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ABSTRACT

Recent medical literature suggests that vitamin D supplementation protects against acute 
respiratory tract infection. Humans exposed to sunlight produce vitamin D directly. This paper 
investigates how differences in sunlight, as measured over several years across states and during 
the same calendar month, affect influenza incidence. We find that sunlight strongly protects 
against influenza. This relationship is driven by sunlight in late summer and early fall, when there 
are sufficient quantities of both sunlight and influenza activity. A 10% increase in relative 
sunlight decreases the influenza index in September or October by 0.8 points on a 10-point scale. 
A second, complementary study employs a separate data set to study flu incidence in New York 
State counties. The results are strongly in accord. Remarkably, the national results are driven 
almost entirely by the severe H1N1 epidemic in fall 2009. That year the flu epidemic was intense, 
and it began early, so that September-October sunlight could play a major protective role. We 
also compare sunlight protection to protection produced by vitamin D supplementation in 
randomized trials. The sunlight effect was far greater. A plausible explanation is that exposure to 
sunlight is far broader, and sufficient to provide herd immunity.
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I. Introduction 
 
 Seasonal influenza has been with humans throughout history (Viboud and Epstein 2016). 

It imposes extreme costs on contemporary societies, with 2017-18 being a notable high outlier 

(CDC 2018). Beyond the significant discomfort to those it strikes, it saps productivity when 

individuals cannot work (Duarte et al. 2017) and absorbs health care resources (Schanzer and 

Schwartz 2013). Influenza also has less known long-range consequences. Notably, individuals 

exposed to influenza in utero have lower earnings as adults, are more likely to depend on 

government assistance (Almond 2006; Schwandt 2017), and are more likely to suffer from 

serious health problems later in life (Lin and Liu 2014). They are also more likely to have a heart 

attack (Kwong et al. 2018).  Finally, influenza severity can create capacity constraints on 

hospitals, magnifying existing disparities in whom a hospital chooses to admit (Alexander and 

Currie 2017). 

 Influenza is a type of viral respiratory infection. Traditional public health measures to 

combat it include vaccination (Maurer 2009; and White 2018) and paid sick leave to keep 

contagious workers at home (Barmby and Larguem 2009; and Pichler and Ziebarth 2017). 

Coincidental reductions in interpersonal contact (such as from holiday school closings and public 

transportation strikes) can also reduce prevalence (Adda 2016). Finally, a recent meta-analysis 

shows that ingested vitamin D pills help to protect against these types of infections (Martineau et 

al., 2017)).1  

This paper analyzes the potential of another mechanism for securing vitamin D: direct 

bodily production of vitamin D when exposed to sunlight (Holick 2007). This paper tests this 

mechanism’s performance directly by studying population-level vitamin D production by 

                                                            
1 The Martineau meta-analysis imposed stringent criteria for including a trial. This minimizes concerns about a 
variety of confounding factors, such as selection effects.  
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humans experiencing sunlight exposure. While we can ingest vitamin D from many sources, 

such as fish and fortified milk, passive exposure to sunlight is a much more effective source.2 

Sunlight as a source has two added benefits. First, unlike ingested vitamin D, which can become 

toxic at a certain concentration, the self-production mechanism does not generate toxic quantities 

(Holick 2007). Second, a far greater percent of the population in an area is exposed to sunlight 

than secures significant vitamin D for ingestion. Thus, the level of exposure is more likely to be 

in the range where herd immunity is significant. 

Normally, flu season is in the winter, when the average sunlight level is low, and so there is not enough 

statistical power to identify our result.  In 2009, though, the H1N1 flu epidemic hit.  It peaked in the late 

summer and early fall.  This provides us with sufficient concurrent variation that year in both sunlight and 

flu to study the relationship. This relationship between sunlight and flu has been studied in the 

broader medical literature (as by Charland et al. 2009; Grant and Giovannucci 2009; and 

Soebitantyo et al. 2015). Our study time period also overlaps the H1N1 outbreak in 2009. The 

relationship between H1N1 and Vitamin D has been studied specifically (e.g., Bruce et al. 2010; 

Momplaisir et al. 2012; Khare et al. 2012; Urashima et al. 2014), albeit with inconclusive results. 

This paper is the first to estimate the relationship by calendar month and to find that the effect is 

largest in late summer and early fall, when there is both substantial sunlight and sufficient 

influenza activity.3 We also are the first to perform our analysis at two levels of aggregation 

(across states in the U.S. and across counties in New York).  We find consistent results. 

This paper is also the first to provide a comparison with vitamin D supplementation. 

                                                            
2 The minimum amount of sunlight exposure (on head, neck, arm, and hands, without sunscreen) necessary to 
produce an effective allotment varies greatly by latitude, weather, time of year, and skin tone. In the summer it can 
be as short as a few minutes, whereas in the winter it can be over an hour. See 
 http://nadir.nilu.no/~olaeng/fastrt/VitD-ez_quartMEDandMED_v2.html to calculate the minimum effective 
exposure time given a certain set of conditions. 
 
3 More broadly, a recent randomized control trial of Vitamin D supplementation found that compared to a placebo, it 
did not lower the incidence of cardiovascular events or invasive cancer (Manson et al. 2018). 
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Sunlight-created vitamin D, as opposed to ingested-supplement vitamin D, automatically tends to 

enhance levels broadly within a community. 

   

II. Data 

 For influenza data, we used the CDC’s flu index. The CDC index aggregates data reports 

from the individual state health department influenza surveillance points, and then harmonizes 

the aggregate to a consistent 10-point scale. Each point on the index represents an additional 

standard deviation above the mean for the ratio of visits to outpatient healthcare providers by 

those with symptoms of influenza, relative to all outpatient visits (regardless of symptoms). 

Weekly state-level data are available, from October 2008 to the present.4 Some states, however, 

are missing individual weeks of data. Dropping the jurisdictions with missing flu data or sunlight 

data  leaves us with 28 states for our primary analysis sample (CDC 2017a).5  

 We combined this flu data with the National Solar Radiation Database (NSRDB)’s daily 

sunlight data for 2003-2016, which covers the District of Columbia and all states but Alaska. 

This data represents the solar radiation for a particular set of coordinates (in watts per square 

meter). We calculate our primary independent variable by downloading the hourly sunlight data 

for the population-weighted county centroid, averaging across each month, and then constructing 

a county population-weighted average across counties for each state-month (Census 2010). The 

dataset also includes data on temperature and humidity. While our influenza data only begins in 

2008, earlier data was used solely for placebo tests (NREL 2018). For one of our robustness 

                                                            
4 See Appendix A for more details about the how the index is calculated. 
 
5 Those 28 states are: Alabama, Arizona, California, Georgia, Hawaii, Illinois, Indiana, Kansas, Maine, 
Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Nebraska, Nevada, New Hampshire, New Jersey, Ohio 
Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Vermont, West Virginia, Wisconsin, and Wyoming. 
As shown in Appendix Table 1, when we include all 49 states with sunlight and flu data (plus the District of 
Columbia), using whatever data is available for each month, we find consistent results. 
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checks, we also include precipitation data (which is not in NSRDB) from NOAA’s Global 

Surface Summary of the Day (NOAA 2017), which utilizes data from 1,218 weather stations 

spread throughout the United States. We assigned this data to states by matching the station 

closest to the population-weighted centroid for each county and then averaging with in each 

state-month across counties as described above (Census 2010).6 

III. Methodology 

 As described above, Martineau et al. (2017)’s meta-analysis of randomized controls 

demonstrated significant benefits of vitamin D supplements for reducing the likelihood that an 

individual will contract an acute upper respiratory infection. Randomized controlled trials have 

served as the gold standard for epidemiological investigation. This approach follows an alternate 

path to methodological soundness. As an econometric study, it employs quasi-experimental 

variation to effectively create equivalent randomization. Implicitly, this approach controls for a 

wide number of variables. Moreover, it avoids the inevitable selection problems that arise when 

individuals must volunteer for randomized controlled trials. The current study thus employs an 

independent variable over which individuals had effectively no control: the deviation of a state's 

sunlight from its normal level. 

Ideally, an econometric study would run a two-stage instrumental variable analysis, 

where the first stage used sunlight to predict vitamin D levels and the second stage used 

predicted vitamin D levels to predict influenza. Unfortunately, we lack any large scale, geo-

tagged data on vitamin D levels. In its stead, our analysis employs a “reduced form” estimate of 

sunlight’s impact on influenza. Given that sunlight levels in a geographic area for a particular 

month vary randomly over the years, this provides us with a robust estimate.  

                                                            
6 The correlation between the state-month average temperature variables from the two data sets is 0.9957, 
suggestions that there is no issue with combining weather variables from both. 
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 Vitamin D is fat-soluble (unlike vitamin C, for example, which is water-soluble) and, 

therefore, has a half-life of between two weeks and two months (Mawer, Schaefer, Lumb, and 

Stanbury 1971; and Jones 2008). Thus, we are most interested in, and therefore calculate, the 

sunlight received over the month of the influenza report and the prior month. Our variable is a 

weighted average (by county population). Such weighting is important, because the more 

populous areas have a greater impact on the flu index, which is a function of the count of 

outpatient visits. We also calculate the monthly average flu index in each state from the weekly 

CDC data to get a monthly outcome variable. 

 We estimate the impact of the percent of deviation of sunlight (the change in log points) 

from its mean on deviations of the flu index from its mean as follows: 

smyysmsmysmy sunlightFlu   yearstatemonthγ )ln( . 

Flusmy is the flu index for state s in month m in year y. Sunlightsmy refers to the average sunlight 

for month m and the prior month (as described above) for state s in year y.7 γ is our coefficient of 

interest. Our preferred specification includes interaction terms (statemonth) for state-month 

fixed effects (for example, October in Kansas) and year fixed effects (for example, 2009).8 

Robust standard errors are clustered at the state level. Year fixed effects are also particularly 

appropriate given that the specific strains of influenza differ from year to year and vary 

significantly in their intensities (hence visits to the hospital if infected) and degrees of contagion. 

This specification follows our prior work examining the link between sunlight and vitamin D in 

                                                            
7 Wernerfelt, Slusky, and Zeckhauser (2017) use data from the American Time Use Survey to show that relatively 
increases in sunlight increase relative time spent outdoors. We rely on their validation of this measure of sunlight 
and do not repeat their analysis. 
 
8 Previous literature on the relationship between sunlight and flu (including Charland et al. 2009; Grant and 
Giovannucci 2009; and Soebitantyo et al. 2015) does not make use of fixed effects models. Given the substantial 
variation in latitude, weather sunlight and flu severity across states, fixed effects are crucial to ensure that estimates 
measure the impact of relative sunlight variation on relative flu variation, as opposed to merely identifying simple 
correlations. 
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relation to asthma. There, we found a strong protective impact of a pregnant woman’s exposure 

to sunlight on later-in-life asthma in her child (Wernerfelt, Slusky, and Zeckhauser 2017). We 

also check that our results retain significance after adding a variety of weather controls, 

calculated analogously as county population-weighted averages, which others have found to have 

a significant impact on health in general and influenza in particular (including Barreca 2012; 

Barreca and Shimshack 2012; Deschenes 2013; Barreca, Deschenes, and Guldi 2018; Barreca et 

al. 2016; and Huetal, Miller, and Molitor 2017) Finally, we repeat our analysis at the county 

level within New York State, following the methodology of Alexander and Currie (2017) for 

constructing a local measure of influenza intensity. 

 IV. Results 
 
 As mentioned above, our time period overlaps the H1N1 epidemic of 2009. This is 

crucial, because of both the timing and severity of that season (CDC 2017b), as shown in Figure 

1. Warmer colors are earlier years, and cooler colors later years. 
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Figure 1: Weekly National Influenza Intensity 

 
Here, we see that the 2009 influenza season was both the most severe and occurred the earliest in 

the year (weeks 33 to 48, corresponding to August to November). This level of greatest severity 

occurred during a time of the year with more sunlight overall (and therefore more room for 

sunlight variation) provides us with sufficient statistical power to identify our results.  No other 

flu year was an upside outlier. 

 Next, we examine variation in population-weighted sunlight averages (in kilojoules per 

square meter per day). Figure 2 shows the three-year (2009-2016) average. 
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Figure 2: Population-Weighted Geographic Sunlight Variation 
 

 
 
Notes: 3-year average (2009-2016) of daily county sunlight, weighted by county population. “No 
data” and “***” refer to incomplete influenza data for that state. 
 
We see the expected pattern, which is that the United States is sunnier in the south and west..  

 Figure 3 then shows the variation by state in the average influenza index. 
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Figure 3: Geographic Flu Variation 
 

 
 
Notes: 3-year average (2009-2016) of weekly state-level flu index. “No data” and “***” refer to 
incomplete influenza data for that state. 
 
Here we see a very different pattern than in Figure 2. Some sunny states have high flu levels 

(such as Texas and California), and some low flu levels (for instance, Arizona). Moreover, some 

less sunny states also have high flu levels (such as Illinois), and some have low flu levels (such 

as Maine and New Hampshire). This suggests that other state-specific factors strongly influence 

influenza levels, which makes controlling for state-specific fixed effects important. 

 Table 1 shows summary statistics for the flu index and population-weighted average 

sunlight levels, as well as other weather variables (used as additional controls.) 
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Table 1: Summary Statistics 
 

 (1) (2) (3) (4) (5) 
 N Mean StDev Min Max 
      
Flu index 2,772 2.059 2.109 1 10 
Sunlight (W/m2) 2,772 181.9 74.40 34.69 367.3 
Temperature (°F) 2,772 53.56 17.83 3.841 90.02 
Days/month temp <15°F 2,772 1.788 4.679 0 30.00 
Specific humidity (g water vapor / kg air) 2,772 12.15 6.656 1.576 28.43 
Days/month specific humidity < 6 g/kg 2,772 7.674 9.761 0 31.00 
Precipitation (inches / day) 2,772 5.988 5.904 0.00118 34.65 

 
Note: Unit of observation is a year-month for each of the 28 contiguous states that have complete 
flu and sunlight data. 
 
We see that the flu index varies between 1 and 10, with an average level of 2. Sunlight also 

varies widely, specifically by latitude, weather, and season. Temperature and humidity also vary 

extensively. 

 Table 2 shows our initial regression results for the impact of sunlight on the influenza 

index, using the state-month and year fixed effect strategy described above. 

Table 2: Main Results of Sunlight on Flu, All Months 
 

 (1) (2) (3) (4) 
     
Log sunlight for that month -2.359***  -2.277***  
 (0.438)  (0.414)  
Log sunlight for the prior month  -0.896* -0.550  
  (0.475) (0.448)  
Log sunlight for that month and 
the prior month 

   -2.621*** 
   (0.679) 

     
Observations 2,772 2,772 2,772 2,772 
R-squared 0.095 0.085 0.095 0.091 

 
Notes: All regressions include state-month and year fixed effects. Robust standard errors 
clustered at the state level in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 
Column (1) of Table 2 shows that a 10% increase in relative sunlight for a month would lead to a 

0.2-point decline in the influenza index for that month. In Column (2), we instead use the 
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sunlight from the prior month (given the long half-life of vitamin D) and find a substantial effect 

as well. Column (3) includes each sunlight variable separately, and finds that most of the effect is 

on the current month. Column (4) however shows that including instead a single variable for the 

average sunlight over the past two months gives a coefficient that is 93% of the sum of the two 

coefficients in Column (3). There is uncertainty around the length of vitamin D’s half-life 

(Mawer, Schaefer, Lumb, and Stanbury 1971; and Jones 2008). Hence, for the rest of the paper, 

we will include this broader two-month variable as our primary specification.  

 Table 2, however, includes months that have minimal influenza activity, and also months 

that have low levels of sunlight. Including either blunts the magnitude of the coefficients, and 

obscures any seasonality in the results. Figure 4 addresses this issue. It plots the ranges of 

influenza and sunlight by month. The top half of the figure shows that there is flu activity in the 

late summer, fall, and winter, but that activity is minimal in the spring and summer (except in 

outlier situations). The lower half shows the expected seasonal variation in sunlight levels, with 

large amounts of sunlight in the spring and summer and substantially less in the fall and winter. 
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Figure 4: Box Plots of Average Flu and Sunlight by Month 
 

 
 
Notes: Covers the28 contiguous states that have full flu and sunlight data. Outliers are shown in 
blue dots.  
 
 Motivated by these plots, Table 3 re-estimates our model for each month of flu data after 

including the impact of that month and the prior month’s sunlight. It includes only state fixed 

effects. Given that each column includes data for only one calendar month of each year, adding 

month fixed effects would have no influence. 
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Table 3: Month by Month9 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
             
Log 
sunlight 
for that 
month and 
the prior 
month 

2.314* 0.756 -0.145 0.887 0.484 -1.762 1.322 0.889 -6.752*** -5.593*** -0.594 1.435 
(1.344) (2.054) (2.286) (1.111) (0.901) (1.735) (1.569) (0.823) (2.340) (1.650) (2.090) (1.501) 

             
N 224 224 224 224 224 224 224 224 224 252 252 252 
R-squared 0.734 0.381 0.328 0.223 0.126 0.102 0.076 0.172 0.519 0.856 0.665 0.554 

 
Notes: All regressions include state and year fixed effects. Robust standard errors clustered at the state level in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1 
 

 
 

                                                            
9 Because the flu data begins in October 2008, the regressions for October, November, and December have an additional year of observations for each of the 28 
states included in the primary analytic sample. 



14 

Table 3 shows that our results are being driven by September influenza (that is, August and 

September sunlight), and to a lesser extent by October influenza (that is, September and October 

sunlight). These months meet the dual requirements (as shown in Figure 4) of non-trivial level of 

influenza activity and still-substantial levels of sunlight. For these two months, a 10% increase in 

relative sunlight levels leads to a 0.6-point decline in the influenza index. 

Given that Table 3 shows that the statistically significant results are found primarily in 

the late summer and early fall, and that Figure 1 shows that the majority of flu cases in this time 

of year were in the H1N1 epidemic of 2009, one might wonder whether our results are present in 

only 2009.  Table 4 shows several analyses for that year alone, and for all of the other years. 

Table 4: The Role of 2009 

Panel A: Only 2009 

 (1) (2) (3) (4) (5) (6) 
Outcome Variable Flu Index Difference in Flu Index from the 

State-Month Mean 
       
Log sunlight for that 
month and the prior 
month 

-0.984*** -8.457*** -5.475***    
(0.174) (1.059) (1.381)    

       
Difference in log 
sunlight for that month 
and the prior month 
from the state-month 
mean 

   -16.63*** -24.35*** -24.93*** 
   (2.829) (3.792) (4.011) 

       
N 336 84 56 336 84 56 
R-squared 0.023 0.313 0.122 0.176 0.283 0.407 
Months All Aug-Oct Sep-Oct All Aug-Oct Sep-Oct 

 
Notes: Robust standard errors clustered at the state level in parentheses. Only 2009. *** p<0.01, 
** p<0.05, * p<0.1 
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Panel B: Years Other Than 2009 

 (1) (2) (3) 
Outcome variable Flu Index 
  
    
Log sunlight for that month and 
the prior month 

1.087 -0.0773 -0.174 
(0.806) (0.341) (0.485) 

    
Observations 2,352 588 392 
R-squared 0.057 0.019 0.032 
Months All Aug-Oct Sep-Oct 

 
Notes: All regressions include state-month and year fixed effects. 2010-2016. Robust standard 
errors clustered at the state level in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 
Columns (1)-(3) in Panel A show the results of regressing the flu index for a state and month on 

the log sunlight for that month and the prior month for only the 12 months in 2009. For any 

category of months (all, August-October, or Setpember-October) there is a economically and 

statistically significant strong negative relationship between sunlight levels and flu. 

This association in theory could be endogenous, as individuals who chose to live in each 

of these states had prior understanding of how sunny it is each month.  Therefore, following the 

spirit of the main analysis above, we instead calculate differences from the state-month mean 

value, as log points for sunlight, and by points on flu index for its incidence. This then measures 

not the level of sunlight but the relative difference in sunlight when compared to an average year, 

which should be exogenous. Here we find much larger results. The results are almost identical 

with and without August flu. Going forward, we therefore stick to September and October flu. 

Finally, in Panel B, we re-estimate the main model in its normal form (i.e., year and state-

month fixed effects), but exluding the data from 2009.  Wefind no statistically significant results. 

This further supports our hypothesis that 2009 was a special flu year, with an early and intense 

season, and that it is driving our results. 
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 We can also see this result in graphical form. Figure 5 graphs the deviations in the 

September and October influenza index and the log level of August/September and 

September/October sunlight from the mean for each state and month.  

Figure 5: State-Month Deviations for Flu and Sunlight, September and October 
 

 
 
Notes: Red Circles = 2009; Orange Diamonds = 2010, Yellow Triangles = 2011, Green Squares 
= 2012, Blue Pluses = 2013, Purple X’s = 2014, Brown Small Circles = 2015, Black Small 
Diamonds = 2016. Line is linear best fit for 2009.  
 
The horizontal axis displays our independent variable, the log of sunlight by date and month. The 

vertical axis graphs our dependent variable, flu index by state and month, in the difference 

variables in log-points calculated for Table 4 above Thus, if sunlight is protective, then the 

greater its level for a state and a month, the lesser will be the flu index for that state and month. 

As can be seen by the vertical axis in Figure 5, consistent with Figure 1 above, the 2009 flu 
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season was substantially more severe than any of the other seasons in our sample. With this 

greater flu variation, a clear negative relationship emerges between relative differences in 

sunlight and relative differences in flu level. 

 To provide an additional check on the robustness of our results, Table 5 pools columns 9 

and 10 (September and October) in Table 3, and adds lagged sunlight for years before the 

treatment period as a placebo test. If the results are robust, such lagged variables should have 

little or no effect. Note that here we do not include any of the weather controls that are in Table 7 

below, since that would bias us against finding a statistically significant placebo result. 

 Table 5 shows that our primary coefficient retains its statistical significance, despite the 

inclusion of multiple other independent variables. Only a few coefficients on these other 

independent variables are significant at the 5% level. Some significance is to be expected when 

testing this number of hypotheses. Moreover, adding these variables hardly nudges upwards the 

R-square value. 
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Table 5: Retrospective Placebo Results for September and October Flu 
 

    (1) (2) (3) (4) (5) (6) 
         

Log sunlight for that 
month and the prior 
month 

 Treatment year -8.241*** -8.258*** -8.255*** -8.196*** -8.635*** -8.836*** 
  (1.214) (1.236) (1.261) (1.267) (1.322) (1.400) 
        
 Year -1  -0.283 -0.280 -0.189 -0.368 -0.926 
   (0.947) (0.978) (0.956) (1.003) (1.072) 
        
 Year -2   0.0289 0.133 -0.250 -0.596 
    (0.693) (0.721) (0.720) (0.840) 
        
 Year -3    0.667 0.345 -0.143 
     (0.828) (0.884) (0.982) 
        
 Year -4     -1.467* -1.932** 
      (0.824) (0.833) 
        
 Year -5      -1.619* 
       (0.906) 

          
   Observations 476 476 476 476 476 476 
   R-squared 0.707 0.707 0.707 0.707 0.708 0.710 

 
Notes: All regressions include state-month and year fixed effects. September and October only. Robust standard errors clustered at the 
state level in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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 Even given these findings on the powerful protective effect of sunlight, an effect 

supported by medical knowledge and documented with empirical analysis, there could be a 

concern that our results are picking up some other kind of environmental variation. One 

possibility would be temperature, given that it is known to have health effects (Deschenes 2013; 

Barreca, Deschenes, and Guldi 2018; Barreca et al. 2016; and Huetal, Miller, and Molitor 2017). 

Thus, following Barreca, Deschenes, and Guldi (2018) and Wernerfelt, Slusky, and Zeckhauser 

(2017), we now control for the number of days per month that a state experiences extreme cold 

(daily low temperature below 15°F). Such control is merited, because the influenza virus can 

survive better between hosts at lower temperatures (Polozov et al. 2008). Absolute humidity can 

also play a role in influenza mortality. Prior work identifies a negative nonlinear relationship 

between humidity and influenza, where levels below 6 g of water vapor per kg of air had a 

substantial impact (per Barreca 2016; Barreca and Shimshack 2012).10 Finally, we also include 

precipitation, as it is possible that a lack of sunlight is acting through this channel. 

 The results after adding these additional controls are shown in Table 6.  

  

                                                            
10 Specific humidity is not directly provided in the NSRDB data, so we calculated it using the available information 
on dew point and atmospheric pressure and the Tetens equation. See 
http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf for the necessary formulas. 
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Table 6: Results Controlling for Other Weather Measures, September and October 

 
Notes: All regressions include state-month and year fixed effects. September and October only. 
Robust standard errors clustered at the state level in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 
As shown in Table 6, adding these weather controls have minimal effect on our primary finding, 

and the exclusion of them if anything is biasing our main results toward zero. 

 We now turn to replicating our results at the sub-state level. First, we need to show that 

our results are consistent for at least some subsets of states.11 Table 7 shows our results 

stratifying by quartiles of overall average sunlight levels.12 Here we include all states (even those 

                                                            
11 As we’ll show below, our results are robust to omitting each state one at a time, and so are not driven by any 
individual state. 
 
12 1st Quartile: Delaware, District of Columbia, Maine, Michigan, Minnesota, Montana, New Hampshire, North 
Dakota, Oregon, Vermont, Washington, and Wisconsin 
 
2nd Quartile: Connecticut, Idaho, Illinois, Indiana, Iowa, Massachusetts, New Jersey, New York, Ohio, 
Pennsylvania, Rhode Island, South Dakota, and West Virginia,  
 
3rd Quartile: Alabama, Arkansas, Kansas, Kentucky, Maryland, Missouri, Nebraska, North Carolina, South Carolina, 
Tennessee, Utah, Virginia, and Wyoming 

 (1) (2) (3) (4) (5) (6) 
       
Log sunlight for that month 
and the prior month 

-8.382*** -8.350*** -10.17*** -9.160*** -8.383*** -11.74*** 
(1.362) (1.224) (1.279) (1.184) (1.144) (1.435) 

       
Controls (past two months):       
Log temperature  X     X 
       
Days per month below 15°F  X    X 
       
Log specific humidity    X   X 
       
Days per month specific 
humidity is below 6 g/kg 

   X  X 

       
Log precipitation     X X 
       
Observations 476 476 476 476 476 476 
R-squared 0.707 0.713 0.714 0.713 0.707 0.724 
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with missing weeks of influenza data) and all months, both to maximize statistical power and 

because the state we will eventually look within (New York) is one of these states with 

incomplete data. 

Table 7: Results Stratified by Average Sunniness of State 

 (1) (2) (3) (4) 
Quartile of Sunniness 1st 

(least sunny) 
2nd 3rd 4th 

(sunniest) 
     
Log sunlight for that month 
and the prior month 

-2.537*** -4.099*** -3.997*** -0.288 

 (0.651) (0.739) (0.877) (1.490) 
     
Observations 1,086 1,274 1,280 1,188 
R-squared 0.125 0.123 0.110 0.134 
Number of state-months 139 156 156 144 
States 12 13 13 12 

 
Notes: All regressions include state-month and year fixed effects and weather controls for that 
month and the prior month (log temperature, days per month below 15°F, log specific humidity, 
days per month specific humidity is below 6 g/kg, and log precipitation). Robust standard errors 
clustered at the state level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
 
Except the sunniest quartile of states, our results are broadly consistent across quartiles. We can 

therefore proceed to analyze within New York (which falls in the second quartile). 

The analysis below follows Alexander and Curie (2017), who construct a ZIP-code level 

weekly flu measure for New Jersey.  Here, we use SPARCS hospital discharge data (New York 

State Department of Health 2015) for all of New York for October 2008 (the earliest month we 

have CDC flu data) to June 2014 (the last year for which we have discharge data and the last 

quarter for which we have bed data). 

The method can be briefly described as follows: 

                                                                                                                                                                                                
4th Quartile: Arizona, California, Colorado, Florida, Georgia, Hawaii, Louisiana, Mississippi, Nevada, New Mexico, 
Oklahoma, and Texas 
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1. Take all emergency department discharges and all inpatient discharges with an 
emergency department indicator (since those admitted from the ED drop out of the ED 
file) 
 

2. Keep those emergency discharges with a influenza flu diagnoses (CCS13 code of 123) and 
inpatient discharges with an influenza diagnosis that was present on arrival. 

 
3. Use the admitted date to assign to an epidemiological week (always Sunday-Saturday, 

which is the CDC standard).14 
 

4. Sum for all New York State for each week and compare to the flu index: 
 
To validate this measure, following Alexander and Currie (2017) in Figure 6 we compare the 

weekly New York State flu index from the CDC (2017a) with the total number of influenza 

admissions that week in New York. 

                                                            
13 https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp 
 
14 https://wwwn.cdc.gov/nndss/document/MMWR_Week_overview.pdf, using the Stata command “epiweek” 
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Figure 6: Comparison of CDC and Discharge Flu Measures for New York State 

Panel A: CDC Flu Index 

 

Panel B: Hospital Emergency Room Visits for Flu 
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While our discharge-based measure is more continuous than the CDC’s measure, the two track 

each other remarkably well.  This is all the most significant given that the CDC measure is based 

on outpatient office visits and not emergency department visits. 

 We can use these counts of influenza discharges to construct a county-level measure, 

again following Alexander and Currie (2017).  Briefly, the steps are as follows: 

1. For each hospital, merge in bed data (New York State Department of Health 2016)15 and 
divide the number of admissions in that week by the number of beds to get the per bed 
admissions rate. 
 

2. For each county centroid (Census 2010), calculate the great circle distance to the 
geocoded coordinates of each hospital’s address. 

 
3. For each hospital within 100 miles, divide the per bed influenza rate by the distance 

between the county and the hospital and then sum to get the county level influenza flu 
index 

 
4. Average the county-week level index over a month per the main analysis above 

 
We then merged this county-level influenza measure with the county-level sunlight and weather 

data from NSRDB. New York has 62 counties, and so we actually have more units here than in 

the main analysis.  

                                                            
15 The current number of beds is available on the New York State Department of Health’s website.  Historical 
information through the second quarter of 2014 was obtained in response to an email request. 
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Table 8: New York State County-Level Analysis for Hospital-Based Influenza Measure 

 (1) (2) (3) (4) (5) (6) 
       
Log sunlight for 
that month 

-0.464*** -0.454***     
(0.0622) (0.0624)     

       
Log sunlight for 
the prior month 

 -0.0953**     
 (0.0367)     

       

Log sunlight for 
that month and 
the prior month 

  -0.654*** -2.715*** -3.741*** -2.817*** 
  (0.0821) (0.837) (1.064) (0.502) 

       
Weather Control     X X 
       
Dropping 
Outlier County 

     X 

       
Observations 4,832 4,832 4,832 744 744 732 
R-squared 0.108 0.109 0.108 0.276 0.339 0.512 
Months All All All Sep-Oct Sep-Oct Sep-Oct 
 
Notes: 2008-2014. All regressions include state-month and year fixed effects. For Columns (5) 
and (6), weather controls are for that month and the prior month and include log temperature, 
days per month below 15°F, log specific humidity, days per month specific humidity is below 6 
g/kg. Robust standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, 
* p<0.1.  
 
Across a wide variety of sunlight measures, sample months, and controls, we find very consistent 

results to those above at the national level. 

 Table 9 is analogous to Table 4, looking at only 2009 to see if our results appear in only 

that year, given that it is the source of our late summer / early fall flu variation, and at the rest of 

the years excluding 2009. 
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Table 9: The Role of 2009, New York Counties 

Panel A: Only 2009 

 (1) (2) (3) (4) (5) (6) 
Outcome Variable Flu Index Difference in Flu Index from the 

State-Month Mean 
       
Log sunlight for that 
month and the prior 
month 

-0.147*** -2.358*** -2.997***    
(0.0219) (0.387) (0.545)    

    -2.971*** -4.457** -13.15*** 
Difference in log 
sunlight for that month 
and the prior month 
from the state-month 
mean 

   (0.298) (1.980) (3.853) 
      

       
N 744 186 124 744 186 124 
R-squared 0.009 0.310 0.275 0.098 0.036 0.202 
Months All Aug-Oct Sep-Oct All Aug-Oct Sep-Oct 

 
Notes: Robust standard errors clustered at the county level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1 
 

Panel B: Years Other Than 2009 

 (1) (2) (3) 
Outcome variable Flu Index 
  
    
Log sunlight for that month and 
the prior month 

0.0156 -0.0790*** -0.130*** 
(0.0391) (0.0144) (0.0332) 

    
Observations 4,088 929 620 
R-squared 0.068 0.141 0.174 
Months All Aug-Oct Sep-Oct 

 
Notes: 2008, 2010-2014. All regressions include state-month and year fixed effects. Robust 
standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
 
Here, in Panel A, we see consistent results, both in the cross section and using differences from 

county-month averages across years. In Panel B, in Column (1), we see no statistically 

significant result, analogous to Table 4 above. In Columns (2) and (3), despite the exclusion of 
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2009, we still find a statistically significant result that relatively greater levels of fall sunlight led 

to relatively lower influenza intensity.  The coefficients, however, are a tiny fraction of what they 

were for 2009. 

 We can also create Figure 7, analogous to Figure 5, comparing the differences in sunlight 

and flu within counties across years. 

Figure 7: State-Month Deviations for Flu and Sunlight, September and October, Counties 
 

 
 

Notes: Pink Small Squares = 2008, Red Circles = 2009; Orange Diamonds = 2010, Yellow 
Triangles = 2011, Green Squares = 2012, Blue Pluses = 2013, Purple X’s = 2014, Brown Small 
Circles = 2015, Black Small Diamonds = 2016. Line is linear best fit for 2009.  
 
Here we see a similar relationship to above, where the variation is driven by 2009 (consistent 

with Figure 1 and Figure 5 above) and is downward sloping (more sunlight & less flu). The 
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results are robust to dropping the one outlier at the top left of the graph (Erie County)—see Table 

8, Column (6).  

Additional Robustness Checks 

 The tables in Appendix B conduct additional robustness checks. Appendix Table B1 

repeats the Table 2 analyses, but includes an unbalanced panel of all contiguous states, Hawaii, 

and D.C. (i.e., even those with missing influenza data in some weeks). It finds a comparable 

result. It also employs a linear specification and finds strongly statistically significant results, 

though obviously at different coefficient magnitudes. 

 Appendix Table B2 drops each of one of the 28 states in the primary specification, one at 

a time, to show that the main result is robust to the exclusion of any one particular state. 

Appendix Table B3 performs the analysis for only sunlight from each day of the week (e.g., the 

average sunlight on Sundays in a given month), and finds that any day’s sunlight has an impact. 

 Finally, Appendix Table B4 performs the analysis as a weekly level, with the primary 

variable calculated as the average over the previous eight weeks, and with state-week fixed 

effects. The results are consistent with those found at the month level, and including sunlight 

from a year prior yields a statistically insignificant placebo result. 

V. Discussion 

 Impact on welfare. We can attempt to estimate the impact of our results on welfare. As 

described above, each point on the influenza index represents an additional standard deviation 

above the mean of the non-flu week’s ratio of outpatients presenting with symptoms of influenza 

to all outpatients (CDC 2017a). The data is also available on the actual outpatient counts, though 

not broken down at the state level (CDC 2017b). 
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 As described above, the flu index indicates the number of standard deviations above the 

non-influenza mean of the share of outpatients who exhibit influenza symptoms. In the 2005-

2008 “pre-period,” this mean share is 1.03%, and the standard deviation is 0.394 percentage 

points.16  

 Figure 5 shows that the range of relative sunlight levels for September and October 

within state-months across years is roughly plus or minus 0.05 log points, that is, 10 percentage 

points. Thus, our coefficient for log sunlight shown in Table 5 corresponds to a 0.8241-point 

reduction in the influenza index, which can be interpreted as 0.8241 standard deviations. Given 

that one standard deviation is 0.394 percentage points, 0.8241 standard deviations represents 

0.32 percentage points. 

 The average annual total number of all outpatients in September and October (weeks 35 

to 43) in our study years (2009-2016) (from CDC 2017b) is 6,342,726. A 0.32 percentage point 

reduction would produce 20,595 fewer cases. 

 To translate this into a dollar amount, we need two additional pieces of information. First, 

Molinaria et al. (2007) estimate that the total cost of seasonal influenza is $87 billion per year.17 

Second, again using the CDC (2017b) data, the average annual number of influenza patients for 

2009-2016 is 697,025. Our reduction of 20,595 is 3.0%, which gives us an approximate 

monetary equivalent savings of $2.6 billion. 

 Herd Immunity. Giving 100 people in a town of perhaps 10,000 people a vitamin D 

supplement will offer extremely flu externalities of protection. But give that same town extra 

sunlight, and most of the community will produce vitamin D, thereby conveying an externality of 

                                                            
16 See Appendix A for additional calculation details. 
17 This estimate includes the cost of hospitalization and outpatient visits, lost earnings, and life-years lost. It does not 
include disutility from having the flu. 
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protection that triggers herd protection against influenza, a highly communicable disease.18 

Positing that supplements and sunlight-produced vitamin D are equivalently powerful, that 

externality could massively increase the magnitude of the protective effect.  

To test this conjecture, we compared our results to those for vitamin D supplementation. 

By contrast, the Martineau et al. (2017) meta analysis of 25 randomized controlled trials of 

vitamin D supplementation found an adjusted odds ratio of only 0.88 for acute respiratory tract 

infections. A likely contributor to the disparity relates to externalities promoting herd immunity 

when sunlight is the protective factor. It is possible, of course, that part or all of the disparity is 

because sunlight produces greater and/or more effective vitamin D than supplements. 

 Virus Deactivation.  Sunlight can also protect against influenza via a path apart from the 

production of vitamin D. Ultraviolet light deactivates the virus directly (Sagripanti and Lytle 

2007). The data in this paper provides no direct way to assess the relative contributions of these 

two mechanisms. However, we can be confident that the vitamin D path is consequential, as the 

Martineau et al. (2017) meta analysis demonstrates.  

                                                            
18 This herd immunity obviously would also benefit those who do not go outdoors, as the more outdoorsy people 
with whom they come in contact would be less likely to be infected and contagious. 
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VI. Conclusion 

 Sunlight, likely operating through the well-established channel of producing vitamin D , 

plays a significant role in flu incidence. A recent meta-analysis of 25 randomized controlled 

trials of vitamin D supplementation (Martineau et al. 2017) demonstrated significant benefits of 

such supplements for reducing the likelihood that an individual will contract an acute upper 

respiratory infection. The current study considers sunlight as an alternate, natural path through 

which humans can and do secure vitamin D. This study's findings reinforce the Martineau et al. 

findings.  

 Our main finding is that incremental sunlight in the late summer and early fall has the 

potential to reduce the incidence of influenza.  It did so dramatically in 2009, when the flu came 

early – giving the more powerful sunlight of the later summer the opportunity to protect – and in 

a year when it was particularly powerful. Apart from its methodological contributions, this 

study reinforces the long-held assertion that vitamin D protects against acute upper respiratory 

infections. One can secure vitamin D through supplements, or through a walk outdoors, 

particularly on a sunny day.  
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Appendix A 
 
 We use the weekly count of outpatient visits (both total and only those due to influenza) 

from the CDC (2017b) along with the documentation in the ILI data (CDC 2017c) to perform 

calculations regarding the influenza index. That index corresponds to the number of standard 

deviations the share of outpatient visits that report influenza symptoms that week differs when 

compared to all non-influenza weeks. A “non-influenza week” is defined as a week during which 

that week and its preceding week had fewer than 2% of all outpatient visits to healthcare 

providers indicating influenza. 

 As our study period is 2008-2016, we use the October 2005-September 2008 period as a 

“pre-period” to calibrate our index. We begin with the formal start of the season, which the CDC 

defines as week 40 (the first week of October). Unfortunately, whereas the ILI data (CDC 2017a) 

is available at the state level, the outpatient visit count data is only available nationally. 

Therefore, we perform our calculations at that level. 

 Nationally, of the 156 weeks in October 2005-September 2008, 108 fit the above 

definition of “non-influenza.” The mean share for those 108 weeks is 1.03%, and their standard 

deviation is 0.39 percentage points. 

 Given this, the method for calculating the influenza index is now to take all weeks, 

calculate the z-score[s] (that is, number of standard deviations above or below the mean), and 

then apply the following index definition: 

Flu index =  

1   if  Z < 0 

int(Z) +2  if 0  < Z <  8 
 
10   if Z > 8 
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So, in the interior range of the index, we can consider an additional index point as an additional 

standard deviation. 
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Appendix B 
 
Appendix Table B1: Results with States with Some Months Missing Flu Values, All Months 
 

 (1) (2) (3) (4) 
States All All Non Missing  Non Missing  
Months All Sept & Oct All Sept & Oct 
     
Log sunlight for 
that month and the 
prior month 

-2.792*** -5.766***   
(0.418) (0.948)   

     
Sunlight for that 
month and the 
prior month 
 

  -0.00998** -0.0407*** 
  (0.00374) (0.00677) 

Observations 4,835 826 2,772 476 
R-squared 0.103 0.735 0.087 0.700 

 
Notes: All regressions include state-month and year fixed effects. *** p<0.01, ** p<0.05, * 
p<0.1 
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Appendix Table B2: Dropping One State at a Time  

State dropped 
Log sunlight for that month and 

the prior month R-squared 
Alabama -7.843*** (1.31) 0.707 
Arizona -8.508*** (1.349) 0.719 

California -8.689*** (1.257) 0.719 
Georgia -8.204*** (1.404) 0.712 
Hawaii -8.138*** (1.307) 0.746 
Illinois -8.153*** (1.31) 0.715 
Indiana -8.190*** (1.327) 0.713 
Kansas -8.040*** (1.318) 0.71 
Maine -7.714*** (1.19) 0.735 

Massachusetts -8.119*** (1.301) 0.728 
Michigan -8.141*** (1.291) 0.727 

Minnesota -8.201*** (1.332) 0.724 
Mississippi -8.134*** (1.363) 0.71 

Missouri -8.031*** (1.331) 0.711 
Nebraksa -8.058*** (1.317) 0.718 

Nevada -8.737*** (1.254) 0.716 
New Hampshire -7.998*** (1.291) 0.731 

New Jersey -8.516*** (1.282) 0.727 
Ohio -8.407*** (1.321) 0.727 

Pennsylvania -8.484*** (1.347) 0.716 
Rhode Island -8.216*** (1.315) 0.722 

South Carolina -8.364*** (1.355) 0.712 
Tenneesee -8.161*** (1.368) 0.708 

Texas -7.972*** (1.321) 0.71 
Vermont -8.362*** (1.331) 0.73 

West Virginia -8.537*** (1.314) 0.724 
Wisconsin -8.461*** (1.312) 0.712 
Wyoming -8.389*** (1.358) 0.726 

 
Notes: N=459. September and October only. All regressions include state-month and year fixed 
effects. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table B3: By Days of the Week 
 

 (1) (2) (3) (4) (5) (6) (7) 
Log sunlight for that 
month and the prior 
month, only for: 

       

        
Sunday -1.689**       
 (0.653)       
Monday  -3.186***      
  (0.606)      
Tuesday   -3.978***     
   (0.670)     
Wednesday    -1.336**    
    (0.621)    
Thursday     -3.139***   
     (0.607)   
Friday      -2.921***  
      (0.606)  
Saturday       -2.604*** 
       (0.542) 
        
Observations 476 476 476 476 476 476 476 
R-squared 0.669 0.683 0.694 0.667 0.686 0.681 0.677 

 
Notes: September and October only. All regressions include state-month and year fixed effects. 
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table B4: Weekly Level Analysis 
 

 (1) (2) (3) (4) (5) (6) 
Months All Sept & Oct All Sept & Oct All Sept & Oct 
       
Log sunlight for that 
month: 
 

-2.475*** -7.292***     
(0.543) (0.886)     

Log sunlight for that 
month and the prior 
month 
 

  
-1.573** -7.413*** -1.583** -7.404*** 

  (0.660) (1.126) (0.675) (1.150) 

Log sunlight for that 
month and the prior 
month, one year 
earlier 
 

    -0.140 -1.327 
    (0.594) (1.032) 
      

Observations 12,068 2,072 12,068 2,072 12,068 2,072 
R-squared 0.078 0.667 0.072 0.645 0.072 0.646 

 
Notes: All regressions include state-week and year fixed effects. *** p<0.01, ** p<0.05, * p<0.1 

 


