€lt
VL(Bi—po) = £ = VIS,
Y1t Zike Xt Y1t Zike Xt
. v, Sov
Since % converges to ¢%-, this implies that V'L(Bx — Bo) converges in distri-

ZV k

bution to a normally d1str1buted random variable f; with E[B;] = % Finally,
ZXL K

since &;(W) converges in probability to a;(W), by a similar argument this implies
that v/L(B — Bo) converges in distribution to a normally distributed random variable

p with E[B] = Yy ax (W )ZZ” = Lr ax(W)E[By].

O
Proposition
Proof. Consider the difference in the bias for the two estimators:
E [B(W) - B(W E“k’ E[Br] — ) aw(W_)E[Br] (A6)
k' Fk
= ac(W)E[Bi] + ) (awr (W) — s (W_) ) E[Br]. (A7)
Kk
Now, consider ay (W) — ap(W_g). If W = GG/, then C(W) = GB'X* and ay (W) =
1 Zg Xt 1 Z Xt
% If W = GG, then apy (W_y) = % or apy (W_g) = ap(W)/(1 -
)) This gives:
~, A ~, A B ~ ak/(W) ~
E [BW) — BW_p)] = acs(W)E[Bi] + Y (aw(W) — ————~ | E[Br] (A8)
K £k 1- ‘Xk(w)
- 5 — (W) 5
= ae(WE[B] — 7= - ) kgk (aw (W) E[Bp]. (A9)
O
C Equivalence with K industries, T locations, and controls
The two stage least squares system of equations is:
Yir = Do+ xii + €y (A1)
X1t = Dyt + By + it (A2)

27Note that with 2SLS, these results would not hold, as the estimates for the first stage parameters after
dropping an industry would be different.
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where Dy, isa 1 x L vector of controls. Typically in a panel context, D;; will include location
and year fixed effects, while in the cross-sectional regression, this will simply include a
constant. It may also include a variety of other variables. Let n = L x T, the number of
location-years. For simplicity, let Y denote the n x 1 stacked vector of y;;, D denote the
n x L stacked vector of Dj; controls, X denote the n x 1 stacked vector of x;;, G the stacked
K x T vector of the gj;, and B denote the stacked vector of Bj;. Denote Pp = D(D'D)~!D’
as the n X n projection matrix of D, and Mp = I, — Pp as the annhilator matrix. Then,
because this is an exactly identified instrumental variable our estimator is

(MpB)'Y

BBartik = (MpB)X' (A3)

We now consider the alternative approach of using industry shares as instruments. The
two-equation system is:

Vit = Dy + xpp + € (A4)
Xit = DT+ Zyye + i, (A5)

where Zj; is a 1 x K row vector of industry shares, and ; is a K x 1 vector, and, reflecting
the lessons of previous section, the t subscript allows the effect of a given industry share to
be time-varying. In matrix notation, we write

Y =Da+ XB+e (A6)
X=Dt+Z7ZT+71, (A7)

where I is a stacked 1 x (T x K) row vector such that
T= [y 1], (A8)
and Z is a stacked 1 x (T x K) matrix such that
2=[Z0l - ZOl-7], (A9)

where 1;_y is an n x K indicator matrix equal to one if the nth observation is in period #/,
and zero otherwise. ® indicates the Hadamard product, or pointwise product of the two
matrices. Let Z+ = MpZ and P,. = Z+(Z'Z+)~'Z"". Then, the TSLS estimator is

X/PzLY

B = _ Al
Prsts X'P,. X (A10)
Alternatively, using the Z as instruments, the GMM estimator is:
s X'MpZQZ'MpY
Bomm = S > (A11)

X'MpZQZ'MpX’
where Qisa (K x T) x (K x T) weight matrix.

PROPOSITION C.1. If Q) = GG/, then Bcam = Baartik-
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Proof. Start with the Bartik estimator,

(MpB)'Y

.BBartik = 7(MDB)’X (A12)
B'MpY
- B’MEX e
G'Z'MpY
" G'ZMpX (A1)
_ X'MpZGG'Z'MpY (A15)
- X'MpZGG'Z’MpX’

where the second equality is algebra, the third equality follows from the definition of B,
and the fourth equality follows because X' MpZG is a scalar. By inspection, if Q = GG/,

then Bcam = Bpartik- O

D When the first-stage coefficient is one

PROPOSITION D.1. Let G; be the K x 1 vector of industry-location growth rates in location |
and let Z; be the 1 x K row vector of industry shares in location 1. Suppose that G; and Z; are
independent. Then E[G,|Z;| = E[G] and the expectation of the first stage coefficient from using
the Bartik instrument is 1. (For notational simplicity we suppress notation that residualizes for
controls.)

Proof. Note that we can write G; = G + G; where G is the vector of national growth rates
and G; is a K x 1 vector made up of ; (we suppress the location term for simplicity).
Similarly, B; = Z;G. Hence, the population expression is:

Var(Xl) = V(ZT’(ZIGI) = Var(ZlG + ZZGZ) (A1)
= Var(Z,G) +2Cov(Z,G, 2,G) + Var(Z,G), (A2)

The probability limit of the first-stage coefficient is then:

COU(B[,X[) 14 COU(ZZG,ZZG)

Var(B)) Var(Z,G) (A3)

plimp ey =

Hence, whether the first stage coefficient is 1 depends on the properties of Cov(Z;G, Z;G)).
We now show that a sufficient condition for Cov(Z;G, Z;G;) = 0 is that E[G;|Z;] = E[G].

Cov(2:G, Z,G;) = E[Z:GZ,;Gy] — E|Z,G]E[Z,G)] (A4)
= IE[ZZGZZ(GZ G)] — E[Z,G]E[Z(G; — G)] (A5)
= E[Z,G(G ) 2)) — E[Z|G]E[Z(G; — G)] (A6)
= E[ZE[G(G, — G)'|Z1]Z)] — E[ZE[G|Z]|E[ZE[(G, — G)]|Z)] (A7)
= E[Z/E[G(G; — G)']Z]] — E[Z|E[G]E[Z]E[(G; - G)]] (A8)
=0 (A9)
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The first line is the definition of covariance, the second line is the definition of G;, the third
line takes the transpose of a scalar, the fourth line is the law of iterated expectations, the
fifth line is the assumption that G and Z are independent, and the sixth follows from the
fact that E[G; — G| = 0 and Cov(G, G, — G) = 0. O

E An economic model

We consider L independent locations indexed by [. Labor is homogeneous so that the wage
in location / in period t is wj;. The labor supply curve in location [ in period t is:

In Nj; = 03 + 6 Inwy,. (A1)

Here, Nj; is the quantity of labor supplied and ¢}, is a location-period-specific shifter of the
level of labor supply. The local labor supply elasticity, 6, is the parameter of interest and is
common across industries and locations.

The demand curve for industry k in location I at time ¢ is given by

In Nl[k)t = letxlkt — 4)11’1 wit. (AZ)

Here, NP, is the quantity of labor demanded, Tj is a fixed factor that generates persis-
tent differences in industry composition, aj; is the time-varying industry-location level
of labor demand, and ¢ is the common elasticity of local labor demand. Letting a;; =
In (Y exp{ Tixax: } ) be the aggregated location-specific shifter of labor demand, the location-
level demand curve is:

In Nl? =y — Plnwy. (A3)

The equilibrium condition in market / in period ¢ is a labor market clearing condition:
N = =Y let Nlt We let ¥; = In x; and dx; be the per-period change in x;.

To construct the infeasible Bartik instrument, write the change in log employment in
an industry-location, and then label the components of this decomposition in the same
notation as the previous section

ANy = day — (chpdlxu - gf()bdalt) + Tydogge — dogg .

Skt Sikt
&1t

exp(Titko)
Define zp = Yo exp(Tyrapg)

instrument that isolates the industry component of the innovations to demand shocks is
Bir = Yk Zikod g

28Combine equation (Al) and (A3) to have the following equilibrium wage equation: Inwy,; = 75— + 5
07;. Then substitute in to equation (A2) for the equilibrium wage, take differences, and add and subtract a

to be the industry shares in period 0| Then the infeasible Bartik

Xy —

9+¢
dlxkt
29Note that NR _ exp(Tumme—¢pInwy) _ exp(Tutws) _ exp(Tixixt) exp(Tii)
NP exp(a;—¢Inwy) exp(a) exp(In(yy exp{Tiame})) — Ekexp{lelek,}
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In differences and with only two time periods, the equation we are interested in esti-
mating is:

(AW — dy) = (Tre1 — ) + B(ANys1 — dNy) + (€041 — €pr) (A4)

where we have differenced out a location fixed effect, €; is an additive error term and the
goal is to recover the inverse labor supply elasticity p = §. Traditional OLS estimation of
equation (A4) is subject to concerns of endogeneity and hence the Bartik instrument may
provide a way to estimate B consistently.

E.1 The model’s empirical analogue

It is instructive to compare the population expressions for BOLS and B Bartik:

5 1 (9+¢)2 Var(dajpq — dogy) — (9+¢)2 Var(doy 1 —doy) + ¢+9 §Cov(daysy — doyy, doyeq — doyy)
OLS — §;
0 (9+¢) 2 Var(dags 1 — dayy) +9 (9+¢) > Var(doyeq — doy) + (9+¢) 2 Cov(daysq — dayy, doyg oy — doyg)
demand supply covariance

1 Covldays1 — days, Yo Ziko (dage 1 — dage)] — Covldoys 1 — doy, Y ziko (A1 — dage)]
0 Covldays 1 — day, Y Ziko (daks 41 — dage )] + Cov[doye 1 — doyy, Y ziko (dake 11 — deky)]

,BBartik =

We see that for BOLS to be consistent, an important sufficient condition is that there are no
changes in supply shocks, or Var(doy;11 — doy;) = 0. In contrast, for B Bartik tO be consistent,
industry composition must not be related to innovations in supply shocks, or Cov[doy; 1 —
Aoy, Y ziko(dags 1 — dagy)] = 0. Bartik is invalid if the innovations in the supply shocks
are predicted by industry composition. For example, Bartik would not be valid if doy; 1 —
doy = doy g — Aoy + Yp ziko(doye 41 — doys). The relevance condition is that Cov[day;, 1 —
dogs, Yp ziko(dags1 — dagy)] # 0. A necessary condition for instrument relevance is that
there is variation in the innovations to demand shocks between at least two industries.

The condition for Bartik to be consistent is weaker than for OLS, since the variance of the
innovations to the supply shocks enters into the location-level component of growth (g;;)
and Bartik removes these (but not their correlation with demand shocks). The observation
that the Bartik estimator does not include the variance of the innovations to the supply
shocks helps explain why Bartik tends to produce results that “look like” a demand shock.

In this model, any given industry share would be a valid instrument. The exclusion re-
striction is that the industry share does not predict innovations to supply shocks: Cov(doy;41 —
doys, ziwg) = 0. The relevance condition is that Cov[day; 1 — day, zjxo] # 0, which says that
the industry share is correlated with the innovations in the demand shocks.

F Using growth rates to test overidentification restrictions
Beaudry, Green, and Sand| (2012, pg. 1084) test for overidentification of Bartik instruments

by looking at whether different choices of weights lead to different parameter estimates.
One point they emphasize is that their two choices of weights lead to instruments that
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are only weakly correlatedlﬂ Their assertion is that if two different choices of weights
lead to instruments that are weakly correlated and these instruments generate similar point
estimates, then this implies that the instrument is valid, in the sense that under the null of
constant treatment effects neither instrument is correlated with the error term.

We now show that this logic is incomplete because it tests whether different ways of
weighting the instruments give rise to different point estimates, rather than whether differ-
ent instruments give rise to different point estimates. So it is possible to pass the overiden-
tification test proposed by |Beaudry, Green, and Sand| (2012), while failing an overidentifi-
cation test in terms of industry shares. (Of course, the converse is not true.)

In particular, we consider a researcher choosing two sets of weights (we denote those
weights by G = C(GG')). We show that given one set of weights, denoted by G;, and
all but two entries in a second vector G, it is possible to generate two instruments that
have a covariance of 0 and lead to identical parameter estimates and thus would pass this
proposed overidentification test. Importantly, however, it would still be possible to fail
the overidentification tests that are in terms of whether different industry shares generate
similar parameter estimates.

PROPOSITION F.1. Suppose that we are given two sets of weights, Gy and Gy, with the last two
entries of the second vector unknown (Go,x—1 and Gy x), and a set of industry shares Z. Use these
two sets of weights to construct two Bartik instruments: By = ZGy and By = ZG,. Assume further

that all the entries in Gy Var(Z) are non-zero and that all the entries in (((G{Z'Y (G} Z'X) _1X’)/ -
Y')Z) are non-zero. Then it is always possible to find Gy x—1 and Gy g such that:

1. The two Bartik instruments are uncorrelated.
2. The two Bartik instruments lead to identical parameter estimates.

The proof shows that the desiderata of the proposition implies two linear equations in
two unknowns.

Proof. The first constraint is that the covariance between the two Bartik instruments is
Zero:

Cov(By, B2) = E[B1B,] — E[B1]E[By)] (A1)
=E[(ZG1)(ZGy)] — E[ZG|E[ZG,] (A2)
= E[(ZG1)'(Z2G2)] — E[ZG4]E[ZG,] (A3)
— G/E[Z'Z]G, — G\E[Z'|E[Z]G» (A4)
= GI[E[Z'Z] — E[Z']E[Z]] G, (A5)
= G} Var(Z)G,, (A6)

where this exploits the fact that By ; is a scalar so we can take the transpose, and G; and G,
are non-stochastic so that we can pull them out of the expectation. Let T = G|Xz, where

30 “We believe that the fact that the two IV approaches, which focus on very different data variation, give
very similar results provides considerable support [for the instrument].”
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Yz = Var(Z). So we can write this first constraint as:

TG, = 0. (A7)
The second constraint is that:
B = P> (A8)
where for j € {1,2} B; = G]’.Z’Y(G]’.Z’X)_l. Equating:
P1=pa (A9)
GiZ'Y(GiZ'X)™ ' = GyZ'Y(Ghz'X) ™! (A10)
G1Z'Y(G1Z'X)"1X'2Gy = ZY'Go. (A11)

Note that G} Z'Y (G, Z'X)~1X" = Yj, or the predicted value of Y using the instrument built
from Gy. So we have:

(Y] =Y"Z)G, = 0. (A12)

Let S = ((Y{ — Y')Z), where we pick S because this expression is the basis of the Sargan
test. Then we have that the second constraint is:

SG, =0 (A13)

Note that T and S are both 1 x K. By assumption, the last two entries in both S and T

are nonzero. We now construct expressions for these two entries. To make TG, = 0, we
K _ _ _Z;If;f TiGox _Z;If;f T;Gox+Tk-1Go k-1 o

need ), TxGoy = 0= Gox = = . To make SG, = 0 we

Tk Tk
. Ya  SkGox+SkGa
Sk-1

have Gy x_1 = . This gives us two equations in two unknowns.

O]

G The Rotemberg weights with leave-one-out

The formulas we present in Section [2|apply to the case where the weights are common to
all locations (i.e., we compute the national industry growth rates using a weighted average
that included all locations). Here we present the formulas for the aj that obtain when we
use leave-one-out growth rates to construct the Bartik estimator. We note a few things. First,
the numerical equivalence between GMM and Bartik obtains in the limit as the number of
locations goes to infinity when we use a leave-one-out estimator. Second, when we use a
leave-one-out estimator, the weights sum to one in the limit as the number of locations goes
to infinity. (For notational simplicity we suppress notation that residualizes for controls.)
First, we derive how the leave-location-/-out estimator of G, which we denote by G_;,
relates to the overall average, G and the location-specific G; (L is the number of locations):

L—-1 1 L 1
G—TG,1+ZG1:>G,Z— L—lG_L—lGl'
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Second, we derive a version of Proposition [2.1| with the leave-one-out estimator of G.
Note that the instrument constructed using leave-I/-out growth rates in location l is: B; _; =
Z; ({£G — 11 G,) where G and G; are K x 1 vectors and Z; is a 1 x K vector (and Z will
be the L x K stacked matrix). Then:

L 1
Bl,—l—Zl<L_1GL_L_1Gl> (A1)
B =L 7z6--Y 76 (A2)
-1 = 7726 — 772G
L 1
B1=1—B—- 1% (A3)

where the observation is that Z;G; = X;. Then the stacked version is:

L 1
Ba=r3B-1 3%

where B is the vector of B; and B_; is the vector of B; _;.

Then:
5 BLZY Ad
L 1 !
(;B-9X) Y (A5)
- /
(5B - X)) X
/
_ (#5(26) - 4X)Y
(r21(26) — 5X) X
As before:
Z,’CY
— . A7
Then one can show:
L 1 -1
o = sk X — 1 X'YB, (AS)

Lk X - XX

By inspection, ), ax # 1. However, as L — oo the sum converges to 1 as the leave-one-out
terms drop out.
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Table Al: Replication of ADH Table 3, Column (6) Results

ADH Replicated Fixed Shares Fixed All
A imports from China to US -0.60 -0.62 -0.16 -0.60
(0.10) (0.13) (1.41) (0.78)
Share Empl in Manufacturing -0.04 -0.04 -0.09
(0.01) (0.02) (0.16)
Share College Educated 0.01 0.01 0.01
(0.01) (0.01) (0.03)
Share Foreign Born 0.03 0.03 0.02
(0.01) (0.01) (0.03)
Share Empl of Women -0.01 -0.01 -0.01
(0.02) (0.02) (0.03)
Share Empl in Routine -0.24 -0.25 -0.20
(0.06) (0.06) (0.13)
Avg Offshorability -0.06 -0.05 -0.23
(0.24) (0.23) (0.56)
1990 x Share Empl in Manufacturing (1980) -0.03
(0.06)
2000 x Share Empl in Manufacturing (1980) -0.06
(0.12)
1990 x Share College Educated (1980) 0.01
(0.02)
2000 x Share College Educated (1980) 0.02
(0.03)
1990 x Share Foreign Born (1980) -0.00
(0.02)
2000 x Share Foreign Born (1980) 0.07
(0.03)
1990 x Share Empl of Women (1980) 0.04
(0.04)
2000 x Share Empl of Women (1980) 0.04
(0.04)
1990 x Share Empl in Routine (1980) -0.14
(0.08)
2000 x Share Empl in Routine (1980) -0.27
(0.15)
1990 x Avg Offshorability (1980) -1.05
(0.44)
2000 x Avg Offshorability (1980) 0.11
(0.47)
Year and Census Division FE Yes Yes Yes Yes
N 1,444 1,444 1,444 1,444

Notes: This table reports our replication of ADH, as well as the results of small variations
on the specification. Column (1) of Table reproduces ADH Table 3 column (6), and
column (2) reports our replication. Column (3) fixes industry shares to the 1980 values, but
allows the controls to vary over time as in column (2). Like column (3), column (4) fixes
the industry shares to their 1980 values, but also fixes the controls to their 1980 values and

interacts these controls with time.
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