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1 Introduction

Innovations in energy efficiency have been cited as a primary means to curb the acceleration of cli-

mate change (Granade et al., 2009). Despite this promise, energy efficient technologies are consistently

adopted at low rates (Allcott and Taubinsky, 2015).1 Given the repercussions of rising global temper-

atures due to climate change (IPCC, 2013), and the startling rate of growth of global energy demand

(Wolfram et al., 2012), achieving high adoption rates of technologies that mitigate climate change is

a key policy priority.2 In this study, we estimate the productivity consequences of the adoption of

energy-saving technology, using daily production line-level data from a large garment firm operating

factory units in and around Bangalore, India. We show that the introduction of light-emitting diode

(LED) technology on factory floors substantially attenuates the negative relationship between tem-

perature and productivity, measured here as production line efficiency (realized output over target

output).3

LED lighting modulates the temperature-productivity gradient through reduced heat dissipation:

LED technology, in addition to being 7 times more energy-efficient than standard fluorescent lighting

in our setting, also emits about one-seventh the heat. We study the impacts of the staggered roll-

out of LEDs over more than three years on the sewing floors of 26 garment factories.4 The switch

to LED lighting was largely driven by changes in international buyers’ recommendations regarding

environmental sustainability for their suppliers. We demonstrate in a variety of checks that the timing

of the roll-out across factory units was not systematically related to temperature, nor to a variety of

business processes.

We estimate the extent to which the introduction of LED lighting, through the reduced dissipation

1Recent studies point to information frictions, or a lack of salience of information, as key determinants of this “efficiency
gap”: if individuals and firms knew the true returns to investment in energy efficiency, or if information were made more
salient, widespread adoption of these technologies would occur more quickly (Allcott and Greenstone, 2012). It may also be
that low adoption is simply a result of the fact that returns are smaller, or costs higher, in practice than engineering projections
predict (Fowlie et al., 2015; Ryan, 2017).

2Economic productivity is projected to suffer, not only due to the increased frequency of extreme weather events (see, e.g.,
Dell et al. (2012); Deschênes and Greenstone (2007); Guiteras (2009); Hsiang (2010); Kala et al. (2012); Kurukulasuriya et al.
(2006); Lobell et al. (2011); Parker (2000)), but also because excessive heat increases health risks (Burgess et al., 2011, 2014;
Danet et al., 1999; Deschênes and Greenstone, 2011; Kudamatsu et al., 2012) and decreases the body’s capacity for exertion
(Kjellstrom et al., 2009; Lemke and Kjellstrom, 2012; Sudarshan et al., 2015).

3Impacts of temperature are highly nonlinear: for outdoor wet-bulb temperatures below 19oC (the dry-bulb equivalent
at average humidity levels in our sample is 27-28oC), temperature has a very small impact on efficiency. But for mean
daily temperatures above this cutoff (about one quarter of production days), there is a large negative impact on efficiency
of approximately 2 efficiency points per degree Celsius increase in temperature. This nonlinear gradient is remarkably
consistent with the physiology of temperature effects: at high ambient temperatures, the body loses the ability to dissipate
heat, and begins the process of heat absorption, which negatively affects performance (Hancock et al., 2007).

4Our data include 30 factories (all owned by the same garment firm), four of which did not receive LED lighting.
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of heat on factory floors, flattens the temperature-efficiency gradient. Specifically, LED installation

has no impact on the gradient for wet-bulb temperatures below the 19oC wet bulb globe temperature

(WBGT) cutoff, but attenuates the negative slope of the gradient by more than 80 percent for temper-

atures above this threshold. The reason that LED installation flattens only the top of the temperature-

productivity gradient has to do with the nonlinear nature of the gradient itself. An engineering study

we commissioned found that bulb replacement with LEDs likely led to a reduction of indoor temper-

ature by about 2.4oC (which is about 1.42 oC in wet bulb globe temperature (WBGT), the measure of

temperature we use), and that this reduction was approximately constant across the temperature distri-

bution. The reason mitigation through LED installation was larger where the temperature-productivity

gradient was steeper is then made clear: the introduction of LEDs constituted a movement leftward

along the gradient, and this movement generates large increases in efficiency in high temperature

ranges, and small efficiency increases elsewhere.

We present these results in a variety of ways. Our baseline specification uses linear splines with

a knot at the wet-bulb temperature of 19oC. We also estimate semi-parametric models that allow for

flexibility in the impact of temperature on efficiency before v. after LED installation. We then dif-

ference across these estimated functions within 0.1oC bins to calculate the gradient difference at each

point along the temperature distribution (along with bin-specific standard errors), which yields the im-

pact of LED at each 1/10th degree. These impact estimates are quite consistent with the linear spline

results, showing larger LED impacts at higher temperatures. We then combine these estimates with

the distribution of degree-days over a one-year period in our data to construct a probability-weighted

average semi-parametric treatment effect across the temperature distribution. This estimate, approxi-

mately 0.723 points (and statistically significant), tells us the average increase in efficiency after the LED

introduction.

Last, we conduct an event study analysis in which we compute this weighted average treatment

effect in the months immediately preceding and immediately following LED installation. The event

study results corroborate our main findings: prior to LED introduction, the average efficiency differ-

ence across LED and non-LED factory units is very small, but starting immediately on the month of

installation, there is a large, sustained efficiency difference.

Finally, we perform cost-benefit calculations for LED adoption, combining the above estimates with

the firm’s actual costing data for LED replacement and actual energy savings over CFL lighting. The

results of this analysis show that the productivity co-benefits of LED adoption are substantially larger
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than the energy savings. Indeed, accounting for productivity increases dramatically shifts the break-

even point for the firm, from over three and half years to less than eight months. The firm was unaware

of these potential productivity effects of LED adoption at the time of the switch, but has subsequently

adopted a policy of installing LEDs and other efficient lighting technologies in all new factories in part

due to these large results.

Our study contributes to the literature on the returns to climate change mitigation. A related liter-

ature has established patterns of adaptation to climate change and the returns to this adaptation (e.g.

Barreca et al. (2016)). The few recent studies that examine “co-benefits,” or additional gains, of miti-

gation focus largely on the indirect public returns (see IPCC (2013) for a review). Our study examines

a novel, private co-benefit of climate change mitigation. This distinction is important because the suc-

cess of most mitigation strategies rests on individuals’ and firms’ willingness to adopt them, and this

willingness is largely driven by private returns. If energy-saving technologies like LEDs do have sub-

stantial private co-benefits, this should meaningfully alter firms’ benefit-cost calculations. Indeed, by

our estimation, ignoring the productivity benefits of LEDs would seriously underestimate the private

returns to adoption (by about five-fold). Moreover, while engineering estimates of the heat dissipation

of LED (vis-a-vis CFL) bulbs exist (indeed we commissioned such an estimate for this paper), these

estimates are not always perfectly predictive of reality; Fowlie et al. (2015) is a recent prime example

of this. Our study evaluates a context in which we are able to test directly whether productivity im-

pacts exist, as engineering estimates, coupled with existing evidence of the temperature-productivity

gradient, would predict.

We also contribute to the understanding of the effects of environmental and infrastructural factors

(which are often related to the environment) on productivity in developing countries (Adhvaryu et al.,

2016; Allcott et al., 2014; Hsiang, 2010; Sudarshan et al., 2015).56 Indeed, the impacts of temperature on

productivity appear to hold quite consistently across countries and time (Burke et al., 2015; Dell et al.,

2012). Our results corroborate what these studies have found, and highlight an interaction between

high temperatures and the co-benefits of energy-efficient technologies.

The remainder of the paper is organized as follows. Section 2 describes contextual details regarding

5Several recent studies document this relationship in more developed settings (Chang et al., 2014; Costinot et al., 2016;
Graff Zivin and Neidell, 2012; Hanna and Oliva, 2016).

6More broadly, our paper fits into the literature on determinants of firm and worker productivity in low-income contexts.
Recent work has demonstrated that management quality (Bloom et al., 2013; Bloom and Van Reenen, 2010), inter- and intra-
firm networks (Bandiera et al., 2009, 2010; Cai and Szeidl, 2016), incentive structures (Bandiera et al., 2007), and ethnic
boundaries (Hjort, 2014) all significantly impact productivity.
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garment production in India and LED technology. Section 3 provides details on the temperature and

production data. Section 4 describes our empirical strategy. Section 5 describes the results, and section

6 reviews the cost-benefit analysis and concludes.

2 Context

In this section, we 1) discuss the garment sector in India and key elements of the garment production

process; 2) review the physiology of the relationship between temperature and worker productivity; 3)

provide an overview of energy usage and heat emissions in LED v. fluorescent lighting; and 4) describe

the roll-out of LED lighting across the garment factories in our data.

2.1 The Indian Garment Sector

Global apparel is one of the largest export sectors in the world, and vitally important for economic

growth in developing countries (Staritz, 2010). India is the world’s second largest producer of textile

and garments, with the export value totaling $10.7 billion in 2009-2010. Women comprise the major-

ity of the workforce (Staritz, 2010). Total employment in India’s formal apparel and textile industry

was about 2 million in 2008, of which 675,000 was in the formal apparel sector, making this a crucial

component of India’s industrial sector.

2.2 The Garment Production Process

There are three stages of garment production: cutting, sewing, and finishing. First, pieces of fabric

needed for each segment of the garment are cut using patterns from a single sheet so as to match color

and quality perfectly. These pieces are divided according to groups of sewing operations (e.g. sleeve

construction, collar attachment) and pieces for 10-20 garments are grouped and tied into bundles.

These bundles are then transported to the sewing floors where they are distributed across the line at

various “feeding points” for each group of sewing operations.

In the second stage, garments are sewn in production lines. Each line will produce a single style of

garment at a time (i.e. color and size will vary but the design of the style will be the same for every

garment produced by that line until the order for that garment is met). Lines consist of 20-100 sewing

machine operators (depending on the complexity of the style) arranged in sequence and grouped in

5



terms of segments of the garment (e.g. sleeve, collar, placket).7 Completed sections of garments pass

between these groups, are attached to each other in additional operations along the way, and emerge

at the end of the line as a completed garment. These completed garments are then transferred to the

finishing floor.

Finally, in the finishing stage, garments are checked, ironed, and packed. The majority of quality

checking is done “in-line” on the sewing floor, but final checking occurs during the finishing stage.

Garments with quality issues are sent back to the sewing floor for re-work or, in rare cases, are dis-

carded before packing. Orders are then packed and sent to port.

2.3 Physiology of the Temperature-Productivity Gradient

The physical impact of temperature on human beings is a very well-studied area (Enander, 1989; Par-

sons, 2010; Seppanen et al., 2006), and has traditionally been important in order to establish occupa-

tional safety standards for workers exposed to very high or low temperatures for continued periods of

time (Vanhoorne et al., 2006). Higher temperatures and consequent thermal stress can impact human

beings not only physically, but also through lower psychomotor ability and degraded perceptual task

performance (Hancock et al., 2007). The impact on individual subjects varies based on factors such

as the type of task and its complexity, duration of exposure, as well as the worker-level skill and ac-

climatization level (Pilcher et al., 2002), which contributes to the issues in setting a particular limit in

working environments (Hancock et al., 2007).

One key finding from this literature is that there is a non-monotonic relationship between ambient

temperature and human performance. The overall shape of the relationship is an inverse-U: perfor-

mance suffers at excessively cold and excessively warm temperatures (Parsons, 2010). Moreover, one

meta-analysis highlights the dry-bulb threshold of 85oF (29.4oC) as particularly important (Hancock

et al., 2007). This threshold value represents the temperature above which the body performs obliga-

tory heat storage. As Hancock et al. (2007) put it, “[in] this circumstance, although the individual is

dissipating heat at the maximal rate, he or she experiences a dynamic increase in core body temper-

ature” (p. 860). In line with this physiology, measured effects on performance are larger for temper-

atures above the 85oF threshold. To our knowledge, mitigation of temperature effects is not explored

extensively in this literature, beyond an emphasis on the substantial variation in effect size across stud-
7In general, we describe here the process for woven garments; however, the steps are quite similar for knits and even

pants, with varying number and complexity of operations. Even within wovens, the production process varies slightly by
style or factory.
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ies (Hancock et al., 2007). More recently, Sudarshan et al. (2015) study temperature mitigation in an

industrial setting using air washers. Our contribution is to highlight the productivity effects of energy

efficient technology (LED lighting) which are driven by the temperature-productivity gradient.8

2.4 LED v. Fluorescent Lighting

The LED light bulbs that replaced the fluorescent bulbs in the factories in our data are approximately

7 times as energy-efficient (requiring about 3 as opposed to 21 KWh/year in electricity in our setting),

and thus operate at about 1/7 the cost of fluorescent lighting. In addition, they generate a tenth of the

CO2 emissions (5.01 pounds of CO2 per year per bulb, as compared to 35.11 pounds for fluorescent

lighting).9 Heat emissions for LEDs are substantially lower than fluorescent bulbs: the average LED

bulb emits 3.4 Btus, as compared to 23.8 Btus for the fluorescent lighting in the setting we study.10

2.5 LED Roll-out: Summary and Timeline

The factories began installing LED lighting in October 2009 and completed the installations by Febru-

ary 2013. According to senior management at the firm, over the last decade, buyers have become more

stringent in their regulation of their suppliers’ production standards and environmental policies. This

generated a staggered roll-out of LEDs across factories within the firm because some factories were

more heavily involved in the production of orders from particular buyers than others. So, for exam-

ple, if buyer A’s environmental regulations or production guidelines become more stringent, then the

supplier might choose to convert to LED lighting in factories processing many orders from buyer A.

When buyer B’s regulation change, the firm will prioritize factories servicing buyer B, and so on.11

8Air conditioning, which would mitigate the temperature-productivity gradient altogether is extremely rare in the Indian
manufacturing sector (ISHRAE, 2015).

9Note that while both fluorescent and LED lighting are much more efficient than incandescent bulbs, the factories in
our sample did not have any incandescent lighting on the production floor. For details on emissions calculations, please
refer to section 6. Also, it should be noted that many varieties of LED and fluorescent bulbs exist. The energy and lighting
specifications and calculations presented and discussed in this paper are specific to the bulbs involved in the factory replace-
ments in our data and will not represent universal comparisons. Accordingly, generalizing our findings would require an
understanding of how bulb specifics might differ from those used in this empirical context.

10Changing factory lighting may have consequences for productivity through mechanisms other than temperature
changes, as highlighted by the results of the original Hawthorne lighting experiment (Mayo et al., 1939; Snow, 1927), as
well as new analysis by Levitt and List (2011). Our analysis allows for this possibility by including the main effect of LED
installation, but we find limited evidence for productivity changes through mechanisms other than temperature changes.
This is not altogether surprising given the degree of care and attention placed on lighting conditions in the garment pro-
duction setting. Senior management emphasized that the lighting replacement was designed such that light quantity and
quality at the point of production operation would remain within the strict industry and buyer guidelines before and after
the replacement.

11This process, of course, still leaves room for endogeneity in the timing of LED adoption across factory units. We check
explicitly for this endogeneity in Table 7, and find little evidence that LED adoption at the unit level was correlated with a
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The replacement took the form of substituting fluorescent lights targeted at individual operations

with an equivalent number of small LED lights mounted on individual workers’ machines. The re-

placements were designed to maintain the original level of illumination. On average, each unit re-

placed roughly 1,000 fluorescent lights consuming 7 W each with LED lights of 1W each.12 Based on

the factories’ operating time cost calculation, this meant an energy saving of 18KWh per light per year.

In the conclusion, we discuss the magnitude of the environmental benefits from the installation.

A particular factory received the installation within a single month. 8% of the LED rollout (2 units)

was completed in 2009, 48% (12 units) in 2010, 16% (4 units) in 2011, about 24% (6 units) in 2012 and the

rest (1 unit) in 2013. Of the 30 units from which we have productivity data, LED replacements occurred

in 26 units during the observation period. Since our productivity data ranges from April 2010 to June

2013, some units already have LEDs at the beginning of our productivity data, and all but four units

have LED by the end of our sample period.13

3 Data

Here we provide an overview of data sources, describe the variables of interest, and present summary

statistics.

3.1 Weather Data

We use daily temperature, precipitation and relative humidity data from The National Centers for

Environmental Prediction Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010). The CFSR

data is a re-analysis dataset that uses historical station-level and satellite data combined with climate

models to produce a consistent record of gridded weather variables from 1979 to the present. It has

a spatial resolution of about 38 km, and each factory is matched to the nearest data grid point. These

data provide daily weather data at a fine spatial level, and are therefore preferable to station level data

in India which is not always consistently available at the daily level.

We present our results using a variety of temperature indices, two that incorporate temperature

variety of business operations and outcomes.
12The number of lights installed unit by unit is a function of the number of machines in the unit, and varies from about 100

to 2,550 with a mean of about 1,000. Replacing overhead CFL lights with machine mounted LED lights implies that while
the light dissipates less heat, it is also now closer to the worker than before, which might partially offset the impacts of heat
dissipation - our results however indicate that the effects of lower heat dissipation dominate the impacts on productivity.

13Regression results that omit units that had LED lighting at the start of the sample period or did not receive LED lighting
by the end of the sample period yield very similar estimates, and are reported in appendix tables A10-A12.
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and humidity into an index and the third using (dry-bulb) temperature controlling for humidity. We

present our results with Wet Bulb Globe Temperature in the body of the paper, and the results with the

other two measures of temperature in the appendix. We incorporate relative humidity into the temper-

ature measure because the effect of relative humidity on thermal comfort may vary with temperature,

by affecting evaporative heat loss from the human body (Jing et al., 2013), but also show that our re-

sults hold with dry bulb temperature. With mean daily temperature and relative humidity data, we

construct the Wet Bulb Globe Temperature measure that is suitable for indoor exposure (that does not

take into account wind or sunlight exposure, since that is not applicable in this context). The formula

is taken from Lemke and Kjellstrom (2012), and is given by:

WBGT = 0.567Td + 0.216

(
rh

100
∗ 6.105 exp

(
17.27Td

237.7 + Td

))
+ 3.38. (1)

where Td = dry bulb temperature in Fahrenheit and rh = relative humidity (%). 14

Note that the weather data we are using include only daily outdoor temperature measures. Of

course, indoor temperature in the factory would likely be the most impactful for worker productivity;

however, we do not have data on indoor temperature from the time period over which the LED roll-out

occurred. Accordingly, we use outdoor ambient temperature as discussed above as a proxy for indoor

conditions. In order for outdoor temperature to represent a valid proxy, we would like to verify that

fluctuations in outdoor temperature pass through to indoor temperature. Although we do not have

indoor temperature data from the study period, we did collect roughly a year’s worth of indoor and

outdoor temperature from two factories and six months of data from a third factory after the study

period.15

14We also calculate an alternative measure, the Heat Index (HI), that is calculated based on the formula:

HI = −42.379 + 2.04901523 ∗ Td + 10.14333127 ∗ rh− .22475541 ∗ Td ∗ rh
− .00683783 ∗ T 2

d − .05481717 ∗ rh2 + .00122874 ∗ T 2
d rh

+ .00085282 ∗ Td ∗ rh2 − .00000199 ∗ T 2
d ∗ rh2. (2)

The formula for the calculation is derived from the Rothfusz regression that replicates the HI values from Steadman (1979).
For about 0.6% of our data, the relative humidity is greater than 85% and daily temperature ranges between 80 and 87

degrees Fahrenheit, and the following adjustment is applied:

HI = HI + [(rh− 85)/10] ∗ [(87− Td)/5] (3)

All the three measures of temperature – dry bulb temperature, Heat Index (HI), and Wet Bulb Globe Temperature (WBGT)
– are converted into Celsius to ensure interpretative ease across regression specifications. For all our results, we report the
main effect of WBGT. In the appendix, we report the results corresponding to specifications using dry bulb temperature
controlling for relative humidity, as well as the heat index as evidence of robustness.

15We collected data from 22nd September 2014 to 11th August 2015 in one factory, from 27th September 2014 to 10th
August 2015 in a second factory, and from 28th January 2015 to to 10th August 2015 in a third factory.
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Figure 1: Indoor Temperature vs. Outdoor Temperature
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In Figure 1, we plot mean indoor temperature values for each .1 degree bin of outdoor temperature

along with a local polynomial regression fit curve and 95 percent confidence intervals. Indoor temper-

ature appears to be a linear function of outdoor temperature with a slope of roughly 0.79. That is, there

appears to be large but not perfect pass through of outdoor temperature fluctuations to indoor tem-

perature and this relationship appears to be constant for all levels of outdoor temperature. A positive

intercept indicates that at lower outdoor temperature levels (e.g., 22 degrees Celsius wet bulb globe)

the indoor temperature is slightly higher than the outdoor temperature reflecting a flow source of heat

inside the factory independent of outdoor temperature (e.g., lighting and machinery). Furthermore, a

regression of indoor temperature on outdoor temperature has an r-squared of about 0.84, implying that

a very large amount of the variation in indoor temperature is explained by the variation in outdoor

temperature.

Note that these data were collected after the introduction of LED in the factories, and therefore,

depict the ex post relationship between indoor and outdoor temperature. Engineering calculations

based on building and lighting specifications provided by an industry consultant suggest that LED

introduction would have dropped the intercept of this relationship by about 2.4 degrees Celsius on

average across factories with some variation due to the quantity of lights replaced and building size
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and materials for each factory.16 This impact should be generally constant across the distribution of

outdoor temperature depending on such factors as ventilation.17 Nevertheless, in what follows we do

not impose a functional form on the impact of LED introduction on the relationship between indoor

and outdoor temperature, but rather allow the data to determine the change in shape of the observed

productivity-temperature relationships before and after LED introduction.

3.2 Factory Data

We use data on line-level daily production from 30 garment factories in and around Bangalore, In-

dia. Identifiers include factory unit number and production line number within the factory. For each

line and day within each factory unit, production measures include actual quantity produced, actual

efficiency, and budgeted efficiency.

Actual efficiency is actual quantity produced divided by target quantity. The target quantity is de-

rived from an industrial engineering (IE) measure for the complexity of the garment called “Standard

Allowable Minute” (SAM). This measure amounts to the estimated number of minutes required to

produce a single garment of a particular style. This estimate largely derives from a central database of

styles, with potential amendments by the factory’s IE department during “sampling.”18

This SAM is then used to calculate the target quantity for the line for each hour of production. Each

line runs for 8 hours during a standard work day, with all factory units in our data operating a single

day-time production shift. Accordingly, a line producing a style with a SAM of .5 will have a target

of 120 garments per hour, or 960 garments per day. Most importantly, the target quantity is almost

always fixed across days (and in fact, across hours within the day) within a particular order of a style.

Each line will only produce a single style at any time. Depending on the order size (or “scheduled

quantity”) for a style, multiple lines may produce the same style at one time.19 Variations in expected

average efficiency over the life of a particular garment order due to order size are reflected in the bud-

geted efficiency. Budgeted efficiency remains fixed for a given line over the life of a particular order.

However, actual efficiency of a given style will vary systematically across lines and within line over

time due to absenteeism, machine failures, working conditions, etc. We are, of course, interested in
16This implies a 0.8 standard deviation drop in temperature, since as indicated in Table 1, the standard deviation of tem-

perature is 2.96 degree Celsius.
17Consultant report available upon request.
18Sampling is the process by which a style that is ordered by a buyer is costed in terms of labor and production time.

So-called sampling tailors (highly trained) make a garment of a particular style entirely and recommend any alterations to
the SAM for that style to the IE department.

19Indeed, in our data, lines produce styles for between 1 and 268 days.
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these deviations of actual efficiency from expected or budgeted efficiency due to transitory tempera-

ture. We will accordingly control for budgeted efficiency and include line fixed effects in the regression

analysis below.

We use actual efficiency rather than produced quantity as our outcome of choice. Produced quan-

tity would not account for systematic variation due to complexity of style. Without normalizing pro-

duction observations to target quantity and accounting for budgeted efficiency, one could potentially

misrepresent an association between temperature and style complexity or order size as an impact on

productivity. That is, for example, if garment complexity or order size varied by temperature due to

seasonal buying of winter garments at certain times in the fall months, resulting variations in efficiency

could be attributed to temperature spuriously. Accordingly, we argue that actual efficiency, controlling

for budgeted efficiency, is the most appropriate outcome for the empirical exercise proposed in this

study.

To summarize, target quantity will reflect only style by line characteristics which do not vary day

to day and certainly do not vary with temperature fluctuations across days. We check this explicitly

in the empirical analysis below. Actual quantity will indeed vary with daily productivity, of which we

hypothesize temperature is an important determinant, but must be normalized by target quantity to be

compared across lines and within lines across styles. Even within styles and lines, predictable variation

in expected efficiency over the life of an order arises due to the interaction of order size and learning

by doing, with lines producing larger orders of the same garment style achieving higher maximum

(and therefore, average) efficiency than those producing smaller orders. True daily fluctuations in

productivity are, therefore, best measured by actual efficiency controlling for budgeted efficiency.20

3.3 Summary Statistics

We present means and standard deviations of variables used in the analysis in Table 1 below. Our

sample consists of 523 production lines across 30 factory units. The range of dates over which we have

production data spans 1,001 days in total. However, we do not observe all factory units, nor all lines

within a unit, for all dates.21 Altogether, our data includes nearly 240,000 line x day observations.

Roughly, one-third of the observations correspond to days in factory units prior to the introduction of

20We check the sensitivity of all main results to alternate definitions of the productivity outcome and find the results to be
robust.

21Appendix table A3 tests that production line-day observations for which data is missing are not correlated with either
temperature or the LED installation decisions.
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Table 1

Number of line-day observations
Number of lines
Number of days
Number of units

Mean SD
Weather
     Temperature (Celsius) 24.353 2.966
     Relative Humidity (%) 0.647 0.174

     Heat Index (Celsius) 23.128 2.871

     Wet Bulb Globe Temperature (Celsius) 17.230 1.683

Production
     Actual Efficiency 55.234 26.233
     Budgeted Efficiency 61.981 11.545
     Standard Allowable Minutes (SAM) 0.724 2.445

Attendance
     1(Present for Full Work Day) 0.843 0.363

Table 1
Summary Statistics: Weather, Production, and LED Introduction

523
1,001

30

239,680

LED lighting and the remainder are post-LED observations.

4 Empirical Strategy

In this section, we provide preliminary graphical evidence on the shape of the temperature-productivity

gradient, the effects of LED introduction, and the persistence of this evidence after accounting for var-

ious unobservables. We then leverage these motivating facts in developing a two stage empirical strat-

egy to flexibly estimate the impact of LED introduction on productivity as mediated through ambient

temperature.
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4.1 Preliminary Graphical Evidence

We begin by motivating the empirical specifications and techniques with descriptive plots of produc-

tion and temperature data.

4.1.1 Productivity-Temperature Gradient

Since we intend to estimate how LED introduction impacts the relationship between efficiency and

temperature, we must first understand the nature of this relationship. Accordingly, we first investigate

the raw relationship between efficiency and wet bulb temperature in the data prior to LED introduc-

tion. Figure 2 presents a scatter plot of the average efficiency for each 0.1 degree bin of wet bulb

temperature observed in the data. We also include in the figure a local polynomial smoothed fit and 95

percent confidence intervals like those depicted in Figure 1. Figure 2 shows that, in the absence of LED

lighting, indeed efficiency appears to be a decreasing function of temperature, and this relationship

is quite nonlinear with the strongest declines in efficiency occurring at the highest wet bulb tempera-

tures. Specifically, the gradient goes from modestly decreasing to strongly decreasing to the right of

the vertical line in Figure 2. This vertical line, denoting 19 degrees Celsius in wet bulb temperature,

represents a strong break in the slope. Accordingly, in the parametric regression analysis proposed

below, we specify a linear spline with a node at 19 to capture this dichotomous slope in the gradient.

Notably, a wet bulb globe outdoor temperature of 19 degrees Celsius corresponds in our data to an

outdoor ambient dry bulb temperature of roughly 27.5 degrees Celsius and is likely equivalent to an

indoor dry bulb temperature of roughly 29.5 degrees before LED introduction.22 This 29.5 degree dry

bulb temperature is remarkably consistent with estimates from previous studies on the physiological

threshold for the absorption of heat into the body above which temperature is more impactful for

human functioning (Hancock et al., 2007).23

22This approximate relationship is derived from the indoor-outdoor temperature we collected and the engineering study
of LED installation we commissioned.

23Of course, this threshold applies to ambient indoor temperatures. We collected a small sample of indoor temperatures
to calculate an indoor-outdoor temperature gradient (presented in Figure 1), and found that at 27 degrees Celsius, post-LED
installation, the temperature indoors is roughly the same as outdoors. Prior to LED installation, according to estimates from
the engineering study we commissioned, this differential would have been about 2.4 degrees larger. Thus at outdoor dry-
bulb temperatures of roughly 27 degrees C, prior to LED installation the temperature indoors would have been about 29.4
degrees C, which is squarely in the range of the physiological threshold value.
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Figure 2: Efficiency Against Temperature (Pre-LED)
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Scatter depicts mean efficiency residual by temperature residual bins of .1 width. Temperature residuals are trimmed at the 
1st and 99th. Vertical line depicts spline node. One outlier (efficiency <30) excluded from plot but not from analyses.

4.1.2 Impacts of LED Introduction

Having established the shape of the temperature-productivity gradient for the garment factories in

our data before the introduction of LED, we next check for evidence that this gradient is affected by

the replacement of the ambient fluorescent lighting in factories with focused, machine-mounted LED

lighting. We repeat the exercise from Figure 2 for subsets of the data from before and after the LED

roll-out in each factory. These plots are presented in Figure 3.24 The evidence suggests that factories are

more efficient at all temperatures after the LED introduction, but this gain (or attenuation) is increasing

at high temperatures. That is, the pre-LED gradient (red line) in Figure 3, of course, replicates the non-

linear shape depicted in Figure 2, but the post-led gradient exhibits a flatter slope to the right of the 19

degree vertical line allowing the gap between the before and after LED gradients to widen at higher

temperatures and indicating a persistently significant treatment effect above 19 degrees.

As mentioned above in section 3, the engineering calculations for the impact of LED introduction

on indoor temperature indicated that post-LED indoor temperatures should be around 2.4 degrees

lower than would have prevailed at a given outdoor temperature before the introduction of LED. This

24Note in each figure from here onwards in the paper with both pre- and post-LED plots, we show 83% confidence in-
tervals, which allow the reader to visually assess the hypothesis of a difference between the two curves – if the confidence
intervals do not overlap at a given point, then the two curves are significantly different at the 5% level at that point.
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Figure 3: Efficiency Against Temperature by LED
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would translate into a shift to the right of the efficiency-temperature gradient in Figure 2 after the

introduction of LED, as each outdoor temperature on the x-axis corresponds to a lower indoor tem-

perature. Notably, the difference between the before and after LED gradients could be explained by a

shifting of the pre-LED gradient a few degrees to the right and truncating the right tail at around 21.5

degrees wet bulb which is the boundary of the support of the underlying temperature distribution.

In any case, since we are interested in the average or total impact on efficiency of LED introduction

given the observed temperature distribution, the exact structural relationship between outdoor tem-

perature, LED, indoor temperature and subsequently efficiency is not required, nor is it feasible for us

to estimate due to data limitations. Rather, we can measure empirically the difference in slopes of the

efficiency-temperature gradients before and after LED, allowing for slope changes at 19 degrees, by

estimating the parametric spline regressions proposed below. We can also calculate average impacts

of LED introduction on efficiency from semiparametric estimated impacts at each point along the tem-

perature distribution and weighted by the probability that each temperature value prevails. These two

strategies are described in detail below.
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4.2 Parametric Spline Regression Analysis

Motivated by the preliminary graphical evidence above, we set forth a more rigorous regression analy-

sis below to causally identify both the effect of temperature on production efficiency at various points

along the temperature distribution and the attenuation of this impact driven by the replacement of

traditional fluorescent lighting with LED technology. In particular, we address concerns regarding

unit-level trends in efficiency, line-level unobservables, seasonality in efficiency, and the exogeneity of

the LED introduction along with the non-linearities depicted in Figures 2 and 3 above.

First, we estimate the following empirical specification of the relationship between worker effi-

ciency and temperature:

Eludmy = α0 + βLTL
dgmy + βHTH

dgmy + φBludmy + αl + γuy + ηum + δd + εludmy. (4)

Here, E is actual efficiency of line l of unit u on day d in month m and year y; B is budgeted efficiency

for line l of unit u on day d in month m and year y; TL is daily wet bulb globe temperature from grid

point g in degrees Celsius up to the spline node of 19, above which it records a constant 19; TH is daily

wet bulb temperature minus 19 degrees Celsius from grid point g above the spline node, below which

it records a constant 0; αl are production line fixed effects; γuy are unit x year fixed effects; ηum are

unit x month fixed effects; δd are day-of-week fixed effects; and α0 is an intercept. βL and βH are the

coefficients of interest, giving the impact of a 1-degree Celsius increase in wet bulb globe temperature

on line-level efficiency for temperatures below and above 19 degrees, respectively.

We then estimate the extent to which the introduction of LED lighting attenuates the temperature-

productivity relationship via the following specification:

Eludmy = α0 + βL1
(
TL
dgmy x LEDumy

)
+ βH1

(
TH
dgmy x LEDumy

)
+ β2LEDumy

+ βL3 T
L
dgmy + βH3 T

H
dgmy + φBludmy + αl + γuy + ηum + δd + εludmy. (5)

Here LEDumy is a dummy for presence of LED lighting in unit u in month m and year y. It changes

from 0 to 1 in the month of LED introduction in a particular factory unit. The coefficients of interest

in the above specification are βL1 , βH1 , βL3 and βH3 . βL3 and βH3 indicate the effect of temperature on

productivity below and above the 19 degree spline node, respectively, before LED introduction. βL1 and
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βH1 are the extent of attenuation of the temperature-productivity gradient below and above the 19 de-

gree spline node, respectively, once LED lighting is introduced. The sums βL1 + βL3 and βH1 + βH3 gives

the net effect of temperature on productivity below and above the spline node, respectively, follow-

ing LED introduction. Note that we choose this spline specification with a single node at 19 degrees

WBGT for two reasons: 1) the raw data plots in Figures 2 and 3 clearly show that the relationship

between temperature and efficiency (and the difference in this relationship across LED) changes at this

point in the temperature distribution and does not vary much on either side of this cutoff; and 2) this

point corresponds remarkably well to previous studies of the physiology of heat stress (Hancock et al.,

2007).25

In order to account for common error distributions at the factory level over time, standard errors

are clustered at the unit level. This cluster structure is appropriate given that LED introduction occurs

at the unit level. However, given the relatively small number of clusters (30), we employ wild cluster

bootstrap inference and report calculated p-values in parentheses in all tables unless otherwise noted.26

4.2.1 Attendance

We also estimate the same specifications presented in equations 4 and 5, but replacing the efficiency

outcome on the left hand side with mean attendance (or probability of each worker being present in

the factory) at the line-daily level. These regressions are intended to investigate the degree to which

temperature impacts on efficiency and the corresponding attenuation from LED introduction might be

working through impacts on worker attendance. We also estimate the original efficiency specifications

from equations 4 and 5, but with the inclusion of mean line-daily worker attendance as an additional

control. The combination of these two sets of results allow us to investigate whether temperature and

LED introduction indeed have impacts on worker attendance and whether controlling for any impacts

on attendance changes the estimated impacts of temperature and LED on the primary outcome of

interest (efficiency).

25Nevertheless, we explored more flexible spline specifications with more nodes and found the results to be qualitatively
identical with less precision.

26See Cameron et al. (2008) for a thorough treatment of clustering approaches with few clusters and a discussion of their
relative performance, which highlights that wild cluster bootstrap inference works best in a setting with few clusters. We
report p-values in all regressions estimated via the wild cluster bootstrap since the estimation in Stata reports p-values.
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4.2.2 Distributed Lags

It should be noted that daily temperature could potentially reflect short-term serial correlation that

might pose a challenge for identifying the impacts of contemporaneous exposure to temperature. Fol-

lowing previous studies, we augment both equations 4 and 5 to include 7-day distributed lag spline

terms and their interactions with LED in addition to the contemporaneous spline and LED interaction

terms of primary interest. In the distributed lag models, we interpret the coefficients on contemporane-

ous spline and interaction terms as the incremental impacts of contemporaneous temperature exposure

after controlling for any persistent impacts of lagged exposure. This allows for the isolation of the im-

pact of contemporaneous exposure from any persistent impacts of lagged exposure. If the coefficient

on the contemporaneous temperature terms are similar with and without the inclusion of the 7-day

distributed lag terms, we interpret the results as indicative of a minimal role for serial correlation and

persistence in impacts of lagged exposures. On the other hand, we can recover the composite impact of

both the incremental innovation in contemporaneous temperature exposure and the persistent impacts

of lagged exposures by summing up the coefficients from contemporaneous temperature and the full

set of lagged exposures, but this composite impact will be nearly identical to that estimated from the

original specification presented in equation 4 and 5 as the set of relevant lagged temperatures included

grows.

4.2.3 Controls and Unobservables

Note that all specifications include as controls budgeted efficiency, line fixed effects, year fixed effects,

factory unit x calendar month fixed effects, and day-of-the-week fixed effects. As mentioned in section

3, budgeted efficiency accounts for expected variation in achievable efficiency due to order size and

learning by doing on the line, but the remaining controls are meant to account for various unobserv-

able determinants of efficiency that might correlate with temperature. Line fixed effects are meant to

control for unobservable determinants of efficiency at the line level that are static over time such as line

supervisor characteristics (e.g. management style, experience, rapport and relationship with workers),

type of garment usually produced by the line (e.g. shirt vs. pant, denim vs. twill), and position in

the factory (e.g. higher floor where it is hotter, closer to the window where there is better light and

ventilation). Unit by year fixed effects are meant to control not only for static unobservables at the unit

level such as characteristics of factory management and factory location, but also for unobservable
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Figure 4: Residual Gradient (Pre-LED)
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Locally-weighted polynomial smoothed gradient  95% CIs
Residuals are from regressions on budgeted efficiency and unit by year, unit by month, day of week, and line FE.
Scatter is mean efficiency residual by .1 temperature residual bins. Temperature residuals trimmed at 1st and 99th.

factors driving unit-specific non-linear trends such as differential rates of expansion across factories

or primary buyers. Unit by month fixed effects control for unit-specific seasonality due to, for exam-

ple, garment demand and labor supply patterns; day of week fixed effects control for fluctuations in

efficiency across work days due to for example fatigue or weekend salience.

Finally, to check that the patterns depicted in Figures 2 and 3 above persist even after controlling

for all of these unobservables, we can repeat the exercises depicted in those figures but using residuals

from regressions of efficiency, temperature, and LED on all of these controls. Figure 4 shows that

the residual efficiency-temperature gradient after controlling for the full set of covariates listed above

is still negative and non-linear with a more steeply negative slope at higher temperatures. Figure 5

plots the residual efficiency-temperature gradient before and after LED, respectively. It shows that the

difference between the with and without LED gradients grows at high temperatures (residualized) as

the pre-LED gradient becomes more steeply negative and the post-LED gradient remains relatively

flat. Note that in fact the two gradients in Figure 5 are not statistically significantly different at low

temperatures, but the low LED residual gradient (red line) falls statistically significantly below the high

LED residual gradient (blue line) just below wet bulb residual values of 0.27 The comparison depicted

27For figures representing the difference in gradients exactly as depicted in both Figures 3 and 5, please refer to the ap-
pendix.
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Figure 5: Residual Gradient by LED
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Residuals are from regressions on budgeted efficiency and unit by year, unit by month, day of week, and line FE.
Temperature residuals are trimmed at the 1st and 99th.

in Figure 5 illustrates the intuition of the flexible semiparametric estimation strategy we propose in the

next section.

As discussed above, we commissioned an engineering report to provide estimates of the effect of

LED on indoor temperature for any given outdoor temperature for the building and lighting spec-

ifications of a representative factory in our sample. The report stated that the LED lighting change

should have reduced the indoor temperature by around 2.4 degrees Celsius dry-bulb temperature or

roughly 1.42 degrees Celsius wet-bulb globe temperature (at mean levels of relative humidity observed

in our data) at each outdoor temperature. That is, the report predicts that LED installation would have

shifted the intercept of the relationship in Figure 1 down. This would translate precisely into a shift

to the right of the pre-LED curve in Figure 5. To illustrate the result of this exact impact as predicted

by the engineering calculations, we show in Figure 6 the same estimated gradients presented in Figure

5 for pre- and post-LED, but with the addition of the simulated post-LED gradient. This simulated

curve is precisely the pre-LED data shifted to the right by the increment estimated in the engineering

report (1.42 degrees WBGT), with the support of the simulated temperature distribution restricted to

be common with the support the observed temperature distribution.28

28Note of course that the simulated temperature distribution will be truncated to the left at the point 1.42 degrees to the
right of the left limit of the observed temperature distribution.
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Figure 6: Residual Gradient by LED Including Simulated Impact of LED from Engineering Estimates
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Residuals from regressions on budgeted efficiency and unit X year, unit X month, day of week, and line FE. Temp residuals 
trimmed at 1st and 99th. Simulation uses Before LED temperature and engineering estimate of LED impact (~1.42C WBGT). 

This simulation matches the observed post-LED gradient remarkably well, validating the interpre-

tation that LED adoption impacted efficiency precisely by way of a shift downward in the intercept of

the indoor-outdoor temperature relationship as depicted in Figure 1. Note, however, that if one takes

a non-linear curve as given by the pre-LED gradient and shifts it to the right, and then attempts to

measure precisely the difference in the slopes between the two curves, a simple parametric functional

form specification in OLS will not perfectly fit the difference in these curves. Rather the best way to

measure the difference between these non-linear curves is to fit each non-parametrically (or, more ac-

curately, semi-parametrically given that Figure 5 presents residuals from OLS regressions on the full

set of controls), and measure the difference between these non-parametric curves. We, accordingly,

undertake this exact exercise as described below.

4.3 Semiparametric Treatment Effect Estimation (Mediation Analysis)

The above parametric spline regression analysis approximates the estimation of the change in efficiency-

temperature gradients due to the introduction of LED lighting. However, the parametric spline speci-

fication embodies functional form assumptions based on visual inspection of the gradients in Figures 2

and 3. A more flexible and agnostic empirical approach would express efficiency as some general func-
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tion of temperature after accounting for all of the relevant covariates and allow this function to differ

before and after the introduction of LED. Specifically, this would amount to attempting to estimate the

total impact of LED from the following equation:

Eludmy = α0 + f [Tdgmy](1− LED) + g[Tdgmy](LED) + φBludmy + αl + γuy + ηum + δd + εludmy. (6)

Here f [Tdgmy] is a general function of temperature which explains efficiency when LED = 0, after

controlling for the full set of covariates; and g[(Tdgmy] is the analogous general function of temperature

explaining efficiency when LED = 1.

In order to recover the average impact of LED on efficiency from equation 6, we first partition the

regression to isolate the terms containing temperature from the remaining covariates, both with and

without LED. We do this by regressing efficiency and temperature on budgeted efficiency and the full

set of fixed effects and calculating the residuals from each regression, separately for the sample with

and without LED.29

We then non-parametrically estimate using kernel-weighted local polynomial smoothing f [Tdgmy]

and g[(Tdgmy] for each 0.1 width bin in wet bulb globe temperature residuals using the subsample

of data with and without LED, respectively. We also recover standard errors for each bin from both

curves using the non-parametric estimation procedure. Next, we subtract estimated values of f [Tdgmy]

from g[(Tdgmy] for each 0.1 width bin of the wet bulb residual and calculate the appropriate two-sample

standard error for the difference.

Note that this amounts to estimating the difference at each temperature point between the non-

parametric residual gradients depicted in Figure 5, and recovers the estimated treatment effect of LED

on efficiency at each point along the observed temperature distribution, after accounting for any en-

dogeneity in unobservables as discussed above. Figures depicting these point for point differences be-

tween the residual gradients and their statistical significance are presented and discussed in section 5

below. It should also be noted that this semiparametric procedure is identical in intuition to the degree

and decile bin temperature effects specifications estimated in previous studies (Barreca et al., 2016),

29Note that this assumes conditional mean independence of LED, which is supported by the empirical tests shown in
Figure 8 indicating that after accounting for the full set of covariates and fixed effects LED and temperature are indeed
orthogonal. Instead of using the LED binary variable, we can approximate the residualized (1 − LED) and (LED) terms
with a dummy that takes the value 1 if the LED residual (residual from regressing 1(LED) on budgeted efficiency on all the
fixed effects) ≥ 0 and value 0 if the LED residual < 0. We have conducted the analysis under this assumption as well and find
the results to be qualitatively similar to the preferred approach reported in the paper. These alternate results are available
upon request.
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but extends and generalizes previous approaches in two ways. First, we leverage the additional gran-

ularity and quantity of data in our setting to estimate effects for each 0.1 degree temperature residual

bin rather than degree or decile bins of greater width. Second, we combine non-parametric estimation

techniques with fixed effects specifications to allow temperature effects to vary as flexibly as possible

across bins while preserving causal interpretation of the estimates. Beyond this added granularity and

flexibility, the intuition behind previous approaches to estimating non-linear impacts of temperature

across the distribution is preserved.

Finally, we calculate the temperature weighted average treatment effect of LED by multiplying the

difference between the gradients at each temperature point at the 0.1 degree level by the probability

that temperature occurs and then adding the full set of these products. The temperature probabil-

ity distribution is calculated from the data. This procedure provides us with an estimate of the total

impact of LED on efficiency as mediated by temperature, which is necessary for the cost-benefit cal-

culations we conduct below. To this end, the semiparametric procedure developed here represents a

novel approach to mediation analysis in which a continuous covariate is believed to mediate the im-

pact of a regressor of interest on an outcome, but the functional form of the relationship between the

regressor and the outcome and the structure of the mediating mechanism are either unknown or not

easily or parsimoniously parametrized. In particular, when the relationship between the regressor of

interest and the outcome is believed to be (or assumed to be) linear and the impact of the regressor on

the mediating factor can be easily estimated, simpler parametric approaches to mediation analysis can

be used.30

5 Results

5.1 Parametric Spline Regression Analysis

We begin by reporting results from the estimation of the parametric spline specifications presented in

equations 4 and 5. Columns 1 and 2 of Table 2 reports estimates of βL and βH from equation 4 with

column 2 estimates corresponding to a specification with an additional control for precipitation. The

additional precipitation control ensures that impacts are indeed being driven by temperature expo-

sure alone and are not composite effects reflecting the impacts of other correlated weather conditions.

30A long literature develops and implements analyses of this type. For a recent application of this more traditional para-
metric approach to mediation analysis see Heckman et al. (2013).
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Columns 3 and 4 report estimates of βL1 , βH1 , β2, βL3 and βH3 from equation 5, once again with column

4 reporting results after the inclusion of an additional control for precipitation.

The spline regression estimates from columns 1 and 2 reflect the pattern shown in Figures 2 and 4

with the slope of the efficiency-temperature gradient below 19 degrees Celsius of wet bulb globe tem-

perature being slightly negative (statistically indistinguishable from 0) and the slope above 19 degrees

being strongly negative and statistically significant at the 1 percent level. Point estimates indicate that,

at wet bulb globe temperatures above 19 degrees Celsius, a one degree increase in temperature leads

to a reduction of more than 2.1 percentage points in actual efficiency. A comparison of estimates across

columns 1 and 2 show that the inclusion of an additional control for precipitation has minimal impact

on results.

The results in columns 3 and 4 are consistent with the pattern reflected in Figures 3 and 5 with the

introduction of LED having no significant impact on the slope of the efficiency-temperature gradient

below 19 degrees Celsius, but strong attenuating impact on the negative slope of the gradient above

19 degrees. That is, the estimates indicate that the introduction of LED offsets the negative impacts of

temperature on efficiency by roughly 85%, attenuating the magnitude of the negative slope above 19

degrees from around -2 to roughly -0.3. LED shows no significant impact below 19 degrees Celsius

which is consistent with the evidence from ergonomics and physiology literatures suggesting that

temperature is most impactful on human functioning at temperatures above this level. The estimate

of the main effect of LED is positive and large, consistent with the pattern shown in Figures 3, but is

imprecisely estimated and statistically indistinguishable from 0.

The results reported in Table 3 correspond to the regression of mean line-daily worker attendance

on the identical specifications to those in Table 2 as described in section 4.2.1. The estimates from Table

3 suggest a negative impact of temperature on attendance at temperatures below 19 degrees Celsius;

however, the magnitudes of the point estimates are extremely small (less than 1% of the mean). All

other estimates of coefficients, including those reflecting the impacts of LED, are statistically indistin-

guishable from 0. In general, we interpret the results in Table 3 as indicative of no real impacts of

temperature on worker attendance. These results imply that it is unlikely that impacts of temperature

on worker attendance are contributing to the estimated impacts of temperature and LED installation

on efficiency.

To further verify that worker attendance is not a primary mediating mechanism of the impacts of

temperature and LED installation on efficiency, we repeat the analysis reported in Table 2 with mean
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Table 2

(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.3 -0.32 -.094 -0.105
(0.5) (0.47) (0.73) (0.7)

Wet Bulb Globe Temperature>=19 -2.135*** -2.169*** -1.95*** -1.98***
(0.002) (0.002) (0.002) (0.002)

1(LED)*(Wet Bulb Globe Temperature <19)  -.106 -0.103
(0.79) (0.70)

1(LED)*(Wet Bulb Globe Temperature>=19) 1.67*** 1.68***
(0.006) (0.004)

1(LED) 3.45 3.39
(0.68) (0.68)

Fixed Effects
Precipitation Control N Y N Y

Observations 74,939 74,939 239,680 239,680
Mean of Dependent Variable 53.73 53.73 55.234 55.234

Table 2
Impact of Temperature on Production Efficiency and Mitigative Impact of LED Lighting

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 
10% level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius. All regressions include daily budgeted efficiency as a control 
variable.

Actual Efficiency
(Actual Production / Targeted Production)*100

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week
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Table 3

(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.0061*** -0.0059** -0.0011 -0.0007
(0.01) (0.02) (0.53) (0.7)

Wet Bulb Globe Temperature>=19 0.0003 0.0007 0.0056 0.0064
(0.90) (0.82) (0.27) (0.19)

1(LED)*(Wet Bulb Globe Temperature <19) 0.0003 0.0002
(0.89) (0.94)

1(LED)*(Wet Bulb Globe Temperature>=19) -0.0051 -0.0053
(0.38) (0.37)

1(LED) -0.0065 -0.0054
(0.83) (0.86)

Fixed Effects
Precipitation Control N Y N Y

Observations 392,601 392,601 392,601 392,601
Mean of Dependent Variable 0.829 0.829 0.829 0.829

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10% 
level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius.

Table 3
Impact of Temperature on Attendance and Mitigative Impact of LED Lighting

Worker Presence
(Line-Level Mean Daily Probability)
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Table 4

(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.443 -0.47 -0.137 -0.148
(0.39) (0.36) (0.63) (0.60)

Wet Bulb Globe Temperature>=19 -2.498*** -2.55*** -2.164*** -2.196***
(0.004) (0.004) (0.008) (0.008)

1(LED)*(Wet Bulb Globe Temperature <19) -0.016 -0.013
(1.00) (1.00)

1(LED)*(Wet Bulb Globe Temperature>=19) 1.605** 1.617**
(0.02) (0.02)

1(LED) 1.617 1.565
(0.89) (0.89)

Line-Level Mean Daily Worker Presence 1.884 1.884 2.188** 2.195**

(0.48) (0.48) (0.03) (0.03)

Fixed Effects
Precipitation Control N Y N Y

Observations 61,782 61,782  203,554  203,554

Mean of Dependent Variable 53.05 53.05 55.09 55.09

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at 

the 10% level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius. All regressions include daily budgeted efficiency as a 

control variable. Line-Level Mean Daily Probability of Worker Presence is the average probability that a worker is present for a production line on a given day.

Table 4

Impact of Temperature on Production Efficiency and Mitigative Impact of LED Lighting          
(Controlling  for Mean Line-Daily Attendance)

Actual Efficiency

(Actual Production / Targeted Production)*100

line-daily worker attendance as an additional control. To the degree that estimates remain largely

unchanged after including this additional control for attendance, we conclude that attendance is not a

primary mediator of the impacts of temperature on efficiency nor of the attenuation of impacts caused

by LED installation. Indeed, the results from these regressions reported in Table 4 are remarkably

similar to those presented in Table 2. Overall, we interpret the results in Tables 3 and 4 as strong

evidence against the importance of attendance as a primary mediator of the impacts of temperature

and LED installation on efficiency. That is, we find that exposure to higher temperatures impacts the

intensive margin of productivity per unit labor supplied, but does not impact strongly the extensive

margin of the quantity of labor units supplied. Similarly, the introduction of LED attenuates greatly

the impacts of temperature on the intensive margin of efficiency, but has no perceptible impact on the

extensive margin.
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Next, we investigate whether the impacts we are estimating of contemporaneous temperature ex-

posure on efficiency are indeed reflecting contemporaneous exposure alone rather than a composite

estimate of contemporaneous exposure impacts and persistent impacts of lagged exposure. Similarly,

we check that the estimated attenuation from LED installation is working through contemporaneous

temperature exposure. Although persistent impacts of lagged exposures and serial correlation in tem-

perature would not invalidate in any way the analysis conducted above, the interpretation of the point

estimates will change based on the underlying sources of variation. As discussed in section 5, we re-

peat the analysis reported in Table 2 but include 7-day distributed lag temperature spline terms and,

where appropriate, their interactions with LED installation. The results from the estimation of these

augmented specifications are reported in Table 5. Specifically, all results reported in Table 5 correspond

to specifications including 7-day distributed lag temperature spline terms and results in columns 3 and

4 correspond to specifications also including interactions of distributed lag spline terms with the LED

installation dummy. Overall, the results in Table 5 are qualitatively identical to the main results re-

ported in Table 2, but with larger magnitudes for coefficients on the above 19 degree temperature

spline and the corresponding LED interaction terms. These results indicate that indeed estimates of

temperature impacts and attenuation from LED installation are being driven by contemporaneous ex-

posures and that a more rigorous isolation of contemporaneous temperature variation leads to even

more pronounced impacts of temperature and LED installation. While daily temperature is generally

believed to reflect some degree of serial correlation, the similarity in results with and without dis-

tributed lags is not altogether surprising in our study. In particular, we should note that the baseline

specifications already include a large set of heterogeneous non-linear trends (e.g., unit by month FE)

to soak up a great deal of this less transitory variation in temperature. Indeed, the correlations be-

tween contemporaneous temperature and lagged temperature values after partialling out the full set

of controls are quite small (never more than .25 and mostly below .1).

5.2 Semiparametric Treatment Effect Estimation

After estimating the non-linear relationship between temperature and efficiency and the attenuating

impact of LED installation on this relationship, we turn to a more flexible empirical approach in order

to recover the overall impact of LED installation on efficiency as mediated by the full distribution

of temperature exposures. Specifically, in order to fully capture the impact of LED on efficiency at
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Table 5

(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.44 -0.467 -0.227 -0.245

(0.29) (0.26) (0.41) (0.35)

Wet Bulb Globe Temperature>=19 -2.236*** -2.271*** -2.295*** -2.32***

(0.002) (0.002) (0.002) (0.002)

1(LED)*Wet Bulb Globe Temperature <19 0.072 0.078

(0.8) (0.79)

1(LED)*Wet Bulb Globe Temperature>=19 2.375*** 2.384***

(0.0) (0.0)

1(LED) -9.199 -9.165

(0.40) (0.40)

7-day Distributed Lag Temperature Splines Y Y Y Y

7-day Distributed Lag Spline Interactions with LED N N Y Y

Fixed Effects

Precipitation Control N Y N Y

Observations 74,939 74,939 239,680 239,680

Mean of Dependent Variable 53.732 53.732 55.23 55.23

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10% level). Clustering 

is done at the factory level.  All measures of temperature are in degree Celsius. All regressions include daily budgeted efficiency as a control variable. Full table reporting coefficiencts on 7 

day distributed lag temperature splines and their interactions with LED is presented in the Appendix Table A1.

Impact of Temperature on Production Efficiency and Mitigative Impact of LED Lighting               

(Distributed Lag Specification)

Table 5

(Actual Production / Targeted Production)*100

Actual Efficiency

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week

each point along the temperature distribution, we must relax the parametric restrictions imposed in

the above analysis. Although we wish to maintain the importance of covariates and fixed effects in

isolating the causal relationships between temperature, LED installation, and actual efficiency, we do

not want to impose functional forms and parametric restrictions on the relationships depicted in Figure

5. The most flexible and agnostic approach, as described in section 4.3, would be to estimate the

observed distance between the residual temperature-efficiency gradients (of general shape) with and

without LED at each point along the common support of residual temperature distribution for pre-LED

and post-LED observations. This amounts to calculating the distance between the low LED residual

(red line) gradient and high LED residual (blue line) gradient in Figure 5 for each .1 degree temperature

residual bin along the x-axis.

These calculated differences, representing treatment effect estimates at each temperature value, are

depicted in Figure 7 along with the observed probability density of temperature residuals. Figure 7

shows that, as indicated in the preliminary graphical evidence and the parametric spline estimates

presented above, estimates of the treatment effect of LED on efficiency are small at low temperatures

but rise monotonically with higher temperatures, ultimately plateauing at around the 90th (value of
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Figure 7: Difference in Semiparametric Gradients by LED
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.98) percentile of the residual temperature distribution. Gains in efficiency due to LED installation

range from 1.2 to 1.4 percentage points for the top 25 percent of temperature values.

These semiparametric treatment effect estimates for each .1 degree bin along the temperature resid-

ual distribution corroborate with empirical flexibility and rigor the pattern of impacts shown in the

parametric spline results above. However, the primary value to conducting the semiparametric analy-

sis is the ability to calculate the total impacts of LED installation on efficiency by way of temperature-

probability-weighted averages of treatment effects along the entire temperature distribution. As de-

scribed in section 4.3, we multiply the value represented by each solid blue dot in the connected line

of treatment effects depicted in Figure 7 by the corresponding density value shown in the underlying

temperature distribution (faint dotted line) and then sum across this full set of probability-weighted

treatment effects. This is the computational equivalent to integrating the distance between the curves

in Figure 5 over the temperature residual distribution.

The results of this exercise are reported in Table 6. The first row of column 1 in Table 6 reports that

the temperature-probability-weighted average treatment effect of LED installation on actual efficiency

is just over .7 percentage points and is significant at the 1 percent level. This estimate of the overall

impact of LED installation on efficiency allows us to do cost-benefit calculations on the adoption of
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Table 6

(1) (2) (3) (4)

Temp Prob Weighted Average Treatment Effect 0.7231807*** 0.7043784*** 0.0006151 -0.0010373
Temp Prob Weighted Average Standard Error (0.2845352) (0.2423353) (0.0053535) (0.0065272)

Temp Prob Weighted Average T-Stat 2.541621 2.906628 0.1149049 -0.1589111

Uniform Weighted Average Treatment Effect 0.6151872** 0.6390683** 0.0000539 0.0017291
Uniform Weighted Average Standard Error 0.4017829 0.3105415 0.0062784 0.0080576

Uniform Weighted Average T-Stat 2.170351 2.163561 0.1426833 0.0701154

Fixed Effects

Precipitation Control N Y N Y

Observations 234888 234888 384749 384749

Notes: Treatment effect estimates are from locally weighted polynomial smoothing functions relating residauls of the outcome variable to residuals of temperature. Smoothed values of the 

outcome residual are calcualated at 50 points along the temperature residual distribution.  These sets of 50 smoothed values are calculated seperately for led residual values less than zero and 

greater than zero.  Residuals are taken from regressions of outcome, led and temperature variables on all controls and fixed effects. The two curves are then differenced point by point along 

the temperature residual distribution, and the weighted average of this difference is calculated using the probability that temperature residuals fall within bins corresponding to the 50 points 

as the weights. Estimated standard errors in parentheses are calculated as the square root of the estimated conditional variance from a higher order local polynomial fit wihtin a bandwidth of 

1.5 times the smoothing bandwidth. Reported t-statistics are the corresponding weighted averages of treatment effects at each smoothed point divided by the estimated standard error at each 

smoothed point. P-values are calculated by comparing t-statistics to conventional asymptotic student t distributions  (*** p<0.01, ** p<0.05, * p<0.1). All regressions include daily budgeted 

efficiency as a control variable.

Actual Efficiency

(Actual Production / Targeted Production)*100

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week

Table 6

Treatment Effects from Differencing of Semiparametric Efficiency-Temperature Gradients Across LED Status

Worker Presence

(Line-Level Mean Daily Probability)

LED lighting. These calculations are presented in Table 8 and discussed in section 6. In column 2, we

report the analogous estimate from the same exercise but with the inclusion of an additional control for

precipitation. As in the parametric spline results, the additional control does not meaningfully affect

the estimate. Below these estimates, we report the average treatment effect estimate obtained using a

uniform weight rather than the underlying temperature probability density. These estimates are qual-

itatively similar, but are slightly smaller in magnitude indicating that in our data higher temperatures

at which LED installation has a larger impact on efficiency are more frequent than the lower tempera-

tures at which LED has little impact. Accordingly, without accounting for the underlying distribution

of temperature as the mediator of LED impacts on efficiency, we would underestimate the total impact

of LED on efficiency. In columns 3 and 4, we report estimates from the identical exercise with line-level

mean daily presence probability as the outcome. The results show that even when adjusting for the

probability distribution of temperature, LED has no measurable impact on worker attendance.

One underlying assumption for the validity of the semiparametric exercise conducted here is the

equivalence of the observed temperature distributions before and after LED installation. While the

method will by construction not reflect differences in the underlying support of the temperature dis-
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Figure 8: Temperature Residual Distribution
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tributions, differences in frequency of particular temperature ranges before and after LED installation

will convolute the analysis. That is, while the method explicitly calculates treatment effects from only

those temperature values that exist in both pre-LED and post-LED samples and therefore will not re-

flect issues of uncommon support, a higher likelihood of high temperatures before LED installation as

compared to after LED, for example, would impact the estimates adversely. Accordingly, we check that

the residual temperature distributions, after controlling for the full set of covariates and fixed effects,

for low LED residual and high LED residual samples are statistically equivalent. Figure 8 plots the

two distributions and visually the distributions appear equivalent. We also conduct a Kolmogorov-

Smirnov nonparametric test of the equivalence of the distributions and cannot reject that they are

equivalent.31

Finally, now that we have developed and implemented a method for recovering total impacts of

LED on efficiency, we can use this method to present an event study in support of the sharp timing

of the impact. That is, with LED having a highly non-linear impact on efficiency dependent on which

temperatures prevail at a given time, a simple event study using coefficients from linear regressions

31The results of this test are available upon request. This empirically verified orthogonality between LED and temperature
residuals allows us to omit temperature from the LED residual regression and LED from the temperature residual regression
discussed in section 4.3.

33



Figure 9: Efficiency Semiparametric Estimate Event Study
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or other parametric specifications would be subject to the issues of commonality in support month by

month which are precisely avoided by the semiparametric approach developed here. Accordingly, we

utilize our semiparametric temperature-probability-weighted treatment effects estimator to calculate

treatment effects month by month relative to the month of LED installation. That is, we draw the

semiparametric temperature-efficiency residual gradient using only the data from the month directly

before LED installation in each factory.32 This represents our baseline gradient. We then draw the

analogous gradient using only data from the month in which LED lighting was introduced in each

factory. Then, following the steps set forth in section 4.3, we calculate the temperature-probability-

weighted difference between these gradients and the corresponding standard errors and t-statistics.

These estimates are plotted at time 0 in Figure 9. We repeat this exercise to calculate the difference

between the gradient for 1 month after LED installation and the base gradient of 1 month before LED

installation, as well as the difference for the gradients 2 and 3 months after LED installation. Also,

as falsification checks, we calculate the differences between the base gradient and gradients 2 and 3

months before LED installation.

All of these probability-weighted treatment effect estimates and standard errors and corresponding

32Note that since timing of LED installation is central to this exercise, factory units that already had LED lighting at the
beginning of our data and those which still did not have LED lighting by the end of our data are excluded.
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Figure 10: Attendance Semiparametric Estimate Event Study
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t-statistics are plotted in Figure 9. We interpret this event as remarkably strong evidence of the sharp-

ness of the timing of impacts around LED installation. Indeed, prior to LED installation efficiency-

temperature gradients are statistically indistinguishable, but as soon as LED lighting is introduced

efficiency-temperature gradients reflect large, positive, and statistically significant differences from

the base gradient of one month prior to LED installation. We present the analogous event study for

attendance in Figure 10. Consistent with the previous estimates on attendance, we find no evidence of

even a transitory impact of LED installation on attendance in Figure 10.

5.3 Checks for Exogeneity of LED Roll-Out

In this section, we present several additional checks on the exogeneity of the timing of LED installa-

tion. We begin by conducting an event study like that presented in Figure 9, but for a placebo outcome

that should not be impacted by the introduction of LED. Specifically, we present in Figure 11 the event

study for SAM. If the introduction of LED was timed around peak production cycles or seasonal buy-

ing patterns, the event study for SAM, which measures differences in the types and complexity of

garments, should show systematic fluctuations relative to the timing of LED installation. Figure 11

shows no evidence of endogeneity in the timing of LED installation with respect to production charac-
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Figure 11: Placebo SAM Semiparametric Estimate Event Study
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teristics.

In Table 7, we report additional regression results in further support of the exogeneity of LED

roll-out. In column 1, we report estimates of the coefficients on the temperature spline terms from

the regression of the LED introduction dummy on the main specification in equation 4. We find no

evidence that LED installation was timed around particular temperature realizations. These results

are consistent with the evidence of the equivalence of pre-LED and post-LED temperature residual

distributions presented in Figure 8. In columns 2 and 3 of Table 7, we report results from the regression

of SAM and budgeted efficiency, respectively, on the LED installation dummy, the date relative to

LED installation, and their interaction with the remaining specification identical to that depicted in

equation 4. These regressions are meant to check whether garment style and complexity (SAM) and

order size (budgeted efficiency) varied systematically in the lead up to LED installation or immediately

after. Significant coefficient estimates in columns 2 and 3 would reflect evidence that the timing of

LED introduction is endogenous with respect to these production factors; however, we find no such

evidence. Finally, in columns 4 through 6, we check that LED installation was not accompanied by

other forms of upgrading. Specifically, we regress the proportion of each of the three skill levels of

tailors - A, B, and C grade - hired on each day in each factory unit on the same specification reported

36



Table 7

(1) (2) (3) (4) (5) (6)

1(LED)
Standard 
Allowable 

Minutes (SAM)

Budgeted 
Efficiency

Proportion of A 
grade tailors 

hired

Proportion of B 
grade tailors 

hired

Proportion of C 
grade tailors 

hired

Wet Bulb Globe Temperature <19 0.0017

(0.72)

Wet Bulb Globe Temperature>=19 -0.0078

(0.24)

1(LED)*Date Relative to LED Installation 0.0010 -0.000004 0.00001 0.00008 -0.00005
(0.18) (0.82) (1) (0.46) (0.78)

1(LED) 2.994 -0.0388 -0.0211 0.0439 -0.019
(0.33) (0.478) (0.40) (0.19) (0.38)

Date Relative to LED Installation -0.0007 0.000003 0.00006 0.00129* -0.0012
(0.17) (0.81) (0.94) (0.06) (0.19)

Fixed Effects

Precipitation Controls Y Y Y Y Y Y
Temperature Controls N Y Y Y Y Y

Observations 239,680 134,326 134,326 8,595 8,561 8,562
Mean of the dependent variable 0.69 0.751 61.64 0.44 0.29 0.27

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10% level). Clustering is done at 
the factory level.  Since columns 2 through 6  consider the date relative the LED installation, units that had LED lighting at the beginning of the sample period or did not have LED lighting by the 
end of the sample period are omitted.  The first 3 columns are at the production line-date level, and the last 3 columns are defined at the unit-date level.

Factory x Year, Factory x Month, Production Line, Day 
of the Week

Factory x Year, Factory x Month, Day of the Week

Table 7
Checks for Exogeneity of LED Roll-Out

in columns 2 and 3.33 We do not find any evidence that hiring patterns changed in the lead up to LED

installation or immediately after.

6 Discussion

The promise of climate change mitigation is tempered by the willingness of individuals and firms

to adopt these beneficial technologies on a large scale. This willingness, in turn, is a function of the

private returns to adoption, which, for most mitigation strategies, are cited as low or negative even

when the public benefits are large. In this study, we show that the introduction of energy-saving LED

lighting in Indian garment factories has substantial productivity co-benefits which accrue privately to

the adopting firm.

Specifically, we find that the introduction of LEDs eliminates roughly 85% percent of the negative

impact of temperature on worker efficiency during relatively hot days. Using the semiparametric treat-

33A grade tailors are the most skilled, followed by B grade tailors, and C grade tailors are the least skilled.
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Table 8

Cost of Implementation (one-time)
     Investment per bulb (bulb, wiring, etc.) $8.53

     Number of bulbs replaced per factory unit 1193

Total Cost of Implementation $10,180.27

Energy Savings (per year)
     Power consumption savings per bulb $2.40

     Number of bulbs replaced 1193

Total Energy Savings $2,863.20

Efficiency Gains (per year)
Average efficiency gain in percentage point from LED-caused temperature reductions (Table 7) 0.7044

Efficiency percentage point gain to profit percentage point gain translation 0.1875

Profit margin at baseline 5%

Average revenue in USD per factory unit per year $10,000,000.00

Average profit in USD per factory unit per year $500,000.00

Total Efficiency Gains $13,207.10

Total Net Savings from LED Adoption in the first year $5,890.03
Total Net Savings from LED Adoption in the second year $16,070.30

Carbon (Public) Benefits from LED adoption (at $27/tC) $101.23

Carbon (Public) Benefits from LED adoption (at $93/tC) $345.68

Notes: Profit margin at base was taken from accounting department of the firm. Calculation for translating efficiency gains to profit come from accounting estimates of the proportion 

of "Cut to Make" (non-material) costs that can be recovered via efficiency gains. "Cut to Make" costs make up 25% of total costs, and 75% of these costs are recoverable via improved 

efficiency. Average revenue in USD per factory unit per year is obtained by taking balance sheet revenues for the firm and dividing by number of plants. For additional details on the 

calculation of carbon benefits, please refer to the Discussion section.

Table 8

Cost-Benefit Calculations for LED Adoption

ment effect estimator developed in this study to calculate the average total impact of LED installation

given the specific treatment effect at each observed temperature and the underlying probability dis-

tribution of temperature, we estimate an average total increase in production efficiency of roughly .7

percentage points (or more than 1% improved productivity from the mean), as presented in Table 6.

6.1 Private Benefits (Firm Cost-Benefit Calculations)

We combine our estimate of average total efficiency gains with actual production and costing data

from the firm to calculate annual costs and benefits of LED installation and report these calculations

in Table 8. Senior management at the firm, with whom we worked closely on this study, estimated
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that the profit gains for each percentage point gain in efficiency were 0.1875 percentage points.34 Thus,

a 0.7 percentage point gain in efficiency from LED installation translates to a .13 percentage point

gain in profits (or a 2.6% increase in profitability from the 5% baseline profit margin of the firm). At

an approximate profit value per factory per year of 500,000 USD, the introduction of LED results in

increased profits of 13,207 USD per factory per year from gains in production efficiency.

How does this estimate change the cost-benefit calculations of LED adoption for the firm? To

start, we obtained the energy cost savings calculations the firm used when making its LED adoption

choices. Management estimated that the total energy cost savings per year per factory unit of LEDs

(as compared with CFL bulbs, which were being used before LED introduction) were approximately

2.40 USD per bulb replaced or roughly 2,863 USD in total for an average replacement of 1193 bulbs per

factory in our data.35 The added profits from efficiency gains per year we computed are nearly 5 times

this amount. The cost of replacing the average factory’s bulbs to LEDs is roughly 10,180 USD. Thus, if

only energy savings were taken into account, it would take more than 3 and a half years to break even.

However, when the productivity benefits are included, the firm breaks even in less than 8 months

after LED installation. After this initial payback period, the firm benefits from an on-going combined

increase in profitability from energy savings and efficiency gains of roughly 3.2% or an increase in their

profit margin of .16 percentage points.

6.2 Public Benefits (Emissions Calculations)

In addition to the private benefits of increased productivity and energy cost savings, the replacement

of LED lighting has public benefits of avoided damages due to reduced carbon emissions. On average,

the LED replacement saves 18,000 KWh of electricity per factory unit per year, which in this case

reduces electricity emissions by about 3.73 tC emissions per unit per year.36 Valuing this reduction of

carbon emissions at the Nordhaus (2008) estimate of $27/tC (a 2005 carbon price) gives us avoided

damages of $101.23 per unit per year, and valuing this at the mean value of the review by Tol (2005) of

$93/tC yields avoided damages of $345.68 per unit per year. Interestingly, at the current estimates of

34This calculation comes from management identifying what proportion of total non-material ”Cut to Make” costs are
recoverable by increasing labor efficiency. ”Cut to Make” costs make 25% of the total cost of the garment and the accounting
department of the firm estimated that 75% of ”Cut to Make” costs were recoverable via efficiency improvements.

35For these calculations, we use the average number of bulbs replaced in the 14 factories we observe before and after LED
installation in the production data as these factories best represent the treatment effects estimates.

36The conversion from electricity consumption to carbon emissions is done as follows: According to the CO2 Baseline
Database for the Indian Power Sector (version 8) by the Central Electricity Authority of India, a MWh of electricity generated
on the Southern grid causes 0.76 tCO2 of emissions. Thus, 18,000 KWh causes about 13.68 tCO2, or about 3.73 tC.

39



carbon prices, these benefits are relatively small in comparison to the annual private benefits.37

We believe our work is an important first step in quantifying private co-benefits of climate change

mitigation strategies, but that much more needs to be done to quantify the full returns to the variety

of mitigation strategies. Whether similar co-benefits exist for other types of mitigation – e.g., renew-

able energy investments, public transport systems, energy-efficient built environments, etc. – is an

open and vital question. Our findings highlight the potential importance of information dissemina-

tion regarding co-benefits, and point the way to government policies designed to subsidize the wide

distribution of such information in the private sector, thus increasing economic output and generating

environmental benefits, as well.

37Adding the corresponding reduction in local air pollutants would increase the valuation of public benefits, but given
the sparsity of accurate data regarding marginal damages of local pollutants in Bangalore, we are unable to include this
valuation in this study.

40



References

Adhvaryu, A., Kala, N., and Nyshadham, A. (2016). Management and shocks to worker productivity.

Allcott, H., Collard-Wexler, A., and O’Connell, S. D. (2014). How do electricity shortages affect pro-

ductivity? evidence from india. NBER Working Paper, (w19977).

Allcott, H. and Greenstone, M. (2012). Is there an energy efficiency gap? Journal of Economic Perspectives,

26(1):3–28.

Allcott, H. and Taubinsky, D. (2015). Evaluating behaviorally-motivated policy: Experimental evidence

from the lightbulb market. Sloan Foundation Economics Research Paper, (2640628).

Bandiera, O., Barankay, I., and Rasul, I. (2007). Incentives for managers and inequality among workers:

evidence from a firm-level experiment. The Quarterly Journal of Economics, 122(2):729–773.

Bandiera, O., Barankay, I., and Rasul, I. (2009). Social connections and incentives in the workplace:

Evidence from personnel data. Econometrica, 77(4):1047–1094.

Bandiera, O., Barankay, I., and Rasul, I. (2010). Social incentives in the workplace. The Review of

Economic Studies, 77(2):417–458.

Barreca, A., Clay, K., Deschenes, O., Greenstone, M., and Shapiro, J. S. (2016). Adapting to climate

change: The remarkable decline in the us temperature-mortality relationship over the twentieth

century. Journal of Political Economy, 124(1):105–159.

Billor, N., Hadi, A. S., and Velleman, P. F. (2000). Bacon: blocked adaptive computationally efficient

outlier nominators. Computational Statistics & Data Analysis, 34(3):279–298.

Bloom, N., Eifert, B., Mahajan, A., McKenzie, D., and Roberts, J. (2013). Does management matter?

evidence from india. The Quarterly Journal of Economics, 128(1):1–51.

Bloom, N. and Van Reenen, J. (2010). Why do management practices differ across firms and countries?

The Journal of Economic Perspectives, pages 203–224.

Burgess, R., Deschenes, O., Donaldson, D., and Greenstone, M. (2011). Weather and death in india.

Cambridge, United States: Massachusetts Institute of Technology, Department of Economics. Manuscript.

41



Burgess, R., Deschenes, O., Donaldson, D., and Greenstone, M. (2014). The unequal effects of weather

and climate change: Evidence from mortality in india.

Burke, M., Hsiang, S. M., and Miguel, E. (2015). Global non-linear effect of temperature on economic

production. Nature.

Cai, J. and Szeidl, A. (2016). Interfirm relationships and business performance. Technical report, Na-

tional Bureau of Economic Research.

Cameron, A. C., Gelbach, J. B., and Miller, D. L. (2008). Bootstrap-based improvements for inference

with clustered errors. The Review of Economics and Statistics, 90(3):414–427.

Chang, T., Graff Zivin, J., Gross, T., and Neidell, M. (2014). Particulate pollution and the productivity

of pear packers. NBER Working Paper, (w19944).

Costinot, A., Donaldson, D., and Smith, C. (2016). Evolving comparative advantage and the impact of

climate change in agricultural markets: Evidence from 1.7 million fields around the world. Journal

of Political Economy, 124(1):205–248.

Danet, S., Richard, F., Montaye, M., Beauchant, S., Lemaire, B., Graux, C., Cottel, D., Marécaux, N., and

Amouyel, P. (1999). Unhealthy effects of atmospheric temperature and pressure on the occurrence

of myocardial infarction and coronary deaths a 10-year survey: The lille-world health organiza-

tion monica project (monitoring trends and determinants in cardiovascular disease). Circulation,

100(1):e1–e7.

Dell, M., Jones, B. F., and Olken, B. A. (2012). Temperature shocks and economic growth: Evidence

from the last half century. American Economic Journal: Macroeconomics, pages 66–95.
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A Additional Tables

In Figure A1, we present the difference between the productivity-temperature for the with and without

LED sample. Essentially, we are presenting the difference between the two gradients presented in

Figure 3. Analogously, in Figure A2, we present the difference between the productivity-temperature

gradient net of all the fixed effects and budgeted efficiency for the with and without LED sample,

which is the difference between the two gradients presented in Figure 5.

In appendix table A1, we present the full results of the distributed lag specification with efficiency

as the dependent variable, including lagged coefficients for each of the two splines for seven-day

lagged temperatures, and in columns 3 and 4, the interactions of these with the LED installation

dummy variable, as well as the LED installation dummy variable. We find that the estimated coef-

ficients for the lagged temperature realizations and those of the lagged temperature realizations inter-

acted with the LED installation dummy variable are largely not statistically significant at conventional

levels, and for the coefficients that are statistical significantly different from zero, the point estimates

are every small relative to the coefficients on contemporaneous temperature, especially at higher con-

temporaneous temperatures which is where the impacts on productivity seem most important. Fur-

thermore, as mentioned in the text, both the point estimates and the level of statistical significance of

higher contemporaneous temperatures above the 19 degree wet bulb globe temperature cutoff, as well

as the mitigative impact of LED lighting of the productivity-temperature gradient at this range of tem-

peratures, remains unchanged. This further supports the conclusion that the results are not driven by

omitting lagged temperature variables which might be correlated with contemporaneous temperature.

Appendix table A2 presents the results from the distributed lag specification with mean daily line-

level worker attendance as the dependent variable. As with table A1, we include coefficients for each

of the two splines for seven-day lagged temperatures, and in the third and fourth columns, interac-

tions of each of these fourteen variables with the LED installation dummy, in addition to the LED

installation dummy. The results mirror those of the regression where these lags (and their interactions

with LED) are omitted - the estimated coefficients are very small relative to the mean level of atten-

dance, and not statistically significantly different from zero for higher (WBGT ≥ 19 degrees Celsius)

temperatures, which is where the productivity impacts are concentrated. In addition, the contempora-

neous point estimates do not change much relative to the specification that omits lagged temperature.

Thus, this further supports the conclusion that attendance is unlikely to be the mediating mechanism
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for the impacts of temperature on productivity, or the mitigative impact of LED on these effects of

temperature.

Appendix table A3 tests that production line-day observations for which data is missing are not

correlated with either temperature or the LED installation decisions, and therefore for the purpose

of this analysis, can be assumed to be missing randomly. About 20% of all line-day observations are

missing efficiency data, since the administrative production data we use are recorded by hand in most

factory units, and then inputted daily into the firms data repository servers. This digitization process

is imperfect, however, and some data were lost in the process of collating and uploading. The obvious

worry here is if temperature is correlated with the incidence of missing production data. We study this

in a selection-type regression, in which we create a dummy for missing production line x day obser-

vations, and put this in our baseline specification: temperature splines with a node at wet-bulb globe

temperature of 19 degrees C, and all baseline fixed effects. We also regress the dummy for missing pro-

duction line-day observations on all the fixed effects and the LED installation dummy variable. The

results of this analysis are presented in Table A3. The coefficients on the temperature splines are very

small and statistically insignificant, indicating that conditional on baseline fixed effects, temperature

or LED installation does not predict missing observations.

We then test the robustness of our results to alternative temperature measures, namely dry bulb

temperature (controlling for daily relative humidity) and the Heat Index (HI). Tables A4-A6 present

the results for dry bulb temperature, and tables A7-A9 for the heat index. The spline nodes for these al-

ternate temperature variables are chosen to correspond to roughly the same proportion of observations

as the spline for wet bulb globe temperature, and the productivity-temperature gradient exhibits a sig-

nificant negative gradient at these chosen nodes. This is reflected in the regression results. Controlling

for precipitation does not affect any of the results.

The spline regression estimates in Table A4 from columns 1 and 2 illustrate that the slope of the

efficiency-temperature gradient below 27 degrees Celsius of dry bulb temperature is slightly nega-

tive (statistically indistinguishable from 0) and the slope above 27 degrees is strongly negative and

statistically significant at the 1 percent level, with a magnitude of about -1.02 percentage points of

efficiency. As with the main specification with wet bulb globe temperature, the introduction of LED

offsets the negative impacts of temperature on efficiency by roughly 85% attenuating the magnitude

of the negative slope above 27 degrees, but has no significant impact at lower temperatures, which

do not statistically significantly affect efficiency. The estimate of the main effect of LED is statistically
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indistinguishable from 0.

Next, we test whether higher temperatures impact worker attendance. Table A5 reports results

of the regression of mean line-daily worker attendance on the identical specifications to those in Table

A4. Analogous to results that use wet bulb globe temperature as the temperature measure, we find that

temperature shocks at only low temperatures ( less than 27 degree Celsius) affect attendance, and the

magnitudes of the point estimates are extremely small (less than 1% of the mean). All other estimates

of coefficients, including those reflecting the impacts of LED, are statistically indistinguishable from 0.

As with the main specifications, this suggests that the impacts of temperature on worker attendance

are not contributing to the estimated impacts of temperature and LED installation on efficiency.

Table A6 confirms that attendance is not the primary mediating mechanism for the impacts of

temperature on efficiency. It reports the results of regressions identical to those in Table A4, with the

additional inclusion of mean line-daily worker attendance as a control variable. Once more, as with the

main specifications that use wet bulb globe temperature as the temperature measure, including mean

line-daily worker attendance as a control variable does not significantly change the estimated impacts

of temperature, or the mitigative impact of LED. Thus, using dry bulb temperature as an alternative

temperature measure supports the conclusion that while higher temperatures impact the intensive

margin of productivity per unit labor supplied, but does not seem to affect much the extensive margin

of the quantity of labor units supplied. Furthermore, LED lighting installation attenuates the impacts

of temperature on the intensive margin of efficiency, but has no perceptible impact on the extensive

margin of attendance.

Tables A7-A9 report the analogous results to Tables A4-A6, except that Heat Index is used as the

measure of temperature. Once more, the results are in line with our main results (using wet bulb

globe temperature as the temperature measure), and results obtained using dry bulb temperature as

the temperature measure. The productivity-temperature gradient is strongly negative at higher tem-

peratures (Heat Index ≥ 27 degrees Celsius), with a marginal impact of about -1.3 percentage points

of efficiency, whereas it is statistically indistinguishable from zero at lower temperatures. The installa-

tion of LED lighting mitigates about 80% of the impact of temperature on productivity, in accordance

with results that use alternate temperature measures. Furthermore, this impact does not appear to be

driven by attendance, as shown by the results in Tables A8 and A9. Table A8 presents the impacts

of higher temperature on attendance, and finds at most weakly statistically significant impacts only

at lower temperatures (Heat Index <27 degrees Celsius), and no impact at higher temperatures (Heat
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Index ≥ 27 degrees Celsius). Table A9 shows that controlling for mean line-daily worker attendance

does not impact the estimated impacts of temperature on efficiency, or the mitigative impact of LED,

thereby confirming that attendance is likely not the primary mechanism driving either the estimated

productivity-temperature gradient, or the mitigative impact of LED lighting of this gradient.

Finally, in tables A10-A12, we exclude factories that had LED lighting at the beginning of the sam-

ple or did not receive LED lighting by the end of the sample, and re-estimate the main regressions.

Table A10 shows impacts on efficiency, A11 shows impacts on attendance, and A12 shows impacts

on efficiency controlling for daily line-level attendance. We find that the results on the temperature-

efficiency gradient, as well as mitigation due to LED, and the null impacts on attendance, remain un-

changed across these three tables with the amended sample that excludes these factories. We see again

that results are very similar (both in coefficient magnitudes and patterns of statistical significance) to

results obtained by including all factories with available productivity data.
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Figure A1: Difference in Gradient by LED
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Figure A2: Difference in Residual Gradient by LED
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(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.44 -0.467 -0.227 -0.245
(0.29) (0.26) (0.41) (0.35)

Wet Bulb Globe Temperature>=19 -2.236*** -2.271*** -2.295*** -2.32***
(0.002) (0.002) (0.002) (0.002)

One-Day Lagged Wet Bulb Globe Temperature <19 -0.105 -0.102 -0.215* -0.212*
(0.3) (0.32) (0.06) (0.07)

One-Day Lagged Wet Bulb Globe Temperature >=19 -0.056 -0.05 0.026 0.029
(0.43) (0.46) (0.68) (0.64)

Two-Day Lagged Wet Bulb Globe Temperature <19 0.136 0.139 0.059 0.061
(0.29) (0.27) (0.64) (0.62)

Two-Day Lagged Wet Bulb Globe Temperature >=19 -0.045 -0.043 -0.054 -0.054
(0.79) (0.79) (0.73) (0.74)

Three-Day Lagged Wet Bulb Globe Temperature <19 -0.093 -0.089 -0.15 -0.146
(0.37) (0.39) (0.24) (0.25)

Three-Day Lagged Wet Bulb Globe Temperature >=19 0.25 0.252 0.302 0.303
(0.19) (0.19) (0.18) (0.18)

Four-Day Lagged Wet Bulb Globe Temperature <19 0.029 0.029 -0.022 -0.022
(0.75) (0.75) (0.69) (0.69)

Four-Day Lagged Wet Bulb Globe Temperature >=19 0.154 0.151 0.216 0.214
(0.43) (0.43) (0.36) (0.37)

Five-Day Lagged Wet Bulb Globe Temperature <19 0.227*** 0.226*** 0.085 0.084
(0.01) (0.01) (0.45) (0.45)

Five-Day Lagged Wet Bulb Globe Temperature >=19 0.165 0.165 0.258 0.257
(0.36) (0.36) (0.19) (0.19)

Six-Day Lagged Wet Bulb Globe Temperature <19 0.053 0.061 -0.023 -0.019
(0.38) (0.36) (0.85) (0.89)

Six-Day Lagged Wet Bulb Globe Temperature >=19 -0.366*** -0.367*** -0.335** -0.337**
(0.006) (0.006) (0.05) (0.05)

Seven-Day Lagged Wet Bulb Globe Temperature <19 0.029 0.036 -0.008 -0.003
(0.54) (0.48) (0.92) (0.96)

Seven-Day Lagged Wet Bulb Globe Temperature >=19 0.194 0.191 0.253 0.25
(0.34) (0.34) (0.30) (0.31)

1(LED)*Wet Bulb Globe Temperature <19 0.072 0.078

(0.8) (0.79)
1(LED)*Wet Bulb Globe Temperature>=19 2.375*** 2.384***

(0.0) (0.0)
1(LED)*One-Day Lagged Wet Bulb Globe Temperature <19 0.23 0.229

(0.13) (0.13)
1(LED)*One-Day Lagged Wet Bulb Globe Temperature >=19 -0.206 -0.206

(0.11) (0.11)
1(LED)*Two-Day Lagged Wet Bulb Globe Temperature <19 0.122 0.122

(0.34) (0.34)
1(LED)*Two-Day Lagged Wet Bulb Globe Temperature >=19 -0.044 -0.045

(0.85) (0.84)
1(LED)*Three-Day Lagged Wet Bulb Globe Temperature <19 -0.006 -0.007

(0.98) (0.97)
1(LED)*Three-Day Lagged Wet Bulb Globe Temperature >=19 -0.263 -0.262

(0.27) (0.27)
1(LED)*Four-Day Lagged Wet Bulb Globe Temperature <19 0.262*** 0.263***

(0.01) (0.01)
1(LED)*Four-Day Lagged Wet Bulb Globe Temperature >=19 -0.506* -0.504**

(0.08) (0.08)
1(LED)*Five-Day Lagged Wet Bulb Globe Temperature <19 -0.156 -0.158

(0.19) (0.18)
1(LED)*Five-Day Lagged Wet Bulb Globe Temperature >=19 -0.277 -0.276

(0.19) (0.19)

1(LED)*Six-Day Lagged Wet Bulb Globe Temperature <19 0.064 0.064

(0.56) (0.56)
1(LED)*Six-Day Lagged Wet Bulb Globe Temperature >=19 0.193 0.192

(0.34) (0.34)

1(LED)*Seven-Day Lagged Wet Bulb Globe Temperature <19 0.076 0.072

(0.62) (0.63)
1(LED)*Seven-Day Lagged Wet Bulb Globe Temperature >=19 -0.375 -0.375

(0.15) (0.15)
1(LED) -9.199 -9.165

(0.40) (0.40)
Fixed Effects

Precipitation Control N Y N Y
Observations 74,939 74,939 239,680 239,680

Mean of Dependent Variable 53.732 53.732 55.23 55.23

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10% level). Clustering is
done at the factory level.  All measures of temperature are in degree Celsius. All regressions include daily budgeted efficiency as a control variable.

Table A1
Impact of Temperature on Production Efficiency and Mitigative Impact of LED Lighting

(Distributed Lag Specification)

Actual Efficiency
(Actual Production / Targeted Production)*100

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week
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(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.0112*** -0.011*** -0.0081*** -0.0075***
(0.002) (0.002) (0.008) (0.02)

Wet Bulb Globe Temperature>=19 -0.0012 -0.0009 0.0007 0.0013
(0.61) (0.68) (0.82) (0.64)

One-Day Lagged Wet Bulb Globe Temperature <19 0.002 0.0019 0.002 0.0019
(0.186) (0.19) (0.10) (0.14)

One-Day Lagged Wet Bulb Globe Temperature >=19 0.0023*** 0.0022*** 0.003*** 0.003***
(0.004) (0.00) (0.0) (0.002)

Two-Day Lagged Wet Bulb Globe Temperature <19 0.0015 0.0015 0.0019 0.0018
(0.27) (0.27) (0.14) (0.14)

Two-Day Lagged Wet Bulb Globe Temperature >=19 -0.0037 -0.0037 -0.0035 -0.0035
(0.33) (0.33) (0.29) (0.27)

Three-Day Lagged Wet Bulb Globe Temperature <19 -0.0001 -0.0001 -0.0001 -0.0002
(1.00) (1.00) (0.95) (0.93)

Three-Day Lagged Wet Bulb Globe Temperature >=19 -0.0012 -0.0012 -0.0008 -0.0008
(0.73) (0.73) (0.76) (0.76)

Four-Day Lagged Wet Bulb Globe Temperature <19 -0.0006 -0.0007 -0.0004 -0.0004
(0.58) (0.57) (0.74) (0.73)

Four-Day Lagged Wet Bulb Globe Temperature >=19 0.0032* 0.0032* 0.0037** 0.0038**
(0.09) (0.08) (0.02) (0.01)

Five-Day Lagged Wet Bulb Globe Temperature <19 0.0071*** 0.0071*** 0.0069** 0.0069**
(0.03) (0.03) (0.04) (0.04)

Five-Day Lagged Wet Bulb Globe Temperature >=19 0.0023*** 0.0023*** 0.0045*** 0.0046***
(0.01) (0.01) (0.0) (0.0)

Six-Day Lagged Wet Bulb Globe Temperature <19 0.0016 0.0015 0.0017 0.0015
(0.47) (0.52) (0.48) (0.54)

Six-Day Lagged Wet Bulb Globe Temperature >=19 0.0037** 0.0037** 0.0048*** 0.0049***
(0.05) (0.05) (0.0) (0.0)

Seven-Day Lagged Wet Bulb Globe Temperature <19 -0.0003 -0.0004 -0.0007 -0.0008
(0.75) (0.71) (0.53) (0.42)

Seven-Day Lagged Wet Bulb Globe Temperature >=19 -0.0005 -0.0005 0.0001 0.0001
(0.49) (0.54) (0.98) (0.93)

1(LED)*Wet Bulb Globe Temperature <19 0.0017 0.0015
(0.64) (0.69)

1(LED)*Wet Bulb Globe Temperature>=19 0.0002 0.0001
(0.93) (0.97)

1(LED)*One-Day Lagged Wet Bulb Globe Temperature <19 0.0006 0.0007

(0.67) (0.64)

1(LED)*One-Day Lagged Wet Bulb Globe Temperature >=19 -0.0003 -0.0003

(0.79) (0.79)

1(LED)*Two-Day Lagged Wet Bulb Globe Temperature <19 -0.0026* -0.0026*

(0.09) (0.08)

1(LED)*Two-Day Lagged Wet Bulb Globe Temperature >=19 -0.0021 -0.0021

(0.47) (0.46)

1(LED)*Three-Day Lagged Wet Bulb Globe Temperature <19 0.0014 0.0014

(0.78) (0.78)

1(LED)*Three-Day Lagged Wet Bulb Globe Temperature >=19 -0.0015 -0.0015

(0.51) (0.50)

1(LED)*Four-Day Lagged Wet Bulb Globe Temperature <19 0.0041** 0.0041**

(0.02) (0.02)

1(LED)*Four-Day Lagged Wet Bulb Globe Temperature >=19 -0.0031 -0.0031

(0.10) (0.10)

1(LED)*Five-Day Lagged Wet Bulb Globe Temperature <19 -0.0013 -0.0012

(0.46) (0.49)

1(LED)*Five-Day Lagged Wet Bulb Globe Temperature >=19 -0.0005 -0.0005

(0.68) (0.68)

1(LED)*Six-Day Lagged Wet Bulb Globe Temperature <19 -0.0046** -0.0046**

(0.01) (0.02)

1(LED)*Six-Day Lagged Wet Bulb Globe Temperature >=19 -0.0016 -0.0016

(0.32) (0.32)

1(LED)*Seven-Day Lagged Wet Bulb Globe Temperature <19 0.0058*** 0.0058***

(0.0) (0.0)

1(LED)*Seven-Day Lagged Wet Bulb Globe Temperature >=19 -0.0005 -0.0005

(0.79) (0.80)
1(LED) -0.0846 -0.086

(0.20) (0.20)
Fixed Effects

Observations 136,062 136,062 392,601 392,601
Mean of Dependent Variable 0.85 0.85 0.83 0.83

Table A2
Impact of Temperature on Attendance and Mitigative Impact of LED Lighting (Distributed Lag Specification)

Line-Level Mean Daily Probability of Worker Presence

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week

Notes: Wild-cluster bootstrap p-values in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Clustering is done at the factory level.  All measures of temperature are in degree Celsius.
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(1) (2) (3)

Wet Bulb Globe Temperature <19 0.0075 0.0075
(0.26) (0.25)

Wet Bulb Globe Temperature>=19 -0.00438 -0.00434
(0.92) (0.92)

1(LED) -0.0165
(0.81)

Fixed Effects
Precipitation Control N Y N

Observations 95,526 95,526 356,924
Mean of Dependent Variable 0.21 0.21 0.33

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10%
level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius.

Table A3
Partial Correlations between Missing Data and Temperature and LED Regressors

1(Efficiency Data is Missing)

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week
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(1) (2) (3) (4)

Dry Bulb Temperature <27 -0.136 -0.1501 -0.0274 -0.0333
(0.55) (0.51) (0.84) (0.82)

Dry Bulb Temperature>=27 -1.022*** -1.0279*** -0.9305*** -0.9392***
(0.002) (0.002) (0.002) (0.002)

1(LED)*(Dry Bulb Temperature <27) -0.0752 -0.0743
(0.75) (0.75)

1(LED)*(Dry Bulb Temperature>=27) 0.7954*** 0.8032***
(0.01) (0.01)

1(LED) 3.412 3.3883
(0.65) (0.66)

Fixed Effects
Precipitation Control N Y N Y

Observations 74,939 74,939 239,680 239,680
Mean of Dependent Variable 53.73 53.73 55.234 55.234

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10%
level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius. All regressions include daily budgeted efficiency as a control variable.

Table A4
Impact of Dry Bulb Temperature on Efficiency and Mitigative Impact of LED lighting

Efficiency

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week
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(1) (2) (3) (4)

Dry Bulb Temperature <27 -0.0037** -0.0037** -0.0002 -0.00017
(0.02) (0.04) (0.86) (0.90)

Dry Bulb Temperature>=27 0.00145 0.00146 0.0059** 0.00595**
(0.38) (0.37) (0.04) (0.04)

1(LED)*(Dry Bulb Temperature <27) 0.0002 0.0002
(0.85) (0.85)

1(LED)*(Dry Bulb Temperature>=27) -0.004 -0.0041
(0.22) (0.21)

1(LED) -0.0083 -0.00876
(0.73) (0.71)

Fixed Effects
Precipitation Control N Y N Y

Observations 136,062 136,062 392,601 392,601
Mean of Dependent Variable 0.846 0.846 0.829 0.829

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at
the 10% level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius.

Table A5
Impact of Dry Bulb Temperature on Attendance and Mitigative Impact of LED lighting

Worker Presence
(Line-Level Mean Daily Probability)

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week



(1) (2) (3) (4)

Dry Bulb Temperature <27 -0.2265 -0.2453 -0.06437 -0.07
(0.41) (0.37) (0.70) (0.67)

Dry Bulb Temperature>=27 -1.1928*** -1.1991*** -1.0193*** -1.02872***
(0.004) (0.004) (0.004) (0.006)

1(LED)*(Dry Bulb Temperature <27) -0.00515 -0.0047
(1.00) (1.00)

1(LED)*(Dry Bulb Temperature>=27) 0.7265** 0.74**
(0.04) (0.04)

1(LED) 1.4719 1.4562
(0.89) (0.90)

Line-Level Mean Daily Probability of Worker
Presence

1.7789 1.7386 2.1314** 2.1197**

(0.49) (0.49) (0.04) (0.04)

Fixed Effects
Precipitation Control N Y N Y

Observations 74,939 74,939 239,680 239,680
Mean of Dependent Variable 53.73 53.73 55.234 55.234

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10% level).
Clustering is done at the factory level.  All measures of temperature are in degree Celsius. Line-Level Mean Daily Probability of Worker Presence is the average probability that a worker
is present for a production line on a given day. All regressions include daily budgeted efficiency as a control variable.

Table A6
Impact of Dry Bulb Temperature on Efficiency and Mitigative Impact of LED lighting Controlling  for

Attendance

Efficiency

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week



(1) (2) (3) (4)

Heat Index <26 -0.151 -0.161 -0.0455 -0.051
(0.53) (0.50) (0.77) (0.75)

Heat Index>=26 -1.324*** -1.347*** -1.184*** -1.202***
(0.002) (0.002) (0.002) (0.002)

1(LED)*(Heat Index <26) -0.051 -0.0497
(0.83) (0.83)

1(LED)*(Heat Index>=26) 0.983*** 0.989***
(0.01) (0.01)

1(LED) 2.804 2.767
(0.70) (0.70)

Fixed Effects
Precipitation Control N Y N Y

Observations 74,939 74,939 239,680 239,680
Mean of Dependent Variable 53.73 53.73 55.234 55.234

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10%
level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius. All regressions include daily budgeted efficiency as a control variable.

Table A7
Impact of Heat Index on Efficiency and Mitigative Impact of LED lighting

Efficiency

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week



(1) (2) (3) (4)

Heat Index <26 -0.00337** -0.00329* -0.00067 -0.00045
(0.04) (0.06) (0.54) (0.71)

Heat Index>=26 0.00018 0.0004 0.003987 0.00449
(0.92) (0.83) (0.23) (0.18)

1(LED)*(Heat Index <26) 0.00076 0.0007
(0.52) (0.57)

1(LED)*(Heat Index>=26) -0.00446 -0.00461
(0.23) (0.22)

1(LED) -0.01725 -0.01673
(0.46) (0.48)

Fixed Effects
Precipitation Control N Y N Y

Observations 136,062 136,062 392,601 392,601
Mean of Dependent Variable 0.846 0.846 0.829 0.829

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at
the 10% level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius.

Table A8
Impact of Heat Index on Attendance and Mitigative Impact of LED lighting

Worker Presence
(Line-Level Mean Daily Probability)



(1) (2) (3) (4)

Heat Index <26 -0.238 -0.252 -0.079 -0.085
(0.40) (0.37) (0.63) (0.61)

Heat Index>=26 -1.545*** -1.582*** -1.299*** -1.32***
(0.004) (0.004) (0.006) (0.006)

1(LED)*(Heat Index <26) 0.012 0.014
(0.91) (0.90)

1(LED)*(Heat Index>=26) 0.922** 0.93**
(0.042) (0.03)

1(LED) 1.079 1.043
(0.92) (0.93)

Line-Level Mean Daily Probability of Worker
Presence

1.887 1.887 2.188** 2.195**

(0.47) (0.48) (0.03) (0.03)

Fixed Effects
Precipitation Control N Y N Y

Observations 74,939 74,939 239,680 239,680
Mean of Dependent Variable 53.73 53.73 55.234 55.234

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10% level).
Clustering is done at the factory level.  All measures of temperature are in degree Celsius. Line-Level Mean Daily Probability of Worker Presence is the average probability that a worker
is present for a production line on a given day. All regressions include daily budgeted efficiency as a control variable.

Table A9
Impact of Heat Index on Efficiency and Mitigative Impact of LED lighting Controlling  for Attendance

Efficiency

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week



(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.526 -0.549 -0.201 -0.223
(0.50) (0.47) (0.59) (0.55)

Wet Bulb Globe Temperature>=19 -2.953*** -3.0283*** -2.579*** -2.681***
(0.004) (0.004) (0.008) (0.008)

1(LED)*(Wet Bulb Globe Temperature <19) -0.222 -0.225

(0.59) (0.59)

1(LED)*(Wet Bulb Globe Temperature>=19) 2.261*** 2.319***

(0.00) (0.00)

1(LED) 5.165 5.205
(0.58) (0.58)

Fixed Effects
Precipitation Control N Y N Y

Observations 43,291 43,291 134,326 134,326
Mean of Dependent Variable 57.372 57.372 56.34 56.34

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10%
level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius. All regressions include daily budgeted efficiency as a control variable.

Table A10

Impact of Temperature on Actual Efficiency and Mitigative Impact of LED lighting
(Omitting Units that Always Had LED/Never Got LED)

Actual Efficiency

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week



(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.00971*** -0.00964*** -0.00251 -0.00213
(0.002) (0.002) (0.16) (0.26)

Wet Bulb Globe Temperature>=19 0.00452 0.00478 0.01109* 0.01193*
(0.24) (0.20) (0.07) (0.06)

1(LED)*(Wet Bulb Globe Temperature <19) 0.00151 0.00142
(0.40) (0.44)

1(LED)*(Wet Bulb Globe Temperature>=19) -0.0125* -0.01283*

(0.09) (0.09)

1(LED) -0.02482 -0.02437
(0.38) (0.40)

Fixed Effects
Precipitation Control N Y N Y

Observations  84,435  84,435 273,801 273,801
Mean of Dependent Variable 0.83 0.83 0.823 0.823

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at
the 10% level). Clustering is done at the factory level.  All measures of temperature are in degree Celsius.

Table A11

Impact of Temperature on Attendance and Mitigative Impact of LED lighting
(Omitting Units that Always Had LED/Never Got LED)

Worker Presence
(Line-Level Mean Daily Probability)

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week



(1) (2) (3) (4)

Wet Bulb Globe Temperature <19 -0.619  -0.646 -0.227 -0.248
(0.41) (0.39) (0.53) (0.49)

Wet Bulb Globe Temperature>=19 -3.217*** -3.302*** -2.719*** -2.813***
(0.004) (0.004) (0.006) (0.006)

1(LED)*(Wet Bulb Globe Temperature <19) -0.171 -0.172
(0.73) (0.73)

1(LED)*(Wet Bulb Globe Temperature>=19) 2.125*** 2.178***
(0.01) (0.01)

1(LED) 4.012 4.022
(0.67) (0.67)

Line-Level Mean Daily Probability of Worker
Presence

2.327 2.33 2.569** 2.592**

(0.49) (0.50) (0.04) (0.04)

Fixed Effects
Precipitation Control N Y N Y

Observations 41,400 41,400 121,694 121,694
Mean of Dependent Variable 57.58 57.58 56.76 56.76

Notes: Wild-cluster bootstrap p-values in parentheses (***  denotes significance at the 1% level, **   denotes significance at the 5% level, *  denotes significance at the 10% level).
Clustering is done at the factory level.  All measures of temperature are in degree Celsius. Line-Level Mean Daily Probability of Worker Presence is the average probability that a worker
is present for a production line on a given day. All regressions include daily budgeted efficiency as a control variable.

Table A12
Impact of Temperature on Actual Efficiency and Mitigative Impact of LED lighting Controlling  for

Attendance (Omitting Units that Always Had LED/Never Got LED)

Actual Efficiency

Factory x Year, Factory x Calendar Month, Production Line, Day of the Week



A Data Appendix

We have daily line-level data from 30 factories in Bangalore. To ensure precise estimation, we remove

extreme outlier values as well as unrepresentative days (such as Sundays) from the dataset. The fol-

lowing factors are taken into consideration when deciding our final sample.

• We remove lines observed greater than twice a day, about 0.6% of our observations, since these

are likely coding errors. While it is possible that a line finished a set of orders and moved onto

producing a different style of garment midway through the day, it is not possible that a line

finished several sets of garment orders in a single day, since orders are usually for hundreds or

thousands of garments per order. For lines that are observed more than once a day, we consider

mean actual efficiency and mean budgeted efficiency across the two styles produced that day.

• We remove extreme outliers from the efficiency and quantity produced. We consider all obser-

vations with positive production and with efficiency less than or equal to 200%. These decisions

were taken following meetings with the Industrial Engineering experts at the factory regarding

what constitutes feasible values of output and efficiency. However, results are extremely similar

if we trim outliers using blocked adaptive computationally efficient outlier nominators (Billor

et al., 2000), which uses Mahalanobis distance to compute outliers, and are available upon re-

quest.

• Finally, we remove Sundays, since these days of unrepresentative productivity (production does

not usually occur on Sundays, unless factories are working over-time to finish orders).
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