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1. Introduction

Traffic congestion is a serious issue in many cities around the world, in part because of its impact

on air pollution and human health. One proposed solution is subways and other public transit

infrastructure. These are costly up-front investments, and there is little evidence about whether

they are worth it. In this paper, we investigate the effect of subway openings on urban air

pollution. We rely on two principal data sources. The first describes the universe of world subway

systems. The second is a remotely sensed measure of particulates, Aerosol Optical Depth (AOD),

recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and

Aqua earth observing satellites between February 2000 and December 2017. These data allow

us to measure airborne particulates everywhere in the world, monthly, with approximately 3km

spatial resolution. Our strategy for establishing the causal effect of subways on AOD relies on

a comparison of changes in particulates within a city around the time of a new subway system

opening. We consider multiple geographies, but our preferred outcome variable is air pollution in

a 10km disk with centroid in the city center.

For an average opening, the data indicate that subways result in a tiny decrease in AOD during

the 18 post opening months but this decrease cannot be distinguished from zero. This average

effect, however, conceals considerable heterogeneity across cities. Our main analysis focuses on

the 58 subway openings that occurred between August 2001 and July of 2016. Of these, our event

study research design indicates that 20 openings increased AOD and 12 had no measurable effect.

In the remaining 26 cities, not quite half the sample, AOD fell after the subway opened.

Our investigations fail to find measurable relationships between estimated subway effects and

initial city or subway characteristics, save one. The 23 cities where subways reduced AOD are

overwhelmingly among those whose initial level of AOD was above median. For the set of cities in

the top half of the initial AOD distribution, with above 0.36 AOD (approximately 28 µg/m3
pm2.5 )

on average in 2000, AOD levels fell by about 4% after the opening of the subway. This effect is

robust to a variety regression specifications and to changes in the details of how we calculate city

average AOD levels. The effect is larger near the center of cities where subway service is usually

concentrated and we cease to find significant pollution effects beyond 25km from the city center.

Data limitations hinder our ability to estimate the effects of subways over longer time horizons.

However, the available data suggest the 4% decline in AOD experienced by an average high AOD

city persists for at least four years.

As a complementary analysis, we provide evidence that subway ridership is a key correlate

of AOD reductions, that is, cities where AOD fell significantly are also those in which ridership

- and hence automobile substitution - is largest. Finally, we also investigate the effect of subway

expansions1 beyond the inaugural lines and find small effects, both for the average city and high

1We define expansions as the opening of new subway lines beyond the inaugural lines. This definition excludes a
common expansion type in which a one or more subway stations are added to an existing subway line.
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AOD cities.

Our findings are important for three reasons. Subways are often proposed as a policy response

to urban air pollution. For example, Vollmer Associates et al. (2011) list air pollution reduction as

an objective for New York City’s 2nd avenue subway expansion. Our analysis provides a basis for

assessing their cost effectiveness relative to other remediation policies. Apart from this paper, we

are aware of only one study, Chen and Whalley (2012), that measures the effect of subways on air

pollution. Like the present investigation, Chen and Whalley (2012) use an event study research

design. Unlike the present study, Chen and Whalley (2012) study the opening of a single subway.

In contrast, we study all of the 58 subway openings and 143 expansions that occurred anywhere

in the world between August 2001 and July 2016. Thus, we dramatically improve on our ability to

assess whether subway openings, in fact, reduce urban air pollution.

Second, our estimates of the reduction in pollution following subway openings and expansions,

together with existing estimates of the health implications of particulates, allow us to calculate the

value of averted mortality that follows from subway openings. We estimate that, for an average

city initially in the top half of the AOD distribution, a subway opening prevents 22.5 infant and

500 total deaths per year. Using standard income-adjusted life values, this averted mortality is

worth about $43m and $1b per year, respectively. These estimates do not include the effects of

particulate reduction on morbidity or on productivity and so probably understate actual health

benefits. Although available subway capital cost estimates are crude, the estimated external health

effects represent a significant fraction of construction costs, particularly for subway systems with

costs at the low end of the observed range. Note that these estimates apply only to cities that

are initially in the upper half of our AOD distribution. For cities in the lower half of the AOD

distribution, the effect of subway openings is small and not distinguishable from zero.

Finally, little is known about transportation behavior in developing countries, and we shed

indirect light on this important topic. First, and interestingly, we find no evidence that developing

world and developed world cities respond differently to subways. This supports the idea that, at

least in this regard, the two classes of cities are similar. Second, a back of the envelope calculation

suggests that subways typically account for between 1.5%-10% of trips within a few years of their

opening. Given what is known about the relationship between subway ridership and traffic,

and between traffic and pm10 , this level of ridership can plausibly account for the observed 4%

reduction in particulates that follows a subway opening only if subways divert trips that would

otherwise have occurred in particularly dirty vehicles or at particularly congested times. This

is consistent with evidence that public transit serves the poor and that subways are much more

heavily used at peak times for vehicle traffic.
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2. Data

To investigate the effect of subways on urban air pollution we require data for a panel of cities

describing subways, air pollution, and control variables. Our air pollution data are based on

remotely sensed measures of suspended particulates. Our subways data are the result of primary

data collection. We describe these data and their construction below, before turning to a description

of control variables.

A Subways

We use the same subways data as Gonzalez-Navarro and Turner (2018) organized into a monthly

panel and updated to December 2017. These data define a ‘subway’ as an electric-powered urban

rail system isolated from interactions with automobile traffic and pedestrians. This excludes most

streetcars because they interact with vehicle and pedestrian traffic at stoplights and crossings, but

underground streetcar segments are counted as subways. The data do not distinguish between

surface, underground, or aboveground subway lines as long as the exclusive right of way condition

is satisfied. To focus on intra-urban subway transportation systems, the data exclude heavy rail

commuter lines (which tend not to be electric powered). For the most part, these data describe

public transit systems that would ordinarily be described as ‘subways’, e.g., the Paris metro and

the New York city subway, and only such systems. As with any such definition, the inclusion or

exclusion of particular marginal cases may be controversial.

On the basis of this definition, the data report the latitude, longitude and date of opening of

every subway station in the world. We originally compiled these data manually between January

2012 and February 2014 and updated them during 2020, using the following process. First, using

online sources such as http://www.urbanrail.net/ and links therein, together with links on

wikipedia, we complied a list of all subway stations worldwide. Next, for each station on our

list, we recorded opening date, station name, line name, terminal station indicator, transfer station

indicator, city and country. We obtain latitude and longitude for each station from google maps.

We use the subways data to construct a monthly panel describing the count of operational stations

in each subway city between February 2000 and December 2017, the time period for which our air

pollution data is available.

Our analysis hinges on the ability to observe a subway city for some time before and after an

opening. Thus, we face a trade-off between sample size, the length of time we observe cities,

and maintaining a constant sample of cities. While we experiment with other study windows,

our primary econometric exercise considers the change in AOD in the period extending from 18

months before until 18 months after a subway opening. Since the AOD data cover February 2000

to December 2017, to base this exercise on a constant sample of cities, we restrict our attention

to subways that open between August 2001 and July 2016. Table A.7 lists the 58 subway system

openings taking place in this time period, by date of opening, together with basic information
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about the cities where they are located. Subways opened fairly uniformly throughout the period

and the average opening date is June 2010.2

For 42 of these 58 cities we are able to gather ridership data describing unlinked trips, mostly

from annual reports, statistical agencies or industry associations.3 Ridership is reported at the

monthly level for around half of these 42 cities. For the rest, we interpolate to calculate monthly

ridership from quarterly or yearly data. Table A.7 also reports mean daily ridership for each city

where data is available, 18 months after the system’s inauguration. For the average city in our

sample, 130,000 people rode the subway on an average day in the eighteenth month of the system’s

operation.

Figure 1 shows the evolution of ridership as a function of time from opening for the first five

years of system operation. The horizontal axis in this figure is months from the opening date. The

vertical axis is mean daily ridership per 1000 of city population. We see that ridership about triples

over the first three years of operation, from about 20 to 60 riders per thousand of population. The

rate of increase begins to slow about three years after opening.

Finally, we determine the date when construction began for each subway opening in our sam-

ple. On average, construction begins 77 months prior to opening and shows high variance.

B Satellite-based pollution

The Moderate Resolution Imaging Spectroradiometers aboard the Terra and Aqua earth-observing

satellites provide daily measures of the aerosol optical depth of the atmosphere at a 3km spatial

resolution everywhere in the world (Levy, Hsu, and al., 2015a,b). Remer, Levy, and Munchak

(2013) provide a description of how the AOD measure is constructed. Loosely, these instruments

operate by comparing reflectance intensity in a particular band against a reference value and

attributing the discrepancy to particulates in the air column.4 Data is available in ‘granules’ which

describe five minutes of satellite time. These granules are available, more or less continuously,

from February 24, 2000 until December 31, 2017 for the Terra satellite, and from July 4, 2002 until

December 31, 2017 for Aqua. During September of 2018, we downloaded all available granules

and subsequently consolidated them into daily rasters describing global AOD. Each of these daily

aggregates describes about 86m pixels covering the earth in a regular grid of 3km cells.

2There are 11 cities whose subway system opening occurs within 18 months of the beginning or end of the available
pollution data which are excluded from the table since they are excluded from our main estimation sample.

3Table A.1 reports data sources for ridership data.
4Formally, Aerosol Optical depth is

AOD = − ln
(

light arriving at ground
light arriving at top of atmosphere

)
.

That is, it is a measure of the fraction of incoming light reflected by the air column before reaching the ground. Since
at least zero light is reflected by the atmosphere, AOD must be positive and increasing in the share of reflected light
(Jacob, 1999, p. 105). The nominal scale of AOD reported by MODIS is 0− 5000, although we have rescaled to 0− 5 for
legibility, as is common in the literature. The MODIS data are available for download at ftp://ladsweb.nascom.nasa.
gov/allData/6/.
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Figure 2 presents a map showing aod for December 1, 2017 and for average AOD over 2017,

both from the Terra satellite. Darker shades indicates higher AOD readings. Unsurprisingly, the

figures show high AOD in India and China. Myhre et al. (2008) attribute high AOD over Central

and Western Africa to anthropogenic biomass burning in the region. White areas indicate missing

data. Because they are highly reflective, the algorithm for recovering AOD from reflectance values

performs poorly over light surfaces, so missing data is common in desert regions and over snow

(Levy et al.2013).

The modis instrumentation can only record AOD on cloud-free days. In the December 1, 2017

image, much of the missing data reflects cloud cover, though some reflects the fact that Terra’s

polar orbit brings it over most, but not all of the earth’s surface each day. Because AOD reporting

is sensitive to cloud cover and light surfaces, there is seasonality in the MODIS data. We see more

missing data in the Northern Hemisphere in the Winter than in the Summer. The counter-cyclical

Southern Hemisphere phenomena is less dramatic.

Figure 3 panel (a) illustrates the AOD data for Palma, Spain in June of 2017. To show scale,

the large circle in this image is 25km in radius. Panel (b) provides the corresponding image for

December 2017. The small white circles represent subway stations at the end of the sample.

While it is straightforward to calculate average AOD for any given area, we must choose the

area over which to average. Panel (c) illustrates the geographies that we consider as the basis of

this study. They are the 10km and 25km radius rings illustrated in panel (c), and the intersection

of these rings with a city footprint formed by tracing around the area that is sufficiently brightly

lit at night to be considered part of the urban area. Panel (c) illustrates this footprint as the gray

polygons.

In Appendix C we check that AOD is highly predictive of ground-measured pm10 and pm2.5 .

In addition, we find that the relationship between ground-based and remotely-sensed particulates

is not sensitive to the exact region we use to calculate city average AOD. That is, AOD is about

equally good at explaining ground based measures if we evaluate AOD over a 10km disk centered

on the city, a 25km disk centered on the city, or the corresponding city footprints derived from

lights at night data. Given this, our analysis relies primarily on AOD averages calculated over

10km disks. Finally, we note that in our preferred specification, one unit of remotely sensed AOD

is associated with about 114 µg/m3 of pm10 measured by a ground-based instrument.

With daily images in hand, it is straightforward to construct monthly averages. To calculate

our city level monthly AOD measure, we average over the whole disk centered on the city for

each day, and then average these city-day measures, weighting by the number of pixels observed

in each day. Thus, our measure of AOD within 10km of the center of a city is an average of all

pixel-days of AOD readings that fall in this region during the month. We calculate this average for

both satellites using disks of radius r ∈ {10km, 25km, 50km} as well as the intersection of these

disks with city footprints for all cities in our sample.

Table 1 provides worldwide and continental summary statistics. In 2017, the average AOD

6



reading within 10km of a city center from the Aqua satellite was 0.40. It was higher in Asian

cities, 0.50, and dramatically lower in European and North American cities. The corresponding

reading from Terra is slightly higher. The top panel of Table 1 also reports AOD measurements

based on disks with radius 25km centered on each city. Unsurprisingly, these larger disks have

slightly lower AOD levels than the smaller and more central 10km disks. As for the 10km disks,

AOD measures based on Terra are slightly higher than those for Aqua, and Asian cities are more

polluted than non-Asian cities. Table 1 also reports mean AOD over the more carefully drawn

city footprints illustrated in panel (c) of Figure 3. Interestingly, these values barely differ from the

corresponding values calculated on the basis of the comparable disk. Table A.7 reports the mean

and standard deviation of AOD for each of our sample subway cities using the Terra satellite.

In an average month, the AOD reading for an average 10km city disk is based on 89 pixel-days

for Aqua and 104 for Terra. Since the pixels are nominally 3km, if all possible pixel-days in a 10k

disk were recorded over a month, we would expect about (365/12)× π × (10km/3km)2 = 1061

pixels. Thus, conditional on observing one or more pixel-days, our city-month AOD values are

based on measurements of about 10% of possible pixel-days. About 4% of city-months contain

zero pixel-day observations and do not appear in our sample.

Table 1 also reports pixel counts for the two footprint measures. The count of pixels in the 10km

disk and 10km footprint means are quite close. This is consistent with what we see in Figure 3.

The lights based city footprint typically almost completely includes the 10k disk centered on the

city. In contrast, the 25km footprint measure contains many fewer pixels than does the 25km disk.

This is also consistent with what we see in Figure 3.

The second panel of Table 1 presents AOD averages for 2000 for 10km disks. Because only the

Terra satellite was in operation in 2000, the second panel presents only these measures. Comparing

across years, we see that variation across years is small compared to the level and compared to

variation across continents. Table 1 suggests a slight downward trend in European AOD, and no

obvious trend for the other continents or for the 58 cities as a whole.

We observe a strong seasonal pattern in AOD. This reflects seasonal variation in cloud cover and

motivates our use of city-by-calendar month indicators as controls in our regressions. Together

the two panels of Figure A.1 suggest that a relationship exists between the extent of AOD data

availability and the level of AOD. In fact, a regression of average AOD in a city-month disk on

the count of pixel-days used to calculate that average reveals a slightly positive relationship. We

conjecture that this reflects the fact that the air is cleaner in rainy places where cloud cover is more

common. Regardless of the reason, we experiment broadly with sampling rules that reduce the

importance of city-months with sparse AOD data and with controlling for the count of pixel-days

used to construct each city-month average and find no qualitative changes in our results. In most

of our regression results we control for the number of pixel-days used to construct each city-month

AOD observation.
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C Other control variables

Consistent with the large related literature that we describe in Appendix C, we find that local

weather conditions are important determinants of remotely sensed AOD. Given this, we construct

several controls for city-month weather conditions. The cru gridded dataset from Harris et al.

(2014) provides high-resolution monthly climatic data describing cloud cover percentage, frost day

frequency, mean temperature, precipitation, and vapour pressure. We use these data to calculate

monthly and annual averages of these variables over disks centered on each city. Together with

AOD pixel count these are our ‘climate controls’.

We also include city population and country GDP per capita to characterize the level of eco-

nomic activity of each city. Our city population data comes from the United Nation’s World Urban-

ization Prospects data (DESA Population Division, 2018). These data describe annual population

counts for the universe urban agglomerations with populations exceeding 300,000 in 2018. We use

these data in three main ways. First, they provide coordinates for the centers of all of the cities

they describe. With a few exceptions that we adjusted by hand on the basis of lights at night data,

we use these coordinates for the centers of all of our cities. Second, we rely on these data as source

of city level population data. Third, in some of our regressions, we expand our sample to include

non-subway cities as a way to increase the precision with which we estimate control variables

effects. In these regressions, we include all of the 461 non-subway cities in our sample.

We use the Penn World Tables to obtain annual measures of country GDP (Feenstra, Inklaar,

and Timmer, 2015) for all cities in our sample. Table A.7 reports population and country level GDP

per capita for each city in our estimating sample at the time of subway system opening. Cities that

opened subways in recent years are large, their average population is 4.0m when their subways

open, and they tend to be in middle or high income countries.

3. Conceptual framework

The logic of a relationship between subways and air pollution rests on two hypotheses about the

relationships between subways, travel behavior, and pollution. First, that internal combustion

engines contribute to air pollution. Second, that subway trips reduce motor vehicle trips, at least

at certain times and places in a city. We discuss both below, along with other factors that have the

potential to amplify or attenuate these relationships in different urban settings.

The relationship between automobile traffic and pollution is much studied. Chen, Yang, Qin,

and Xu (2016) uses variation in Beijing traffic caused by a license plate restriction and widespread

superstitious avoidance of licence plates ending in ‘4’ to provide convincing causal estimates of

a negative relationship between a traffic congestion index and an air quality index. Friedman,

Powell, Hutwagner, Graham, and Teague (2001) examine changes in traffic and changes in pm10 in

Atlanta around the 1996 summer olympics. During this time, the city imposed restrictions on

driving and saw traffic fall by about 2.8% over a 17 day period. During the same period, pm10 fell
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by 16.1%. That is, each 1% reduction in driving was associated with about a 5% reduction in

pm10 . In a related exercise, Gibson and Carnovale (2015) examine the effect of a change in Milan’s

congestion pricing program on both traffic and pm10 . Their estimates allow us to calculate that a

4% reduction in traffic caused about a 1% pm10 reduction.5 The variation in these point estimates

foreshadows the variance we will find in the effects of subways on AOD, and it is natural to

suspect that physical geograpy may be partly responsible for this variation. Unlike the studies

described above, our sample is large enough to allow us to explore whether wind patterns and city

topography are relevant determinants of heterogeneous effects of subway systems, by allowing

pollutants to be easily dispersed or entrapped, respectively.

The literature also investigates the relationship between subways and vehicle traffic in large

cities. Anderson (2014) examines changes in Los Angeles traffic congestion during a 35 day transit

strike in 2003. During the strike, delay per mile increases by about half during peak hours on

highways serving the same region as LA’s subway lines. The effect on delay at other times

and places is approximately zero. In a sample of 42 Chinese cities, Gu, Jiang, Zhang, and Zou

(2020) examine changes in a cell-phone-based measure of street-segment-by-hour traffic speed for

segments near newly opened subway lines. They find a measurable increase in traffic speed for 48

weeks (the extent of their data) following the opening of a subway line. Both results are consistent

with subway openings causing a reduction in driving.

Together, these results suggest subways affect pollution by reducing traffic. Chen and Whalley

(2012) tests this relationship directly by comparing air pollution in central Taipei during the year

before and after the opening of the Taipei subway in March of 1996. Comparing hourly pollution

measurements from measuring stations in central Taipei to hourly ridership data, they estimate a

5%-15% reduction in Carbon Monoxide following the subway opening, about the same effect on

Nitrous Oxides, but little effect on either Ozone or particulates.

This evidence in hand, we note its limits. The results above describe time periods measured in

weeks and are restricted to routes that compete with the subway. Given the generational planning

horizon for subway systems, extending these results to a longer time horizon is important. Over

a longer time horizon, other responses to subway availability may offset short run reductions in

traffic and pollution. Foremost is the possibility that decreases in traffic caused by the subway

will be short-lived as drivers eventually exploit the newly available road capacity. Duranton and

Turner (2011) provide indirect evidence for such an effect. Comparing total vehicle miles driven in

US metropolitan areas to total lane miles of highways over a ten year period, they find that a 1%

increase in highways causes a 1% increase in total driving.6 Although Duranton and Turner (2011)

studies highway expansions, the logic of their finding suggests that a reduction in traffic due to

5From Gibson and Carnovale (2015) Table 6, treatment increased log pm10 by 0.0404 and, from Table 2, traffic by
26,725 cars. From Table 2, mean traffic and pm10 are 169,744 and 47.66. Using these values to calculate percentage
changes we arrive at a 16% change in traffic and 4% change in pm10 .

6Hsu and Zhang (2014) replicate the Duranton and Turner (2011) for Japan, Garcia-Lopez, Pasidis, and Viladecans-
Marsal (2017) for Europe, and Chen and Klaiber (2020) for China.
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increased subway ridership, like other capacity expansions, should cause an offsetting increase in

the demand for automobile and truck travel. If so, subways will not reduce traffic and pollution in

metropolitan areas over a decennial time scale. We will show well-identified short-term effects as

well as evidence from longer time horizons to shed some light on the issue of temporal decay.

To the extent that subways reduce the cost of urban mobility we should also expect changes

in the spatial organization of economic activity. This is the most basic prediction of theoretical

models of cities (Duranton and Puga, 2015) and the evidence that transportation infrastructure in

general, and subways in particular, lead to a reorganization of cities is compelling. Baum-Snow

(2007) finds that the interstate highway system played an important role in the decentralization of

US cities from 1950 to 1990. Baum-Snow, Brandt, Henderson, Turner, and Zhang (2017) confirm

that Chinese highways have much the same effect on Chinese cities. For subways, in a sample of

161 subway cities between 1950 and 2010, Gonzalez-Navarro and Turner (2018) find that subway

networks tend to favor movement in and out of the downtown core and that they cause cities to

become more decentralized. Heblich, Redding, and Sturm (2020) refines this conclusion and shows

that the opening of the London underground led to a concentration of employment in the center

and increased separation of workplace and residence.

In short, subways reduce the cost to move people. In response, cities reorganize in ways that

require greater mobility: they spread out and the separation of workplace and residence increases.

In the analysis that follows, we will investigate the spatial extent of the effect of subways on

air pollution. In particular, we will be interested in estimating pollution impacts at different

distances from the downtown of a city. Because subways tend to serve central cities, substitution

of automobile trips should confer larger pollution reductions in areas closer to downtowns and

decay as distance from the downtown increases.

Finally, a central prediction of most theoretical models is that reductions in transportation

costs will draw more people and economic activity into a city (e.g. Duranton and Puga (2015)).

Therefore, to the extent that pollution and economic activity are complementary, subways should

increase pollution levels.7

Summing up, the available evidence supports the idea that subways reduce traffic and hence

pollution during (about) the year after the subway opens. This evidence, however, is pieced

together from studies of small numbers of cities and it is natural to wonder whether this chain

of causation leads to the same outcome for all new subways.

Back-of-the-envelope calculations of the sensitivity of automobile travel to subway openings

7We note, however, Gonzalez-Navarro and Turner (2018) provide contrary evidence. They examine the relationship
between subway system extent and population in a sample of 161 subway cities over decennial time scales and find no
relationship.
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suggest that subways can reasonably provide between about 1.5% and 10% of trips in a city. 8 For

the sake of illustration, suppose a 1% reduction in traffic results in a 1% reduction in pm10 and

that there is no demand response for car travel as drivers shift trips to the subway. In this case, a

subway reduces pm10 by between 1.5% and 10%. This brackets our estimated 4% reduction in high

AOD cities.

This example highlights two points. First, the logic of induced demand will mean that each 1%

of trips diverted to the subway will elicit additional automobile trips. Moreover, a 1% reduction in

automobile trips will generally result in a less than 1% reduction in pollution. Therefore, given the

back of the envelop calculations described above, if subway openings result in meaningful reduc-

tion on AOD, it will be because the are displacing trips that are particulary dirty, either because

they involve particularly dirty vehicles or trips that make large contributions to congestion.

Second, the range of effects suggested by our back of envelope calculations suggests that the

way cities respond to subways is likely to be heterogeneous. Indeed, in our sample, ridership

varies from a low of 4,000 passengers per day to a maximum of over 400,000 passengers per

day 18 months after opening. Understanding this heterogeneity will be an important part of our

analysis. If subways are to play a role in improving urban air quality, it is important to learn

where we should expect larger effects. On the basis of the discussion above, our investigation of

city heterogeneity implicitly involves looking for cities where subways draw a lot of riders, where

induced demand is relatively small, and where car trips are relatively polluting.

More specifically, we investigate how the effect of subways on AOD varies with the following

classes of city attributes. Cities that already enjoy clean air have less potential to improve, while

windy cities, and those with flat geography should be better able to disperse pollution. Poor coun-

tries may benefit more from subway construction given that their vehicle fleets tend to be more

polluting. City size may explain heterogeneous effects because traffic congestion is most relevant

in cities experiencing large or increasing levels of population. Thus, we investigate heterogeneous

effects by city population density, city size, city growth and whether the subway system at opening

is relatively large or small.

8On the basis of travel survey data described in Akbar and Duranton (2017), residents of Bogota take about 2.69

trips per day and of these 19.3%, or 0.52 trips per day, are by private car or taxi. From Table A.7, in the year of subway
opening an average city in our sample has a population of about 4.0m. Multiplying per capita trips by this population,
if people drive at the same rate as does the population of Bogota then an average city in our sample generates about 2m
trips by car or taxi per day. From Figure 1, in the second year of its operation an average subway in our data provides
about 50 rides per 1000 of population. Applying this rate to a city of 4.0m, an average subway system provides about
200,000 rides per day. If all subway rides replace car or taxi rides, this is about 10% of all rides in our hypothetical city.
We can perform a similar calculation on the basis of US national averages. An average US household took 3.8 trips
per day,(2009 National Household Transportation Survey, nhts.ornl.gov/2009/pub/stt.pdf,Table3.) about 90% by
car (Duranton and Turner, 2018). If everyone in a city of 4.0m takes as many trips as an average American, then the
city generates about 13m trips by car per day. If the subway system provides the same 200,000 rides per day and if all
subway rides replace car or taxi rides, then the subway opening should reduce car trips by about 1.5%.
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4. Results

A Econometric framework

In our primary econometric exercise, we examine changes in AOD using an event study design

that exploits the high frequency air pollution data as well as the sharp starting date of subway

systems.

Let i = 1,...,I index cities and t index months. Let AODit denote AOD in city i at time t. We

usually observe a city twice in each month, once with each of the two satellites, but suppress the

satellite subscript for legibility.

If city i opens its subway in month t′, then define τit = t − t′ . That is, τit is ‘months since

the subway opened’, with months before the opening taking negative values. Let k describe the

window over which we analyze AOD, i.e., τit ∈ {−k,...,0,...,k}. We will most often be interested in

the case of k = 18, that is, the 37 month period extending from 18 months before until 18 months

after a subway opening. Now define the following families of indicator variables,

Dit(j) =

{
1 τit = j
0 otherwise,

(1)

Dit(j,j′) =

{
1 τit ∈ {j,...,j′}
0 otherwise,

(2)

Equation (1) describes indicators for sets of city-months that are the same number of months away

from the month when their subway system opens. Equation (2) describes indicators for a set of

step functions beginning j and ending in j′ months from the subway opening month.

To estimate the effect of subway system opening on urban air pollution we use the following

event study specification:

AODit = βi + ∑
j∈{−k,...,k}

αjDit(j) + γ′Xit + εit, (3)

where βi is a city fixed effect and Dit(j) is a dummy indicating observations j months from a

subway opening in city i. The reference category excluded from the regression is Dit(−6). αj are

the coefficients of interest, which will be negative after opening (j > 0) if subways improve air

quality. We are also interested in verifying that the estimated coefficients corresponding to months

before subway opening (j < 0) are not statistically different from zero as this provides evidence

of a lack of pre-existing trends in pollution before treatment. We can also bin the data in a more

aggregated manner so that the coefficient αj can correspond to a series of three or six month bins

in Equation (3). When we do this, the reference period becomes the bin containing month 6 before

a subway opens.

We also include the following control variables: A satellite indicator to account for slightly

different AOD measurements from each satellite, year-by-continent indicators to flexibly account

for regional trends in AOD, and city-by-calendar month (1-12) indicators to capture seasonality
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in pollution patterns that repeat annually but are idiosyncratic to each city. We control for linear

and quadratic terms in monthly city-specific climate variables (cloud cover percentage, frost day

frequency, mean temperature, precipitation, and vapour pressure). Finally, we also control for the

count of AOD pixel-days used to calculate the city-month AOD measure.

For most of our analysis, we use a 37 month study window, running from 18 months before,

to 18 months after each city’s subway opening. This window length strikes a balance between

maintaining the set of cities from which we identify our coefficient of interest and having a long

analysis window. Here and throughout, we cluster errors at the city level.

We also allow for a city specific pre- and post- treatment window by including city specific

dummies 1it(τ < −k), 1it(τ > k) and Dit(0) as part of our control set. This allows us to use

all city-months in our sample to estimate city-by-calendar month indicators, continent-by-year

indicators and climate variables, while only using AOD variation near the subway opening date to

estimate the effect of subways on AOD. Month of opening τ = 0 i.s ‘partially treated’ depending

on the exact day subway system started making it harder to interpret.9

In addition to the event study graph, we also present regression results in table format. Here,

instead of estimating a series of coefficients around subways introduction, we compare AOD in

the 18-month period before the subway to the 18-month period after it starts. More specifically,

these regressions take the form:

AODit = βi + α1Dit(1,k) + γ′Xit + εit. (4)

This is a regression of AOD on an indicator for post-opening and controls, keeping everything

else unchanged from the event study specification. The coefficient of interest is α1, the difference

in conditional mean AOD between city-months with τit ∈ {−18,..., − 1} and those with τit ∈
{1,...,18}.

B Average Effect

We present our estimates of the average effect of subways on air quality in Figure 4. The figure

displays estimated coefficients αj around subway opening from Equation (3) as well as 95% confi-

dence intervals. The vertical axis is AOD units. Panel (a) shows three month bin estimates while

panel (b) presents results using six month bins, where the indexing of αj runs over these sets of

bins. As explained above, the bin containing month -6 is set as the reference period and the point

estimate is depicted in the middle of the bin. For example, in the 3 month bin specification shown

in panel (a) the reference bin refers to months -4, -5 and -6 and the point estimate is shown in the

middle month of the bin (τ=-5). Both figures display a lack of pre-treatment trends as well as a

9In an earlier version of this paper, we used common pre- and post-indicators. These coefficients reflect sample mean
pre- and post period AOD averages. This is problematic conceptually because these variables could, in theory, also
measure treatment effects. It is problematic in practice because these pre- and post- period AOD averages sometimes
change across samples and (slightly) affect estimates of treatment effects. The more flexible specification resolves this
problem.
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slight reduction in AOD that is not statistically different from zero. This figure suggests that for

the average city in the sample we cannot reject that the effect of subways on urban air pollution is

nil. Note that mean AOD in our sample is about 0.46, so monthly variation in point estimates is

small relative to the mean level.

Table 2 shows results using specification (4). Moving across the columns of the table we add

progressively more controls. Column 1 estimates a version of regression 4 with a minimal set

of controls.10 Column 2 adds satellite and continent by year dummies, Column 3 adds city by

calendar month dummies, Column 4 adds climate controls, while Column 5 instead uses climate

by continent controls. In all cases we estimate a treatment effect of about -0.01. This is small

relative to the 0.46 sample mean AOD and is not distinguishable from zero at conventional levels

of significance. Column 6 adds observations from all cities in the UN cities database to estimate

more precisely common controls such as continent by year and climate and we find virtually the

same result.

Column 7 investigates whether we observe a change in the time trend of AOD with subways

using the main estimating sample of 58 cities and allowing for city specific time trends in AOD.

The regressor of interest is now an 18 month post subway dummy as well as the interaction with

time. Again, while the point estimate on the AOD trend post subway opening is negative, the

estimate is not sufficiently large to differentiate it from zero.

First, note that to the extent that subways decrease pollution for an average system opening in

this sample, this effect is small. Second, the controls matter in the way we would hope. As we

move from Column (1) to Column (5), the coefficient of interest is steady while R2s increase and

standard errors decrease or stay constant. Third, when we control for trends in Column (7), the

level effect of subways shrinks and becomes slightly positive. That the trend variable is slightly

negative suggests that the slight negative effect we see in the first five columns is captured by the

trend variables.

Appendix Table A.3 reports robustness checks for the regression reported in Column 5 of Table

2. In particular, we repeat this specification but: (1) weight observations by the count of observed

AOD pixels that make up each city-month AOD measurement count; (2) drop observations with

low pixel count; (3) calculate city month AOD on the basis of three different city footprints.

Appendix Table A.4 repeats the specification of Table 2 Column 5 for a variety different windows

of analysis (k = 6 months, 12 months, 24 months and 36 months). All of these alternative speci-

fications confirm the conclusion suggested by Table 2: the average effect of subways on AOD is

consistently negative and not distinguishable from zero at conventional levels of significance.

Following Andrews (1993), Hansen (2000), and Andrews (2003), we checked for a structural

break in the level and trend of AOD around the time of system opening by estimating a series of

regressions of AOD on a step function or spline as we allow the timing of the step or spline to

10City fixed effects, city-specific pre-window indicators, city-specific post-window indicators, and city-specific period-
0 indicators
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traverse the study period. The details of these tests are presented in the supplemental Appendix F.

These tests do not support the hypothesis that there is a break in the level or trend of AOD around

the time of an average subway opening.

We also note that in theory, our research design could confound the effects of system openings

with those of expansions that occur soon afterward. Among the 58 cities that make up our

main sample, 19 experienced an expansion of its subway system within 18 months of the system

opening. We also experiment with dropping cities that experience an expansion soon after an

opening from our sample. Our results are robust to such changes.

C Heterogeneous effects

We estimate a version of Equation (4) where we allow the effect of subways to be different in every

city. When we do this, we find evidence of substantial heterogeneity of impacts. There are 20 cities

where subway openings appear to cause statistically significant increases in AOD, 26 where they

appear to cause a decrease, and 12 where the effect is, like the average, indistinguishable from zero.

We now turn to an investigation of the reasons for such dramatically heterogeneous responses.

Table 3 investigates whether subways have different effects on different types of cities. In this table,

we replicate the results of Column 5 of Table 2, but add an interaction between the post-subway

indicator and a particular city characteristic.

We choose interaction effects to investigate on the basis of the discussion in Section 3. We

are interested in whether and how the effect of subways on AOD varies with the overall level

of hydrocarbon powered travel or the characteristics of the vehicle fleet, with the extent to which

such traffic is congested, with the extent or importance of the subway, and with physical geography

related to pollution dispersion.

In the first three columns of Table 3 we rely on indicator variables describing basic city character-

istics; (1) above median city population in 2000; (2) above median density in 2000
11 and (3) above

median population growth, 1990-2000. Columns (4) and (5) are country characteristics; Column

(4) explores heterogeneity by median country GDP per capita in 2000; and, Column (5) whether

the city is in China. China may be different in that it builds large systems very quickly in large

and fast growing cities. Columns (6) and (7) investigate the role of geographical features. Column

(6) explores heterogeneity by city relief and Column (7) by wind speed.12 Column (8) investigates

heterogeneity by the size of the subway supply shock as measured by an indicator of whether the

number of stations per capita is above the median in the sample.

Column (1) suggests that subways have a larger effect on AOD in smaller cities, while Column

(3) suggests that subways may have a larger effect in faster growing cities. Smaller cities tend to

11The density measure is the elasticity of lights at night to distance from the city center and is taken from Gonzalez-
Navarro and Turner (2018).

12City relief is from Gonzalez-Navarro and Turner (2018) and wind speed is from Wentz, Scott, Hoffman, Leidner,
Atlas, and Ardizzone (2015).
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grow faster, so these results, although statistically insignificant, seem to be consistent with each

other. We do not find heterogeneous effects by city density in Column (2). We also do not find

meaningful heterogeneous effects by country income or whether the city is Chinese. Column (6)

includes an indicator for above median elevation range in a 25km disk centered around the city

center and Column (7) includes an indicator for above median wind speed in 2000. Neither effect is

distinguishable from zero. Column (8) includes an indicator for above median number of stations

per capita at opening. This effect, also, is not distinguishable from zero.

Finally, Column (9) considers above cities with above median AOD in 2000. This effect is large

and highly significant. Subways have a much larger effect on AOD in more polluted cities. To help

understand this heterogeneity in more detail, Figure 5 presents two funnel plots summarizing the

58 city-specific estimates of the effect of a subway opening on AOD. The top figure shows estimates

among cities with above median AOD levels at baseline, while the bottom figure shows estimates

for cities with below median AOD levels at baseline. The horizontal axis displays the coefficient

estimate of the subway effect for each city. The vertical axis the corresponding standard error.

Shaded regions indicate statistical significance at usual confidence levels. For example, the white

area in the center indicates estimates that are not distinguishable from zero. The large extreme left

and extreme right light gray-shaded areas indicate coefficient estimates that are significant at least

at the 1% level. In both figures, the large triangle indicates the average effect that we estimated in

Table 2 Column 5 for the overall sample. In this figure, all cities with above median AOD in 2000

are represented by solid dots while cities in the bottom half get hollow dots. The distribution of

subway effects in the top figure for high AOD cities clearly lies to the left of those in the bottom

figure with the less polluted cities in the sample.

Figure 6 goes further in showing the heterogeneity by initial level of AOD by presenting coeffi-

cient estimates for every city against average AOD level in 2000 on the x-axis. In the figure, dark

dots are significant at the 5% level and the solid line shows a linear fit of the coefficient estimates.

As can be seen, subway openings reduce air pollution more in initially more polluted cities. The

dots to the right of the vertical dashed line correspond to the top graph in Figure 5. While clearly

more negative on average, the figure also indicates a pattern of higher variance in the coefficient

estimates among highly polluted cities.

To test the robustness of the effect of subways on pollution among high AOD cities, Table 4

replicates specifications (1)-(6) from Table 2 on the high AOD subset of cities. We see that the

estimated effect of subways on AOD in this sample is about -0.03. This is the difference between

the main effect and the interaction effect in Column (9) of Table 3. This magnitude is consistent

across specifications and is distinguishable from zero (as opposed to the mean for less polluted

cities) at low levels of significance in columns (4) and (5), where we include our most exhaustive

sets of controls. In an effort to improve the precision of our estimates, in Column (6) we expand

our sample to include 461 cities without subways in the final year of our sample. Since these cities

do not experience subway openings they do not contribute to the estimate of the treatment effect
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directly. However, they do increase the precision with which we are able to estimate continent level

and climate related controls. In Column (6) of Table 4 we see that this strategy gives a more precise

estimate of the subway effect, although the magnitude of the coefficient is essentially unchanged.

For the 10,896 city months in high AOD cities, AOD averages 0.66. From Table 4, the subway

effect is about -0.028. Thus, our benchmark estimate for the effect of subways on AOD in polluted

cities is about a 4% decline.

Cameron, Gelbach, and Miller (2008) find that asymptotic standard errors may not approximate

exact finite sample standard errors in samples containing 30 or fewer clusters. Given this, we

implement the wild-cluster bootstrap procedure recommended in Cameron et al. (2008) and report

wild cluster bootstrap p-values for the treatment effect based on 300 bootstrap replications in the

lower part of the table. This turns out not to have much effect on the estimated precision of our

results.

As a further test of the robustness of the effect of subways on AOD in high AOD cities, Table

A.6 repeats the specifications (5) and (6) from Table 4 using treatment and control windows of 6,

12, 24 and 36 months. Effects are generally negative but are statistically distinguishable from zero

only for the 36 month pre/post window and the specification of Column (6) of Table 4, that is at

windows of analysis of ±18 months or ±36 months.

Tables 4 and A.5 indicate a robust and fairly precise estimate of the treatment effect. Table A.6

suggests more caution. With this said, we note three reasons to discount the evidence in Table

A.6. First, the AOD process is clearly a noisy one, so we should not be surprised to see precision

increase as we increase window width. Second, Figure 1 suggests that it may take some time before

subways achieve their equilibrium usage, and so a smaller effect over short windows may actually

reflect how subways work over shorter time horizons. Table 8, which uses the ridership data, will

provide some support for this idea. Third, when we consider a longer treatment window, we must

exclude almost a quarter of the high AOD cities. Given the cross-city heterogeneity on display in

Figure 5, we should not be surprised that the average effect is sensitive to sampling.

D Longer run affects in high AOD cities

Subways are durable and their effects probably extend over decades. Hence, it is of interest to

extend our estimates of the effects of subways to the longest possible horizon that our data permit.

Unfortunately, considering a longer treatment period requires that we degrade our research design

in one of two ways. As we consider longer treatment periods we must either allow later post-

treatment effects to reflect a decreasing set of cities, opening the door to confounding composition

with subway effects, or else restrict attention to progressively smaller samples of cities, reducing

precision and raising questions of external validity. In spite of this, the importance of obtaining

estimates over a time horizon that more nearly approximates the planning horizon suggests that

such estimates will be useful, even though we have less confidence in them.
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In Table 5 we continue to consider a pre-treatment period beginning 18 months before an

opening, but consider longer post-treatment periods. Panel (a) on top reports effects by year to

assess dynamics, while panel (b) below reports average effects over the post-treatment period. In

columns 1 and 2 we consider two years after an opening using a specification that is otherwise the

same as we in Table 2 columns 5 and 6. We see that the one year effect is about −0.02, slightly

smaller, but statistically indistinguishable from our estimate of the 18 month effect in Table 2.

Point estimates of the second year effect are about the same and are estimated with slightly higher

precision than the 1 year effect. We can reject neither the hypothesis that the second year effect is

zero nor that it is the same as the one year effect. Panel (b) estimates the average subway effect

over the two year post-period considered in the first two columns. Unsurprisingly, this average

effect is statistically different from zero, but not from -0.03. We also provide wild-cluster bootstrap

p-values for the average effect. Bootstrapped p-values do not indicate a level of precision that is

dramatically different from conventional estimates based on asymptotics.

In columns 3 and 4 of Table 5 we extend the post-treatment period to 36 months. Each of the

three post treatment years are negative and indistinguishable from 0.03. The second and third

year effects are estimated with about the same precision as the one year effect but because they are

larger, can be distinguished from zero. Panel (b) of Table 5 estimates the average subway effect

over the three year post-period considered in columns (3) and (4). This average is about -0.03 and

different from zero. The bootstrapped p-value is consistent with asymptotic standard errors. In

order to accommodate the longer time horizon, we need to drop 3 cities from our sample of 27

high AOD cities, so some of the difference between columns (1-2) and (3-4) may reflect this change

in sample.

Finally, columns (5) and (6) extend our analysis to four years post opening. Here we see larger

effects that are distinguishable from zero in three of four years. The average effect over all years is

-0.035. This effect is different from zero, but not different from 0.03. Again, extending our treatment

period requires dropping an additional 3 high AOD cities that open their systems between three

and four years of the end of our sample.

Inspection of these results reveals two patterns. First, across specifications, point estimates

are within 1.64 standard errors of the 18 month effect of -0.03 in almost all cases. Second, in

most specifications, coefficient magnitudes increase with time from opening, while standard errors

stay about constant with time from opening. These results are consistent with a persistent AOD

decrease of about 0.03 following subway openings in high AOD cities that lasts at least four years.

E Spatial scale of effect in high AOD cities

Subways overwhelmingly serve the areas close to the most central part of a city. Gonzalez-Navarro

and Turner (2018) document that about 40% of all subway stations in existing subway systems lie

within 5km of the center and another 30% within 10km of the center. Thus, we expect larger effects

on AOD nearer to the centers of high AOD cities than further away
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Table 6 documents precisely this phenomenon. For reference, the first two columns of this table

reproduce the first two columns of Table 4 which use a 10km disk around the city center to measure

air pollution. Columns 3 and 4 are identical to columns 1 and 2, except that the dependent variable

is mean monthly AOD in a donut between 10 and 25km of the center rather than within 10km.

Columns 5 and 6 examine AOD in the donut between 25 and 50km. As expected, the effect of

subways on AOD decreases with distance from the city center in our sample of high AOD cities.

In particular, the estimated improvements in air quality among high AOD cities are no longer

statistically different from zero beyond 25km from the center.

F Further results

Expansions vs openings: Our investigation has focused on the effects of the initial opening of a

subway. We now turn to an investigation of expansions, that is, the addition of subway lines after

the system has entered service.

In Column (1) of Table 7 we consider all subway expansions that occur during the study period

examined by Table 2. This sample includes all expansions, including those that occur in cities

that open their systems prior to the beginning of our study period, and may include more than

one expansion for some cities. This leaves us with a sample of 70 cities and 143 expansions. We

conduct a regression like that described in Equation (4), but our ‘event’ is an expansion rather than

an opening. The estimated effect of expansions is tiny (-0.004) and indistinguishable from zero.13

In the second column of Table 7 we restrict attention to all expansions that occur in one of the 58

cities that are part of our main sample. Of these 58, we observe expansions in 20. For this sample

we observe a negative effect that is just distinguishable from zero. In columns (3) and (4) we repeat

the first two columns, but also interact the treatment with an indicator for a high AOD city, much

as in Table 3. We see that the effects of expansions are larger in high AOD cities, but this change

is not distinguishable from zero.14 In sum, this table provides suggestive evidence that subway

expansions are on average less important than openings.

Just as for openings, our data permits us to estimate the effect of every single subway expansion

on AOD. Figure A.5 presents all 70 such estimates that are possible using the sample of Column 1

of Table 7. This figure is analogous to Figure 5; coefficient estimates are on the x axis and standard

errors are on the y axis. Expansion effects are statistically different from zero with progressively

higher levels of significance as they lie in darker regions of the figure. This figure looks much like

the corresponding figure for subway openings, although, if anything, there is even more variation

13In a handful of cases, expansions occur within 36 months of each other or of an opening. In this case, control
months for one event are treatment months for another. We experimented with dropping these events and it does not
qualitatively affect our results.

14To be consistent with the definition used up until Table 7, we define ‘high AOD cities’ as those with average AOD
levels in 2000 at or above the median in our main sample of 58 cities with openings between August 2001 and July 2016.
The median AOD level in 2000 in our sample of 58 is 0.366.
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in the effects of expansions than openings. Unlike openings, however, expansions in high AOD

cities are not measurably different from those in low AOD cities.

Ridership: Table 8 examines the effects of subway openings and expansions on subway rider-

ship and investigates the relationship between ridership and AOD. All four regressions examine

changes around the opening of the subway using regressions like Equation (4) and we restrict

attention to the 42 out of 58 cities that opened a subway during our study period for which we

could assemble ridership data.

In Column (1), we document average daily ridership per 1000 people in the 18 month period

after system opening. In line with Figure 1, we see that an average system carries about 36 riders

per thousand of population in its first year and a half of operation.

In Column (2) we replicate Column (5) of Table 2 and predict the change in AOD during the

18 months post opening. We see that, in this set of 42 cities with ridership data, subway openings

decrease AOD by about 0.018 units and that the mean AOD in this sample is about as high as in

the high AOD city sample. Thus, the 42 cities where ridership data are available have higher

air pollution levels and, on average, have effects of subway openings on AOD that are more

responsive to subways than the 17 cities where ridership data are not available.

In Column (3) we repeat Column (2) but add an interaction between the treatment indicator

and an indicator for above median ridership per 1000 people. We see that the interaction effect

is strongly negative. This suggests that the reduction in average AOD is driven by effects among

cities where subways are used intensively. Column (4) is like (3) but we measure subway usage

with an indicator for above median level of subway ridership. This estimate is very close to that of

Column (3). Because ridership could be endogenous in this regression specification, some caution

is required in interpreting these results. With that said, these estimates suggest that subways affect

AOD by attracting riders and diverting automobile trips.

5. Value of AOD reductions following subway openings in high AOD cities

A Value of health benefits from estimates in the economics literature

Arceo, Hanna, and Oliva (2016) use data describing Mexico City between 1997 and 2006 to estimate

a weekly infant death rate of 0.24 per 100,000 per µg/m3 of pm10 . Thus, of 100,000 births, a 1

µg/m3 decrease in ambient pm10 averts about 12.5 infant deaths.15 Knittel, Miller, and Sanders

(2016) use data from California between 2002 and 2007 to estimate a weekly infant death rate

of 0.19 per 100,000 births per µg/m3 of pm10 . This estimate implies that of 100,000 births, a 1

µg/m3 decrease in ambient pm10 averts 9.9 infant deaths. Chay and Greenstone (2003) consider

data describing infant deaths in about 1000 US counties between 1978 and 1984 and estimate

15An infant survives its first year if it survives 52 weeks. Thus a weekly death rate of 0.24× 10−5 gives [1− (1−
(0.24× 10−5))52]105 = 12.47 infant deaths per 100,000 births.

20



that a one unit µg/m3 decrease in ambient TSP averts about 5.2 infant deaths per 100,000 births.

Converting from TSP to pm10 is non-trivial, however pm10= 0.55×TSP is a sometimes used rule

of thumb (World Bank Group and United Nations Industrial Development Organization, 1999).

Rescaling the estimate from Chay and Greenstone (2003) implies that a one µg/m3 decrease in

ambient pm10 averts about 9.5 infant deaths per 100,000 births. In sum, these studies suggest that

a one µg/m3 decline in pm10 averts about 10 infant deaths per 100,000 births.16

That none of these estimates can be distinguished from the others despite a range of mean

pm10 of from about 28 µg/m3 for Knittel et al. (2016) to about 67 µg/m3 for Arceo et al. (2016)

suggests that the infant mortality response is approximately linear in pm10 (as Arceo et al. (2016)

observe). Burnett et al. (2014) confirms the approximately linear dose-response relationship sug-

gested by Arceo et al. (2016). More specifically, Burnett et al. (2014) surveys the large public health

literature on the health consequences of pm10 and find that responses are approximately linear in

the range from 5-100µg/m3, although they find non-linearities outside of this range.

Figure A.2(b) shows that most of our city-months fall in this 5-100µg/m3 range. Therefore, in

light of the results described above, we can reasonably assume a linear dose-response relationship

in our sample.

These results, together with our estimates, allow us to estimate annual infant deaths averted

by a subway opening for an average high-AOD city. From Table 4, subway openings cause about

a 0.028 unit decrease in AOD. Using Column 2 of Table A.2 to convert from AOD to pm10 gives

about 3.2 µg/m3 of pm10 . At 10 infant deaths per 100,000 births per µg/m3 of pm10 , the number

of averted deaths due to a subway opening in city i is given by

3.2× (10× 10−5)× Birthratei × Populationi,

An average city in our high AOD subset sample has a population of about 5.3 million in the year

before its subway opens. With a 2% birthrate, a subway opening in this city averts about 34 infant

deaths per year.17

With country-level birthrate data from the World Health Organization (2016c) and our popula-

tion data, we can make this calculation somewhat more precisely. Specifically, imputing country

level birth rates to cities, calculating the implied number of averted infant deaths for each city,

and averaging over cities, we find that the average subway opening in high AOD cities averts 22.5

infant deaths per year.

16Currie and Neidell (2005) use data describing pm10 and infant mortality in California between 1989 and 2000 and
conclude that pm10 has no measurable effect on infant mortality. Knittel et al. (2016) and Arceo et al. (2016) both replicate
the Currie and Neidell (2005) research design and find much smaller effects than the IV estimates reported above. We
note that Jayachandran (2009) and Gutierrez (2010) also estimate the effects of particulates on infant mortality. We do
not discuss their estimates because they do not present their results in a way that permits a conversion to mortality rates
per µg/m3 of pm10 .

17The World Bank reports that the world average crude birth rate is 19.5/1000 (http://data.worldbank.org/
indicator/SP.DYN.CBRT.IN, accessed April 2017).
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To monetize this benefit, we use country-adjusted values of a statistical life (VSL) to value

averted infant deaths in each city.18 Averaging over all high AOD cities, the value of averted

infant deaths is $43.0M per year. Our estimates do not allow us to conclude that subways continue

to affect air quality beyond 5 years after their opening date. With a 5% discount rate, the present

discounted value of this amount over five years is about 195.5M dollars. If the effect is permanent,

the corresponding present value is 903M dollars.

B Value of health benefits from the Global Burden of Disease methodology

To extend our mortality calculations over the entire age distribution, we apply the methodology

employed by Global Burden of Disease project (WHO, 2016b). This methodology is complicated

and is described in detail in the Appendix Section D.

We obtain integrated risk functions from Burnett et al. (2014) for five causes of mortality. These

functions summarize the results of several epidemiological cohort studies, and consist of non-

linear maps between pm2.5 concentrations and mortality risk ratios. We quantify the contribution

of air pollution to age and disease-specific mortality by computing the population attributable frac-

tion. This is the percentage mortality reduction that would occur if pm2.5 concentrations were

reduced to a counterfactual exposure level. We proceed in three steps. First, using coefficients in

Column 8 of Table A.2 (Terra), we predict city-level pm2.5 concentrations during the 12 months pre-

ceding the opening of a subway. Second, applying the integrated risk functions, we calculate the

population attributable fractions associated with a 1.7 µg/m3
pm2.5 decrease from the predicted

pre-subway exposure level.19 Third, using city population and country-level death rates from the

World Health Organisation (WHO, 2016c), we construct city-specific mortality for each disease and

age class. The total number of avoided deaths in each city is obtained by applying the population

attributable fractions to the mortality rates, summing over every disease. Averaging over all high

AOD cities, the 0.028 unit decrease in AOD that follows a subway opening saves about 500 lives

per year.

Valuing these lives, as before, with country-adjusted values of a statistical life, the value of

averted deaths is $1B per year. With a 5% discount rate, the present discounted value of this

amount over five years is about 4.54b dollars. If the effect is permanent, the corresponding present

value is 21b dollars.

C Discussion

These benefit calculations are obviously crude. They do not account for morbidity, for possible

effects on labor productivity, nor for the fact that subways may reduce pollutants other than par-

18Specifically, we take Viscusi and Aldy’s (2003) 0.6 elasticity of VSL with respect to income, and impute a country’s
VSL from the U.S. value of $6m.

19 From Column 8 of Table A.2, a 0.028 unit decrease in AOD converts to a 0.028 ∗ 60.57 = 1.696 µg/m3 decrease in
pm2.5 .

22



ticulates. While the magnitudes of these effects remain uncertain, they are almost surely positive,

and possibly large, e.g., Chang, Zivin, Gross, and Neidell (2016) or Murray (2016). Thus, we might

reasonably expect that a complete accounting for the health and productivity related benefits of

subway induced improvements in air quality would lead to a much larger value than we describe

above.

The mean length of track for a newly opened subway system in our study period is 19.2km.

Baum-Snow and Kahn (2005) examine 16 US subway systems and estimate constructions costs

ranging between 25m and 287m dollars per mile. Using this range of cost estimates, the cost of

construction for an average subway system in our sample ranges from 298m to about 3.4b dollars.

Our estimates of the present value of avoided infant mortality in an average subway city range

between 195.5m and 903m, depending on whether the subway effect on pollution lasts for five

years or is permanent. Our estimates of the present value of avoided all-age mortality in an average

subway city range between 4.54b and 21b, again depending on whether the subway effect on

pollution lasts for five years or is permanent. Comparing these magnitudes suggests that the value

of subway induced improvements to air quality account at least a substantial fraction of subway

construction costs in cities with poor baseline air quality (above 0.36 AOD on average in a year or

approximately 28 µg/m3
pm2.5 ).

6. Conclusion

Our results indicate the that, for the 58 cities that opened a subway system between August 2001

and July of 2016, the average effect of subway system openings on AOD was slightly negative

and indistinguishable from zero at ordinary levels of significance. This average conceals dramatic

heterogeneity. Estimating a subway effect for each city individually, we find that in 20 cities

subways appear to have caused an increase in AOD, in 12 the effect is about zero, while in the

remaining 26 the effect is negative.

We find a clear pattern to this heterogeneity. Cities with initial AOD levels in the top half of

our sample, that is, above 0.36 in 2000 on average, see AOD levels decrease by about 0.028 after

their subways open. Since the mean AOD in this sample of cities is about 0.66, this is about a 4%

decline. This effect is not sensitive to the inclusion or exclusion of a range of control variables in our

regression, nor to the exact geography we use to measure each city’s AOD. As might be expected,

subways have a larger effect on AOD nearer the city center than further away and the effect is

strongly increasing in ridership. Our ability to extend our estimates to time periods far in the

future of subway opening is limited by data availability and our event study research design. With

this said, subways appear to have a constant or increasing effect on AOD over the first four years

of their operation. In all, the data seem to provide considerable support for the hypothesis that

subway cause a modest, persistent reduction in AOD levels for cities in the top half of the initial

AOD distribution, and no effect otherwise. We note that our estimates are somewhat sensitive to
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the duration of treatment and control periods. We suspect that this sensitivity reflects the intrinsic

noisiness of the AOD process and sampling issues that inevitably follow changes in the duration

of these periods.

Our 0.028 estimated subway effect in high AOD cities is only about 4% of the level, but it is large

compared to world trends. Comparing AOD levels across continents in Table 1, we see that the

difference between Europe and North America in 2017 is about 0.05, one and a half subway effects,

and between Europe and Asia the difference is 0.33, about 11 subway effects. In all, this suggests

that subways may play a moderately important role in explaining time series and cross-sectional

patterns in urban AOD.

The effects of subway expansions seem to be smaller than those of subway openings, although

like openings, there is dramatic heterogeneity in these effects. Unlike openings, however, we

cannot discern a pattern on the heterogeneity of the effects of expansions. In particular, subway

expansions in high AOD cities are not more likely to reduce AOD than they are in low AOD

cities. To the extent that public policy encourages subway construction, this suggests that openings

are relatively more important than expansions. We note that the decreasing marginal effect of

subway expansion seems to be broadly consistent with the slight decreasing returns in the effects

of metropolitan road networks observed in Couture, Duranton, and Turner (2018).

Extant estimates of the effects of particulates on mortality suggest that they are sufficiently

poisonous that, for high AOD cities, the small nominal reductions from subway openings are

economically important. In particular, they appear to be large enough to justify at least moderate

subsidies for subway construction. As we should expect, our results suggest that subway openings

affect AOD through their effect on ridership. This, in turn suggests that they reduce AOD by

reducing the use of competing modes of transportation. This conclusion is broadly consistent with

other results in the literature.
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Figures

Figure 1: Daily Ridership per Capita
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Note: Graph depicts average daily passengers on subway per 1,000 people in metropolitan area, as well as a
locally weighted regression of the series.
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Figure 2: Worldwide AOD: Terra Satellite

(a) Single day AOD - December 1st, 2017

(b) Annual average AOD - 2017

Note: Darker colors indicate higher levels of AOD. White is missing.
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Figure 3: Seasonality in AOD, Influence Area Disks, and City Footprints for Palma, Spain

(a) Palma, June 2017

(b) Palma, December 2017

(c) Palma, extent

Note: Terra AOD for Palma, Spain, in June 2017 presented in Panel (a) and December 2017 in Panel (b).
Darker pixels indicate areas where AOD is higher and white pixels indicate missing values. The large circle
in each image has a radius of 25km and is centered on the central business district as reported in DESA
Population Division (2018). Panel (c) illustrates the 25km disk from above, the 10km disk on which our
analysis usually relies, and the lights at night-based city footprint. Subway stations as of December 2017
are shown as small white circles.
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Figure 4: Event Study
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Note: Figure shows event study coefficients of AOD around the time of subway opening and confidence
intervals based on standard errors clustered at the city level. The vertical line at x = 0 indicates the
month of subway opening. Panel (a) shows coefficients estimated using three month bins (reference bin is
months τ = {−6,− 5,− 4}). Panel (b) shows coefficients using six month bins (reference bin is months
τ = {−6,− 5,− 4,− 3,− 2,− 1}). Coefficient estimates are shown in the graph at the midpoint of the bin.
Controls are as in Column 5 of Table 2.
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Figure 5: Heterogeneous Treatment Effects by High and Low Baseline AOD Levels
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Note: These funnel graphs show the 58 city-specific subway effects as small circles based on Equation (4)
where the coefficient α is allowed to vary by city. The x-axis shows coefficient estimates, the y-axis shows
standard errors. The region in white contains estimates that are not significantly different from zero. Dark,
medium, and light gray regions are different from zero at 10%, 5% and 1% in two-sided tests, respectively.
The top (bottom) panel shows estimates for cities with above (below) median AOD levels at baseline. In both
figures, the large triangle indicates the overall sample mean effect estimated in Table 2, Column 5. Controls
are as in Column 5 of Table 2. Standard errors clustered at the city level.
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Figure 6: Treatment Effects and Initial AOD levels
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Note: Graph shows the 58 city-specific subway effects as small circles based on Equation (4) where the
coefficient α is allowed to vary by city. Dark dots are significant at the 5% level. The x-axis shows initial
AOD level in 2000, the y-axis shows coefficient estimates. The solid line shows a linear fit of the dots and
the vertical dashed line shows the partition of the sample into below and above median initial AOD level.
Standard errors clustered at the city level.
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Tables

Table 1: Mean AOD and Mean Pixel Counts for New Subway Cities

World Africa Asia Europe N. America S. America
New Subway Cities 58 1 39 9 3 6
2017
AOD, Aqua, 10km disk 0.40 0.19 0.50 0.17 0.22 0.26
AOD, Terra, 10km disk 0.41 0.20 0.50 0.18 0.20 0.24
# pixels, Aqua, 10km disk 86.95 206.20 81.74 136.68 38.93 50.27
# pixels, Terra, 10km disk 100.77 216.66 97.68 153.22 47.01 44.82
AOD, Aqua, 25km disk 0.39 0.18 0.49 0.15 0.17 0.21
AOD, Terra, 25km disk 0.39 0.19 0.49 0.17 0.18 0.23
# pixels, Aqua, 25km disk 782.62 1905.79 691.68 1236.55 614.42 597.95
# pixels, Terra, 25km disk 849.67 1899.85 791.80 1310.07 548.60 512.17
AOD, Terra, 10km footprint 0.41 0.20 0.51 0.18 0.23 0.22
# pixels, Terra, 10km footprint 87.02 150.77 87.24 129.28 38.02 29.49
AOD, Terra, 25km footprint 0.42 0.20 0.51 0.17 0.20 0.26
# pixels, Terra, 25km footprint 371.72 846.38 368.19 585.83 154.85 102.84
2000
AOD, Terra, 10km disk 0.42 0.24 0.51 0.25 0.23 0.26
AOD, Terra, 25km disk 0.41 0.23 0.51 0.23 0.19 0.24
AOD, Terra, 10km footprint 0.43 0.23 0.52 0.25 0.27 0.27
AOD, Terra, 25km footprint 0.43 0.21 0.52 0.23 0.21 0.27
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Table 2: Average Effect of Subway Openings
(1) (2) (3) (4) (5) (6) (7)

post -0.0128 -0.0081 -0.0088 -0.0094 -0.0094 -0.0092 0.0021
(0.0115) (0.0123) (0.0089) (0.0090) (0.0090) (0.0079) (0.0151)

post × t -0.0012
(0.0014)

satellite N Y Y Y Y Y Y
cont.×year N Y Y Y Y Y Y
city×cal. mo. N N Y Y Y Y Y
climate N N N Y N N N
climate × cont. N N N N Y Y Y
city trend N N N N N N Y
Mean AOD 0.46 0.46 0.46 0.46 0.46 0.42 0.46
R2 0.61 0.62 0.80 0.80 0.80 0.76 0.80
# events 58 58 58 58 58 58 58
# cities 58 58 58 58 58 519 58
N 21806 21806 21806 21806 21806 194458 21806

Note: Dependent variable is mean AOD in a 10km disk with centroid in the city center. Column 6 adds
all non-subway cities. All specifications control for city fixed effects, city-specific pre-window indica-
tors, city-specific post-window indicators, and city-specific period-0 indicators. Climate controls are
pixel count and linear and quadratic terms in temperature, precipitation, cloud cover, vapor pressure
and frost days. Standard errors clustered at the city level in parentheses. Stars denote significance
levels: * 0.10, ** 0.05, *** 0.01.
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Table 4: Effect of Subway Openings in High AOD Cities
(1) (2) (3) (4) (5) (6)

post -0.0290 -0.0246 -0.0246 -0.0272* -0.0270* -0.0284**
(0.0207) (0.0212) (0.0147) (0.0146) (0.0147) (0.0130)

satellite N Y Y Y Y Y
cont.×year N Y Y Y Y Y
city×cal. mo. N N Y Y Y Y
climate × cont. N N N N Y Y
Mean AOD 0.66 0.66 0.66 0.66 0.66 0.43
bootstrap p-value 0.174 0.252 0.111 0.078 0.083 0.049
R2 0.34 0.35 0.65 0.66 0.66 0.75
# events 29 29 29 29 29 29
# cities 29 29 29 29 29 490
N 10896 10896 10896 10896 10896 183548

Note: Dependent variable is mean AOD in a 10km disk with centroid in the city center.
Column 6 includes all non-subway cities. All specifications control for city fixed effects,
city-specific pre-window indicators, city-specific post-window indicators, and city-specific
period-0 indicators. Climate controls are pixel count and linear and quadratic terms in
temperature, precipitation, cloud cover, vapor pressure and frost days. Standard errors
clustered at the city level in parentheses. Stars denote significance levels: * 0.10, ** 0.05, ***
0.01.
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Table 5: Long Run Effects of Subway Openings in High AOD Cities
(1) (2) (3) (4) (5) (6)

Panel a.
1-12 months post -0.0177 -0.0208 -0.0227 -0.0236 -0.0304* -0.0306*

(0.0163) (0.0153) (0.0160) (0.0160) (0.0158) (0.0168)
13-24 months post -0.0184 -0.0224* -0.0253 -0.0279** -0.0209 -0.0242

(0.0153) (0.0130) (0.0169) (0.0141) (0.0167) (0.0150)
25-36 months post -0.0429** -0.0441*** -0.0405** -0.0437***

(0.0161) (0.0125) (0.0152) (0.0132)
37-48 months post -0.0333 -0.0416**

(0.0195) (0.0167)
satellite Y Y Y Y Y Y
cont.×year Y Y Y Y Y Y
city×cal. mo. Y Y Y Y Y Y
climate × cont. Y Y Y Y Y Y
Mean AOD 0.64 0.42 0.64 0.42 0.60 0.42
R2 0.70 0.75 0.70 0.75 0.73 0.75
# events 27 27 24 24 21 21
# cities 27 488 24 485 21 482
N 10169 182821 8993 181645 7840 180492
Panel b.
average post -0.0180 -0.0216* -0.0295** -0.0319*** -0.0306** -0.0350***

(0.0139) (0.0122) (0.0132) (0.0106) (0.0125) (0.0116)
bootstrap p-value 0.213 0.095 0.030 0.008 0.025 0.008

Note: Dependent variable is mean AOD in a 10km disk with centroid in the city center. Even-
numbered columns include all non-subway cities. All specifications control for city fixed effects,
city-specific pre-window indicators, city-specific post-window indicators, and city-specific period-
0 indicators. Climate controls are pixel count and linear and quadratic terms in temperature,
precipitation, cloud cover, vapor pressure and frost days. Standard errors clustered at the city
level in parentheses. Stars denote significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 6: Spatial Decay of Effects of Subway Openings in High AOD Cities
(1) (2) (3) (4) (5) (6)

post -0.0270* -0.0284** -0.0219 -0.0272** -0.0137 -0.0172
(0.0147) (0.0130) (0.0141) (0.0110) (0.0151) (0.0111)

satellite Y Y Y Y Y Y
cont.×year Y Y Y Y Y Y
city×cal. mo. Y Y Y Y Y Y
climate × cont. Y Y Y Y Y Y
Mean AOD 0.66 0.43 0.64 0.40 0.59 0.38
bootstrap p-value 0.083 0.049 0.136 0.026 0.364 0.143
R2 0.66 0.75 0.73 0.81 0.73 0.81
# events 29 29 29 29 29 29
# cities 29 490 29 490 29 490
N 10896 183548 10896 183446 10893 183427

Note: Dependent variable is mean AOD. Columns 1 and 2 replicate columns 5 and 6
from Table 4 for reference. Dependent variable in columns 3 and 4 is AOD in a donut
10-25km from the city center. Columns 5 and 6 use AOD in a donut 25-50km from the city
center. All specifications control for city fixed effects, city-specific pre-window indicators,
city-specific post-window indicators, and city-specific period-0 indicators. Climate controls
are pixel count and linear and quadratic terms in temperature, precipitation, cloud cover,
vapor pressure and frost days. Standard errors clustered at the city level in parentheses.
Stars denote significance levels: * 0.10, ** 0.05, *** 0.01.
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Table 7: Expansions
(1) (2) (3) (4)

post -0.0044 -0.0154* -0.0002 -0.0046
(0.0039) (0.0091) (0.0031) (0.0102)

post × x -0.0076 -0.0134
(0.0072) (0.0141)

satellite Y Y Y Y
cont.×year Y Y Y Y
city×cal. mo. Y Y Y Y
climate × cont. Y Y Y Y
Mean AOD 0.44 0.63 0.44 0.63
R2 0.78 0.73 0.78 0.73
# events 143 42 143 42
# cities 70 20 70 20
N 52268 15595 52268 15595

Note: Dependent variable is mean AOD in a 10km disk with centroid in the city center.
Column (1) includes all expansions anywhere in the world (includes old subway cities
outside of our main sample). Column (2) includes expansions restricted to the set of new
subway cities used in Table 2. Column (3) is the same as (1) but includes the interaction
of treatment with indicator for AOD in 2000 above 0.36 (median AOD in 2000 in the
sample of new subway cities used in Table 2). Column (4) is the same as (2) but includes
the interaction of treatment with indicator for AOD in 2000 above .36 (median AOD in
2000 in the sample of new subway cities used in Table 2). All specifications control for event
fixed effects, event-specific pre-window indicators, event-specific post-window indicators,
and event-specific period-0 indicators. Climate controls are pixel count and linear and
quadratic terms in temperature, precipitation, cloud cover, vapor pressure and frost days.
Standard errors clustered at the event level in parentheses. Stars denote significance levels:
* 0.10, ** 0.05, *** 0.01.
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Table 8: Ridership
(1) (2) (3) (4)

post 36.8857*** -0.0182* 0.0043 0.0033
(5.3940) (0.0094) (0.0112) (0.0089)

post × x -0.0439** -0.0411**
(0.0163) (0.0164)

satellite Y Y Y
cont.×year Y Y Y
city×cal. mo. Y Y Y
climate × cont. Y Y Y
Mean AOD 0.46 0.46 0.46
R2 0.85 0.81 0.81 0.81
# events 42 42 42 42
# cities 42 42 42 42
N 8415 15863 15863 15863

Note: (1) Dependent variable is ridership per 1000 people. (2) Dependent variable is mean
AOD in a 10km disk with centroid in the city center. Controls are as in Table 2 Column
5, but restricted to sample with ridership data. (3) Same as (2) but includes interaction of
treatment with indicator for above median ridership per 1000 people 12m after opening. (4)
Same as (2) but includes interaction of treatment with indicator for above median ridership
12m after opening. All specifications control for city fixed effects, city-specific pre-window
indicators, city-specific post-window indicators, and city-specific period-0 indicators. Cli-
mate controls are pixel count and linear and quadratic terms in temperature, precipitation,
cloud cover, vapor pressure and frost days. Standard errors clustered at the city level in
parentheses. Stars denote significance levels: * 0.10, ** 0.05, *** 0.01.
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Appendix

A AOD data

Figure A.1: modis Terra and Aqua AOD data
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Note: Panel (a) gives count of new subway cities in our primary estimation sample with non-missing AOD
10km measurements by month for Terra (dashed black) and Aqua (gray). Panel (b) shows mean AOD within
10km of the center of subway cities, averaged over cities, by month for Terra (dashed black) and Aqua (gray).

The Moderate Resolution Imaging Spectroradiometers (MODIS) aboard the Terra and Aqua

Earth observing satellites measure the ambient aerosol optical depth (AOD) of the atmosphere al-

most globally. We use MODIS Level-2 daily AOD products from Terra for February 2000-December

2017 and Aqua for July 2002-December 2017 to construct monthly average AOD levels in cities. We

download all the files from the NASA File Transfer Protocol.20

There are four MODIS Aerosol data product files: MOD04_L2 and MOD04_3K, containing

data collected from the Terra platform; and MYD04_L2 and MYD04_3K, containing data collected

from the Aqua platform. We use products MOD04_3K and MYD04_3K to get AOD measures

at a spatial resolution (pixel size) of approximately 3 x 3 kilometers. Each product file covers a

five-minute time interval based on the start time of each MODIS granule. The product files are

stored in Hierarchical Data Format (HDF) and we use the "Optical Depth Land And Ocean" layer,

which is stored as a Scientific Data Set (SDS) within the HDF file, as our measure of aerosol optical

depth. The "Optical Depth Land And Ocean" dataset contains only the AOD retrievals of high

quality.

We convert all HDF formatted granules to GIS compatible formats using the HDF-EOS To

GeoTIFF Conversion Tool (HEG) provided by NASA’s Earth Observing System Program.21 We

20ftp://ladsweb.nascom.nasa.gov/allData/6/
21The most recent version of the software, HEG Stand-alone v2.13, can be downloaded at

http://newsroom.gsfc.nasa.gov/sdptoolkit/HEG/HEGDownload.html
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consolidate GeoTIFF granules into a global raster for each day using ArcGIS. First, we keep only

AOD values that do contain information. The missing value is -9999 in AOD retrievals. Second,

we create a raster catalog with all the granules for a given day and calculate the average AOD

value using the Raster Catalog to Raster Dataset tool.

Figure A.1 provides more information about the coverage of the two satellites and the preva-

lence of missing data. The black dashed line in panel (a) of the figure gives the count of cities in

our primary estimation sample for which we calculate an AOD from the Terra satellite reading

for each month of our study period. These are cities for which there is at least one pixel within

10km of the center on one day during the relevant month. Since most of the cities in our data are

in the Northern hemisphere, we see a strong seasonal pattern in this series. The light gray line

in this figure reports the corresponding quantity calculated from the Aqua satellite reading. Since

Aqua became operational after Terra, the Aqua series begins later. The Aqua satellite data tracks

the Terra data closely, but at a slightly lower level. Panel (b) of Figure A.1 reports city mean AOD

data for all city-months in our sample over the course of our study period. As for the other series,

this one too exhibits seasonality, although this will partly reflect a composition effect. As we see

in panel (a) not all cities are in the data for all months. As in the first two panels, the dark line

describes AOD readings from Terra and the light gray, Aqua.

B Ridership data

We gathered subway ridership data (unlinked trips) for 42 of the subway systems in our main

estimating sample, mostly from annual reports or statistical agencies. In 16 cases we were either

not able to find data on ridership at all, the data were not available from the opening date, or the

ridership data was aggregated across cities or other rail systems. Data sources for each of the cities

we were able to obtain usable data are detailed in Table A.1.
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Table A.1: Ridership Data Sources

City Source
Almaty (Kazakhstan) International Metro Association reports
Bangalore (India) Bangalore Metro operational performance
Brescia (Italy) Brescia Mobilitá reports
Changsha (China) China Association of Metros annual reports
Chennai (India) Chennai Metro Rail Limited annual reports
Copenhagen (Denmark) Statistics Denmark
Daejon (South Korea) Daejon Metropolitan Rapid Transit Corporation
Delhi (India) Delhi Metro Rail Corporation annual reports
Dongguan (China) China Association of Metros annual reports
Dubai (UAE) Dubai Road and Transport Auth.: Annual statistical reports
Fuzhou (China) China Association of Metros annual reports
Gwangju (South Korea) Gwangju Subway reports
Hangzhou (China) Hangzhou Statistical Yearbook
Harbin (China) China Association of Metros annual reports
Jaipur (India) Jaipur Metro annual reports
Kazan (Russia) International Metro Association reports
Kaohsiung (Taiwan) Kaohsiung Rapid Transit Corp. transport volume statistics
Lausanne (Switzerland) Transports Lausanne Annual Reports
Lima (Peru) Ministerio de Transportes y Comunicaciones Perú
Mashhad (Iran) Mashhad Urban Railway Corp. planning and development
Mumbai (India) Mumbai Metro One Pvt. Ltd. right to information request
Nanning (China) China Association of Metros annual reports
Naha (Japan) Japan Ministry of Land, Infrastructure, Transport and Tourism
Nanchang (China) China Association of Metros annual reports
Ningbo (China) China Association of Metros annual reports
Palma (Spain) Instituto Nacional de Estadística España
Panama City (Panama) Instituto Nacional de Estadísticas y Censo Panamá
Porto (Portugal) Statistics Portugal, Light rail (metro) survey
Qingdao (China) China Association of Metros annual reports
Salvador da Bahia (Brazil) Companhia de Transportes do Estado da Bahia
San Juan Puerto Rico (USA) Instituto de Estadísticas de Puerto Rico
Santo Domingo (DR) Oficina para el Reordenamiento del Transporte
Seattle (USA) Sound Transit performance reports (Only Central Link Line)
Seville (Spain) Instituto Nacional de Estadística España
Shenzhen (China) Shenzhen Municipal Transportation Commission
Shenyang (China) Shenyang Statistical information net
Suzhou, Jiangsu (China) Suzhou Statistical Yearbook
Turin (Italy) Gruppo Torinese Transporti reports
Valparaiso (Chile) Memoria Anual Metro Valparaiso
Wuxi (China) China Association of Metros annual reports
Xi’an, Shaanxi (China) Xian Bureau of Statistics
Zhengzhou (China) China Association of Metros annual reports

We were not able to obtain ridership data from the time of opening for the following 16
cities in the sample: Algiers (Algeria), Brasilia (Brazil), Bursa (Turkey), Chengdu (China),
Chongqing (China), Dalian (China), Isfahan (Iran), Izmir (Turkey), Kunming (China), Mara-
caibo (Venezuela), Nanjing (China), Rennes (France), Shiraz (Iran), Tabriz (Iran), Valencia
(Venezuela), and Wuhan (China).

C AOD vs ground based measurements

A series of papers have compared measures of AOD to measures of particulate concentration from

surface instruments (e.g. Gupta, Christopher, Wang, Gehrig, Lee, and Kumar, 2006, Kumar, Chu,
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Table A.2: Relationship between AOD and Ground-based Particulate Measures

PM10 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8)
AOD 135.811*** 114.604*** 118.094*** 113.008*** 101.725*** 103.271*** 76.573*** 60.572***

(9.687) (11.804) (11.501) (11.882) (9.982) (10.949) (6.675) (8.288)
cons 4.527 134.522*** 110.657*** 136.867*** 136.647*** 139.975*** -0.547 19.931

(2.821) (39.287) (39.842) (39.505) (41.110) (42.324) (1.546) (27.470)
Mean dep. var. 57.25 57.25 57.25 57.25 57.35 57.35 23.72 23.72
Mean ind. var. 0.39 0.39 0.36 0.39 0.37 0.39 0.32 0.32
R2 0.50 0.82 0.81 0.82 0.83 0.82 0.61 0.85
N 340 340 340 340 339 339 217 217

Note: (1) Terra 10k disk, no controls. (2) Terra 10k disk, controls. (3) Aqua 10k disk, controls. (4) Terra
10k footprint, controls. (5) Terra 25k disk, controls. (6) Terra 25k footprint, controls. (7) Terra 10k disk,
no controls. (8) Terra 10k disk, controls. Controls: continent-year indicators, average pixel count, and
linear and quadratic terms in average temperature, precipitation, cloud cover, vapor pressure and frost days.
Robust standard errors in parentheses. Stars denote significance levels: * 0.10 ** 0.05 *** 0.01.

Figure A.2: AOD versus PM
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Note: (a) Plot showing residualized PM10 and AOD, together with linear trend. (b) Histogram of city-
months by AOD, pm10 and pm2.5 . pm10 and pm2.5 axes rescaled from AOD using columns 1 and 4 of
Table A.2. Black vertical line indicates WHO threshold level for annual average pm10 exposure (WHO,
2006).

and Foster, 2007, Kumar, Chu, Foster, Peters, and Willis, 2011). In particular, Kumar et al. (2007)

examines the ability of AOD to predict particulates in a set of large cities, several of which are

subway cities. AOD is a good measure of airborne particulates, with two caveats. First, satellite

reports of AOD describe daytime average conditions over a wide area at the particular time the

satellite passes overhead, while ground based instruments record conditions at a particular loca-
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Figure A.3: Plots of ground-based pm10 and pm2.5 vs. MODIS AOD
p
m

1
0

0
10

0
20

0
30

0

0 .5 1

p
m

1
0

-5
0

0
50

10
0

15
0

20
0

-.4 -.2 0 .2 .4
Terra AOD 10km disk Residual Terra AOD 10km disk

(a) (b)

p
m

2
.
5

0
50

10
0

15
0

0 .5 1

p
m

2
.
5

-4
0

-2
0

0
20

40
60

-.4 -.2 0 .2
Terra AOD 10km disk Residual Terra AOD 10km disk

(c) (d)

Note: Panel (a) Plot of ground-based pm10 against Terra MODIS AOD in a 10km disk. Panel (b) Plot of
ground-based pm10 residual against Terra MODIS AOD in a 10km disk residual. Panel (c) Plot of ground-
based pm2.5 against Terra MODIS AOD in a 10km disk. Panel (d) Plot of ground-based pm2.5 residual
against Terra MODIS AOD in a 10km disk residual. NB: Scales not constant across graphs.

tion over a longer period. This naturally causes satellite and ground based measures to diverge.

Second, ground based instruments report the concentration of dry particulates, while the satellite

based measure has trouble distinguishing water vapor from other particles. This motivates the use

of flexible climate controls in our analysis.

As a direct check on our AOD data, we use World Health Organization data (WHO, 2016a)

describing average annual pm10 and pm2.5 concentrations (µg/m3) in cities where ground-based

pollution readings were available. We successfully match 150 such cities with ground-based

pm10 readings to our subway cities data. Of the 150, 79 report pm10 readings during three years,

32 during two years, and 39 in only one year. The readings span the 2007-2014 period, and not

all city-years record both pm10 and pm2.5 . Averaging monthly AOD values to calculate yearly

averages, we obtain 340 comparable city-years for pm10 and 217 comparable city-years for pm2.5 .
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Note the limited amount of data available from ground-based instruments. Satellite data solve

the issue of data scarcity. In particular, not that the ground based measurements are annual, as

opposed to the monthly data we use elsewhere.

To compare the WHO ground-based annual measures of particulates to annual averages of

MODIS AOD measurements in subway cities, we estimate the following regressions

PMyit = α0 + α1AODit + controlsit + εit,

where y ∈ {2.5,10} is particulate size, i refers to cities and t to years for which we can match who

data to our AOD sample.

Table A.2 reports results. The upper first column presents the results of a regression of the

WHO measure of pm10 on annual average Terra AOD within 10km of a subway city center. There

is a strong positive relationship between the two quantities and the R2 of the regression is 0.50.

The AOD coefficient of 135.81 in Column 1 means that a one unit increase in AOD maps to a

135.81 µg/m3 increase in pm10 . From Table 1, we see that Terra 10k readings for North America

decreased by 0.03 in subway cities between 2000 and 2017. Multiplying by 135.81 gives a 4.1µg3

decrease in PM10. By contrast, according to US EPA historical data, during this same period US

average pm10 declined from 64.7 to 57.7 µg/m3, or about a 7 unit decrease.22 Since Table 1 reports

AOD for just the three cities in North America with new subways, while the EPA reports area

weighted measures for the US, this seems as close as could be expected.

In Column 2, we conduct the same regression but include linear and quadratic terms in our

climate variables, average pixel count, and continent-year indicators. The coefficient on AOD

drops from 135.81 to 114.60, and the R2 increases to 0.82. In Column 3, we conduct exactly the

same regression, but rely on AOD measurements from the Aqua satelite. As expected this leaves

our estimates qualitatively unchanged.

Columns (4)-(6) repeat (2) but use different geographies to construct the AOD measure. In

Column (4) we measure AOD in the intersection of the lights based city footprint and a 10km

disk centered on the city. In Column (5) we measure AOD in a 25km disk centered on the city.

In Column (6) we measure AOD in the intersection of the lights based footprint and the 25km

disk. Coefficients vary slightly over the different specifications, but R2s do not. In theory, this

sequence of regressions could have revealed that ground based instruments are more closely

related to a particular AOD measure. In fact, this seems not to be the case. Thus, the comparison of

remotely sensed and ground based measures does not suggest that footprints are to be preferred to

disks for the analysis based on R2s. Given this, and given that most subway systems concentrate

their service in the center part of the city (Gonzalez-Navarro and Turner, 2018), we rely on AOD

calculated of centrally located 10km disks for our main analysis.

For completeness, columns (7) and (8) replicate columns (1) and (2), but use ground based

measures of PM2.5 as the dependent variable. Since PM2.5 comprises a smaller fraction of all

22https://www.epa.gov/air-trends/particulate-matter-pm10-trends, accessed July 2, 2020.
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airborne particulates than does PM10, the smaller coefficients in these regressions is expected.

In fact, the AOD coefficient for PM2.5 from Column (8) is about 53% of the one for PM10 in

Column (2). This is consistent with the pm10 to pm2.5 conversion factors used by the World Health

Organisation (WHO, 2016a).23

All specifications reported in Table A.2 assume a linear relationship between AOD and PM.

Figure A.2(a) plots residuals of regressions of PM10 and AOD on all controls used in Column 2

of Table A.2, along with a linear regression line. This graph illustrates both how closely the two

variables track each other and how close to linear is the relationship between them.

Recall that the ground-based instruments and MODIS, in fact, measure something different.

Ground-based instruments measure pollution at a point over an extended period of time. Remote

sensing measures particulates across a wide area at an instant. Given this difference, the extent to

which the two measures agree seems remarkable.

In addition to validating the use of remotely sensed AOD, Table A.2 provides a basis for trans-

lating our estimates of the relationship between subways and AOD into a relationship between

subways and pm2.5 , or pm10 . To illustrate this process, and to help to describe our data, Figure

A.2(b) provides a histogram of the 21,806 city-months used for our main econometric analysis. The

figure provides three different scales for the horizontal axis. The top scale is the raw AOD measure.

The second two axes are affine transformations of the AOD scale into pm10 and pm2.5 based on

columns (1) and (7) of Table A.2. For reference, the black line in the figure gives the World Health

Organization recommended maximum annual average pm10 exposure level (20 µg/m3).

D Global Burden of Disease based mortality estimates

The integrated risk functions in Burnett et al. (2014) express the likelihood of dying from a disease at

current pm2.5 exposure, relative to an environment where pm2.5 concentrations are set to a baseline

harmless level of exposure. If Dd is the event of dying from disease d, the risk ratio (RR) of being

exposed to pm2.5 concentration c is given by RRd(c, c̄) = P(Dd | c)/P(Dd | c̄), where c̄ denotes

the baseline harmless concentration. Burnett et al. (2014) model RRd(c, c̄) to exhibit diminishing

marginal risk: RR(c,c̄) = 1 + α(1 − e−γ(c−c̄)δ
) if c > c̄ , and RR(c,c̄) = 1 otherwise, with c̄

23We note that the results in Table A.2 are quite different from those on which the 2013 Global burden of disease
estimates are based (Brauer et al. 2015). In particular, they estimate

ln(pm2.5 ) ≈ 0.8 + 0.7 ln(AOD).

Comparing with Table A.2, we see that these coefficient estimates are quite different. The difference reflects primarily
our use of the level of pm2.5 , rather than its logarithm, as the dependent variable. We also use the level of AOD rather
than its logarithm as the explanatory variable. Since AOD is typically around 0.5, this turns out not to be important.
Finally, our sample describes a different and more urban sample of locations, relies on annual rather than daily data, and
measures AOD using just MODIS data rather than an average of MODIS and a measure imputed using a climate model
and ground based emissions release information. We prefer the formulation in Table A.2 to that in Brauer et al. (2015)
for three reasons. First, AOD is already a logarithm (see footnote 4), so the Brauer et al. specification uses the logarithm
of a logarithm as its main explanatory variable. Second, mortality and morbidity estimates are typically based on levels
of pollutants, not on percentage changes, so the dependent variable in our regressions is more immediately useful for
evaluating the health implications of changes in AOD. Finally, we control for weather conditions, which appears to be
important. In any case, the R2 in both studies is of similar magnitude.
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assumed to lie uniformly between 5.8 and 8.8µg/m3. We refer the reader to Burnett et al. (2014) for

details regarding the parametrization and estimation of these functions for each disease.

As described in the main text, we obtain RR functions for five diseases: ischemic heart dis-

ease, cerebrovascular disease (stroke), chronic obstructive pulmonary disease, lung cancer, and

lower respiratory infection. For deaths attributable to stroke and ischemic heart disease, the

integrated risk functions are age-specific. To construct population attributable fractions (PAF)

for every disease and, when applicable, every age-group, we first predict pre and post-subway

pm2.5 concentrations using the regression specification in Column 8 of Table A.2. Specifically,

we obtain predicted pm2.5 values from the annual city average of AOD (and all other covariates)

during the 12 months preceding the subway opening. The post-subway pm2.5 concentrations are

obtained by subtracting 0.028× 60.57 = 1.696 µg/m3 to the pre-subway concentration, where 0.028

is the subway AOD effect from Table 4, and 60.57 is the AOD coefficient in Column 8 of Table A.2.

Let c0 and c1 respectively denote the pre and post-subway pm2.5 concentrations in a given city.

For the purpose of our burden of disease calculations, the relevant risk ratio is RRd(c1,c0) =

P(Dd | c1)/P(Dd | c0). Using the RRd(c,c̄) functions in Burnett et al. (2014), we obtain this number

by computing RRd(c1,c0) = RRd(c1,c̄)/RRd(c0,c̄). Here, RRd(c1,c0) expresses how much less likely

it is that individuals die of disease d when exposed to concentration c1, relative to concentration c0.

Assuming that 100% of the city population is exposed to c0 and then c1, the population attributable

fraction is then just PAFd = 1−RRd(c1,c0) = 1− P(Dd | c1)/P(Dd | c0). Interpreting P(Dd | c) as the

fraction of the total population that died of disease d when exposed to pm2.5 concentration c, we

find that PAFd represents the fraction of total deaths from d that occurred because of incremental

pollution c0 − c1.

Finally, for each high AOD city i, we calculate the number of death attributable to disease d

in age-group a (denoted Mida below). We use disease-specific country-level death rates from the

World Health Organisation (WHO, 2016c) and apply them to city populations. Mortality data from

the WHO is only available in 2000, 2005, 2010, and 2015. We use the year closest to a city’s subway

opening year. The total number of avoided death in city i is given by ∑d ∑a PAFida ·Mida.
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E Supplemental Tables

Table A.3: Average Effect of Subway Openings: Robustness Checks
(1) (2) (3) (4) (5) (6)

post -0.0094 -0.0035 -0.0093 -0.0080 -0.0050 -0.0082
(0.0090) (0.0085) (0.0090) (0.0088) (0.0088) (0.0086)

satellite Y Y Y Y Y Y
cont.×year Y Y Y Y Y Y
city×cal. mo. Y Y Y Y Y Y
climate × cont. Y Y Y Y Y Y
Mean AOD 0.46 0.41 0.45 0.46 0.45 0.47
R2 0.80 0.87 0.84 0.79 0.80 0.80
# events 58 58 58 58 58 58
# cities 58 58 58 58 58 58
N 21806 21806 19635 21702 22605 22497

Note: Dependent variable is mean AOD in a 10km disk with centroid in the city center
unless noted otherwise below. (1) Replicates Column 5 from Table 2 (for reference).
(2) Same as (1) but weight observations by pixel count. (3) Same as (1) but drop
observations with low pixel count. (4) Same as (1) but calculating AOD in city
footprint within 10km from the city center. (5) Same as (1) but calculating AOD
in a 25km disk centered around the city center. (6) Same as (1) but calculating AOD
in city footprint within 25km from the city center. All specifications control for city
fixed effects, city-specific pre-window indicators, city-specific post-window indicators,
and city-specific period-0 indicators. Climate controls are pixel count and linear
and quadratic terms in temperature, precipitation, cloud cover, vapor pressure and
frost days. Standard errors clustered at the city level in parentheses. Stars denote
significance levels: * 0.10, ** 0.05, *** 0.01.
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Table A.4: Average Effect of Subway Openings: Different Window of Analysis
(1) (2) (3) (4) (5)

post -0.0094 -0.0027 -0.0040 -0.0008 -0.0057
(0.0090) (0.0108) (0.0096) (0.0084) (0.0088)

satellite Y Y Y Y Y
cont.×year Y Y Y Y Y
city×cal. mo. Y Y Y Y Y
climate × cont. Y Y Y Y Y
Mean AOD 0.46 0.46 0.46 0.44 0.45
R2 0.80 0.80 0.81 0.81 0.81
# events 58 64 60 55 44
# cities 58 64 60 55 44
N 21806 24028 22580 20684 16422

Note: Dependent variable is mean AOD in a 10km disk centered around
the city center. (1) Column 5, Table 2 (for reference). (2) Same as (1) but
treatment and control window are 6 months. (3) Same as (1) but treatment
and control window are 12 months. (4) Same as (1) but treatment and
control window are 24 months. (5) Same as (1) but treatment and control
window are 36 months. All specifications control for city fixed effects,
city-specific pre-window indicators, city-specific post-window indicators,
and city-specific period-0 indicators. Climate controls are pixel count and
linear and quadratic terms in temperature, precipitation, cloud cover, va-
por pressure and frost days. Standard errors clustered at the city level in
parentheses. Stars denote significance levels: * 0.10, ** 0.05, *** 0.01.
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Table A.7: City Level Descriptive Statistics

Plan Construction Opening Stations added Daily Mean SD City Country
City approved begins date opening 1st exp. 2nd exp. ridership AOD AOD population GDP PC
Rennes (France) 1989 Jan. 1997 Mar. 2002 15 n.a. n.a. n.a. 0.20 0.10 283 33,534

Bursa (Turkey) 1997 Jan. 1998 Aug. 2002 17 n.a. n.a. n.a. 0.26 0.09 1,290 10,544

Copenhagen (Denmark) 1995 Nov. 1996 Nov. 2002 11 n.a. n.a. 87,811 0.16 0.08 1,089 34,706

Porto (Portugal) 1996 Mar. 1999 Dec. 2002 8 6 7 35,200 0.18 0.08 1,264 23,297

Delhi (India) 1995 Jan. 1998 Dec. 2002 6 3 22 184,000 0.74 0.29 16,956 2,144

Dalian (China) 1999 Sep. 2000 May 2003 12 6 17 n.a. 0.54 0.23 3,338 4,993

Naha (Japan) 1996 Nov. 1996 Aug. 2003 15 n.a. n.a. 31,237 0.29 0.15 306 34,120

Tianjin (China) 1984 Jan. 2001 Mar. 2004 7 25 17 n.a. 0.64 0.24 7,901 5,239

Gwangju (South Korea) 1994 Aug. 1996 Apr. 2004 13 n.a. n.a. 36,780 0.41 0.22 1,388 25,527

Wuhan (China) 1999 Dec. 2000 Sep. 2004 25 20 13 n.a. 0.87 0.28 7,036 5,461

Shenzhen (China) 1992 Dec. 1998 Dec. 2004 18 69 13 249,722 0.76 0.28 8,087 5,572

San Juan Puerto Rico (USA) 1992 Jul. 1996 Apr. 2005 16 n.a. n.a. 24,000 0.22 0.11 2,495 49,527

Chongqing (China) 1983 Dec. 2000 Jun. 2005 13 12 16 n.a. 0.91 0.25 9,293 5,900

Kazan (Russia) 1989 Aug. 1997 Aug. 2005 5 n.a. n.a. 53,055 0.22 0.15 1,117 13,581

Nanjing (China) 1994 Dec. 2000 Aug. 2005 13 3 29 n.a. 0.77 0.29 5,076 6,010

Valparaiso (Chile) 1999 May 2002 Nov. 2005 20 n.a. n.a. 32,755 0.10 0.03 842 13,324

Turin (Italy) 1999 Dec. 2000 Feb. 2006 11 n.a. n.a. 38,275 0.26 0.13 1,707 33,214

Daejon (South Korea) 1996 Jan. 1996 Mar. 2006 12 n.a. n.a. 68,939 0.38 0.23 1,437 27,555

Valencia (Venezuela) 1994 Nov. 1997 Nov. 2006 3 n.a. n.a. n.a. 0.23 0.11 1,548 11,531

Maracaibo (Venezuela) 1998 Mar. 2004 Nov. 2006 2 n.a. n.a. n.a. 0.28 0.13 1,707 11,531

Kaohsiung (Taiwan) 1994 Jan. 2001 Mar. 2008 23 13 n.a. 122,243 0.54 0.21 1,508 38,122

Palma (Spain) 2004 Aug. 2005 Jul. 2008 9 6 n.a. 4,374 0.18 0.06 375 34,865

Lausanne (Switzerland) 2000 Feb. 2004 Oct. 2008 14 n.a. n.a. 66,852 0.19 0.07 356 54,124

Santo Domingo (DR) 2005 Nov. 2005 Jan. 2009 16 13 n.a. 62,293 0.30 0.15 2,480 10,075

Continued on next page
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Table A.7 – continued from previous page
Plan Construction Opening Stations added Daily Mean SD City Country

City approved begins date opening 1st exp. 2nd exp. ridership AOD AOD population GDP PC
Adana (Turkey) 1988 Sep. 1996 Mar. 2009 8 n.a. n.a. n.a. 0.33 0.12 1,453 16,317

Seville (Spain) 1999 Aug. 2005 Apr. 2009 17 n.a. n.a. 43,461 0.20 0.08 694 34,496

Seattle (USA) 1996 Nov. 2003 Jul. 2009 8 n.a. n.a. 15,437 0.17 0.08 3,017 49,706

Dubai (UAE) 2005 Mar. 2006 Sep. 2009 10 16 n.a. 169,816 0.51 0.24 1,699 65,788

Chengdu (China) 2000 Dec. 2005 Sep. 2010 16 20 5 n.a. 0.90 0.32 7,481 9,131

Shenyang (China) 1999 Nov. 2005 Sep. 2010 22 19 n.a. 434,428 0.48 0.26 5,819 9,131

Xian, Shaanxi (China) 1994 Sep. 2006 Sep. 2011 17 26 n.a. 295,220 0.73 0.25 5,684 10,043

Bangalore (India) 2003 Apr. 2007 Oct. 2011 7 10 n.a. 18,436 0.47 0.12 8,579 4,461

Mashhad (Iran) 1994 Dec. 1999 Oct. 2011 21 6 n.a. 83,345 0.22 0.10 2,717 18,195

Algiers (Algeria) 1988 Mar. 1993 Nov. 2011 10 n.a. n.a. n.a. 0.33 0.17 2,461 13,342

Almaty (Kazakhstan) 1980 Sep. 1988 Dec. 2011 7 n.a. n.a. 18,228 0.25 0.06 1,470 22,022

Lima (Peru) 1986 Oct. 1986 Apr. 2012 16 n.a. n.a. 120,575 0.71 0.19 9,150 10,496

Suzhou, Jiangsu (China) 2002 Dec. 2007 Apr. 2012 24 20 38 196,778 0.81 0.25 4,326 10,365

Kunming (China) 2009 May 2010 Jun. 2012 2 12 18 n.a. 0.31 0.24 3,602 10,423

Hangzhou (China) 2005 Mar. 2007 Nov. 2012 31 13 10 390,595 0.79 0.22 6,112 10,568

Brescia (Italy) 2000 Jan. 2004 Mar. 2013 17 n.a. n.a. 42,943 0.27 0.14 452 36,113

Harbin (China) 2005 Sep. 2009 Sep. 2013 17 n.a. n.a. 182,333 0.30 0.18 5,457 11,041

Zhengzhou (China) 2008 Jun. 2009 Dec. 2013 20 15 20 244,722 0.83 0.34 4,074 11,189

Changsha (China) 2008 Sep. 2009 Apr. 2014 18 n.a. n.a. 233,528 0.83 0.25 3,799 11,374

Panama City (Panama) 2009 Feb. 2011 Apr. 2014 12 n.a. n.a. 223,661 0.33 0.14 1,615 18,887

Ningbo (China) 2003 Jun. 2009 May 2014 20 21 n.a. 104,889 0.81 0.22 3,187 11,420

Mumbai (India) 2004 Feb. 2008 Jun. 2014 12 n.a. n.a. 260,000 0.59 0.35 18,992 5,095

Salvador da Bahia (Brazil) 1999 Apr. 2000 Jun. 2014 5 2 n.a. 42,782 0.20 0.07 3,517 15,231

Wuxi (China) 2006 Nov. 2009 Jul. 2014 24 18 n.a. 229,642 0.84 0.24 2,915 11,513

Shiraz (Iran) 1993 Jun. 2006 Oct. 2014 5 n.a. n.a. n.a. 0.27 0.09 1,513 15,816

Continued on next page
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Table A.7 – continued from previous page
Plan Construction Opening Stations added Daily Mean SD City Country

City approved begins date opening 1st exp. 2nd exp. ridership AOD AOD population GDP PC
Chennai (India) 2008 Jun. 2009 Jun. 2015 6 n.a. n.a. 10,923 0.42 0.11 9,554 5,391

Jaipur (India) 2010 Feb. 2011 Jun. 2015 9 n.a. n.a. 20,064 0.41 0.21 3,380 5,391

Tabriz (Iran) 2000 n.a. Aug. 2015 6 n.a. n.a. n.a. 0.30 0.09 1,538 15,152

Isfahan (Iran) 1996 Jun. 2001 Oct. 2015 10 n.a. n.a. n.a. 0.40 0.10 1,901 14,994

Nanchang (China) 2006 Jul. 2009 Dec. 2015 24 16 n.a. 304,894 0.79 0.25 3,053 12,034

Qingdao(China) 2009 Nov. 2009 Dec. 2015 9 18 n.a. 182,589 0.72 0.23 5,041 12,034

Dongguan (China) 2007 Mar. 2010 May 2016 15 n.a. n.a. 107,611 0.88 0.25 7,330 12,229

Fuzhou (China) 2009 Dec. 2009 May 2016 9 n.a. n.a. 136,969 0.50 0.18 3,344 12,229

Nanning (China) 2008 Dec. 2011 Jun. 2016 10 17 n.a. 269,808 0.85 0.30 3,353 12,268

Average 1999 Jan. 2004 Jun. 2010 13.8 16.0 17.3 130,528 0.47 0.32 4,028 17,755

Note: Daily ridership reported 18 months after opening. Mean and SD AOD columns report mean and standard deviation values in a 10km radius using
Terra satellite monthly observations from 2000-2017. City population column reports metropolitan area population in thousands at time of subway opening.
Country GDP PC reports PPP-adjusted country GDP per capita from Penn World Tables Version 9.1 reported at time of subway opening.
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F Supplemental Figures

Figure A.4: Structural Break Tests
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Notes: (a) Plot of Wald statistics for tests of a regression intercept discontinuity at time τ. Test statistics
calculated in regressions that also control for a satellite indicator, year-by-continent indicator variables,
city-by-calendar month indicators, and continent specific climate variables (AOD pixel count and linear
and quadratic terms in temperature, precipitation, cloud cover, vapor pressure and frost days). (b) Plot of
Wald statistics for tests of a trend break at time τ conditional on a discontinuity in the mean level of AOD
at τ = 1. Other details are the same as in Panel (a).

The regressions underlying Figure 4(a) are,

AODit = βi + α1jDit(j,k) + γ′Xit + εit (5)

For our main analysis we set k = 18. This window length strikes a balance between maintaining

the set of cities from which we identify our coefficient of interest and having a long analysis

window. Thus, we use a 37 month study window and estimate Equation (5) for each month in

j ∈ {−14,...,14} with errors clustered at the city level. We then calculate a Wald test of α1j = 0

for each j. Including pre- and post-period indicators in these regressions allows us to use all city-

months in our sample to estimate city-by-calendar month indicators, continent-by-year indicators

and climate variables, while only using AOD variation near the subway opening date to estimate

the effect of subways on AOD. Here and throughout, we allow for city specific pre- and post-

treatment windows. This extra flexibility helps to insure that we use the same variation in the data

to estimate the subway effect, even as we change samples. We discuss this further below. Panel (a)

of Figure 4 plots these test statistics.

The figure shows a clear pattern. Wald statistics increase from a low level to a peak between

month 6 and 12 of subway opening. Andrews (2003) gives (asymptotic) critical values for the test

statistic values we have just generated, a ‘sup-Wald’ test for α1j = 0 for all j. For our case, where

58



the break in question affects only one parameter and where we trim 25% from the boundaries of

the sample, the 5% critical value of this statistic is 7.87, much greater than the largest value that we

observe for the Wald statistic in the months after a system opening. With this said, our estimation

framework differs from the one for which this test statistic is derived in several small ways, and

so we regard this test with some caution. In conclusion, while we cannot reject a null of no level

break in the overall sample, it is important to note that the plot suggests that whatever pollution

reducing effects the subway system opening leads to occur in the months after the subway opens.

In Figure 4(b) we check for a change in the trend of AOD associated with subway openings. We

proceed much as in our test for a break, but instead look for a change in trend around the time

of a subway opening conditional on a level break at τ = 1. Formally, this means estimating the

following set of regressions,

AODit = βi + α1τit + α2jτitDit(j,k) + α3Dit(1,k) + γ′Xit + εit (6)

As before, we estimate the regression (6) for each month in j ∈ {−14,...,14}with errors clustered

at the city level and calculate the Wald test for α2 = 0 for each regression.24 Panel (b) of Figure

4 plots these Wald statistic values as j varies.25 Thus, conditional on a step at τ = 1, subways

openings do not seem to cause a change in the trend of AOD in a city.

24An alternative would be to simultaneously search for locations of the break and trend break. Hansen (2000) argues
that sequential searching, as we do, arrives at the same result.

25All values are well below the 10% critical value of 6.35 given in Andrews (2003). Again, our framework differs from
the framework under which this test statistic is derived so this test should be regarded with caution.

59



Figure A.5: Heterogeneous treatment effects for all expansions.
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Note: Illustration of all event-specific subway expansion effects. Controls are as in Column 1 of Table 7. x
axis is the estimated treatment effect, y is the standard error of the estimated treatment effect. Region in
white contains estimates that are not significantly different from zero. Dark, medium and light gray regions
are different from zero at 10%, 5% and 1% in two-sided tests. Standard errors clustered at the event level.
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