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Abstract

Linking individuals across historical datasets relies on information such as name and age
that is both non-unique and prone to enumeration and transcription errors. These errors make
it impossible to find the correct match with certainty. We suggest a fully automated method for
linking historical datasets that enables researchers to create samples that minimize type I (false
positives) and type II (false negatives) errors. The first step of the method uses the Expectation-
Maximization (EM) algorithm, a standard tool in statistics, to compute the probability that
each two observations correspond to the same individual. The second step uses these estimated
probabilities to determine which records to use in the analysis. We provide codes to implement
this method.

1 Introduction

Linking individuals across datasets offers rich possibilities for economic history research.1 However,
because historical data often lack identifiers such as a Social Security Number, linking individuals
relies on personal information such as names and reported ages that is prone to enumeration
and digitization errors. These errors make it impossible to find the correct match with certainty.
Furthermore, multiple individuals with identical names and reported ages introduce the problem
of non-unique matches. Economic historians have developed useful ways to link individuals across
historical datasets in the presence of such issues (for example, Atack, Bateman, and Gregson 1992,
Ferrie 1996, Abramitzky, Boustan, and Eriksson 2012 and Feigenbaum 2016a; Massey 2017 and
Bailey et al. 2017 compare various matching algorithms).

A record matching method should aim to trade-off three goals. First, make as few false matches
as possible (minimize type I errors). Second, make as many true matches as possible (minimize

∗The first draft of this paper was part of Roy Mill’s dissertation completed at Stanford in June 2013. We have
benefited from conversations with Jaime Arellano-Bover, Leah Boustan, Raj Chetty, Katherine Eriksson, James
Feigenbaum, Tom Zohar and participants in the UC Berkeley complete count census workshop.

1Recent examples include Abramitzky, Boustan, and Eriksson 2012, 2013, 2014, 2016; Aizer et al. 2016; Bleakley
and Ferrie 2013, 2016; Collins and Wanamaker 2014, 2015, 2017; Eli, Salisbury, and Shertzer 2016; Eriksson 2015;
Feigenbaum 2016b, 2017; Ferrie 1997; Fouka 2016; Hornbeck and Naidu 2014; Kosack and Ward 2014; Long 2006;
Long and Ferrie 2013; Mill and Stein 2016; Modalsli 2017; Parman 2015; Pérez 2017; Salisbury 2014.
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type II errors). Third, for given levels of type I and type II errors, create linked samples that
resemble the population of interest as closely as possible. Different research projects may have
different implications for compromising on each of these three goals.

We suggest a fully automated method for linking historical datasets that enables researchers
to create samples at the frontier of these three goals. The method has two main steps. In the
first step, described in sections 3 and 4, we combine distances in reported names and ages between
each two potential records into a single score, roughly corresponding to the probability that both
records belong to the same individual. We estimate these probabilities using the Expectation-
Maximization (EM) algorithm, a standard technique in the statistical literature (Dempster, Laird,
and Rubin 1977; Winkler 1989). In the second step, described in section 5, we suggest a number
of decision rules that use these estimated probabilities to determine which records to use in the
analysis.

This new method for historical record linking helps address concerns about false positives.
Moreover, the method is flexible in that it can accommodate different researchers’ preferences
with respect to the tradeoff between match quality and sample size. We provide the codes that
implement the method on the following website:
https://people.stanford.edu/ranabr/matching-codes.

2 The matching problem

Imagine you are a researcher who wants to link people from the 1900 to the 1910 census. Imagine
that one observation in 1900 is “Ran Abramitzky” who is reported being 10 years old. When you
look up this record in 1910, you are looking for a “Ran Abramitzky” who is reported to be a 20 year
old. However, when you search the 1910 census, you find three potential matches. One is a “Ran
Abramitzky” who is reported to be a 21 year old. One is a “Ran Abramtziky” who is reported to
be a 20 year old. And one is a “Ran Abramitzky” who is reported to be a 20 year old.

How would you know which one is the true match? It may be tempting to choose the exact
match (third record). However, the other two may as well be the right one given that enumerators
can easily make spelling errors and people may not report their exact age but rather round it up
or down. An alternative is to declare this record as an impossible to match and drop it from the
analysis, but this will result in a smaller sample size.

This problem of record linkage in the presence of errors in identifying information was already
discussed almost 50 years ago in statistics (Fellegi and Sunter 1969). Much of this paper simply
translates the insights from the statistics literature to the problem of historical record linking.

More formally, we have two datasets containing the description of two populations: A and B.
Each pair of individuals from A and B are either a (true) match M = {(a, b); a = b, a ∈ A, b ∈ B},
or a (true) non-match U = {(a, b); a 6= b, a ∈ A, b ∈ B}. Denote the identifying information
available on individuals a and b in the datasets as α(a) and α(b). This information can include
variables such as names, birthplace, and age.

The researcher needs to come up with a procedure that, based on the information in α(a) and
α(b), classifies two records to be either matched (M) or unmatched (U). There are three goals that
need to be taken into account:

1. Make as few false matches as possible: This corresponds to minimizing type I errors (mini-
mizing false positives). In other words, we want the least number of cases where the potential
match is a false match but we deem it as matched.

2. Make as many true matches as possible: This corresponds to minimizing type II errors (mini-
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mizing false negatives). In other words, we want the least number of cases where the potential
match is a true match but we deem it as unmatched.

3. Create a sample that is as representative as possible: For given levels of type I and type II
errors, we want the linked sample to resemble the population from which we draw matches
as much as possible.

The first two goals describe a standard type 1 versus type 2 error trade-off, and are the ones
emphasized in the Fellegi and Sunter 1969 framework. The third goal is an additional challenge
that is faced by researchers in the social sciences who are interested in creating linked samples.

3 Selecting identifying and blocking variables and measuring string
distances

Before turning into calculating probabilities that each two records are a true match (section 4) and
choosing a match to be used in the analysis (section 5), there are three decisions that the researcher
has to make. This section discusses these three decisions in turn.

3.1 Selecting identifying variables

The first decision is to choose which identifying variables to use in the matching procedure. The
“Ran Abramitzky” example used name and age as identifying variables, but historical datasets
often contain other potentially identifying information such as gender, occupation, race, place of
birth and place of residence.

The selection of identifying variables will affect all three goals of the match. As we use more
variables, we are better able to distinguish between otherwise equally-likely matches. For exam-
ple, adding age to the list of identifying variables we are potentially able to distinguish between
two different Ran Abramitzkys. If we use county of residence, we can distinguish between two
Ran Abramitzkys who have the same age. While adding variables to the list of identifying vari-
ables may increase the match rates and decrease false match rates, it may also introduce non-
representativeness. For instance, a variable like county of residence appears in all censuses and can
significantly increase match rates and even help us identify the true individual. However, using
such a variable would result in excluding those who switched their county of residence from the
analysis. This exclusion will be an issue in a study on geographical mobility, but will not be an
issue in a study of fertility among residents who stay in Indiana. Similarly, using occupation for
matching will bias any analysis of occupational mobility, but may not be an issue when studying
outcomes unrelated to occupations.

The decision of whether to use a variable as an identifying variable thus depends on the research
question at hand. In most economics applications, using outcome variables such as occupation or
place of residence may be problematic. We suggest following standard practice in economic history
and only use predetermined individual level characteristics in the matching procedure. Usually,
this restriction reduces the matching variables to names, age and place of birth, which will be the
focus of the rest of the paper.2

2Another variable that could potentially be used in linking is race. However, using this variable could be prob-
lematic if individuals selectively report a different race in different historical sources, a pattern documented in Mill
and Stein 2016 and Nix and Qian 2015.
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3.2 Blocking

The second decision has to do with reducing the computational requirements. In principle, we
might want to compare every individual in dataset A to every individual in dataset B. In practice,
this is currently not possible computationally unless the size of datasets A and B is very small.
The reason is that we would need to perform nA×nB comparisons, where nA and nB are the sizes
of datasets A and B, respectively. For example, if you need to match 100 records in dataset A to
100 records in dataset B, you will need to make 100*100 = 10,000 comparisons and assign 10,000
probabilities. In a census of millions of people, this can be computationally impractical.

The solution to this computational issue is to only compare individuals who agree on certain
blocking variables. Ideal blocking variables are those for which mistakes are very unlikely. For
instance, if individuals rarely misreport their state of birth, we would be unlikely to miss any true
matches by not comparing individuals who declared different states of birth. Further reductions
in computational time can be obtained by blocking on gender, or the first letter of the last name.
Nevertheless, even though finer blocking results in a lower number of comparisons, blocking is not
an innocuous process because it rules out any potential matches across blocks. For instance, if we
block by the first letter of the first name, we rule out the name Emmanuel from ever matching to
the name Immanuel.

Similar to the choice of identifying variables, the decision on which variables to block on depends
on the research question. For example, it will not make sense to block on race in a study of racial
passing. Current applications of this method (Mill and Stein 2016; Pérez 2017) restrict the set of
comparisons to individuals who are: (1) born on the same state, (2) have the same first letter in
first and last names and, (3) have an age difference no larger than five years in absolute value.

3.3 Measuring string distances

The third decision is how to map differences in name spellings into a numerical distance. There
is more than one way to compare two strings to each other. One straightforward option is to use
an indicator of whether the names are exactly the same. In our example, 1910 “Ran Abramitzky”
will have a distance of 0 and 1910 “Ran Abramtziky” will have a distance of 1 from 1900 “Ran
Abramitzky”. Another option is to use a phonetic algorithm such as NYSIIS instead of the exact
name. When using a phonetic algorithm, words that have a similar pronunciation are assigned the
same phonetic code. These phonetic codes are designed to overcome name spelling discrepancies
that stem from the translation of a heard name to a written name.3 A third option is to use
a continuous string distance measure. When discrepancies in names stem mainly from hearing
a name to writing it down, then using phonetic codes such as NYSIIS is a reasonable solution.
When the discrepancies come from the exact spelling or digitization of the handwritten record,
then string distances can produce better results. Phonetic code match can be used in addition to
string distances.

There are many string distance measures available in the literature. We use the Jaro-Winkler
string distance (Jaro 1989; Winkler 2006) since it is specifically designed for the comparison of
names and was developed in the context of record linking. It calculates a function of the number
of matching characters and required transpositions between the two compared strings (names). It
gives a higher weight to discrepancies in the first part of the string, where errors are less likely to be
made. The original measure is a measure of agreement spanning between 0 (no common characters)

3Recent economic history papers use the NYSIIS algorithm. Other examples of phonetic algorithms include
Soundex (Odell and Russell 1918) and Metaphone (Philips 1990). Some phonetic algorithms are better suited for
dealing with languages other than English. For example, the Spanish Metaphone algorithm is designed to match
Spanish names (Mosquera, Lloret, and Moreda 2012).
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and 1 (exact string match). Since we want to treat all discrepancies in identifying variables as
distances, we actually calculate 1 minus the Jaro-Winkler distance as originally defined, thereby
having 0 as the distance between two exact names and 1 as the distance between two strings with
no common characters.

In the Ran Abramitzky example, “Abramtziky” will be coded as a different name than
“Abramitzky” using the NYIIS algorithm, but the Jaro-Winkler distance between these two names
will be very low (0.02). At the same time, there are examples in which names have the same NYIIS
code but a high Jaro-Winkler distance.4

One advantage of string distances is that they are more continuous in nature and can get a wide
range of values, unlike a zero/one comparison of exact names or phonetic codes. The wider range
of values allows the researcher to conduct sensitivity checks.

4 Assigning a probability that each two records are a true match

After calculating name and other distances such as distances in reported age, we want to combine
them into a single distance metric. A natural meaningful measure is the probability that a record
pair is a true match. Several ways to estimate this probability have been suggested in non-historical
settings (see Winkler 2006 for a rich survey of literature on the subject). In historical settings, Rug-
gles 2011 and Feigenbaum 2016a estimate these probabilities using a training sample of manually
classified records. We suggest an alternative method that does not rely on a training sample, which
has the advantage of making the matching easier to replicate by other researchers. The method has
been used for record linkage in non-historical contexts and is an application of the Expectation-
Maximization (EM) algorithm.5 This section describes how to apply the EM algorithm to the
problem of matching historical records.

To gain intuition about the method, imagine that there are 10 Ran Abramitzkys in the 1900
census, and 10 Ran Abramitzkys in the 1910 census. Each Ran Abramitzky in 1900 is aged from 1
to 10 year old. Our goal is to link these two datasets using information on reported ages, but the
challenge is that age is potentially misreported in the 1910 census. For example, somebody who is
reported to be 11 in 1900 is reported to be 20 in 1910 instead of 21. This misreporting implies that
the age distance will sometimes be greater than zero when comparing two records that belong to
the same Ran Abramitzky. Each Ran Abramitzky in 1900 has 10 potential matches in 1910, so we
would like to assign a probability that each of these 10 potential matches is the true one. There
are 10 Ran Abramitzkys, so there are 100 such probabilities to assign.

To illustrate this example, we simulate 100 age distances. We assume that 10 of these distances
correspond to a comparison of true matches, while 90 of them correspond to a comparison of true
non-matches. The distances that correspond to true matches are drawn from a normal distribution
with mean 0 and standard deviation of 1. The distances that correspond to true non-matches are
drawn from a normal distribution with mean 5 and a standard deviation of 1. Panel (a) of figure 1
shows the distribution of observed age distances in this example, if we knew what are true matches
and what are non-matches. There are 100 such distances drawn in this graph, each represented
as a circle. These age distances come from two different “populations”: “matches” (that is, the
observations belong to the same individual, corresponding to the 10 circles drawn in red) and “non-
matches” (that is, the observations do not belong to the same individual, corresponding to the 90

4For instance, “James Tennes” and “James Thomas” have the same NYSIIS code, but the Jaro-Winkler distance
between “Tennes” and “Thomas” is 0.4.

5The general EM algorithm was described in Dempster, Laird, and Rubin 1977. The specific use of the EM
algorithm for record linkage problems was developed by Winkler 1989. For a Bayesian approach to record linkage
problems see Larsen 2005.
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circles drawn in blue). However, the challenge is that in reality we do not know whether each
distance belongs to a comparison of true matches (red) or to a comparison of non-matches (blue).
Instead, our actual data look like panel (b) in figure 1. The goal is to use these data to estimate
the likelihood that each distance corresponds to a true match, even though we do now know for
sure what records are a true match and what records are a non-match.

The EM algorithm starts from assuming that distances between records follow a particular
type of distribution, and allowing two different distributions for matches and non-matches. For
instance, one possible assumption is that, with probability pM , distances are distributed normally
with mean µM and standard deviation σM and, with probability 1− pM , distances are distributed
normally with mean µU and standard deviation σU The procedure then estimates pM , µM , σM ,
µU , and σU , and uses the parameter estimates to identify two separate clusters –one from which
true matches are more likely to come and one from which non-matches are more likely to come.
Intuitively, we expect age distances to be on average smaller when comparing the same individual
than when comparing different individuals. Panel (c) shows the estimated distributions under the
assumption that distances are normally distributed. Given these estimated distributions, it is clear
that observations that are closer to zero are going to be predicted to be more likely to belong to
the population of true matches. In addition, it is clear given the size of each of the clusters that
the fraction of true matches (pM ) is smaller than the fraction of true non-matches (1− pM ).

At the same time, the degree of confidence on each of the links will depend on how informative
the identifying information (in this case, reported ages) is. The further apart µM is from µU , the
more confident we will be in distinguishing matches and non-matches. Similarly, when σM and
σU are small (that is, if there is very little noise in the identifying information), then we will have
more confidence in distinguishing matches and non-matches (there will be less overlap between the
estimated distributions).

Imagine now that you try to link both Ran Abramitzky and Santiago Pérez. This will add to the
problem the string distance dimension in addition to the difference in reported age. The intuition
remains the same, but clustering will be two-dimensional in this case. Figure 2 shows an example
in which records differ both with respect to their reported names (x-axis) and ages (y-axis). In
panel (a), each data point is labelled as if we knew which records belong to true matches. Panel
(b) is how our actual data look like: observations are not labelled as belonging to a comparison of
true matches or as a comparison of true non-matches.

More generally, consider the set of ordered pairs of records A×B and partition this set to the set
of true matches (M), if the records in A and B describe the same person, and the complementing set
of true non-matches (U). Suppose that the distance, or the degree of non-agreement, in identifying
variable k for pair i ∈ A × B is given by γik, and the vector of such distance measures for pair i
is γi. Our goal is to estimate for each pair how likely it is to be a true match given the vector of
distances in the identifying variables. A pair with shorter distances should be more likely to be a
match relative to a non-match.

The probability that a pair i in A × B is a true match conditional on the distances in the
identifying variables γi (in our case, reported names and year of birth) can be inferred from Bayes
Rule as:

Pr [i ∈M |γi ] =
Pr [γi ∩ i ∈M ]

Pr [γi]
(1)

However, we obviously do not really know if pairs are true matches (in M) or non-matches (in U).
In other words, pairs are not labeled as being in M or in U . In the data, we observe a sample
analogue of Pr [γi] (that is, we observe the empirical distribution of distances across pairs of records,
which in our previous example corresponds to panel (b) of figure 1). At the same time, we know
that:
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Figure 1: Illustration of the EM algorithm
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(b) Actual data (true matches are unknown)
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This figure shows an hypothetical example that illustrates the EM algorithm. Panel (a) shows the situation in which
the researchers knows whether the distances correspond to true matches or to true non-matches. Panel (b) shows the
actual data, in which true matches are unknown. Panel (c) shows the estimated distributions under the assumption
that the distances observed in panel (b) stem from two normal distributions, one corresponding to true matches and
one corresponding to true non-matches.
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Figure 2: Illustration of the EM algorithm, two-dimensional case
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(b) Actual data (true matches are unknown)
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This figure shows the case in which observations are compared to each other along two dimensions instead: reported
ages and names. Panel (a) shows the situation in which the researchers knows whether the distances correspond to
true matches or to true non-matches. Panel (b) shows the actual data, in which true matches are unknown.

Pr [γi] = Pr (γi| i ∈M) · pM + Pr (γi| i ∈ U) · (1− pM ) (2)

where pM is the unconditional probability that a pair is a match.
The method requires that we assume a statistical distribution for Pr [γi| i ∈M ] and Pr [γi| i ∈ U ].

We can then use maximum likelihood to find the parameters of the statistical distribution that max-
imize the likelihood of observing the observed distances. Once we find these parameters, we can
compute:

Pr [i ∈M |γi ] =
Pr [γi| i ∈M ] · pM

Pr (γi| i ∈M) · pM + Pr (γi| i ∈ U) · (1− pM )
(3)

That is, the probability that a pair of observations is a match given the observed distances in
identifying variables.

If we observed true match status, finding the parameters that maximize the likelihood function
would be a straightforward exercise. The reason why we need the EM algorithm to estimate these
parameters is because we do not observe true match status, which makes the direct maximization
of the likelihood function complicated computationally. The EM algorithm is just a numerical tool
that enables us to estimate these parameters without information on true match status.

In particular, the EM algorithm suggests an iterative process to estimate the parameters of the
distributions above. It starts by calculating the probability of being a true match (left-hand-side
of (1)) given a guess of the distributions of distances conditional on being a match or a non-
match (right-hand-side of (1)). Then, based on these probabilities it makes a better guess of the
same conditional distribution for another iteration. This process is repeated until the parameters
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converge. According to Dempster, Laird, and Rubin 1977 (and specifically in this context according
to Winkler 1989) the algorithm reaches a local maximum of the likelihood function.

The EM Algorithm

1. Define a distribution family for Pr [γi| i ∈M ] ,Pr [γi| i ∈ U ]. The algorithm will estimate the
parameters of the distributions. Denote the vectors of unknown distributional parameters as
θs where s ∈ {M,U}.

(a) Usually, a conditional independence assumption is invoked: distances in each identifying
variable are independent of distances in the other variables (conditional on being a
match/non-match). Thus, a distribution can be defined separately for each variable k:
Pr [γik| i ∈M ] and Pr [γik| i ∈ U ].

(b) For binary variables (e.g., state of birth different or not) the distribution is binomial and
the parameter of interest will be pk (the probability to have the same state of birth).
For a continuous variable, there could be many families of distributions. If, for example,
it is distributed log-normally, then µk and σk need to be estimated.

2. Guess initial values for parameters of the conditional distributions θ̂
(0)
s and the unconditional

probability to be a true match p̂
(0)
M

3. Loop over steps E and M until convergence:

(a) E-step: Given θ̂
(t)
s and p̂

(t)
M , infer w

(t)
i according to Equation (1):6

w
(t)
i ≡ Pr

[
i ∈M

∣∣∣γi, θ̂(t), p̂(t)M ] =
Pr
(
γi

∣∣∣θ̂(t)M ) p̂(t)M
Pr
(
γi

∣∣∣θ̂(t)M ) p̂(t)M + Pr
(
γi

∣∣∣θ̂(t)U )(1− p̂(t)M
) (4)

(b) M-step: Given w
(t)
i , infer θ̂

(t+1)
s and p̂

(t+1)
M using Maximum Likelihood. The distribution

of γi – an observable measure – is given by:

Pr [γi] = Pr (γi| i ∈M) · pM + Pr (γi| i ∈ U) · (1− pM ) (5)

i. Hypothetically, if the classification of pairs to true matches and nonmatches was
known and denoted by zi = I {i ∈M} then we could have estimated θ̂M and θ̂U
from the sample subsets of true matches and nonmatches:

logL (γ, z, θ, pM ) =

n∑
i=1

[zi log pM Pr (γi| θM ) + (6)

(1− zi) log (1− pM ) Pr (γi| θU )]

ii. Since the classification zi is unknown we replace w̄
(t)
i instead of zi in (6). The

6This estimation is also referred to as Maximum A-Posteriori (MAP)
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maximum likelihood estimates are then:

p̂
(t+1)
M =

1

N

N∑
i=1

w̄
(t)
i

θ̂
(t+1)
M = arg max

θ

{
N∑
i=1

w̄
(t)
i log Pr [γi| θ]

}
(7)

θ̂
(t+1)
U = arg max

θ

{
N∑
i=1

(
1− w̄(t)

i

)
log Pr [γi| θ]

}

After obtaining the maximum likelihood estimates, we can then compute, for any given pair i
in A×B an estimate of:

Pr [i ∈M |γi ] (8)

The maximum likelihood procedure described above requires assuming an statistical distribution
for the observed distances. The distribution selected for the birth year distance was multinomial
with six possible outcomes, each corresponding to an age difference ranging from 0 to 5 years
in absolute value. Name distances, which are spanning the [0,1] range, were grouped in four
ranges following Winkler 1988, roughly corresponding to agreement, partial agreement, partial
disagreement and disagreement: [0, 0.067], (0.067,0.12], (0.12, 0.25], and (0.25,1]. We then assumed
a multinomial distribution of which range a name distance falls into.

5 Choosing records to use in the analysis

Now that we have estimates of the probabilities that each two records are a true match, we can use
these probabilities to choose which matches to use in the analysis. There are several ways to choose
a match. One option, for example, is to just choose the match that yields the highest probability of
being true. One issue with this approach, however, is that the highest probability can be low, for
example 30% of being the true match. Even if the match with the highest probability is very likely
(say 90% chance of being the true match), another issue is that there could be a second best match
with very similar probability to be the true match (say 80%).7 A better option is thus to only
choose matches with high enough probability to be the true match (say 90%), for which the second
best match is unlikely to be the true one (say below 15%).This option will also exclude observations
that are non-unique, i.e. observations that have the exact same name and age combination.

Formally, this decision rule can be stated in the following way: To be considered a unique match
for a record in dataset A, a record in dataset B has to satisfy three conditions. Specifically, the
researcher should:

1. choose the match with highest probability of being a true match out of all potential matches
for the record in A.

2. choose a match that is true with a sufficiently high probability, i.e. a match with a probability
p1 that satisfies p1 ≥ p for a given p ∈ (0, 1] chosen by the researcher.

3. choose a match for which the second best match is unlikely, i.e. the match score of the next
best match, denoted as p2, satisfies p1/p2 ≥ l for a given l ∈ [1,∞) chosen by the researcher.

7The EM algorithm does not require these probabilities to add up to 1. That is, for a given record a ∈ A, the
sum of the probabilities across all potential matches in B will not necessarily add up to one. The reason is that the
EM method does not assume that each observation in a has exactly one match in B.
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Similarly, to be considered a unique match for a record in dataset B, a record in dataset A has
to satisfy these three conditions.8 Our linked sample is the set of pairs of records (a, b) in A × B
for which: (1) a matches uniquely to b, and (2) b matches uniquely to a.

Depending on the choice of values for p and l, it is possible to generate samples with more
or less confidence on the links. Intuitively, higher values of p and l will yield samples with fewer
observations but higher average quality of the links. This possibility enables researchers to assess
the robustness of their findings to the quality of the links.

There are analogies between these decision rules and existing automated linking methods in
economic history, such as Ferrie 1996 and Abramitzky, Boustan, and Eriksson 2012. When a
method requires exact match of the names, it essentially requires that the first best match will
have a high enough probability. Similarly, when a method requires uniqueness of the names within
a five years window, it essentially requires that the second best match will be unlikely. Requiring
both exact match of names and uniqueness within a five years window is parallel to requiring both
that the first best match has a high probability and that the second best match is unlikely.

One promising direction not discussed in this paper is how to adjust regression coefficients when
dealing with imperfectly linked data. While there is a literature in statistics on this topic (see, for
instance, Lahiri and Larsen 2005), these methods are unfortunately still not directly applicable to
the situations that typically arise in historical linkage problems. For instance, Lahiri and Larsen
2005 assume that all of the observations in one dataset have a potential link in the other, which
does not hold when linking historical censuses due to mortality and underenumeration.

6 Intuition of the method and limitations

As described above, the goal of the method is to split the full set of pairs of records into two groups
(“clusters”): matches and non-matches. The simplest way of thinking about this grouping problem
would be to use k-means clustering. In this approach, the data are split into k clusters so as to (1)
minimize the within-cluster differences across observations and (2) maximize the between-clusters
differences. Intuitively, pairs of records that are closer to each other with respect to their name
and age distances should be grouped together in the cluster of “matches”, and observations that
are further away should be grouped together in the cluster of “non-matches”. The EM algorithm
instead computes probabilities of observations belonging to each of the clusters. The goal of the
method is to maximize the overall probability or likelihood of the data, given the assigned clusters.

Ideally, we would like pairs of records that are close to each other in terms of identifying
information to belong to the cluster of matches, while observations that are further apart to belong
to the cluster of non-matches. However, a limitation of the approach is that there is no guarantee
that the parameters that locally maximize the likelihood function will split the sample into matches
and non-matches. Given this, one important sanity check is that the estimated match probabilities
are indeed decreasing in the distance between observations. Formally, we want that:

γi ≤ γj =⇒ Pr [i ∈M |γi ] ≥ Pr [j ∈M |γj ] (9)

which, based on (1), is equivalent to having monotone (decreasing) likelihood ratio between
Pr (γ| i ∈M) and Pr (γ| i ∈ U):

γi ≤ γj =⇒ Pr (γi| i ∈M)

Pr (γi| i ∈ U)
≥ Pr (γj | j ∈M)

Pr (γj | j ∈ U)
(10)

8We impose this symmetry condition because linking historical censuses is an example of one-to-one linking.
Imposing this condition prevents situations in which a record b in B is the best candidate for a record a in A, but
the best candidate for b in B is a different record a′ in A.
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In the case of conditional independent distributions, this will be satisfied by a monotone like-
lihood ratio in each of the distances. A more sophisticated version of the code could impose this
sanity check as further restrictions on the probabilities (rather than just checking ex post that they
are satisfied).9

One case in which the algorithm typically fails is when the fraction of true matches (pM ) is very
small. One fix to this issue is to use what Yancey 2002 calls a “match enriched sample”: a sample in
which we oversample observations that are ex-ante more likely to be a true match. One adjustment
that works well in practice is to restrict the set of comparisons to individuals who match on place of
birth, and first letter of the first and last names. This adjustment largely excludes pairs of records
who are very unlikely to belong to the same individual. This issue with the EM algorithm is an
additional reason why blocking on some identifying variables is useful.

7 Conclusion

Fully-automated methods for linking historical records are transparent and easy to replicate. We
suggest a fully automated method that adapts standard techniques from the statistical literature
to the problem of historical record linkage. While this method is more computationally expensive
than automated methods based on simple name and age comparisons, it enables researchers to
create samples at the frontier of minimizing type I and type II errors. A researcher can choose to
create a sample with very low rates of false positives (at the cost of more false negatives), a sample
with very low rates of false negatives (at the cost of more false positives), or anything in between.

9If there are no duplicates in either datasets A and B, the unconditional match probability pM cannot be higher

than
min(na, nb)

na × nb
. Hence, another restriction on the parameters that should be checked is whether the condition

that pM ≤
min(na, nb)

na × nb
holds.
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