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1 Introduction

Borrowing decisions underpin a broad set of economic behavior. Individuals borrow to smooth

their consumption over the life-cycle, invest in human capital, and purchase durable goods,

among other reasons. Thus, understanding how individuals borrow is (i) an important input

for many �elds of economic research and (ii) directly relevant for consumer �nancial policy.

This paper aims to shed light on this question by studying how individuals choose to

repay debt – and thus implicitly how to borrow – across their portfolio of credit cards. We

have a dataset with rich information on credit card contract terms, monthly statements, and

repayments for 1.4 million individuals in the United Kingdom over a two-year period. Unlike

other leading credit card datasets, our data allows us to link together multiple credit card

accounts held by the same individual.1 We study how individuals choose to allocate repayments

across their credit cards.2

The credit card repayment decision is an ideal laboratory for studying borrowing because

behavior that minimizes interest charges – what we refer to as optimal behavior – can be

clearly de�ned. Consider individuals with debt on exactly two cards. Holding the total amount

repaid on both cards in a particular month �xed, it is optimal for these individuals to make

the minimum payment on both cards, repay as much as possible on the high interest rate card,

and only allocate further payments to the low interest rate card if they are able to pay o� the

high interest rate card in full. What sets the credit card repayment decision apart from many

other �nancial decisions is that optimal behavior does not depend on preferences, such as risk

preferences or time preferences.3 This allows us to evaluate models of behavior without having

1 For instance, neither the OCC’s Consumer Credit Panel nor the CFPB’s Credit Card Database are designed to
permit linking of accounts held by the same individual. The credit bureau datasets that combine information from
multiple accounts held by the same individual do not have information on interest rates or repayments. There are
a number of opt-in panels such as the Mint.com data and Lightspeed Research’s “Ultimate Consumer Panel” that
have information on multiple cards, but only for a self-selected sample of individuals.

2 This type of allocative decision is common. In the U.K. market that we study, 46.1% of credit card holders have two
or more cards, and this group accounts for 72.2% of outstanding balances (FCA, 2016). In the U.S. market, 71.5% of
credit card holders have two or more cards, and this group accounts for 91.8% of balances (authors’ calculations
using a representative sample of 2015 TransUnion credit bureau data).

3 For example, optimal mortgage choices depend on risk preferences (in the decision to use an adjustable or �xed
rate mortgage) and time preferences over the real option to re�nance in the future (see, Campbell and Cocco,
2003). There are very few institutional settings in which optimal mortgage choices can be clearly de�ned, such as
in the Danish mortgage market (see, Andersen et al., 2017). The optimal credit card spending allocation depends on
rewards programs, such as cash-back or airline points. Even when the terms of the rewards program are known,
the optimal spending allocation depends on individuals’ (idiosyncratic) value of features.
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to jointly estimate preference parameters.

We start by showing that Ponce et al.’s (2017) �nding of non-optimal credit card borrowing

in Mexico is highly robust to the U.K. credit card market where we have data. Our baseline

analysis focuses on individuals who hold exactly two cards in our dataset. For these individuals,

the average di�erence in Annual Percentage Rate (APR) between the high and low interest

rate cards is 6.3 percentage points, approximately one-third of the average 19.7% APR in our

sample. If these individuals were completely unresponsive to interest rates, it is natural to

assume that they would allocate 50.0% of their payments to each card on average. To minimize

interest charges, we calculate that individuals should allocate 97.1% of the payments in excess

of the minimum to the high APR card.4 We show that individuals allocate only 51.5% of their

excess payments to the high APR card, behavior that is virtually indistinguishable from the

completely non-responsive baseline. In other words, 85% of individuals should put 100% of

their excess payments on the high interest rate card but only 10% do so. Establishing this result

is not the main focus of our analysis, but a necessary �rst step before going on to investigate

alternative models.5

If individuals do not optimally allocate their credit card repayments, what explains their

repayment behavior? One potential explanation is that individuals face a �xed cost of opti-

mization – such as the time, psychological, or cognitive costs associated with determining the

optimal repayment allocation (Sims, 2003). For some individuals, the reduction in interest costs

may be too low to rationalize this �xed cost of optimization. We show, however, that the share

of misallocated repayments is invariant to the di�erence in interest rates across cards (which

can be as large as 15 percentage points) and to the size of the repayment amount (which can be

as high as £800 in a month). The observed behavior, thus, seems inconsistent with a �xed-cost

model of optimization.6

The main contribution of this paper is to evaluate heuristics that might better explain the

4 The number is not exactly 100% because sometimes individuals can pay o� the full balance by allocating a smaller
amount, in which case they should allocate the remaining amount to the low interest rate card.

5 In Section 3, we show that this result extends to the samples where we observe individuals allocating repayments
across 3, 4, and 5 cards.

6 The degree of misallocation is invariant to the time since account opening, indicating that learning cannot explain
the observed behavior. Misallocation does not vary with the number of days between payment dates, indicating
that frictions in co-ordinating repayments across cards cannot explain the observed behavior.
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observed allocation of credit card payments. We �rst consider a balance-matching heuristic

under which individuals match the share of repayments on each card to the share of balances on

each card. The balance-matching heuristic naturally arises from the salient display of balances

on credit card statements and the broad tendency for humans (and other species) to use

“matching” heuristics in decision-making (discussed below). We also consider four alternative

heuristics, such as the “debt snowball method” (under which payments are concentrated on the

card with the lowest balance), which is recommended by some �nancial advisors.

We assess the explanatory power of these di�erent repayment models using standard

measures of goodness-of-�t (root mean square error, mean absolute error, Pearson’s ρ). To

provide a lower benchmark, we calculate goodness-of-�t under the assumption that the per-

centage of repayments on the high APR card is randomly drawn from a uniform distribution

with support on the 0% to 100% interval. To provide an upper benchmark, we use machine

learning techniques to �nd the repayment model that maximizes out-of-sample �t using a rich

set of explanatory variables.

We �nd that balance matching captures more than half of the “predictable variation” in

repayment behavior. That is, based on the range determined by the lower benchmark of random

repayments and the upper benchmark of the machine learning models, we �nd that balance

matching is closer to the upper benchmark on all of our measures. We also show that the

optimal repayment rule and the other heuristic models do not come close to balance matching

in their ability to match the data, capturing less than a quarter of the predictable variation for

most measures.

In addition to providing us with an upper benchmark, the machine learning models allow

us to assess the relative importance of interest rates versus balances in predicting repayment

behavior. Consistent with the poor �t of the optimal repayment rule, we �nd that interest

rates have low variable importance (i.e., partial R-squared) in our machine learning models.

Consistent with the balance matching results, we �nd that balances have the highest variable

importance, with importance factors substantially larger than any of the other explanatory

variables. Unlike some other machine learning applications (e.g., Mullianathan and Spiess,

2017), these results are robust across partitions of the data.
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We also evaluate each of our models in “horse race” type analysis where we determine the

best �t model on an individual × month basis. In binary tests, balance matching has the best �t

for twice as many observations as either the random, optimal, or other heuristics models, and

balance matching performs comparably to the machine learning models. We also show that

balance matching exhibits a high degree of persistence within individuals over time, suggesting

that balance matching is more than a good statistical model but is actually capturing a stable

feature of individual decision-making.

Our �ndings are related to a number of strands of literature. Our result on non-optimal

repayments is closely related to the aforementioned Ponce et al. (2017) study, which �nds that

borrowing is highly non-optimal using linked data from Mexico. The �rst, modest, contribution

of our paper is to show that the non-optimal behavior documented in Ponce et al. (2017) in

Mexico extends to the U.K. market that we study.7

Our main result on balance matching relates to a literature in psychology and economics

on heuristics in individual decision-making. The fact that individuals focus on balances, which

are prominently displayed on credit card statements, connects to a literature on how saliently

placed information can provide an anchor for choices (e.g., Tversky and Kahneman, 1974; Ariely

et al., 2003; Stewart, 2009; Bergman et al., 2010).

Our �nding on balance matching also shares a resemblance with a long line of research on

probability matching. Herrnstein’s (1961) matching law is based on the observation that pigeons

peck keys for food in proportion to the time it takes the keys to rearm rather than concentrating

their e�ort on the key that rearms most quickly. Rubinstein (2002) shows, in an experimental

study, that subjects diversify when choosing between gambles with a 60% and 40% chance of

winning, even though the option with a 60% chance of winning dominates any other strategy

(see Vulkan, 2000 for a review of this literature). Balance matching is also reminiscent of the

classic Benartzi and Thaler (2001) result on how investors in de�ned-contribution saving plans

allocate funds such that the proportion invested in stocks depends strongly on the proportion

of stock funds in the choice set.8

7 Our paper is more broadly related to a large literature on price dispersion and non-optimal behavior in consumer
�nancial markets. See, for example, Keys et al. (2016), Hortaçsu and Syverson (2004), and Stango and Zinman
(2016).

8 See DellaVigna (2009) for a review of the evidence on choice heuristics using �eld data.
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The caveats to our analysis largely stem from the fact that we focus on the allocative

decision of how individuals split repayments across their portfolio of credit cards. While this

decision greatly simpli�es the analysis, our estimates of the degree of non-optimal behavior

should be interpreted as lower bounds relative to a counterfactual in which individuals could

additionally reallocate payments across non-credit card loans (such as mortgages or automobile

loans) or make adjustments on the extensive margin (e.g., by adjusting the tradeo� between

debt repayment and consumption). Our focus on the allocative decision also naturally leads

us to consider “allocative heuristics,” such as balance matching, rather than heuristics that

determine behavior on the extensive margin. For example, balance matching could arise from

individuals repaying a �xed percentage of their balances (e.g., 10%), a rule-of-thumb that would

lead to ine�cient behavior on both the allocative and extensive margins.

Finally, it is important to point out that we do not view balance matching as a “model” of

behavior in the psychological or structural-economic sense of the term. Instead, we think about

balance matching as a simple allocation rule which provides a useful statistical approximation

of behavior. Balance matching is easy to understand, reinforces existing theories of behavior

(e.g., probability matching, Herrnstein’s matching law), and might provide intuition in yet-to-

be-studied environments. Understanding the psychological underpinnings of balance matching

is a question we leave for future work.

The rest of the paper proceeds as follows. Section 2 describes our data and presents sum-

mary statistics for our baseline sample. Section 3 presents our results on the optimality of

repayment behavior. Section 4 examines rounding and a 1/N rule for repayments. Section 5 lays

out alternative heuristics for debt repayment, including the balance-matching heuristic. Sec-

tion 6 tests between these repayment models. Section 7 presents sensitivity analysis. Section 8

concludes.

2 Data

2.1 Argus Credit Card Data

Our data source is the Argus Information and Advisory Services’ “Credit Card Payments Study”

(CCPS). The CCPS has detailed information on contract terms and billing records from �ve
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major credit card issuers in the U.K. These issuers have a combined market share of over 40%

and represent a broad range of credit card products and market segments. We have obtained

monthly data covering January 2013 to December 2014 for a 10% representative sample of

individuals in the CCPS who held a credit card with at least one of the �ve issuers. Unlike other

leading credit card datasets, the CCPS provides us with anonymized individual-level identi�ers

that allow us to link together multiple accounts held by the same individual.9

2.2 Sample Restrictions

Our interest lies in understanding how individuals make repayment decisions across their

portfolio of credit cards. Holding multiple cards is not uncommon. In the U.K. market, 46.1% of

credit card holders have two or more cards, and individuals with two or more cards account

for 72.2% of outstanding balances (FCA, 2016).10

Our unit of analysis is the individual × month. In the remainder of the paper, we refer

to individual × months interchangeably as “observations”. All of the credit cards in our data

require payments at a monthly frequency. We consider cards to be in the same “month” if their

billing cycles conclude in the same calendar month. Since billing cycles often conclude near the

end of the calendar month, payment dates are often quite near to each other.11 We construct

separate samples based on the number of credit cards held by the individual in that month in

our dataset (e.g., two cards, three cards, and so on). This is a weak lower bound on the number

of cards held by the individual. In the analysis that follows, we typically start by presenting our

methodology and results for the two-card sample, and then examine how our �ndings extend

to individuals with three or more cards.

To focus on individual repayment decisions, we �rst clean the sample by dropping ob-

servations where individuals are delinquent or have defaulted on at least one card in their

9 As discussed in Footnote 1, neither the OCC’s Consumer Credit Panel nor the CFPB’s Credit Card Database
are designed to permit matching of multiple individually-held accounts, and credit bureau datasets typically do
not have information on interest rates or repayments. Opt-in panels such as Lightspeed Research’s “Ultimate
Consumer Panel” have information on multiple cards, but only for a self-selected sample of individuals.

10 These numbers are even higher in the U.S. market. Using a representative sample of 2015 TransUnion data, we
calculate that 71.5% of credit cards holders have two or more cards, and individuals with two or more cards
account for 91.8% of balances and 91.7% of revolving balances.

11 In the two-card sample, two-thirds of observations have payment dates that are 10 days apart or fewer. See
Figure A5 for a histogram of the di�erence in due dates between cards.
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portfolio, or where individuals pay less than the minimum due or more than the full balance on

at least one card.12 Together these restrictions drop 2.0% of individuals and 4.2% of aggregate

revolving debt from the two-card sample. Second, we focus on observations in which individu-

als hold debt on all of their cards – i.e., they are carrying “revolving” balances. This ensures

that allocating repayments towards the high APR card, in the manner described in Section 3,

minimizes interest charges.13,14 These restrictions remove a further 25.0% of individuals from

the two-card sample. However, since most of these individuals do not have revolving debt –

i.e., they are “transactors” who repay the balances in full each month – we only drop 12.7% of

aggregate revolving debt.

Third, we make a number of sample restrictions so that we focus on observations where

individuals, holding �xed total monthly repayments, have scope to reallocate payments across

cards and therefore face an economically meaningful allocative decision. In particular, we drop

a small number of observations where the interest rate is identical across cards, since any

reallocation of payments has no impact on the cost of borrowing. We then drop observations

where the individual pays either the full balance or the minimum payment on all of their cards,

since these individuals do not have any payments to reallocate. Taken together, this third set of

restrictions drops an additional 35.4% of individuals and 24.9% of aggregate revolving debt in

the two-card sample. Appendix Table A1 goes through these restrictions one-by-one. Most of

the reduction is due to dropping individuals who pay exactly the minimum on each card.

Table 1 presents summary statistics on the baseline two-card sample. The average di�erence

12 Paying less than the minimum or more than full balance sometimes results from “mistakes” that are di�cult to
interpret with an allocative model of behavior. For instance, zero payments sometimes result from “forgetting”
to put a check in the mail. Similarly, overpayments sometimes result from refunds that are processed after the
individual decides on their payment, which reduce the balance below the payment amount.

13 A (complicated) feature of credit cards is that if an individual carries no revolving balance at the beginning of
the month, and repays the balance in full, they avoid any interest charges that month. If an individual carries a
revolving balance at the beginning of the month, interest charges are incurred on average daily balance irrespective
of whether the card is repaid in full. We focus on individuals who begin the month with revolving balances on all
cards as it is unambiguously interest-cost-minimizing for these individuals to allocate repayments towards the
high APR card. In other scenarios, it could be interest-cost-minimizing to allocate repayments towards the low
APR (although our back-of-the-envelope calculations suggest this is unlikely).

14 One consequence of this restriction is that we omit individuals who have two cards but hold revolving balances
on only one card. In doing so, one potential concern is that we drop individuals who have “fully optimized” by
completely paying o� their high interest rate card. If this were the case, then our sample would be selected on
individuals who failed to optimize, raising issues of external validity. However, among individuals who carry debt
on only one card, the majority (61.8%) carry debt on only the high interest rate card, indicating that our sample is
not selected in this manner.
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in APR (for purchases) between the high and low interest rate cards is 6.3 percentage points,

or approximately one-third of the 19.7% average purchase APR in the sample.15 Yet despite

this substantial di�erence in prices, utilization is remarkably similar. Purchases are £128 on

the high APR card versus £117 on the low APR card; repayments are £260 on the high APR

card versus £230 on the low APR card; and revolving balances are £2,200 on the high APR

card versus £2,054 on the low APR card. This is particularly striking given that credit limits

are almost three times larger than revolving balances on average, indicating that the typical

individual would be able to shift all of their borrowing to the low APR card without exceeding

their credit limit.

3 Optimal Repayments

We start by comparing the actual and interest-cost-minimizing allocation of repayments across

cards. We refer to the interest-cost-minimizing allocation as the “optimal” allocation because

it is hard to think of a (reasonable) scenario where minimizing interest costs would not be

optimal. Holding the total repayment amount on all cards �xed, it is optimal for individuals to

make the minimum required payment on all of their cards, repay as much as possible on the

card with the highest interest rate, and only allocate further payments to the lower interest

rate cards if they are able to pay o� the highest interest rate card in full.16

We focus on repayments, rather than other measures of credit card use like spending or

revolving balances, because, for repayments, we can clearly de�ne optimal behavior. In contrast,

optimal spending may depend upon rewards programs, which we do not observe in our data.17

We also do not focus on the optimality of revolving balance allocations because revolving

balances are a “stock” that cannot typically be quickly adjusted.18 Thus, to determine whether

15 This di�erence does re�ect short-term 0% promotional interest rate o�ers, which account for less than 5% of
account × month observations in the baseline sample.

16 We explicitly rule out the possibility that choosing not to make the minimum payment on a lower interest rate
card could be optimal. Failing to repay the minimum repayment would result in a penalty fee and a marker on the
individual’s credit �le.

17 While issuers typically incur only a small cost for the rewards they provide – approximately 1%, see Agarwal et al.
(2015) – individuals might value rewards (such as airline points) at a high enough value to a�ect optimal spending
decisions.

18 In particular, with the exception of balance transfer products in the prime credit card market, individuals can only
reallocate their stock of revolving balances by adjusting the �ow of spending and repayments on a month-by-month
basis.
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revolving balances are “optimal”, we would need to take a stand on how individuals could

reallocate revolving balances through counterfactual spending and repayment decisions over

time, which would require us to know the individuals’ time preference and their expectations

over future spending and repayment decisions.

Panel A of Figure 1 plots the distribution of actual and optimal payments in the baseline

two-card sample. The distribution of actual repayments appears close to symmetric, with a mass

point at 50%, and smaller mass points at 33% and 67%. In contrast, the distribution of optimal

repayments is heavily weighted towards the high APR card. It is not optimal for individuals to

place 100% of their payments on the high interest rate card because (ii) they need to pay the

minimum on the low interest rate card and (ii) they are sometimes able to pay o� more than

the full balance on the high interest rate card.

Summary data for actual and optimal repayments for the two-card sample is shown in

Table 2. On average, individuals should allocate 70.7% of repayments to the high APR card. If

individuals were completely unresponsive to interest rates, we might expect them to place 50%

of payments on the high interest rate card. On average, individuals allocate 51.2% to the high

interest rate card, which is very close to the completely non-responsive baseline. Individuals,

thus, misallocate 19.5% of their total monthly payment on average.

In Figure A1 we plot misallocated repayments in excess of the minimum payment. That

is, we subtract out the amount required to make the minimum payment on each card and

then calculate the share of the remaining amount that is allocated across cards. On average,

individuals should allocate 97.1% of payments in excess of the minimum to the high APR

card, whereas in practice they actually allocate 51.5% to that card.19 Alternatively put, 85% of

individuals should put 100% of their excess payments on the high interest rate card but only

10% do so. Summary data for payments in excess of minimum are shown in Table A2.

Panels B to D of Figure 1 show radar plots of the average percentage of actual and optimal

payments on each card for the samples with 3, 4, and 5 cards. In each of the plots, the cards are

ordered clockwise from the highest to the lowest APR (starting at the �rst node clockwise from

noon). The polygons for actual payments are symmetric, indicating that the actual percentage

19 The number is not exactly 100% because sometimes individuals can pay o� the full balance by allocating a smaller
amount, in which case they should allocate the remaining amount to the low interest rate card.
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of payments is very similar across cards. The polygons for optimal payments show that it

would be optimal to allocate a substantially higher percentage of payments to the highest APR

card and a substantially lower percentage to the card with the lowest APR.

3.1 Fixed Costs of Optimization

One potential explanation for the non-optimality of repayments is that individuals face a �xed

cost of optimization (Sims, 2003). Speci�cally, in our context, individuals are already making

positive credit card repayments on both cards and therefore already paying the �xed cost of

logging into their bank’s website or sending a check. So by a �xed cost of optimization, we

having in mind the time, psychological, or cognitive costs associated with making the optimal

repayment relative to making a non-optimal payment amount.20 For some individuals, the

reduction in interest payments from cost-minimizing may be too low to rationalize incurring

this �xed cost.

To investigate this potential explanation, we examine the correlation between the per-

centage of misallocated repayments and the economic stakes of the repayment decision in

the two-card sample. We de�ne misallocated payments as the di�erence between optimal and

actual payments on the high APR card. We examine two measures of the economic stakes: (i)

the di�erence in APR across cards and (ii) the total repayments made that month. Since the

gains from optimizing are increasing in the �nancial stakes, under the �xed cost explanation,

the percentage of misallocated repayments should be declining in both measures. Moreover,

for individuals with large economics stakes, we would expect the degree of misallocation to be

close to zero.

Panel A of Figure 2 shows a binned-scatter plot of the percentage of misallocated payments

against the di�erence in APR between the high and low interest rate cards. The binned-scatter

plot is constructed by partitioning the x-axis variable into 20 equal-sized groups and plotting

the mean of the y-axis and x-axis variables for each group.21 The �at relationship indicates

that individuals are not less likely to misallocate repayments even when there is a large APR

20 This contrasts with optimal mortgage re�nancing (e.g., Keys et al., 2016), a setting where optimization would
require actively soliciting a new mortgage o�er.

21 See Chetty et al. (2014) for more details on the binned-scatter plot methodology.
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di�erence (more than 15 percentage points).22

Panel B of Figure 2 shows a binned-scatter plot of the percentage of misallocated payments

against total repayments on both cards. Again, there is no evidence of a decreasing relationship.

Indeed, the relationship is increasing because individuals who make the largest payments can

cover the minimum on the low APR card with a smaller percentage of their overall allocation

and thus should allocate an even larger fraction of payments to the high APR card.23

An alternative potential explanation for the observed non-optimal behavior is that indi-

viduals learn over time (e.g., since opening a card), and that our analysis of the cross-sectional

distribution of repayments masks this learning behavior. A model with time-varying adjustment

costs (in the spirit of Calvo, 1983) would also generate a gradual reduction in the degree of

misallocation over time. Panel C of Figure 2 examines this explanation by showing a binned-

scatter plot of the percentage of misallocated payments against the age (in months) of the high

APR card. For this analysis, we restrict the sample to individuals who open a high APR during

our sample period and for whom we can observe economically meaningful allocation decisions

for 10 consecutive months. In the plot, the horizontal axis starts in the second month after

opening, since this is the �rst month in which individuals could have a balance on the high

APR card to repay. The plot shows no evidence of a reduction in the percentage of misallocated

repayments over time. This �nding suggests that neither learning nor time-varying adjustment

costs can explain the observed non-optimizing behavior.24

A somewhat di�erent potential explanation for the observed behavior is that individuals

face within-month liquidity constraints that prevent them from optimally reallocating payments.

For example, individuals might receive their paycheck between credit card due dates, and

therefore have di�erent amounts of cash-on-hand when making their payments.25 Panel D

of Figure 2 examines this explanation by showing a binned-scatter plot of the percentage

22 Panel A of Figure A1 shows that there is a similarly �at relationship between misallocated payments in excess of
the minimum payment and the di�erence in APR across cards.

23 Panel B of Figure A1 illustrates the relationship between misallocated payments in excess of the minimum
payment and the total repayment across both cards. There is a slight downward slope, but certainly not the type
of relationship that would be predicted by a �xed-cost-of-optimization model.

24 Panel C of Figure A1 illustrates the relationship between misallocated payments in excess of the minimum payment
and the age (in months) of the high APR card.

25 For instance, if the due date on the high APR card occurred before the individual received their paycheck and the
due date on the low APR card occurred after, it might be optimal to repay a larger amount of the lower APR card
balance.

12



of misallocated payments against the di�erence in payment due dates. The �at relationship

indicates that this type of within-month allocation friction cannot explain our �nding.26

3.2 Costs of Misallocation

What are the costs of the failure to optimize? We consider the annualized interest savings from

a counterfactual “steady state” where individuals optimize balances across the credit cards we

observe in our data, subject to the constraint of not exceeding their credit limits. For the two

card sample, the optimal allocation can be achieved by transferring balances from the high to

the low interest rate card up to the point where the individual “maxes out” their low interest

rate card. With multiple cards, the optimal strategy is to allocate as much of the aggregate

balance as possible to the credit card with the lowest interest rate, then allocate any remaining

balance to the card with the next lowest rate, and so on.

Table 3 presents the annualized interest savings from this exercise. Average interest savings

are increasing across the number of cards, rising from £65 in the two-card sample to £248 in the

�ve-card sample. Because the degree of misallocation is not declining in the economic stakes

of the decision, individuals with larger balances and larger di�erences in interest rates have

a substantial cost of misallocation, with the 90th percentile rising from £167 in the two-card

sample to £927 in the �ve-card sample.

There are a number of caveats to this analysis. Since our sample covers approximately

40% of the market, we likely only observe a subset of an individuals’ credit card portfolio.

Allowing individuals to optimize over more cards would necessarily lead to a larger cost of

misallocation. And of course, allowing individuals to optimize across di�erent types of debt or

across savings and borrowing products would lead to even larger values. The interest savings

we calculate are larger than the single period savings from optimal repayments because they

are annualized (multiplied by 12) and because (absent a balance transfer) the counterfactual

steady state can only be achieved through optimal repayments and spending decisions over a

number of periods.

26 Panel D of Figure A1 shows that there is similarly no relationship between misallocated payments in excess of the
minimum payment and the di�erence in due dates
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4 Rounding and the 1/N Rule

The spike in repayments at 50% (see Panel A of Figure 1) suggests that some individuals use a

simple 1/N heuristic in which they make equal-sized repayments across cards, analogous to

the 1/N heuristic documented in de�ned-contribution savings decisions (Benartzi and Thaler,

2001). In particular, the excess mass of individuals who make payments at a one-to-one ratio is

approximately 8.2%. If we add in the excess mass at one-to-two and two-to-one ratios, we can

explain 11.7% of repayments.

While 11.7% is fairly modest, it is not clear whether even this percentage of individuals

is behaving according to an 1/N -type model. As we show below, a fairly sizable fraction of

individuals round payments to £50, £100, £200, and so on. If an individual rounds up a payment

on card A from £80 to £100 and rounds down a payment on card B from £120 to £100, then

the individual would appear as if they intended to make equal-sized payments, even though,

absent rounding, the share of payments on each card would be substantially di�erent from 50%.

Figure 3 investigates this competing explanation for the spike at 50%. Panel A plots the

distribution of payments on the high APR card in pounds, and shows substantial evidence of

rounding. We calculate that 19.2% of payments take on values that are multiples of £100, and

33% of payments take on values that are multiples of £50 (which obviously includes payments

that are multiples of £100). Panels B and C show the percentage of payments on the high APR

card, splitting the sample by whether the individual makes round number payments (de�ned

as multiples of £50) or “non-round” number payments on the high APR card.27

The plots show that the peaks at 50% (as well as 33% and 66%) are heavily concentrated

among individuals who make round number repayments. In the non-round sample, there is

only a small spike at 50%, and no discernible spike at 33% or 66%. In other words, virtually

nobody chooses to make equal payments of any other value that is not a multiple of £50. If

individuals actually wanted to repay equal amounts, it is hard to imagine that we would not

27 The propensity to make round number payments is highly correlated across cards within an individual × month.
We calculate that 73% of individuals who make a round number payment on the high APR card also make a round
number payment on the low APR card, and 78% of individuals who make a non-round number payment on the
high APR card also make a non-round number payment on the low APR card. Dividing the sample into individuals
who make round number repayments on both cards, non-round number repayments on both cards, and a mix of
round and non-round repayments complicates the exposition without changing the results.
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see this type of repayment behavior.

We therefore do not view the spike at 50% as compelling evidence of a 1/N -type heuristic.

Indeed, we cannot reject the view that nearly all of the spike at 50% is due to rounding. However,

since we do not have random variation in whether individuals round, we cannot rule out the

possibility that some of these individuals would have allocated 50% on the high APR card if

they had counterfactually not rounded their payments. Thus, we conclude that the percentage

of individuals who behave according to a 1/N -type rule is bounded between 0% and 11.7%.

5 Balance Matching and Other Heuristics

If individuals do not optimally allocate their repayments (and a 1/N -type rule can explain

only a small fraction of behavior), what explains credit card repayments? In the remainder of

this paper, we evaluate heuristics that might better explain the allocation of repayments. In

this section, we introduce the set of heuristics that we consider. In Section 6, we evaluate the

explanatory power of these heuristics.

5.1 Balance Matching

We �rst consider a balance-matching heuristic under which individuals match the share of

repayments on each card to the share of balances on each card. Let k = 1 . . .K index cards, pk

indicate payments, and qk indicate balances. Balance-matching payments are given by

pk∑K
κ=1 pκ

=
qk∑K
κ=1 qκ

for k = 1 . . .K (1)

subject to the constraint that the individual pays at least the minimum and no more than the

full balance on any of their cards.28

The balance-matching heuristic naturally arises from the salient display of balances

on credit card statements and the broad tendency for humans (and other species) to adopt

“matching” heuristics in decision-making. As shown in Figure 4, balances are perhaps the most

28 In the two-card sample, only 13.0% of observations are a�ected by these constraints. In nearly all of these cases,
the balance-matching payment is less than 2 percentage points below the minimum payment amount. Treating
these observations in other ways (e.g., dropping these observations) does not have a material impact on the results.
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prominently displayed element on credit card statements. The psychological theory of anchoring

(Tversky and Kahneman, 1974) suggests that individuals might make payments in relation to

this saliently displayed balances (instead of less saliently displayed interest rates).29,30

A proclivity for “matching” has been observed across species and across domains, and

thus may result from a deeper underlying tendency for proportionality in decision-making.

Herrnstein’s (1961) matching law is based on the observation that pigeons peck keys for food

in proportion to the time it takes the keys to rearm rather than concentrating their e�ort on

the key that rearms most quickly. The probability matching literature �nds that individuals

place bets in proportion to the probability of payo�s, even though betting on the option with

the highest probability of payo� �rst-order stochastically dominants any other decision. For

example, Rubinstein (2002) shows in an experimental study that subjects diversify across

independent 60%-40% gambles even though betting on the gamble with a 60% probability of

payout is a strictly dominant strategy. 31

Of course, we do not propose balance matching as a precise description of individual

repayment behavior. Pigeons do not measure the time it takes the keys to rearm with a

stopwatch and we do not mean to suggest that individuals use long division to calculate the

share of repayments that should be allocated to each card. Instead, we propose that individuals

approximate balance matching in their repayment behavior. Indeed, since credit card balances

are fairly stable over time, an individual could approximate a balance matching rule without

knowing the exact balance on each card that month.

5.2 Other Heuristic Models of Repayment

We also consider four alternative heuristics that capture intuitive economic and non-economic

approaches to the allocation of payments. Some of these heuristics are based on the capacity of

a credit card, which we de�ne as the di�erence between the credit limit and current balance

29 A second reason why balances may be more salient is that balances are denoted in the same units as repayments
(£s), whereas APR take on di�erent units (%).

30 Balances also enter the minimum payment formula. Therefore, at least in principle, repayments might depend on
balances indirectly through the minimum payment amount. We discuss this issue in Section 7 and show that this
channel does not explain our results.

31 See Vulkan (2000) for a review of the matching literature and DellaVigna (2009) for a review of the evidence on
choice heuristics using �eld data.
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in pounds. We describe these heuristics for the two-card sample, but they could be naturally

extended to settings with three or more cards.

• Heuristic 1: Repay the card with the lowest capacity. Allocate payments to the lowest

capacity card, subject to paying the minimum on both cards. Once capacity is equalized

across cards, allocate additional payments to both cards equally. Intuitively, by focusing

payments on the card with the lowest capacity, this heuristic reduces the risk that an

accidental purchase will put an individual over their credit limit, which would incur an

over-limit fee and marker on the individual’s credit �le.

• Heuristic 2: Repay the card with highest capacity. Allocate payments to the highest ca-

pacity card, subject to paying the minimum on both cards. Once the highest capacity card

is fully repaid, allocate remaining payments to the other card. Intuitively, by allocating

payments to the card with the highest capacity, this heuristic creates maximum “space”

for making a large purchase on a single card (e.g., buying a television).

• Heuristic 3: Repay the card with the highest balance. Allocate payments to the highest

balance card, subject to paying the minimum on the other card. Once balances are

equalized across cards, allocate additional payments to both cards equally. If individuals

dislike having a credit card with a large balance, this heuristic reduces the maximum

balance they are carrying, and thus might explain repayment behavior.

• Heuristic 4: Repay the card with the lowest balance (“debt snowball method”). Allocate

payments to the lowest balance card, subject to paying the minimum on the other card.

Once the balance on the lowest balance card is paid down to zero, allocate any additional

payments to the other card. This heuristic is sometimes referred to as the debt snowball

method by �nancial advisors. Proponents argue that paying o� a card with a low balance

generates a “win” that motivates further repayment behavior. If an individual fully pays

o� a card, this heuristic has the additional bene�t of “simplifying” the individual’s debt

portfolio.
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6 Testing Repayment Models

We evaluate balance matching and the other heuristics using two statistical approaches. First,

we measure the distance between observed and predicted behavior using standard measures of

goodness-of-�t (root mean square error, mean absolute error, Pearson’s ρ). Second, we evaluate

the performance of our models in a “horse race” type analysis where we determine the best �t

model on an individual × month basis.

6.1 Goodness-of-Fit

We start by presenting visual evidence on the goodness-of-�t of the balance-matching heuristic.

Figure 5 examines �t in the two-card sample. The left column shows the marginal distributions

of actual and balance-matching payments on the high APR card. The right column displays

the joint distribution using a contour plot. The top row shows these relationships for the

baseline sample, the middle row restricts attention to the sample with round number payments

(de�ned as multiples of £50), and the bottom row focuses on the sample with non-round number

payment amounts.

The histograms (left column) show that the marginal distributions of actual and balance-

matching payments are quite similar, except for the spikes at 33%, 50%, and 66%. As we discussed

in Section 4, the spikes are much smaller in the non-round sample, suggesting that these

1/N -type repayments may be an unintended consequence of rounding, and not re�ective of

underlying repayment behavior. The higher mass along the 45 degree line in the joint densities

(right column) indicates that actual and balance-matching payments are strongly correlated.

The correlation is strongest in the non-round payment sample and weaker in the round number

payment sample, with the horizontal streaks in the round number sample re�ecting the excess

mass at 33%, 50%, and 66%. The weaker correlation in the round payment sample is consistent

with a two-stage model in which individuals �rst decide to make balance-matching payments

and then add noise to the process by rounding their repayment amounts.

Figure 6 examines the �t of the balance-matching model in the samples with 3, 4, and 5

cards. The left column shows marginal distributions of the share of payments on the highest

APR card. The right column shows radar plots of the average share of actual and balance-
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matching payments. In each of the radar plots, the cards are ordered clockwise from the highest

to the lowest balance (starting at the �rst node clockwise from noon). The distribution of

payments on the high APR card (left column) is similar to predicted payments under balance

matching. The radar plots (right column) show that the average share of payments is fairly close

to those predicted by balance matching, especially compared to the radar plots that examine

optimal repayment behavior (Figure 1).

We formally measure the performance of the balance matching and alternative models

using three standard measures of goodness-of-�t: the square root of the mean square error

(RMSE), the mean absolute error (MAE), and the correlation between actual and predicted pay-

ments (Pearson’s ρ).32 To help interpret the goodness-of-�t values, we also establish lower and

upper benchmarks. For a lower benchmark, we calculate goodness-of-�t under the assumption

that the percentage of repayments on the high APR card is randomly drawn from a uniform

distribution with support on the 0% to 100% interval. To provide an upper benchmark, we

use machine learning techniques to construct a set of purely statistical models of repayment

behavior. Speci�cally, we estimate decision tree, random forest, and extreme gradient boosting

models of the percentage of payments allocated to the high APR card. We use the same set

of variables which enter into our heuristics (APRs, balances, spending and credit limits on

both cards) as input variables and “tune” the models to maximize out-of-sample power using

standard methods from machine learning.33 We use 80% of the data sample as the “training”

sample and measure out-of-sample �t on a 20% “hold-out” sample. For consistency, in the

analysis that follows, we compare all models using the hold-out sample. Technical details are

provided in Appendix I.

Figure 7 shows these measures of goodness-of-�t under the di�erent models. (Appendix

Table A3 shows the underlying numerical amounts with bootstrapped standard errors, con-

structed by drawing with replacement from the hold-out sample.) The optimal model yields

only a very small improvement in the RMSE and MAE relative to the lower benchmark. The

32 Pearson’s ρ is also the square root of the R-squared from a univariate regression of actual payments on predicted
payments.

33 We view these machine learning models as “prior-free” models of repayment behavior. If we additionally include
our candidate models (optimal, balance matching, and the other heuristics) as input variables, we obtain only
small improvements in model �t.
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optimal model does generate an economically meaningful increase in the Pearson correlation,

although this is partly because the lower benchmark (uniformly distributed random amount) is

constructed to have a Pearson correlation of 0. The other heuristics perform similarly poorly,

with the goodness-of-�t measures generally falling less than a quarter of the way between the

lower and upper benchmarks.34

The goodness-of-�t measures for the balance-matching model fall slightly more than

halfway between the lower and upper benchmarks, indicating that balance matching captures

more than half of the “predictable variation” in repayment behavior. Appendix Figure A3

shows goodness-of-�t separately for the round and non-round samples (de�ned as multiples of

£50). The balance-matching model captures a larger fraction of the predictable variation in the

non-round number sample, which is consistent with a two-stage model of payments discussed

above.

There are two ways to view the performance of the balance-matching model relative to

the upper benchmark provided by the machine learning models. The glass half full view is

that being able to capture more than half of the predictable variation in repayment behavior

with a simple balance matching model is useful. Balance matching is a useful description

of behavior because it is easy to understand, reinforces existing theories of behavior (e.g.,

probability matching, Herrnstein’s matching law), and might provide intuition for individual

behavior in yet-to-be-studied environments. The glass half empty perspective is that machine

learning techniques provide higher predictive power. Thus, if the goal is prediction – rather

than understanding human behavior – machine learning techniques may be preferable.

6.1.1 Balances and APRs in Machine Learning Models

In addition to providing us with an upper benchmark, the machine learning models allow

us to asses the relative importance of balances and APRs in predicting repayment behavior.

34 Appendix Figure A4 shows the marginal distributions of actual and predicted payments under each of the
alternative heuristics. One common feature of these alternative heuristics is that they predict that individuals
should often concentrate their excess payments on a single card. For instance, under Heuristic 1 (repay the card
with the lowest capacity), individuals should fully allocate repayments, in excess of the minimum, to the card
with the lowest capacity until the point where both cards have equal capacity remaining. Individuals, however,
seem to avoid “corner solutions” in their repayment behavior. As a result, the alternative heuristics over-predicted
the share of individuals who allocate a very small (less 10%) or very large (greater than 90%) share of payments to
the high APR card.
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Speci�cally we calculate the variable importance, which can be thought of as the incremental

increase in R-squared from adding a given variable to the model. Appendix Table A5 shows

that APRs and balances are not strongly correlated. In cases where the variables are collinear,

the interpretation of variable importance may be spurious (Mullianathan and Spiess, 2017).

Consistent with the balance matching results, the machine learning models con�rm that

balances are hugely important for predicting behavior. Table 4 shows that balances have the

highest variable importance in all of the models, with importance factors substantially larger

than any of the other explanatory variables. Consistent with the poor �t of the optimal repay-

ment rule, we �nd that APRs have the lowest variable importance across models. Appendix

Table A6 shows minima and maxima of variable importance from models estimated on 10

partitions of the training sample. Unlike some other machine learning applications (e.g., Mul-

lianathan and Spiess, 2017), the ranges are narrowly spread around the baseline estimates

in Table 4, indicating that our variable importance measures are not particularly sensitive to

random variation in the training data.

6.2 Horse Races Between Alternative Models

The goodness-of-�t analysis e�ectively measures the distance between observed repayments

and predicted repayments using di�erent loss functions. An alternative approach is to run

“horse races” where we determine the best �t model on an observation-by-observation basis. A

model that �ts a small number of observations very poorly, but a larger number quite well,

would perform poorly under most distance metrics (especially those with convex loss functions)

but would perform well under this alternative approach.

6.2.1 Methodology

Let i denote individuals and t denote months. Let pit indicate the actual share of payments that

is allocated to the high APR card and let p̂ jit indicate the share of payments on the high APR

card predicted by model j ∈ J . To test between alternative models, we estimate speci�cations
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of the form:

pit =
(∑
j∈J

λjit p̂
j
it

)
+ ϵit s.t. λjit ∈ {0, 1} and

∑
j

λjit = 1, (2)

where the λjit are indicators that “turn on” for one and only one of the candidate models j ∈ J .

We vary the set of alternatives J to allow for horse races among di�erent competing sets of

models. When there are multiple models that are tied for the closest to actual repayments,

the λjit are not identi�ed, and so we drop these observations from our analysis. We estimate

the model by minimizing the absolute deviation between the observed and predicted values.35

Intuitively, for each observation pit , this procedure picks the model j that best �ts observed

repayment behavior at the individual × month level.

It is worth pointing out that our ability to identify the best-�t model at the individual ×

month level is due to the unique nature of the credit card repayment decision. As discussed in

Section 1, what sets credit card repayments apart from many other �nancial decisions is that

optimal behavior does not depend on preferences (such as risk preferences or time preferences).

If preferences were important for optimal behavior, then conducting this type of exercise would

require recovering preferences at the individual level, which would be a signi�cant empirical

challenge.

6.2.2 Results

Table 5 shows results of this horse race analysis in the pooled sample of individual × months.

Panel A compares each of our models one-by-one against the lower benchmark where the

percentage of repayments on the high APR card is randomly drawn from a uniform distribution

with support on the 0% to 100% interval. In a binary comparison, balance matching is the best

�t model for 67.2% of observations, or about twice the percentage of the uniform benchmark.

The optimal model and the other heuristics are the closest for slightly more than half of the

observations, and therefore only perform slightly better than the uniform benchmark. In binary

comparisons, the machine learning models have the best �t for between 69.3% and 76.6% of

35 In practice, since we are estimating a separate set of coe�cients for every individual ×month, the estimates would
be identical under a quadratic (or any other monotonically increasing) loss function.
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observations, which is similar to balance matching.36

Panel B of Table 5 compares each of the models one-by-one to the balance-matching

model.37 In a horse race with the optimal model, balance matching has the best �t for slightly

more than two-thirds of observations. When compared with the other heuristic models, balance

matching is also the best �t for approximately two-thirds of observations. Balance matching

performs comparably to, or only a little worse than, the machine learning models, with balance

matching exhibiting the best �t for 40.7% to 49.9% of observations.

To the extent that we think of the competing models as actually representing di�erent

models of individual decision-making, we would naturally expect the best-�t model to be

persistent within individuals over time. Table 6 shows the within-person transition matrix for

the best-�t model. The sample is restricted to individual ×months where we observe repayment

behavior for at least two months in a row. For this exercise, we allow the set J to encompass all

of the candidate models, and we �x the uniformly distributed repayment to be constant within

an individual over time.

The table shows that balance matching exhibits a high degree of persistence – both in

absolute value and relative to the other models of repayment behavior. Among individuals

whose repayments are best �t by the uniform model in a given month, 22.5% make repayments

that are closest to the uniform model in the next month. This persistence likely re�ects the

fact that balances and repayments are sticky over time – if the uniform model happens to be

accurate in a given month, and balances and payments are sticky, then the uniform model will

mechanically be accurate in the next month as well.

The balance-matching model exhibits three-fold greater persistence than the uniform

model. Among individuals whose repayments are closest to balance matching in a particular

month, 83.4% make payments that are closest to balance matching in the next month. The high

degree of persistence suggests that balance matching is more than a good statistical model

but is actually capturing a stable feature of individual decision-making. The only other model

that exhibits strong persistence is the 1/N rule, which again likely re�ects that fact that 1/N

36 Since the machine learning models were tuned to minimize RMSE, it is natural for these models to perform
relatively better when evaluated using RMSE (and other distance metrics) than when evaluated using this type of
horse race analysis.

37 We exclude a comparison of the balance-matching and the uniform model, since it was shown in Panel A.

23



repayments (or the tendency to round payments) is a stable feature of individual behavior.

Taken together, our goodness-of-�t analysis supports the view that balance matching is

a powerful predictor of credit card repayments, capturing more than half of the predictable

variation in repayment behavior and performing substantially better than the alternative

models. In the horse race analysis, balance matching performs at a similar level to the machine

learning models, and is highly persistent over time, suggesting it is more than a good statistical

model but is actually capturing a stable feature of individual decision-making.

7 Sensitivity Analysis

7.1 Minimum Payment Matching

An alternative explanation for the balance-matching result is that individuals anchor their

payments to minimum payment amounts. Like balances, minimum payments are prominently

displayed on credit card statements (see Figure 4). If repayments are determined by a minimum-

payment-matching heuristic, and minimum payments are proportional to balances, then mini-

mum payment matching could produce the observed repayment behavior.38

We separately identify balance matching from minimum payment matching by “zooming

in” on a subset of observations where predicted payments under balance matching and minimum

payment matching are very di�erent. This approach is better than including minimum payment

matching as another heuristic in the goodness-of-�t analysis. If the balance-matching and

minimum-payment-matching amounts were largely overlapping, both heuristics would have

similar goodness-of-�t, even if repayments were driven by only one model of behavior.

To understand how we separately identify these two explanations, we need to provide

some background on minimum payment formulas. Most minimum payment amounts are

calculated as the maxim of a �xed amount (the “�oor”) and a percentage of the balance (the

“slope”). For instance, a typical minimum payment formula might be:

Minimum Payment = max{£25, 2% × Balance}.

38 Setting payments at multiples of the minimum amount (e.g., twice the minimum on each card) would also produce
the observed repayment behavior.
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Consider the following scenarios for an individual with two cards:

(i) If minimum payments are on the “slope” part of the formula (balances greater than

£1,250), and the slopes are identical (2% for both cards), then the balance-matching and

minimum-payment-matching payments will be almost perfectly correlated.39

(ii) If the slopes di�er, then balance-matching and minimum-payment-matching payments

will be correlated, but to a lesser extent.

(iii) If minimum payments are on the “�oor” part of the formula (balances less than £1,250),

then the balance-matching allocation will not be correlated with the minimum-payment-

matching allocation.

Hence, focusing on observations that have di�erent slopes (scenario ii) and where the �oor

binds (scenario iii) allows us to separately identify these mechanisms.

Figure 8 shows binned-scatter plots of actual and predicted payments on the high interest

rate card under the balance-matching heuristic (left column) and minimum-payment-matching

heuristic (right column). The top row shows this relationship where both cards have the same

slope (scenario i), the middle row shows this relationship when the slopes are di�erent (scenario

ii), and the bottom row shows this relationship when both cards are on the �oor part of the

formula (scenario iii). The correlations between these di�erent measures are shown in Table A7.

In the same slope sample, the balance-matching and the minimum-payment-matching

payments are near-perfectly correlated (ρ = 0.96). As a result, the correlation between actual

and balance-matching payments (ρ = 0.63) is nearly identical to the correlation between actual

and minimum-payment-matching payments (ρ = 0.61). In the di�erent slope sample, the

balance-matching and the minimum-payment-matching payments are more weakly correlated

(ρ = 0.86), and the correlation between actual and balance-matching payments (ρ = 0.41)

is stronger than the correlation between actual and minimum-payment-matching payments

(ρ = 0.28). In the �oor sample, there is a much weaker correlation between the balance-matching

payments and the minimum-payment-matching payments (ρ = 0.56), and the correlation

between actual and balance-matching payments (ρ = 0.50) is substantially stronger than the

correlation between actual and minimum-payment-matching payments (ρ = 0.23).

39 The correlation is not perfect because minimum payment amounts may include fees incurred during the cycle,
such as cash advance fees or foreign currency exchange fees.
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It follows that observed repayment behavior is driven by balance matching and not by

individuals setting payments in relationship to minimum payments. The correlation between

actual and balance-matching payments is not a�ected by whether minimum-payment-matching

payments are correlated with the balance-matching payment amount. On the other hand, the

correlation between actual and minimum-payment-matching payment seems highly sensitive to

whether the balance-matching payments are correlated with the minimum-payment-matching

amount. We note that while minimum payments do not seem to be driving our �ndings, our

analysis does not imply that minimum payments are irrelevant for repayment behavior. Indeed,

while not directly comparable, our �nding of a modest correlation between actual and minimum

payments matching repayments is consistent with Keys and Wang (2017), who estimate that

9% to 20% of account-holders anchor their repayments to minimum payment amounts.

7.2 Autopay

Another factor that might a�ect repayment behavior is whether the individual uses automatic

payment (“autopay”). In the completely unrestricted two-card sample (including individuals

with no revolving debt on either card), autopay is used on 23.9% of account ×months. Although

individuals are allowed to set automatic payments at a �xed amount or a �xed percentage of

the balance, individuals typically set automatic payments at either the minimum due or the full

balance. Conditional on using autopay, 30.3% pay the minimum and 42.2% pay the full amount.

Since we drop individuals who make the minimum or full payment on both their cards (see

Section 2), autopay is used on only 17.4% of account × months in the baseline sample. Thus,

the main results predominately re�ect behavior when individuals do not use autopay and make

active repayment decisions.

Appendix Figure A6 plots repayment behavior for observations where individuals use

autopay on both cards (left column, 11% of observations) and do not use autopay on either card

(right column, 77% of observations).40 The top row shows the distributions of actual and optimal

payments, the middle row shows the distribution of actual and optimal payments in excess of

40 The propensity to use autopay is highly correlated within individuals across cards. In the two-card sample, 68.2%
of individuals use autopay on the high APR card also use it on the low APR card, and 74.9% of individuals who do
not use autopay on the high APR card do not use it on the low APR card.
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the minimum, and the bottom row shows the joint distribution of actual and balance-matching

payments. While average misallocated repayments are lower in the autopay sample than the

non-autopay sample (7.3% versus 23.2%), misallocated repayments in excess of the minimum

are similar in both samples (45.7% versus 45.5%). The reason that misallocated payments are

smaller (and misallocated excess payments are the same) is that the autopay sample has lower

monthly repayments and, therefore, the scope for misallocating payments is lower.41 Summary

statistics for actual and excess payments by autopay status are shown in Appendix Table A8.

Appendix Table A9 and Table A10 show our standard measures of model performance

by whether individuals use autopay on both cards and do not use autopay on either card.42.

In particular, Appendix Table A9 shows our measures of goodness-of-�t (root mean square

error, mean absolute error, Pearson’s correlation) for uniformly distributed repayments, optimal

repayments, and balance-matching repayments separately for the autopay and non-autopay

samples. Appendix Table A10 shows the results of horse-race analysis that compares uniformly

distributed versus balance-matching payments, and balance-matching versus optimal repay-

ments, separately for the autopay and non-autopay samples. While the exact results vary, the

optimal model performs poorly and the balance-matching model performs well across all of

these di�erent measures of model performance in both the autopay and non-autopay sample.

Thus, we conclude that our results are not particularly sensitive to whether individuals use

autopay.

In summary, autopay is rare in our baseline sample, and our main results predominately

re�ect repayments by individuals who do not use autopay and necessarily make active re-

payment decisions each month. However, when individuals use autopay, their propensity to

misallocate and to follow a balance-matching rule is similar to that in the non-autopay sample,

suggesting that our results are robust across these somewhat di�erent choice environments.

41 Speci�cally, while balances are slightly higher in the autopay sample (£6,900 versus £5,800), repayments are
substantially lower (£200 versus £510).

42 Results are shown using the 20% hold-out sample
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8 Conclusion

In this paper, we used linked data on multiple cards from �ve major credit card issuers in the

U.K. to study borrowing behavior in the credit card market. We showed that the allocation of

repayments is highly non-optimal, with individuals allocating only 51.5% of their payments in

excess of the minimum to the high APR card, relative to optimal repayments of 97.1%. This

�nding builds on Ponce et al. (2017), who showed evidence of similar non-optimal behavior in

credit card data from Mexico.

The main contribution of our paper was to show that, in contrast to the optimal repayment

rule, actual repayment behavior can be explained by a balance-matching heuristic under which

individuals match the share of repayments on each card to the share of balances on each card. In

particular, we showed that balance matching captures more than half of the predictable variation

in repayments, performs substantially better than other models, and is highly persistent within

individuals over time.

We provided additional support for the importance of balances – and irrelevance of

interest rates – using machine learning models. Consistent with the poor �t of the optimal

repayment rule, we found that interest rates have the lowest variable importance in our machine

learning models. Consistent with balance matching results, we found that balances have the

highest variable importance, with importance factors substantially larger than any of the other

explanatory variables.

Our �ndings suggest a number of avenues for future work. Is balance-matching type

behavior present in other markets, such as the decision of how to allocate payments across

student loans with di�erent interest rates? What are the psychological underpinnings of balance

matching? For instance, does balance matching, in part, re�ect a moral preference to repay

more to the creditor to whom more is owed?43 From a policy perspective, a natural response

to the observed non-optimality of repayments is to make interest rates more salient. In our

view, running experiments that test alternative ways of presenting interest rates on credit card

statements and online repayment portals would be valuable.

43 Devin Pope deserves credit for suggesting this underlying explanation.
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Figure 1: Actual and Optimal Payments
(A) Two Cards

0
5

10
15

D
en

si
ty

 (%
)

0 50 100
Payment on High APR Card (%)

Actual Optimal

(B) Three Cards

75

75 75

Card 1: Lowest APR

  Card 2  Card 3: 
 Highest APR

●

● ●

●

●

●

●

●

Actual
Optimal

(C) Four Cards

60

60

60

60

Card 1: Lowest APR

 Card 2        

Card 3

          Card 4: 
       Highest APR

●

●

●

●

●

●

●

●

●

●

Actual
Optimal

(D) Five Cards

60

60

60 60

60

Card 1: Lowest APR

Card 2  
 

Card 3 Card 4

        Card 5: 
        Highest APR

●

●

● ●

●

●

●

●

●

●

●

●

Actual
Optimal

Note: Panel A shows the distribution of actual and optimal payments on the high interest rate card in the two-card
sample. Panels B to D show radar plots of mean actual and optimal payments in the samples with 3 to 5 cards.
In the radar plots, cards are ordered clockwise from the highest to the lowest APR (starting at the �rst node
clockwise from noon). All samples are restricted to individual ×months in which individuals face an economically
meaningful allocative decision. See Section 2.2 for details on the sample construction.
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Figure 2: Misallocated Payments by Economics Stakes
(A) Misallocated vs. Di�erence in APR
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(B) Misallocated vs. Total Payments
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(C) Misallocated vs. Age of High-APR Card
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(D) Misallocated Payments vs. Di�. Due Dates
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Note: Figure shows binned-scatter plots (with 20 equally sized bins) of misallocated payments against the
di�erence in APR across cards (Panel A), the total value of payments within the month in pounds (Panel B),
the age of the high APR card (Panel C), and the di�erence in payment due dates (Panel D). Local polynomial
lines of best �t, based on the non-binned data, are also shown. The two-card sample is restricted to individual ×
months in which individuals face an economically meaningful allocative decision. See Section 2.2 for details on
the sample construction.
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Figure 3: Rounding and the 1/N Rule
(A) Density of Payments (£s)
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Note: Panel A shows the distribution of payments on the high APR card in £s (excluding the top decile of
payments). Panel B plots the distribution of payments on the high APR card in percent, among individuals who
make round number payments (exact multiples of £50). Panel C plots the distribution of payments on the high
APR in percent, among individuals who make non-round number payments (not multiples of £50). The round and
non-round samples are de�ned by repayments on the high APR card. See Footnote 27 for details. The two-card
sample is restricted to individual × months in which individuals face an economically meaningful allocative
decision. See Section 2.2 for details on the sample construction.
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Figure 4: Example Credit Card Statement

Note: The �gure shows an extract of one of the authors’ credit card statements, with card issuer branding, contact
details and card holder personal identifying information obscured.
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Figure 5: Balance Matching
(A) Baseline Sample
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Note: Left panels shows the distribution of actual and balance-matching payments on the high APR card. Right
panels show the joint density of actual and balance-matching payments. Panel A shows the baseline sample,
Panel B restricts the sample to round number payments (multiples of £50), and Panel C restricts the sample to
non-round payment amounts (not multiples of £50). Round and non-round samples are de�ned by repayments
on the high APR card. See Footnote 27 for details. The two-card sample is restricted to individual × months in
which individuals face an economically meaningful allocative decision. See Section 2.2 for details on the sample
construction.
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Figure 6: Distribution of Actual and Balance-Matching Payments on Multiple Cards
(A) Three Cards
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(B) Four Cards
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(C) Five Cards
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Note: Left column shows the marginal distributions of actual and balance-matching payments on the high APR
card. Right column shows radar plots of the mean percentage of actual and balance-matching payments allocated
to each card. In the radar plots, cards are ordered clockwise from the highest to the lowest balance (starting at
the �rst node clockwise from noon). All samples are restricted to individual × months in which individuals face
an economically meaningful allocative decision. See Section 2.2 for details on the sample construction.
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Figure 7: Goodness-of-Fit for Di�erent Models
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Note: Goodness-of-�t for di�erent models of the percentage of payments on the high APR card. The left panel shows the Root Mean Square Error (RMSE), the middle panel
shows the Mean Absolute Error (MAE), and the right panel shows the Pearson Correlation Coe�cient, which can also be interpreted as the square root of the R-squared.
Random has repayments on the high APR card randomly drawn from a uniform distribution with support on the 0% to 100% interval. Optimal is pay minimum required
payment on all of their cards, repay as much as possible on the card with the highest interest rate, and only allocate further payments to the lower interest rate cards if they
are able to pay o� the highest interest rate card in full. Heuristic 1 is repay the card with the lowest capacity. Heuristic 2 is repay the card with the highest capacity. Heuristic 3
is repay the card with the highest balance. Heuristic 4 is repay the card with the lowest balance (“debt snowball method”). Balance matching is match the share of repayments
on each card to the share of balances on each card. Decision Tree, Random Forest, and Gradient Boost are machine learning models that predict the share of repayments on the
high APR card using these methods. The two-card sample is restricted to individual × months in which individuals face an economically meaningful allocative decision.
Goodness of �t is calculated using the 20% hold-out sample. See Section 2.2 for details on the sample construction.
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Figure 8: Balance Matching and Minimum Payment Matching in the Floor and Slope Samples
(A) Same Slope Sample
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(B) Di�erent Slope Sample
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(C) Floor Sample
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Note: Panels show binned-scatter plots of the actual percentage of monthly payment allocated to the high APR
card (y-axis) and the percentage of total monthly payment allocated to the high APR card under the balance-
matching heuristic (x-axis, left column) and minimum-payment-matching heuristics (x-axis, right column). “Same
Slope Sample” focuses on account × months where the balance-matching and minimum-payment-matching
payments are near-perfectly correlated (ρ = 0.96). “Di�erent Slope Sample” focuses on account × months where
the balance-matching and minimum-payment-matching payments are less strongly correlated (ρ = 0.86). “Floor
Sample” focuses of account × months where the balance-matching and minimum-payment-matching payments
have the weakest correlation (ρ = 0.56).
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Table 1: Summary Statistics
(1) (2) (3)

High APR Card Low APR Card Di�erence

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Card Characteristics

APR: Purchases (%) 22.87 4.80 16.56 6.40 6.30 5.85

APR: Cash Advances (%) 26.08 4.12 23.72 5.28 2.36 6.31

Monthly Credit Limit (£) 6,388.77 4,443.05 6,013.20 4,092.41 375.57 4,856.48

Spending (£)

Purchases 128.09 432.43 116.53 397.63 11.56 570.04

Purchases if > £0 380.17 672.79 360.06 629.70 -2.80 798.02

Cash Advances 6.47 73.29 5.81 73.74 0.66 97.25

Cash Advances if > £0 216.98 366.68 215.01 395.20 -5.42 352.15

Payments (£)

Repayments 259.76 733.92 229.69 657.60 30.07 913.65

Interest Paid (£)

Purchases 38.48 59.49 28.97 48.32 9.51 61.64

Cash Advances 1.49 10.73 0.91 7.13 0.58 11.88

Card Cycle (£)

Closing Balance 3,020.54 3,115.48 3,032.15 2,967.13 -11.61 3,478.14

Revolving Balance 2,200.01 2,890.49 2,053.68 2,796.17 146.33 3,082.07

Minimum Amount Due 63.24 68.84 56.80 58.32 6.43 71.55

Card Status

Predicted Account Charge-O� Rate (%) 1.80 3.03 1.65 2.56 0.13 3.11

Tenure (Months Since Account Opened) 104.82 78.13 78.53 70.10 26.30 84.55

Number of Account-Months 394,111 394,111 394,111

Note: Summary statistics for the two-card sample restricted to individual × months in which individuals face an
economically meaningful allocative decision. See Section 2.2 for more details on the sample construction. APR
stands for annual percentage rate. Predicted charge-o� rate is the predicted probability that the credit card is
charged o� within the next six months. The exchange rate was £1 = $1.32 at the midpoint of our sample period.
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Table 2: Actual and Optimal Payments on the High APR Card
Percentiles

Mean Std. Dev. 10th 25th 50th 75th 90th

i) As % Total Monthly Payment

Actual Payment (%) 51.22 24.21 16.86 33.33 50.00 67.99 84.78

Optimal Payment (%) 70.74 22.17 38.10 55.92 75.23 89.48 95.83

Di�erence (%) 19.52 23.75 0.00 0.72 9.91 32.40 54.55

ii) Payment in £

Actual Payment (£) 259.76 733.92 25.00 45.49 100.00 200.00 450.00

Optimal Payment (£) 377.30 849.70 32.62 65.00 138.51 307.09 807.21

Di�erence (£) 117.54 422.14 0.00 1.00 17.80 75.00 237.47

Note: Summary statistics for actual and optimal payments on the high APR card. The top panel shows
values as a percentage of total payments on both cards in that month. The bottom panel shows values in
£s. The two-card sample is restricted to individual × months in which individuals face an economically
meaningful allocative decision. See Section 2.2 for more details on the sample construction. The exchange
rate was £1 = $1.32 at the midpoint of our sample period.
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Table 3: Annualized Interest Savings from Optimizing
Credit Card Repayments (£s)

Percentiles

Mean Std. Dev. 75th 90th

Two Cards 64.82 115.33 70.39 167.41

Three Cards 121.26 463.63 133.44 414.36

Four Cards 198.40 665.57 262.80 703.68

Five Cards 247.65 851.83 366.96 926.88

Note: Summary statistics for annualized interest savings from a coun-
terfactual “steady state” where individuals optimize balances across
the credit cards we observe in our data, subject to the constraint of
not exceeding their credit limits. Samples are restricted to individ-
ual × months in which individuals face an economically meaningful
allocative decision. See Section 2.2 for more details on the sample
construction. The exchange rate was £1 = $1.32 at the midpoint of
our sample period.
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Table 4: Machine Learning Models Variable Importance
(1) (2) (3)

Decision Tree Random Forest Extreme Gradient Boost

Variable Importance Variable Importance Variable Importance

Low Card Balance 0.21 High Card Balance 0.21 High Card Balances 0.25
High Card Balance 0.19 Low Card Balance 0.18 Low Card Balances 0.24
Low Card Credit Limit 0.13 High Card Credit Limit 0.13 High Card Purchases 0.19
High Card Credit Limit 0.12 Low Card Credit Limit 0.12 Low Card Purchases 0.17
Low Card Purchases 0.16 High Card Purchases 0.11 Low Card Credit Limit 0.06
High Card Purchases 0.18 Low Card Purchases 0.11 High Card Credit Limit 0.04
Low Card APR 0.00 High Card APR 0.07 Low Card APR 0.03
High Card APR 0.01 Low Card APR 0.07 High Card APR 0.02

Note: Table summarizes the importance of input variables in explaining payments on the high APR card in decision tree,
random forest and extreme gradient boosting models. Rows show the proportion of the total reduction in sum of squared
errors in the outcome variable resulting from the split of each variable across all nodes and all trees.
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Table 5: Horse Races Between Alternative Models
Panel (A)

Uniform vs. Other Rules
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Win %
Uniform 32.81 45.45 50.24 45.28 47.41 46.87 30.70 23.43 27.23
Balance Matching 67.19
Optimal 54.55
Heuristic 1 (Pay Down Lowest Capacity) 49.76
Heuristic 2 (Pay Down Highest Capacity) 54.72
Heuristic 3 (Pay Down Highest Balance) 52.59
Heuristic 4 (Pay Down Lowest Balance) 53.13
Decision Tree 69.30
Random Forest 76.57
XGB 72.77

Panel (B)
Balance Matching vs. Other Rules

(1) (2) (3) (4) (5) (6) (7) (8)

Win %
Balance Matching 68.97 73.09 67.22 76.65 64.70 49.86 40.74 45.33
Optimal 31.03
Heuristic 1 (Pay Down Lowest Capacity) 26.91
Heuristic 2 (Pay Down Highest Capacity) 32.78
Heuristic 3 (Pay Down Highest Balance) 23.35
Heuristic 4 (Pay Down Lowest Balance) 35.30
Decision Tree 50.14
Random Forest 59.26
XGB 54.67

Note: Table shows percentage of individual × month observations that are best �t by di�erent models of repayment behavior. The
target variable is the share of repayments on the high APR card. Panel A compares each of our models one-by-one against the
lower benchmark where the percentage of repayments on the high APR card is randomly drawn from a uniform distribution with
support on the 0% to 100% interval. Panel B compares each of the models one-by-one to the balance-matching model. We exclude
a comparison of balance matching and the uniform model, since it was shown in Panel A. Uniform has repayments on the high
APR card randomly drawn from a uniform distribution with support on the 0% to 100% interval. Balance matching is match the
share of repayments on each card to the share of balances on each card. Optimal is pay minimum required payment on all of
their cards, repay as much as possible on the card with the highest interest rate, and only allocate further payments to the lower
interest rate cards if they are able to pay o� the highest interest rate card in full. Heuristic 1 is repay the card with the lowest
capacity. Heuristic 2 is repay the card with highest capacity. Heuristic 3 is repay the card with the highest balance. Heuristic 4 is
repay the card with the lowest balance (“debt snowball method”). Decision Tree, Random Forest, and XGB are machine learning
models that predict the share of repayments on the high APR card using these methods. Samples are restricted to individual ×
months in which individuals face an economically meaningful allocative decision. All results shown in the table are based on the
20% hold-out sample. See Section 2.2 for more details on the sample construction.
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Table 6: Transition Matrix for Best-Fit Model

Pr
ev
io
us

Pe
ri
od

Current Period

Balance
Uniform Matching Optimal H 1 H 2 H 3 H 4 1/N Rule

Uniform 25.50% 55.20% 0.23% 1.75% 0.47% 1.52% 0.58% 14.74%

Balance Matching 7.73% 83.35% 0.13% 1.39% 1.20% 1.17% 1.10% 3.92%

Optimal 18.18% 72.73% 9.09% 0.00% 0.00% 0.00% 0.00% 0.00%

Heuristic 1 (Pay Down Lowest Capacity) 11.38% 45.51% 0.00% 29.94% 0.00% 0.60% 4.19% 8.38%

Heuristic 2 (Pay Down Highest Capacity) 4.20% 66.39% 0.00% 0.84% 24.37% 1.68% 0.00% 2.52%

Heuristic 3 (Pay Down Highest Balance) 11.43% 47.62% 0.00% 4.76% 0.00% 19.05% 0.00% 17.14%

Heuristic 4 (Pay Down Lowest Balance) 4.55% 63.64% 0.00% 4.55% 0.00% 1.52% 21.21% 4.55%

1/N Rule 17.58% 27.73% 0.26% 2.08% 0.39% 1.43% 0.52% 50.00%

Note: Table shows transition matrix for the best-�t payment model. The target variable is the share of repayments on the high APR card. In each period, we allow the set J to
encompass all of the candidate models, and we �x the uniformly distributed repayment to be constant within an individual over time. Balance matching is match the share of
repayments on each card to the share of balances on each card. Optimal is to pay minimum required payment on all of their cards, repay as much as possible on the card with
the highest interest rate, and only allocate further payments to the lower interest rate cards if they are able to pay o� the highest interest rate card in full. Heuristic 1 is repay
the card with the lowest capacity. Heuristic 2 is repay the card with highest capacity. Heuristic 3 is repay the card with the highest balance. Heuristic 4 is repay the card
with the lowest balance (“debt snowball method”). 1/N is exactly split repayments across cards. Samples are restricted to individual × months in which individuals face an
economically meaningful allocative decision. All results shown in the table are based on the 20% hold-out sample. See Section 2.2 for more details on the sample construction.
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Online Appendix

I Machine Learning Models

This section provides details of machine learning models we use to �t repayment behavior. We

estimate decision tree, random forest and extreme gradient boosting. For all of these models,

our target variable is the percentage of payments allocated to the high APR card in the two-card

sample. We use APRs, balances, and credit limits on both cards as explanatory variables, and

tune the models with cross-validation to maximize the out-of-sample power.

Decision Tree Tree-based methods partition the sample space into a series of hyper-cubes,

and then �t a simple model in each partition. The decision tree is grown through iteratively

partitioning nodes into two sub-nodes according to a splitting rule. In our case, the splitting

criterion is to �nd one explanatory variable and a cut-o� value that minimize the sum of

squared errors in the two sub-nodes combined. In theory, the tree can have one observation

in each �nal node, but this tree will have poor performance out-of-sample. In practice, the

decision tree is grown until the reduction in squared error falls under some threshold. Then, it

calculates the average percentage of payments allocated to high APR cards in each �nal node.

We use the r package “rpart” to �t the decision-tree model.44 To avoid over�tting the data,

we “prune” the decision tree by tuning the complexity parameter through cross-validation.

The complexity parameter requires each split to achieve a gain in R-squared greater than the

parameter value. We pick the complexity parameter threshold that minimizes mean square

error in 5-fold cross-validation. That is, we split the sample randomly into 5 disjoint subsets.

For each of these 5 subsets, we use the remaining 80% of the data to train the tree, and calculate

the error on each 20% subset.45 Appendix Figure A7 shows the estimated decision tree.

Random Forest The machine learning literature has proposed several variations on the tree

model. One approach which has been found to work very well in practice is random forest

44 See https://cran.r-project.org/web/packages/rpart/vignettes/longintro.
pdf for a complete description of the function.

45 See Friedman et al. (2001) Chapter 9, for further information on tree-based methods.
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(Breiman, 2001). Random forest builds a large number of trees and averages their predictions.

It introduces randomness into the set of explanatory variables considered when splitting each

node. The algorithm �rst draws a number of bootstrapped samples, and grows a decision tree

within each sample. At each node, it randomly selects a subset of “m” explanatory variables

in the split search, and chooses the best split among those “m” variables. Lastly, it makes

predictions by averaging the results from each tree.

We use the r package “randomForest” to grow a forest of 100 trees.46 For each tree, we

calculate the out-of-sample error using the rest of the data not included in the bootstrapped

sample. The average prediction error over these 100 trees is minimized to �ne tune “m”, the

number of explanatory variables in the subset we consider in each split search. Increasing the

number of trees does not signi�cantly improve prediction accuracy.

Extreme Gradient Boosting Extreme gradient boosting and random forest are both based

on a collection of tree predictors. They di�er in their training algorithm. The motivation for

boosting is a procedure that combines the outputs of many “weak” classi�ers to produce a pow-

erful “committee” (Friedman et al., 2001). Instead of growing a number of trees independently,

boosting applies an additive training strategy, by adding one new tree at a time. At each step,

the new decision tree puts greater weights on observations that are misclassi�ed in the previous

iteration. Finally, it averages predictions from trees at each step. This algorithm e�ectively

gives greater in�uence to the more accurate tree models in the additive sequence. We use the r

package “xgboost” and �ne tune the number of iterations over a 5-fold cross-validation.47 The

rest of the parameters such as the learning rate are kept at their default values. Perturbation of

these values does not have material impact on out-of-sample errors.48

46 See https://cran.r-project.org/web/packages/randomForest/randomForest.
pdf for a complete description of the function.

47 See http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf for a
complete description of the function.

48 For a more detailed introduction of extreme gradient boosting, see http://xgboost.readthedocs.io/
en/latest/model.html. Friedman (2001) is the �rst paper that introduced the term “gradient boosting”.
Friedman et al. (2001), Chapter 10 also introduces a boosting algorithm.
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Figure A1: Actual and Optimal Excess Payments
(A) Two Cards
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Note: Panel A shows the distribution of actual and optimal excess payments on the high interest rate card in the
two-card sample. Panels B to D show radar plots of mean actual and optimal excess payments in the samples of
individuals with 3 to 5 cards. Excess payments are calculated as the percentage of payments on a given card
after subtracting out repayments needed to pay the minimum amounts due. In the radar plots, cards are ordered
clockwise from the highest to the lowest APR (starting at the �rst node clockwise from noon). All samples are
restricted to individual × months in which individuals face an economically meaningful allocative decision. See
Section 2.2 for more details on the sample construction.
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Figure A2: Misallocated Excess Payments by Economics Stakes
(A) Misallocated vs. Di�erence in APR
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(B) Misallocated vs. Total Payments
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(C) Misallocated vs. Age of High Cost Card
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(D) Excess Misallocated Payments vs. Di�. Due Dates
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Note: Figure shows binned-scatter plots (with 20 equally sized bins) of misallocated payments against the
di�erence in APR across cards (Panel A), the total value of payments within the month in pounds (Panel B),
the age of the high APR card (Panel C), and the di�erence in payment due dates (Panel D). Local polynomial
lines of best �t, based on the non-binned data, are also shown. Excess payments are calculated as the percentage
of payments on a given card after subtracting out repayments needed to pay the minimum amounts due. The
two-card sample is restricted to individual × months in which individuals face an economically meaningful
allocative decision. See Section 2.2 for more details on the sample construction.
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Figure A3: Goodness-of-Fit for Di�erent Models, Round and Non-Round Number Samples
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Note: Goodness-of-�t for di�erent models of the percentage of payments on the high APR card. The left panel shows the Root Mean Square Error (RMSE), the middle panel
shows the Mean Absolute Error (MAE), and right panel shows the Pearson Correlation Coe�cient, which can also be interpreted as the square root of the R-squared. The
round number sample restricts to observations where individuals make round number payments (multiples of £50), and the non-round number sample restricts to observations
where individuals make non-round payment amounts (not multiples of £50). Random has repayments on the high APR card randomly drawn from a uniform distribution with
support on the 0% to 100% interval. Optimal is pay minimum required payment on all of their cards, repay as much as possible on the card with the highest interest rate, and
only allocate further payments to the lower interest rate cards if they are able to pay o� the highest interest rate card in full. Heuristic 1 is repay the card with the lowest
capacity. Heuristic 2 is repay the card with highest capacity. Heuristic 3 is repay the card with the highest balance. Heuristic 4 is repay the card with the lowest balance (“debt
snowball method”). Balance matching is match the share of repayments on each card to the share of balances on each card. Decision Tree, Random Forest, and Gradient Boost
are machine learning models that predict the share of repayments on the high APR card using these methods. Round and non-round samples are de�ned by repayments on the
high APR card. See Footnote 27 for details. The two-card sample is restricted to individual × months in which individuals face an economically meaningful allocative decision.
Goodness of �t is calculated using the 20% hold-out sample. See Section 2.2 for more details on the sample construction.
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Figure A4: Actual and Predicted Payments Under Alternative Repayment Heuristics
(A) Heuristic 1: Pay Down Lowest Capacity
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(B) Heuristic 2: Pay Down Highest Capacity
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(C) Heuristic 3: Pay Down Highest Balance
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Note: Figures show the distributions of actual payments and predict payments under the alternative repayment
heuristics. Heuristic 1 is repay the card with the lowest capacity. Heuristic 2 is repay the card with highest
capacity. Heuristic 3 is repay the card with the highest balance. Heuristic 4 is repay the card with the lowest
balance (“debt snowball method”). The two-card sample is restricted to individual × months in which individuals
face an economically meaningful allocative decision. See Section 2.2 for more details on the sample construction.
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Figure A5: Histogram of Di�erence in Due Dates
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Note: Figure shows the distribution of the absolute di�erence in due dates. The two-card sample is restricted to
individual × months in which individuals face an economically meaningful allocative decision. See Section 2.2
for more details on the sample construction.
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Figure A6: Actual, Optimal and Balance Matching Payments for Autopay (Left Column, 11% of
Observations) and Non-Autopay (Right Column, 77% of Observations) Samples

(A) Actual vs. Optimal Payments
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(B) Actual vs. Optimal Excess Payments
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(C) Actual vs. Balance Matching Payments

Note: Panel A shows the distribution of actual and optimal excess payments on the high APR card in the two-card
sample. Panel B shows the distribution of actual and optimal excess payments on the high APR card in the two-
card sample. Excess payments are calculated as the percentage of payments on a given card after subtracting out
repayments needed to pay the minimum amounts due. Panel C shows the joint distribution of actual and balance
matching payments on the high APR card. The autopay sample is de�ned as observations where individuals
make automatic payments on both cards. The non-autopay sample is de�ned as observations where individuals
do not make automatic payments on either card. All samples are restricted to individual × months in which
individuals face an economically meaningful allocative decision. See Section 2.2 for more details on the sample
construction.
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Figure A7: High APR Card Payment Decision Tree
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Note: Figure shows the decision (regression) tree for high APR card repayment. Top row is tree root. Nodes show the variable and split value at each branch. Bottom rows
show predicted values at the end of each branch.
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Table A1: Sample Restrictions
(1) (2)

Unique Aggregate
Individuals Revolving Debt

Count % £s %

Unrestricted Sample 174,686 100.00% 301,182,890 100.00%

Drop if Equal Interest Rates 2,845 1.63% 6,293,817 2.09%

Drop if Pays Full on Both 10,782 6.17% 18,239,430 6.06%

Drop if Pays Min on Both 48,263 27.63% 50,590,569 16.80%

Baseline Sample 112,796 64.57% 226,059,074 75.06%

Note: Table shows the e�ect of the sample restrictions on the number and per-
centage of unique individuals and aggregate debt in the two-card sample. Since
observations may be excluded by multiple criteria, the order in which the re-
strictions are applied matters, and the values in the table should be thought
about as the incremental e�ect of the di�erent restrictions.
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Table A2: Actual and Optimal Excess Payments on the High APR Card
Percentiles

Mean Std. Dev. 10th 25th 50th 75th 90th

i) As a % Total Monthly Payment

Actual Excess Payment (%) 51.51 34.75 0.89 19.92 51.31 84.91 99.82

Optimal Excess Payment (%) 97.08 12.93 100.00 100.00 100.00 100.00 100.00

Di�erence (%) 45.56 35.05 0.00 11.40 45.34 75.70 98.39

ii) Payments in £

Actual Excess Payment (£) 196.52 729.43 0.23 2.32 22.70 88.79 350.19

Optimal Excess Payment (£) 314.06 843.53 1.91 14.40 66.51 223.00 737.54

Di�erence (£) 117.54 422.14 0.00 1.00 17.80 75.00 237.47

Note: Summary statistics for actual and optimal excess payments on the high APR card. Excess pay-
ments are calculated as the percentage of payments on a given card after subtracting out repayments
needed to pay the minimum amounts due. The top panel shows values as a percentage of total excess
payments on both cards in that month. The bottom panel shows values in £s. The two-card sample
is restricted to individual × months in which individuals face an economically meaningful allocative
decision. See Section 2.2 for details.
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Table A3: Goodness-of-Fit for Di�erent Models
(1) (2) (3)

RMSE MAE Corr

i) Main Models

Uniform Draw (0,100) 36.59 30.05 -0.00
(0.08) (0.07) (0.00)

Optimal 35.09 25.38 0.31
(0.12) (0.11) (0.00)

Balance Matching 23.89 17.07 0.47
(0.08) (0.06) (0.00)

ii) Alternative Heuristics

Heuristic 1 (Pay Down Lowest Capacity) 36.46 27.28 0.08
(0.12) (0.11) (0.01)

Heuristic 2 (Pay Down Highest Capacity) 33.52 23.88 0.29
(0.13) (0.12) (0.01)

Heuristic 3 (Pay Down Highest Balance) 35.29 25.94 0.27
(0.12) (0.10) (0.01)

Heuristic 4 (Pay Down Lowest Balance) 34.20 24.68 0.10
(0.13) (0.12) (0.01)

iii) Machine Learning Models

Decision Tree 19.42 15.03 0.53
(0.07) (0.05) (0.00)

Random Forest 16.24 11.63 0.71
(0.07) (0.05) (0.00)

XGBoost 17.51 13.17 0.65
(0.07) (0.05) (0.00)

Note: Goodness-of-�t for di�erent models of the percentage of pay-
ments on the high APR card. The �rst column shows the Root Mean
Square Error (RMSE), the second column shows the Mean Absolute
Error (MAE), and third column shows the Pearson Correlation Coe�-
cient, which can also be interpreted as the square root of the R-squared.
The two-card sample is restricted to individual ×months in which indi-
viduals face an economically meaningful allocative decision. Goodness
of �t is calculated using the 20% hold-out sample and standard errors
are constructed by the bootstrap method. See Section 2.2 for details.
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Table A4: Goodness-of-Fit for Di�erent Models, Round Number and Non-Round
Number Payment Samples

Non-Round Round
Number Sample Number Sample

(1) (2) (3) (4) (5) (6)
RMSE MAE Corr RMSE MAE Corr

i) Main Models

Uniform Draw (0,100) 34.04 28.36 -0.01 36.90 30.30 -0.00
(0.19) (0.19) (0.01) (0.11) (0.10) (0.00)

Optimal 36.40 30.65 0.25 32.86 20.81 0.35
(0.18) (0.17) (0.01) (0.24) (0.20) (0.01)

Balance Matching 22.00 16.81 0.38 23.11 15.61 0.53
(0.14) (0.11) (0.01) (0.13) (0.09) (0.00)

ii) Alternative Heuristics

Heuristic 1 (Pay Down Lowest Capacity) 36.17 30.33 0.03 34.98 23.71 0.13
(0.19) (0.17) (0.01) (0.21) (0.18) (0.01)

Heuristic 2 (Pay Down Highest Capacity) 35.11 29.34 0.21 30.90 19.19 0.37
(0.21) (0.19) (0.01) (0.20) (0.16) (0.01)

Heuristic 3 (Pay Down Highest Balance) 34.23 28.80 0.31 34.81 23.02 0.25
(0.17) (0.16) (0.01) (0.23) (0.19) (0.01)

Heuristic 4 (Pay Down Lowest Balance) 36.39 30.32 -0.10 30.20 19.03 0.28
(0.20) (0.18) (0.01) (0.21) (0.17) (0.01)

iii) Machine Learning Models

Decision Tree 15.58 11.62 0.49 19.94 14.92 0.57
(0.11) (0.09) (0.01) (0.12) (0.09) (0.01)

Random Forest 13.47 9.71 0.66 16.79 11.25 0.73
(0.11) (0.08) (0.01) (0.12) (0.09) (0.00)

XGBoost 14.16 10.53 0.61 17.78 12.58 0.68
(0.11) (0.08) (0.01) (0.12) (0.09) (0.00)

Note: Goodness-of-�t for di�erent models of the percentage of payments on the high-APR card.
The �rst column shows the Root Mean Square Error (RMSE), the second column shows the
Mean Absolute Error (MAE), and third column shows the Pearson Correlation Coe�cient, which
can also be interpreted as the square root of the R-squared. Round and non-round samples are
de�ned by whether repayments on the high APR card are multiples £50. See Footnote 27 for
details. The two-card sample is restricted to individual × months in which individuals face an
economically meaningful allocative decision. Goodness of �t is calculated using the 20% hold-out
sample and standard errors are constructed by the bootstrap method. SSee Section 2.2 for details
on the sample construction.
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Table A5: Correlation Matrix of Input Variables to Machine Learning
Models

APR(H) APR(L) Bal(H) Bal(L) Pur(H) Pur(L) Lim(H) Lim(L)

APR(H) 1.00

APR(L) 0.49 1.00

Bal(H) 0.14 0.14 1.00

Bal(L) 0.12 0.11 0.36 1.00

Pur(H) -0.05 -0.05 0.05 0.08 1.00

Pur(L) -0.05 -0.02 0.07 0.05 0.04 1.00

Lim(H) -0.01 0.04 0.61 0.23 0.16 0.08 1.00

Lim(L) -0.07 0.06 0.23 0.64 0.09 0.13 0.36 1.00

Note: Table shows correlation matrix for the input variables to the machine learning mod-
els. APR is the Annual Percentage Rate, Bal is the balance, Pur is purchases, and Lim is the
credit limit. (H) indicates the high APR card and (L) indicates the low APR card. The two-
card sample is restricted to individual ×months in which individuals face an economically
meaningful allocative decision. See Section 2.2 for details on the sample construction.
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Table A6: Sensitivity Estimates Machine Learning Models Variable Importance
(1) (2) (3)

Decision Tree Random Forest Extreme Gradient Boost

Variable Min Max Variable Min Max Variable Min Max

Low Card Balance 0.18 0.26 High Card Balance 0.21 0.22 Low Card Balances 0.24 0.25
High Card Balance 0.15 0.19 Low Card Balance 0.20 0.20 High Card Balances 0.23 0.25
Low Card Credit Limit 0.12 0.18 Low Card Purchases 0.12 0.12 High Card Purchases 0.16 0.17
High Card Credit Limit 0.10 0.11 Low Card Credit Limit 0.11 0.12 Low Card Purchases 0.15 0.16
Low Card Purchases 0.09 0.18 High Card Purchases 0.11 0.12 Low Card Credit Limit 0.06 0.08
High Card Purchases 0.11 0.20 High Card Credit Limit 0.10 0.11 High Card Credit Limit 0.05 0.05
Low Card APR 0.00 0.03 High Card APR 0.07 0.07 Low Card APR 0.03 0.04
High Card APR 0.00 0.03 Low Card APR 0.06 0.07 High Card APR 0.03 0.03

Note: Table summarizes the importance of input variables in explaining payments on the high APR card in decision tree,
random forest and extreme gradient boosting models. Rows show the proportion of the total reduction in sum of squared
errors in the outcome variable resulting from the split of each variable across all nodes and all trees. The min and max
values are the minima and maxima from machine learning models ran on 10 partitions of the 80% training sample used in
Table 4.
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Table A7: Correlations Between Payment Rules
Panel (A) Balance Matching vs. Min. Pay Matching

(1) (2) (3)
Same Slopes Di�erent Slopes Floor

Correlation 0.96 0.86 0.56
(0.00) (0.00) (0.02)

Panel (B) Balance Matching vs. Actual
(1) (2) (3)

Same Slopes Di�erent Slopes Floor

Correlation 0.63 0.41 0.50
(0.00) (0.00) (0.00)

Panel (C) Min. Pay Matching vs. Actual
(1) (2) (3)

Same Slopes Di�erent Slopes Floor

Correlation 0.61 0.28 0.23
(0.00) (0.01) (0.02)

Note: Table shows correlation coe�cients (standard errors in parenthesis) be-
tween balance-matching payments, minimum-payment-matching payments, and
actual payments on the high APR. “Same Slopes” sample is account × months in
which the minimum payment is determined by the percentage formula on both
cards, and the percentage is identical across cards.“Di�erent Slopes” sample is ac-
count ×months in which the minimum payment is determined by the percentage
formula on both cards and the percentage di�ers across cards “Floor” sample is
account × months in which the minimum payment determined by the �oor value
on both cards held by the individual, e.g. £25.
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Table A8: Summary Statistics for Autopay (11% of Observations) and
Non-Autopay (77% of Observations) Samples

(1) (2)
Both Cards Both Cards

Non-Autopay Autopay

i) Actual and Optimal Payments

Actual Payments (%) 51.21 51.11

Optimal Payments (%) 74.36 58.42

Actual - Optimal Payments (%) 23.15 7.30

ii) Actual and Optimal Excess Payments

Actual Excess Payments (%) 51.29 52.26

Optimal Excess Payments (%) 96.97 97.73

Actual Excess - Optimal Excess Payments (%) 45.68 45.47

Note: Table summarizes actual and optimal payments, and actual and optimal payments in ex-
cess of minimum due. The autopay sample is de�ned as observations where individuals make
automatic payments on both cards. The non-autopay sample is de�ned as observations where
individuals do not make automatic payments on either card. The two-card sample is restricted
to individual × months in which individuals face an economically meaningful allocative deci-
sion. See Section 2.2 for details on the sample construction.
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Table A9: Goodness-of-Fit for Di�erent Models, Autopay and
Non-Autopay Samples

Both Cards Both Cards
Non-Autopay Autopay

(1) (2) (3) (4) (5) (6)
RMSE MAE Corr RMSE MAE Corr

i) Main Models

Uniform Draw (0,100) 34.04 28.36 -0.01 36.90 30.30 -0.00
(0.19) (0.19) (0.01) (0.11) (0.10) (0.00)

Optimal 36.40 30.65 0.25 32.86 20.81 0.35
(0.18) (0.17) (0.01) (0.24) (0.20) (0.01)

Balance Matching 22.00 16.81 0.38 23.11 15.61 0.53
(0.14) (0.11) (0.01) (0.13) (0.09) (0.00)

Note: Goodness-of-�t for di�erent models of the percentage of payments
on the high APR card. The �rst column shows the Root Mean Square Er-
ror (RMSE), the second column shows the Mean Absolute Error (MAE), and
third column shows the Pearson Correlation Coe�cient, which can also be
interpreted as the square root of the R-squared. The autopay sample (11% of
observations) is de�ned as observations where individuals make automatic
payments on both cards. The non-autopay sample (77% of observations) is
de�ned as observations where individuals do not make automatic payments
on either card. The two-card sample is restricted to individual × months
in which individuals face an economically meaningful allocative decision.
Goodness of �t is calculated using the 20% hold-out sample and standard
errors are constructed by the bootstrap method. See Section 2.2 for details
on the sample construction.
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Table A10: Horse Races Between Alternative Models,
Autopay and Non-Autopay Samples

Panel (A)
Uniform vs. Balance Matching

Both Cards Both Cards
Non-Autopay Autopay

(1) (2)
Win %
Uniform 32.46 21.29
Balance Matching 67.54 78.71

Panel (B)
Balance Matching vs. Optimal

Both Cards Both Cards
Non-Autopay Autopay

(1) (2)
Win %
Balance Matching 75.21 61.02
Optimal 24.79 38.98

Note: Table shows percentage of individual × month observations that
are best �t by di�erent models of repayment behavior. The target vari-
able is the share of repayments on the high APR card. Panel A compares
balance-matching repayments against the lower benchmark where the
percentage of repayments on the high APR card is randomly drawn from
a uniform distribution with support on the 0% to 100% interval. Panel
B compares optimal model repayments to the balance-matching model.
The autopay sample (11% of observations) is de�ned as observations
where individuals make automatic payments on both cards. The non-
autopay sample (77% of observations) is de�ned as observations where
individuals do not make automatic payments on either card. Samples are
restricted to individual × months in which individuals face an economi-
cally meaningful allocative decision. All results shown in the table are
based on the 20% hold-out sample. See Section 2.2 for more details on
the sample construction.
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