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1 Introduction

A common practice in the academic finance literature has been to create factor-portfolios by

sorting on characteristics positively associated with expected returns. The resulting set of

zero-investment factor-portfolios, which go long a portfolio of high-characteristic firms and

short a portfolio of low-characteristic firms, then serve as a model for returns in that asset

space. Prominent examples of this are the three- and five-factor models of Fama and French

(1993, 2015), but there are numerous others, developed both to explain the equity market

anomalies, and also the cross-section of returns in other asset classes.1

Consistent with this, Fama and French (2015, FF) argue that a standard dividend-discount

model implies that a combination of individual-firm metrics based on valuation, profitability

and investment should forecast these firms’ average returns. Based on this they develop a five

factor model—consisting of the MktRF, SMB, HML, RMW, and CMA factor-portfolios—

and argue that this model does a good job of explaining the cross-section of average excess

returns for a variety of test portfolios, based on a set of time-series regressions like:

Rp,t = αp + βp,m ·MktRFt + βp,HML ·HMLt + βp,SMB · SMBt

+βp,CMA · CMAt + βp,RMW ·RMWt + εp,t

where a set of portfolios is chosen which exhibit a considerable spread in average returns.2

Standard projection theory shows that the αs from such regressions will all be zero for all

assets if and only if the mean-variance efficient (MVE) portfolio is in the span of the factor-

portfolios, or equivalently if the maximum Sharpe-ratio in the economy is the maximum

Sharpe-ratio achievable with the factor-portfolios alone. Despite several critiques of this

methodology, it remains popular in the finance literature.3

1 Examples are: UMD (Carhart, 1997); LIQ (Pastor and Stambaugh, 2003); BAB (Frazzini and Pedersen,
2014); QMJ (Asness, Frazzini, and Pedersen, 2018); PMU (Novy-Marx, 2013); ISU (Daniel and Titman,
2006) and RX and HML-FX (Lustig, Roussanov, and Verdelhan, 2011). We concentrate on the factors of
Fama and French (2015). However, the critique we develop in Section 2 applies to any factors constructed
using this method.

2 The Fama and French (2015) factor-portfolios SMB, HML, RMW, and CMA are formed by sorting on
various combinations of firm size, valuation ratios, profitability and investment respectively.

3 Daniel and Titman (1997) critique the original Fama and French (1993) technique. Our critique here is
closely related to that paper. Also related to our discussion here are Lewellen, Nagel, and Shanken (2010)
and Daniel and Titman (2012) who argue that the space of test assets used in numerous recent asset pricing
tests is too low-dimensional to provide adequate statistical-power against reasonable alternative hypotheses.
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The objective of this paper is to refine our understanding of the relationship between firm

characteristics and the risk and average returns of individual firms. Our theoretical argument

is that, if characteristics are a good proxy for expected returns, then forming factor-portfolios

by sorting on characteristics will generally not explain the cross-section of returns in the way

proposed in the papers in this literature.

The argument is straightforward, and is based on the early insights of Markowitz (1952)

and Roll (1977): suppose a set of characteristics are positively associated with average

returns, and a corresponding set of long-short factor-portfolios are constructed by buying

high-characteristic stocks and shorting low-characteristic stocks. This set of portfolios will

explain the returns of portfolios sorted on the same characteristics, but are unlikely to span

the MVE portfolio of all assets, because they do not take into account the asset covariance

structure. The intuition underlying this comes from a stylized example: assume there is a

single characteristic which is a perfect proxy for expected returns, i.e., c = κµ, where c is the

characteristic vector, µ is a vector of expected returns and κ is a constant of proportionality.

A portfolio formed with weights proportional to firm-characteristics, i.e., with wc ∝ c = κµ,

will be MVE only if wc ∝ w∗ = Σ−1µ. In Section 2, we develop this argument formally.

When will wc be proportional to w∗? That is, when will the characteristics-sorted portfolio

be MVE? As we show in Section 2.2, this will be the case only in a few selected settings.

For example, it will always be true in a single factor world framework in which the law

of one price holds. However, it will not generally hold in settings where the number of

factors exceeds the number of characteristics. Specifically, we show that any cross-sectional

correlation between firm-characteristics and firm exposures to unpriced factors will result in

the factor-portfolio being inefficient.

Of course our theoretical argument does not address the magnitude of the inefficiency of

the characteristic-based factor-portfolios. Intuitively, our argument is that forming factor-

portfolios on the basis of characteristics alone results in these portfolios being exposed to

unpriced factor risk, and hence inefficient. In the empirical part of the paper, we address

the questions of how large the loadings on unpriced factors are likely to be, and how much

improvement in the efficiency of the factor-portfolios can be obtained by hedging out the

unpriced factor risk.

Our focus in this paper is also expanding the dimensionality of the asset return space, but we do so with a
different set of techniques.
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Our procedure has the advantage that we do not have to identify the sources of unpriced risk.

In fact, we are agnostic as to what these unpriced factors represent. One example we consider

is industry. Extant evidence on the value effect suggests that the industry component of

many characteristic measures, such as book-to-price, are not helpful in forecasting average

returns.4 This suggests that any exposure of HML to industry factors is unpriced. Therefore,

if this exposure were hedged out, it would result in a factor-portfolio with lower risk but the

same expected return, i.e., with a higher Sharpe-ratio. Our analysis in Section 3 shows that

the HML exposure on industry factors varies dramatically over time, but that, at selected

times, the exposure can be very high. We highlight two episodes in particular in which the

correlation between HML and industry factors exceeds 95%: in late-2000/early-2001 as the

prices of high-technology firms earned large negative returns and became highly volatile, and

2008-2009 during the financial-crisis, a parallel episode for financial firms. In both of these

episodes the past return performance of the industry led to the vast majority of the firms in

the industry becoming either growth or value firms—that is, there was a high cross-sectional

correlation between valuation ratios and industry membership—leading to HML becoming

highly correlated with that industry factor.

However, the evidence that the FF factor-portfolios sometimes load heavily on presumably

unpriced industry factors, while suggestive, does not establish that these portfolios are ineffi-

cient. Therefore in Section 4.4 we address the question of what fraction of the risk of the FF

factor-portfolios is unpriced and can therefore be hedged out, and how much improvement

in Sharpe-ratio results from doing so. The method that we use for constructing our hedge-

portfolios builds on that developed in Daniel and Titman (1997). However, through the use

of higher frequency data, differential windows for calculating volatilities and correlations,

as well as industry adjustment of characteristics, we are able to construct hedge-portfolios

that are highly correlated with the FF factor portfolios, but which have approximately zero

expected returns. Importantly, like the FF factor-portfolios themselves, our hedge-portfolios

are highly tradable: we form these portfolios once per-year, at the end of June, and hold the

composition of the portfolios fixed for 12 months, and each component portfolio is value-

weighted.

Empirically, our hedge-portfolios behave in a way that is consistent with our theory. Except

for the size (SMB) hedge-portfolio, they all earn economically and statistically significant

4 See, e.g., Asness, Porter, and Stevens (2000), Cohen and Polk (1995), Cohen, Polk, and Vuolteenaho
(2003), and, Lewellen (1999)
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five-factor alphas.5 We combine each of the original five FF factor-portfolios with our hedge-

portfolios in an ex-ante optimal way, i.e., we forecast the optimal hedge ratio, and generate

improved versions of the five FF factor-portfolios. Thereby, we increase the squared-Sharpe-

ratio of the optimal combination from 1.21 to 2.26.

We compare the performance of the tradable hedged factor-portfolios with the performance

of a strategy in which we only hedge out the industry component of the original FF five

factors. The squared Sharpe-ratio of the ex-post optimal combination of the industry-neutral

five FF factor-portfolios is 1.41. The achieved performance is lower than the one achieved by

hedging out unpriced risk with our proposed methodology. There are at least two possible

explanations for this result. One is that the industry factors can be decomposed into a priced

and an unpriced part. By creating industry-neutral portfolios, we indistinguishably hedge

out both components, thereby causing a strong decrease in the mean of the factor-portfolio

returns. Second, there can be other sources of common variation that are not related to

industries and do not command a premium. Therefore, those results suggest that the hedge-

portfolios constructed in this paper are superior in identifying and hedging out sources of

unpriced risk.

Our results are important for several reasons. First it increases the hurdle for standard

asset pricing models. Following the logic of Hansen and Jagannathan (1991), the pricing

kernel variance that is required to explain the returns of our hedged factor-portfolios is 87%

higher than what is required to explain the returns of the Fama and French (2015) five

factor-portfolios.

Second, in order to find economic explanations for the premia associated with character-

istics such as size and value, it is important to start out with portfolios that capture the

factor premia with the minimum possible return variance. Specifically, how do we determine

whether characteristic premia can be explained by a rational model? We examine whether

the returns to a portfolio that captures this characteristic premium, such as HML, covaries

with proxies for marginal utility.

Numerous empirical studies have now been conducted examining whether various character-

istic premia, such as value, can be explained in this way.6 However, the results from such

5 Note that over this sample period, the SMB factor-portfolio has the lowest Sharpe-ratio of the five
factors

6 See Lewellen, Nagel, and Shanken (2010), Daniel and Titman (2012), and Golubov and Konstantinidi
(2018) for summaries of these studies.
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tests can be misleading if the characteristic-based factor-portfolio used in the test is not

minimum variance.

Golubov and Konstantinidi (2018) provide a nice example of this. They use the book-to-

market decomposition of Rhodes-Kropf, Robinson, and Viswanathan (2005) to decompose

HML into within-industry and across-industry components. Consistent with other findings in

the literature, they find that the within-industry component of HML—i.e., the portfolio that

buys the stock of firms which have a high book-to-market ratio relative to the industry mean–

earns a large premium. In contrast, the second component, which buys high book-to-market

industries and sells low book-to-market industries, earns approximately zero premium.

They proceed to show that many of the proposed explanations for the value premium are

driven predominantly by the industry-component of HML. For instance, some have argued

for duration-based explanations for the value premium (see Lettau and Wachter (2007) and

Van Binsbergen, Brandt, and Koijen (2012)). However, Golubov and Konstantinidi (2018)

show that duration risk is correlated mostly with the unpriced (across-industry) component

of HML, rather than with the priced (within-industry) component. This calls into question

the finding that the value premium is related to duration risk, as duration risk is correlated

only with the “contaminated” version of HML, and not with the component of HML that

actually earns the premium.

We show in Section 4.5 that our hedge-portfolios do a still better job of removing “noise”

(i.e., unpriced factor risk) from the characteristic-based factor-portfolios than simply hedging

out industry risk. Thus, to ensure correct inference, our procedure should be applied to

any characteristic-sorted factor-portfolio before testing whether an economic hypothesis can

explain the premium associated with that characteristic.7

Our methodology also resonates with the one proposed by Frazzini and Pedersen (2014)

in the construction betting against beta (BAB) factor, since we also rely on ex-ante beta

forecasts to construct a tradable portfolio that earns high alpha with respect to a benchmark

factor model. However, our interpretation of this result is different. Whereas they argue that

the beta premium comes about due to leverage constraints, we argue that this result holds

due to the fact that the benchmark factor model is inefficient.

7 We thank our discussant, Ralph Koijen, for pointing this out to us.
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Third, while the characteristics approach to measure managed portfolio performance (see,

e.g., Daniel, Grinblatt, Titman, and Wermers (1997), DGTW) has gained popularity, the

regression based approach initially employed by Jensen (1968) (and later by Fama and French

(2010) and numerous others) remains the more popular. A good reason for this is that the

characteristics approach can only be used to estimate the alpha of a portfolio when the

holdings of the managed portfolio are known, and frequently sampled. In contrast, the

Jensen-style regression approach can be used in the absence of holdings data, as long as a

time series of portfolio returns are available.

However, as pointed out originally by Roll (1977), to use the regression approach, the multi-

factor benchmark used in the regression test must be efficient, or the conclusions of the

regression test will be invalid. What we show in this paper is that, with the historical return

data, efficiency of the proposed factor-portfolios can be rejected. However, the hedged ver-

sions of the factor-portfolios, that we construct here and which incorporate the information

both from the characteristics and from the historical covariance structure, are more efficient

with respect to both of these information sources than their Fama and French benchmark.

Thus, alphas equivalent to what would be obtained with the DGTW characteristics-approach

can be generated with the regression approach, if the hedged factor-portfolios are used, with-

out the need for portfolio holdings data.

Finally, our paper contributes to the growing literature on how to optimally combine informa-

tion from characteristics into tradable portfolios (see e.g. Gu, Kelly, and Xiu, 2018; Huang,

Li, and Zhou, 2018; Freyberger, Neuhierl, and Weber, 2018; Kozak, Nagel, and Santosh,

2018). The method proposed in this paper suggests combining information from character-

istics and covariances and thereby relates to the literature extracting covariance information

from principal components (Connor and Korajczyk, 1986, 1988; Kelly, Pruitt, and Su, 2018;

Lettau and Pelger, 2018) and the large literature that constructs factors from characteristics.

We discuss the relation of our paper to this literature further in the Conclusion.

2 Theory

Since Fama and French (1993), numerous studies have constructed factor-portfolios as a

way of capturing the priced risk associated with characteristic premia. The procedure for

constructing factor-portfolios involves two steps. The starting point is the identification
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of a particular characteristic ci,t that correlates with average returns in the cross section,

where i ∈ I is the index denoting a particular stock, I is the set of stocks, and t is the

time subscript. The stocks are then sorted according to this characteristic. The second step

involves building a zero-investment portfolio that goes long stocks with high values of the

characteristic and shorts stocks with low value of the characteristic. The claim is that the

return of a factor-portfolio so constructed is the projection on the space of returns R of a

factor ft which drives the investors’ marginal rate of substitution and that as a result is a

source of premia.

According to this hypothesis, this projection should result in a mean variance efficient port-

folio. We argue instead that the usual procedure of constructing proxies for these true

factors should not be expected to produce mean-variance efficient portfolios. As a result

the Sharpe-ratios associated with those factors produce too low a bound for the volatility of

the stochastic discount factor, which diminishes the power of asset pricing tests. To put it

simply, factor-portfolios based on characteristic sorts are likely to pick up sources of common

variation that are not compensated with premia. To illustrate this point we start with a

simple example in Section 2.1, then we generalize it in a formal model in Section 2.2.

2.1 A simple example

Consider a large economy with two pervasive factors, only one of which is priced. Realized

excess returns in period t are given by:

Ri,t = βi,t−1 (ft + λt−1) + βui,t−1f
u
t + εi,t. (1)

where Et−1[ft] = Et−1[fut ] = Et−1[εi,t] = 0 for all i ∈ I. Further, suppose that vart−1 (ft) =

σ2
f , vart−1 (fut ) = σ2

fu , and vart−1 (εi,t) = σ2
ε , covt−1 (ft, f

u
t ) = 0, and covt−1 (εi,t, εj,t) = 0 for

all i 6= j, i, j ∈ I. However, as we show in Section 2.2, the results presented here generalize

to a setting with multiple factors and time-variation in the covariance structure.

In model (1), fut is an unpriced factor and βui,t−1 is the corresponding loading. If βui,t−1 6= 0

for multiple firms, there will be common sources of variation that are not associated with

cross-sectional dispersion in average returns. Indeed, as we discuss in Section 2.2, in a more
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general economy with K factors, there is always a rotation of the factor structure such that

there is one priced factor, and all other K − 1 factors are unpriced.

In this two-factor setting, how can an econometrician construct a proxy for the priced risk

(i.e., ft), assuming that she does not directly observe ft, f
u
t , or the loadings of the individual

assets on these factors? As noted above, the standard procedure, developed in Fama and

French (1993) and employed in numerous other studies, is to sort assets into portfolios on

the basis of some observable characteristic ci,t−1 which is assumed to be a good proxy for

average/expected returns. Consistent with this we will assume that there exists an observable

characteristic ci,t−1 that lines up perfectly with expected returns:

ci,t−1 = κ · Et−1[Ri,t] (2)

In order for equations (1) and (2) to hold at the same time, it must be the case that:

βi,t−1 =
ci,t−1
κ · λt−1

(3)

That is, the assumption that the characteristic model (equation (2)) holds perfectly is equiv-

alent to an assumption that the characteristic is a perfect proxy for the loading on the priced

factor.

Suppose that in this economy there are only six stocks, with equal market capitalizations.

The six stocks have characteristics and loadings on the priced and unpriced factors as illus-

trated in Figure 1. Notice that assets 1 and 2 have identical loadings and characteristics.

The same holds for assets 5 and 6. Suppose further that it is a one-period problem, so we

can drop all t− 1 subscripts on expectations, and on c, β and λ.

In this setting, we now construct a factor-portfolio on the basis of ci, by going long a

value-weighted portfolio of the high-characteristic stocks A1, A2, and A3, and short a value-

weighted portfolio of the low-characteristic stocks A4, A5, and A6.
8 The return of this

portfolio is:

Rc
t =

1

3
×

[
3∑
j=1

Rj,t −
6∑
j=4

Rj,t

]
= 2 · (ft + λ) +

2

3
fut +

1

3

[
3∑
j=1

εj,t −
6∑
j=4

εj,t

]
. (4)

8 Because in this simple example all stocks have equal weight there is no difference between equal and
value weighting. The usual Fama-French construction uses value weighted portfolios.
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Figure 1: Six assets in the space of loadings on priced and unpriced factors.

The factor-portfolio’s return Rc
t does indeed capture the common source of variation in

expected returns, since it loads on ft. However, our point here is that it is likely that it

will also load on the unpriced factor, and will therefore not be mean-variance efficient. In

this example, because of the cross-sectional correlation between the characteristic and the

loading on the unpriced factor—ie., the fact that most high characteristic firms also have a

high loading on the unpriced factor—the constructed factor-portfolio Rc
t also loads on the

unpriced source of common variation fut .9 The factor-portfolio Rc
t loads on the factor ft with

βRc = 2, loads on fut with βuRc = 2
3

and its characteristic exposure is cRc = 2κλ. As a result,

from equation (4), the expected excess return of portfolio Rc
t is E [Rc

t ] = 2λ and the variance

is

var (Rc
t) = 4σ2

f +
4

9
σ2
fu +

2

3
σ2
ε ,

giving the portfolio a Sharpe-ratio of

SRRc =
2λ√

4σ2
f + 4

9
σ2
fu + 2

3
σ2
ε

. (5)

9 Note that a cross-sectional correlation between the characteristic and the loading on the unpriced factor
of exactly zero constitutes the knife-edge case, i.e., it is extremely unlikely.
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This equation shows that the factor-portfolio Rc
t is not mean variance efficient, because it

is exposed to both priced and unpriced risk. Is it possible to improve this portfolio by

eliminating some of the unpriced risk? Consider forming the following hedge-portfolio:

ht =
1

2
[R3,t +R6,t]−

1

2
[R1,t +R4,t] = −2fut +

1

2
[ε3,t + ε6,t]−

1

2
[ε1,t + ε4,t] .

This portfolio thus goes long stocks with low loadings and short stocks with high loadings

on fut . Each leg of this portfolio is characteristic-balanced. Thus ch = 0 and E [ht] = 0. The

loading of the portfolio ht on fut is βuh = −2. We can use ht to improve on Rc
t . Specifically,

consider the portfolio

R∗t = Rc
t + γht. (6)

It is straightforward to show that setting γ = 1
3

results in a portfolio R∗t that has a zero

loading on factor fut , i.e., such that βuR∗ = 0. Moreover

E [R∗t ] = 2λ and var (R∗t ) = 4σ2
f +

7

9
σ2
ε

and thus a Sharpe-ratio of

SRR∗ =
2λ√

4σ2
f + 7

9
σ2
ε

. (7)

Comparing the Sharpe-ratios of Rc
t and R∗t in equations (5) and (7), respectively, one can

immediately see that if σ2
ε is low compared to σ2

fu then SRRct < SRR∗
t
.

In this example, we have chosen γ so as to eliminate the exposure of R∗ to the unpriced factor

fut . To maximize the Sharpe-ratio, we would choose the parameter γ in order to minimize

the variance of R∗t :
10

min
γ

var (R∗t ) ⇒ γ̂ = ρc,h
σ (Rc

t)

σ (ht)
, (8)

where σ (Rc
t) is the standard deviation of returns of the original factor-portfolio Rc

t , σ (ht)

is the standard deviation of the characteristics-balanced hedge-portfolio, and ρc,h is the cor-

relation between the characteristics-sorted factor-portfolio and the hedge-portfolio. Setting

γ = γ̂ guarantees that, under the null of model (1), the Sharpe-ratio of R∗t is maximized. In

10 For a well diversified portfolio for which residual variance is zero, this problem is the same as setting
the loading on the unpriced factor to zero; with residual risk it is not.
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general then, if model (1) holds, it can be shown that the improvement in the Sharpe-ratio

of the original factor-portfolio Rc
t is

SR∗

SRc
=

1√
1− ρ2c,h

. (9)

As long a we can construct a (zero expected excess return) hedge-portfolio which is correlated

with the original factor-portfolio, we can improve the original factor-portfolio. How much

improvement we can achieve is a function of how high a correlation we can achieve between

the original factor-portfolio and the hedge-portfolio (again, assuming the hedge-portfolio has

zero expected excess return). In Section 4.1 we construct hedge-portfolios for each of the

Fama and French (2015) five factors and show that “subtracting them” as in (6) from each

of the factor-portfolios considerably improves the Sharpe-ratio of each of them.

In the following section, we generalize these ideas. Specifically, we show that the cross-

sectional correlation of the characteristic with the loadings on unpriced factors determines

the possible improvement in the Sharpe-ratio of the characteristic-sorted portfolio. If this

correlation is zero, then the characteristic-sorted portfolio will have zero loading on the un-

priced factor, and no improvement will be possible. However, in periods when the correlation

is high, the loading on the unpriced factor will be far from zero, and hedging out this unpriced

risk will improve the efficiency of the portfolio.

2.2 General case

2.2.1 Factor representations

Consider a setting with N risky assets and a risk-free asset whose returns are generated

according to a K factor structure:

Rt = βt−1 (ft + λt−1) + εt (10)

where Rt is N×1 vector of the period t realized excess returns of the N assets; ft is a K×1

vector of the period t unanticipated factor returns, with Et−1[ft] = 0, and λt−1 is the K×1

vector of premia associated with these factors. βt−1 is the N ×K matrix of factor loadings,

and εt is the N×1 vector of (uncorrelated) residuals. We assume that N � K, and that

12



N is sufficiently large so that well-diversified portfolios can be constructed with any factor

loadings.11

As it is well known, there is a degree of ambiguity in the choice of the factors. Specifically,

any set of the factors that span the K-dimensional space of non-diversifiable risk can be

chosen, and the factors can be arbitrarily scaled. Therefore, without loss of generality, we

rotate and scale the factors so that:12

λt−1 =


1

0
...

0

 and Ωt−1 = Et−1[ftf ′t] =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
K

 (11)

We further define:

µt−1 = Et−1[Rt] Σε
t−1 = Et−1[εtεt′] and Σt−1 = Et−1[RtR

′
t] = βt−1Ωt−1β

′
t−1 + Σε

t−1

where µt−1 and σ2
ε are N×1 vectors. Given we have chosen the K factors to summarize the

asset covariance structure, Σε
t−1 = Et−1[εtε′t] is a diagonal matrix, (i.e., with the residual

variances on the diagonal, and zeros elsewhere).

2.2.2 Characteristic-based factor-portfolios

Over that last several decades, academic studies have documented that certain characteris-

tics (market capitalization, price-to-book ratios, past returns, etc.) are related to expected

returns. In response to this evidence, Fama and French (1993; 2015), Carhart (1997), Pastor

and Stambaugh (2003), Frazzini and Pedersen (2014) and numerous other researchers have

introduced factors-portfolios based on characteristics. The literature has then tested whether

these characteristic-weighted factor-portfolios can explain the cross-section of returns, in the

sense that some linear combination of the factor-portfolios is mean-variance-efficient.

11 We note that, in a finite economy, the breakdown of risk into systematic and idiosyncratic is problematic.
See Grinblatt and Titman (1983), Bray (1994) and others.

12 The rotation is such that the first factor captures all of the premium. The scaling of the first factor is
such that its expected return is 1. The other factors form an orthogonal basis for the space of non-diversifiable
risk, but the scaling for all but the first factor is arbitrary.
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Assume that we can identify a vector of characteristics that perfectly captures expected

returns, that is such that: ct−1 = κµt−1 (see equation (2) above). Moreover ct−1 is an

N×1 vector, that is, a single characteristic summarizes expected returns. Following the

usual procedure we assume that the factor-portfolio is formed based on our single vector of

characteristics ct−1 or to put it differently that the weights of the portfolio are assumed to

be proportional to the characteristic. We normalize this portfolio so as to guarantee that it

has a unit expected return:13

wc,t−1 = κ

(
ct−1

c′t−1ct−1

)
=

µt−1
µ′t−1µt−1

(12)

Note that, given this normalization, w′c,t−1µt−1 = 1. That is, the portfolio has unit excess

return, as desired. 14

2.2.3 Relation between the characteristic-based factor-portfolio and the MVE-

portfolio

Assuming no arbitrage in the economy, there exists a stochastic discount factor that prices

all assets, and a corresponding mean-variance-efficient portfolio. In our setting the weights

of the MVE portfolio are:

wMVE,t−1 =
(
µ′t−1Σ

−1
t−1µt−1

)−1
Σ−1t−1µt−1, (13)

which have been scaled so as to give the portfolio a unit expected return. The variance

of the portfolio is σ2
MVE,t−1 =

(
µ′t−1Σ

−1
t−1µt−1

)−1
, so the Sharpe-ratio of the portfolio is

SRMVE =
√
µ′t−1Σ

−1
t−1µt−1.

13 The typical normalization in building factor-portfolios is that they are “$1-long, $1 short” zero invest-
ment portfolios. However since we are dealing with excess returns, this normalization is arbitrary and has
no effect on the ability of the factor-portfolios to explain the cross-section of average returns.

14 The traditional Fama and French methodology constructs factor-portfolios from characteristic sorts. It
is straightforward to show that we can define the characteristics as indicator variables based on quantiles
and express Fama and French factor-portfolios as Equation 12.
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Given our scaling of returns, the βs of the risky asset w.r.t the MVE portfolio are equal to

the assets’ expected excess returns:15

βMVE,t−1 =
covt−1 (Rt, RMVE,t)

vart−1 (RMVE,t)
=

Σt−1wMVE,t−1

wMVE,t−1Σt−1wMVE,t−1
= µt−1

We can then project each asset’s return onto the MVE portfolio:

Rt = βMVE,t−1RMVE,t + ut = µt−1RMVE,t + ut (14)

u is the component of each asset’s return that is uncorrelated with the return on the MVE

portfolio, which is therefore unpriced risk.

Given the structure of the economy laid out in equations (10) and (11),

RMVE,t = f1,t + 1

where f1,t denotes the first element of ft (and the only priced factor). This means that,

referencing equation (14),

βMVE,t−1 = µt−1 = β1,t−1 = κ−1ct−1 (15)

Finally, this means that we can write the residual from the regression in equation (14) as:

ut = βut−1f
u
t + εt (16)

where βut−1 is the N × (K − 1) matrix which is βt−1 with the first column deleted (i.e., the

loadings of the N assets on the K − 1 unpriced factors), and fut is the (K − 1)×1 vector

consisting of the 2nd through Kth elements of ft (i.e., the Unpriced factors).

We will use this projection to study the efficiency of the characteristic-weighted factor-

portfolio. Since both the characteristic-weighted and MVE portfolio have unit expected

returns, the increase in variance in moving from the MVE portfolio to the characteristic

15 For the third equality, just substitute wMVE,t−1 from equation (13) into the second.

15



portfolio can tell us how inefficient the characteristic-weighted portfolio is. From equations

(12) and (14), we have that:

Rc
t = w′t−1,cRt = RMVE,t + (µ′t−1µt−1)

−1µ′t−1ut ⇒

Rc
t −RMVE,t =

(
µ′t−1µt−1

)−1
µ′t−1

[
βut−1f

u
t + εt

]
.

Since, given the characteristic-weighted portfolio and the MVE portfolio have the same

expected return (given our normalization), the only way that Rc
t can be efficient is if its

variance is the same as MVE. However, from the above expression:

vart−1(R
c
t)− vart−1(RMVE,t) =

K∑
k=2

[(c′t−1ct−1)
−1(c′t−1β

u
k,t−1)]

2︸ ︷︷ ︸
≡γ2k,c

σ2
k,t−1 (17)

What is the interpretation of (17)? γk,c is the coefficient from a cross-sectional regression

of the kth (unpriced) factor loading on the characteristic.16 Even though the K factors

are uncorrelated, the loadings on the factors in the cross-section are potentially correlated

with each other, and this regression coefficient could potentially be large for some factors.

Indeed, the necessary and sufficient conditions for the characteristics-sorted portfolio to price

all assets are that

γk,c = 0 ∀ k ∈ {2, . . . , K}.

This condition is unlikely hold even approximately. Moreover, at some points in time the

amount of unpriced risk in characteristic-sorted portfolios may be very high. For example, as

we discuss in Section 3, in the middle of the financial crisis, many firms in the financial sector

had high book-to-market ratios. Thus, their expected return was high (high µ). However,

these firms also had a high loading on the finance industry factor, a large component of

which was likely unpriced. Because µt−1 (the expected return based on the characteristics)

and βuk,t−1 (the loading on the unpriced finance industry factor) were highly correlated, the

characteristics-sorted portfolio had high industry factor risk, meaning that it had a lower

Sharpe-ratio than the MVE portfolio. Because the finance industry volatility was quite high

in this period, the extra variance of the characteristics-sorted portfolio was arguably also

quite large. In Section 4.1, we show how this extra variance can be diagnosed and taken into

account.

16 Note that we get the same expression, up to a multiplicative constant, if we instead regress the unpriced
factor loadings on the the priced factor loadings, or on the expected returns, given the equivalence in equation
(15).
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Even though industries are a likely candidate for sources of common variation, the procedure

proposed in this paper has the considerable advantage of being able to improve upon standard

factors, without the need of identifying specifically what the unpriced sources of common

variation are.

2.2.4 An optimized characteristic-based portfolio

It follows from the previous discussion that the optimized characteristic-based portfolio is

w∗c,t−1 = κ

(
Σ−1t−1ct−1

c′t−1Σ
−1
t−1ct−1

)
=

Σ−1t−1µt−1

µ′t−1Σ
−1
t−1µt−1

(18)

Clearly the challenge is the actual construction of such a portfolio. For instance, there are

well-known issues associated with estimating Σt−1 and using it to do portfolio formation. In

the next subsection, we develop an alternative approach for testing portfolio optimality.

Assuming the characteristics model is correct, and one observes the characteristics, it is

straightforward to test the optimality of the characteristics-sorted factor-portfolio. All that

is needed is some (ex-ante) instrument to forecast the component of the covariances which

is orthogonal to the characteristics. If the characteristics-sorted portfolio is optimal (i.e.,

MVE) then characteristics must line up with betas with the characteristics-sorted portfolio

perfectly. If they do not (and the characteristics model holds) then the portfolio cannot be

optimal.

Moreover, one can improve on the optimality of the portfolio by following the procedure

advocated in this paper, by, first, identifying assets with high (low) alphas relative to the

characteristics-sorted portfolio (again based on the characteristic model) and, second, build-

ing a portfolio with the highest possible expected alpha relative to the characteristics-sorted

portfolio, under the characteristic hypothesis. If this portfolio has a positive realized alpha

then the optimality of the characteristics-sorted portfolio is established. This is the empirical

approach we take in this paper.

In sum, our point is that if a particular characteristic is used to construct a factor-portfolio

then, whenever there is a correlation between the characteristic and the loadings on unpriced

sources of variation, the factor-portfolio will fail to be mean-variance-efficient. Thus the
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factor-portfolio cannot be a proxy for the true underlying stochastic discount factor. In the

next two sections, we show that the point is not just of theoretical interest but that its

quantitative importance is substantial. We do so in two different ways. In the next section

we focus on one particular factor, i.e., the Fama and French (1993) HML factor and show

that it loads heavily on particular industries at particular times. This source of variation

is unpriced and thus one can improve on this factor by removing its industry loadings. In

Section 4.1 we develop a more general procedure based on the previous insights to improve

upon the standard Fama and French (2015) five factors.

3 Sources of common variation: Industry-factors

Asness et al. (2000), Cohen and Polk (1995) and others17 have shown that if book-to-price

ratios are decomposed into an industry-component and a within-industry component, then

only the within-industry component— that is, the difference between a firm’s book-to-price

ratio and the book-to-price ratio of the industry portfolio—forecasts future returns. This

suggests that any exposure of HML to industry-factors is likely unpriced. Therefore, if the

industry exposure of HML was hedged out, it would result in a factor-portfolio with lower

risk, but the same expected return, i.e., with a higher Sharpe-ratio. But empirically, does

HML really load on industry factors?

Figure 2 plots the R2 from 126-day rolling regressions of daily HML returns on the twelve

daily Fama and French (1997) value-weighted industry excess returns. The time period is

1963/07 - 2018/06.18The plot shows that, while there are short periods where the realized

R2 dips below 50%, there are also several periods where it exceeds 90%. The R2 fluctuates

considerably but the average is well above 70%. The upper Panel of Figure 3 plots, for the

same set of daily, 126-day rolling regressions, the regression coefficients for each of the 12

industries. As it is apparent, these coefficients display considerable variation: sometimes the

HML portfolio loads more heavily on some industries than on others.

To provide some clarity, let’s focus on two particular industries: ‘Business Equipment’, which

comprises many of the high technology firms, and ‘Money’ which includes banks and other

17 See also Lewellen (1999), Cohen et al. (2003), and Golubov and Konstantinidi (2018).
18 The industry classification follows Ken French’s data library at http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/Data_Library.

18

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library.
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library.


financial firms. The two industries are selected because HML had the lowest and highest

exposure, respectively, to them in the post-1995 period. Start with ‘Business Equipment’

and focus in the late 1990s and 2000. As one can see the regression coefficient of HML on this

particular industry started falling in the mid to late 90s, as the “high-tech” sector started

posting impressive returns. These firms were, in addition, heavy on intangible capital which

was not reflected in book. As their book-to-market shrank, these companies were classified

into the growth portfolio: the L in HML became a short on high tech companies, which

turned out to dominate the ‘Business Equipment’ industry. Simultaneously the volatility

of returns in this industry started increasing consistently around 1997, reaching a peak in

early 2001, as illustrated in Figure 4, which plots the rolling-126 day volatility of returns.19

The annualized volatility of ‘Business Equipment’ returns hovered below 20% for almost two

decades but then shot up in the mid 90s to well above 60%, at the peak of the Nasdaq

cycle. The increase in the absolute value of the regression coefficient and the high volatility

of returns result in the high R2 of the regression of HML on industry-factors.

The behavior of the ‘Money’ industry during and after the Great Recession of 2008 is an

even more striking example of the large industry effect on HML. The regression coefficient

associated with ‘Money’ increased dramatically between 2007 and early 2009 as stock prices

for firms in this segment collapsed and those firms quickly became classified as value.20

As shown in Figure 4, the volatility of returns also increased dramatically. As a result of

these two effects, ‘Money’ explained a substantial amount of the variation of HML returns

during those years. Indeed Figure 5 plots the R2 of a regression of the return on HML on

the ‘Money’ industry excess returns alone. Between late 2008 and late 2010, the R2 was

well above 60%. Why was it so high? As of December 2007, the top 4 firms by market

capitalization in the “Money” industry were J.P. Morgan, Bank of America, Citigroup and

Wells Fargo. Three of these four were in the large value portfolio portfolio (Big/High-BM

to use the standard terminology). Interestingly, the one that wasn’t was Wells Fargo – it

was in the middle portfolio. While the market capitalization of these firms fell dramatically

through 2008, they remained large and, particularly as the volatility of the returns on the

‘Money’ industry increased, these firms and others like them drove the returns both of the

HML portfolio and the ‘Money’ industry portfolio.

19 Note that for this plot, like the other “rolling” plots in this section, the x-axis label indicates the date
on which the 126-day interval ends.

20 As shown in Laeven and Huizinga (2009) banks during the crisis used accounting discretion to avoid
writing down the value of distressed assets. As a result the value of bank equity was overstated. The market
knew better and as a result the book-to-market ratio of bank stocks shot up during the crisis.
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However, there were firms in the ‘Money’ industry that did not have high book-to-market

ratios, even in the depths of the financial crisis. For example, in 2008 American Express

(AXP) and UnitedHealth Group (UNH) were both “L” (low book-to-market) firms. Yet

both AXP and UNH had large positive loadings on HML at this point in time (see Table

1). The reason is that, at this time, both AXP and UNH covaried strongly with the returns

on the ‘Money’ industry, as did HML. Our hedge-portfolio construction effectively picks

up this variation within the ‘Money’ industry to construct hedge-portfolios for each of the

Fama and French (2015) factors, as illustrated in the example in the previous section. In

particular, we construct a characteristics-balanced hedge-portfolio, h. The short side of the

characteristics-balanced portfolio features firms with high loadings on HML and low and

high book-to-market, such as American Express and Citi, respectively. Loosely speaking, in

the example in Figure 1, Citi would be like A1 (ie., a value stock in the finance industry),

and American Express would be like asset A4 (a growth stock in the finance industry). The

characteristics-balanced hedge-portfolio goes long both value and growth stocks with low

loadings on HML, and goes short value and growth firms with high loadings, such as Citi

and Amex.21

4 Empirical results

4.1 Hedge-portfolio construction

The empirical goal is to construct the best possible hedge-portfolios, as introduced in model

(1). To achieve this, if Rc
t is the return of a well-diversified portfolio, we only need to

maximize the hedge-portfolio’s loading on the unpriced source of common variation, fut .

However, in practice, we do not observe the factors ft or fut , and neither stocks’ loadings on

those factors. What we can observe ex-ante, though, are the characteristics and an estimate

of individual stocks’ loadings on a candidate factor-portfolio. Notice that the loading on a

candidate factor-portfolio is a linear combination of loadings on ft and fut . To disentangle

the two from each other, we use a procedure first introduced by Daniel and Titman (1997).

The idea is to use the ex-ante loading of each stock i on the returns of the candidate factor-

21 By maximizing the negative loading on HML, subject to the constraint that the the portfolio be book-
to-market neutral, we pick up the unpriced part of the HML-exposure. In this simple example the unpriced
component of HML is money-industry return.
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portfolio Rc
t and construct portfolios that maximize the loading on Rc

t . At the same time,

these portfolios are constructed in such a way that they have zero exposure to characteristics,

and consequently zero expected return if the characteristic model holds as in equation (2).

Effectively, this leads to a portfolio the has zero loading on the priced factor, and since it is

correlated with the candidate factor-portfolio, it must be the case that it is has a non-zero

loading on the unpriced factor. Thereby it can be used to hedge out unpriced risk.

In our empirical exercise, we focus on the Fama and French (2015) five factor model and we

follow these authors in the construction of their factor-portfolios. In the following, we will

explain the procedure based on the example of HML. We first rank NYSE firms by their, in

this case, book-to-market (BEME) ratios at the end of December of a given year and their

market capitalization (ME) at the end of June of the following year. Break-points are selected

at the 33.3% and 66.7% marks for both the book-to-market and market capitalization sorts.

Then, at the end of June of a given year, all NYSE, Amex and Nasdaq stocks are placed into

one of the nine resulting bins. There is an important difference though in the way the sorting

procedure is implemented relative to Fama and French (1992, 1993 and 2015) or Daniel and

Titman (1997) and it is that our characteristics-sorted portfolios are industry-adjusted. That

is, whether a stock has, for example, a high or low book-to-market ratio depends on whether

it is above or below the corresponding value-weighted industry average.22 Our industries are

the 49 industries of Fama and French (1997).

Next, each of the stocks in one of these nine bins is sorted into one of three additional bins

formed based on the stocks’ expected future loading on the HML factor-portfolio. This last

sort results in portfolios of stocks with similar characteristics (BEME and ME) but different

loadings on HML. The firms remain in those portfolios between July and June of next year.

Finally, we construct our hedge-portfolio for the HML factor-portfolio, as in the example in

section 2, by going long an equal-weight combination of all low-loading portfolios and short

an equal-weight combination of all high-loading portfolios. Thereby, the long and short sides

of this portfolio have zero exposure to the characteristic and we maximize the spread in

expected loading on the unpriced sources of common variation.

The hedge-portfolios for RMW and CMA are constructed in exactly the same way. For

SMB, we follow Fama and French (2015) and construct three different hedge-portfolios: one

22 The reason we use industry-adjusted characteristics is because they have been shown to be better proxies
of expected returns (see Cohen et al. (2003)).
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where the first sorts are based on BEME and ME, and then within these 3x3 bins, we

conditionally sort on the loading on SMB. The second and third versions use OP and INV

instead of BEME in the first sort. Then, an equal weighted portfolio of the three different

SMB hedge-portfolios is used as the hedge-portfolio for SMB. We do exactly the same for

the hedge-portfolio for the market.

Clearly a key ingredient of the last step of the sorting procedure is the estimation of the

expected loading on the corresponding factor-portfolio. Our purpose is to obtain forecasts

of loadings in the five factor model of Fama and French (2015):

Rp,t = αp + βp,MktRF ·MktRFt + βp,HML ·HMLt + βp,SMB · SMBt

+ βp,CMA · CMAt + βp,RMW ·RMWt + εp,t
(19)

We instrument future expected loadings with pre-formation loading forecasts of each stock

with the candidate factor-portfolios. The resulting estimation method is intuitive and is

close to the method proposed by Frazzini and Pedersen (2014) to estimate individual-firm

market betas. These authors build on the observation that correlations are more persistent

than variances23 and propose estimating covariances and variances separately. They then

combine these estimates to produce the pre-formation loadings. Specifically, covariances

are estimated using a five-year window with overlapping log-return observations aggregated

over three trading days, to account for non-synchronicity of trading. Variances of factor-

portfolios and stocks are estimated on daily log-returns over a one-year horizon. In addition,

we introduce an additional intercept in the pre-formation regressions for returns in the six

months preceding portfolio formation, i.e., from January to June of the rank-year (see Figure

1 in Daniel and Titman (1997) for an illustration). Further, we use constant-allocation and

constant-weight factor-portfolio returns, as in Daniel and Titman (1997).24 We refer to this

estimation methodology as the ‘high power’ methodology. Intuitively, if our forecasts of

future loadings are very noisy, then sorting on the basis of forecast-loadings will produce no

variation in the actual ex-post loadings of the sorted portfolios. In contrast, if the forecasts

are accurate, then our hedge-portfolio—which goes long the low-forecast-loading portfolio

and short the high-forecast-loading portfolio—will indeed be strongly correlated with the

corresponding FF portfolio. Also, since this portfolio is “characteristics-balanced”, meaning

the long- and short-sides of the portfolio have equal characteristic-exposure. Thus, if the

23 See, among others, de Santis and Gerard (1997)
24 See Appendix A.3 for details.
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characteristic model is correct, the long-short hedge-portfolio will have zero expected excess

return. Such a portfolio would be an optimal hedge-portfolio, in that it maximizes the

correlation with the FF portfolio subject to the constraint that it is characteristics-neutral.

Also, such a portfolio would have the highest possible likelihood of rejecting the FF model,

under the hypothesis that the characteristic model is correct.

The estimation method implemented here contrasts with the one used by Daniel and Titman

(1997) or Davis, Fama, and French (2000) in various aspects. The traditional approaches

use as instruments for future factor-loadings the result of regressing stock excess returns

on factor-portfolio excess returns over a moving fixed-sized window based on, e.g., 36 or 60

monthly observations, skipping the most recent 6 months.25 In addition, this traditional set

of hedge-portfolios is not industry-adjusted. We refer to this method, which is effectively the

one used by Daniel and Titman (1997), as the ‘low power’ method and use it to construct

an alternative set of hedge-portfolios.

In sum, the high and low power sets of hedge-portfolios differ in two dimensions: the estima-

tion method for the expected loading and whether the characteristics are industry-adjusted

or not. In what follows, we examine to what extent these portfolios differ and whether we

succeed in maximizing our ability to hedge out unpriced sources of common variation.

4.2 Average returns and characteristics of hedge portfolios

Table 2 presents average monthly excess returns for the portfolios that we combine to form

our hedge-portfolios. Each panel presents a set of sorts with respect to size and to one

characteristic—either book-to-market (Panel A), profitability (Panel B) or investment (Panel

C)—and the corresponding loading.

For example, to form the 27 portfolios in Panel A, we first perform independent sorts of

all firms in our universe into three portfolios based on book-to-market (BEME) and three

portfolios based on size (ME), with NYSE breakpoints. We then sort, within each of these

nine portfolios, into three sub-portfolios, each with an equal number of firms, based on

the ex-ante forecast loading on HML for each firm. In the upper subpanels, the loading

sorts are estimated using the low-power methodology and characteristics are not industry-

25 Notice that in contrast, the high power method avoids discarding the most recent data.
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adjusted; and in the lower panels we use the high-power methodology to forecast loadings

and characteristics (BEME, OP and INV) are industry-adjusted.

For each of the 27 portfolios in each subpanel, we report value-weighted monthly excess

returns. The column labeled “Avg.” gives the average across the 9 portfolios for a given

characteristic.

First, note that the average returns in the “Avg.” column are consistent with empirical

regularities well known in the literature: the average returns of value portfolios are higher

than those of growth, historically robust-profitability firms beat weak-profitability firms,

and historically conservative investment firms beat aggressive investment firms. In Table

4 we present the ex-post loadings. We see that there are large differences between the

ex-post betas of the low-forecast-loading (“1”) and high-forecast-loading (“3”) portfolios

for all but one size-characteristic portfolios, particularly when these sorts are done using

the high-power-methodology. For the value, profitability, and investment sorts, the ex-post

differences in loading of the “3” and “1” portfolios are 0.96, 0.8, and 1.06 respectively.

Given these large differences in loadings for the high-power sorts, it is remarkable that the

difference in the average monthly returns for the high- and low-loading portfolios are 8,

10, and 2 bp/month for the value, profitability and investment-loading sorts, respectively.26

This is consistent with the Daniel and Titman (1997) conjecture that average returns are a

function of characteristics, and are unrelated to the FF factor loadings after controlling for

the characteristics.

Moreover, these small observed return differences may be related to the fact that, in sorting

on factor loadings, we are picking up variation in characteristics within each of the nine

size-characteristics-sorted portfolios. For example, among the firms in the small-cap, high

book-to-price portfolios in Panel A (Table 3), there is considerable variation in book-to-

market ratios. In sorting into sub-portfolios on the basis of forecast HML-factor loading,

we are undoubtedly picking up variation in the characteristic of the individual firms, since

characteristics and factor-loadings are highly correlated (i.e, value firms typically have high

HML factor loadings).

We explore this possibility further in Table 3, where we show the average of the relevant

characteristic for each of the portfolios. Consistent with our hypothesis, there is generally

26 For comparison, the average excess returns of the HML, RMW, and CMA portfolios over the same
period are 33, 27, and 23 bp/month, respectively.

24



a relation between factor loadings and characteristics within each of the nine portfolios. It

becomes apparent that for both the low and the high power methodology, the loading-sorts

still pick up some variation in characteristics (raw characteristics for the low and industry-

adjusted for the high power methodology).

4.3 Hedge portfolios—postformation loadings

We estimate the post-formation loadings by running a full-sample time series regression of the

monthly excess returns for each of the portfolios on the Fama and French (2015) five factors

(see equation (19)). To compare whether our high power methodology results in larger

dispersion of the post-formation loadings when compared to the low power methodology,

Figure 6 shows the postformation loadings for each of the 27 portfolios. Panels A and B

correspond to the low and high power methodology, respectively.

Consider for example the top panels in Figure 6, which focus on the loadings on HML for

each of the two estimation methodologies. There are 3 × 3 groups of estimates—connected

by lines—each corresponding to a particular book-to-market × size bin. Each of those lines

have three points corresponding to the three portfolios from the conditional sort on ex-ante

loadings. The plot thus reports book-to-market on the y-axis for each of the 27 portfolios

and the post-formation loading on the x-axis. The actual point estimates for the loadings

on HML, together with the corresponding t-statistics, are reported in Table 4 Panel A. To

illustrate the point further focus on the loadings on HML for the large growth portfolios

(portfolio (1,3)). The low power methodology generates post-formation loadings on HML,

βHML, for each of the three portfolios of −0.44, −0.22 and 0.02, respectively. The high

power methodology instead generates post-formation HML loadings of −0.43, −0.08 and

0.46, respectively. The last column of the panel reports the post-formation loading on HML

of the portfolio that goes long the low loading portfolio and short the high loading portfolio

amongst the large growth firms. The loading is −0.46 for the low power methodology with

a t−statistic of −8.85. For the high power methodology the same post-formation loading is

−0.89 with a t−statistic of −17.4.

Notice that, reassuringly, both methodologies generate a positive correlation between pre-

and post-formation loadings for each of the book-to-market and size groupings. This positive

correlation between pre- and post extents to the case of CMA. But in the case of the loadings
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on RMW, the low power methodology does not produce a consistent positive association

between pre- and post-formation loadings, whereas the high power methodology does. Indeed

turn to Table 4 Panel B, which reports the post-formation loadings27 on the profitability

factor, RMW, and focus on the portfolios (3,1), that is small firms with high operating

profitability. The low power methodology generates loadings of 0.29, 0.4 and 0.27, a non-

monotone relation. Instead the post-formation loadings for the same set of portfolios as

estimated by the high-power methodology are −0.1, 0.35 and 0.36.

As it is readily apparent from Figure 6, the high power methodology generates substantially

more cross-sectional dispersion in post-formation loadings than the low power methodology,

which is key to generating hedge-portfolios that are maximally correlated with the candidate

factor-portfolio. Each of the panels of Table 4 reports the difference in the post-formation

loadings between the low and and high pre-formation loading sorted portfolio for each of

the characteristic-size bin. Consistently, this difference is much larger with the high power

methodology than the low. In sum then our high power methodology forecasts future loadings

better than the one used by Daniel and Titman (1997) or Davis et al. (2000) and, as a result,

they translate into more efficient hedge-portfolios as well as asset pricing tests with higher

power.

4.4 Pricing results

In this subsection we describe the two key empirical results of this paper. First we show

how the use of the high power methodology advanced in this paper to forecast loadings

increases the power of standard asset pricing tests. We illustrate how the standard low

power methodology used to estimate the loadings leads to a failure to reject asset pricing

models and thus imposes too low a bound on the volatility of the stochastic discount factor.

We do so by constructing characteristics-balanced portfolios and showing that the ability of

standard asset pricing models to properly account for their average returns depends critically

on whether one uses the low or high power methodology.

Our second contribution is to show how to improve the Sharpe-ratios of factor-portfolios by

combining them optimally with the hedge-portfolios. We argue that these hedged factor-

27 The alphas of these regressions are also reported in Table 4. We will turn to the asset pricing implications
in Section 4.4.1.
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portfolios have a better chance of spanning the mean variance frontier than the standard

factor models proposed in the literature.

4.4.1 Pricing the characteristics balanced hedge-portfolios

We turn now to the characteristics-balanced hedge-portfolios. We construct them as follows:

for each of the five factors in the Fama and French (2015) model we form a portfolio that goes

long the portfolios with low loading forecast on the corresponding factor-portfolio, averaging

across the corresponding characteristic and size bins, and short the high loading forecast

portfolios. For instance consider the line labeled HML in Table 5. There, we take a long

position in the low loading portfolios, weighting the corresponding nine book-to-market size

sorted portfolios equally, and a short position in the nine high loading portfolios in the same

manner.

We then run a single time series regression of the monthly returns of these hedge-portfolios

hk,t on the returns of the five Fama and French (2015) factor-portfolios. Table 5 reports the

alphas and loadings as well as the corresponding t−statistics. Panel A focuses on the set of

hedge-portfolios where pre-formation loadings are estimated with the low power methodology

and Panel B focuses on the high power one. We first assess the hedge-portfolios’ ability to

hedge out unpriced risk by looking at their post-formation loading on the corresponding

factor. As expected, each hedge-portfolio exhibits a strong negatively significant loading on

their corresponding factor. For example, the hedge-portfolio for HML has a loading on HML

of −0.54 with a t−statistic of −19.3, for the low power methodology. All of these numbers

are larger in magnitude for the high power methodology - in the case of HML, the loading

is −0.96 now, with a t−statistic of −34.89. To check whether these are unpriced, as was

intended by constructing the portfolios to be characteristic-neutral, we turn to the average

realized excess-return of the test-portfolios. It is statistically indistinguishable from zero for

all hedge-portfolios.

This directly translates into pricing implications, as indicated by the alphas. Whereas,

when using the low-power methodology, the five Fama and French factors price all hedge-

portfolios correctly, the model fails to price four out of five of the high-power long-short
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hedge-portfolios.28 The last line of each of the panels constructs equal weighted combinations

of these portfolios. The alphas for all of them are strongly statistically significant in the high

power test, whereas this is not the case for the low power methodology. For instance, when we

consider the equal-weight combination of four factors (HML,RMW, CMA and the market),

the monthly alpha is 0.19 with a t-statistic of 6.28.

4.4.2 Ex-ante determination of the optimal hedge-ratio

Now that the hedge-portfolios’ effectiveness to hedge out unpriced risk is established, the

next step is to construct improved or hedged factor-portfolios, i.e.,

R∗k,t = Rc
k,t − γ̂ ′k,t−1ht

where k ∈ {HML,RMW,CMA,SMB,MktRF}.

The optimal hedge ratio γ̂k,t−1 is determined ex-ante, in the spirit of equation (8). We em-

ploy the same loading forecast techniques as described before to forecast γ̂k,t−1, i.e., we first

calculate five years of constant-weight and constant-allocation pre-formation returns of Rc
k,t

and ht. We then calculate correlations over the whole five years of 3-day overlapping return

observations and variances by utilizing only the most recent 12 months of daily observations.

Note that this is done in a multi-variate framework, i.e., we consider the covariance of each

candidate factor-portfolio with all five hedge-portfolios, to account for the correlation struc-

ture among the hedge-portfolios. Consequently, both γ̂k,t−1 and ht are length-K vectors,

where K=5 in the case of the Fama and French model examined here. Note further, that

the returns of the factor-portfolios R∗k,t are (approximately) orthogonal to the returns of the

hedge-portfolios hk,t. The reason why they are only approximately orthogonal is because the

γ̂k,t−1 is estimated ex-ante, i.e., up to t− 1.

4.4.3 Hedged Fama and French factor-portfolios

Table 6 reports key statistics on the unhedged (Rc
t) and hedged (R∗t ) versions of the five

factor-portfolios’ returns. For each of the five Fama and French (2015) factors we report

28 The only one for which the Fama and French model cannot be rejected is the “SMB” portfolio. The
fact that the Fama and French model succeeds in pricing hSMB is consistent with the notion that there is
little to price there, as we know that the size premium has historically been relatively weak.
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the annualized average returns in percentages, the annualized volatility of returns and the

squared annualized Sharpe-ratio. The second column reports the same three quantities for

the improved factor-portfolios, R∗t . These portfolios are constructed exactly as in expression

(6).29

When we move fromRc
k,t toR∗k,t, we see that the mean return of all factor-portfolios decreases,

but the volatility also decreases considerably more. This leads to an increase in the Sharpe-

ratio for each of the individual Fama and French factor-portfolios. For example, the squared

Sharpe-ratio of the improved version of HML is 0.28, where the original HML factor’s squared

Sharpe-ratio is 0.17.

While the result that we improve on each factor-portfolio individually is promising, the

ultimate goal of the exercise was to move the candidate factor representation of the stochastic

discount factor closer to being mean-variance efficient. Hence, in the bottom panel of Table

6, we compute the in-sample optimal combination of both the original Fama and French

factors (column Rc
k,t) and the improved versions (R∗k,t). The maximum achievable squared

Sharpe-ratio with the original Fama and French factors in the sample period covered in this

paper (1963/07 - 2018/06) turns out to be 1.21. The squared Sharpe-ratio of the optimal

combination of the improved versions of these five factors is 2.26.30

Notice that each individual improved factor-portfolio R∗k,t is perfectly tradable, as all infor-

mation used to construct them is known to an investor ex-ante. Only the weights of optimal

combinations of the five (traditional as well as improved) factor-portfolios, as reported in

the bottom panel of Table 6, are calculated in-sample. Additionally, we want to emphasize

that the way we construct our portfolios is very conservative, in that we only rebalance once

every year—in order to be consistent with the rules of the game set by Fama and French.

4.4.4 Redundancy of HML

Fama and French (2015) find that HML is redundant, in that it is spanned by the other

factor portfolios. Table 7 shows that we can replicate this result based on our extended

sample. The weight of HML in the ex-post optimal combination, based on Markowitz

29 We calculate the Sharpe-ratio of the factor-portfolio R∗t using the usual procedure rather than using
expression (9), which only holds under the null of model (1).

30 We can reject the hypothesis of equal Sharpe-ratios with a p-value ¡ 0.01, using the time-series bootstrap
procedure of Ledoit and Wolf (2008) with 5000 draws and a block-length of 6.
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optimization, is 0.0 % when we use the original Fama and French (2015) five factors (column

Rc
k). However, if we use the improved five factors (column R∗k), HML∗’s weight increases to

12.0 %, roughly as big as the weight on the market and SMB.

We can confirm this result by running spanning regressions in Table 8. The original HML

is indeed spanned by the other four factor portfolios (column 1). It is similarly subsumed by

the other four improved factors (column 2). The improved version, i.e., HML∗ (columns 3

and 4) can neither be explained by the original nor the improved four other factors. Hence,

the improved version of HML is not redundant anymore.

4.5 Industry-neutral factor-portfolios

In Section 3, we argued that industry was one source of common variation that was likely

to be unpriced. Since we know that there are periods in which the Fama and French

factor-portfolios strongly load on industry-portfolios, a natural exercise is to construct factor-

portfolios that are industry-neutral. In this section, we construct industry-neutral versions of

factor-portfolios and compare their performance with the performance of the hedged factor-

portfolios constructed in this paper.

To construct industry-neutral factor-portfolios we ex-ante hedge out any exposure to the 12

industries of all 5 FF factor-portfolios. Define the returns of the industry-neutral portfolio,

Rc−IN
k,t , as:

R
(c−IN)
k,t = Rc

k,t − β′k,t−1R
IND
t , (20)

where k ∈ {HML,RMW,CMA,SMB,MktRF}, RIND
t is a (12 × 1) vector with excess

returns of all 12 industries, βk,t−1 is the ex-ante optimal industry hedge. Analogous to the

previous exercises, βk,t−1 is estimated every June 30th, using correlations over the previous

five years of 3-day overlapping return observations and variances by using only the most

recent 12 months of daily observations.31

In the last column of Table 6, we present the mean, volatility and squared Sharpe-ratio for all

R
(c−IN)
k,t and the in-sample optimal combination of the 5 factors.32 Hedging out industry risk

31 We also employ constant-weight, constant-allocation (as of June 30th) pre-formation returns of the
factor- and industry-portfolios.

32 Note, that we do not hedge out industries from the market, as it is explained to almost 100% by
industries and we would be left with an approximately 0-variance portfolio.
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leads to an improvement in the squared Shape-ratio for HML, SMB and CMA, consistent

with the hypothesis that it is generally unpriced risk. However, for all factor-portfolios the R∗

outperforms R(c−IN); that is the use of our hedge portfolio results in a greater improvement

in Sharpe-ratio than simply hedging out industry exposure. Moreover, the ex-post optimal

combination of the hedged FF portfolios shows a far more dramatic improvement over the

original FF portfolios, compared to the ex-post optimal combination of industry-hedged

portfolios.

These results suggest that simply hedging out industry exposure is not optimal for two

potential reasons. First, some component of the industry factors is likely priced. By creating

industry-neutral portfolios, we indistinguishably hedge out both the priced and unpriced

components, thereby causing a strong decrease in the mean of the factor-portfolios. Second,

there can be other sources of common variation that are not related to industries and do

not command a premium. The results of this sections suggest that the hedge-portfolios

constructed in Section 4.1 are superior in identifying and hedging out sources of unpriced

risk.

5 Conclusions

A set of factor-portfolios can only explain the cross-section of average returns if the mean-

variance efficient portfolio is in their span. There are numerous sources of information

from which to construct such a set of factor-portfolios. In the cross-sectional asset pricing

literature, the most widely utilized source of information used to form factor-portfolios have

been observable firm characteristics such as the ones we examine here: firm size, book-

to-market ratio, and accounting-based measures of profitability and investment. Portfolios

formed going long high-characteristic firms and short low-characteristic firms ignore the

forecastable part of the covariance structure, and thus cannot explain the returns of portfolios

formed using the characteristics and loading-forecasts based on historical returns. Factor-

portfolios formed in this way are therefore inefficient with respect to this information set.

In the empirical part of this paper, we have examined one particular model in this literature:

the five-factor model of Fama and French (2015). Our empirical findings show that the

factor-portfolios that underlie this model contain large unpriced components, which we show

are at least correlated with unpriced factors such as industry risk. When we add information
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from the historical covariance structure of returns we can vastly improve the efficiency of

these factor-portfolios, generating a portfolio that is orthogonal to the original five factor-

portfolios and has a squared Sharpe-ratio of 2.26 − 1.21 = 1.05. It is important to note

that we are extremely conservative in the way in which we construct these hedged portfolios:

following Fama and French (1993), we form portfolios annually, and value-weight them. By

hedging out the ex-ante identifiable unpriced risk of the five factor-portfolios, we increase

the annualized squared Sharpe-ratio achievable with these factor-portfolios.

Hedged factor-portfolios like those we construct here raise the bar for standard asset pricing

tests. By the logic of Hansen and Jagannathan (1991), we can bound the pricing kernel

variance by the squared Sharpe-ratio of the hedged portfolios—2.26 (annualized).

Moreover, because we are removing sources of common variation when we hedge characteristic-

sorted factor-portfolios, we are likely making it more challenging to find economic explana-

tions. For example, we showed that the unhedged HML portfolio is strongly correlated with

the return to the finance industry in the financial crisis. This correlation is far smaller for

our hedged portfolio. It seems plausible that the marginal utility of economic agents was

closely linked to the returns of the finance industry, particularly in this period. Because

we show that the risk associated with the finance industry does not actually earn the value

premium, it is a component of HML that is largely orthogonal to this. This characterization

refines the set of possible explanations for the value premium, and for other characteristic

premia.

In addition, the hedged factor-portfolios we generate can serve as an efficient set of bench-

mark portfolios for doing performance measurement using Jensen (1968) style time-series

regressions. Such an approach will deliver the same conclusions as the characteristics ap-

proach (Daniel, Grinblatt, Titman, and Wermers, 1997), while maintaining the convenience

of the factor regression approach.

Our approach is essentially univariate: Fama and French (2015) construct one characteristic-

sorted portfolio per characteristic, as do other studies in this literature.33 We demonstrate

that these portfolios are inherently inefficient as a result of their loading on unpriced factors.

A natural question, and one we do not address here, is how to optimally combine these port-

folios. A number of recent papers address this question, including Gu, Kelly, and Xiu (2018),

33 See the references in footnote 1.
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Huang, Li, and Zhou (2018), Freyberger, Neuhierl, and Weber (2018) and Kozak, Nagel, and

Santosh (2018). However, each of these methods relies on combining characteristic-sorted

portfolios constructed without reference to the firm-level covariance information that can

be extracted from historical returns. Thus, our method should allow improvement of the

component portfolios that go into these analyses.

One method for combining characteristics to generate a vector of firm level expected return

forecasts is proposed by Brandt, Santa-Clara, and Valkanov (2009, BSV). We note that

the resulting BSV portfolio, like the single-characteristic-sorted portfolios, does not use the

firm-level covariance information that can be extracted from historical returns. Thus, our

results here suggest that it should be possible to construct a BSV-hedge-portfolio which

would be strongly correlated with the BSV-portfolio, but which would have zero expected

excess return. We anticipate that combining such a hedge-portfolio with the BSV-portfolio

should improve the performance of the BSV-portfolio by removing the unpriced risk that

naturally enters any portfolio formed on characteristics alone.
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Figure 2: Rolling regression R2s – HML returns on industry returns This figure
plots the R2 from 126-day rolling regressions of daily HML returns on the twelve daily Fama
and French (1997) industry excess returns. The time period is 1963/07 - 2018/06.
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Figure 3: HML loadings on industry-portfolios. The upper panel of this figure plots
the betas from rolling 126-day regressions of the daily returns to the HML factor-portfolio on
the twelve daily Fama and French (1997) industry excess returns over the 1963/07 - 2018/06
time period. The lower panel plots only the betas for the Money and Business Equipment
industry portfolios, and hides the other 10 industry-portfolio betas.
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Figure 4: Volatility of the money and business equipment industry-portfolios.
This figure plots 126-day volatility of the daily returns to the Money and the Business Equipment factors

over the January 1964-June 2017 time period.
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Figure 5: Rolling regression R2s – HML returns on Money industry returns. This

figure plots the R2 from 126-day rolling regressions of daily HML returns on daily Money industry excess

returns from the 12 Fama and French (1997) industry returns. The time period is 2000/01 - 2018/06.
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Figure 6: Ex-post loading vs. characteristic. This figure shows the time-series average

of post-formation factor-loading on the x-axis and the time-series average of the respective characteristic

on the y-axis of each of the 27 portfolios formed on size, characteristic (book-to-market/operating prof-

itability/investment) and factor-loading. Panel A uses the low power methodology and B uses the high

power methodology. The first row uses sorts on book-to-market and HML-loading, the second one operating

profitability and RMW-loading and the last one investment and CMA-loading.
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Tables

Table 1: Low book-to-market stocks in the Money industry as of June 2008. The

first column reports the largest fifteen stocks in the Money industry in the low book-to-market bin, sorted

by market capitalization. The second column reports the book-to-market and the third reports the HML

loading-portfolio to which the stock belongs as of June 30th, 2008.

Firm BE/ME βHML-portfolio
American Express 0.19 3
United Health 0.27 3
Aflac 0.29 3
Charles Schwab 0.13 3
Franklin Resources 0.27 3
CME Group 0.34 3
Aetna 0.36 2
Express Scripts Holding 0.04 1
Northern Trust 0.27 3
T. Rowe Price 0.17 3
TD Ameritrade 0.18 2
Cigna 0.34 1
Navient 0.36 3
Humana 0.32 2
Nasdaq 0.32 2
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Table 2: Average monthly excess returns for the test portfolios.
Stocks are sorted into 3 portfolios based on the respective characteristic - book-to-market (BEME), operating profitability (OP) or investment (INV)
and independently into 3 size (ME) groups. These are depicted row-wise and indicated in the first two columns. Last, stocks are sorted into 3 further
portfolios based on the loading forecasts, conditional on the first two sorts. These portfolios are displayed column-wise. The last column shows average
returns of all 9 respective characteristic-portfolios. The last row shows averages of all 9 respective loading-portfolios. In the top panels we use the low
power and in the bottom panels we use the high power methodology. The sample period is 1963/07 - 2018/06.

L
ow

p
ow

er

Panel A: HML

Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 0.46 0.74 0.59 0.57

2 0.54 0.69 0.62

3 0.45 0.52 0.5

2 1 0.82 0.95 0.95 0.75

2 0.78 0.75 0.82

3 0.55 0.53 0.61

3 1 1.07 1.01 1.03 0.89

2 0.91 0.92 1

3 0.83 0.56 0.64

Avg. 0.71 0.74 0.75

Panel B: RMW

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 0.68 0.83 0.71 0.6

2 0.72 0.63 0.67

3 0.37 0.26 0.53

2 1 1.03 0.88 0.81 0.73

2 0.74 0.75 0.8

3 0.51 0.41 0.6

3 1 1.02 0.97 1.06 0.81

2 0.8 0.81 0.94

3 0.53 0.52 0.63

Avg. 0.71 0.67 0.75

Panel C: CMA

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 0.98 0.97 0.96 0.81

2 0.87 0.85 0.72

3 0.67 0.63 0.61

2 1 1.03 0.84 1.01 0.78

2 0.92 0.84 0.83

3 0.52 0.45 0.62

3 1 0.67 0.7 0.58 0.62

2 0.66 0.63 0.76

3 0.49 0.45 0.6

Avg. 0.76 0.71 0.74

H
ig

h
p

ow
er

Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 0.32 0.66 0.7 0.55

2 0.48 0.65 0.75

3 0.42 0.55 0.4

2 1 0.78 0.86 0.94 0.74

2 0.67 0.79 0.85

3 0.53 0.6 0.59

3 1 1.05 1.03 1.02 0.91

2 1.01 0.84 1.07

3 0.8 0.72 0.63

Avg. 0.68 0.74 0.77

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 0.61 0.88 0.77 0.65

2 0.58 0.72 0.73

3 0.38 0.65 0.51

2 1 0.84 1.04 0.9 0.74

2 0.74 0.77 0.82

3 0.44 0.49 0.61

3 1 0.92 0.99 1.04 0.76

2 0.73 0.8 0.9

3 0.5 0.46 0.5

Avg. 0.64 0.75 0.75

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 0.88 0.94 0.95 0.77

2 0.86 0.87 0.78

3 0.57 0.53 0.51

2 1 0.96 0.98 0.95 0.78

2 0.88 0.86 0.8

3 0.53 0.49 0.6

3 1 0.63 0.79 0.68 0.63

2 0.6 0.73 0.66

3 0.49 0.51 0.61

Avg. 0.71 0.74 0.73
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Table 3: Average monthly characteristics for the test portfolios.
Stocks are sorted into 3 portfolios based on the respective characteristic - book-to-market (BEME), operating profitability (OP) or investment (INV)
and independently into 3 size (ME) groups. These are depicted row-wise and indicated in the first two columns. Last, stocks are sorted into 3 further
portfolios based on the loading forecast, conditional on the first two sorts. These portfolios are displayed column-wise. At each yearly formation date,
the average respective characteristic (BEME, OP, or INV) for each portfolio is calculated, using value-weighting. At each point, the characteristic is
divided by the NYSE median at that point in time. The time series from 1963 - 2018 is then averaged to get the numbers that are presented in the table
below. Note that the characteristics reported in the high power panels are industry-adjusted, i.e., for each firm we first subtract the value-weighted
average characteristic of its corresponding industry. The last column shows average characteristics of all 9 respective characteristic-portfolios. The
last row shows averages of all 9 respective loading-portfolios. In the top panels we use the low power and in the bottom panels we use the high power
methodology.

L
ow

p
ow

er

Panel A: HML

Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 0.44 0.49 0.49 0.47

2 0.45 0.5 0.51

3 0.39 0.44 0.48

2 1 1 1.02 1.03 1

2 0.98 1 1.01

3 0.96 0.99 1.01

3 1 2 1.96 2.25 1.88

2 1.78 1.79 1.98

3 1.62 1.7 1.84

Avg. 1.07 1.1 1.18

Panel B: RMW

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 -0.97 -0.01 -0.34 0.1

2 -0.16 0.43 0.41

3 0.44 0.54 0.55

2 1 0.99 0.99 1 1.01

2 0.99 1.01 1.01

3 1.02 1.02 1.03

3 1 2.97 2.47 3.29 2.39

2 2.09 2.02 2.77

3 1.91 1.93 2.08

Avg. 1.03 1.16 1.31

Panel C: CMA

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 -2.28 -1.91 -2.6 -1.66

2 -1.54 -1.42 -1.91

3 -1.07 -1.04 -1.18

2 1 1.06 1.04 1 1.05

2 1.08 1.05 0.97

3 1.12 1.09 1.03

3 1 10.13 6.87 9.07 7.4

2 8.34 6.23 6.95

3 7.33 5.79 5.92

Avg. 2.68 1.97 2.14

H
ig

h
p

ow
er

Char-Portfolio β̂HML-Portfolio

BEME ME 1 2 3 Avg.

1 1 -4.77 -4.8 -5.04 -4.48

2 -4.71 -4.92 -4.78

3 -3.46 -3.86 -4.01

2 1 1.04 1.18 1.24 0.98

2 0.92 1.07 1.08

3 0.42 0.78 1.1

3 1 10.51 10.79 13.47 9.5

2 8.04 9.04 10.78

3 6.93 7.33 8.6

Avg. 1.66 1.84 2.49

Char-Portfolio β̂RMW -Portfolio

OP ME 1 2 3 Avg.

1 1 16.39 9.05 8.16 7.81

2 8.52 5.9 5.93

3 5.54 5.26 5.55

2 1 1.16 1.1 1.09 1.01

2 1.1 1 0.97

3 0.99 0.87 0.8

3 1 -9.98 -7.39 -8.08 -5.96

2 -6.99 -4.62 -5.76

3 -3.37 -3.73 -3.71

Avg. 1.48 0.83 0.55

Char-Portfolio β̂CMA-Portfolio

INV ME 1 2 3 Avg.

1 1 5.63 5.24 5.92 4.87

2 5.11 4.73 4.81

3 4.1 4.13 4.19

2 1 1.02 1.08 1.11 1.01

2 1.01 1.02 1.05

3 0.88 0.92 0.99

3 1 -9.05 -5.93 -7.06 -5.33

2 -7.06 -4.77 -4.43

3 -4.44 -3.08 -2.16

Avg. -0.31 0.37 0.49
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Table 4: Sorting-factor exposures and five-factor alphas.
The last column shows the return of long low-loading short high-loading hedge-portfolios. The last row
shows averages of all 9 loading-portfolios. In the top panels we use the low power and in the bottom panels
we use the high power methodology. Alphas and ex-post loadings on the relevant factor are obtained from
a regression of monthly excess returns of the hedge-portfolios on the five Fama and French factor-portfolios
from 1963/07 - 2018/06.

Panel A: HML

L
o w

p
ow

er

Char-Portfolio pre-formation β̂HML-sorted portfolios

BE/ME ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 -0.05 0.06 -0.18 0.13 -0.53 0.86 -2.33 1.05

2 0.08 -0.05 -0.17 0.25 1.04 -0.75 -2.51 2.48

3 -0.00 0.05 0.01 -0.01 -0.06 0.94 0.17 -0.13

2 1 -0.01 0.07 0.08 -0.09 -0.17 1.36 1.48 -1.09

2 -0.06 -0.12 -0.07 0.01 -0.83 -1.85 -0.98 0.11

3 -0.12 -0.16 -0.07 -0.05 -1.42 -2.13 -0.87 -0.41

3 1 0.15 0.04 -0.01 0.16 2.49 0.89 -0.21 1.99

2 -0.02 0.01 -0.01 -0.01 -0.28 0.15 -0.11 -0.10

3 -0.02 -0.20 -0.07 0.05 -0.19 -2.52 -0.70 0.34

Avg. -0.01 -0.03 -0.05 0.05 -0.16 -1.23 -1.68 0.81

post-formation βHML t(βHML)

1 1 -0.49 -0.18 -0.22 -0.26 -10.50 -5.00 -6.03 -4.52

2 -0.57 -0.16 0.07 -0.64 -15.63 -5.28 2.32 -13.67

3 -0.44 -0.22 0.02 -0.46 -14.25 -9.03 0.62 -8.85

2 1 -0.04 0.21 0.34 -0.39 -1.54 8.60 13.37 -9.85

2 0.03 0.32 0.53 -0.50 0.83 10.41 16.26 -11.20

3 -0.04 0.25 0.59 -0.63 -0.95 7.10 15.44 -10.60

3 1 0.25 0.54 0.70 -0.45 8.72 24.70 26.24 -11.72

2 0.30 0.55 0.88 -0.58 8.04 17.27 22.69 -10.02

3 0.29 0.71 1.24 -0.95 7.01 18.76 27.06 -13.05

Avg. -0.08 0.23 0.46 -0.54 -4.49 17.96 30.54 -19.36

H
ig

h
p

ow
er

Char-Portfolio pre-formation β̂HML-sorted portfolios

BE/ME ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 -0.19 -0.11 -0.24 0.05 -1.86 -1.61 -3.55 0.45

2 0.03 -0.16 -0.14 0.17 0.37 -2.50 -2.02 1.64

3 0.00 0.00 -0.18 0.18 0.05 0.07 -2.61 1.68

2 1 0.19 0.06 0.02 0.17 2.67 1.16 0.42 1.76

2 0.07 -0.02 -0.01 0.08 0.96 -0.39 -0.17 0.81

3 0.10 -0.04 -0.04 0.14 1.49 -0.59 -0.60 1.28

3 1 0.28 0.12 -0.11 0.39 4.07 2.49 -1.95 4.30

2 0.18 -0.11 0.02 0.16 2.17 -1.60 0.21 1.36

3 0.10 -0.08 -0.21 0.31 1.05 -0.94 -1.99 2.06

Avg. 0.09 -0.04 -0.10 0.19 2.43 -1.17 -2.92 3.17

post-formation βHML t(βHML)

1 1 -0.53 0.05 0.42 -0.95 -11.33 1.64 13.19 -17.10

2 -0.57 0.11 0.54 -1.11 -16.31 3.52 16.00 -22.51

3 -0.43 -0.08 0.46 -0.89 -15.02 -3.03 14.23 -17.40

2 1 -0.43 0.16 0.50 -0.93 -12.68 6.41 18.34 -20.34

2 -0.44 0.17 0.64 -1.08 -12.53 6.01 19.60 -22.30

3 -0.33 0.11 0.64 -0.97 -10.46 3.61 19.38 -18.61

3 1 -0.13 0.33 0.73 -0.86 -4.02 14.77 27.11 -19.94

2 0.02 0.33 0.81 -0.79 0.57 10.11 21.30 -14.09

3 -0.03 0.40 1.03 -1.05 -0.59 10.19 20.76 -15.11

Avg. -0.32 0.18 0.64 -0.96 -19.33 11.68 39.95 -34.95
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Panel B: RMW
L

ow
p
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er

Char-Portfolio pre-formation β̂RMW-sorted portfolios

OP ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.00 0.02 -0.12 0.12 0.06 0.30 -2.04 1.46

2 0.21 -0.03 -0.04 0.26 2.20 -0.37 -0.61 2.18

3 0.10 -0.21 -0.03 0.13 1.12 -2.67 -0.43 0.98

2 1 0.17 -0.02 -0.17 0.34 2.78 -0.32 -2.80 3.94

2 -0.00 -0.07 -0.06 0.06 -0.02 -1.24 -0.94 0.69

3 0.10 -0.16 -0.03 0.14 1.34 -2.48 -0.48 1.16

3 1 0.06 -0.03 0.08 -0.03 0.73 -0.56 1.05 -0.24

2 -0.09 -0.13 -0.06 -0.03 -1.30 -2.07 -0.80 -0.31

3 0.07 -0.09 0.10 -0.02 1.08 -1.64 1.44 -0.18

Avg. 0.07 -0.08 -0.04 0.11 2.03 -3.17 -1.16 1.92

post-formation βRMW t(βRMW )

1 1 -0.65 -0.22 -0.20 -0.46 -18.76 -8.68 -7.04 -11.28

2 -0.69 -0.27 -0.22 -0.46 -14.61 -8.21 -6.68 -8.16

3 -0.98 -0.35 -0.22 -0.76 -23.88 -9.32 -5.74 -11.99

2 1 0.10 0.27 0.30 -0.20 3.23 9.48 10.39 -4.92

2 0.08 0.30 0.24 -0.16 2.46 10.59 7.61 -3.86

3 -0.27 0.02 0.13 -0.39 -7.24 0.69 3.75 -6.96

3 1 0.29 0.40 0.27 0.02 7.85 13.51 7.28 0.32

2 0.42 0.51 0.55 -0.13 12.68 16.91 15.16 -2.70

3 0.05 0.42 0.33 -0.28 1.58 16.74 10.32 -4.97

Avg. -0.18 0.12 0.13 -0.31 -11.12 9.87 8.31 -11.63

H
ig

h
p

ow
er

Char-Portfolio pre-formation β̂RMW-sorted portfolios

OP ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.04 0.04 -0.23 0.27 0.50 0.68 -3.95 2.65

2 0.21 -0.03 -0.22 0.43 2.08 -0.47 -3.01 3.50

3 0.17 0.02 -0.22 0.39 2.06 0.22 -2.54 3.19

2 1 0.04 0.17 -0.12 0.15 0.52 2.93 -1.93 1.65

2 0.07 -0.05 -0.09 0.15 0.90 -0.71 -1.33 1.63

3 0.12 -0.12 -0.05 0.18 1.87 -1.90 -0.85 1.73

3 1 0.09 0.05 0.01 0.08 1.21 0.83 0.18 0.73

2 -0.02 -0.09 -0.13 0.11 -0.25 -1.52 -1.66 1.08

3 0.14 -0.06 -0.03 0.17 1.99 -1.01 -0.48 1.49

Avg. 0.10 -0.01 -0.12 0.21 2.57 -0.26 -3.91 3.81

post-formation βRMW t(βRMW )

1 1 -0.88 -0.09 0.11 -0.99 -21.41 -3.65 4.00 -20.09

2 -0.93 -0.01 0.35 -1.28 -19.34 -0.31 10.01 -21.84

3 -0.89 -0.01 0.44 -1.32 -21.69 -0.23 10.70 -22.44

2 1 -0.14 0.27 0.35 -0.49 -3.80 9.72 12.19 -10.84

2 -0.18 0.29 0.38 -0.56 -5.04 9.46 12.29 -12.49

3 -0.58 0.21 0.37 -0.95 -17.95 6.79 12.79 -19.43

3 1 -0.10 0.35 0.36 -0.45 -2.50 11.08 9.81 -8.41

2 0.10 0.46 0.57 -0.47 2.93 15.44 15.54 -9.70

3 -0.34 0.21 0.34 -0.68 -9.98 7.77 10.93 -12.23

Avg. -0.44 0.19 0.36 -0.80 -23.94 13.38 25.09 -29.51
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Panel C: CMA
L
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Char-Portfolio pre-formation β̂CMA-sorted portfolios

INV ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.10 0.06 0.09 0.01 1.45 1.20 1.26 0.07

2 0.06 -0.02 -0.19 0.25 0.90 -0.33 -2.48 2.34

3 0.03 -0.12 -0.18 0.21 0.35 -1.69 -2.29 1.63

2 1 0.14 -0.06 0.20 -0.05 2.26 -1.01 3.01 -0.59

2 0.12 0.06 0.00 0.12 1.91 0.74 0.00 1.36

3 0.02 -0.11 -0.02 0.04 0.25 -1.80 -0.30 0.35

3 1 -0.09 -0.16 -0.19 0.09 -1.45 -2.87 -2.95 1.04

2 -0.02 -0.17 0.07 -0.10 -0.27 -2.77 1.01 -0.89

3 0.30 -0.07 0.02 0.28 3.34 -0.98 0.23 2.11

Avg. 0.07 -0.07 -0.02 0.09 2.08 -2.28 -0.68 1.60

post-formation βCMA t(βCMA)

1 1 0.17 0.23 0.55 -0.38 3.45 5.83 10.54 -5.81

2 0.20 0.43 0.76 -0.56 3.87 8.46 13.28 -6.93

3 0.06 0.63 1.20 -1.14 1.02 12.08 20.88 -12.24

2 1 -0.07 0.09 0.31 -0.38 -1.59 1.93 6.37 -5.57

2 -0.12 -0.04 0.33 -0.45 -2.68 -0.63 6.76 -7.06

3 -0.25 0.22 0.52 -0.77 -4.57 4.87 11.33 -9.66

3 1 -0.43 -0.29 -0.00 -0.42 -8.87 -6.91 -0.09 -6.49

2 -0.72 -0.19 0.13 -0.85 -12.06 -4.11 2.38 -10.68

3 -1.03 -0.24 0.12 -1.15 -15.77 -4.79 2.36 -11.75

Avg. -0.25 0.09 0.43 -0.68 -9.60 4.36 18.06 -15.66

H
ig

h
p

ow
er

Char-Portfolio pre-formation β̂CMA-sorted portfolios

INV ME 1 2 3 1-3 1 2 3 1-3

α t(α)

1 1 0.08 0.11 0.12 -0.04 1.25 2.29 1.57 -0.43

2 0.21 0.04 -0.07 0.28 2.71 0.54 -0.89 2.57

3 0.24 -0.02 -0.19 0.44 2.47 -0.24 -2.34 3.15

2 1 0.09 0.09 0.04 0.04 1.34 1.50 0.63 0.47

2 0.15 0.05 -0.09 0.25 2.06 0.88 -1.27 2.37

3 0.14 -0.11 -0.11 0.26 1.95 -1.64 -1.94 2.39

3 1 -0.22 -0.07 -0.11 -0.12 -2.96 -1.31 -1.62 -1.14

2 -0.09 -0.11 -0.11 0.02 -1.04 -1.69 -1.54 0.19

3 0.30 -0.16 -0.13 0.43 3.46 -2.35 -1.87 3.28

Avg. 0.10 -0.02 -0.07 0.17 2.63 -0.65 -2.20 2.76

post-formation βCMA t(βCMA)

1 1 -0.19 0.08 0.49 -0.68 -3.97 2.16 8.43 -9.14

2 -0.41 0.18 0.61 -1.02 -7.20 3.71 10.58 -12.76

3 -0.64 -0.07 0.71 -1.35 -8.75 -1.16 11.70 -13.22

2 1 -0.21 0.25 0.35 -0.56 -4.36 5.81 7.11 -8.01

2 -0.40 0.25 0.67 -1.07 -7.18 5.60 12.19 -13.72

3 -0.58 0.21 0.87 -1.45 -10.86 4.46 20.02 -18.33

3 1 -0.44 -0.06 0.23 -0.67 -7.85 -1.42 4.63 -8.76

2 -0.81 0.02 0.40 -1.21 -12.60 0.42 7.39 -14.15

3 -0.99 0.13 0.57 -1.56 -15.55 2.60 10.69 -15.98

Avg. -0.52 0.11 0.54 -1.06 -18.55 5.09 22.11 -22.97
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Table 5: Results of time-series regressions on characteristic-balanced hedge-
portfolios.
Stocks are first sorted based on size and one of book-to-market, profitability or investment into 3x3 portfolios.
Conditional on those sorts, they are subsequently sorted into 3 portfolios based on the respective loading,
i.e., on HML, RMW or CMA. For MktRF and SMB we use the average of three hedge-portfolios, which are
based on a 3x3 sort on size and book-to-market, profitability or investment. The ”hedge-portfolio” then goes
long the low loading and short the high loading portfolios. On the bottom, we form combination-portfolios
that put equal weight on three (HML, RMW, CMA), four (HML, RMW, CMA, MktRF) or five (HML,
RMW, CMA, MktRF, SMB) hedge-portfolios. Monthly returns of these portfolios are then regressed on the
5 Fama and French factor-portfolios in the sample period from 1963/07 - 2018/06. In Panel A we use the
low power and in Panel B we use the high power methodology for forecasting loadings.

Panel A: Low power

Hedge-Portfolio Avg. α βMkt−RF βSMB βHML βRMW βCMA R2

hMktRF -0.14 0.01 -0.28 -0.22 0.08 0.16 0.01 0.56

(-1.49) (0.09) (-17.91) (-10.02) (2.62) (5.15) (0.20)

hSMB -0.12 -0.01 -0.15 -0.38 0.04 0.09 0.16 0.59

(-1.44) (-0.23) (-10.51) (-19.65) (1.53) (3.25) (3.94)

hHML -0.04 0.04 0.00 0.00 -0.54 -0.04 0.44 0.39

(-0.60) (0.75) (0.05) (0.05) (-19.30) (-1.42) (10.12)

hRMW -0.03 0.11 0.03 -0.02 -0.20 -0.32 0.00 0.34

(-0.46) (2.02) (1.92) (-1.05) (-7.67) (-11.84) (0.06)

hCMA 0.02 0.09 -0.04 0.01 0.28 0.00 -0.68 0.31

(0.23) (1.64) (-2.55) (0.36) (10.21) (0.09) (-15.88)

EW3 -0.02 0.08 -0.00 -0.00 -0.15 -0.12 -0.08 0.41

HML,RMW,CMA (-0.53) (2.85) (-0.43) (-0.39) (-11.02) (-8.33) (-3.63)

EW4 -0.05 0.06 -0.07 -0.06 -0.09 -0.05 -0.06 0.28

EW3+MktRF (-1.50) (2.21) (-10.14) (-5.79) (-6.91) (-3.49) (-2.64)

EW5 -0.05 0.06 -0.07 -0.10 -0.08 -0.04 -0.03 0.32

EW4+SMB (-1.65) (1.95) (-10.31) (-9.69) (-6.18) (-2.84) (-1.34)

Panel B: High power

Hedge-Portfolio Avg. α βMkt−RF βSMB βHML βRMW βCMA R2

hMktRF -0.10 0.18 -0.41 -0.39 -0.04 0.18 0.05 0.65

(-0.79) (2.37) (-21.52) (-14.78) (-1.05) (4.87) (0.93)

hSMB -0.15 -0.01 -0.17 -0.55 0.02 0.17 0.15 0.72

(-1.53) (-0.09) (-12.01) (-28.00) (0.68) (6.37) (3.66)

hHML -0.09 0.18 -0.01 0.08 -0.96 -0.27 0.44 0.74

(-0.86) (3.11) (-0.90) (4.06) (-34.89) (-9.51) (10.13)

hRMW -0.10 0.22 0.03 -0.07 -0.27 -0.80 -0.07 0.69

(-1.05) (4.00) (2.35) (-3.72) (-10.20) (-29.80) (-1.81)

hCMA -0.01 0.18 -0.03 0.01 0.29 -0.08 -1.06 0.50

(-0.09) (2.87) (-2.20) (0.40) (9.92) (-2.80) (-23.25)

EW3 -0.07 0.19 -0.00 0.01 -0.31 -0.38 -0.23 0.78

HML,RMW,CMA (-1.02) (5.94) (-0.59) (0.56) (-20.30) (-24.38) (-9.71)

EW4 -0.07 0.19 -0.11 -0.09 -0.24 -0.24 -0.16 0.64

EW3+MktRF (-1.54) (6.28) (-13.96) (-8.82) (-17.03) (-16.61) (-7.25)

EW5 -0.08 0.16 -0.10 -0.14 -0.22 -0.20 -0.13 0.62

EW4+SMB (-1.87) (5.51) (-13.57) (-13.95) (-15.49) (-14.29) (-5.85)
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Table 6: Sharpe Ratio improvement.
We report the average return and return volatility (annualized, and in percent) and the corresponding annu-
alized squared Sharpe-ratio for different versions of each of the five factor-portfolios. Rck are the returns of
the characteristic-sorted benchmark factor-portfolios, i.e., the five Fama and French (2015) factor-portfolios.

R∗k are the returns of the improved factor-portfolios, where we hedge out unpriced risk. R
(c−IN)
k are the

returns of the industry-neutral factor-portfolios, where, for the first four characteristic-sorted benchmark
factor-portfolios, we ex-ante hedge the all industry exposure to the 12 FF industries. As the industry port-
folios explain almost 100% of the market portfolio, we do not calculate an industry-neutral version of the
market. The bottom panel reports the statistics for the in-sample Markowitz optimal combination of the
original, the hedged and the industry-neutral five factor-portfolios. The sample period is 1963/07 - 2018/06.

Rc
k R∗k R

(c−IN)
k

HML

Mean 3.97 2.47 2.73

Vol 9.61 4.63 5.20

SR2 0.17 0.28 0.28

RMW

Mean 3.21 2.23 2.39

Vol 7.84 4.62 5.89

SR2 0.17 0.23 0.17

CMA

Mean 2.72 2.32 2.13

Vol 6.52 3.72 3.95

SR2 0.17 0.39 0.29

SMB

Mean 3.17 2.80 3.09

Vol 10.30 6.65 8.37

SR2 0.10 0.18 0.14

MktRF

Mean 6.49 5.94 -

Vol 15.06 10.52 -

SR2 0.19 0.32 -

In-sample optimal combination

Mean 3.56 2.78 2.65

Vol 3.24 1.85 2.22

SR2 1.21 2.26 1.41
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Table 7: Ex-post optimal Markowitz weights.
We report the weights on each of the five factor-portfolios from a full-sample ex-post Markowitz optimization.
The first column reports results for the original five factor-portfolios, and the second column for the improved
versions of these five factor-portfolios. The sample period is 1963/07 - 2018/06.

Rc
k R∗k

CMA 0.38 0.33

HML 0.00 0.12

MktRF 0.16 0.11

RMW 0.33 0.30

SMB 0.13 0.13

Table 8: Spanning tests for HML.
We regress the returns of the original HML factor-portfolio (first 2 columns) as well as the improved version,
HML∗ (columns 3 and 4) on the returns of the remaining four original and improved factor-portfolios. The
sample period is 1963/07 - 2018/06.

Portfolio HML HML HML∗ HML∗

α 0.01 (0.07) 0.09 (0.80) 0.16 (3.20) 0.11 (2.50)

βMktRF 0.03 (1.26) -0.02 (-1.20)

βSMB 0.03 (1.13) 0.06 (3.17)

βRMW 0.25 (6.38) -0.06 (-2.53)

βCMA 1.04 (22.50) 0.24 (8.61)

βMktRF ∗ 0.06 (1.53) -0.01 (-0.37)

βSMB∗ 0.10 (1.69) 0.06 (2.58)

βRMW ∗ 0.20 (2.23) -0.18 (-5.03)

βCMA∗ 0.79 (7.22) 0.58 (13.17)

R2 0.47 0.08 0.16 0.35
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A Appendix

A.1 Notation

ft (Mean zero) unanticipated shock to a priced factor

fut (Mean zero) unanticipated shock to an un-priced factor

Ri,t Excess return of firm i

Rc
t Excess return of a traded, characteristic-sorted portfolio (Rc

k,t

for characteristic k)

ht Excess return of a traded hedge-portfolio (hk,t for character-

istic k)

R∗t Excess return of a hedged traded characteristic-sorted portfo-

lio

R
(c−IN)
t Excess return of a traded characteristic-sorted portfolio,

industry-neutral

A.2 Definition of main variables

We use data from Compustat and CRSP, downloaded directly from the WRDS data service.
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Book Equity (BE) Stockholders book equity, minus the book value of preferred

stock, plus balance sheet deferred taxes (if available and fis-

cal year is < 1993), minus investment tax credit (if avail-

able), minus post-retirement benefit assets (PRBA) if avail-

able. Stockholders book equity is shareholder equity (SEQ),

common equity (CEQ) plus preferred stock (PSTK) or total

assets (AT) minus liabilities (LT) plus minority interest (MIB,

if available) (depending on availability, in that order). Book

value of preferred stock is redemption (PSTKRV), liquidation

(PSTKL), or par value (PSTK) (depending on availability, in

that order). Deferred taxes is deferred taxes and investment

tax credit (TXDITC) or deferred taxes and investment tax

credit (TXDB) plus investment tax credit (ITCB) (depend-

ing on availability, in that order).

Market Equity (ME) Total market value (|PRC| ∗ SHROUT ) by GVKEY, and

if missing, by PERMCO as of June. We give preference to

GVKEY to correctly account for tracking stocks. To be valid,

ME must be greater than zero.

Book to Market (BEME) Book equity to market equity ratio
(
BE
ME

)
.

Investment (INV) Total asset (AT) growth
(

ATt
ATt−1

− 1
)

. We consider PERMCO

as the identification key. AT must be greater than zero to be

considered.

Operating Profitability (OP) Operating profitability to book equity (BE) ratio. Operating

profitability is sales (SALE) minus cost of goods sold (COGS),

minus selling, general, and administrative expenses (XSGA),

minus interest expense (XINT). In order to be non-missing,

SALE must be non-missing, at least one of the other entries

must be non-missing and BE must be greater than zero.

A.3 Loading estimation

We calculate ex-ante forecasts of loadings for β’s, i.e., loadings on the benchmark factor

model; and for γ’s, i.e., the optimal hedge ratio.
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To calculate ex-ante forecasts of loadings we follow Frazzini and Pedersen (2014) and use two

different data windows of individual stock returns: 12-months of daily returns for volatility

and 60 months of overlapping 3-day-cumulated returns for correlation. For this estimation,

we only consider returns where Pt and Pt−1 are non-missing.

For the estimation of correlations and factor volatilities, we calculate Daniel and Titman

(1997) style pre-formation factor returns. Following their procedure, we use portfolio allo-

cations and weights as of June 30 (portfolio formation date), and calculate portfolio returns

for the preceding 5 years, holding the allocation and weights constant for each day.

Finally, we consider the observation that returns of stocks that will be allocated to a particu-

lar portfolio at the end of June, experience a level-shift in average returns starting already in

January, as described in Daniel and Titman (1997). To account for this, when we calculate

β’s, we include a dummy variable for the rank-year, i.e., a variable that is equal to 1 if the

return observation belongs to the year of portfolio formation.

A.4 Dealing with missing prices

CRSP stock files report missing values for returns (RET) if a stock does not have a valid price

for 10 periods or more. The price tolerance period represents 10 months for monthly returns

and 10 days for daily returns. For calculating traded portfolio returns, we instead follow Ken

French’s website and allow for a 200 days price tolerance period. This choice makes daily

and monthly returns comparable. For pre-formation factors as described above, where all

returns can be observed before formation, we exclude any observation with a missing price

(as described above).
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