
NBER WORKING PAPER SERIES

COMPUTERIZING INDUSTRIES AND ROUTINIZING JOBS:
EXPLAINING TRENDS IN AGGREGATE PRODUCTIVITY

Sangmin Aum
Sang Yoon (Tim) Lee

Yongseok Shin

Working Paper 24357
http://www.nber.org/papers/w24357

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2018

This paper was prepared for the Carnegie Rochester NYU Conference on “the Consequences of 
Transformative Technical Progress for the Macroeconomy.” We thank our discussant, Matthias 
Kehrig, for exceptionally detailed and constructive suggestions, and other conference participants 
for many useful comments. We also benefited from extended conversations about this paper with 
Christian Siegel, Henry Siu, and Sevin Yeltekin. The usual disclaimer applies. The views 
expressed herein are those of the authors and do not necessarily reflect the views of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2018 by Sangmin Aum, Sang Yoon (Tim) Lee, and Yongseok Shin. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Computerizing Industries and Routinizing Jobs: Explaining Trends in Aggregate Productivity
Sangmin Aum, Sang Yoon (Tim) Lee, and Yongseok Shin
NBER Working Paper No. 24357
February 2018
JEL No. E01,E22,E25,O41,O47

ABSTRACT

Aggregate productivity growth in the U.S. has slowed down since the 2000s. We quantify the 
importance of differential productivity growth across occupations and across industries, and the 
rise of computers since the 1980s, for the productivity slowdown. Complementarity across 
occupations and industries in production shrinks the relative size of those with high productivity 
growth, reducing their contributions toward aggregate productivity growth, resulting in its 
slowdown. We find that such a force, especially the shrinkage of occupations with above-average 
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1990s, this force was countervailed by the extraordinarily high productivity growth in the 
computer industry, of which output became an increasingly more important input in all industries 
(“computerization”). It was only when the computer industry's productivity growth slowed down 
in the 2000s that the negative effect of routinization on aggregate productivity became apparent. 
We also show that the decline in the labor income share can be attributed to computerization, 
which substitutes labor across all industries.
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1 Introduction

Amid the sluggish recovery following the Great Recession, much attention has been

given to the slowdown in productivity growth in the United States economy (sometimes

referred to as “secular stagnation”). We dissect this trend in aggregate productivity

by developing a model in which technological progress is both sector- and occupation-

specific,1 to better understand which sectors and occupations contribute most to trends

in aggregate productivity.2 In particular, we pay special attention to the computer

sector (hardware and software), which enjoyed an impressive rise in productivity even

as the rest of the economy lagged behind. Computers have become an important

factor of production for all other sectors, especially since the 1990s (which we call

“computerization”), so we separate them from other machinery equipment as a distinct

type of capital. Using the model, we quantify the importance of the computer sector

and compare it against “routinization” (i.e., faster technological progress specific to

occupations that involve routine or repetitive tasks) in explaining trends in aggregate

productivity.

We find that a downward trend in aggregate productivity growth was already

present since the 1970s, but that this was more than compensated for by the ex-

traordinary productivity growth of the computer sector in the 1980s and 1990s. It was

only when the computer sector’s productivity growth came down to normal levels in

the 2000s that the deceleration in aggregate productivity became abruptly apparent.

This generated the illusion that the aggregate productivity slowdown has its roots in

the 2000s, even though the slowdown had already been underway in the preceding

decades.

In our analysis, the driving force of the aggregate productivity slowdown is comple-

mentarity across occupations and across industries in production: Those occupations

and industries with above-average productivity growth shrink in terms of value-added

and employment shares, and their contributions toward aggregate productivity growth

becomes smaller even when their productivity continues to grow fast. This is related

to “Baumol’s disease,” i.e., that aggregate productivity growth can slow down because

sectors with high productivity growth may decline in importance (e.g., manufacturing).

However, our results show that it is the shrinkage of occupations with fast occupation-

1Throughout the text, we will use “sector” and “industry” interchangeably, as well as “occupations” and
“jobs.”

2Our model will admit an aggregate productivity that is distinct from conventional measures of total
factor productivity (TFP), which assumes a homogeneous of degree one (HD1) production function in the
two factors of capital and labor. When distinction is necessary, we will refer to our version with three factors
(capital, labor and computers) simply as “productivity,” and the two-factor residual as “TFP.”
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specific productivity growth, not sectors, that accounts for most of the downward trend

in aggregate productivity growth.

Another novel element of our analysis is the computer sector. When sectors are

complementary to one another, the extraordinarily high productivity growth of the

computer sector should reduce its relative importance, and hence its contribution to

aggregate productivity growth over time (Baumol’s disease). However, because we

model the computer sector’s output as a distinct type of capital used in the production

of all sectors (including itself), its productivity growth and the accompanying fall in

its price boost the demand for computers from all sectors. Consequently, the computer

sectors’s contribution to aggregate productivity remained important for a prolonged

period of time, more than offsetting the negative effect of routinization on aggregate

productivity growth for over two decades. We also show that computerization accounts

for most of the decline in the labor income share since the 1980s.

In our model, individuals inelastically supply labor to differentiated jobs. Each

sector uses all these jobs, but with different intensities. Sectors are complementary

across one another for the production of the final good. Within each sector, jobs are

also complementary to one another, and labor is combined with capital for sectoral

production. Most important, we divide capital into computer capital (including soft-

ware) and the rest (i.e., all capital not produced from the computer sector), and assume

that the substitutability between labor and computer capital may differ across sectors.

We model computer and software as capital used by all other sectors rather than an

intermediate input, because the computer share of all investment is substantially larger

than its share of all intermediates (14 vs. 2 percent, averaged between 1980 and 2010).

It should be noted that computerization and routinization are empirically distinct

phenomena. Computer and software usage increased the most for high-skill or cog-

nitive occupations, not middle-skill or routine occupations (Aum, 2017), justifying

our choice to model productivity growth in both dimensions (sector- and occupation-

specific). We then estimate the degree of complementarity across sectors, and calibrate

the growth rates of the sector- and occupation-specific productivities, substitutabil-

ity/complementarity across jobs, and substitutability between computer capital and

labor, using detailed data on employment shares and computer capital by industry

and by occupation. Our estimation and calibration verify that as long as productiv-

ity growth rates are positive, (i) sectors are complementary to one another for final

good production;3 (ii) jobs are complementary to one another within sectors; and most

important, (iii) computer capital is in fact substitutable with labor in all sectors.

3Or consumption, which we do not model.
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Given the structure of our model and estimated/calibrated parameters, we find

that when sector- and occupation-specific productivities grow at constant but different

rates, aggregate productivity growth declines over time due to the two types of com-

plementarity (across jobs within sectors, and across sectors in final good production).

Jobs and sectors with highest productivity growth shrink in terms of employment and

value-added. Then low-growth jobs and sectors gain more weight when computing ag-

gregate productivity growth, resulting in its slowdown. As productivity growth slows

down, output growth slows down even more.

The mechanics of our model is consistent with our empirical findings: Since the

1980s, sectors that rely heavily on routine jobs experienced the highest growth in their

TFP’s, as measured by conventional growth accounting.4 These occupations, and the

sectors that rely relatively more on them, also saw their employment shares fall.

Next, we find that the fall in aggregate productivity growth in the longer run is

more due to the differential growth across occupations (i.e., routinization) rather than

the differential growth across sectors. In fact, if all occupation-specific productivities

had grown at a common rate from 1980, holding all else equal, aggregate produc-

tivity growth rates would have stayed nearly constant through 2010. This contrasts

with Baumol’s disease, which emphasizes the differential sector-specific productivity

growths, especially the slow productivity growth of the service sector.

The natural question is then why the downward trend in aggregate productivity

growth did not manifest itself until the 2000s. In our model, the slowdown in aggregate

productivity growth can be temporarily arrested and even reversed if certain sectors or

jobs experience faster-than-usual technological progress. We find that this is exactly

what happened during the 1990s, when the computer sector recorded impressive pro-

ductivity growth. Without the technological progress specific to the computer industry,

aggregate productivity growth during the 1990s would have been 0.5 percent per year,

instead of 0.8 percent. It is only after the subsequent slowdown in the computer sector’s

productivity growth in the 2000s that the longer-run downward trend in aggregate pro-

ductivity growth became apparent. Our analysis confirms that if productivity growth

in the computer sector had been completely absent, aggregate productivity growth

would have declined monotonically since 1980. In fact, although our focus is on the

slowdown toward the end of the sample period in Figure 1, a slowdown is also apparent

in the 1970s to early 1980s.

4That is, assuming an HD1 production function with two factors, capital and labor. By “measured,”
we mean productivity or TFP obtained directly from the data by growth accounting, as opposed to being
computed from our model.
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Fig. 1: Log TFP, Aggregate
Source: National Income and Product Accounts (NIPA) from the Bureau of Economic Analysis (BEA).
TFP is measured as the Solow residual assuming a homogeneous of degree one production function with two
factors, capital and labor.

In the data, sectors with higher measured TFP growth saw their employment shares

decline, except for the computer sector. The same happens in our model because all

sectors use computer capital in production. Then, as the computer sector’s productivity

growth reduces the price of computer capital, all sectors use more computers, which

contributes to output growth in addition to the computer sector’s direct contribution

to aggregate productivity growth.5 Indeed, if there had been no productivity growth

in the computer sector and hence no computerization, output per worker growth would

have been 1.5 percent per year during the 1990s, rather than the 3.5 percent observed

in the data. In other words, the sluggish growth of aggregate productivity and output

in the 2000s was not abnormal. It was the faster-than-trend growth during the 1990s

driven by the outburst of the computer sector’s productivity that was extraordinary.

Treating computer capital as a separate production factor as we do also has impli-

cations for the measurement of aggregate productivity. We find that conventional TFP

accounting with only two factor inputs, with all types of capital being summed up into

a single category, overstates aggregate productivity growth by 0.4 percentage points per

5As discussed earlier, this model element is also important for understanding why the direct contribution
of the computer sector to aggregate productivity growth did not dwindle in importance despite the comple-
mentarity across sectors. The computer sector’s production share has been stable over time: 3.1 percent in
the 1980s, 3.4 percent in the 1990s, 3.9 percent in the 2000s, and 3.4 percent in the 2010s.
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year when averaged between 1980 and 2010. That is, ignoring different types of capital,

which differ in their rental and depreciation rates, can bias productivity measurements

upward.

Lastly, we relate computerization to the decline in the labor income share. In our

model, the labor share decline is caused by the substitutability between labor and

computer capital, as the computer sector becomes more productive. We find that

computerization during the 1990s accounts for most of the decline in the labor share

between 1980 and 2010 (4 out of 5 percentage points), even the model does not target

the labor share at all. This implies that computer capital alone is more important than

all other machinery and equipment in explaining the decline in the labor share.

Related literature In our model, employment shifts across sectors—or “structural

change”—occur due to differential sector- and occupation-specific productivity growth

as in Lee and Shin (2017). Most studies in the structural change literature that consider

sector-specific productivity growth, e.g., Ngai and Pissarides (2007), have paid little

attention to its implications for changes in aggregate productivity. In fact, most were

interested in obtaining balanced growth. However, since as far back as Baumol (1967),

it was well known that complementarity between industries can lead to an increase

in the employment share of the low productivity growth sector, consequently leading

to a slowdown in aggregate productivity. A recent study by Duernecker, Herrendorf,

and Valentinyi (2017) is a notable exception. They explicitly consider Baumol’s dis-

ease in a multi-sector model, and evaluate whether structural change is quantitative

important for explaining the aggregate productivity slowdown. In our analysis, we

model differential progress across occupation-specific technologies in addition to het-

erogeneous sector-specific productivity growth, and find that it was the dispersion of

occupation-specific productivities that was more important for the aggregate produc-

tivity slowdown in the United States.6

Our work also relates to studies on the importance of information technology (IT)

in explaining the evolution of productivity (e.g., Byrne, Fernald, and Reinsdorf, 2016;

Syverson, 2017). In particular, Acemoglu, Autor, Dorn, Hanson, and Price (2014)

investigate the relationship between productivity growth and IT capital intensity by

industry, and conclude that IT usage has little impact on productivity. While we

emphasize the role of computerization, our analysis is consistent with theirs. Com-

puterization is important for shaping aggregate productivity growth in our analysis,

6Aum, Lee, and Shin (2017) document occupation-specific and sector-specific shocks at a higher
frequency—during and after the Great Recession.
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but there is no direct effect of computerization on the productivity of other indus-

tries. Instead, computerization affects industry level output and value-added through

an increase in the use of computer capital.

In many empirical analyses related to routinization, the price of information and

communication technology (ICT) capital is often used as a proxy for routine-biased

technological change (e.g., Goos, Manning, and Salomons, 2014; Cortes, Jaimovich,

and Siu, 2017). However, when we break down computer usage by occupation, we find

that computerization and routinization are two distinct phenomena, with different im-

plications for the macroeconomy. Related, Aum (2017) analyzes increasing investment

in software in a model that also features routinization. While Aum (2017) focuses on

its impact on changes in occupational employment, we focus on its implications for

aggregate productivity.

Finally, Karabarbounis and Neiman (2014) suggest that the decline in the labor

income share could be due to a decline in the price of capital. Since the decline in

the price of capital is mostly driven by the price of computer-related equipment, and

it mirrors the productivity increase in the computer industry, our analysis concurs

with their explanation of the declining labor share. Furthermore, our results show

that a specific component of capital—computer hardware and software—can be more

important than all other types of capital. This is in line with Koh, Santaeullia-Llopis,

and Zheng (2016), who emphasize the importance of intellectual property products

capital (including software) for the decline of the labor share.

2 Empirical Evidence

We begin by establishing that routinization and computerization are two distinct phe-

nomena. For the empirical analysis, occupational data is from the decennial censuses

and industrial data from the BEA industry accounts. We consider industries at the

2-digit level, resulting in 60 industries. In particular, we label industry 334 (computers

and electronic products) the “hardware” industry and 511 (publishing industries in-

cluding software) the “software” industry. The combination of both is the “computer

sector.”

In Figure 2(a), the horizontal axis is occupational employment shares (percentile),

in ascending order of each occupation’s 1980 average wage.7 The figure shows that the

routine-task intensity (RTI) of occupations (Autor and Dorn, 2013) is high for middle-

wage occupations, as is well known in the routinization/polarization literature, but

7The ordering of occupational mean wages barely changes from 1980 to 2010.
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Fig. 2: PC use by occupation and PC industry TFP
Source: (a) IPUMS Census, BEA NIPA and O*NET. (b) BEA Industry Accounts. The computer industry
includes industries 334 and 511 (for hardware and software, respectively). See footnote 8 and text for the
data and accounting behind the graphs.

that high-wage occupations tend to use computers more.8 So at the occupational level,

an increase in the use of computers (i.e., computerization) should be distinguished

from routinization, which is typically understood as faster productivity growth among

middle-wage or routine-intense tasks.

Computerization in our model is a consequence of the fast productivity growth

of the computer industry. We first employ conventional accounting to measure each

industry’s TFP growth: the growth rate of real value-added net of the growth of capital

and labor inputs, weighted by the income share of each factor. Specifically, industry

i’s measured TFP growth between time s and t is

log
TFPit
TFPis

= log
Yit
Yis
− αis + αit

2
· log

Lit
Lis
− 2− αis − αit

2
· log

Kit

Kis
,

where Y is real value-added, L is employment, K is the net real stock of non-residential

fixed capital, and α is the labor share (compensation of employees divided by value-

8Computer usage is approximated from 2010 NIPA Tables 5.5.5 (Private Fixed Investment in Equipment
by Type), 5.6.5 (Private Fixed Investment in Intellectural Properties by Type), and the O*NET Tools and
Technology database as follows. In NIPA Table 5.5.5, we assume that “computers and peripheral equipment”
are produced by industry 334, and in Table 5.6.5, that “software” are produced by industry 511. O*NET
lists all the tools and technology that are used for each occupation. O*NET occupation codes can be easily
mapped to the census, and tools and technology are coded using the UNSPSC commodity system. We
assume that 4321xxxx corresponds to “hardware,” which includes all computers and peripheral equipment,
and that 4323xxxx corresponds to “software.” Then we count the number of distinct commodities needed
in each occupation, multiply it by the employment share of that occupation, and assume that hardware and
software investment is allocated across occupations proportionately to this number. Finally, we standardize
this measure of computer investment by occupation to have a mean of zero and standard deviation of 1.
While this may be a crude measure for computer usage, it is highly correlated with data from the CPS,
which reports computer use intensity by occupation. See Appendix A of Aum (2017) for more details.
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Fig. 3: Computer use in production over time
Source: BEA Input-Output Tables and Fixed Asset Tables (FAT). In panel (a), hardware and software are
industries 334 and 511. In panel (b), hardware and software are investments into “computers and peripheral
equipment” and “software” in the FAT.

added).9

Figure 2(b) depicts the log-TFP of computer-related industries (BEA industry code

334 for hardware and 511 for software) and the average of the log-TFP of all industries

excluding agriculture and government (weighted according to the Törnqvist index).

The TFP of hardware shows an average annual growth rate of 16 percent, far higher

than the average across all industries. Software also features higher TFP growth

compared to the average. The TFP of the “computer industry”—the value- added

weighted average of hardware and software—shows that the hardware industry mostly

determines the TFP of the computer industry. Note that the exceptionally fast growth

of the computer industry’s TFP slowed down since around the early 2000s.

Reflecting the fast growth of the computer industry’s measured TFP, the use of

computer and software also rose substantially until the late 1990s. Figure 3(a) shows

the computer and software share of total intermediates over time. Figure 3(b) plots the

share of computers and software in total non-residential investment. In both figures,

it is clear that there was a steep rise in the importance of computers in the 1980s to

1990s, which stagnated starting in the 2000s.10

We now turn to disaggregated evidence at the industry level, which will support

our hypotheses of heterogeneous growth rates and complementarity across jobs and

industries. Because job or occupation-level productivity is not directly measurable, we

9Later when we separately consider computer capital, TFP computed here would be a misspecification.
10The data behind Figures 3(a) and (b) come from BEA’s Input-Output Tables and Fixed Assets Tables,

respectively.
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Source: IPUMS Census and BEA Industry Accounts. Hardware and Software are industries 334 and 511,
respectively. In panel (a), routine jobs are defined as occupations above the 66 percentile in terms of the
RTI index (Autor and Dorn, 2013). In panel (b), FTPT is full-time plus part-time workers.

first establish two new empirical patterns, utilizing the fact that industries differ in the

composition of their workers’ occupations. Figure 4(a) shows that the routine job share

of an industry is positively correlated with its measured TFP growth (log difference)

between 1980 and 2010 (consistent with routinization), where routine jobs are defined

as occupations that are above the 66 percentile in terms of the RTI index following

Autor and Dorn (2013). Figure 4(b) shows that TFP growth and employment growth

are negatively correlated across industries, consistent with complementarity across jobs

and/or industries.11

However, note that the computer industry is a conspicuous outlier. In Figure 4(a),

despite having a routine job share around the median, not only is the computer indus-

try’s TFP growth 10 times larger than other industries at similar levels of routineness,

it is in fact 2 to 4 times larger than the next two industries with the highest levels of

TFP growth overall. Despite this, as shown in Figure 4(b), its employment barely fell.

With complementarity across industries, a high productivity growth sector should lose

value-added and employment shares. A possible explanation is that other industries

depend heavily on the computer industry, so that even as its productivity grows the

size of this sector would not shrink as long as other industries rely on it more. If so,

those industries with faster growth in computer capital should grow faster than those

that use computers less intensively in terms of output : since computer capital is a fac-

11Employment in this figure is full-time plus part-time workers (FTPT). Full-time equivalent (FTE)
employment shows similar patterns, but is only available by industry from 1997 onward. For this period,
there are level differences between the two measures, but dynamic patterns are similar for both.

10



Hardware

Software

−
2

0
2

4
V

al
ue

 a
dd

ed
 g

ro
w

th
 (

19
80

−
20

10
)

0 2 4 6 8
Computer capital growth (1980−2010)

(a) Hardware

Hardware

Software

−
2

0
2

4
V

al
ue

 a
dd

ed
 g

ro
w

th
 (

19
80

−
20

10
)

2 4 6 8 10
Computer capital growth (1980−2010)

(b) Software

Fig. 5: Growth of Value-added Output and Computer Capital
Source: BEA Industry Accounts and FAT Nonresidential Detailed Estimates by Industry and Type. Hard-
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and peripheral equipment” and software capital the net stock of “software” by industry.

tor in production, it would not necessarily increase productivity. Figure 5 confirms the

positive relationship between the growth of computer capital (total investment into

hardware and software from 1980-2010) for an industry and its value-added growth

between 1980 and 2010.

3 Model

The model for our quantitative analysis builds on those in Goos et al. (2014) and

Lee and Shin (2017), both of which simultaneously analyze an economy’s occupational

and industrial structure. In particular, the latter explicitly models how workers of

heterogeneous skill sort into different occupations, and also industries that differ in

the intensity with which they combine workers of different occupations for production.

Here we ignore selection on skill, but instead expand previous models by letting all

industries use output from the computer sector as a capital good in production, an

important channel through which the productivity gains of the computer industry

affect aggregate production.

Environment A representative household maximizes its discounted sum of utility

∞∑
t=0

βtu(Ct)

subject to the sequence of budget constraints,

Ct + It + pI,tFt ≤ Yt,
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where I is investment in traditional capital (machinery and equipment excluding com-

puter hardware and software), F investment in computer capital, and pI the price of

computers. The final good is the numeraire, which can be used for consumption and

traditional capital investment. The law of motion for each type of capital satisfies

Kt+1 = It + (1− δK)Kt, St+1 = Ft + (1− δS)St,

where (K,S) are traditional and computer capital, respectively, and (δK , δS) their

depreciation rates. In what follows, we drop the time subscript unless necessary, and

simply denote next period variables with a prime.

Within the representative household is a unit mass of identical individuals who

supply labor inelastically to one of J occupations, indexed by j ∈ {1, . . . , J}. The

final good is produced by combining products from I sectors, which we index by

i ∈ {1, . . . , I}. To be specific, final good production combines industrial output using

a CES aggregator with the elasticity of substitution ε:

Y =

[
I∑
i=1

γ
1
ε
i Y

ε−1
ε

i

] ε
ε−1

.

In each sector, a representative firm organizes the J occupations to produce sectoral

output Yi according to

Yi = AiK
αi
i Z

1−αi
i , (1)

where Ai is industry i’s exogenous sector-specific productivity and Zi a computer-labor

composite that combines computer capital Si with an occupation composite Xi:

Zi =

[
ω

1
ρi
i S

ρi−1

ρi
i + (1− ωi)

1
ρiX

ρi−1

ρi
i

] ρi
ρi−1

, Xi =

 J∑
j=1

ν
1
σ
ij (MjLij)

σ−1
σ

 σ
σ−1

.

Each Lij is the number of occupation j labor (i.e., workers) used in sector i, and Mj is

the exogenous occupation-specific productivity of job j that differs across occupations

but not sectors. The parameters ωi and νij are CES weights that differ by sector, as well

as ρi, the elasticity of substitution between computers and labor in sector i. However,

we assume that the elasticity of substitution across occupations, σ, is identical across

sectors. There are several reasons we let the ρ’s vary across sectors but not σ, which

we discuss in Section 4.2.

Since each industry uses all types of occupations but with different intensities νij ,

changes in Mj would have differential effects on the occupation composite Xi, and thus

on Zi, the computer-labor composite. Ultimately, it will manifest itself as differential

12



effects on sectoral productivity and output. In contrast, changes in Ai affects sectoral

productivity and output directly.

Computer capital Si is also used in all sectors, and without loss of generality we will

assume that the computer industry is industry i = I. So the total amount of computer

capital in the economy is S =
∑I

i=1 Si and F is the total amount of newly produced

computers. While the model assumes that computer capital is required for production

in all industries, there is no other input-output linkage among the rest. Each industry

rents traditional capital and computer capital at rates RK and RS .

Equilibrium The final good firm takes prices pi as given and solves

max

{
Y −

I∑
i=1

piYi

}
. (2)

Each sector i firm takes all prices as given and chooses capital, computer capital and

labor to solve

max

piYi −RKKi −RSSi − w
J∑
j=1

Lij

 , (3)

where pi is the price of the sector i good, RK the rental rate of traditional capital, RS

the rental rate of computer capital, and w the wage rate—which is equal across jobs

since individuals do not differ in skill. In a competitive equilibrium,

1. Final good producers choose Yi to maximize profits (2), so

γiY/Yi = pεi for i ∈ {1, . . . , I}. (4)

Since we normalized the final good price to 1,

I∑
i=1

γip
1−ε
i = 1

1
1−ε = 1

is the ideal price index.

2. All sector i firms maximize profits (3). The first-order necessary conditions are

RK = αipiYi/Ki, (5a)

RS = (1− αi) · (piYi/Zi) · (ωiZi/Si)
1
ρi , (5b)

w = (1− αi) · (piYi/Zi) · [(1− ωi)Zi/Xi]
1
ρi ·
[
νijM̃jXi/Lij

] 1
σ

(5c)

where M̃ := Mσ−1.
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3. Capital, computer and labor markets clear:

K =

I∑
i=1

Ki, S =

I∑
i=1

Si, L =

I∑
i=1

Li =

I∑
i=1

 J∑
j=1

Lij

 (6)

where Li :=
∑

j Lij is the total amount of labor used in sector i.

4. The rental rates satisfy

u′(C)

βu′(C ′)
= 1 + r = R′K + (1− δK) =

[
R′S + (1− δS)p′I

]
/pI , (7)

and the transversality conditions hold.

lim
t→∞

βtu′(Ct)Kt = 0, lim
t→∞

βtu′(Ct)St = 0.

Equilibrium Characterization From (4) and (5a), we find that

αipiYi/αIpIYI = Ki/KI = (αi/αI) (γi/γI)
1
ε · (Yi/YI)

ε−1
ε

⇒ αipiyi/αIpIyI = ki/kI = (αi/αI) (γi/γI)
1
ε · (yi/yI)

ε−1
ε · (Li/LI)−

1
ε ,

where yi := Yi/Li is output per worker and ki := Ki/Li is capital per worker in sector

i. So using (1), we can write

Ai
AI

=

(
αI
αi

) ε
ε−1

·
k

ε
ε−1
−αi

i

k
ε
ε−1
−αI

I

·
z1−αII

z1−αii

·
(
γILi
γiLI

) 1
ε−1

(8)

where (zi, si) is the labor productivity and computer per worker in sector i. From (5c),

holding i fixed we obtain Lij/Li1 = νijM̃j/νi1M̃1 for all j, so

Lij =
(
Ṽ 1−σ
i · νijM̃j

)
· Li and Xi = ṼiLi, where Ṽi :=

 J∑
j=1

νijM̃j

 1
σ−1

. (9)

Then the equilibrium allocations of (Lij , Zi) can be expressed as

Lij/Li = νijM̃j Ṽ
1−σ
i , and (10)

Zi =

[
ω

1
ρi
i S

ρi−1

ρi
i + V

1
ρi
i L

ρi−1

ρi
i

] ρi
ρi−1

⇒ zi := Zi/Li =

[
ω

1
ρi
i s

ρi−1

ρi
i + V

1
ρi
i

] ρi
ρi−1

(11)

where Vi := (1− ωi)Ṽ ρi−1
i . Plugging these expressions into (5b)-(5c) we obtain

RS = (1− αi) · (piyi/zi) · (ωizi/si)
1
ρi , (12a)

w = (1− αi) · (piyi/zi) · (Vizi)
1
ρi , (12b)
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and taking the wage-computer rent ratio (w/RS) across all sectors, we can express all

other sectors’ computer capital per worker relative to the computer sector’s:

(Vi/ωi) · si = [(VI/ωI) · sI ]
ρi
ρI (13)

and plugging this expression into the definition of zi in (11), we obtain

zi = V
1

ρi−1

i

[
1 + (ωi/Vi) [(VI/ωI) · sI ]

ρi−1

ρI

] ρi
ρi−1

. (14)

Thus, all zi’s can be obtained given sI , the computer sector’s computer capital per

worker, and exogenous parameters. Similarly, taking the wage-capital rent ratio

(w/RK) across all sectors using (5a) and (12b), we obtain

(1− αi)αI
(1− αI)αi

· ki
kI

=

(
z
ρi−1

ρi
i /z

ρI−1

ρI
I

)/(
V

1
ρi
i /V

1
ρI
I

)
, (15)

and since all zi’s are functions of sI , all ki’s can be obtained given sI and kI ’s, the

computer sector’s traditional capital per worker. So the equilibrium allocation can be

found from (8) subject to the market clearing conditions (6).

Discussion In our model, sector- and occupation-specific productivities are exoge-

nous (Ai and Mj , respectively). In particular, sector-specific productivities Ai are

distinct from “sectoral productivity” which refers to the productivity of a sector in

an accounting sense. And since the occupation-specific productivities affect sectoral

productivity through Vi := (1 − ωi)(
∑

j νijM̃j)
ρi−1

σ−1 , sectoral productivity depends on

Mj ’s as well as Ai. Specifically, sectoral productivity in our model is obtained by

decomposing output into factors:

ŷi =

Âi + (1− αi)
1

ρi − 1

V
1
ρi
i

z
ρi−1

ρi
i

V̂i


︸ ︷︷ ︸

Sectoral Productivity

+ αi︸︷︷︸
K share

k̂i + (1− αi)
ω

1
ρi
i s

ρi−1

ρi
i

z
ρi−1

ρi
i︸ ︷︷ ︸

S share

ŝi, (16)

where x̂ := d log x.

The above is our definition of productivity in the subsequent quantitative analysis,

which is distinct from traditional measures of TFP.12 A rise in Mj , the occupation-

specific productivity of job j, raises sectoral productivity through changes in Vi. In this

case, all sectoral productivities would move in the same direction (either up or down),

but their growth rates will differ depending on the sector-specific parameters included

12The difference is that conventional TFP measurements separate only capital and labor, while we are
taking out computers as a distinct type of capital with its own income share.
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Industry BEA industry code

Mining 211, 212, 213
Construction 23
Durable goods manufacturing 311FT, 313TT, 315AL, 322, 323, 324, 325, 326
Non-durable goods manufacturing 321, 327, 331, 332, 333, 335, 3361MV, 3364OT, 337, 339
FIRE 521CI, 523, 524, 531, 532RL
Health 621, 622HO
Other high-skill services 512, 513, 514, 5411, 5412OP, 5415, 55, 61
Trade (Retail & Wholesale) 42, 44RT
Other low-skill services 22, 481, 482, 483, 484, 485, 486, 487OS, 493, 561, 562, 624,

711AS, 713, 721, 722, 81

Computer 334, 511

Table 1: Industry classification
Refer to BEA Industry Accounts for names of industries. The computer industry comprises hardware
(computer and electronic products) and software (publishing industries).

in the expression for sectoral productivity in (16), as well as the endogenous response of

zi. And since the production technology is homogeneous of degree one (HD1), aggregate

productivity is a sectoral output-weighted average of the sectoral productivities. Hence

changes in the exogenous productivities Ai or Mj affect aggregate productivity both

directly by changing all sector’s sectoral productivities, but also indirectly by altering

sectoral output shares.

Last but not least, changes in AI , the computer industry’s sector-specific productiv-

ity, has further repercussions on aggregate output. As other industries, changes in AI

alter aggregate productivity both directly (by increasing the computer sector’s sectoral

productivity) and indirectly (by altering the output share of the computer industry).

But in addition, it lowers the price of computers (pI) and consequently the rental rate

of computer capital (RS), leading to a rise in the use of computers for industries whose

elasticity of substitution between computers and labor (ρi) is larger than one. Conse-

quently, not only because it raises aggregate productivity, but also because it increases

the use of computers in all sectors, a rise in AI contributes more to an increase in

aggregate output than any other sector-specific productivity does.

4 Quantitative Analysis

For the quantitative analysis, we classify industries into ten groups as summarized in

Table 1. We exclude the agricultural sector and government. In Table 2, we classify

occupations into ten groups which broadly correspond to one-digit occupation groups

in the census. We then fit the model exactly to the data for 1980, and let only the
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Occupation Occupation code

High skill
Management 4 - 37
Professionals 43 - 199

Middle skill
Mechanics & Construction 503 - 599
Miners & Precision workers 614 - 699
Technicians 203 - 235
Sales 243 - 283
Transportation 803 - 889
Machine operators 703 - 799
Administrative support 303 - 389

Low skill services 405 - 498

Table 2: Occupation classification
Consistent occupation code (occ1990dd) constructed following Autor and Dorn (2013).

exogenous occupation- and sector-specific productivities (Mj , Ai) grow at a constant

rate. Thus, a major test of the model is how well it replicates the data in 2010, or

equivalently, the growth of sectoral and aggregate variables from 1980 to 2010.

4.1 Calibration

Aggregate production function The parameters of the final good production

function are estimated outside of the model using real and nominal value-added data

by industry. Specifically, we estimate the sectoral weights γi and complementarity

parameter ε from

log(piYi/pIYI) =
1

ε
(γi/γI) +

ε− 1

ε
log(Yi/YI), for i = 1, · · · , I − 1.

This system of equations is estimated by iterated feasible generalized nonlinear least

squares method. To reflect constraints on the parameters (ε > 0 and 0 < γi < 1), we

estimate the unconstrained coefficents b and ci’s in

log(pi,tYi,t/pI,tYI,t) = (1 + eb)ci + eb log(Yi,t/YI,t) + εi,t,

where ε = 1/(1 + eb) and γi = eci/(1 +
∑
eci).

Each sector i in the model consists of several industries in the BEA Industry Ac-

counts, to which we apply the Törnqvist index to obtain the price index of sector i.

Real quantities Yi are similarly aggregated up from the detailed BEA data. The ag-

gregate price index is normalized to 1 in 1963, the initial year in the data. The sample
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Table 3: Estimation results

Parameters Estimates

ε 0.765
∗∗∗

(0.002)

γ1 0.084
∗∗∗

(0.001)
γ2 0.159

∗∗∗
(0.002)

γ3 0.099
∗∗∗

(0.003)
γ4 0.124

∗∗∗
(0.002)

γ5 0.142
∗∗∗

(0.001)
γ6 0.087

∗∗∗
(0.002)

γ7 0.057
∗∗∗

(0.002)
γ8 0.094

∗∗∗
(0.003)

γ9 0.117
∗∗∗

(0.002)

AIC -1001.432

Standard errors in parentheses.
∗
p < 0.10,

∗∗
p < 0.05,

∗∗∗
p < 0.01

period for the estimation covers 1980 to 2010, which is our main interest. The point

estimates for ε and γi are presented in Table 3.

Parameters calibrated without simulation In the calibration, we fix the tra-

ditional capital share of only the computer industry (αI) from the data. Though com-

puting the total capital share is straightforward (i.e., 1 minus labor share), computing

the traditional capital share according to our model is not. To obtain this number for

the computer industry, we follow Koh et al. (2016), which we briefly describe below.

We begin by specifying an empirical no-arbitrage condition for rental prices. The

return on both types of capital must be equal to the interest rate 1 + r′, so

[R′K + (1− δ′K)p′K ]/pK = [R′S + (1− δ′S)p′I ]/pI (17)

where pK is the price of traditional capital and pI the price of computers. Note that

this is different from the model’s no-arbitrage condition (7) in that we have included

the price of capital, which in the model we had normalized to be equal to the price of

the final consumption good. Next, since sectoral production is HD1 in all factor inputs

(traditional and computer capital, and labor), for the computer industry we have

1− labor shareI =
RKKI

pIYI
+
RSSI
pIYI

.

We solve for RK and RS from these two equations assuming a steady state (R′K =

RK , R
′
S = RS and pK = p′K , pI = p′I), plugging in for all other variables using data on

the quantities, prices and depreciation rates of each type of capital (from BEA FAT

Nonresidential Estimates by Industry and Type); and the computer industry’s real and
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Parameters Value Obtained from

σ 0.815 Mean absolute distance of the changes in the employment share
r + δS 0.300 Average depreciation rate of computer capital from FAT

Table 4: Calibrated Parameters

nominal value-added, and its labor share (from BEA Industry Accounts).13 Once we

know RS , we can set αI = RSSI/pIYI since all other variables are recovered directly

from the data. We rely only on data from 1980.

Although the above procedure can be used for all industries, in our calibration

we only use it to compute the computer industry’s traditional capital share. All other

industries’ traditional capital shares are calibrated directly from the model as explained

below. Appendix Figure 17(a) compares the traditional capital shares obtained using

the above procedure against those predicted by the calibration, which confirms that

they are generally consistent.

Method of Moments The rest of parameters are recovered from simulating model

moments to match corresponding data moments. To be precise, we plug the data for Lij

(from the IPUMS Census), and (ki, si) (from the BEA FAT Nonresidential Estimates

by Industry and Type) directly into the equilibrium equations, assuming a steady state

in both 1980 and 2010, respectively. The detailed procedure is as follows:

1. Guess σ.

(a) Fix αI as above, and guess AI,1980 and ρi’s.

i. For 1980: obtain (νij , ωi, αi, Ai,1980) given guess.

- Normalize Mj = 1 for all j. Then the industry-specific occupation

weights νij ’s and Ṽi are recovered from (9)-(10) using data on 1980

employment shares..

- From (12a) of industry I, and replacing for yi using (1) and zi using

(11), ωI must solve

RS = (1−αI)·AIkαII ·

[
ω

1
ρI
I s

ρI−1

ρI
I + (1− ωI)

1
ρI Ṽ

ρI−1

ρI
I

] 1−ρIαI
ρI−1

·(ωI/sI)
1
ρI ,

given data on kI and sI in 1980. The solution ωI ∈ (0, 1) if 1 <

(1− αI)AI(kI/sI)αI .
13 We take the weighted average across industries 334 and 511 (software and hardware) to obtain this value

for the computer industry, which in our quantitative model comprises both. For each industry, computer
capital is the sum of the net stock of “computers and peripheral equipment” and “software.”
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- Given ωI , obtain all other ωi’s from (13) (since V := (1− ωi)Ṽ ρi−1
i ).

- For all i 6= I, compute αi’s from (15) by replacing for zi using (14),

and plugging in data on (ki, si).

- Exogenous sector-specific productivities Ai,1980’s are recovered from

(8) and AI,1980.

ii. For 2010: obtain Mj,2010 and updated guesses for the substitutability

between computers and workers, ρnewi .

- Choose the Mj ’s that yields the best fit of (10) across all i given 2010

employment shares:

Mj

M1
=

[∑
i

(
Li ·

Lij
Li1
· νi1
νij

)]/∑
i

Li,

Using this we can compute Ṽi for 2010 using (9).

- From (15), we set ρnewI to get the best fit of

ρnewI ·I =
∑
i

 log(ωI ṼI)− log((1− ωI)sI)

log
[(

1− αI(1−αi)ki
αi(1−αI)kI

)
ṼI

]
− log

(
sIαI(1−αi)ki
αi(1−αI)kI − si

)


given data on (ki, si) in 2010.

Note that we need si/sI < (1−αi)αIki/(αi(1−αI)kI) < 1 or si/sI >

(1 − αi)αIki/(αi(1 − αI)kI) > 1 for ρnewI to be a real number. We

exclude those industries with (ki, si) for which this condition is not

satisfied only when we compute ρnewI .

- Compute the implied ρnewi ’s that are consistent with the 2010 si’s, i.e.,

ρnewi =
ρnewI log

(
1−ωi
ωisiṼi

)
ρnewI log

(
ṼI
Ṽi

)
+ log

(
1−ωI
ωIsI ṼI

)
(b) Iterate over ρi’s till ρi ≈ ρnewi .

(c) Set AI,1980 so that yI equals the computer industry’s real value-added per

worker in the data. Iterate over AI,1980 till convergence.

2. Iterate over σ to minimize
∑

j |`dj,2010− `mj,2010|, where `j is the employment share

of occupation j.

In the outermost loop of the above procedure, note that we use occupation employment

shares in aggregate. The industry-specific occupation weights νij ’s were recovered only

from within industry employment shares by occupation. Once we have recovered all

the parameters,
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1. Get Ai,2010’s to match measured productivity by sector in (16) to 2010 data.14

2. Between 1980 and 2010, we assume that the Mj,t’s, and all Ai,t’s except AI , grow

at constant rates, so:

Mj,t = Mj,1980(Mj,2010/Mj,1980)
(t−1980)/30,

Ai,t = Ai,1980(Ai,2010/Ai,1980)
(t−1980)/30.

3. The computer sector’s exogenous productivity (AI) for other years are chosen so

that the sectoral productivity of the computer sector in (16) is equal in the data

and model.

4.2 Properties of the Benchmark Model

The calibration results are summarized in Tables 5 to 7. Since changes in Mj affect

occupational employment across all industries, we can identify occupation-specific pro-

ductivities separately from the sector-specific productivities. Specifically, occupational

employment data alone gives enough information to identify the Mj ’s, from Equa-

tion (10). Given this, we can identify the sector-specific Ai’s to fit measured sectoral

productivities from the data using (16). The calibrated values for Mj ’s show that

routine intensive occupations, such as machine operators or mechanics, indeed experi-

enced much faster growth in their occupation-specific productivities. And as expected,

the sector-specific productivity of the computer industry (AI) grew exceptionally fast

especially during the 1990s.

It is also noteworthy that the ρi’s are identified from how computer capital per

worker (si) and traditional capital per worker (ki) evolve differently across industries.

Roughly speaking, when an industry that increases computers per worker more than

other industries also uses more traditional capital per worker, the elasticity of substi-

tution ρi tends to be greater than one (Equation 15). But since traditional capital is a

constant share of production in our model, our model admits ρi > 1 for sectors whose

output per worker increases with computers per worker. Since this is indeed the case

for most industries in the data, as we saw in Figure 5, all calibrated ρi’s are larger than

1.15 This also implies that computerization leads to a decline in the labor share both

at the sector and aggregate levels.

In turn, sectors with higher computer per worker growth would also have higher

values of ρi, as in Figure 6. This is illustrated in Figure 6(a), which plots computer

14We compute traditional and computer capital income shares, and measure sectoral productivity directly
from the data. Hence, the model’s sectoral output may differ from the data.

15Figure 5 shows that some small industries have a negative relationship in the data, but this is no longer
the case once we aggregate the 60 industries into 10 more broadly defined sectors.

21



1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

ρ
i

C
om

pu
te

r 
pe

r 
C

ap
ita

 G
ro

w
th

(a) Data against computer-worker substitutability ρi

Cons FIRE Hlth Hser Lser ManD Mine M−ND Trad Comp
10

11

12

13

14

15

16

17

18

19

20

 

 
Data
Model

(b) Computer capital per worker

Fig. 6: Computer per worker growth between 1980 and 2010
Source: BEA Industry Accounts and FAT. See Table 1 for details of the industry classification. Computer
capital is measured as the sum of “computers and peripheral equipment” and “software” by industry, available
in FAT Table 3.1.

Param/Target Const FIRE Health
High
serv.

Low
serv.

Dur Mine
Non-
durable

Trade
Comp-
uter

γ outside 0.084 0.159 0.099 0.124 0.142 0.087 0.057 0.094 0.117 0.037
ρ si,2010 1.699 1.213 1.413 1.461 1.415 1.263 1.445 1.559 1.419 1.840
ω si,1980 0.001 0.094 0.003 0.025 0.006 0.028 0.020 0.009 0.008 0.020
α ki,1980 0.167 0.374 0.301 0.454 0.475 0.333 0.793 0.402 0.186 0.322

Table 5: Industry specific parameters
Industry weights γi and the computer industry’s traditional capital income share αI are estimated directly
from the data using the BEA Industry Accounts and FAT, while the rest are calibrated according to a
method of moments. See text for details.

per worker growth in the data against the ρi’s. While panel (a) makes it clear how the

relative values of ρi are identified across sectors, note that the relationship is not exactly

linear, even though the model fits computer capital per worker exactly by assumption

as shown in panel (b)—since their empirical values are directly fed into step 1.ii of our

calibration. This is because computers are not substituting labor directly, but only

indirectly through the occupation composite Xi.
16

16Related, since computers substitute a composite of labor rather than each occupation separately, the
values of the substitutability parameters ρi’s are potentially sensitive to σ, which measures the complemen-
tarity across occupations. We find that this is not the case for a wide range of values for σ lower than its
benchmark value, as shown in Appendix Table 8. While ρi’s are sensitive to much larger values of σ, then
it becomes impossible to fit other moments in the data (employment shares and TFP by industry).
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L serv. Admin. Mach Sales Trans Tech Mech Mine. Prof. Mngm

Const 0.009 0.058 0.027 0.009 0.218 0.016 0.564 0.015 0.021 0.061
FIRE 0.048 0.444 0.005 0.225 0.015 0.014 0.013 0.004 0.021 0.211
Health 0.328 0.172 0.005 0.004 0.006 0.122 0.009 0.011 0.293 0.050
H serv. 0.109 0.222 0.010 0.020 0.022 0.043 0.037 0.007 0.420 0.110
L serv. 0.375 0.143 0.025 0.041 0.129 0.012 0.080 0.023 0.070 0.101
Durable 0.022 0.115 0.372 0.021 0.102 0.027 0.081 0.136 0.049 0.076
Mining 0.017 0.103 0.047 0.010 0.195 0.051 0.121 0.311 0.065 0.080
Non-dur 0.028 0.118 0.386 0.039 0.135 0.023 0.050 0.106 0.036 0.079
Trade 0.025 0.150 0.022 0.406 0.152 0.005 0.066 0.042 0.022 0.110
Computer 0.016 0.165 0.310 0.059 0.042 0.062 0.041 0.070 0.124 0.111

Table 6: Industry-occupation specific weights on labor (νij)
Calibration results for νij from a method of moments. Empirical targets are within-industry employment
shares by occupation in 1980.

Target: emp. share by ind. and occ. in 2010 Target: measured productivity in 1980 and 2010
Mj 1980 1990 2000 2010 Ai 1980 1990 2000 2010

Low serv. 1.000 1.000 1.000 1.000 Const 14.125 10.394 7.648 5.628
Admin. 1.000 1.384 1.914 2.649 FIRE 17.924 17.267 16.633 16.023
Machine 1.000 2.273 5.168 11.749 Health 6.155 6.460 6.780 7.115
Sales 1.000 0.590 0.348 0.205 High serv. 1.385 1.624 1.904 2.232
Trans 1.000 1.263 1.595 2.014 Low serv. 0.050 0.053 0.057 0.060
Tech 1.000 0.736 0.542 0.399 Durable 0.198 0.191 0.185 0.179
Mechanics 1.000 1.610 2.591 4.171 Mining 3.048 3.104 3.161 3.219
Mine. 1.000 1.444 2.085 3.010 Non-durable 0.701 0.708 0.716 0.724
Prof. 1.000 0.553 0.306 0.169 Trade 0.269 0.373 0.516 0.714
Mngm 1.000 0.461 0.212 0.098 Computer 1.945 3.667 13.624 26.618

Table 7: Occupation- and sector-specific productivity
Occupation-specific productivities are normalized to 1 in 1980. For 2010, we minimize the distance between
the model and data on within-industry employment shares by occupation averaged across all industries in
the IPUMS Census. The computer industry’s 1980 sector-specific productivity is chosen to minimize the
distance between model and data on its real value-added per worker in the BEA Industry Accounts, while
all other industries’ productivities are implied by the model and data on capital and labor data relative
to the computer sector from the Industry Accounts and FAT. All sector-specific productivities in 2010 are
recovered from our expression for sectoral productivity in (16), using the Industry Accounts data and our
calibrated parameters. Except for the computer sector-specific productivity AI , all Ai’s are assumed to grow
at a constant rate from 1980 to 2010.
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Fig. 7: Changes in employment shares between 1980 and 2010
Data Source: occupation data are from IPUMS Census, and industries from BEA Industry Accounts. See
Table 2 for details of the occupation classification.

Model Fit The model-implied employment share changes fit the data better by

occupation than by industry (Figure 7). This is because the Mj ’s directly affect oc-

cupational employment through (10), and once we match sectoral productivity growth

by industry using (16), employment by industry is pinned down by (8).

This is also an indirect consequence of assuming constant σ’s across all industries.

Note that nowhere in our calibration did we separately target 2010 traditional capital

per worker, nor employment share changes by industry. Our calibration step 1.ii and

Equation (15) exploit all three factors at once, per industry, using only data on 2010

computer capital per worker by industry. This makes it clear that we can only let one

of ρ or σ vary by sector.17 Both would affect how factor input ratios, and in particular

computer capital per worker si, change across sectors in response to changes in Mj ’s.

But one of our major goals is to quantitatively compare how aggregate productivity

is affected by complementarity across occupations (shifts in Mj through σ) relative to

complementarity across industries (shifts in Ai through ε). How to implement such a

comparison becomes less obvious if σ’s vary across sectors.

More important, letting the elasticity of substitution between computers and labor

(ρi) vary across sectors directly captures how computer capital per worker evolves

differentially across sectors, as we discussed above. If we were to instead let σ vary, the

effect is only indirect since computer-labor substitution would differ across sectors only

due to differential shifts in relative labor demand. That is, unlike the clear relationship

17Since the Vi’s are functions of σ.
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Fig. 8: Log changes of y and k between 1980 and 2010
Data Source: BEA Industry Accounts and FAT. See Table 1 for details of the industry classification.

between ρi and the growth of computer per worker si as seen in Figure 6(a), there

would be no systematic relationship between σ and si since it would also depend on

the sector-specific occupation weights νij ’s.

Thus, our exact fit to computer capital per worker growth, to some extent, comes

at the expense of a lesser fit to employment share changes and traditional capital

per worker growth by industry. See Figures 7(b) and 8(b). This indicates that the

unit elasticity assumption between traditional capital and other factors, and also the

assumption that the elasticity is constant across sectors, may be too stringent. Still,

both changes in employment shares and traditional capital per worker by industry are

qualitatively consistent with the data.

More assuringly, even though we did not use any data on output per worker

growth—neither by industry nor in aggregate—nor aggregate productivity, the model

prediction of output per worker growth by industry is remarkably close to the data,

Figure 8(a). Most importantly for our purposes, the model generates a slowdown in

aggregate output and productivity growth starting in 2000, similarly as in the data, as

shown in Figure 9 and tabulated in Appendix Table 9. The fit to aggregate productiv-

ity is especially remarkable considering that we assume constant productivity growth

rates for Mj and Ai—other than AI—and do not target any aggregate variables in

2010.

Lastly, the model-implied factor income shares by industry are also generally con-

sistent with the data (Appendix Figure 17). Partly because of this, the aggregate
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Fig. 9: Aggregate production
Data Source: BEA NIPA. Exact numbers for the plots are tabulated in Appendix Table 9.

labor share in the model closely tracks the trend in the data, both in direction and

magnitude (Figure 10), despite not being targeted at all at the sectoral nor aggregate

levels. Recall that our production technology assumes that traditional capital’s income

share is constant by construction. Thus, our results suggest that computer hardware

and software, which are a subset of total capital that accounts for 14 percent of all

investment, can be responsible for the vast majority of the fall in the labor share (4

out of 5 percentage points) since 1980.18

4.3 Counterfactual Analysis

In this section, we investigate the underlying factors that shape aggregate output

and productivity, focusing on routinization and computerization. Routinization in our

model is a faster increase in the occupation-speciifc productivity, Mj , of certain occu-

pations. Computerization is driven by the computer industry-specific term, AI , which

propagates through all industries because computer capital is used in the production

of all industrial goods.

In our model equilibrium, this propagation happens by shifting the price of com-

puter capital. High AI shrinks the computer sector employment because of comple-

mentarity, but also lowers the relative price of computers. This, in turn, leads to a drop

in the rental rate of computer capital, which induces all sectors to use more computers.

18As a direct consequence of not fitting capital per worker growth by sector, the model fit to the fall in
labor shares by sector is poorer than in aggregate. Aggregate capital per worker k in the data is directly fed
into the model.
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Fig. 10: Changes in labor share: model vs. data
Data Source: BEA NIPA and Industry Accounts. See Table 1 for details of the industry classification.

This prevents the computer sector from shrinking.

Aggregate productivity Note that the growth rates of occupation- and sector-

specific productivities (Mj and Ai) were assumed to be constant for the entire sample

period except for the computer sector’s (AI). Nonetheless, in the benchmark calibra-

tion, aggregate TFP increases almost linearly from 1980 to 2000, slowing down in the

last decade (Figure 11).19 We now show that the high growth rate of the computer

sector-specific productivity (AI) prevented a potential slowdown in aggregate produc-

tivity that would have appeared between 1990 and 2000. Figure 11 shows that, if we

assume AI were constant between 1980 and 2010, aggregate productivity growth would

have slowed down since 1990. Without the growth in AI , aggregate productivity would

have grown by only 13 percent from 1980 to 2010, one-third lower than the benchmark

growth rate of 20 percent over the same period. This magnitude is surprising consider-

ing the fact that the computer sector’s share of aggregate output is only 3 to 4 percent

throughout the observation period.

When all occupation- and sector-specific productivities grow at constant rates over

time, complementarity across jobs and sectors induces the faster growing jobs and

sectors to shrink in relative size, reducing their weights in the computation of aggregate

productivity. Hence, as long as occupation- and sector-specific productivities grow at

different rates, aggregate productivity growth must slow down over time. So both the

19Aggregate productivity growth is measured as d log(y) − (traditional capital share) · d log(k) −
(computer share) · d log(s).
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Fig. 11: Aggregate Productivity without Computerization

dispersions in the growth rates of occupation-specific productivities (Mj) and in sector-

specific productivities (Ai’s) contribute to the aggregate productivity slowdown. To

find out which dispersion is more important for the slowdown, we conduct the following

exercises.

In the first exercise, we force all Mj ’s to grow at the same rate m for all j (i.e., no

routinization) while leaving the growth rates of Ai’s to be different from one another

as in the benchmark. Second, we force all Ai’s to grow at a common rate a while

leaving the growth rates of Mj ’s heterogeneous as in the benchmark. The common

growth rates m and a are set so that aggregate productivity grows at the same rate

as in the first decade of our benchmark calibration. The results are shown in Figure

12, which shows that routinization, or the dispersion in the growth rates of Mj , is

more important in explaining the decline in the growth rate of aggregate productivity.

Without routinization, the growth rate of aggregate productivity remains near 0.8

percent per year throughout the three decades. In contrast, even when all sector-

specific productivities grow at a common rate, aggregate productivity growth falls

almost as much as in the benchmark. Of course for the latter exercise, we are also

ruling out the faster growth of the computer sector, which partially explains the gap

between the benchmark growth rate and this counterfactual growth rate in the 1990s.

Output Fast-growing computer sector-specific productivity directly boosts aggre-

gate productivity, which leads to an acceleration of aggregate output growth. Fur-

thermore, there is an additional effect on aggregate output, since all sectors use more

computer capital. Figure 13 shows the total effect of computerization on aggregate
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Fig. 12: Aggregate Productivity without Complementarity
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Fig. 13: Aggregate Output without Computerization
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Fig. 14: Output Growth by Industry without Computerization
In panel (a), we plug in model-simulated income shares and quantities into the accounting equations in
(18). In panel (b), we plug in data from NIPA and FAT directly. See Table 1 for details of the industry
classification.

output. If AI were to remain constant between 1980 and 2010, aggregate output

growth from 1980 to 2010 would be 63 percent, or only about half of the growth in the

benchmark. As expected, this is a larger impact than that on aggregate productivity.

Figure 14 shows output growth by industry with and without AI growth. Due to

the substitutability between computer and labor, all industries benefit from computer-

ization. Unsurprisingly, the computer industry itself is affected the most, followed by

finance and high-skilled services. The construction industry has the least to gain (in

terms of output growth) from computerization.

Labor share Because the model calibration yields sector-specific elasticities of sub-

stitution between labor and computer capital (ρi) that are larger than 1, computer-

ization results in the decline of labor shares in all sectors. Figure 15 shows changes

in labor shares by industry for various counterfactual exercises. Among all these ex-

ercises, the only two that affect labor shares are when we eliminate computerization

either explicitly (in red); or by assuming common growth rates across all industries

(in sky-blue). So we can conclude that the growth in AI is the only important driving

force behind the decline of the labor share.
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Fig. 15: Changes in Labor Income Shares by Industry
“no comp”: no computerization. “common m”: no complementarity across jobs. “common a”: no comple-
mentarity across industries. See Table 1 for details of the industry classification.

Computer capital in the measurement of TFP In our benchmark, we mea-

sured aggregate productivity growth between times s and t as follows:

log(At/As) = log(Yt/Ys)−
1

2

(
LIt
Yt

+
LIs
Ys

)
log(Lt/Ls)−

1

2

(
SIt
Yt

+
SIs
Ys

)
log(St/Ss)

− 1

2

(
KIt
Yt

+
KIs
Ys

)
log(Kt/Ks), (18a)

where LI is labor income, SI is computer capital income, and KI is traditional capital

income. But typically, the standard way we compute TFP growth (the Solow residual

Â) is

log(Ât/Âs) = log(Yt/Ys)−
1

2

(
LIt
Yt

+
LIs
Ys

)
log(Lt/Ls)

− 1

2

(
KIs + SIt

Yt
+
KIs + SIs

Ys

)
log[(Kt + St)/(Ks + Ss)]. (18b)

Note that At and Ât can differ, especially when the gross rate of return on computer

capital and traditional capital are different. By inspection of (17), we see that this

happens when either the investment prices and/or the depreciation rates of the two

types of capital differ. In particular, the gross rate of return on computer capital is

generally higher than traditional capital because the former depreciates more quickly.

This implies that the standard way of computing TFP without separating out computer

capital will overestimate the growth rate of aggregate productivity.
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Fig. 16: Comparing different measures of TFP’s
In panel (a), we plug in model-simulated income shares and quantities into the accounting equations in (18).
In panel (b), we plug in data from NIPA and FAT directly.

In Figure 16, we compare aggregate productivity from our benchmark calibration

(A) against the TFP (standard Solow residual, Â), both according to our model (panel

a) and in the data (panel b). For panel (a), we plug in our model-simulated data into

(18). For panel (b), we impute all variables needed in (18) directly from the data. The

figure confirms that the aggregate productivity growth is overestimated by about 10

percentage points over the past 30 years if computer capital is not explicitly separated,

both in the data and also according to our model.

Summary of quantitative analysis There are two main findings from our quan-

titative analysis. First, constant occupation- and sector-specific technological progress

necessarily slows down aggregate productivity growth over time, given complementar-

ity across jobs and industries. Second, it was the dispersion in the growth rates across

occupations (i.e., routinization) that was most responsible for the aggregate produc-

tivity slowdown. This negative impact of routinization on the growth rate of aggregate

productivity was more or less perfectly counterbalanced by the impressive technologi-

cal progress specific to the computer industry and its spillover through inter-industry

linkages during the 1980s and the 1990s. The slower pace of the computer sector’s pro-

ductivity growth in recent years—and the associated deceleration of computer usage

by other industries since 2000—is finally revealing the negative impact that decades of

routinization has had on aggregate productivity growth.
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5 Concluding Remarks

We presented a model in which productivities grow at heterogeneous rates across oc-

cupations (routinization), and also across industries. In particular, to understand the

effect of the rise of the computer industry on aggregate productivity, we let its output

be used in the production of all industries as a distinct type of capital.

We showed that when occupations and industries are complementary to one another

and occupation- and sector-specific productivities grow at different rates, routinization

in particular causes a slowdown in aggregate productivity. But such a slowdown was

averted prior to the 2000s in the U.S., thanks to the rapid rise of the computer indus-

try’s productivity. It was only after the productivity of this sector slowed down that

routinization began to reveal its negative impact on aggregate productivity growth.

The main message of our model is that multiple layers of the economy (i.e., occu-

pations and sectors) can interact to generate interesting time trends that can help us

reconcile evidence at the occupation and sector levels with aggregate trends. More-

over, we have also highlighted the importance of inter-industry linkages by showcasing

that a single industry—in our case the computer industry—can have large effects on

aggregate variables once such a propagation mechanism is taken into account.

In reality, all industries are interlinked, not only by providing intermediate inputs

to one another as emphasized in some recent models (Acemoglu, Carvalho, Ozdaglar,

and Tahbaz-Salehi, 2012; Atalay, 2017) but also by serving different types of capital in

which all industries need to invest (as we have modeled here). Modeling such additional

layers of complexity is left for future research.
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A Tables and Figures Not Included in Text

Const FIRE Health High
serv.

Low
serv.

Dur Mine Non-
durable

Trade Comp-
uter

σ = .1 1.577 1.260 1.497 1.579 1.447 1.222 1.423 1.462 1.505 1.828
σ = .5 1.593 1.245 1.473 1.546 1.436 1.225 1.422 1.473 1.480 1.825
σ = .7 1.624 1.229 1.444 1.506 1.423 1.234 1.426 1.498 1.451 1.825
σ = .815 1.699 1.213 1.413 1.461 1.415 1.263 1.445 1.559 1.419 1.840

Table 8: Calibrated ρi’s across various σ’s
For each value of σ, the ρi’s are calibrated as explained in Section 4.1 except that σ is fixed. We found that
for values of σ above its benchmark value of 0.815, the model fit quickly becomes exponentially poor with no
solution as it approaches 1. The reason is that occupation-specific productivities Mj become so large that
it becomes impossible to simultaneously match employment share changes and measured TFP by industry.

Output Productivity
Data Model Data Model

1980- 3.41 3.81 0.43∗ 0.85
1990- 3.75 3.28 1.26 0.73
2000- 1.54 1.30 0.44 0.34

Table 9: Model Fit to Aggregate Output and Productivity
Data source: BEA NIPA. ∗Although average productivity growth seems low in the data for the 1980s, this
is more of a cyclical phenomena in the early 1980s that persisted from the late 1970s. For example, average
productivity growth from 1982-1990 is 1.18%.
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Fig. 17: Factor income shares by industry: model vs. data
In the model, traditional capital income shares are computed by first fixing that of the computer industry’s
to 1980 data as explained in Section 4.1, and then calibrating them for all other industries using a method
of moments. Data traditional capital income shares are computed by applying the procedure in Section 4.1
too all industries in 1980. All data from BEA NIPA and FAT.
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