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1 Introduction

Mean-variance efficient portfolio optimization, introduced by Markowitz (1952), is still widely used

in practice and taught in business schools. When either expected returns or the covariance matrix of

returns changes over time then so will the conditional mean-variance efficient ‘Markowitz’ portfolio.

In the presence of transaction costs however, it will generally not be optimal for investors to

constantly rebalance to perfectly track the Markowitz portfolio. In a recent paper, Gârleanu and

Pedersen (2013, GP) show that in the presence of quadratic transaction costs (that is linear price

impact), an investor with mean-variance preferences should adopt a trading rule that only partially

rebalances from her current position towards an aim portfolio at a fixed trading speed.1 They derive

closed-form expressions for both the optimal aim portfolio and the trading speed that depend on

the dynamics of expected returns, the quantity of and aversion to risk, and the magnitude of

price impact. Importantly, their model assumes that covariances of price changes and price-impact

parameters are constant. In this paper we derive a closed-form solution for the optimal portfolio

trading rule in a similar setting but where, in addition to expected returns, volatility and transaction

costs may be stochastic. Indeed, there is substantial evidence that the volatility of stock returns is

stochastic and that transaction costs covary with the level of stock volatility (going back at least

to Rosenberg (1972) for the former and to Stoll (1978) for the latter).

Here, we develop a closed-form solution for the optimal dynamic portfolio when expected re-

turns, covariances, and price impact parameters follow a multi-state Markov switching model.

Consistent with GP, we assume that the investor’s objective function is mean-variance: investors

maximize the expected discounted sum of portfolio returns net of trading costs, minus a penalty for

the variance of the net returns. In this setting, we show that the optimal trading rule is similar to

that derived in GP, namely to partially trade from the current position towards an aim portfolio.

In GP the aim portfolio and trading speed are static. Here, when risk and trading costs can change,

both the aim portfolio and the trading speed are conditional on the state. Specifically, the aim

portfolio is a weighted average of the state-contingent Markowitz portfolios in all possible future

states, where the weight on each conditional-Markowitz portfolio is a function of the likelihood

of transitioning to that state, the state persistence, and the risk and transaction costs faced in

that state relative to the current one. Similarly, the optimal trading speed depends on the relative

magnitude of the transaction costs in various states and their transition probabilities.

To illustrate, consider a single asset economy with two states, a low volatility state L where

transaction costs are zero, and a high volatility state H where transaction costs are positive. Then

it is clearly optimal to trade (at infinite speed) all the way to the aim portfolio in the L state,

because transaction costs in that state are zero. In contrast, trading speed will be finite in the

H state. Further, the aim portfolio in the H-state will equal the conditional Markowitz portfolio

in that state.2 Intuitively, in the H-state the investor need not consider the future investment

opportunity set faced in the L-state, since she will face no cost to rebalance (to the optimal aim

1Litterman (2005) makes a similar point in an unpublished note.
2That is, the aim portfolio in the H state puts zero weight on the L-state Markowitz portfolio .
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portfolio) in that state. However, the aim portfolio in the L-state will be a weighed average of both

H- and L-conditional Markowitz portfolios, and where the weight on the H-conditional Markowitz

portfolio increases with the likelihood of transitioning from L to H, the persistence of the H state,

and with the ratio of the volatilities in the H- and L-states.

One immediate implication of our model is that the optimal portfolio will deviate significantly

from the Markowitz benchmark in anticipation of possible future shifts in relative risk and/or

transaction costs. Consider two assets, which can be thought of as a ‘Treasury’ and a ‘Corporate’

bond portfolio. Suppose that in the low-volatility state (state L), the Corporate portfolio has a

far higher Sharpe ratio than the Treasury portfolio, so that the conditional Markowitz portfolio

has most of its weight on Corporates. However, if the economy transitions to state H, then the

Corporate portfolio risk and trading costs will dramatically increase, but will remain unchanged

for Treasuries. In this setting, the optimal aim portfolio in the L-state will have a large Treasury

position. Intuitively, if the economy transitions from the L to the H state, then the volatility of

the Corporate portfolio will increase and its Sharpe ratio fall, and it will also become illiquid and

costly to trade out of. Thus, the optimal dynamic portfolio preemptively reduces the position of

the Corporate portfolio in the L-state. Further, for sufficiently high transaction costs of corporate

bonds in the high risk regime, it becomes optimal to trade corporate bonds more aggressively than

Treasuries in the low risk-regime, even if they are more costly to trade there than Treasuries.

Our model also has implications for the popular (among practitioners) ‘risk-parity’ strategy,

which recommends to hold various asset classes so that they each contribute an equal amount of

volatility to the fund (see, e.g., Bridgewater (2011) and Asness, Frazzini, and Pedersen (2012)).

Risk-parity can be thought of as the mean-variance efficient portfolio, when all asset classes have

equal expected return and the correlations across asset classes are zero.3 Interestingly, even if it

were optimal to hold a risk-parity portfolio at all times in the absence of transaction costs, we show

that, when transaction costs and volatilities of various asset classes move over time in a correlated

fashion, then it is optimal to deviate significantly from the risk-parity portfolio and more so in the

low risk-regime. This is because the optimal portfolio in the low risk regime, where transaction

costs tend to be lowest, needs to put some weight on the optimal risk-parity portfolio in the high-

risk regime, where high transaction costs will make it much more costly to delever out of the higher

risk asset classes.

We present an empirical application of our framework to optimally time the stock market versus

cash, taking into account time varying expected returns, volatility and transaction costs for a market

index fund. While our analytic results were all derived in the context of a regime-switching model

of price changes (e.g., a ‘normal’ model for prices), we show that our model remains tractable

for a regime switching model of dollar returns (i.e., a ’log-normal’ model of prices). Since the

latter fits the data empirically better, we use this framework for the empirical implementation. We

estimate a four state Markov regime switching model of returns and find, both in-sample and out

of sample, evidence of time variation in first and second moments. To estimate the transaction cost

3These assumptions are sometimes justified based on the difficulty to reliably estimate means and correlations.
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parameters, we use a proprietary data set on realized trading costs incurred by a large financial

institution trading on behalf of clients, as measured by the implementation shortfall of their trades

(Perold 1988). We show that trading costs vary significantly across regimes, identified using the

(highest) smoothed probabilities of the regimes. Not surprisingly, trading costs are higher for higher

volatility regimes.

We test our trading strategy both in-sample and out-of-sample. For the out-of-sample test, the

regime shifting model and the state probabilities are estimated using only data in the information

set of an agent on the day preceding the trading date. We compare the performance of our optimal

dynamic strategy to three alternatives: a constant dollar investment in the risky asset, correspond-

ing to an unconditional estimate of the sample mean and variance of returns, a buy-and-hold policy

that never trades and a myopic one-period mean-variance problem optimized for current transaction

costs, but that ignores the future dynamics of the Markov regime switching model.

Our results show that the dynamic trading strategy significantly outperforms the other three

strategies in the presence of transaction costs. To determine the source of the outperformance,

we examine what source of time-variation leads to the biggest gains for the dynamic strategy.

Specifically, we compare the gains obtained from timing changes in expected returns, in volatility,

and in transaction costs. In this out of sample experiment we find that the biggest benefits arise

from taking into account for time variation in market volatility and transaction costs, while the

benefits from timing (estimated) variation in mean returns is more mixed. This reflects two things:

first, second moment can be estimated more accurately than mean returns, as pointed out by

Merton (1980). Second, mean returns move less than one-for-one with variances. This is consistent

with Moreira and Muir (2017), who show that there are gains to scaling down the position in

response to an increase in the market’s variance, which suggests that the conditional mean of the

market moves less than one-for-one with its variance. Thus, since our model captures the time-

variation in volatilities and the corresponding changes in transaction costs more accurately, it is

able to manage the risk-exposure and the incurred transaction costs more reliably, which directly

contribute to increasing the net performance.

There is large academic literature on portfolio choice that has extended Markowitz’s one period

mean-variance setting to dynamic multiperiod setting with a time-varying investment opportunity

set and more general objective functions.4 This literature has largely ignored realistic frictions such

as trading costs, because introducing transaction costs and price impact in the standard dynamic

portfolio choice problem tends to make it intractable. Indeed, most academic papers studying

transaction costs focus on a very small number of assets (typically two) and limited predictability

(typically none).5

There is a growing literature on portfolio selection that incorporates return predictability with

4Merton (1969), Merton (1971), Brennan, Schwartz, and Lagnado (1997), Kim and Omberg (1996), Campbell and
Viceira (2002), Campbell, Chan, and Viceira (2003), Liu (2007), Detemple and Rindisbacher (2010) and many more.
See Cochrane (2007) for a survey.

5Constantinides (1986), Davis and Norman (1990), Dumas and Luciano (1991), Shreve and Soner (1994) study the
two-asset (one risky-one risk-free) case with i.i.d. returns. Liu studies the multi-asset case under CARA preferences
and for i.i.d. returns. Cvitanić (2001) surveys this literature.
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transaction costs. Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) illustrate the impact

of return predictability and transaction costs on the utility costs and the optimal rebalancing rule

by discretizing the state space of the dynamic program. Their approach runs into the curse of

dimensionality and only applies to very few stocks and predictors. Lynch and Tan (2011) extend

this to two risky assets at considerable computational cost. Brown and Smith (2011) discuss

this issue and instead provide heuristic trading strategies and dual bounds for a general dynamic

portfolio optimization problem with transaction costs and return predictability that can be applied

to larger number of stocks. Longstaff (2001) studies a numerical solution to the one risky asset case

with stochastic volatility when agents face liquidity constraints that force them to trade absolutely

continuously.

Our paper is also related to the large literature on asset allocation under regime shifts. For

example, Ang and Bekaert (2002) apply regime switching model to an international asset allo-

cation problem to account for time-varying first and second moments of asset returns. Ang and

Timmermann (2012) survey this literature in detail. One common observation in empirical papers

estimating regimes is the low expected returns in high volatility states. Thus, these models would

often suggest that the mean-variance investors should scale down their equity exposure in times

of market stress. Our paper complements this literature by accounting for high transaction costs

during these volatile periods.

As noted earlier, our paper is most closely related to Litterman (2005) and Gârleanu and Ped-

ersen (2013, GP). They obtain a closed-form solution for the optimal portfolio choice in a model

where: (1) expected price change per share for each security is a linear, time-invariant function of

a set of autoregressive predictor variables; (2) the covariance matrix of price changes is constant;

(3) trading costs are a quadratic function of the number of shares traded, and (4) investors have

a linear-quadratic objective function. Their approach relies heavily on linear-quadratic stochastic

programming (see, e.g., Ljungqvist and Sargent (2004)). While our approach uses a similar ob-

jective function, it allows for time-variation in means, volatilities, and transaction costs by using

the regime-switching framework. Moreover, in contrast with the GP framework, our framework is

equally tractable when expected-price changes are constant in each state of the regime switching

model (i.e., prices follow arithmetic Brownian motion) or when expected returns, conditional on

the state, are constant (i.e., prices follow geometric Brownian motion). Since the latter is a more

realistic description of historical returns, it is the one we use for our empirical implementation.

2 A Regime Switching Model for Price Changes

We begin with a setting with N risky assets, in which the N-dimensional vector of price changes

from period t to t+ 1, dSt, follows the process:

E[dSt] = µ(st)

E[(dSt − µ(st))(dSt − µ(st))
>] = Σ(st)
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µ(st) and Σ(st) are, respectively, the N-vector of expected price changes and the N×N covariance

matrix of price changes. Both µ and Σ are a function of a state variable st which follows a Markov

chain with transition probabilities πs,s′ . In Section 4, we will solve for the optimal dynamic strategy

when returns, rather than price change, follow this process.

We consider the optimization problem of an agent with the following objective function:

max
nt

E

[ ∞∑
t=0

ρt
{
n>t µ(st)−

1

2
γn>t Σ(st)nt −

1

2
∆n>t Λ(st)∆nt

}]
(1)

The agent chooses her holdings nt in each period t so as to maximize this objective function.

Specifically, at the end of period t− 1, the agent hold nt−1 shares of the N assets. At this point the

agent observes the state st, and trades ∆nt = nt−nt−1 shares. As noted earlier, consistent with GP

we specify a linear price impact model. Λ(st) is the price impact matrix, so the N-vector of price

concessions is Λ(st)∆nt and the total (dollar) cost of trading in period t is therefore 1
2∆n′tΛ(st)∆nt.

This objective function in equation (1) is the same as that considered by GP, namely that

of an investor who maximizes a discounted sum of mean-variance criterion in every period, net

of trading costs. In the absence of transaction costs (when Λs = 0), the optimal solution would

be to hold the conditionally mean-variance optimal Markowitz portfolio ms = (γΣs)
−1µs at all

times. Further, if there were no time-variation in the investment opportunity set (that is if µs

and Σs were constant), then it would be optimal to hold the mean-variance efficient Markowitz

portfolio and to never trade. It becomes optimal for the investor to rebalance the portfolio, and

deviate from the conditionally mean-variance efficient portfolio, when there are transaction costs

and the opportunity set is time-varying. Unlike GP, who only allow the conditional mean of stock

returns (µs) to follow an AR(1) process, we consider the case where, in addition, all elements of the

covariance matrix and of the transaction cost matrix can vary. Using a Markov regime switching

model allows us to obtain tractable solutions even though the model is not in the standard linear

quadratic framework.

For simplicity we begin by considering only a two-state Markov chain model, with states H

and L, but we generalize this to more states in Section 2.4. We will use the following notation

throughout: for all t where st = s ∈ {H,L}, st+1 = z ∈ {H,L} and s′ = {H,L} \ s. Then, using

the dynamic programming principle, the value function V (nt−1, s) satisfies

V (nt−1, s) = maximize
nt

(
n>t µs −

1

2
∆n>t Λs∆nt −

γ

2
n>t Σsnt + ρE [Vt(nt, z)]

)
.

We guess the following quadratic form for our value functions:

V (n, s) = −1

2
n>Qsn+ n>qs + cs,

where Qs is a symmetric N×N matrix and qs, cs are N dimensional vectors of constants for s ∈
{H,L}. We now define the expectation conditional on state s for any matrix Ms to be M s =
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πs,sMs + πs,s′Ms′ . With this notation the right hand side of the HJB equation we are optimizing

can be rewritten as a quadratic objective −1
2n
>
t Jsnt + n>t js + ks where

Js = γΣs + Λs + ρQs (2)

js = µs + Λsnt−1 + ρqs (3)

ks = −1

2
nt−1Λsnt−1 + ρcs (4)

This is optimized for nt = J−1s js, that is :

nt =
(
γΣs + Λs + ρQs

)−1
(µs + ρqs + Λsnt−1)

Further, the optimized value is simply 1
2j
>
s J
−1
s js + ks. Thus matching coefficients we find that the

matrices Qs, qs for s = H,L must satisfy the system of equations:

Qs = −Λs
(
γΣs + Λs + ρQs

)−1
Λs + Λs, (5)

qs = Λs
(
γΣs + Λs + ρQs

)−1
(µs + ρqs) . (6)

Note that given a solution for QH,L we can obtain qH,L in closed-form as a matrix weighted average

of µH , µL. While we are not aware of closed-form solution forQH , QL in general, it is straightforward

to obtain a numerical solution to the coupled Riccatti matrix equation, as we discuss in Lemma 2

below. Further, for a variety of special cases we consider below it is possible to obtain closed-form

solutions.

With a solution in hand, we can define the conditional aim portfolio as the portfolio that

maximizes the value function at any time t conditional on the state. A bit of algebra then allows

us to characterize the optimal trading rule and the aim portfolios.

Theorem 1 The optimal trade at time t in state s is a matrix weighted average of the current

position vector and the conditional aim portfolio:

nt = (I − τs)nt−1 + τsaims (7)

where the trading speed τs = I (and Qs = 0) if Λs = 0, and else τs = Λ−1s Qs ∀s = {H,L} where

(QH , QL) solve a system of coupled equations:

I − Λ−1s Qs = [Λ−1s (γΣs + ρπss′Qs′) + I + ρπssΛ
−1
s Qs]

−1 (8)

The aim portfolio, which maximizes the value function conditional on the current state, is given

by

aims =
(
γΣs + ρQs

)−1
(µs + ρqs) (9)

Further, the aim portfolio is a weighted average of the conditional Markowitz portfolios (ms =
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(γΣs)
−1µs):

aims = (I − αs)ms + αsms′ ∀s = H,L (10)

where

αs = {(γ + ρπs′sQs′Σ
−1
s′ QsQ

−1
s′ )Σs + ρπss′Qs′}−1ρπss′Qs′

Proof. Optimizing the value function with respect to nt gives:

aims = (Qs)
−1 (qs) ∀s = H,L

Substituting from the definitions in equations (5) and (6) we obtain:

aims =
(
−Λs

(
γΣs + Λs + ρQs

)−1
Λs + Λs

)−1 (
Λs
(
γΣs + Λs + ρQs

)−1
(µs + ρqs)

)
=
(
−
(
γΣs + Λs + ρQs

)−1
Λs + I

)−1 (
γΣs + Λs + ρQs

)−1
(µs + ρqs)

=
(
γΣs + ρQs

)−1
(µs + ρqs)

where the last equality obtains by noting that if we define the matrix

M =
(
−
(
γΣs + Λs + ρQs

)−1
Λs + I

)−1 (
γΣs + Λs + ρQs

)−1
then

M−1 =
(
γΣs + Λs + ρQs

) (
−
(
γΣs + Λs + ρQs

)−1
Λs + I

)
=
(
γΣs + ρQs

)
,

which immediately implies that M =
(
γΣs + ρQs

)−1
.

We then expand the expression for aims:

aims = (γΣs + ρπssQs + ρπss′Qs′)
−1 (µs + ρQs

)
⇒ (γΣs + ρπssQs + ρπss′Qs′) aims = (γΣsms + ρπssQsaims + ρπss′Qs′aims′)

⇒ (γΣs + ρπss′Qs′) aims = (γΣsms + ρπss′Qs′aims′)

⇒ aims = (γΣs + ρπss′Qs′)
−1 (γΣsms + ρπss′Qs′aims′)

We then substitute for aims′ = (γΣs′ + ρπs′sQs)
−1 (γΣs′ms′ + ρπs′sQsaims) and obtain after

dividing by γ[
Σs +

ρ

γ
πss′Qs′

(
I − (γΣs′ + ρπs′sQs)

−1 ρπs′sQs

)]
aims = Σsms + ρπss′Qs′ (γΣs′ + ρπs′sQs)

−1 Σs′ms′ .

Using the identity I − (F + G)−1G = (F + G)−1F , with F = γΣs′ and G = ρπs′sQs, we finally

obtain

{
Σs + ρπss′Qs′ [γΣs′ + ρπs′sQs]

−1Σs′
}
aims = Σsms + ρπss′Qs′ [γΣs′ + ρπs′sQs]

−1Σs′ms′ .
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Thus, this shows that we can write aims = (I − αs)ms + αsms′ where

αs =
{

Σs + ρπss′Qs′ [γΣs′ + ρπs′sQs]
−1Σs′

}−1
ρπss′Qs′ [γΣs′ + ρπs′sQs]

−1Σs′

which can be further simplified to αs = {(γ + ρπs′sQs′Σ
−1
s′ QsQ

−1
s′ )Σs + ρπss′Qs′}−1ρπss′Qs′ .

Equation (7) shows that this optimal dynamic strategy is to trade to a portfolio with shares

nt that is a linear combination of the current portfolio nt−1 and of the aim portfolio aims. τs is

the matrix that specifies how quickly the investor should trade towards the aim portfolio. τs = I

means that, in state s, the investor should immediately and fully trade to aims. τs = 0 means that

the investor should not trade.

The state-contingent aim portfolio aims is defined as the portfolio that would maximize the

value function in that state. Another interpretation of the aim portfolio is as the no-trade portfolio,

i.e., the portfolio for which the optimal trade is zero, as long as the state does not change.6 The

speed at which we trade towards the aim portfolio is, in general, dependent on the state. That is,

it is typically increasing in variance and decreasing in the transaction costs, which may be state

dependent in our framework. In the case (similar to GP) where only expected returns are stochastic

(and covariances and transaction costs are constant) the trading speed is constant as well. The aim

portfolio is state dependent. When either a state is absorbing (πss = 1) or transaction costs are

zero (Λs = 0) then the aim portfolio is equal to the conditional mean-variance Markowitz portfolio

(ms). But in general, the aim portfolio is a weighted average of the conditional mean-variance

portfolio across states, where the weight on each state is typically higher the higher the variance of

returns and the higher the transaction costs in that state.

We now consider a few special cases to gain further insights into the optimal trading rule.

2.1 The case where only µs changes with the state (GP)

If only µs changes with the state (i.e., if Σs = Σ and Λs = Λ for all s) then the solution Qs = Q is

independent of the state and satisfies:

I − Λ−1Q = [γΛ−1Σ + I + ρΛ−1Q]−1

This equation has an explicit solution.

Lemma 1 Consider the diagonalization of the matrix Λ−1Σ = F diag(`i)F
−1 in terms of its

eigenvalues `i ∀i = 1, . . . , n. Then note that

I − F−1Λ−1QF = [γ diag(`i) + I + ρF−1Λ−1QF ]−1

6Note that, because the vector of security holdings n has units of shares, and because the price change process is
a function only of the state, the optimal portfolio will not change when prices change.
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It follows that Q = ΛF diag(ηi)F
−1 such that the ηi solve the quadratic equations (∀i = 1, . . . , n):

1− ηi = [γ`i + 1 + ρηi]
−1

that is:

ηi =
ρ− 1− `iγ +

√
(ρ− 1− `iγ)2 + 4`iγρ

2ρ
.

This implies that the trading speed τs = Λ−1s Qs = F diag(ηi)F
−1 is independent of the state.

That is, investors trade at a constant speed towards their aim portfolio independent of the state.

The speed of trading for specific stock i is increasing in the agent’s time discount rate and in the

agent’s risk-aversion. Furthermore, for the special case where Λ and Σ are diagonal matrices, then

speed of trading stock i is increasing in `i = Σii/Λii, that is the ratio of a stock’s variance to its

cost of trading.

While the trading speed is constant, the aim portfolios differ across states. Indeed, using

Theorem 1, the aim portfolio in state s can be computed as:

aims = (I − αs)ms + αsms′

where

αs = {γΣ + ρπs′sQ+ ρπss′Q}−1ρπss′Q

= (γQ−1Σ + (ρπs′s + ρπss′)I)−1ρπss′

= F diag

(
ρπss′

γ`i/ηi + ρπs′s + ρπss′

)
F−1

We see that the aim portfolio towards which we trade in state s is a weighted average of the

Markowitz portfolios where the weight we put on the conditional Markowitz portfolio in the current

state is increasing in the persistence of that state πs,s and in risk-aversion γ, but decreasing in the

time discount factor ρ, and the persistence of the other state πs′,s′ . Furthermore, the weight is also

stock-specific and increasing for stock i in `i, which captures the notion that the more risky a stock

is relative to its trading cost the more weight we should put on the conditional Markowitz portfolio

for computing the aim portfolio.

To a large extent these results are consistent with the findings of GP, albeit with a different

model of the time-variation in expected returns. The more interesting case is when we also allow

covariances and transaction costs to change across states. In that case, both trading speed and aim

portfolios change across states.

2.2 The case where ΛL = 0 and ΛH > 0

When transaction costs are zero in state L, then the solution implies QL = 0, and that QH solves

a one-dimensional equation:

10



I − Λ−1H QH = [γΛ−1H ΣH + I + ρπHLΛ−1QH ]−1

We note that this equation is identical to that obtained in the previous section with an adjusted

time discount rate (ρπHL). It follows that the solution is

QH = ΛHFH diag(ηH,i)F
−1
H ,

where (`H,i, FH) diagonalize the matrix Λ−1H ΣH = FH diag(`H,i)F
−1
H and the ηH,i are given by:

ηH,i =
ρπHL − 1− `H,iγ +

√
(ρπHL − 1− `H,iγ)2 + 4`H,iγρπHL

2ρπHL
.

We can calculate the optimal trading speeds and the aim portfolios in both states. As discussed

earlier, in the L state where transaction costs are zero, it is optimal to move instantaneously to

the aim portfolio, that is τL = I. In contrast, in the high transaction cost state H, it is optimal

to trade slowly, with a trading speed τH = FH diag(ηH,i)F
−1
H , towards the aim portfolio. The

aim portfolio in the high transaction cost state H is the conditional Markowitz portfolio, that is

aimH = mH = (γΣH)−1µH . Intuitively, in the state H, the aim portfolio does not take into

account the investment opportunity set in the zero-transaction cost state L, because when the

economy transitions to state L the investor can immediately rebalance to the first best position at

zero cost. However, in the zero transaction cost state, the aim portfolio is a linear combination of

the two Markowitz portfolios mH and mL: aimL = (I −αL)mL +αLmH , where the weight put on

the H-state Markowitz portfolio is αL = [γΣL + ρπLHQH ]−1ρπLHQH . To summarize, when there

are no transaction costs in the low state the optimal trading strategy is:

nH,t = (I − τH)nt−1 + τHmH

τH = FH diag(ηH,i)F
−1
H

nL,t = aimL = (I − αL)mL + αLmH

αL = [γΣL + ρπLHQH ]−1ρπLHQH

2.3 The case with ΛL > 0 and ΛH =∞

We now consider the polar case, where transaction costs are infinite in the H-state. Clearly, it is

then optimal not to rebalance in the high state. Following the derivation of our model, with no

rebalancing in the H-state, we see that the equation for QH simplifies to:

QH = γΣH + ρQ̄H

In turn, this implies that the equation for QL becomes:

11



I − Λ−1L QL = [γΛ−1L (ΣL +
ρπLH

1− ρπHH
ΣH) + I + ρLΛ−1L QL]−1

with ρL = ρ(πLL + ρπLH
1−ρπHH

) This equation admits an explicit solution as before, in terms of the

diagonalization of the matrix Λ−1L (ΣL + ρπLH
1−ρπHH

ΣH) = FL diag(`L,i)F
−1
L .

It follows that the solution is QL = ΛLFL diag(ηL,i)F
−1
L where the ηL,i are given by:

ηL,i =
ρL − 1− `L,iγ +

√
(ρL − 1− `L,iγ)2 + 4`L,iγρL

2ρL

Then the optimal trading strategy is:

nH,t = nt−1

nL,t = (I − Λ−1L QL)nt−1 + Λ−1L QLaimL

aimL = (1− αL)mL + αLmH

αL = {(1− ρπHH)Σ−1H ΣL + ρπLH}−1ρπLH

To summarize, when t-costs are infinite in state H it is clearly optimal to not rebalance in that

state. Instead, in state L, both the speed of trading and the aim portfolio depend on the investment

opportunity set in the H state. The aim portfolio puts more weight on the H-conditional Markowitz

portfolio the higher the probability to transition to that state (πLH), the more persistent the state

is (πHH), and the higher the variance of returns in that state relative to the L-state (Σ−1H ΣL). The

trading speed on the other hand increases in both ΣH and ΣL as well as the persistence of the low

and high states.

2.4 The general case

For the general case, we need to solve the system of coupled matrix equations (8) for (QH , QL):

I − Λ−1s Qs = [Λ−1s (γΣs + ρπss′Qs′) + I + ρπssΛ
−1
s Qs]

−1

While we cannot solve the system in general, we observe that in the special case where the eigen-

vectors of the covariance and transaction cost matrices remain identical across states and only the

eigenvalues change, the system does admit a simple explicit solution. For the general case, this

then suggests a simple and efficient algorithm to compute the solution. We summarize the result

in the following

Lemma 2 If Λs = F diag(λi,s)F
−1 and Σs = F diag(υs,i)F

−1 ∀s = H,L then the solution of

the system of matrix equations (8) is Qs = ΛsF diag(ηs,i)F
−1 where ∀i = 1, . . . , n the constants

(ηH,i, ηL,i) solve the system of coupled quadratic equations:

λi,s
1− ηi,s

= γυi,s + ρπss′ηi,s′λi,s′ + λi,s + ρπssηi,sλi,s

12



In general, when Σs,Λs do not have identical eigenvectors across states, then the solution to the

system of matrix equations (8) can be obtained by the following recursion.

Given an initial (Qn−1H , Qn−1L ), perform the eigenvalue decomposition (for s = H,L) of Λ−1s (γΣs+

ρπss′Q
n−1
s′ ) = Fs diag(`i,s)F

−1
s . Then set Qns = ΛsFs diag(ηi,s)F

−1
s where the ηi,s solve the equation

1− ηi,s = [`i,s + 1 + ρπssηi,s]
−1,

that is:

ηi,s =
ρπss − 1− `i,s +

√
(ρπss − 1− `i,s)2 + 4`i,sρπss

2ρπss
,

and iterate until convergence. It is natural to use as an initial guess for Q0
s either the zero matrix,

or the solution corresponding to πss = 1.

We conjecture that the algorithm will be especially useful for large number of stocks, where iterating

over the N(N+1) elements of the QL, QH matrices should be less efficient than iterating over the 2N

diagonal ηi,s elements. In our applications, we found that only three to five iterations are sufficient

to achieve convergence. Given a numerical solution of the QH , QL matrices we can analyze the

optimal trading rule and aim portfolios.

3 Implications of the Model

In this section, we illustrate the insights of our model using two simple numerical experiments.

In the first application, we have two assets differing in their ranking of Sharpe ratios across two

states of the economy. We analyze the aim portfolio and trading speeds when each asset’s trading

cost is also state-dependent. In the second experiment, we analyze the sensitivity of the risk-parity

allocation strategy to stochastic trading costs.

3.1 Corporate Bonds vs. Treasuries

To illustrate the implications of the model, we consider a case with two assets and two states:

Low-risk (L) and High-risk (H). In the low-risk state, Asset 1 (∼ ”Corporate”) has higher Sharpe

ratio than Asset 2 (∼ ”Treasury”). However, in the High-risk state, Asset 2 has higher Sharpe

ratio. In both states, Asset 2 is cheaper to trade than Asset 1. We assume that both assets are

positively correlated.

Table 1 shows a simple calibration for this example. We assume that the initial price for the

assets are $100, e.g., Asset 1 has an annual expected price change of $10 in the L-state and its

volatility is $10 in this state. Trading frequency is daily.

In the right panel of figure 1 we plot the conditional Markowitz portfolios. In the left panel,

we plot the aim portfolios in both states as we vary the transaction costs of the first asset in the

high risk state. The minimum value is 1.25× 10−8 and can go up to 2× 10−7. We see that the aim

portfolio in the high state is always very close to the Markowitz portfolio. Intuitively, since price

13



Table 1: Parameter Values for Numerical Experiments 1 and 2. This table reports the parameter values
used in the numerical experiments described in Section 3.1 and 3.2. Trading is daily, and reported values of
µ and Σ are annualized.

Experiment 1 Experiment 2
Parameter Value Parameter Value

γ 10−8 γ 10−8

ρ 0.9996 ρ 0.9996

πLL 0.95 πLL 0.95

πHH 0.9 πHH 0.9

µL

[
10
8

]
µL

[
1
1

]
µH

[
12
16

]
µH

[
1
1

]
ΣL

[
100 50
50 100

]
ΣL

[
100 0
0 900

]
ΣH

[
900 450
450 900

]
ΣH

[
400 0
0 3600

]
ΛL

[
1.25× 10−8 0

0 10−8

]
ΛL 5× 10−8ΣL

ΛH

[
Variable 0

0 10−8

]
ΛH (Variable) ηΣH

14



0 0.5 1 1.5 2

TC 10
-7

0

1000

2000

3000

4000

5000

6000

7000

8000
A

im
 P

o
rt

fo
li

o
 (

'0
0

0
 S

h
a

re
s

)
Asset 1, High Risk

Asset 2, High Risk

Asset 1, Low Risk

Asset 2, Low Risk

0 0.5 1 1.5 2

TC 10
-7

0

1000

2000

3000

4000

5000

6000

7000

8000

M
a

rk
o

w
it

z
 P

o
rt

fo
li

o
 (

'0
0

0
 S

h
a

re
s

)

Asset 1, High Risk

Asset 2, High Risk

Asset 1, Low Risk

Asset 2, Low Risk

Figure 1: Aim and Conditional Markowitz Portfolios for Numerical Experiment 1

impact is very small in the low risk state, the aim portfolio in the high risk state needs not take

into account the investment opportunity set in the low risk state. Instead, in the low risk state,

as we increase price impact of Asset 1 in the high risk state, the aim portfolio varies dramatically.

It weighs more and more heavily the Markowitz portfolio in the high-risk state, thus lowering the

desired position in Asset 1 and increasing the desired position in Asset 2. Eventually, for high

enough expected trading costs of Asset 1 in the H-state it becomes optimal to hold more of Asset 2

even in the low-risk state. That is, it is optimal to hold more of the asset that appears dominated

in Sharpe ratio terms in the L-state preemptively to anticipate the future desired deleveraging in

the H-state.

Figure 2 plots the corresponding trading speeds in both assets in both regimes.7 Intuitively,

we see that the trading speed is generally higher in the high-risk regime due to the higher tracking

error cost. However, as it becomes more costly to trade Asset 1 in that regime, its trading speed

drops rapidly. Interestingly, the trading speed of Asset 1 actually increases in the Low-risk regime

in response to the increase of its trading cost in the high risk regime. That is even though Asset

1 has a marginally higher trading cost than Asset 2 in the low risk regime, it is optimal to trade

it more aggressively than Asset 2 in the low risk-regime in anticipation of its much higher trading

cost in the high-risk regime.

This example captures some salient features of the Corporate versus Treasury bond returns.

Like Asset 1, Corporate bonds typically offer higher expected rates of returns in expansions (good

states) than Treasury bonds (Asset 2). However, during recessions (bad states) their risk increases

dramatically and the higher probability of default leads to lower returns.8 Further, it is also a fact

7For simplicity, we only plot the diagonal values of the trading speed matrix Λ−1
s Qs, which is actually not diagonal

in this example.
8Of course, it is arguable whether the expected return is actually lower, since expected returns are hard to measure.

For illustration we assume that in the bad states the risk of Asset 1 is higher and its Sharpe ratio is lower than that
of Asset 2.
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Figure 2: Trading Speed for numerical experiment 1

that corporate bonds become a lot costlier to trade in bad states than Treasuries, whose liquidity

remains very high. As the stylized example demonstrates, because it is optimal to reduce the

position in the Corporates in the high risk state when these are very costly to trade, it can be

optimal to hold a larger share of the Treasuries already in the good state even though in that state

the conditional Sharpe ratio of Corporates dominates that of Treasuries. Further, even though

Corporates may be more costly to trade than Treasuries in the good state, it may be optimal to

trade them more aggressively in the good state in anticipation of the high risk regime with much

higher relative trading costs.

This example helps also to think about the question: in a portfolio with liquid and illiquid assets,

which one should one liquidate first because of a liquidity shock? Our analysis gives the following

answer. First and foremost, one should trade the illiquid asset more aggressively in anticipation

of the future liquidity crisis and steer the portfolio to a position that overweights liquid assets,

possibly deviating from the unconditional optimal portfolio to take into account the future possible

risk and liquidity shock. Second, once the crisis hits, one should trade less aggressively the more

costly assets and more aggressively the liquid assets to steer the portfolio towards the conditionally

mean-variance efficient portfolio.

3.2 Risk parity

The risk-parity allocation strategy has received a lot of attention among practitioners, not the least

because it is applied in the very successful “All-weather” fund of Bridgewater. As a rational for

such a strategy, it is sometimes argued that such a strategy reflects the difficulty in measuring

expected returns of and correlations between asset classes. With all expected price changes equal

and constant (e.g., µ = 1) and all correlation coefficients equal to zero, the mean-variance efficient

Markowitz portfolio becomes an risk-parity portfolio in the sense that every asset contributes an
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Figure 3: Aim portfolios for numerical experiment 2

identical amount of volatility to the overall portfolio (ms = (γΣs)
−11 = diag( 1

γυi,s
)).9 Here we

illustrate that it is actually optimal to deviate from the risk-parity allocation under these same

assumptions, if transaction costs of various asset classes move predictably with their volatility.

With Σs = diag(υi,s) and Λs = diag(λi,s) and µs = 1, we can solve for the optimal aim portfolio in

closed-form from Lemma 3 with F = diag(1).

We illustrate in figure 3 how the aim portfolio in state s can deviate from the equal risk portfolio

as t-costs in state s′ increase. Comparing the left panel to the right panel, we see that in the high-

risk state, the aim portfolio remains very close to the risk-parity portfolio. This is because the

risk-parity portfolio is the conditional Markowitz portfolio in state s under our assumptions and

we need not take into account the low risk state, since rebalancing is expected to be much less

costly then. However, in the low risk state, it is optimal to deviate dramatically from the equal-risk

weights. Indeed, we need to lower considerably the target position in both assets, but especially

in the high risk asset, in anticipation of the future increase in volatility and in the cost of trading

that asset, in case of a switch to the high risk state.

Trading speeds for all assets are plotted in Figure 4. As we can see, trading speed decreases

in the high risk state and increases in the low risk state when transaction costs in the high risk

state are increasing. That is the more costly it becomes to trade assets in the H-state, the more

aggressively we have to trade assets in the low-risk state. We note that trading speeds are not

security specific in this experiment, because we assume that the price impact matrix is a constant

multiple of the covariance matrix.

9See (Asness, Frazzini, and Pedersen 2012) for further discussion.
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Figure 4: Trading Speeds for numerical experiment 2

4 A Regime Switching Model for Returns

Following much of the literature (e.g., GP, Litterman), the model in the earlier section assumes

that conditional on a state, the expectation and covariance matrix of price changes are constant.

This leads to a very tractable solution, because in a mean-variance framework the only motive

to rebalance the portfolio conditional on holding the mean-variance efficient portfolio, is if there

is a change in the state, that is if there is a change in the expectation of price changes or their

covariance matrix. Unfortunately, it is not a very plausible model for returns empirically, as it

assumes counterfactual dynamics for the return covariances. Mei, DeMiguel, and Nogales (2016)

document that the assumption of stationary price changes is reasonable with short-term horizons

of up to one year. Empirically, the “conditional log-normal” model of price changes is preferable

to the “conditional normal” model assumed in this section. Interestingly, in our framework the

“log-normal” model, which assumes that the expectation and covariance matrix of dollar returns

is constant in a given state, is very tractable as well.

In this section, we present a regime switching model formulated in dollars and returns as opposed

to price changes and number of shares. In our empirical analysis in Section 5 we apply this model

to timing the market portfolio while accounting for time-varying transaction costs and stochastic

volatility.
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4.1 Formulation

We have N risky assets and collect the N-dimensional vector of returns from period t to t + 1 in

rt+1 ≡ dSt
St

. The net return vector has the following state-dependent mean and covariances:

E[rt+1] = µ(st)

E[(rt+1 − µ(st))(rt+1 − µ(st))
>] = Σ(st)

µ(st) and Σ(st) are, respectively, the N-vector of expected returns and the N×N covariance matrix

of returns. Both µ and Σ are a function of a state variable st which follows a Markov chain with

transition probabilities πs,s′ .

Since the model is set-up in dollars, the investor rebalances at the end of each period again in

dollars. If the dollar trade vector is given by ut, then, the dollar holdings of the investor has the

following dynamics:

xt+1 = diag(1 + rt+1)xt + ut+1 (11)

= diag(Rt+1)xt + ut+1 (12)

where the gross returns are given by Rt+1.

We consider the optimization problem of an agent with the following objective function with

infinite investment horizon:

max
xt

E

[ ∞∑
t=1

ρt−1
{
x>t µ(st)−

1

2
γx>t Σ(st)xt −

1

2
u>t Λ(st)ut

}]
(13)

The agent chooses her dollar holdings xt in each period t so as to maximize this objective function.

Specifically, at the end of period t−1, the agent hold xt−1 dollars. At this point the agent observes

the state st, and trades ut dollars to bring his dollar holdings to diag(Rt)xt+ut. We again consider

a linear price impact model. The total (dollar) cost of trading ut is 1
2u
>
t Λ(st)ut.

4.2 Value Functions and Optimal Portfolio

For simplicity, we consider a two-state Markov chain model, with states H and L. The model

is straightforward to generalize to multiple states. In our empirical application in Section 5 we

consider two-state and four-state models. Using the dynamic programming principle, the value

function V (xt−1, Rt, st) satisfies

V (xt−1, Rt, s) = max
xt

(
x>t µs −

1

2
u>t Λsut −

γ

2
x>t Σsxt + ρEt [V (xt,1 + µs + εs, z)]

)
,

where E [εs] = 0 and E
[
εsε
>
s

]
= Σs. We guess the following quadratic form for our value functions:

V (x,R, s) = −1

2
x> diag(R)Qs diag(R)x+ x> diag(R)qs + cs,
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where Qs is a symmetric N×N matrix and qs, cs are N dimensional vectors of constants for s ∈
{H,L}. We can now simplify Et [V (xt,1 + µs + εs, z)] using the assumed structure for the value

functions and write it in the form of −1
2x
>
t Asxt + x>t bs + ds where

Zs = E[(1 + µs + εs) (1 + µs + εs)
>] = Σs + (1 + µs) (1 + µs)

> ,

As = πs,s(Zs ◦Qs) + πs,s′(Zs ◦Qs′),

bs = πs,s(µs ◦ qs) + πs,s′(µs ◦ qs′),

ds = πs,scs + πs,s′cs′ ,

and ◦ denotes element-wise multiplication. Using this expression for Et [V (xt,1 + µs + εs, z)], we

obtain

V (xt−1, Rt, s) = max
xt

{
x>t µs −

1

2
(xt − diag(Rt)xt−1)

> Λs (xt − diag(Rt)xt−1)−
γ

2
x>t Σsxt

− ρ

2
x>t Asxt + ρx>t bs + ρds

}
,

Thus, we maximize the quadratic objective −1
2x
>
t Jsxt + x>t j

s
t + ks where we define

Js = γΣs + Λs + ρAs

js = Λs diag(Rt)xt−1 + µs + ρbs

ks = −1

2
x>t−1 diag(Rt)Λs diag(Rt)xt−1 + ρds

Then, the optimal xt when the state is s is given by J−1s js. That is to say

xt = (γΣs + Λs + ρAs)
−1 (Λs diag(Rt)xt−1 + µs + ρbs) . (14)

The value achieved at the optimal solution is given by 1
2j
>
s J
−1
s js + ks and we obtain the following

coupled matrix equations:

Qs = −Λs (γΣs + Λs + ρAs)
−1 Λs + Λs, (15)

qs = Λs (γΣs + Λs + ρAs)
−1 (µs + ρbs) , (16)

cs =
1

2
(µs + ρbs)

> (γΣs + Λs + ρAs)
−1 (µs + ρbs) + ρds. (17)

Overall, these equations are very similar to those obtained in the previous section for the regime

switching model of price changes. The main difference is the need to introduce the matrices As, bs

which are non-linear transformations of Qs, qs. We solve numerically for Qs and qs recursively from

equations (15) and (16) respectively, using as initial guesses the zero matrix for Qs and the zero

vector for qs on the right-hand-side. Convergence obtained very rapidly in all our implementations.
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4.3 Aim Portfolio and Trading Speed

Following our analysis in the previous section, we define the aim portfolio in each state, aims, as

the portfolio at which it would be optimal not to rebalance given the current state s. The following

lemma characterizes the aim portfolio and the trading speed.

Lemma 3 The conditional aim portfolio aims at which it is optimal not to rebalance is given by

aims = (γΣs + ρAs)
−1 (µs + ρbs)

It maximizes the value function V (xt−1, Rt, s) with respect to xt−1 diag(Rt).

The optimal trading rule is to “trade partially towards the aim” at the trading speed τs = Λ−1s Qs:

xs = (I − τs) diag (Rt)xt−1 + τsaims

Proof. Maximizing the value function at time V (xt−1, Rt, s) with respect to diag (Rt)xt−1 we

obtain:

aims = Q−1s qs

Substituting from the definitions in equations (15) and (16) we obtain:

aims =
(
−Λs (γΣs + Λs + ρAs)

−1 Λs + Λs

)−1 (
Λs (γΣs + Λs + ρAs)

−1 (µs + ρbs)
)

=
(
− (γΣs + Λs + ρAs)

−1 Λs + I
)−1

(γΣs + Λs + ρAs)
−1 (µs + ρbs)

= (γΣs + ρAs)
−1 (µs + ρbs)

where the last equality obtains by noting that if we define the matrix

M =
(
− (γΣs + Λs + ρAs)

−1 Λs + I
)−1

(γΣs + Λs + ρAs)
−1

then

M−1 = (γΣs + Λs + ρAs)
(
− (γΣs + Λs + ρAs)

−1 Λs + I
)

= (γΣs + ρAs) ,

which immediately implies that M = (γΣs + ρAs)
−1.

To prove the second part of the lemma, we start from the definition of the optimal position xt

given in equation (14). It is straightforward to obtain the optimal trade

xt − diag(Rt)xt−1 = Λ−1s (γΣs + ρAs)(aims − xt).

Using the definition of matrix M above and equation (15), we obtain the formula for the trading

speed.
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Figure 5: Aim portfolios and trading speeds in models set-up in shares and dollars.

4.4 Difference between Two Models

Figure 5 compares aim portfolios and trading speeds in models set-up in shares and dollars. We

calibrate the model to a share price worth one dollar so that the Y-axis represents the dollar

investment of both strategies (that is number of shares invested equal number of dollars invested).

Table 2 displays all of the model parameters. We see that the aim portfolio in the regime switching

model of price changes always invests a larger position in the risky asset than the aim portfolio

for the regime switching model of returns. The difference is larger the larger the expected return

on the stock. The intuition is that when we rebalance at time t in the return model, the dollar

position will be affected by the risky return (see equation (11)), before we get to rebalance. Thus

the aim portfolio in dollars reflects the expected dollar position after the risky one period return is

realized.

We also observe that the trading speed is higher for the regime-switching-model of returns than

for that of price changes. This is because, in the regime-switching model of returns, there is an

additional ‘rebalancing motive’ for trading, as dollar positions ‘drift’ away from their target as a

result of return shocks (even in the absence of any change in the investment opportunity set).

5 Empirical Application

In this section, we implement our methodology using the modeling framework in dollars and il-

lustrate that there are economically significant benefits using our approach both in-sample and

out-of-sample.
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Table 2: Parameter Values

Parameter Value

γ 5× 10−8

ρ 0.9996

πLL 0.98

πHH 0.9

µL
[
0
]

µH (Variable)

ΣL

[
0.40× 10−4

]
ΣH

[
3.33× 10−4

]
ΛL

[
2× 10−10

]
ΛH

[
3× 10−10

]

5.1 Model Calibration

We use daily value weighted CRSP market returns from 1967 Q3 to 2017 Q2 (50 years) to estimate

a regime switching model. The data is downloaded from Ken French’s data library.

Guidolin and Timmermann (2006) consider a range of values for the number of states and find

that a four-state regime model performs better in explaining bond and stock returns. Following

this study, we estimate a Markov switching model with four states to describe the dynamics of

market returns:

rt+1 = µ(st) + σ(st)εt+1 (18)

where st = {1, 2, 3, 4} and εt+1 are serially independent and drawn from standard normal distribu-

tion. State transitions occur according to a Markov chain and we denote by Pij the probability of

switching from state i to state j.10

Table 3 displays the estimates of the model. All coefficients are statistically significant at 1%

level. Overall, we observe that the rank correlation between the estimated expected returns and

volatilities is not equal to 1. We observe that the expected return can be lower in a high volatility

state. This pattern has been found since the initial applications with regime switches on equity

returns (see e.g., Hamilton and Susmel (1994)).

The top two panels in Figure 6 illustrate the corresponding smoothed probabilities for each

regime and the bottom panel in Figure 6 illustrates the color-coded regimes by using the maximum

10To restrict the number of parameters, we have also tried fitting a four-state model that constrains the general
model to having only two mean and volatility coefficients (i.e., mean or volatility may remain unchanged after a
transition) as opposed to four but this constrained model can be rejected with a likelihood test.
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Table 3: Parameter estimates for a four-state regime switching model using daily market return data from
1967 Q3 and 2017 Q2.

Parameter Estimate Parameter Estimate

µ1 0.0864% σ1 0.5512%

µ2 0.0340% σ2 0.9372%

µ3 0.0069% σ3 1.6032%

µ4 0.2939% σ4 3.9178%

P11 0.9804 P12 0.0196

P13 0.0000 P14 0.0000

P21 0.0250 P22 0.9670

P23 0.0080 P24 0.0000

P31 0.0000 P32 0.0233

P33 0.9693 P34 0.0074

P41 0.0016 P42 0.0000

P43 0.0635 P44 0.9350

smoothed probability for identification. The first regime (green) highlights the good states of the

return data with high return and low volatility corresponding to the highest Sharpe ratio. This

regime has also the highest expected duration with roughly 51 trading days. The transition from

this state usually occurs to the second state (blue) with slightly lower expected return and higher

volatility. The expected duration for this state is 30 trading days. The third state (yellow) is a

distressed state with low expected return and high volatility. This state has the lowest Sharpe ratio

and has an expected duration of approximately 33 trading days. The final state covers the crisis

periods with very high expected return and very high volatility. We observe that it covers trading

days around the 1987 crash, the dot-com bubble and the financial crisis. This state is relatively

short-lived with an expected duration of roughly 15 trading days.

5.2 Calibration of the Transaction Costs

To calibrate the transaction cost multipliers of our model realistically, we use proprietary execution

data from the historical order databases of a large investment bank. The orders primarily originate

from institutional money managers who would like to minimize the costs of executing large amounts

of stock trading through algorithmic trading services. The data consists of two frequently used

trading algorithms, volume weighted average price (VWAP) and percentage of volume (PoV). The

VWAP strategy aims to achieve an average execution price that is as close as possible to the volume
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weighted average price over the execution horizon. The main objective of the PoV strategy is to

have constant participation rate in the market along the trading period.

The execution data covers S&P 500 stocks between January 2011 and December 2012. Execution

duration is greater than 5 minutes but no longer than a full trading day. Total number of orders is

81,744 with an average size of approximately $1 million.

According to our quadratic transaction cost model, trading q dollars in state j would cost the

investor λjq
2. Since each of our executions are completed in a day, we can uniquely label each

execution originating in one of the four states by setting it to the state with maximal smoothed

probability. With this methodology, we find that 22,946 executions are in regime 1, 41,898 execu-

tions in regime 2, 14,502 executions in regime 3 and 2,398 in regime 4. Compared to other states,

regime 4 has relatively small number of executions due to its short-lived nature. At first sight, it

is surprising that we have the largest number of executions in regime 2. But, during the 2011-2012

period, the volatility was relatively high so there are actually fewer trading days in regime 1 (see

Figure 6).

Our execution data has information on both the order size and total trading cost. Total trading

cost is computed by comparing the average price of the execution to the prevailing price in the

market before the execution starts. This is usually referred to as implementation shortfall (IS)

(Perold 1988). Formally, IS of the ith execution is given by

ISi = sgn (Qi)
P avg
i − Pi,0
Pi,0

, (19)

where Qi is the dollar size of the order (negative if a sell order), P avg
i is the volume-weighted

execution price of the parent-order and Pi,0 is the average of the bid and ask price at the start-time

of the execution. Thus, total trading cost in dollars is equal to ISi ×Qi. According to our model,

this is given by λm(i)Q
2
i where m(i) maps the ith execution to the state of the trading day. Thus,

we can estimate λj for each state by fitting the following model:

ISi = λ1Qi1{m(i)=1} + λ2Qi1{m(i)=2} + λ3Qi1{m(i)=3} + λ4Qi1{m(i)=4} + εi

Table 4 illustrates the estimated coefficients. The reported standard errors are clustered at

the stock and calendar day level. We observe that λ estimates are all highly significant (except in

state 4 where we observe fewer executions in our data-set) and vary a lot across regimes and tend

to increase with volatility. We find that λ3 is the largest across all states. Recall that this state

has the lowest Sharpe ratio and thus can be interpreted as the distressed state. Using Wald tests

pairwise, we find that the estimate of transaction costs in this distressed state, λ3, is statistically

higher than all other coefficients at a 10% significance level.

To better understand the variation in transaction costs across our states, we present in Table 5

the average values of various liquidity proxies in each state. We find that bid-ask spreads, mid-quote

volatility and turnover are increasing across states, i.e., volatility. However, the Amihud illiquidity

proxy returns similar ranking to the estimated λ coefficients with state 3 being more illiquid than
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Table 4: Transaction cost estimates in each regime labeled from the four-state regime switching model.
λn denotes the transaction cost multiplier in regime n. The second column reports the results from a
liquid subset in which we only include executions from stocks within the top 10% in market capitalization.
Estimated values are multiplied by 1010. Standard errors are double-clustered at the stock and calendar day
level.

Dependent variable: IS
All Stocks Liquid

λ1 1.688∗∗∗ 0.501∗∗

(0.459) (0.217)

λ2 1.725∗∗∗ 0.793∗∗∗

(0.195) (0.189)

λ3 3.037∗∗∗ 1.506∗∗∗

(0.418) (0.352)

λ4 2.274 0.935
(1.927) (1.329)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

state 4. Since volume is much larger in that state, it may act as a mitigating factor on trading

costs (see e.g., Admati and Pfleiderer (1988) and Foster and Viswanathan (1993)).

Since we would like to estimate the price impact of trading the market portfolio, our estimates

may be overestimating the cost as it is based on the complete set of S&P 500 stocks. In order to

address this issue, we rerun our regressions only using data corresponding to the top 10% of stocks

with respect to market capitalization. We believe that this universe of stocks reflect a more natural

comparison to the market portfolio.

The second column of Table 4 illustrates the estimated coefficients for this liquid universe. We

observe that the coefficients are lower by a factor between two and three but preserve the same

ranking across states. In this case, λ3 is statistically different than the coefficients of the first and

second state at 10% significance level. The second panel of Table 5 illustrates the average values

of each liquidity proxy in each regime using this universe of large-cap stocks.

5.3 Objective function

We use the regime switching model based on dollar holdings and returns presented in Section 4 as

the investment horizon is very long. Formally, the investor’s objective function is:

E

[ ∞∑
t=0

ρt
{
xtµ(st)−

1

2
λ(st)u

2
t −

γ

2
σ2(st)x

2
t

}]
(20)

where xt = xt−1(1 + rt) + ut and st ∈ {1, 2, 3, 4}. We calibrate ρ so that the annualized discount

rate is 1%. We set γ = 1× 10−10 which we can think of as corresponding to a relative risk aversion

of 1 for an agent with $10 billion dollars under management. We assume that the investor starts
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Table 5: Average liquidity proxies in each regime. The second column reports the averages from a liquid
subset in which we only include executions from stocks within the top 10% in market capitalization. Standard
errors are double-clustered at the stock and calendar day level.

All Stocks Liquid

Spread Volatility Turnover Amihud Spread Volatility Turnover Amihud

(bps) (%) (×10−8) (bps) (%) (×10−8)

1 3.80∗∗∗ 1.11∗∗∗ 3.51∗∗∗ 1.37∗∗∗ 2.89∗∗∗ 1.01∗∗∗ 2.93∗∗∗ 0.47∗∗∗

(0.04) (0.02) (0.12) (0.06) (0.03) (0.02) (0.11) (0.02)

2 3.95∗∗∗ 1.23∗∗∗ 3.58∗∗∗ 1.59∗∗∗ 2.98∗∗∗ 1.13∗∗∗ 3.02∗∗∗ 0.55∗∗∗

(0.04) (0.02) (0.13) (0.06) (0.03) (0.02) (0.10) (0.02)

3 4.95∗∗∗ 1.92∗∗∗ 4.27∗∗∗ 1.97∗∗∗ 3.52∗∗∗ 1.77∗∗∗ 3.63∗∗∗ 0.67∗∗∗

(0.09) (0.06) (0.20) (0.08) (0.07) (0.06) (0.19) (0.04)

4 5.62∗∗∗ 2.84∗∗∗ 7.37∗∗∗ 1.80∗∗∗ 3.97∗∗∗ 2.59∗∗∗ 6.42∗∗∗ 0.59∗∗∗

(0.39) (0.28) (2.07) (0.34) (0.27) (0.25) (1.07) (0.12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

from zero holdings and rebalances daily.

The optimal portfolio policy of the investor is given by

xoptt (st) = (1− Q(st)

λ(st)
)(1 + rt)x

opt
t−1 +

Q(st)

λ(st)
aim(st) ∀st ∈ {1, 2, 3, 4} (21)

where q and Q solve the following system of equations ∀s ∈ {1, 2, 3, 4}:

Q(st) = −λ(st)
2
(
γσ2(st) + λ(st) + ρ

(
σ2(st) + (1 + µ(st))

2
)
Q(st)

)−1
+ λ(st), (22)

q(st) = (µ(st) + ρµ(st)q(st))

(
1− Q(st)

λ(st)

)
, (23)

aim(st) = Q(st)
−1q(st). (24)

Since we have only one asset, the trading speed is one-dimensional and given by Q(st)
λ(st)

in each state.

5.4 Aim Portfolios and Trading Speed

Using the estimated model coefficients, we first study the aim portfolios across states in the presence

and absence of transaction costs. Figure 7 illustrates the aim portfolios for the optimal policy

in these cases. We also compare this optimal policy with a simple unconditional mean-variance

benchmark, in which the portfolio rule holds a constant dollar amount equal to
µavg
γσ2

avg
in the risky

asset. Here, µavg and σ2avg are the sample mean and variance of the market returns between 1967

Q3 and 2017 Q2.

In the top panel, the red solid line illustrates the aim portfolios in the absence of transaction
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costs. Without transaction costs, aim portfolios are simply the conditional mean-variance optimal

Markowitz portfolios. Compared to the unconditional mean-variance constant benchmark portfolio,

the conditional Markowitz portfolio is very aggressive in regime 1 and holds a smaller amount than

the constant portfolio in all other states. In regime 3, the holdings are very close to a risk-free

position.

In the bottom panel, we plot the aim portfolios when there are stochastic trading costs. We

use the estimated transaction cost multipliers from the liquid subset as provided in Table 4. Sur-

prisingly, regime 4 has the smallest aim portfolio whereas regime 3, the lowest Sharpe ratio state,

has slightly higher holdings. This is due to differences in trading costs, as well as to the tran-

sition probabilities, across states. For example, trading costs are largest in Regime 3, thus the

optimal aim portfolio, which will determine trading in that state, should depend on the average

positions expected in states that it will transition from, essentially Regime 4 (probability of ≈ 6%)

and Regime 2 (probability of ≈ 1%), as well as from states it will transition too, again Regime 2

(probability of ≈ 2%) and Regime 4 (probability of ≈ 1%). These considerations make the desired

holdings in Regime 3 higher. Interestingly, the aim portfolios in regime 3 and regime 4 hold a larger

position in risky assets than the corresponding conditional Markowitz portfolios, whereas the aim

portfolio in regime 1 actually holds a much smaller position than the conditional Markowitz port-

folio. This emphasizes the impact of transaction costs and potential transitions between states on

desired holdings.

Finally, we plot the trading speeds in each regime in Figure 8. Due to high volatility, regime 4

has the highest trading speed. Regime 1 has the lowest trading costs so we find that the trading

speed is relatively larger compared to regime 2 and regime 3. However, the difference is not very

large as these other states have higher volatilities. Regime 3 has the lowest trading speed potentially

due to its highest trading costs.

5.5 In-sample Analysis

In this section, we evaluate the performance of the optimal policy using the in-sample estimates

from our four-state regime switching model. We compare it to various benchmark policies in the

presence and absence of transaction costs to quantify the potential benefits of this methodology.

In order to evaluate the performance of the policies, we need to assign each trading day to a

regime state so that we can determine the appropriate values of σ2(st) and λ(st). For this purpose,

we use the smoothed probabilities from the regime switching model and assign the regime of each

trading day to the state with the highest smoothed probability.

We also skip a day to implement the optimal and myopic policies without any forward-looking

bias. That is to say, to determine the position on day t, we use the smoothed probabilities from

day t− 1.

Let xoptt be the optimal policy as computed from Equation (21) and the above implementation

methodology. We break down the realized objective function into two terms, wealth and risk

28



penalties:

W opt
T =

T=12600∑
t=1

ρt
[
xoptt rt+1 −

1

2
λ(st)

(
xoptt − xoptt−1Rt

)2]
(25)

RP opt
T =

T=12600∑
t=1

1

2
ρt
[
xoptt σ(st)

]2
(26)

Here, t = 12600 corresponds to the final trading day of 2017 Q2.

5.5.1 Benchmark Policies

As described earlier, the first benchmark policy is the constant-dollar rule in which the investor

chooses xcont =
cµavg
γσ2

avg
. The parameters, µavg and σ2avg, are obtained using the full in-sample data.

We choose c so that the policy has the same risk exposure as the optimal policy, i.e., the discounted

sum of risk penalties from this policy equals RP opt
T . In the presence of trading costs, getting into

a large constant position in the first period may result in large trading costs so to minimize this

effect we allow this policy to build the constant position in the first 10 trading days with equal-sized

trades.

The second benchmark policy is the buy-and-hold portfolio in which the investor invests x0

dollars into the market portfolio at the beginning of the horizon.11 We provide slight advantage to

this benchmark policy by assuming that he builds this position with no trading costs. The investor

never trades till the end of the investment horizon. We again optimally choose x0 so that the policy

has the same risk exposure as the optimal policy.

The third benchmark policy is the myopic policy with transaction cost multiplier, a widely used

practitioner approach. This approach solves a myopic mean-variance problem, that is given some

initial position (xt−1) and the state st, rt, it solves maxut xtµ(st)− 1
2γσ(st)

2x2t − 1
2hu

2
tλ(st) subject

to the dynamics xt = xt−1(1 + rt) + ut. The myopic policy with transaction cost multiplier h is

given by

xmy
t (st) = (1− τ(st))(1 + rt)x

my
t−1 + τ(st)

µ(st)

γσ2(st)
∀st ∈ {1, 2, 3, 4} (27)

τ(st) =
1

1 + hλ(st)
γσ2(st)

(28)

Note that this policy, like the optimal one, trades partially towards an aim portfolio. However,

since it takes the current state as given and ignores the implications of any future transitions in

the state, the aim portfolio is the conditional mean-variance efficient Markowitz portfolio and the

trading inertia, 1 − τ(st) ≈ hλ(st)
γσ2(st)

, only depends on the ratio between current state’s transaction

costs and the variance. We choose h so that the myopic policy uses the optimal trading speed

11We assume that the investor shorts the risk-free asset to generate this initial capital so he also starts from zero
wealth.
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τ∗(st) in each regime. Note that in this case, the risk penalties will not be the same. Further, in

the absence of transaction costs, the myopic policy is optimal, thus, we compare it to the optimal

one only in the presence of transaction costs.

5.5.2 Comparison between Portfolio Policies

Figure 9 compares the optimal policy to the constant portfolio in the absence of trading costs.

Both policies have the same risk penalty by construction (see bottom-right panel), thus the wealth

dynamics are direct measures of performance. The top-left panel illustrates that the optimal policy

has a much higher performance. We observe that this is achieved by trading more and timing

the regimes of the return data. This confirms that there is predictability and that, at least in the

absence of transaction costs, there is value to rebalancing across the estimated regimes.

Figure 10 compares the optimal policy to the buy-and-hold portfolio in the absence of trading

costs. Both policies again have the same risk penalty by construction. In the top-right panel, the

starting position for the buy-and-hold policy is roughly $3 × 109. Since this policy never trades,

the position becomes very large at the end of the horizon which causes this policy to take much

higher risk. This policy performs worse than the constant portfolio for that reason. Since there are

no trading costs, the constant portfolio maintains the same level of position costlessly and manages

the risk exposure better.

Figure 11 compares the optimal policy to the constant portfolio in the presence of trading costs.

Both policies again have the same risk penalty by construction. Top-left panel illustrates that the

difference in performance is more pronounced in the presence of trading costs. One reason for this

is the excessive trading of the constant portfolio policy as illustrated in the medium-left and bottom

panel. Compared to the previous case, we note that optimal policy trades much more slowly as

shown in medium-right panel. The constant policy trades a lot after large return shocks in order

to keep a constant dollar amount invested in the market portfolio. Therefore, the constant-dollar

policy incurs much larger cumulative transaction costs than the optimal policy as we see in the

bottom panel, which contributes a significant portion of the observed wealth difference between the

two strategies.

Figure 12 compares the optimal policy to the buy-and-hold portfolio in the presence of trading

costs. They both have the same risk penalty by construction. In the top-right panel, the starting

position for the buy-and-hold policy is roughly $1.4 × 109. This policy performs better than the

constant portfolio in this case as it never incurs trading costs. We note that the buy-hold policy is

very slowly moving in building the position as it can never get out of the position to manage risk.

This becomes the main driver of underperformance compared to the optimal policy.

Finally, Figure 13 compares the optimal policy to the myopic policy with transaction cost

multiplier. Both policies have the same trading speeds but different aim portfolios. Since the

risk penalties are not the same, wealth dynamics are not the main performance metric in this

case. For this reason, we also include the cumulative objective value which equals the difference

between wealth and risk penalties. The performance difference as illustrated by objective values
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in the bottom-right panel is again substantial. The main driver seems to be excessive trading of

the myopic policy. Since the myopic portfolio uses the conditional Markowitz portfolio as its aim

position, it ends up trading a lot especially in the good state. Taking large positions, it also induces

large risk penalties. This example shows the importance of accounting for the future dynamics of

the state variables as this generates the difference between the aim portfolios of both policies.

5.6 Large vs. Small Portfolios

Managing transaction costs effectively will be very important when the portfolio size is large. In

the absence of transaction costs, we know that the myopic portfolio, i.e., the conditional Markowitz

portfolio, is optimal. Therefore, when the portfolio size is small, the difference between the optimal

policy in the presence of transaction costs and the myopic portfolio may be very small. Since we are

using realistic parameters, our model can also speak to the level of portfolio size at which managing

transaction costs would provide significant benefits. For example, with γ = 1 × 10−10 we observe

that our aim portfolios range from approximately $20 billion to $85 billion dollars.

Figure 14 compares the optimal policy to the myopic policy when γ = 1 × 10−5. In this case,

the top-right panel tells us that the maximum aim portfolio across states is roughly $2.8 million

and in this case, there is no significant difference between performances.

Figure 15 compares the optimal policy to the myopic policy when γ = 2.5 × 10−8. With this

calibration, the aim portfolios range from approximately $20 million to $900 million dollars. We

observe that the myopic policy diverges a lot from the optimal policy by trading a lot and taking

too much risk. It returns negative objective value and near-zero wealth levels. Thus, this simple

exercise suggests that when the portfolio size is on the order of hundred millions, taking price

impact into account is crucial.

5.7 Out-of-sample Analysis

The in-sample analysis was useful in studying the expected properties and benefits of a fully dynamic

portfolio policy, but to better assess the value of the regime switching model, we perform an out-

of-sample analysis. We implement a two-state regime switching model in this section for faster

estimation of the parameters as we need to estimate a regime switching model every day from 1967

to 2017, roughly 12,600 estimations.

5.7.1 Calibration

First, we estimate the model parameters to determine the parameters of the objective function. We

use all the available market return data from 1926 Q1 to 2017 Q2. Table 6 illustrates the estimated

coefficients. We again observe that the expected return is lower in the high volatility state. The

“good” state with higher expected return and low volatility is again more persistent.

We estimate the transaction cost regimes using the same methodology, but now with two

regimes. We again use the estimates from the liquid subset, i.e., the 50 stocks with largest market
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Table 6: Parameter estimates for a two-state regime switching model using daily market return data from
1926 Q1 and 2017 Q2.

Parameter Estimate Parameter Estimate

µ1 0.0841% σ1 0.6110%

µ2 -0.0955% σ2 1.8886%

P11 0.9866 P12 0.0134

P21 0.0431 P22 0.9569

Table 7: Transaction cost estimates in each regime labeled from the two-state regime switching model.
λn denotes the transaction cost multiplier in regime n. The second column reports the results from a
liquid subset in which we only include executions from stocks within the top 10% in market capitalization.
Estimated values are multiplied by 1010. Standard errors are double-clustered at the stock and calendar day
level.

Dependent variable: IS
All Stocks Liquid

λ1 1.772∗∗∗ 0.579∗∗∗

(0.255) (0.166)

λ2 2.299∗∗∗ 1.254∗∗∗

(0.311) (0.335)

***p < 0.01, **p < 0.05, *p < 0.10
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capitalizations. Formally, we run the following regression:

ISi = λ1Qi1{m(i)=1} + λ2Qi1{m(i)=2} + εi

Table 7 illustrates the estimated coefficients. We observe that λ estimates are all highly significant.

We find that λ2 is greater than λ1 and this difference is statically significant. Regime 2 has the

lowest Sharpe ratio and thus can be interpreted as the distressed state.

5.7.2 Objective Function

The estimated two-state regime switching model and the calibrated transaction costs will determine

the parameters of the out-of-sample objective function. Let x be any given policy. We will compute

the out-of-sample performance of this policy by W (x)−RP (x) where

W (x) =

T=12600∑
t=1

ρt
[
xtrt+1 −

1

2
λ(st) (xt − xt−1Rt)2

]
(29)

RP (x) =
T=12600∑
t=1

1

2
ρtx2tσ

2(st), (30)

and st will equal to the state with the larger smoothed probability at time t, and σ and λ will be

given by the calibrations in Table 6 and Table 7 (the liquid column), respectively.

The investor is not aware of the true parameters of the model and uses only information up to

trading day t in order to make a trading decision for day t + 1, i.e., no policy will be able to use

any forward looking data.

5.7.3 Optimal Policy

We construct our policy based on our theoretical analysis as follows. We will label this policy as

the “optimal” policy as it is based on our dynamic model. First, we estimate a two-state regime

switching model using the market return data from 1926 Q1 to 1967 Q2 (inclusive). We use these

estimated parameters to construct a trading policy as formulated by Lemma 3. To apply our trading

rule, we need to the predict the regime of the next trading day. To accomplish this, we re-estimate

a two-state regime switching model using return data from 1926 Q1 to the decision date. This

estimation will provide smoothed probabilities for every trading day including the decision date.

We will predict the next trading day’s regime using the state with the larger smoothed probability.

For example, suppose that Regime 1’s smoothed probability for decision date is 0.52 and Regime

2’s smoothed probability for decision date is 0.48. We will predict the next trading day to be of

Regime 1.

5.7.4 Benchmark Policies

We will use the constant portfolio and buy-and-hold portfolio as the benchmark policies.
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We construct the constant portfolio policy in the out-of-sample data as follows. First, we

estimate µavg and σavg using the market return data from 1926 Q1 to 1967 Q2. These parameters

are held fixed throughout the investment horizon. The investor then constructs the following

constant portfolio: xcont =
cµavg
γσ2

avg
. We choose c so that the policy has the same risk exposure as the

optimal policy.

The buy-and-hold portfolio is constructed similarly to its in-sample counterpart. The investor

invests x0 dollars (borrowed at the risk-free rate) into the market portfolio at the beginning of the

investment horizon, i.e., on the first trading day of 1967 Q3, and then never trades but cumulates

returns from its risky and risk-free asset positions. We choose x0 so that the policy has the same

total risk exposure as the optimal policy.

Figure 16 compares the optimal policy to the constant portfolio in the absence of trading costs

in the out-of-sample data. The top-left panel illustrates that the optimal policy has higher per-

formance in terms of terminal wealth. The results show that the regime-switching model captures

predictability out-of sample and that it is valuable, absent transaction costs, to rebalance to time

these regimes.

Figure 17 compares the optimal policy to the buy-and-hold portfolio in the absence of trading

costs in the out-of-sample data. It confirms that the optimal policy outperforms the buy-and-hold

portfolio out-of-sample in the absence of transaction costs.

Figure 18 compares the optimal policy to the constant portfolio in the presence of trading costs

in the out-of-sample data. The top-left panel illustrates that the difference in performance is more

pronounced in the presence of trading costs. The constant policy again trades a lot after large

return shocks which reduces its overall performance. We can see that the difference in cumulative

transaction costs paid by both strategies is very large and that this difference contributes substan-

tially to the difference in wealth generated by both strategies. This hints to an interesting insight

we confirm below. Even if expected return regimes are difficult to measure leading to a smaller

out-of-sample performance in the absence of transaction costs, if transaction cost regimes are more

accurately measured, which is plausible since t-costs vary with second moments, then optimally

accounting for the variation in volatility and transaction costs leads to a sizable improvement in

performance.

Figure 19 compares the optimal policy to the buy-and-hold portfolio in the presence of trading

costs in the out-of-sample data. We find that the outperformance of the optimal policy is again

substantial. Here the myopic policy again builds the position very slowly but ends-up with a very

large a position at the end of the sample which increases the total risk. In the top-right panel, the

starting position for the buy-and-hold policy is roughly $4.7× 109. This is substantially lower than

the aim portfolio of the optimal policy in the low-volatility state.

Overall, this out-of-sample analysis illustrates that the outperformance of the optimal policy is

robust to parameter uncertainty of the regime switching model.

34



5.8 Which parameter should you time?

In this section, we investigate the value of timing each switching parameter of the general model.

The switching parameters are µ, σ and λ. It is well-known, at least since Merton (1980), that

expected returns are estimated less precisely than volatilities. Further, Moreira and Muir (2017)

have shown that there are gains to scaling down the risky asset exposure in response to an increase in

the market’s variance, which suggests that the conditional mean of the market moves less than one-

for-one with its variance. One might thus expect that out-of-sample the benefits of timing changes

in volatility could be larger than timing changes in expected returns. We show some evidence to

that effect below. Further, since transaction costs vary with volatilities, we also provide quantitative

evidence about the value of timing transaction cost regimes.

We use the the implementation of the optimal policy from the out-of-sample analysis to account

for the potential bias introduced by imprecisely estimated parameters. First, we study the value of

timing the switches in either volatility or expected returns in the absence of trading costs. In this

analysis, if the investor times volatility, he takes into account that the volatility is time-varying

between two states but assumes that expected return is constant throughout the investment horizon

and is given by µavg (as in the case of the constant portfolio rule). Similarly, if the investor times

expected returns, he models them as time-varying between high and low states and internalizes

the potential switches in the expected return in his trading rule but he assumes that the volatility

stays constant at a level of σavg (as in the case of the constant portfolio rule). We scale the policies

so that they take the same risk.

Figure 20 compares these two timing approaches in the absence of trading costs using an out-

of-sample trading approach. We scale both policies so that they both have the same risk exposure

as the optimal policy that times both parameters. We find that timing volatility provides much

higher performance. The terminal wealth of the policy that only times volatility is actually higher

than the terminal wealth of the optimal policy that times both parameters as shown in Figure

16. This illustrates that trying to time expected returns may be actually detrimental in an out-

of-sample trading strategy. The top-right panel shows that the µ-timing policy has a wider range

of positions compared to the range observed in the σ-timing policy. In the absence of t-costs the

strategies switch to their conditional mean-variance Markowitz portolios in every state. Recall

that the estimated mean in the state 2 is negative and the volatility is high. This implies that

the µ-timing strategy, which underestimates the volatility in that regime, takes a very large short

position in the risky asset. This hurts the out-of-sample performance of the strategy relative to

the volatility timing strategy, probably because the negative expected return in those states is not

precisely estimated.

If there are trading costs in the model, then λ will be switching through time between high and

low transaction cost regimes. If an investor does not time the switches in λ, then the investor uses

an unconditional average of λavg which is estimated from running following regression in the liquid

subset:

ISi = λavgQi + εi
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where Qi is the dollar size of the order. We estimated λavg to be 0.766 × 10−10 which is between

λ1 and λ2, as expected.

Now we consider combined timing strategies: Timing σ and µ, timing σ and λ or timing µ and

λ. In all three timing strategies, the left-out parameter is set to its unconditional average. We

consider the comparison across these policies in two different assumptions of γ: high risk-aversion

and low risk-aversion.12 Figure 21 compares these three policies in the presence of transaction costs

in the high risk-aversion case. We observe that the top performing policy times σ and λ and the

worst performing policy times σ and µ.

Figure 22 compares these three policies in the low risk-aversion case. We again observe that

the worst performing policy times σ and µ but the underperformance is economically smaller. This

underscores that the benefits from timing volatility and transaction costs become more important

when the size of the portfolio is large.

6 Conclusion

In this paper, we develop a closed-form solution for the dynamic asset allocation when expected

returns, covariances, and price impact parameters follow a multi-state regime switching model.

Under mean-variance objective function, we compute the optimal trading rule of the investor an-

alytically by characterizing the trading speed and aim portfolio. Specifically, the aim portfolio is

a weighted average of the conditional Markowitz portfolios in all potential states. The weight on

each conditional Markowitz portfolio depends on the likelihood of transitioning to that state, the

state’s persistence, the risk, and transaction costs faced in that state compared to the current one.

Similarly, the optimal trading speed is a function of the relative magnitude of the transaction costs

in various states and their transition probabilities. One of the significant implications of our model

is that the optimal portfolio can deviate substantially from the conditional Markowitz portfolio in

anticipation of possible future shifts in relative risk and/or transaction costs.

We show that the model is equally tractable when price changes or returns follow a regime-

switching model. The latter aligns better with the empirical dynamics of asset returns. We utilize

this framework to optimally time the broad value-weighted market portfolio, accounting for time-

varying expected returns, volatility, and transaction costs. We use a large proprietary data on

institutional trading costs to estimate the price impact parameters. We find that trading costs

vary significantly across regimes and tend to be higher as market volatility increases.

We test our trading strategy both in-sample and out-of-sample and find that there are sub-

stantial benefits to the use of our approach. For the out-of-sample test, the state probabilities

are estimated using only data in the information set of an agent on the day preceding the trading

date. We compare the performance of our optimal dynamic strategy to various benchmarks: a

constant dollar investment in the risky asset, a buy-and-hold portfolio, and a myopic policy with

12Note that in the absence of trading costs, changing risk aversion would not matter, as the wealth values will just
be scaled by the ratio of the risk-aversion parameters.
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optimal trading speeds borrowed from the optimal solution. Our dynamic strategy outperforms all

of these alternatives significantly. Out-of-sample, the benefits of timing volatility and transaction

costs dominate those of timing expected returns, especially when assets under management are

sizable.
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Figure 6: Regimes. The first four plots illustrate the corresponding smoothed probabilities for each regime.
We use the following color codes: Green represents regime 1, blue represents regime 2, yellow represents
regime 3, and red represents regime 4. The fifth plot illustrates the color-coded regimes vertically by using
the maximum smoothed probability for identification. Market returns are in black.
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Figure 7: Unconditional Markowitz portfolio and aim portfolios in the absence and presence of trading costs.
In the top panel, trading costs are assumed to be zero, thus the aim portfolio is equal to the conditional
Markowitz portfolio. We also plot the unconditional Markowitz portfolio which we label as the “Constant”
portfolio. In the bottom panel, trading costs are set according to Table 4 using executions from the liquid
subset. Coefficient of risk aversion is given by γ = 1× 10−10 (can be thought as corresponding to a relative
risk aversion of 1 for an agent with $10 billion dollars under management.).
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Figure 8: Trading speed across different regimes. Trading costs are set according to Table 4 using execu-
tions on very large-cap stocks. Coefficient of risk aversion is given by γ = 1 × 10−10 (can be thought as
corresponding to a relative risk aversion of 1 for an agent with $10 billion dollars under management.).
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Figure 9: This figure compares the in-sample performance of the optimal policy with a constant-dollar
portfolio in the absence of trading costs. Both strategies start from zero-wealth. Constant portfolio is equal
to the scaled unconditional Markowitz portfolio so that the policy has the same risk exposure as the optimal
policy (as shown in the bottom-right panel). Top-left panel shows the cumulative wealth of each policy which
is the main comparison metric. Top-right panel shows the each strategy’s dollar position in the market fund.
Bottom-left panel illustrates the change in position due to the rebalancing of the strategy.
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Figure 10: This figure compares the in-sample performance of the optimal policy with a buy-and-hold
portfolio in the absence of trading costs. Both strategies start from zero-wealth. Buy-and-hold portfolio
invests x0 dollars into the market fund at the beginning of the horizon. We scale x0 so that the policy has
the same risk exposure as the optimal policy (as shown in the bottom-right panel). Top-left panel shows
the cumulative wealth of each policy which is the main comparison metric. Top-right panel shows the each
strategy’s dollar position in the market fund. Bottom-left panel illustrates the change in position due to the
rebalancing of the strategy.
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Figure 11: This figure compares the in-sample performance of the optimal policy with a constant-dollar portfolio
in the presence of trading costs. Both strategies start from zero-wealth. Constant portfolio is equal to the scaled
unconditional Markowitz portfolio so that the policy has the same risk exposure as the optimal policy (as shown
in the center-right panel). Top-left panel shows the cumulative wealth of each policy which is the main comparison
metric. Top-right panel shows the each strategy’s dollar position in the market fund. Center-left panel illustrates
the change in position due to the rebalancing of the strategy and the bottom panel illustrates the cumulative cost of
these trades.
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Figure 12: This figure compares the in-sample performance of the optimal policy with a buy-and-hold portfolio in the
presence of trading costs. Both strategies start from zero-wealth. Buy-and-hold portfolio invests x0 dollars into the
market fund at the beginning of the horizon. We scale x0 so that the policy has the same risk exposure as the optimal
policy (as shown in the center-right panel). Top-left panel shows the cumulative wealth of each policy which is the
main comparison metric. Top-right panel shows the each strategy’s dollar position in the market fund. Center-left
panel illustrates the change in position due to the rebalancing of the strategy and the bottom panel illustrates the
cumulative cost of these trades.
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Figure 13: This figure compares the in-sample performance of the optimal policy with a myopic policy in the presence
of trading costs. Both strategies start from zero-wealth. We adjust the myopic policy so that it has the same trading
speed as the optimal policy. Top-left panel shows the cumulative wealth of each policy. Top-right panel shows the
each strategy’s dollar position in the market fund. Center-left panel illustrates the change in position due to the
rebalancing of the strategy and the bottom-left panel illustrates the cumulative cost of these trades. Bottom-right
panel shows the realized objective value of each strategy, which is the main comparison metric, by subtracting the
risk penalty from the wealth generated.
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Figure 14: This figure compares the in-sample performance of the optimal policy with a conditional Markowitz

portfolio for a small investor (γ = 1 × 10−5) in the presence of trading costs. Recall that conditional Markowitz
portfolio is optimal in the absence of trading costs. Both strategies start from zero-wealth. Top-left panel shows
the cumulative wealth of each policy. Top-right panel shows the each strategy’s dollar position in the market fund.
Center-left panel illustrates the change in position due to the rebalancing of the strategy and the bottom-left panel
illustrates the cumulative cost of these trades. Bottom-right panel shows the realized objective value of each strategy,
which is the main comparison metric, by subtracting the risk penalty from the wealth generated.
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Figure 15: This figure compares the in-sample performance of the optimal policy with a conditional
Markowitz portfolio for a medium-size investor (γ = 2.5 × 10−8) in the presence of trading costs. Re-
call that conditional Markowitz portfolio is optimal in the absence of trading costs. Both strategies start
from zero-wealth. Top-left panel shows the cumulative wealth of each policy. Top-right panel shows the
each strategy’s dollar position in the market fund. Center-left panel illustrates the change in position due
to the rebalancing of the strategy and the bottom-left panel illustrates the cumulative cost of these trades.
Bottom-right panel shows the realized objective value of each strategy, which is the main comparison metric,
by subtracting the risk penalty from the wealth generated.
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Figure 16: This figure compares the out-of-sample performance of the optimal policy with a constant-dollar
portfolio in the absence of trading costs. Both strategies start from zero-wealth. Constant portfolio is equal
to the scaled unconditional Markowitz portfolio so that the policy has the same risk exposure as the optimal
policy (as shown in the bottom-right panel). Both strategies are constructed using only backward-looking
data. Top-left panel shows the cumulative wealth of each policy which is the main comparison metric. Top-
right panel shows the each strategy’s dollar position in the market fund. Bottom-left panel illustrates the
change in position due to the rebalancing of the strategy.
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Figure 17: This figure compares the out-of-sample performance of the optimal policy with a buy-and-hold
portfolio portfolio in the absence of trading costs. Both strategies start from zero-wealth. Buy-and-hold
portfolio invests x0 dollars into the market fund at the beginning of the horizon. We scale x0 so that the
policy has the same risk exposure as the optimal policy (as shown in the bottom-right panel). Both strategies
are constructed using only backward-looking data. Top-left panel shows the cumulative wealth of each policy
which is the main comparison metric. Top-right panel shows the each strategy’s dollar position in the market
fund. Bottom-left panel illustrates the change in position due to the rebalancing of the strategy.
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Figure 18: This figure compares the out-of-sample performance of the optimal policy with a constant-dollar portfolio
in the presence of trading costs. Both strategies start from zero-wealth. Constant portfolio is equal to the scaled
unconditional Markowitz portfolio so that the policy has the same risk exposure as the optimal policy (as shown in
the center-right panel). Both strategies are constructed using only backward-looking data. Top-left panel shows the
cumulative wealth of each policy which is the main comparison metric. Top-right panel shows the each strategy’s
dollar position in the market fund. Center-left panel illustrates the change in position due to the rebalancing of the
strategy and the bottom panel illustrates the cumulative cost of these trades.

53



1970 1980 1990 2000 2010

Time

-2

0

2

4

6

8

10

12

14

16

18
W

e
a

lt
h

10
10

Optimal

Buy-Hold

1970 1980 1990 2000 2010

Time

0

1

2

3

4

5

6

7

8

9

P
o

s
it

io
n

10
10

Optimal

Buy-Hold

1970 1980 1990 2000 2010

Time

-6

-4

-2

0

2

4

6

T
ra

d
e

s

10
8

Optimal

Buy-Hold

1970 1980 1990 2000 2010

Time

0

1

2

3

4

5

6

7

C
u

m
u

la
ti

v
e

 R
is

k
 P

e
n

a
lt

y

10
10

Optimal

Buy-Hold

1970 1980 1990 2000 2010

Time

0

2

4

6

8

10

12

C
u

m
u

la
ti

v
e

 T
C

10
9

Optimal

Buy-Hold

Figure 19: This figure compares the out-of-sample performance of the optimal policy with a buy-and-hold portfolio
in the presence of trading costs. Both strategies start from zero-wealth. Buy-and-hold portfolio invests x0 dollars
into the market fund at the beginning of the horizon. We scale x0 so that the policy has the same risk exposure as
the optimal policy (as shown in the center-right panel). Both strategies are constructed using only backward-looking
data. Top-left panel shows the cumulative wealth of each policy which is the main comparison metric. Top-right
panel shows the each strategy’s dollar position in the market fund. Center-left panel illustrates the change in position
due to the rebalancing of the strategy and the bottom panel illustrates the cumulative cost of these trades.
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Figure 20: This figure compares the out-of-sample performance of timing strategies in the absence of trading costs.
σ-timing policy takes into account that the volatility is time-varying between two states but assumes that expected
return is constant throughout the investment horizon. µ-timing policy internalizes the potential switches in the
expected returns but it assumes that the volatility stays constant at an unconditional average. Both strategies start
from zero-wealth. We scale both policies so that they have the same risk exposure as the optimal policy (as shown
in the bottom-right panel). Top-left panel shows the cumulative wealth of each policy which is the main comparison
metric. Top-right panel shows the each strategy’s dollar position in the market fund. Bottom-left panel illustrates
the change in position due to the rebalancing of the strategy.
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Figure 21: This figure compares the out-of-sample performance of timing strategies in the presence of trading costs.
Timing σ and λ policy takes into account that the volatility and trading costs are time-varying between two states
but assumes that expected return is constant at its unconditional average. Timing µ and λ policy internalizes the
potential switches in the expected returns and transaction costs but it assumes that the volatility stays constant at
an unconditional average. Finally, timing σ and µ policy takes into account that the volatility and expected returns
are time-varying between two states but assumes that trading costs are constant at its unconditional average. Risk
aversion level is at 1 × 10−9.
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Figure 22: This figure compares the out-of-sample performance of timing strategies in the presence of trading costs.
Timing σ and λ policy takes into account that the volatility and trading costs are time-varying between two states
but assumes that expected return is constant at its unconditional average. Timing µ and λ policy internalizes the
potential switches in the expected returns and transaction costs but it assumes that the volatility stays constant at
an unconditional average. Finally, timing σ and µ policy takes into account that the volatility and expected returns
are time-varying between two states but assumes that trading costs are constant at its unconditional average. Risk
aversion level is at 1 × 10−10.
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